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In this paper we consider the identification of two cracks of equal severity in a uniform
free–free rod under longitudinal vibration. Each crack is simulated by a translational
spring connecting the two adjacent segments of the rod and the cracks are considered to
be small. We show that the inverse problem can be formulated and solved in terms of
three frequency data only, corresponding to a suitable set of low resonant and
antiresonant frequencies. Closed-form expressions of the damage parameters in terms
of the measured frequency shifts are obtained. The paper improves existing results
available in the literature, since the use of antiresonant frequencies allows us to exclude
all the symmetrical crack locations occurring when only natural frequency are used as
data. The analysis also explains why the use of high frequency data introduces spurious
damage locations in the inverse problem solution. Numerical simulations show that if
accurate input data are available then damage identification leads to satisfactory results.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic methods are a useful diagnostic tool for several applications in mechanical and civil engineering. Diagnostic
techniques based on natural frequency data, in particular, have the advantage of being simple to carry out in practice, since
they require a limited experimental commitment and can be easily repeatable during the structure's lifetime. In addition,
frequencies can be measured more easily than can mode shapes, and are less affected by experimental errors. This class of
diagnostic methods operates on a global scale and does not require a priori information on the damaged area. Their global
character, however, has the disadvantage of introducing synthetic information on the formulation of the inverse problem.
Therefore, to be effective, these techniques often need additional information, such as a knowledge of the undamaged
configuration and of the characteristics of the defect to be identified (localized or diffuse damage, for example). Another aspect
worth of noticing is the relatively low sensitivity of the natural frequencies to damage, see, among other contributions, [1,2].
This is a peculiarity also of other damage indicators [3], and negative effects can be controlled by reducing the experimental
errors and using accurate mechanical models for the interpretation of the measurements [4].
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As a confirmation of the growing interest on this class of diagnostic methods, we recall that an extensive line of research on
damage identification by frequency data has been developed over the past three decades since the pioneering paper by Adams
et al. [5]. The damages commonly considered have localized nature, are notches or cracks, as this class of defects frequently
occurs in engineering applications. Most of the results concern damage identification in one-dimensional elements, such as
beams or bars. Indeed, in addition to the high number of applications, cracked beams have the advantage of being described by
consolidated mechanical models and being relatively manageable from the mathematical point of view, at least in the case of
cracks that remain open during the vibration of the system. Of course, there are contexts in which it is necessary to take into
account the phenomena of opening/closing of cracks, and more sophisticated nonlinear models of crack must be implemented,
see, among other contributions, [6] and [7] for an analysis of the direct problem in beams and rotors, respectively, and [8] for
the identification of breathing cracks in a vibrating beam. Without claiming of completeness, the reader may refer to [9–13] for
an overview of some recent contributions on damage detection based on frequency data.

Despite the extensive literature on identification of cracks in rods and beams by frequency data, some basic problems are still
open. Among the problems for which a satisfactory knowledge is not available yet, there is the identification of multiple cracks.

One of the first contributions to the treatment of the direct problem is due to Ostachowicz and Krawczuk [14], who considered
the effect of two open cracks on the lower natural frequencies and vibration modes of a cantilever beam in bending. Each crack was
modelled as a massless linear elastic rotational spring located at the cracked cross-section, according to arguments of Fracture
Mechanics [15]. Later on, Ruotolo and Shifrin [16] presented an efficient technique for solving the eigenvalue problem of the free
bending vibration of a multicracked beam. Main advantage of their approach was in the reduction of the differential equations
between cracks to a single differential equation on the whole beam axis interval. The method was later applied to longitudinal
vibration of a multi-cracked rod by Ruotolo and Surace [17]. In this case, each crack is included in the one-dimensional rod model as
a massless linear elastic translational spring located at the damaged cross-section. Among the recent contributions, worth of mention
is the study developed by Caddemi and Calió [18], who derived exact closed-form solutions for the free-vibration of a uniform Euler–
Bernoulli beam in the presence of multiple open cracks mathematically modelled as Dirac's delta functions in the bending stiffness
coefficient. Other interesting contributions to the direct problem appeared in the last few years, but, since our main goal is the
analysis of the inverse problem, we refer the reader to the introduction of the paper [18] for an updated overview on this topic.

Results on the inverse problem of identifying multiple (open) cracks in rods and beams from frequency data are less
numerous, see the updated state-of-the-art on identification and conditioning monitoring for multi-cracked structures by
Sekhar [19] (Section 5), and [20] for an application to model-based identification of two cracks in a rotor system.

Assuming as above the linear concentrated flexibility model to describe cracks in rods and beams, one approach consists
in considering as many natural frequencies as the unknowns of the problem (two unknowns for each crack, the position and
the severity), and then solve the system formed by the characteristic equation written for all the natural frequencies in
terms of the damage parameters, see, for example, [21,22]. Inverse transcendental eigenvalue problems for the identification
of multiple open cracks in a longitudinally vibrating rod were considered by Singh [23]. An iterative procedure based on a
suitable Taylor series expansion of the system of characteristic equations for the damaged rod was used to estimate the
damage parameters. Singh noticed that the possible presence of spurious solutions can be avoided by carefully selecting the
data and using simultaneously natural frequency and antiresonant frequency measurements. This is a powerful class of
methods, but has the drawback of requiring a strong support on numerical simulation, with the consequence of making
difficult to find out general properties, such as, for example, the indication of optimal data to be used in order to reduce the
non-uniqueness effects in the inverse problem solution.

Another approach to multi-cracked identification transforms the inverse problem to an optimization issue. It consists in
determining the damage parameters such that the natural frequencies of the mechanical model are closest (in some least square
sense) to those found experimentally, see [24,25] and, for a linearized version suitable in the case of small cracks, [26,12]. An
error function which measures the distance between experimental and analytical frequency values is minimized via gradient-
type methods. This class of techniques allows us to dealing with a large number of cracks and system of high complexity (beams
of variable profile under general set of end conditions), but the approach has several drawbacks mainly connected with the non-
convexity of the error function and, as a consequence, with the appearance of several local and global minima. Basic questions
such as how accurate the description of the reference configuration has to be or how many data are necessary to ensure
uniqueness of the solution (at least in local sense) are rarely discussed in the literature and are mainly still open.

