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Abstract. This work deals with physiologically structured populations of the Daphnia type.
Their biological modeling poses several computational challenges. In such models, indeed, the evo-
lution of a size structured consumer described by a Volterra functional equation (VFE) is coupled to
the evolution of an unstructured resource described by a delay differential equation (DDE), resulting
in dynamics over an infinite dimensional state space. As additional complexities, the right-hand sides
are both of integral type (continuous age distribution) and given implicitly through external ordinary
differential equations (ODEs). Moreover, discontinuities in the vital rates occur at a maturation age,
also given implicitly through one of the above ODEs. With the aim at studying the local asymp-
totic stability of equilibria and relevant bifurcations, we revisit a pseudospectral approach recently
proposed to compute the eigenvalues of the infinitesimal generator of linearized systems of coupled
VFEs/DDEs. First, we modify it in view of extension to nonlinear problems for future developments.
Then, we consider a suitable implementation to tackle all the computational difficulties mentioned
above: a piecewise approach to handle discontinuities, numerical quadrature of integrals, and nu-
merical solution of ODEs. Moreover, we rigorously prove the spectral accuracy of the method in
approximating the eigenvalues and how this outstanding feature is influenced by the other unavoid-
able error sources. Implementation details and experimental computations on existing available data
conclude the work.
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1. Introduction. We propose a numerical technique to study the local stability
of equilibria of physiologically structured populations of the Daphnia type. This
rather long introduction serves to describe the model (section 1.1), to motivate our
proposal (end of section 1.2), and to illustrate the new contributions (end of section
1.3). In section 2 we present the numerical method and prove its convergence. In
section 3 we discuss the necessary variants and implementation details to tackle the
computational difficulties posed by the biological modeling itself. In section 4 we test
the proposed scheme confirming the theoretical results and experimenting on existing
data.
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1.1. Daphnia models. We consider a size structured consumer population com-
peting for an unstructured resource. Here we summarize the basic features of the
model commonly called Daphnia consuming algae and described in detail, e.g., in
[16]. See also [10, 11, 12, 13, 14, 17] for a broad literature review and the background
results of interest for this work.

By S(t) € [0,400) we denote the available resource concentration at time ¢. In
absence of consumers, its evolution in time is determined by the ODE Cauchy problem

(1) = f(S1),  t>0,
(1-1) {S(O) — 5,

for a given f. The history of the resource at time ¢ is given by the function S; :
[—h,0] — [0,400) for some h > 0, defined as the shift S;(0) := S(t+0) for § € [—h,0].
Histories are commonly used in the theory of delay equations [18, 22, 23, 30].

By X (a,S;) € [0,+00) we denote the body size of a consumer individual that at
time ¢ has age a and has experienced a resource history Sy during its life. The size
of an individual changes w.r.t. its age, depending on a given growth rate g. The size
at age a of an individual that at age a has experienced a resource history 1, say,
z(a) == z(a; a,) for 0 < a < a, is determined through the ODE Cauchy problem

(1.2) {( %c)v>:=xi§x<a>,w<—a +a), 0<a<a,

for x;, a given size at birth. Then, the size at age a is given by X (a,v) = x(a; a, ).

In the same way, by F(a,S;) € [0,1] we denote the survival probability of a
consumer individual that at time ¢ has age a and has experienced a resource history
S; during its life. The survival probability of an individual decreases w.r.t. its age,
depending on a given positive mortality rate . The survival probability at age a of an
individual that at age a has experienced a resource history 1, say, F(a) := F(a;a,)
for 0 < a < a, is determined through the ODE Cauchy problem

{f’(a) = —p(z(a),¥(—a+a)Fla), 0<a<a,

(1.3) F0)=1.
Then, the survival probability at age a is given by F(a, ) = F(a;a,).

The reproduction rate of a consumer individual that at time ¢ has age a and size
X (a, S;) is denoted by 8(X(a, St), S(t)) for a given 8. Similarly, its ingestion rate is
denoted by v(X (a, S¢), S(t)) for a given ~.

