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Fluorescent pseudomonads colonizing roots of crop plants and producing antifungal metabolites are
regarded as a reliable alternative to chemical fungicides against soil-borne phytopathogens. Key factors
in successful pathogen control are presence and activity at the appropriate concentration, time, and place
of biocontrol agents. Thus, quantification methods to monitor population dynamics are pivotal to the
development of reliable application protocols. Real-time PCR is nowadays the most widespread culture-

independent technique for the detection and enumeration of different target sequences. Here, its
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implementation with high resolution melting analysis as a powerful tool to accurately discriminate
microbial inoculants is discussed.

© 2015 Elsevier Ltd. All rights reserved.

1. Soil-borne pathogens and their biological control

Soil-borne plant pathogens, and particularly fungi and oomy-
cetes, are among the most harmful pathogenic microorganisms in
agricultural environments, representing a major limitation to the
production of food crops worldwide (Raaijmakers, Paulitz,
Steinberg, Alabouvette, & Moénne-Loccoz, 2009; Yadeta &
Thomma, 2013). Examples of widely spread soil-borne fungi and
oomycetes include Fusarium spp. (primarily Fusarium oxysporum),
Rhizoctonia solani, Gaeumannomyces graminis, Verticillium spp.
(mainly V. dahliae, V. albo-atrum and V. longisporum), Phytophthora
spp. and Pythium spp.

Soil-borne pathogens are difficult to control: crop rotation,
breeding for resistant plant varieties or genotypes, herbaceous
grafting with resistant rootstocks, soil fumigations and application
of pesticides are often insufficient to conveniently control root
diseases. In past years methyl bromide, a very effective soil fumi-
gant, was intensively used, but it has been banned since 2005 in all
industrialized countries. The European Directive 91/414/EEC, and
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even more the following European Regulation 1107/2009 and Eu-
ropean Directive 2009/128/EC, entailed a great re-evaluation of
pesticides, that dramatically reduced the arsenal of available fu-
migants in European Countries (Colla, Gilardi, & Gullino, 2012), but
also in other Countries exporting to Europe. The Directive also re-
quires Member States to develop national action plans to further
reduce the risk associated with the use of pesticides and promote
the use of low-input systems (Matthews, Bateman, & Miller, 2014).
The use of methods alternative to pesticides, such as biocontrol
agents (BCAs), to control soil-borne pathogens had thus become
increasingly relevant in the context of a general strategy that aims
to reduce the environmental impact of agricultural practices (Colla
et al., 2012). Besides, BCAs may provide control of diseases that
cannot be easily managed by other control strategies, e.g. for
cultivation in greenhouse, as reported by Paulitz and Bélanger
(2001), or in hydroponics, as reported by Vallance et al. (2011).
Over the past fifty years, many research efforts have been made
to screen for effective microorganisms to be used as antagonists
against soil-borne pathogens. Some natural environments, known
as suppressive soils, characterized by a very low level of disease
development even when a virulent pathogen and susceptible host
are present (Mazzola, 2002), occur worldwide (Haas & Défago,
2005). Natural suppressive soils are good examples of the indige-
nous microflora that effectively protects plants against soil-borne
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pathogens. The most important microorganisms involved in the
natural suppressiveness of soil-borne plant pathogens and devel-
oped into BCAs are non-pathogenic fungi belonging to Fusarium
spp. and Trichoderma spp., and bacteria belonging to Pseudomonas
spp. and Bacillus spp. (Renault et al, 2007; Weller, Raaijmakers,
McSpadden Gardener, & Thomashow, 2002).