In the case of multi-cracked rods under longitudinal vibration, an attempt to use the classical results of the spectral
theory for Sturm–Liouville operators has been done in [27]. The authors proved that knowledge of the highest part of a
single spectrum of a rod with multiple cracks suffices to determine uniquely the (unordered) set of lengths of the segments
of bar separating the cracks. Unfortunately, no reconstruction algorithm for the position of the cracks was provided in that
study. The most general result along this direction has been obtained by Shifrin [28]. Shifrin proposed a constructive
procedure for identifying the position and severity of multiple cracks in a longitudinally vibrating rod by the knowledge of
two full spectra corresponding to different boundary conditions. It is worth noticing that, different from most of the
methods available in the literature, Shifrin's technique does not assume that the number of cracks is known. However, the
reconstruction procedure needs a large number of eigenvalues (independently on the number of cracks) to obtain stable and
accurate estimates: two infinite spectra, in principle, or at least a number of eigenvalues of the order of 10 for each spectrum
in the applications presented in the above-mentioned paper [28]. This seems to be a possible limitation of the method
because, first, it is difficult to obtain accurate measurement of high frequencies in practice and, second, because the
analytical model of the rod under longitudinal vibration loses accuracy as the eigenvalue order increases.
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Taking into account the above results, a different line of research has been developed in the last years by Narkis [29] and
Morassi and co-workers [30,31]. It relies on the use of minimal number of low frequency data to identify localized damages
in rods and beams. The reduction in the request of input information is somehow compensated by the introduction of
suitable a priori information on the problem. Precisely, it is assumed that the damage is small, that is the damaged
configuration is a perturbation of the initial one, and that the number of cracks to be identified is known. The first
assumption is not a severe limitation because in most practical applications it is crucial to detect the damage right as it
arises. Concerning the second hypothesis, in many engineering applications few cracks usually are expected to occur and
their number could be estimated on the basis of the engineering experience on the problem. Alternatively, it is well known
that other methods, such as the variational ones (see, for example, the analysis by [10]) or the Generalized Fourier
Coefficient Method [32,33], can be used to foresee the number of localized damages.

Along this line of research, the only known result for multiple cracks is due to Morassi and Rollo [34]. It concerns the
identification of two cracks having equal severity in a uniform beam by frequency data. Focussing the attention on a free–
free longitudinally vibrating rod (discussed in the last paragraph of Section 3 of the above-mentioned paper), the authors
proved that the inverse problem of identifying the positions and the common severity of the two cracks can be formulated
and solved in terms of the first three natural frequencies of the rod. The inverse problem turns out to be ill-posed, namely
cracks with different severity in two sets of different locations can produce identical changes in first three natural
frequencies. One source of ill-posedness is the symmetry of the problem, which prevents to distinguish symmetrical
positions of the cracks when only natural frequencies are used as data.

In this paper we improve the result by Morassi and Rollo [34] showing that all the symmetrical damage configurations
can be excluded by using suitable resonant frequency and antiresonant frequency data.

A typical result of our analysis, shown in Section 3, is as follows. Let H¼HðωÞ be the frequency response function
determined by exciting and measuring the response of the rod at the same end, and consider as spectral data the first and
the second antiresonant frequency of HðωÞ and the first (elastic) resonance of the rod. We show that there exist only two
damage configurations, corresponding to different values of the damage severity and different positions of the cracks, which
correspond to the given spectral data. One configuration is the exact one, the other one is a spurious solution coming from
the mathematical nature of the inverse problem, see also Singh [23] for a detailed numerical treatment of this aspect. The
spurious solution could be detected and excluded from the analysis by crossing the above results with those obtained using
information on high resonant and antiresonant frequency data. This part is discussed in Section 4.

It is worth noticing that the damage parameters are obtained as solutions of second degree polynomial equations, whose
coefficients depend on the measured data. Therefore, they can be determined by simple closed form expressions in terms of
the eigenfrequency shifts induced by the damage. This fact is not trivial at all, since the resolving system of equations is
highly non-linear with respect to the crack positions, in spite of the fact that the function expressing the dependence of the
eigenvalue on the crack severity is linearized in a neighborhood of the undamaged rod. It should be also recalled that the
proposed procedure does not introduce additional experimental burden, since antiresonant data can be extracted together
with natural frequencies by the same frequency response function HðωÞ measured at one end of the rod. In Section 5 it is
shown that the above results can be extended to the torsional vibration of shafts with two circumferential cracks, a model
problem that has several applications in rotor dynamics.

A series of numerical simulations performed on free–free cracked rods supported the theoretical result. Numerical results,
presented in Section 6, show that if the frequency data used in identification are affected by errors relatively small with respect
to the variations of the frequency data induced by the damage, then damage identification leads to satisfactory indications.

2. Formulation of the problem and perturbation analysis

In the present section we introduce the sensitivity of natural frequencies and antiresonant frequencies to cracks and we
formulate the inverse problem.

Let us consider a straight thin rod under longitudinal vibration and with free–free end conditions (F–F). We assume that the
rod is uniform and has two cracks of equal severity at two different cross-sections of abscissa s1 and s2, with 0osioL for
i¼1,2, where L is the length of the rod. Each crack is assumed to remain open during vibration and is modelled as a massless
longitudinal linearly elastic spring with stiffness K, see, for example, Freund and Herrmann [15] or Cabib et al. [35]. The value
of K can be determined in terms of the geometry of the cracked cross-section and of the material properties of the beam, see
Section 6 for a specific expression in the case of rectangular cross-section. The free undamped longitudinal vibrations of the
rod with radian frequency ω and spatial amplitude w¼wðxÞ are governed by the following eigenvalue problem:

EAw″þλγAw¼ 0; xAð0; s1Þ [ ðs1; s2Þ [ ðs2; LÞ; ðaÞ
w0ðs�i Þ ¼w0ðsþi Þ; i¼ 1;2; ðbÞ
Kðwðsþi Þ�wðs�i ÞÞ ¼ EAw0ðsiÞ; i¼ 1;2; ðcÞ
w0ð0Þ ¼w0ðLÞ ¼ 0; ðdÞ

8>>>><
>>>>:

ð1Þ

where λ¼ω2, E is the (constant) Young's modulus of the material, A is the area of the transversal cross-section and γ is the
(uniform) volume mass density of the material. Under our assumptions, there exists an infinite sequence of real numbers
fλF� F

n g1n ¼ 0 (eigenvalues), with 0¼ λF–F0 oλF–F1 oλF–F2 o⋯ and limn-1λ
F–F
n ¼1, such that the problem (1a)–(1d) has no trivial
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solution wF–F
n ¼wF–F

n ðxÞ (eigenfunction associated to the eigenvalue λF–Fn ). The undamaged system corresponds to taking in
(1a)–(1d) the limit as K-1 or, equivalently, as ϵ� 1=K-0þ . The mass-normalized eigenpairs of the undamaged rod
fλF–FðUÞn ;wF–FðUÞ

n ðxÞg1n ¼ 0 can be evaluated explicitly and are equal to

λF–FðUÞn ¼ E
γ

nπ
L

� �2
; wF–FðUÞ

n xð Þ ¼
ffiffiffiffiffiffiffiffi
2
γAL

s
cos

nπx
L

� �
; n¼ 0;1;2;… ð2Þ

As the cracks are small, namely ϵ is small enough, we can use a standard approach to find the first order perturbation on the
eigenvalues with ϵ, see, for example, the analysis by Morassi [36] and Loya et al. [37]. By taking