We assume two life stages for the consumers: juveniles and adults. The individuals
are juveniles from birth until they reach a given maturation size x4. During the
juvenile period they are not able to produce offspring, hence we assume g(z,y) = 0
for 2, < < x4. When the individuals reach size x4, they become adults and are
able to reproduce. We denote by a4 (1) the age at which a consumer reaches size x 4
under resource history v, that is,

X(aa(@),¥) =za.

Correspondingly, the rates 3, g, v, and pu are assumed to be functions sufficiently
piecewise smooth on [zp,z4] X [0,4+00) and on [z4,+00) X [0,+00). On the other
hand, the function f in (1.1) is assumed to be sufficiently smooth on [0, +00). Notice
that the sufficient degree of smoothness assumed in [16] is C!, whereas, as discussed
in section 3, the one assumed in this work is as high as needed for numerical purposes.
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The dynamics at the population level is modeled as a system of a Volterra func-
tional equation (VFE) coupled to a delay differential equation (DDE). Let us denote
by b(t) the consumer birth rate at time ¢. The number of individuals that at time
t have age a is equal to the number of individuals that were born at time ¢ — a and
had survived till age a, i.e., F(a, St)b(t — a). Then, the population birth rate at time
t is obtained by integrating w.r.t. the age the contribution to the birth rate of the
individuals that have age a at time t:

h

(1.4) b(t) = / B(X(a,St), S(t))F(a,St)b(t — a)da.
GA(St)

Here h is a given maximum age that an individual can reach. In the same way, we

obtain the population total ingestion of food by integrating the contribution of the

individual food consumption rate. Then, we get the evolution in time of the resource

by subtracting the total ingestion from the right-hand side of (1.1):

h
(1.5) S’(t):f(S(t))—/O (X (a, Sy), S(t))F(a, Si)b(t — a)da.

We complete the system (1.4)—(1.5) with initial histories b(0) = ¢(0) and S(0) = (),
0 € [—h,0], for given ¢ € Li([—h,0];R) and ¢ € C([—h,0];R), as motivated in [14].

1.2. Local stability of equilibria. An equilibrium for (1.4)—(1.5) is a pair of
constants (b, S) (such that) b(¢t) = b and S(t) = S for all ¢ > 0. By introducing the
functions

h h
Ro(S) ::/ B(X (a,S),S)F(a,S)da, o(S) ::/ v(X(a,S),S)F(a,S)da
aa 0
from [11] for aa = aa(9), it is not difficult to see that (1.4)—(1.5) has a trivial
equilibrium (0, S) iff S satisfies f(S) = 0 and a positive equilibrium (b, S) iff b and S
are positive constants satisfying 1 — Ro(S) = 0 and f(S) — bO(S) = 0.

The Daphnia model under study is an example of a system of VFEs/DDEs; see
[16]. The principle of linearized stability for VFEs/DDEs is shown in [14]. For a
constructive approach toward verification of differentiability conditions when discon-
tinuities come into play see [17]. This principle relies on the linearization around the
equilibrium. The latter for (1.4)—(1.5) with (1.2)—(1.3) is performed in [16, sections
3 and 4] and in [11, Appendix A]. It involves differentiation of a (), X (a,), and
F(a,¢) w.rt. 1. These functions are only implicitly defined via (1.2)—(1.3). Addi-
tional complications arise from possible discontinuities at the right-hand side of both
equations.

In the process of elaborating on the results in [16, section 4] we found that the
formula [16, (4.22)] for D3z (7;a, S)1 is incorrect (one way of seeing this is that it does
not satisfy the linearized equation in [16, (4.3)] for 7 values beyond the discontinuity).
The mistake carries over to the formula [16, (4.24)] for D2 X (a, S)1, the formula [16,
(4.25)] for Do F(a, S)v, as well as the linearized system [16, (4.31)—(4.32)] and makes
them incorrect beyond the discontinuity for discontinuous g (the difference does not
show for continuous g). We here present new versions of these formulas along with
a new derivation of D3x(7;a,S)1 based on differentiating the integrated ODE w.r.t.
1. This new derivation provides a confirmation of the new formula. The authors of
[16] are now aware of this and they informed us that a corrigendum is in preparation
[15], consistent with our derivation of the linearization. Similarly, also the formula
for D3z (75 a,S)y between [11, (A.9)] and [11, (A.10)] is incorrect. Below, with slight
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abuse, we adopt the notation B(a) := B(X(a,S),S), 87 = limga, B(a), B~ =
limara, Bla), Pi(a) = 3ﬁ($ay)/ax|(x(a7§),§)7 and Bz(a) = 8ﬁ(x,y)/8y|(x(a’§)7g).