2. Fluorescent pseudomonads

Fluorescent pseudomonads have been the most studied BCAs
starting from 1970s (Thomashow, 1996; Weller, 2007). They are
spread all over the world, exploiting many different ecological
niches, from Arctic to tropical regions, and are particularly relevant
in plant rhizosphere (Botelho & Mendonga-Hagler, 2006). It is well
documented that biocontrol strains of fluorescent Pseudomonas can
habitually colonize the root environment, representing up to 10% of
all root-associated bacteria (Couillerot, Prigent-Combaret, Cabal-
lero-Mellado, & Moénne-Loccoz, 2009), and have the ability to
protect plants from soil phytopathogens. As biocontrol agent, an
organism must occupy an ecological niche similar to that of plant
pathogens, and its mode of action must interfere both spatially and
temporally with crucial steps in the development of pathogens
(Paulitz & Bélanger, 2001). Fluorescent pseudomonads exert their
beneficial effect via several different mechanisms, but principally
by active exclusion of pathogens from rhizosphere (Rainey, 1999).
More precisely, the recognized traits that make Pseudomonas spp.
suitable for biocontrol are: competition with root pathogens for
micronutrients (especially for iron and carbon) and aggressive root
surface colonization (Haas & Défago, 2005; Raaijmakers et al.,
2009); production of secondary metabolites that act as antimicro-
bial compounds, i.e. 2,4-diacetylphloroglucinol (DAPG), phena-
zines, pyrrolnitrin, pyoluteorin, hydrogen cyanide (HCN)
(Handelsman & Stabb, 1996; Raaijmakers, Vlami, & de Souza,
2002); production of siderophores as pyoverdin, biosurfactants,
extracellular lytic enzymes, effectors, cyclic lipopeptides
(Raaijmakers, de Bruijn, & de Kock, 2006); stimulation of systemic
reactions in plants, called rhizobacteria-mediated induced systemic
resistance (ISR) (Bakker, Pieterse, & van Loon, 2007; van Loon,
Bakker, & Pieterse, 1998).

Fluorescent pseudomonads demonstrated to be effective in
many different pathosystems, i.e. to protect more than one plant
species from often distinct pathogens, as long as the rhizosphere is
successfully colonized (Couillerot et al., 2009; Haas & Défago,
2005). For example, strain CHAO of Pseudomonas protegens
(formerly, Pseudomonas fluorescens) (Ramette et al., 2011) isolated
from roots of tobacco grown in soil suppressive to black root rot in
Switzerland (Stutz, Défago, & Kern, 1986), demonstrated to be able
to protect not only tobacco in different experiments, but likewise
also cereals against E graminearum, tomato against F. oxysporum f.
sp. radicis-lycopersici, cacumber against Pythium ultimum, and peas
against Fusarium wilt (Landa et al., 2002).

Similarly, P. protegens strain Pf-5, isolated from cotton rhizo-
sphere and first described for its capacity to suppress seedling
diseases of cotton caused by R. solani (Howell & Stipanovic, 1979)
and P, ultimum, was demonstrated to suppress these pathogens also
in cucumber, pea and maize, as well as E oxysporum f. sp. radicis-
lycopersici in tomato (Loper, Kobayashi, & Paulsen, 2007).
P. fluorescens strain 2-79 was isolated in 1979 from the rhizosphere
of wheat grown in a take-all disease suppressive soil in USA, and
demonstrated to protect wheat against G. graminis (Weller & Cook,
1983), but also showed to protect other cereals (Couillerot et al.,
2009). Moreover, P. chlororaphis strain PA23 was initially isolated
from soybean root tips (Savchuk & Fernando, 2004), and both in
greenhouse and field studies showed its ability to protect canola
from stem rot caused by Sclerotinia sclerotiorum.

In conclusion, fluorescent pseudomonads have been mostly
studied for protection of food crop plants from phytopathogenic
oomycetes and fungi (Pythium spp., E oxysporum, G. graminis,
R. solani), and to a lesser extent for crop protection from bacteria
(e.g. Erwinia carotovorum) and nematodes (e.g. Meloidogyne spp.)
(Couillerot et al., 2009). They demonstrated to protect food crop
plants from root pathogens also in hydroponics; for example, they
proved to be effective against Pythium aphanidermatum, P. ultimum
and P. dissotocum, in plants of cucumber and pepper growing in
three different recirculating hydroponic systems (Pagliaccia, Ferrin,
& Stanghellini, 2007).

Thanks to all the research efforts a number of Pseudomonas spp.-
containing biocontrol inoculants have been commercially devel-
oped mainly in the US, and a few also in EU. The soil bacteria
P. chlororaphis MA 342 is the active microorganism in Cedomon®,
Cerall® and Cedress® (Lantminnen BioAgri AB, Sweden), Pseudo-
monas sp. strain DSMZ 13134 in Proradix® (Omya (Switzerland) AG
Agro).

3. Real-time PCR: an established technology for detection and
quantification of biocontrol agents including Pseudomonas

Spp.