λF–Fn ¼ λF–FðUÞn þϵΔλF–Fn ; ð3Þ
we find

δλF–Fn � ϵΔF–F
n ¼ �ðNðUÞ

n ðs1ÞÞ2þðNðUÞ
n ðs2ÞÞ2

K
ð4Þ

for every nZ0, where the axial force associated to the nth undamaged vibration mode is given by

NðUÞ
n xð Þ ¼ EA

d
dx

wF–FðUÞ
n xð Þ� �

: ð5Þ

The first eigenvalue is insensitive to damage, since the corresponding vibration mode is a longitudinal rigid motion. Inserting
the expression (2) of the eigenpairs of the undamaged rod into Eq. (4) and elaborating, we find

CF–F
n ¼ 1

K
sin 2nπs1

L
þ sin 2nπs2

L

� �
; nZ1; ð6Þ

where the non-negative quantity

CF–F
n ¼ � δλF–Fn

2EA
L

λF–FðUÞn

; nZ1; ð7Þ

only depends on the undamaged rod properties and on the eigenvalue shift induced by the damage on the nth eigenvalue.
The effect of the two cracks on antiresonances of frequency response functions (FRF) of the rod will be now investigated.

It is well known that antiresonances are the zeros of the FRF HF–F ðω; xi; xoÞ, where xi and xo are the abscissas of the excitation
point and of the measurement point, respectively, and ω is the frequency variable, see the paper by Wahl et al. [38]. When
xi¼xo, the zeros of the FRF HF–F ðω; xi; xiÞ are the frequencies of a rod in which the longitudinal displacement at the cross-
section of abscissa xi is hindered. Therefore, under the assumption of small cracks, on proceeding as above and with the
same notation, the first order variation of the (square of the) mth antiresonance of the point FRF HF–F ðω; xi; xiÞ with respect
to ϵ¼ 1=K can be evaluated by Eqs. (3) and (4).

Let us consider, in particular, the FRF HF–F ðω;0;0Þ of the F–F rod for xi ¼ xo ¼ 0. The antiresonances of HF–F ðω;0;0Þ are the
(square root of the) eigenvalues of the rod with left end, at x¼0, fixed, namely the eigenvalues λS–Fm of the supported–free
rod (denoted as S–F in the sequel). It follows that their first order variation with respect to damage coincides with the first
order variation δλS–Fm ¼ ϵΔλS–Fm of the eigenvalues λS–Fm of the S–F rod. The eigenpairs of the undamaged S–F rod are given by

λS–FðUÞm ¼ E
γ

ð1þ2mÞπ
2L

� �2

; wS–FðUÞ
m xð Þ ¼

ffiffiffiffiffiffiffiffi
2
γAL

s
sin

ð1þ2mÞπx
2L

; ð8Þ

m¼ 0;1;2;….
Let us introduce the quantities

CS–F
m ¼ � δλS–Fm

2EA
L

λS–Fm

; mZ0; ð9Þ

analogous to those appearing in (7). By proceeding as exemplified above and under the same notation, we can write the
following additional relationships between the measured quantities CS–F

m and the unknowns fs1; s2;Kg:

CS–F
m ¼ 1

K
cos 2ð2mþ1Þπs1

2L
þ cos 2ð2mþ1Þπs2

2L

� �
; mZ0: ð10Þ

Our diagnostic problem consists in finding the severity of the two cracks K, K40, and their positions s1 and s2, with
0osioL, i¼1,2, from natural frequency data taken on the F–F rod and from antiresonant frequency data extracted from the
FRF HF–F ðω;0;0Þ. We note that the two damage configurations fðs1;KÞ; ðs2;KÞ; s1os2g and fðs2;KÞ; ðs1;KÞ; s2os1g are
indistinguishable (since the two cracks have the same severity). Then, without loss of generality we can assume s1os2.

In the next section we shall show how to select minimal data in order to properly formulate the inverse diagnostic
problem and to find closed-form expressions of the damage parameters.
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3. Identification of two equal cracks in a F–F rod

In this section we assume that frequency data consist of the first and second antiresonant frequencies of the FRF
HF–F ðω;0;0Þ, namely λS–F0 and λS–F1 (note that the antiresonances λS–Fm are enumerated from m¼0), and the first resonant
frequency λF–F1 of the F–F rod.

By inserting the expressions of the corresponding eigenmodes into Eqs. (7) and (9), we obtain the following system of
three nonlinear equations in the unknowns fK ; s1; s2g:

1
K

cos 2πs1
2L

þ cos 2πs2
2L

� �
¼ C1; ðaÞ

1
K

sin 2πs1
L

þ sin 2πs2
L

� �
¼ C2; ðbÞ

1
K

cos 23πs1
2L

þ cos 23πs2
2L

� �
¼ C3; ðcÞ

8>>>>>>><
>>>>>>>:

ð11Þ

where we have defined

C1 ¼ CS�F
0 ; C2 ¼ CF� F

1 ; C3 ¼ CS�F
1 : ð12Þ

Note that Ci40 for every i¼ 1;2;3. No general analytical technique seems to be available for solving the above nonlinear
system in terms of the damage parameters. We shall prove that, by introducing a suitable change of the damage position
variables, the system (11a)–(11c) can be rewritten in a form such that the explicit resolution method developed by Morassi
and Rollo [34] can be applied.

As a first step, we use the trigonometric identity sin 2αþ cos 2α¼ 1 and we rewrite (11a)–(11c) as

sin 2πs1
2L þ sin 2πs2

2L ¼ 2�KC1; ðaÞ
sin 2πs1

L þ sin 2πs2
L ¼ KC2; ðbÞ

sin 23πs1
2L þ sin 23πs2

2L ¼ 2�KC3: ðcÞ

8>>><
>>>:

ð13Þ

The key idea is to introduce two crack location variables different from those used by Morassi and Rollo [34], namely

x¼ cos
πs1
L

A �1;1ð Þ; y¼ cos
πs2
L

A �1;1ð Þ: ð14Þ

Note that the function f ðsÞ ¼ cos ðπs=LÞ is a one-to-one correspondence between the interval ð0; LÞ and the interval ð�1;1Þ.
Therefore, if we were able to find the unknowns fx; yg, then we could determine uniquely the associated damage locations
fs1; s2g.