The same holds for v, g, and p. Moreover, again for brevity, we set

(1.6) K(ar, az) = el 90 g, (ay),
(17) H(al, O[Q) = —.7:(0[1, S) (/ 1251 (H)IC(G, Oéz)de + Mg(ag)) .
We obtain

(1.8) DaX(a, ) = //caa)¢(—a+a)da+H(a—aA)<Z_+_1>
/ K(a,a)p(—a + a)da,

(1.9) DyF(a,S)y = /0 H(a,a))(—a+ a)da + H(a —aa)F(a,S)

./O“ [@K(%a) _ (;’—f _ 1) / 1 (0)K (0, a)da] W(—a + a)da,

g A
where H denotes the Heaviside function. We also get
_ 1 [9a
(1.10) Dau(S)e = —gf/ K(as, a)b(=as + a)da,
0

which is consistent with [16, (4.30)]. We refer to Appendix A for a more detailed
derivation. Now we have all the tools for the linearization of (1.4)—(1.5) with (1.2)-
(1.3). Thus, for y(t) and z(¢) small perturbations in the neighborhood of b and S,
respectively, the corrected linearized system reads

(1.11)
/5 F(a,S) (t—ada—|—</ Ba2(a aS)da)z()

—I—i}" (@a, S / K(aa,aa —a)z(t — a)da

min{a+aa,h} Iy ,U
a1 Fl0,8)| (o) (an o~ a)
max{aa,a} g

n (g— - 1) (/ﬁ( )K(0.0 —a) — B(0) / " (Koo a>dp) ] do

A

h —
—I—/ [B1(0)F (0, 8)K(0,0 — a) + B(o)H(0o,0 — a)] da}z(t —a)da,

max{aa,a}

(1.12)

h h
2 (t)= (f'<5> -5 [ n@Fa S)da) ()= [ @) F (@ S)ult — a)da
byt =97)

aA
—F(aa S)/ K(aa.aa — a)=(t — a)da
0
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L e e
‘ (§—+ 1) (oK -0~ 00) [ (p)Klp. ~ i) ]do

h
+/ [71(0)-7:(07 S)K(o,0 —a) +~(o)H(o,0 — a)] da}z(t —a)da.

A corresponding characteristic equation is obtained in [11, 16] by looking for non-
trivial exponential solutions of (1.11)—(1.12). Then, the principle of linearized stability
states that an equilibrium is locally asymptotically stable if all the characteristic roots
have negative real part, whereas it is unstable if at least one characteristic root has
positive real part. This principle is essential in [11] for computing stability boundaries
in a chosen parameter plane using numerical continuation [1]. Indeed, a necessary con-
dition to switch stability is that a characteristic root (or a pair of complex-conjugate
roots) crosses the imaginary axis with positive speed. As a consequence, in [11] a
point in the parameter plane is considered to belong to a stability boundary if an
equilibrium exists and iw solves the characteristic equation for some real w. Then,
continuation under parameter variation allows us to obtain transcritical bifurcation
curves (switches from a stable trivial equilibrium to an unstable trivial and a sta-
ble positive equilibrium) and Hopf bifurcation curves (switches from a stable positive
equilibrium to an unstable positive equilibrium and a stable periodic solution). Al-
though rather useful, this technique based on the characteristic equation may present
difficulties from both the theoretical and computational points of view: it is not trivial
to obtain a solution point to start the continuation; it is not guaranteed that iw is the
rightmost (stability determining) root; it is not guaranteed that iw crosses the imag-
inary axis with positive speed; inaccurate results may appear due to ill-conditioning
(see, e.g., the discussion at the end of [7, section 1.1]). Overcoming these difficulties
motivates the present work: in the next section we reformulate the problem from a
dynamical systems point of view and follow the similar approach in [3].