The key aspect in biocontrol with P. fluorescens and closely-
related species is to ensure their presence and activity at the
appropriate concentration, time, and place. If a Pseudomonas strain
is not able to compete with the microflora inhabiting the rhizo-
sphere and to colonize the root surface, then it will not be an
effective BCA. Thus, unambiguous strain identification among rhi-
zobacteria and quantification methods to monitor population dy-
namics over time are pivotal to the development of reliable
application protocols. Moreover, the registration process (Annex II
of European Directive 2009/128/EC) for placing plant protection
products based on microorganisms on the market establishes is-
sues that need to be addressed, including the estimation of the fate
and distribution of the microorganism in the environment and its
side-effects on non-target species. These registration requirements
in turn imply the use of monitoring methods that can accurately
identify the released microorganism at strain level, and enabling its
distinction from native strains of the same species, that are part of
the microbial community of the rhizosphere.

Several methods can be used in field studies to assess the fate of
the introduced beneficial bacteria (Ahmad, Husain, & Ahmad, 2011;
Gamalero, Lingua, Berta, & Lemanceau, 2003). Methods for moni-
toring the released microorganisms can be classified in two major
groups according to their reliance or not on cultivation in vitro, i.e.
culture-dependent and culture-independent methods (Gamalero
et al,, 2003). The culture-dependent methods remain widely used
mainly because they are easy to apply. However, these methods
present several limitations: the detection of viable but not culti-
vable bacteria (VBNC) is not allowed, species/strain selective media
are rarely available, the procedure is extremely time consuming,
the results are not immediately accessible and not always conclu-
sive since they do not allow discrimination of closely related or-
ganisms, and may require taxonomical skill for interpretation.

The culture-independent methods, especially those based on
PCR are, conversely, easy to develop as species/strain specific,
reliable, repeatable and quick. Since conventional PCR easily allows
the detection of a microorganism, but not its precise quantification,
real-time PCR (or q-PCR) has become nowadays the most wide-
spread culture-independent technique to quantify target sequences
(Sanzani, Li Destri Nicosia, Faedda, Cacciola, & Schena, 2014;
Serensen, Nicolaisen, Ron, & Simonet, 2009). Several real-time
PCR approaches have recently been developed for the detection
and enumeration of different biocontrol agents, including
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fluorescent Pseudomonas spp. (El Hamouchi et al., 2008; von Felten,
Défago, & Maurhofer, 2010; Savazzini, Oliveira Longa, Pertot, &
Gessler, 2008).

In real-time PCR the amplicons are measured at an early stage of
the reaction when the efficiency is still constant. The number of PCR
cycles necessary to generate a fluorescent signal significantly above
the noise level is inversely related to the log of the initial amount of
target molecules. Quantification is automatically determined by
interpolating cycle threshold (Ct) values of unknown samples with
standard curves prepared from known quantities of the target DNA
(Fig. 1A and B). Standard curves are also useful to determine the
linear dynamic range and the efficiency of the reaction which
should be as closed as possible to 100% (Bustin et al., 2009).

The efficiency of PCR reaction can be influenced by non-target
host plant DNA and particularly by the presence of inhibitors
(compounds of different chemical nature, i.e. polyphenols and
polysaccharides) in the plant DNA extracts. Hence, in the case of
real-time PCRs having rhizobacteria biocontrol agents as target, the
use of a solution of total genomic DNA extracted from roots of
untreated plants is recommended for the preparation of serial di-
lutions of a plasmid DNA containing the target of interest. In this
way, the standard curve is established with samples of known
target DNA quantities resembling as much as possible to natural
samples. Moreover, it has been suggested to normalize quantifica-
tion data of the target DNA with quantification data of host DNA in
order to avoid interference of sample size and extraction efficiency
from one sample to another (van Gent-Pelzer, Krijger, & Bonants,
2010).

Several chemistry formats have been developed for the real-
time PCR assay; the reader is referred to Schena et al. (2013) for a
detailed treatise. The most frequently used among the specific and
non-specific methods are TagMan® probes and SYBR® Green I,
respectively. The results of recent researches, however, provided a
new generation of intercalating dyes such as SYTO® 9, EvaGreen®
and LCGreen®. As it is detailed below, these newly introduced dyes

Amplification

allowed a finer monitoring of intercalation dynamics, thus
expanding the range of application of q-PCR. Among them, Eva-
Green® seems very promising, exhibiting many advantages as
compared with the most used intercalating dye SYBR® Green I.
Mao, Leung, and Xin (2007) and Eischeid (2011) demonstrated for
EvaGreen® a higher reproducibility, a lower PCR inhibition effect, a
weaker binding for short dsDNA fragments (which reflects the low
tendency to promote not specific amplification), as well as higher
and narrowed melting curves compared with SYBR® Green 1.

3.1. Development of real-time PCR markers for species/strain
identification and quantification of bacterial biocontrol agents
including Pseudomonas spp.