By using the trigonometrical identity sin 2α=2¼ ð1� cosαÞ=2 in (13a), we obtain

xþy¼ 2ðKC1�1Þ: ð15Þ
In Eq. (13b) we use again the identity sin 2αþ cos 2α¼ 1, and we find

x2þy2 ¼ 2�KC2: ð16Þ
Additional tricks are needed in Eq. (13c). For reader convenience, and also because this part is useful to understand the
selection criterion for high frequency data suggested in the next section, we provide some more details on this step. The
underlying idea is to use the trigonometric identity sin ðαþβÞ ¼ ð sinα cosβþ sinβ cosαÞ for α and β equal to the arguments
of the trigonometric functions appearing on the left-hand side of the first two equations (13a) and (13b) e.g., α¼ πsi=2L and
β¼ πsi=L, i¼1,2. Next, the peculiar structure of the system (13a)–(13c) is exploited with the aim of expressing ðx3þy3Þ in
terms of the measured data only. More precisely, by using the identity

sin 23πsi
2L

¼ �2 cos 3πsi
L
þ3
2
cos

πsi
L
þ1
2
; i¼ 1;2; ð17Þ

Eq. (13c) becomes

cos 3πs1
L

þ cos 3πs1
L

¼ KC3�1
2

þ3
4

cos
πs1
L

þ cos
πs2
L

� �
: ð18Þ

Inserting (15) in the right-hand side of (18), Eq. (13c) can be written as

x3þy3 ¼ �2þK
2
3C1þC3ð Þ: ð19Þ

Taking Eqs. (15), (16), and (19) into account, the original system (13a)–(13c) rewritten in terms of the new variables x and y
shows a structure similar to that of the system governing the determination of two open cracks in a F–F rod from the first
three natural frequencies considered by Morassi and Rollo (see Eqs. (12a)–(12c) of [34] specialized to the axial
vibration case).
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At this stage we take advantage of the method illustrated in [34] for finding the explicit solution of the nonlinear system
governing the inverse damage detection problem. Therefore, instead of presenting all the details of the analysis, in the
sequel we shall point out how the procedure presented in the above-mentioned paper can be adapted to the present case.

Observing that

x3þy3 ¼ xþyð Þ 3
2

x2þy2
� ��1

2
ðxþyÞ2

	 

ð20Þ

and using Eqs. (15), (16), and (19) for representing the quantities ðxþyÞ, ðx2þy2Þ, and ðx3þy3Þ in terms of the data,
respectively, the parameter K turns out to be a root of the second degree polynomial equation:

4K2C31þ3C1 C2�4C1ð ÞKþ 15
2

C1�3C2þ1
2
C3

� �
¼ 0: ð21Þ

Following the lines of the proof shown in [34], it can be proved that Eq. (21) always has two real positive roots for every set
of data fC1; C2; C3g, that is, there exist two values of the stiffness K of the spring simulating the damage:

K1;2 ¼
�3 C2�4C1ð Þ8 ½9ðC2�4C1Þ2�16C1 15

2 C1�3C2þ1
2 C3

� ��1=2
8C21

; ð22Þ

where the indexes 1 and 2 correspond to � and þ sign on the right-hand side, respectively.
Once K is found, we can localize the cracks. We note that the role of the two spatial variables x and y in the system

formed by Eqs. (15), (16), and (19) is perfectly interchangeable. Therefore, it is enough to determine the position variable x.
By using Eq. (15) to express y in terms of x and substituting in (16), the variable x turns out to be a root of the second degree
polynomial equation:

2x2�4xðKC1�1Þþ4ðKC1�1Þ2�ð2�KC2Þ ¼ 0: ð23Þ

The above equation always has two distinct real solutions in ð�1;1Þ, namely

x8 Kð Þ ¼ 2ðKC1�1Þ8 ½8KC1�4K2C21�2KC2�1=2
2

; ð24Þ

where symbols x� ðKÞ and xþ ðKÞ correspond to � sign and þ sign on the right-hand side, respectively, and where the
dependence of x8 on K is explicitly indicated. Note that, by (15), the solution y� ðKÞ corresponding to x� ðKÞ is such that

y� Kð Þ ¼ 2 KC1�1ð Þ�x� Kð Þ ¼ 2ðKC1�1Þþ½8KC1�4K2C21�2KC2�1=2
2

¼ xþ Kð Þ ð25Þ

and, similarly, corresponding to xþ ðKÞ we have yþ ðKÞ ¼ x� ðKÞ. Clearly, the two damage configurations fK; x� ðKÞ; y� ðKÞ ¼ xþ ðKÞg
and fK; xþ ðKÞ; yþ ðKÞ ¼ x� ðKÞg coincide and then, for a fixed value of the stiffness K, there exists only one solution, say
fK; x� ðKÞ; xþ ðKÞg, of the system of Eqs. (15), (16), and (19). As a consequence, since the function f ðsÞ ¼ cosπs=L is one-to-one on
ð0; LÞ, for any fixed value of K there exists only one solution fK ; s� ðK Þ ¼ ðL=πÞarccosðx� ðK ÞÞ; sþ ðK Þ ¼ ðL=πÞarccosðxþ ðK ÞÞg of our
inverse problem.

In conclusion, we have shown that two cracks of the same severity K1 (evaluated via expression (22) with minus sign) located
at the cross-sections of abscissa s� ðK1Þ and sþ ðK1Þ (evaluated via expression (24), with K ¼ K1, and using the inverse of (14))
produce changes in the considered set of spectral data identical to those induced by two cracks having the common severity K2

(evaluated via expression (22) with plus sign) located at the cross-sections of abscissa s� ðK2Þ and sþ ðK2Þ (evaluated via
expression (24), with K ¼ K2, and using the inverse of (14)). One of these two solutions corresponds to the actual damaged
configuration of the rod. The other solution is a spurious one, and it is a consequence of the mathematical nature of the
diagnostic problem. In other words, the damage detection problem formulated with as many unknowns as data turns out to be
ill-posed, since it has no unique solution even if the number of unknowns is exactly equal to the number of frequency data.
However, it should be emphasized that the effect of the non-uniqueness is not particularly dramatic, especially if we consider
that closed-form expressions for the damage parameters are available. These closed-form expressions allow us to determine the
damage parameters by minimal computational effort and also permit a direct assessment of the effects that possible
perturbations of the data (due to experimental or modelling errors, for example) have on the solution of the diagnostic
problem. We will see in the next section that the intrinsic non-uniqueness of the inverse problem can be removed by merging
the above results with those obtained using additional high frequency data.
4. High frequency input data