1.3. Reformulation in infinite dimension. For di,ds € N and 7 > 0, we in-
troduce the Banach spaces of functions Y := Ly ([—7,0]; R%) and Z := C([—7, 0]; R%),
equipped with the norms ||¢||y = fET |6(0)[d6 and ||¢|| z = maxge|—r ) [¥(0)], respec-
tively, | - | being any finite dimensional norm. The approach we intend to follow is
suitable for the more general class of systems of linear VFEs/DDEs,

y(t) = L1yt + Loz,
1.13
( ) {Z/(t) = Lo1ys + Lazz,

for ¢t > 0, where y; € Y and z; € Z are the histories (or states) of the system at time ¢,
recalling that they are respectively defined as y;(0) := y(t+0) and z.(0) := z(t+0) for
RS [—T,O] and L1 : Y — Rdl, Lio:7Z — Rdl, Loy :Y — Rd2, and Los : Z — Rd2 are
given linear continuous functionals. In general, (1.13) comes from the linearization of

b(t) = Fi(be, St),
(1.14) {S’(t) = F5(bt, St)

around an equilibrium (b, S), where F} : Y x Z — R4 and Fy : YV x Z — R
are sufficiently smooth nonlinear functionals. By using the norm |[[(¢,¢)|lyxz =
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llolly + |l#||z, the infinite dimensional product space Y x Z is a Banach space. In
what follows, an element (¢,1/) € Y x Z denotes the function (¢, 1) : [—~7,0] — R&+d2
st (@,1)(0) = (¢(0),v¥(0)) for 6 € [—7,0] is considered as the column vector of the
dy components of ¢(6) followed by the do components of ¥(6). We remark that here
R%+42 jdentifies R% x R%2, so let us be licensed to denote the elements of the former
as couples (7, s) for 7 € R% and s € R,

Note that (1.4)—(1.5) and (1.11)—(1.12) are particular instances of (1.14) and
(1.13), respectively, with dy = d2 = 1, 7 = h, and functionals most of which are of
integral type due to the continuous age distribution. Moreover, such functionals are
given implicitly in terms of solutions of external ODEs: (1.2)—(1.3) for the nonlinear
problem and the corresponding linearized ones for (1.11)—(1.12), which account for
(1.6)—(1.7).

With the aim at reformulating (1.13) on Y x Z, we introduce the solution operator
T'(t) as the linear bounded operator T'(t) : Y x Z — Y x Z defined by T'(t)(¢,v) =
(Y1, z¢) for t > 0. The family {T'(¢)};>0 is a Cp-semigroup with infinitesimal generator
the linear unbounded operator A: D(A) CY x Z — Y x Z given by

(1.15)  A(¢,¥) = (¢',9),
(1.16)  D(A)={(¢,9) €Y x Z: (¢',9') €Y x Z and (¢,¢')(0) = L(¢,¥)}

for L:Y x Z — R%+d2 defined as

(1.17) L(¢,v) := (L1190 + L12%, L21¢ + Lao)).

It follows that the Cauchy problem for (1.13) with initial functions yo = ¢ and 2o = ¥
for (¢,v) € D(A) is equivalent to the abstract Cauchy problem

d
(), v(t) = A(u(®), (1), 20,

(u(0),0(0)) = (¢, %),

in the sense that (y:,2:) = (u(t),v(t)) for all t > 0. We refer to [20] for a general
treatment of one-parameter semigroups, their generation and spectral theories, as well
as their application to evolution equations. We instead refer to [14] for the specific
case of VFEs/DDEs (see also [18] for DDEs), from which the (above and the) following
fundamental results are obtained by using the sun-star theory of dual semigroups.
THEOREM 1.1. The spectrum o(A) of A contains only eigenvalues of finite al-
gebraic multiplicity and every right half-plane in C contains at most finitely many
eigenvalues. Moreover, X\ € o(A) iff it is a root of the characteristic equation

1, — Llle)"Id —ngeA'Id
det ! . ! 2 =0,
( —Lzle)‘ Idl )\Id2 - L22€A Id2

and the algebraic multiplicity of \ coincides with its order as a characteristic root.