A crucial step in the development of a real-time PCR assay is the
identification of appropriate target DNA regions. It is now widely
accepted that a good target gene should readily be amplified and
sequenced, and has to be present in single-copy in the genome in
order to most accurately correlate Ct values with the amount of the
microorganism cells. Real-time PCR markers for detection and
identification of bacterial microorganisms at species or even at
strain level have been developed through two main strategies: 1)
from genes or sequences with known functions such as the
‘housekeeping’ protein coding genes, or 2) from regions of the
microorganism's genome with unknown functions such as the
sequence-characterized amplified region (SCAR) markers (Schena
et al,, 2013).

In the first strategy, the same known conserved gene is ampli-
fied and sequenced from target and non-target microorganisms
with universal primers. Regions of the sequence that are different
are used to design primers for PCR.

The most commonly used target for bacteria is the DNA encoding
the 16S ribosomal RNA gene, since it is highly stable, possesses
conserved as well as variable sequences, and can be amplified and
sequenced with universal primers. However, the capability of this
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Fig. 1. Amplification curves of 1:10 serial dilutions of a plasmid containing gyrB gene of P. protegens Pf4 (A), standard curve established for the Pf4 quantitation in DNA samples
extracted from Pf4-treated and untreated roots (B); melting curves (C) and melting peaks (D) of amplicons generated from DNA samples extracted from Pf4-treated and untreated

roots.
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region to differentiate closely related taxa is quite limited because of
its extremely slow rate of evolution. Therefore, alternative targets for
designing primers, more variable than 16S rRNA gene and able to
discriminate closely related taxa, have been investigated.

Within fluorescent Pseudomonas spp., in addition to 16S rRNA
gene, the antifungal metabolite-encoding genes phiD (a key gene in
the biosynthesis of 2,4-DAPG) (De La Fuente, Mavrodi, Landa,
Thomashow, & Weller, 2006) and hcnBC (hydrogen cyanide syn-
thesis gene) (Ramette, Moénne-Loccoz, & Défago, 2006), and gacA
(response regulator gene) (De Souza, Mazzola, & Raaijmakers,
2003) gene have been used as markers of genetic diversity, sug-
gesting that they may be used as targets for fluorescent Pseudo-
monas species or strain-specific real-time PCR assays. Within
Pseudomonas spp., other eligible targets are the ‘housekeeping’
protein coding genes gyrB (beta-subunit of gyrase), rpoD (sigma 70
subunit of RNA polymerase) and rpoB (beta-subunit of RNA poly-
merase), which are currently proposed besides 16S rRNA gene in a
MLSA approach for studying the phylogeny of the genus Pseudo-
monas, as well as for ascribing novel strains to known species
(Gomila, Pena, Mulet, Lalucat, & Garcia-Valdés, 2015; Mulet,
Bennasar, Lalucat, & Garcia-Valdés, 2009; Mulet, Lalucat, &
Garcia-Valdés, 2010).

In the second strategy, specific target sequences have been
identified by amplifying random regions of the bacterial genome
with PCR-based techniques, such as random amplified polymorphic
DNA (RAPD), arbitrarily primed PCR (AP-PCR) and amplified frag-
ment length polymorphism (AFLP). Recently, microsatellite
primed-PCR (MP-PCR) and repetitive PCR (rep-PCR) have been
regarded as more robust than RAPDs, because longer primers are
used for MP-PCR and rep-PCR as compared to RAPDs (Ma &
Michailides, 2007). This allows more stringent annealing temper-
atures and reaction conditions that enhance reproducibility. This
approach requires more time and experience compared to the
amplification of conserved genes, since the analysis of a large
number of isolates of closely related taxa is necessary. However,
SCAR primers have been shown to be particularly useful when
other target genes do not allow to differentiate closely related taxa
or when specific strains need to be identified as in the case of
biocontrol agents, e.g. P. protegens CHAO (von Felten et al., 2010)
and Pantoea agglomerans CPA-2 (Soto-Munoz, Teixid6, Usall, Vinas,
& Torres, 2014).