We analyze how the procedure proposed in the previous section can be adapted to include high frequency information as
input data. The underlying idea will be illustrated in the case in which frequency data consist of the second and the fifth
antiresonant frequency of the FRF HF–F ðω;0;0Þ, namely λS–F1 and λS–F4 , and the third resonant frequency λF–F3 of the F–F rod.
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The system analogous to (13a)–(13c) now reads as

sin 23πs1
2L þ sin 23πs2

2L ¼ 2�KC1; ðaÞ
sin 23πs1

L þ sin 23πs2
L ¼ KC2; ðbÞ

sin 29πs1
2L þ sin 29πs2

2L ¼ 2�KC3; ðcÞ

8>>><
>>>:

ð26Þ

where

C1 ¼ CS�F
1 ; C2 ¼ CF� F

3 ; C3 ¼ CS�F
4 : ð27Þ

By proceeding as exemplified in the previous section, Eqs. (26a) and (26b) can be rewritten in terms of
f cos 3πs1=L; cos 3πs2=Lg as

cos
3πs1
L

þ cos
3πs2
L

¼ 2 KC1�1ð Þ; ð28Þ

cos 23πs1
L

þ cos 23πs2
L

¼ 2�KC2: ð29Þ

Noticing that 9πsi=2L¼ 3πsi=Lþ3πsi=2L, i¼1,2, it is easy to see that also Eq. (13c) can be written in terms of
f cos 3πsi=L; cos 33πsi=Lg only, i¼1,2. More precisely, by introducing the new variable positions

x¼ cos
3πs1
L

; y¼ cos
3πs2
L

; ð30Þ

system (26a)–(26c) takes exactly the same structure of equations (15), (16), and (19), with, of course, the new meaning of
the coefficients Ci, i¼ 1;2;3, and of the damage position variables x and y.

Observing that C140, the solution of (26a)–(26c) can be carried out along the same procedure illustrated in the previous
section, that is, the stiffness parameter K and the associated spatial variable position x(K) turn out to be the solutions of second
order polynomial equations analogous to (22) and (24), respectively. Therefore, using the notation introduced in the previous
section, the complete set of solutions of the system (26a)–(26c) is given by fK1; x� ðK1Þ; xþ ðK1Þg and fK2; x� ðK2Þ; xþ ðK2Þg.

The main difference with respect to the “low” frequency case emerges in the inversion of the variable position functions
x¼ xðs1Þ and y¼ yðs2Þ (here the dependence on the stiffness parameter is omitted to simplify the notation). The function
f ðsÞ ¼ cos 3πs=L is no longer one-to-one in ð0; LÞ, and then, by inversion, more crack locations (generally three distinct
abscissa values) may correspond to a given value of the position variables x and y. The set of solutions includes also the
correct position of the two cracks, but more spurious solutions occur. Nevertheless, the additional information coming from
high frequency data can be usefully included in the inverse problem solution derived in previous section, since, crossing the
results with those determined using “low” frequency data, the spurious solution appeared therein can be eliminated and,
finally, the position of the two cracks can be uniquely identified, see Section 6 for an application.

The above analysis can be extended to include other triplets of high frequency data. With reference to frequency values
of the undamaged rod, the key points in selecting the spectral input data are the following:
(i)
 the order of the natural frequency and the order of the lower antiresonant frequency must be chosen such that the
square root of the resonant frequency value is twice the square root of the antiresonant frequency value;
(ii)
 the order of the higher antiresonant frequency must be chosen such that the corresponding square root of the frequency
value is equal to the sum of the square root of the lower antiresonance frequency and the square root of the resonant
frequency.
For instance, for the system of equations (26a)–(26c) we can easily check that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λF–FðUÞ3

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λS–FðUÞ1

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λS–FðUÞ4

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

λS–FðUÞ1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λF–FðUÞ3

q
. Other sets of data that fulfill conditions (i) and (ii) are, for example, fλS–F2 ; λF–F5 ; λS–F7 g and fλS–F3 ; λF–F7 ; λS–F11 g.

For all these choices, the system of equations can be solved explicitly and closed form expressions fK; xðKÞ; yðKÞg of the
damage parameters can be provided. Choices of data that do not satisfy the conditions (i) and (ii) are of course possible, but,
in those cases, finding exact closed form solutions is an open question and recourse to numerical analysis is in order.

5. An extension to multi-cracked torsionally rotating shafts

In this section we present an extension of the above methodology to the identification of two circumferential cracks in a
torsionally vibrating shaft.

Circumferential cracks often appear in a large variety of machinery. The free torsional vibration of a cylindrical shaft was
found to be considerably influenced by the presence of circumferential cracks by Dimarogonas and Massouros [39] in their
experimental/analytical research, see also [40] for an updated review on this topic. According to Dimarogonas and Massouros
[39], a circumferential crack in a torsional vibrating shaft having uniform circular cross-section can be described by means of a
torsional linearly elastic spring located at the cracked cross-section. The value KT of the spring stiffness can be expressed in
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terms of the crack geometry as suggested in the above-mentioned paper [39]. Therefore, the free undamped vibrations of a
shaft with free ends and two cracks of equal severity located at different cross-sections siAð0; LÞ, i¼1,2, are described by the
following eigenvalue problem

GI0φ″þμγI0w¼ 0; xAð0; s1Þ [ ðs1; s2Þ [ ðs2; LÞ; ðaÞ
φ0ðs�i Þ ¼φ0ðsþi Þ; i¼ 1;2; ðbÞ
KT ðφðsþi Þ�φðs�i ÞÞ ¼ GI0φ0ðsiÞ; i¼ 1;2; ðcÞ
φ0ð0Þ ¼φ0ðLÞ ¼ 0; ðdÞ

8>>>><
>>>>:

ð31Þ

where μ¼ω2, with ω being the radian frequency of the motion, G is the (constant) shear modulus of the material, I0 is the
polar moment of inertia of the transversal cross-section and γ is the (uniform) volume mass density of the material.