THEOREM 1.2 (principle of linearized stability). An equilibrium of (1.14) is
locally asymptotically stable if R(\) < 0 for all X € o(A), whereas it is unstable if
R(A) > 0 for at least one A € o(A).

By virtue of the above reformulation we first transform the problem of computing
the characteristic roots into that of computing the eigenvalues of A. Consequently, the
problem of determining the stability of an equilibrium is translated into the problem
of computing the rightmost eigenvalue(s) of A. Now, by following the numerical
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approach in [3], we approximate (a finite number of) the eigenvalues of A by the
eigenvalues of a finite dimensional linear operator that discretizes A, i.e., a matrix Ay .
This approximation is a natural extension of the pseudospectral method developed
in [4] for DDEs and in [5] also for VFEs, then resulted in the method for systems of
VFEs/DDEs investigated in [3]. For DDEs see also the more recent exposition [7].
The new contributions of the present work w.r.t. [3] follow: (i) we modify the
treatment of the nonlocal boundary condition in D(A) to allow for a future extension
in view of the approach proposed in [27], directly applicable to nonlinear problems
(1.14) without the unavoidable difficulties posed by the method in [3] consisting in
reformulating the problem and using additional numerical root finders; (ii) for the first
time we rigorously prove the spectral accuracy (see, e.g., [32]) of the approximated
eigenvalues and furnish an upper bound for the error; (iii) we extend the approach
to realistic Daphnia models (1.4)-(1.5) by including the numerical solution of the
external ODEs (1.2)-(1.3), the quadrature of the integrals at the right-hand sides of
(1.4)—(1.5) whose integrands are given implicitly through the solutions of the above
ODEs, and the treatment of the juveniles-adults discontinuities; (iv) we discuss a
detailed implementation to suitably tackle all the above points and consequently study
the influence of the various error sources on the main spectral convergence rate; (v)
we test the method on a realistic Daphnia model and compare with data from [11],
recalling also that both the model and the data are based on experimental evidence.

2. Numerical method and convergence analysis. Given a positive integer
M, let Qpr = {00,61,...,00} be a mesh of points on [—,0] satisfying —7 =: 5 <
-+-01 < 6y := 0. We replace the infinite dimensional state space Y x Z by the
finite dimensional state space Yy, x Zjs of the discrete functions defined on 5, by
choosing Yy := (R4 MOF = RAM and 7, = (R92)%m = R(M+1) - Ap clement
(®,¥) € Yar X Zp is intended as the column vector formed by the M components of
b = (Pq,...,Pp) € Y followed by the M +1 components of U = (W, Uq,...,¥y) €
Znr, where ®; € R4 for i =1,...,M and ¥; € R% for i =0,1,..., M.

We remark that it is not always possible to compute the exact functionals L1,
Lo, Loy, and Log in (1.13). This is the case of (1.11)-(1.12) for, e.g., the integral
form of the functionals. Let then Ell, .Z/lg, Egl, and Lso be suitable computable
approximations and define L analogously to L in (1.17). These approximations are
the argument of section 3.

Given (®,V) € Yy X Zuy, consider (P, Qur) € Y x Z, where Py and Qp are
the polynomials of degree at most M uniquely determined by

(2.1) Par(60) = L11 Py + L12Q o,
(2.2) Pu(0)) = s, i=1,..., M,
(2.3) Qu(0) = Wi,  i=0,1,..., M.

Through such polynomials we construct a finite dimensional linear operator Ay, :
YuxZy — Y X Zy as

(2.4) An (2, V) = (& n),
where

(2.5) G =Pl6), i=1,... M,
(2.6) 1o = L1 Par + LoQu,

(2.7) m= Q4 (0,),  i—=1,... M.
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The linearity of Aps follows from the linearity of interpolation, differentiation, (2.1),
and (2.6). The action (2.4) of Aj; mimics the action (1.15) of A through (2.5)
and (2.7). Moreover, the nonlocal boundary condition in the domain (1.16) of A is
discretized through (2.1) and (2.6). In section 3.2, with abuse of notation, we denote
by Aar also the matrix in R(4M+d2(M+1)x(diM+d2(M+1)) representing (2.4) in the
canonical basis. There we construct explicit entries for the Daphnia case (1.11)—(1.12).