3.2. Real-time PCR methods developed for Pseudomonas spp.

Several real-time PCR approaches have recently been developed
for the detection and enumeration of different Pseudomonas spp.
biocontrol agents; examples of such methods are given in Table 1.
Checking on the chemistry formats which have been developed for
these real-time PCR assays, it appears that dsDNA-intercalating
dyes have been extensively used, especially SYBR® Green I (von
Felten et al., 2010; Holmberg, Melin, Levenfors, & Sundh, 2009;

Mavrodi, Mavrodi, Thomashow, & Weller, 2007) but also the
dsDNA-intercalating dye of new generation EvaGreen® (Moruzzi
et al., submitted) (Fig. 1). These findings confirm that a fully opti-
mized real-time assay based on dsDNA-intercalating dye can be
used for detection and quantification of the target molecule as a
simple and reliable low-cost method. However, Pseudomonas-
based BCAs have also been monitored with the TagMan probe,
although to a more limited extent, to assess for example the envi-
ronmental fate of P. fluorescens strain EPS62e after its introduction
into apple phyllosphere against fire blight (Pujol, Badosa, Manceau,
& Montesinos, 2006).

Moreover, both strategies concerning the PCR markers (i.e.
primers development from genes with known function and from
SCAR markers) have been used and regarded as attractive for
developing Pseudomonas spp. strain-specific real-time PCR
primers.

Genes with known function chosen as real-time PCR targets were
phlD gene for the detection of four different genotypes of phlD"
P. fluorescens strains (Mavrodi et al., 2007) and gyrB gene for the
detection of P. protegens Pf4 potential biocontrol agent against root
rot caused by R. solani (Moruzzi et al., submitted).

SCAR markers have been developed for the monitoring of
P. fluorescens EPS62e in the apple phyllosphere (Pujol et al., 2006),
but also for the assessment of several Pseudomonas-based BCAs fate
in the rhizosphere of maize as in the case of strain-specific quan-
tification of the three biocontrol fluorescent Pseudomonas strains
F113, CHAO and Pf153 (von Felten et al., 2010). Furthermore, SCAR
markers were used to develop q-PCR assays for the monitoring of
the biocontrol candidate strain Pseudomonas brassicacearum
MA250 (effective against snow mould, Microdochium nivale) on
different parts of wheat seedlings (Holmberg et al., 2009).

The detection limits of the optimized real-time PCR assays
included in Table 1 were similar, corresponding to about 10 CFU
with DNA extracted from pure cultures and to 100—1000 CFU for
bacterial DNA extracted from spiked environmental samples, sug-
gesting that similar performances can be reached regardless of the
chemistry and target chosen for the quantitative PCR assays.
Furthermore, the detection limit is below the minimal threshold
BCA population size (10°—10° CFU/g root), which is required for a
successful control of soil-borne pathogens in the rhizosphere (Haas
& Défago, 2005).

In the listed manuscripts the persistence and concentration of
BCAs after their application in the environment, were monitored
also by conventional culturing methods besides the quantitative
molecular methods. From comparison of results obtained with the
two methods, it is clear that in general DNA-based quantification
methods detect a higher BCA population size than culture-based
methods. This difference is usually attributed to the fact that
DNA-based methods also detect dead cells or nonculturable but
viable cells (Mavrodi et al., 2007; Rezzonico, Moénne-Loccoz, &
Défago, 2003).

Table 1

Quantitative real-time PCR methods developed for monitoring Pseudomonas spp. biocontrol strains in the environment.
Bacterial strain PCR marker Chemistry format Reference
Pseudomonas fluorescens EPS62e SCAR TagMan® probe Pujol et al., 2006
Pseudomonas protegens Pf-5 phiD SYBR® Green | Mavrodi et al., 2007
Pseudomonas fluorescens Q2-87 phlD SYBR® Green | Mavrodi et al., 2007
Pseudomonas fluorescens Q8r1-96 and FTAD1R34 phlD SYBR® Green | Mavrodi et al., 2007
Pseudomonas fluorescens FTAD1R36 phlD SYBR® Green | Mavrodi et al., 2007
Pseudomonas brassicacearum MA250 SCAR SYBR® Green | Holmberg et al., 2009
Pseudomonas fluorescens F113 SCAR SYBR® Green | von Felten et al., 2010
Pseudomonas protegens CHAO SCAR SYBR® Green | von Felten et al., 2010
Pseudomonas fluorescens Pf153 SCAR SYBR® Green | von Felten et al., 2010
Pseudomonas protegens Pf4 gyrB EvaGreen® Moruzzi et al., submitted
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4. Implementation with high-resolution melting (HRM)
analysis, as an innovative molecular approach in the
diagnostics of bacteria inoculants

As stated above, the introduction of the latest generation dyes
allowed technical strategies in q-PCR. A particularly useful and
interesting approach to the identification of microorganisms at
species and strain level is the so-called high resolution melting
(HRM) analysis, an advanced method based on melting behaviour
of double stranded DNA (Tong & Giffard, 2012).