Comparison between (1a)–(1d) and (31a)–(31d) shows that there is clearly a one-to-one correspondence
fE;A;w; λg2fG; I0;φ;μg between the longitudinal and torsional systems. Then, the nth eigenpair fμF–FðUÞ

n ;φF–FðUÞ
n ðxÞg is equal to

μF–FðUÞ
n ¼ G

γ
nπ
L

� �2
; φF–FðUÞ

n xð Þ ¼
ffiffiffiffiffiffiffiffiffi
2

γI0L

s
cos

nπx
L

� �
; ð32Þ

where n¼ 0;1;2;…. If the cracks are small, namely KT is large enough, the first order perturbation δμF–F
n � ðμF–F

n �μF–FðUÞ
n Þ on

the nth eigenvalue with respect to 1=KT is given by

δμF–F
n ¼ �2μF–FðUÞ

n
GI0
LKT

sin 2nπs1
L

þ sin 2nπs2
L

� �
; ð33Þ

where nZ1. The 0th eigenvalue is insensitive to damage.
Let us denote by Hðω;0;0Þ the FRF obtained by applying a torsional couple at x¼0 and measuring the rotation at the

same end. It turns out that the antiresonant frequencies of Hðω;0;0Þ are the eigenvalues fμS–F
m g1m ¼ 0 of the shaft with the end

at x¼0 fixed. The corresponding eigenpairs of the undamaged S–F shaft are

μS–FðUÞ
m ¼ G

γ
ð1þ2mÞπ

2L

� �2

; φS–FðUÞ
m xð Þ ¼

ffiffiffiffiffiffiffiffiffi
2

γI0L

s
sin

ð1þ2mÞπx
2L

; ð34Þ

m¼ 0;1;2;…, and the first order changes of antiresonant frequencies δμS–F
m � ðμS–F

m �μS–FðUÞ
m Þ have the expression

δμS–F
m ¼ �2μS–FðUÞ

m
GI0
LKT

cos 2ð2mþ1Þπs1
2L

þ cos 2ð2mþ1Þπs2
2L

� �
; ð35Þ

mZ0. Then, by comparing the expressions (6), (10) and (33), (35) we can conclude that the procedure shown in previous
sections for identifying two equal cracks in a longitudinally vibrating rod can be transferred step-by-step to the
identification of two circumferential cracks in a torsional vibrating shaft with free ends.
6. Applications

In Sections 3 and 4 it was shown how to use changes in resonant and antiresonant frequencies of a free–free
longitudinally vibrating rod with two small open cracks so as to assess the location as well the magnitude of the damage.
The present section is devoted to outlining some applications of numerical character.

The inverse problem of damage detection is formulated by using pseudo-experimental data, that is, the frequencies are
obtained from the direct problem in undamaged conditions and in simulated damage conditions defined by the damage
parameters fðs1;KÞ; ðs2;KÞg.

The specimen is the straight thin uniform rod of length L, shown in Fig. 1. The cross-section is rectangular with width h,
h=L¼ 0:1, and depth b. The material is steel, with Young's modulus being E¼ 2:1� 102 GPa, Poisson ratio ν¼0.3 and volume
mass density equal to γ¼7850 kg/m3. In this section, we express the stiffness K of the elastic spring simulating the crack in
terms of the dimensionless flexibility parameter δ as

K ¼ EA
Lδ

; ð36Þ
Fig. 1. Rod with two cracks.
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where δ can be determined as a function of the crack ratio α¼ a=h as (see, for instance, [17])

δ¼ 2hð1�νÞ2
L

g αð Þ; ð37Þ

with

gðαÞ ¼ 0:7314α8�1:0368α7þ0:5803α6þ1:2055α5�1:0368α4þ0:2381α3þ0:9852α2: ð38Þ

An exhaustive series of numerical simulations has been carried out for different locations of the cracks and various levels of
damage. Two main different damage scenarios among several studied are presented and commented in this section: they
are illustrative of the main features of the inverse problem and of the identification technique. The first case, δ¼0.00200, is
characterized by “small” damage, that is, the value of the flexibility δ is chosen such that the variations of the lower
frequencies and antiresonances are about 0.1–0.3% of the referential undamaged values. The other case involves “moderate”
damage, δ¼0.01797, and it corresponds to variations of the same spectral data about 1–3%. In both cases, identification
results are presented for two sets of damage locations, namely s1 ¼ L=2, s2 ¼ 3L=5 (close cracks, denoted by C in the sequel)
and s1 ¼ L=4 and s2 ¼ 3L=5 (distant cracks, case D).

We start by considering the results obtained in the absence of errors on the data.
A first series of tests has been carried out using low frequency data in identification. The eigenvalues of the undamaged

rod and their values associated with the cases of damage are shown in Table 1. The latter are obtained by solving in exact
way the eigenvalue problem (1a)–(1d) for resonant frequencies and the analogous one for antiresonant frequencies. The
results of identification are summarized in Table 2. It is possible to observe that the pair of solutions predicted by the theory
contains a satisfactory estimate of the actual solution of the problem. The discrepancies between identified and actual
damage parameters connected with this solution are exclusively due to the perturbation assumption of small damage and
turn out to be negligible, both for damage location and severity. Deviations are typically smaller for less severe damage, as it
is expected because the inverse problem is linearized in a neighborhood of the undamaged rod.

Table 3 shows the effects of damage on high frequency data, namely on the resonant/antiresonant frequencies used in
Section 4. This set of data leads to the identification results shown in Table 4. As it was mentioned in Section 4, and under
the same notation, the complete set of solutions of the system (27a)–(27c) is given by fK1; x� ðK1Þ; xþ ðK1Þg and
fK2; x� ðK2Þ; xþ ðK2Þg, where the variable positions x� ¼ x� ðKiÞ and xþ ¼ xþ ðKiÞ are uniquely determined in terms of Ki

(or, equivalently, δi), i¼1,2. The function f ðsÞ ¼ cos 3πs=L expressing the variable positions x� and xþ in terms of the
Table 1
Low resonant and antiresonant frequencies f ¼ L

ffiffiffiffiffiffiffiffi
γ=E

p ffiffiffi
λ

p
for the undamaged rod (fU) and their values associated to the cases of damage (free of error data).

C¼close cracks; D¼distant cracks. Note: Δ¼ 100� ðf U� f Þ=f U .

f Undam. Small damage Moderate damage

Case C Δ Case D Δ Case C Δ Case D Δ

f F–F1
3.14159 3.12968 0.38 3.13280 0.28 3.03820 3.29 3.06474 2.45

f S–F0
1.57080 1.56814 0.17 1.56704 0.24 1.54727 1.50 1.53794 2.09

f S–F1
4.71239 4.69922 0.28 4.70250 0.21 4.59908 2.40 4.62427 1.87

Table 2
Results of damage identification for low resonant/antiresonant frequency data (cases free of error). Determination of the damage severity δ¼ EA=LK (where
K is given by (22)) and the corresponding damage locations s1 and s2 (Eq. (24) and the inverse of (14)). C¼close cracks; D¼distant cracks. Percentage errors
are indicated in brackets for the correct solution only.