We underline that the above treatment of the boundary condition through (2.1)
and (2.6) is different from that in [3], where basically (2.6) is removed from (2.4)
and replaced by Qn(0y) = Loi Py + I~/22Q m- The latter is solved explicitly in the
construction of @y, as it occurs for Py in (2.1). The choice is motivated as follows.
In [27] a generalization of this pseudospectral discretization is applied directly to
systems of nonlinear VFEs/DDEs like (1.14). It is the intention of (some of) the
authors together with the author of [27] to apply this extension to Daphnia models.
For the latter class with reference to (1.14), only Fj is linear w.r.t. b, while Fj is in
general nonlinear w.r.t. S. This makes (2.1) explicitly solvable for Pys(6p), whereas
the analogue for Qas(fy) is no longer true. Hence the method proposed in [3] would
require an additional numerical solver for nonlinear equations, opposite to the method
proposed here. As a further reasoning, this version is the logic coupling of the method
n [4] for DDEs with the method in [5] for VFEs, whereas the version in [3] requires
an ulterior reformulation of the problem. Finally, the proof of convergence we give in
section 2.1 can be adapted straightforwardly to [3], where a rigorous proof is lacking.

From now on we use the term continuous for the exact problem in infinite di-
mension, i.e., the computation of o(A), and the term discrete for the approximated
problem in finite dimension, i.e., the computation of o(Axy).

2.1. Error bounds and convergence. The convergence analysis of the discrete
eigenvalues to the continuous ones combines the same arguments adopted in [4] for
DDEs and in [5] for VFEs. The necessary steps follow: (i) recover the continuous and
discrete characteristic equations by considering a suitable ODE Cauchy problem and
its polynomial collocation; (ii) find a bound for the collocation error; (iii) bound the
error between the characteristic equations in terms of the latter; and (iv) bound the
error between the eigenvalues by applying Rouché’s theorem (see, e.g., [9]). Here we
revisit completely steps (i) and (ii): the former because the discretization is different
from [3], the latter because in [5] the state space Y for the VFE part is assumed to
be C instead of L; as it is assumed more properly in this work and according to [14].
This requires interpolation results sharper than those used in [4, 5]. Moreover, we
work on the product state space Y x Z rather than on a single space. As far as steps
(iii) and (iv) are concerned, we state only the final convergence result since the proof
can be adapted straightforwardly from, e.g., [4, 7]. Notice that since the following
analysis concerns eigenvalues, we implicitly merge the problem in C, i.e., we assume
Y := Li([-7,0; C™) and Z := C([—T,0]; C%).

We start with step (i). Let A € C and (¢, 1) € D(A)\ {(0,0)} be s.t. A(¢p,v) =
Ao, v), ie

{(925’, P)(0) = M@, ¥)(0),  0€[-0],
(6,9)(0) = L(¢,¥),

by virtue of (1.15) and (1.16). Since the solution of the ODE Cauchy problem

(@, 0)(0) = X6, 0)(0), 0 [-7,0]
28) {( £)(0) = (g, vo),
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is (¢,9) = e*(up,v0) € Y x Z for (uo,vg) € Chtdz we conclude that A € o(A) iff
there exists (ug,vg) € C+42\ {(0,0)} s.t. (uo, o) = Le™ (ug,v0). Accordingly, we
define the linear operator A()) : (Cd1+d2 — CHhtd2 a5 A(N)(ug,v0) = Le (ug,vo)
and the relevant characteristic function

¢(\) := det <(Ig )\?d2> — /l(/\)) .