4.1. Principles of high resolution melting (HRM) analysis and data
analysis

High resolution melting (HRM) analysis is an automated
analytical molecular technique which measures the rate of double
stranded DNA dissociation to single stranded DNA with increasing
temperature (Reed & Wittwer, 2004). The temperature at which
50% of the DNA is dissociated is called melting temperature (Tm),
which depends both on the length and the percent guanidine-
cytosine (GC) content of the DNA fragment. As mentioned above,
melting curve analysis is frequently used in real-time PCR to check
if the correct amplicons have been generated (low-resolution
melting).

A requirement for performing a melting curve analysis is the
incorporation of dsDNA binding dye in the amplified DNA fragment.
However the requirements of the dyes used for HRM are different
from dyes normally used for standard quantitative real-time PCR
assays. In fact, HRM takes advantage of third generation inter-
calating dyes such as EvaGreen®, LCGreen® and SYTO 9®. These
dyes are used at higher concentration for greater saturation of
dsDNA and less redistribution from the melted regions of single-
stranded DNA back to the regions of dsDNA (Reed, Kent, &
Wittwer, 2007). Dyes such as SYTO 9® and LCGreen® are satu-
rating dyes ensuring more complete intercalation of the amplicon,
without inhibition of DNA polymerases or modification of the Tm of
the product. Dyes such as EvaGreen®, which is a “release-on-de-
mand” dye, can be added at non-saturating concentrations, thus
ensuring no PCR inhibition, with their fluorescence quenched as
long as they are not bound to DNA. Upon binding to dsDNA, the
quenching factors are released and the dyes emit high fluorescent
signal.

Besides third generation dyes, another requirement of HRM is
high-resolution instruments. Since it is convenient to have both
functions of amplification and melting analysis combined in one
instrument, several real-time PCR thermal cyclers have been
adapted to high-resolution melting analysis. After the step of real-
time PCR, melting of the amplicons is carried out by gradually
increasing the temperature with smaller temperature increments
(0.01-0.2 °C) than low-resolution melting analysis. During melting
of the PCR product, the intercalated dye is released. HRM analysis
scans the entire melting process; thus, the generated melting
profile is based on all temperature points rather than peak points as
in low-resolution melting analysis. Moreover the dye labels the PCR
product along its entire length in order to detect efficiently all
melting domains (Reed et al., 2007).

With suitable software, all the data of relative fluorescence in-
tensity collected during the melting process are plotted against the
temperature to generate raw melt curve data (Fig. 2A). The software
proceeds with the normalization of relative fluorescence intensity
so that the average data value at the start of the pre-melt region is 1,
and at the end of the post-melt region is O (Fig. 2B). Differences in
melting curve shapes can be analysed generating “Difference
Curves”, subtracting the sample melting curve from the melting
curve of a reference sample (Fig. 2C). Therefore, samples with
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Fig. 2. Raw melt curve data (A), normalized melt curve (B) and difference curves in
relation to control sample (red curve) (C) generated from HRM analysis on amplicons
obtained from DNA of root samples collected from P. protegens Pf4-treated or untreated
plants. All the Pf4-treated samples formed a unique red cluster together with the
positive control represented by Pf4 total genomic DNA, whereas untreated samples
formed four different clusters indicated with green, blue, pink and orange curves.(For
interpretation of the references to colour in this figure caption, the reader is referred to
the web version of this article.)

similar melting curves are clustered automatically into groups. The
identity of samples can be verified by comparing the melting curves
with those of reference strains. Reliability of the clusters can be
evaluated by the software calculating confidence values, thus
reducing subjectivity in the interpretation of the results.

There are several important aspects that should be taken into
consideration in order to develop a successful HRM analysis
method. When designing primers special attention should be paid
on preventing amplification of non-specific products and formation
of primer-dimers. Moreover, amplicon length should not exceed
300 base pair (bp), since the length of the amplicon influences the
sensitivity of following HRM analysis, and the secondary structure
within the amplified product should be investigated because it may
result in unusual melting profiles. Finally, the PCR conditions have
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to be optimised in order to increase efficiency of amplification,
indicated by lower Ct values and amplification curves reaching the
plateau phase. Volume of reaction should be the same for all
samples, with the same concentration of dye and of buffer, Mg?*+
and other salts which can affect the DNA melting behaviour.
Especially MgCl, concentration is one of the parameters which
more strongly influences the melting behaviour of dsDNA, there-
fore particular attention should be paid to its optimization. All DNA
samples to be analysed should be extracted using the same DNA
extraction method or kit, and should be of high integrity and purity;
moreover, the amount of DNA added to the reaction mixture should
not differ significantly between samples in order to get similar Ct
values (Reed et al., 2007). Samples with very low DNA template
producing Ct values higher than 30, or samples generating curves
not sigmoid or near sigmoid should be discarded from the analysis.