Damage parameters Small damage Moderate damage
δ¼0.00200 δ¼0.01797

Case C Case D Case C Case D
s1=L¼ 0:50 s1=L¼ 0:25 s1=L¼ 0:50 s1=L¼ 0:25
s2=L¼ 0:60 s2=L¼ 0:60 s2=L¼ 0:60 s2=L¼ 0:60

δ1 0.0036 0.0026 0.0284 0.0222
s� ðδ1Þ 0.5275 0.2964 0.5082 0.2937
sþ ðδ1Þ 0.9135 0.7702 0.8773 0.7652

δ2 0.0020 0.0020 0.0170 0.0174
(0.0) (0.0) (5.4) (3.2)

s� ðδ2Þ 0.4945 0.2497 0.4736 0.2491
(1.1) (0.1) (5.3) (0.4)

sþ ðδ2Þ 0.6063 0.6002 0.6299 0.6050
(�1.0) (0.0) (�5.0) (�0.8)



Table 3
High resonant and antiresonant frequencies f ¼ L

ffiffiffiffiffiffiffiffi
γ=E

p ffiffiffi
λ

p
for the undamaged rod (fU) and their values associated to the cases of damage (free of error data).

C¼close cracks; D¼distant cracks. Note: Δ¼ 100� ðf U� f Þ=f U .

f Undam. Small damage Moderate damage

Case C Δ Case D Δ Case C Δ Case D Δ

f F–F3
9.42478 9.39961 0.27 9.40894 0.17 9.21197 2.26 9.28942 1.44

f S–F1
4.71239 4.69922 0.28 4.70250 0.21 4.59908 2.40 4.62427 1.87

f S–F4
14.13717 14.11300 0.17 14.10320 0.24 13.90420 1.65 13.82800 2.19

Table 4
Results of damage identification for high resonant/antiresonant frequency data. Determination of the damage severity δ¼ EA=LK (where K is given by (22))

and the corresponding damage locations fsk� g3k ¼ 1 and fsjþ g3j ¼ 1 for x� and xþ , respectively (Eq. (24) and the inverse of (30)). Actual values of damage

severity: δ¼0.00200 for small damage and δ¼0.01797 for moderate damage. C¼close cracks; D¼dDistant cracks.

Damage level Severity Damage positions Severity Damage positions

δ1 sk� ðδ1 Þ
L

sjþ ðδ1 Þ
L

δ2 sk� ðδ2 Þ
L

sjþ ðδ2 Þ
L

D-Small 0.0020 0.2500 0.0663 0.0016 0.1919 0.0399
0.4167 0.6004 0.4747 0.6268
0.9166 0.7330 0.8586 0.7065

D-Moderate 0.0175 0.2505 0.0637 0.0136 0.1900 0.0339
0.4161 0.6030 0.4766 0.6327
0.9172 0.7303 0.8567 0.7006

C-Small 0.0020 0.1672 0.0662 0.0032 0.2791 0.0941
0.4995 0.6005 0.3876 0.5725
0.8338 0.7329 0.9457 0.7608

C-Moderate 0.0170 0.1710 0.0629 0.0264 0.1639 0.0910
0.4956 0.6038 0.5028 0.5756
0.8377 0.7295 0.8305 0.7577
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physical damage coordinates s� and sþ (with a slight abuse of notation) is not one-to-one. Then, the inversion of the
function f with respect to s gives rise to (typically) three distinct possible crack locations, namely fsk� g

3
k ¼ 1 and fsjþ g

3
j ¼ 1 for

x� and xþ , respectively. These results are shown in Table 4. It can be seen that the set of possible damage locations always
includes a good estimate of the actual position of the two cracks.

By comparing the estimates of the damage severity shown in Tables 2 and 4, it is possible to remove the spurious solution
occurring when low frequency data only are used in identification, thus leading to a unique solution for the double-crack
identification problem. For instance, in the case of distant cracks and moderate level of damage, the identified values of the
dimensionless flexibility coefficient δ are (0.0174, 0.0222) and (0.0136, 0.0175) in Tables 2 and 4, respectively. Clearly, the pair
of closer flexibility values is given by 0.0174 and 0.0175. Therefore, the spurious solution in Table 2 corresponds to δ¼0.0222.

For the sake of completeness, we note that numerical simulations using high-frequency data have not led to positive results in a
certain number of cases. These cases refer to close cracks having intermediate position near a cross-section of zero sensitivity for all
three resonant/antiresonant frequencies considered as data. In a free–free uniform rod, the only cross-section with this property is
located at x¼ L=3. A detailed analysis of the numerical simulations shows that Eq. (22) leads to imaginary values of the stiffness of
the elastic spring simulating the crack when the damage positions s1 and s2 belong to the interval ð0:25L;0:45LÞ and
ðs1þs2Þ=2⋍L=3. This result is not in contradiction with the general property that Eq. (22) always has two real roots. In fact, this
general property has been deduced from Eqs. (15), (16), and (19), which are the linearized version of the full non-linear inverse
problemwhen 1/K is small enough. The stiffness parameter K is expressed in terms of the coefficients Ci, i¼ 1;2;3, which, in turn,
depend on resonant/antiresonant frequency shifts induced by the damage. In real measurements, the frequency shifts include both
the term linear in 1/K and a higher order term that, of course, the formulation of the linearized inverse problem cannot treat
successfully. This non-linear term attains its maximum effect just when the linear part vanishes, i.e., when the positions of the two
cracks are close to a point of zero sensitivity. The numerical simulations also show that, in previous cases, the failure of
identification is more frequent when the damage is more severe. This behavior is rather expected, because our formulation of the
inverse problem is based on the assumption that the damaged system is a small perturbation of the virgin system.

Finally, in order to test the robustness of identification to possible errors, numerical simulation has been repeated in the
presence of random noise on the frequency data. In practical applications, one of main sources of error is due to the



Table 5
Results of damage identification for low resonant/antiresonant frequency data (cases with random error). Determination of the damage severity δ¼ EA=LK
(where K is given by (22)) and the corresponding damage locations s1 and s2 (Eq. (24) and the inverse of (14)). C¼close cracks; D¼distant cracks.