4.2. Applications of HRM analysis including diagnostics of bacteria
inoculants

HRM is an incredibly sensitive and accurate technique, useful to
rapidly identify DNA sequence variants, SNPs and mutations,
therefore it plays an important role in clinical research and di-
agnostics. In the last few years this novel DNA-based method has
been investigated and successively applied in many different
research areas, such as diagnostics of parasites and pathogens in
humans (Druml & Cichna-Markl, 2014; Tong & Giffard, 2012) and
animals (Ghorashi, Noormohammadi, & Markham, 2010), detection
and analysis of cancer-related mutations in humans (Simi et al.,
2008), plant genotyping (Mackay, Wright, & Bonfiglioli, 2008),
authentication of plant and food products (Druml & Cichna-Markl,
2014; Ganopoulos, Argiriou, & Tsaftaris, 2011).

Focussing on human pathogens and food safety aspects, a
number of papers have shown that HRM analysis can be applied for
genotyping and serotyping of foodborne related pathogenic mi-
croorganisms such as Listeria spp, Salmonella spp., Escherichia coli,
Staphylococcus aureus and Bacillus cereus (Druml & Cichna-Markl,
2014) with very high discriminatory power. For instance,
Lilliebridge, Tong, Giffard, and Holt (2011) applied HRM for geno-
typing of S. aureus using six different DNA fragment containing
SNPs as target. The HRM analysis on 94 isolates of S. aureus yielded
268 melting types. Kagkli, Folloni, Barbau-Piednoir, Van den Eede,
and Van den Bulcke (2012) developed HRM analysis targeting stx1
(Shiga toxin 1), stx2 (Shiga toxin 2) and eae (virulence facto intimin)
genes for differentiation of E. coli strains. The authors were able to
discriminate between strains based on the toxin variant they
possess. Furthermore, they showed that also multiplex PCR can be
coupled with HRM analysis.

In the plant pathology research field, HRM has been inferred in
relatively few studies to discriminate pathogenic microorganisms
such as viruses (Bester, Jooste, Maree, & Burger, 2012), bacteria
(Gori, Cerboneschi, & Tegli, 2012) and fungi (Ganopoulos, Madesis,
Zambounis, & Tsaftaris, 2012; Zambounis, Ganopoulos,
Chatzidimopoulos, Tsaftaris, & Madesis, 2014).

Regarding bacteria plant pathogens a unique strategy based on
real-time PCR followed by HRM analysis was reported for the rapid,
highly specific and sensitive detection and identification of three
different Pseudomonas savastanoi pathovars, namely P. savastanoi
pv. savastanoi (Psv), pv. nerii (Psn) and pv. fraxini (Psf), respectively
(Gori et al., 2012). The HRM analysis-based assay allowed to un-
equivocally discriminate Psv, Psn and Psf according to several single
nucleotide polymorphisms found in their Type Three Secretion
System clusters. In addition, Gori et al. (2012) demonstrated the
feasibility of developing a multiplex-HRM protocol.

In the research area of biological control, recently we obtained
the first results concerning the application of HRM analysis in

diagnostics of a beneficial bacterial strain of P. protegens Pf4 against
soil-borne pathogens with the aim to easily discriminate the strain
of bacterial inoculant from those strains of the same species
naturally residing in the soil at the rhizosphere level (indigenous
microflora) (Moruzzi et al., submitted). As an example of develop-
ment and application of a molecular tool for specific detection and
quantification of a Pseudomonas-based BCA, the steps involved in
the research work conducted within the frame of AGER Stay-Fresh
project, are summarized in Fig. 3. This cultivation-independent
method, based on a strain-specific real-time PCR assay followed
by HRM analysis, has been developed on gyrB gene (Table 1)
(Moruzzi et al., submitted), which resulted to be the most appro-
priate target to be used for the development of a Pf4 strain-specific
assay, compared to rpoD (sigma 70 subunit of RNA polymerase) and
secY (preprotein translocase membrane subunit) genes. Primers
and product size were determined following the suggestions given
above.