Case Statistical property Damage severity δ Damage positions

s� ðδÞ=L sþ ðδÞ=L

Err. Lev. 1 Err. Lev. 2 Err. Lev. 1 Err. Lev. 2 Err. Lev. 1 Err. Lev. 2

D-Small Mean 0.0020 0.0022 0.2364 0.2142 0.5403 0.5044
Std. Dev. 0.0003 0.0005 0.0804 0.0975 0.0693 0.0885
Mean/Exact 1.0001 1.1001 0.9456 0.8568 0.9005 0.8407

D-Moderate Mean 0.0174 0.0174 0.2497 0.2479 0.6062 0.6027
Std. Dev. 0.0003 0.0005 0.0113 0.0204 0.0183 0.0295
Mean/Exact 0.9680 0.9680 0.9988 0.9916 1.0103 1.0045

C-Small Mean 0.0023 0.0025 0.3933 0.2905 0.6174 0.5892
Std. Dev. 0.0003 0.0005 0.0830 0.1091 0.0769 0.0527
Mean/Exact 1.1501 1.2501 0.7866 0.5810 1.0290 0.9820

C-Moderate Mean 0.0179 0.0181 0.4731 0.4681 0.6347 0.6381
Std. Dev. 0.0009 0.0011 0.0229 0.0280 0.0340 0.0384
Mean/Exact 0.9959 1.0070 0.9462 0.9362 1.0578 1.0635
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inaccuracy of the analytical model that is used to interpret the experiments. The analytical model (1a)–(1d) that we have
used to describe the small longitudinal vibrations of a cracked rod turns out to be very accurate, both for low natural
frequencies [30] and antiresonant frequencies [31]. However, damage-induced changes are typically small and, therefore, it
may happen that even small errors can affect the outcome of the identification. In order to evaluate the effect of errors on
the data, resonant and antiresonant frequencies were perturbed as follows:ffiffiffi

λ
p pert

¼
ffiffiffi
λ

p
ð1þτÞ; ð39Þ

where τ is a real random Gaussian variable with zero mean.
As an example, Table 5 shows the statistical properties of the results of identification in the case of low frequency data,

corresponding to a Monte Carlo simulation on a population of 10 000 samples for each damage configuration. Note that the
results shown in Table 5 refer only to the solution of the system (11a)–(11c) corresponding to the actual value of the damage
parameters (see last paragraph of Section 3).

Different error magnitudes have been taken into account depending on the type of measure done (natural frequency or
antiresonant). For the case of natural frequencies, two normal distributions with standard deviations σR

1 ¼ 0:00033 (Error
Level 1) and σR

2 ¼ 0:00067 (Error Level 2) have been considered. Therefore, the maximum error magnitude is approximately
equal to 3σ, corresponding to 0.1% and 0.2% of the nominal resonant frequency value for Error Level 1 and Error Level 2,
respectively. The measurement errors in the antiresonant frequencies are higher than those corresponding to natural
frequencies. Thus, the standard deviations of the random distributions affecting antiresonant measurements were taken as
σAR
1 ¼ 0:00067 and σAR

2 ¼ 0:00133 corresponding to maximum errors of 0.2% and 0.4% of the nominal antiresonant frequency
value for Error Level 1 and Error Level 2, respectively. These values are close to average modelling errors found on low natural
frequencies and antiresonances of real cracked rods [31].

The analyzed cases correspond to small (δ¼0.00200) and moderate (δ¼0.01797) damage, and to distant
ðs1=L¼ 0:25; s2=L¼ 0:6Þ and close ðs1=L¼ 0:5; s2=L¼ 0:6Þ cracks. The results of Table 5 show that significant differences appear
in the identification of small damage. These discrepancies are due to the fact that maximum errors on the data are of the same
order of frequency-shifts induced by the damage, both for close and distant cracks. The method provides much better results
in the case of moderate damage, with error on the average value not exceeding the 5–6% of the nominal value, both for the
position and the intensity of the damage. For completeness, we notice that complex values have been obtained in a certain
number of simulations. The percentage of such cases is negligible or small for distant cracks and moderate damage (about 0.5
and 10%, for Error Levels 1 and 2, respectively), whereas takes large values in the case of close and small cracks (about 75%,
both for Error Levels 1 and 2). The results collected in Table 5 correspond to real values of the damage parameter estimates.

7. Conclusions

Few general results are available for the inverse problem of identifying multiple cracks in vibrating beams by frequency
measurements. The present paper is a contribution to this issue. More precisely, we have focussed on detecting two open
cracks of equal severity in a free–free longitudinally vibrating beam. It was shown how appropriate use of natural frequency
and antiresonant frequency data can be useful to reduce the intrinsic non-uniqueness of the damage location problem,
which occurs when only frequency data are used.
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The diagnostic method is based on an explicit expression of the first-order change in natural frequencies and
antiresonances induced by open cracks in a rod, under the assumption that the damaged system is a perturbation of the
virgin system. Closed-form expressions of the damage parameters in terms of the data have been obtained. Extensions to
multiple crack detection in torsionally vibrating shafts are also provided.

The analysis allowed us to better clarify the role of the frequency/antiresonant data in the inverse problem solution and
to find optimal choices of the input data in order to reduce the non-uniqueness effects. In particular, it was explained why
the use of high frequency/antiresonant data introduces spurious solutions in the localization of the damage. In this regard,
the choice of using the first and second antiresonant frequencies of the frequency response function evaluated at one end of
the rod and the first resonant frequency turns out to the optimal one. The optimality of this choice is also supported by the
fact that lower frequencies/antiresonances are easy to measure and are less affected by modelling errors.

Numerical results are generally in good agreement with the theory when exact analytical data are employed in
identification. An extensive series of numerical simulations in the presence of random errors suggested that if accurate
frequency/antiresonant estimates are available, then the location and the severity of the cracks can be accurately identified.
It turns out that, in the inverse problem solution, random errors are usually amplified strongly in the case of close and small
cracks. Numerical simulations have also shown that the identification fails when high frequencies are used and cracks are
close to a cross-section of zero sensitivity for all the input spectral data. It is likely that this indeterminacy can be removed
by introducing a proper treatment of the full non-linear diagnostic problem for not necessarily small cracks. General results
along this direction are not available yet – even for a single crack – and this problem requires further investigation.

The present study leaves an important question open, namely the identification of two small cracks having different
severities. The formulation of this more general inverse problem requires, at least, the introduction of one additional
spectral information. A preliminary analysis carried out by the authors shows that the corresponding set of nonlinear
equations takes a structure significantly different from the system of Eqs. (15), (16), and (19) of the present paper. One can
also verify that the technique used in Section 3 to find the damage parameters breaks down in the case of different
severities. It is likely that new ideas and methods must be developed to deal with this challenging inverse problem.
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