After optimization of the real-time PCR assay, this molecular
method was used to accurately monitor the presence and quantity
of Pf4 bacterial cells during the in vivo test (Fig. 2), which included
Pf4-treatments on lamb's lettuce against R. solani root rot in small-
scale hydroponics aimed to determine its disease suppressiveness.
The treatment with Pf4 reduced of about 40% the percentage of
wilted plants (Fig. 4) indicating an actual protective effect of Pf4
against R. solani root rot. Quantification of Pf4 with strain-specific
real-time PCR assay demonstrated that the density of Pf4 above
the threshold value of 10° CFU/g of root required for suppression of
root diseases (Haas & Défago, 2005), was maintained for the whole
lamb's lettuce growing period.

5. Future perspectives

Molecular tools offer new possibilities to enhance research on
biocontrol agents. Comprehension of the population dynamics of
BCAs is decisive for predicting the success of BCAs in disease con-
trol. The Pseudomonas strains used as BCAs must compete within
the environment of the rhizosphere, so it is crucial that they reach a
fitting concentration (the threshold value of 10° CFU/g of root), in
the right time and place.

Real-time PCR had become a standard technique for detection
and quantification of microorganisms in many laboratories,
including those involved in biological control research. Despite its
age, PCR-based technology is still in rapid evolution. The well-
known advantages of real-time PCR over conventional detection
and quantification methods (i.e. possibility to avoid microorganism
culturing, high sensitivity, versatility, rapidity, accuracy and reli-
ability, and high-throughput DNA detection and quantification
from various environmental samples) are now being com-
plemented with the recent improvements provided by the intro-
duction of intercalating dyes of new generation. Current
applications of EvaGreen® include quantitative PCR, HRM analysis,
real-time isothermal DNA amplifications and capillary gel
electrophoresis.

Exploiting the performances of the EvaGreen®-based novel
chemistry, HRM represents a significant advance over conventional
melting curve analysis; contrary to low resolution melting, it allows
the precise definition of the melting profile of an amplicon. Since
the melting profile depends mostly on base composition and size of
the amplicon, HRM is highly suitable for detection of SNPs and
small insertions or deletions; therefore, it has the potential to finely
discriminate the microorganism of interest from those closely-
related present within a plant or in the environment.

We envisage that other biocontrol researches involving the
application of potential BCA in the environment would benefit from
this molecular approach, which has several advantages over
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Fig. 3. Schematic flowchart of the steps which can be followed for the development of real-time PCR/HRM assays specific for Pseudomonas-based BCA strains to be used for their
monitoring in in vivo tests. The same or similar flowchart can be adopted for potential BCAs, other than Pseudomonas spp. strains. (*: amplification with de novo primers or primers

published in the literature).

traditional methods for genotyping: it is a high-throughput
method, it is faster and less laborious since it does not require
manual post-PCR processing; in addition, the entire process is
performed in a close-tube, thus the risk of contamination is greatly
reduced. HRM is also less expensive if compared to alternative
approaches based on the use of probes or sequencing.

Despite the broad application of the DNA-based quantification
methods, the inability of differentiate between viable and non-
viable cells, still represents a major challenge for scientists. The
degradation of DNA after cell death seems to strongly depend on
environmental conditions; there are reports showing a quick
degradation of DNA, whereas others demonstrate a long persis-
tence of it with the consequent overestimation of microbial den-
sity. However, to overcome this problem, a promising strategy
relies on the introduction of a sample pre-treatment with an

intercalating dye, such as propidium monoazide (PMA), before
real-time PCR analysis. PMA intercalates DNA from dead cells with
compromised cell membranes, upon visible light exposure it binds
covalently to DNA thus inhibiting PCR reaction. PMA treatment
combined with real-time PCR has been successively used for the
quantification of viable cells of foodborne pathogenic microor-
ganisms such as Listeria monocytogenes (Pan & Breidt, 2007), E. coli
0157:H7 (Elizaquivel, Sanchez, Selma, & Aznar, 2012) and
Campylobacter jejuni (Josefsen et al., 2010), but also for viable cells
of the biocontrol agent Pantoea agglomerans CPA-2, effective
against the major postharvest diseases of pome and citrus fruits
(Soto-Munoz et al., 2014). Thus, in the future it will be interesting
to verify the feasibility of the introduction of a pre-treatment with
PMA to Pseudomonas-based BCAs before real-time PCR
quantification.

Fig. 4. Symptoms of wilting on untreated (A) and P. protegens Pf4-treated (B) lamb's lettuce plants, 14 days after artificial infection with the soil-borne fungal pathogen R. solani.
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