Then, A € o(A) iff the continuous characteristic equation ¢(A) = 0 holds.
We proceed similarly for the discrete problem. Let A € C and (®,¥) € Yy X
Zy \{(0,0)} be s.t. Ay (P, ) = A(D,T), ie

{(PMvQI ) (0i) = AN(Par, Qur)(6:), i=1,..., M,
(Par, Q) (00) = L(Par, Qur),
)-

by virtue of (2.1)-(2.3), (2.4), and (2.5)—(2.7). By using the shorthand notation

pum(4) == par (5 A (wo,v0)) and gar(+) == qar(+; A, (uo,v0)), we denote with (par, qar) €
Y X Z the collocation polynomial of (2.8) on Qyy, i.e.,

(Phrs @ar)(0:) = Mpars qnr ) (05), i=1,...,M,
(29) {@ﬁ, a)(60) = (o vo).

We conclude that A € o(An) iff (par,qn) = (Par, Qur), that is, iff (ug, Avg) =
L(pn, qr). Accordingly, we define the linear operator Apr (M) : Chitdz _ Cditde aq
Anr(N)(uo,vo) :== L(par, gar) and the relevant characteristic function

enr(N) = det ((Ig A?d) — AM()\)> .

Then, X € o(Ajy) iff the discrete characteristic equation ¢pr(A) = 0 holds.

Now we proceed with step (ii) and give an upper bound for the error of the collo-
cation polynomial (pas,gar) in (2.9) as an approximation of the exponential solution
e (ug, vo) of (2.8). To increase readability, we first collect a couple of preliminary
results on the integral Volterra operator Ky : Y X Z — Y X Z defined as

0
(K (6, ))(6) = A /0 (6. 0)(s)ds, 6 [-,0]

for A € C and on the Lagrange interpolation operator Ly;—1 : Y X Z — Y X Z relevant
to the nodes 01, ...,05; in Q. Both these operators are linear and bounded. In what
follows we set I := Iy xz and || - || := || - ||y xz«v xz for the operator-induced norm.
LEMMA 2.1. T — Ky is invertible and ||(I — Ky)~ 1| < elM™.
Proof. Invertibility follows from standard theory on linear integral equations
(see, e.g., [24]). For (y,z) € Y x Z consider (§,n) € Y x Z as the unique solution of
(I — Ky)(¢, 77) (y, ) i.e., componentwise for 6 € [—7,0], £(0) = y(0) + )\foef(s)ds

and n(0) = z(0) + )\fo s)ds. Then, for all o € [—T,0],

0
/|§(9)|d9: +)\/ £(s)ds d9</ ly (6 |d9+|)\|/ </ (s |ds>
s 1n(6)] = max |2(6) + / (s)ds| < ma [2(0)] + A / ma [7(6)/ds.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/18/15 to 158.110.144.234. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

A2616 BREDA, GETTO, SANCHEZ SANZ, AND VERMIGLIO

The bound on ||(I — K,)~!| follows by applying Gronwall’s lemma to both the latter
and by considering o = —7, since we get [|(&,9)|lyxz < eMN|[(y,2) |y xz. O
Assumption 2.2. Let Qp; be made of Chebyshev extremal nodes:

oi:%<cos<%>—1>, i=0,1,..., M.

LEMMA 2.3. Under Assumption 2.2, ||(Lar—1 — I)EK\|| = 0 as M — oo.

Proof. Kx\(Y x Z) is a subset of the space of absolutely continuous functions
[—7,0] — C%F42, The thesis follows from the sharp interpolation results in [25]. 0

Now we denote by B(\, p) the closed ball in C of center A and radius p and give
the collocation result.

THEOREM 2.4. Let \* € C and po > 0. Under Assumption 2.2, there exists
My € N s.t. for all M > My, all \ € B(\*,po), and all (ug,vy) € Chtdz the
collocation polynomial of (2.8) given by (2.9) exists, is unique, and satisfies

, Co (Cr\M
a0, G o) (5 A o 1) = (o)l < < (1) o)
with Cy and Cy constants independent of M.
Proof. We rewrite (2.8) and (2.9) as the functional equations in ¥ x Z

(¢7w) = (U‘OvUO) + K)\(¢7w)a (pMaqM) = (UO,’UO) + K)\EMfl(pMaqM)a

where, with abuse of notation, (ug,vg) € Y x Z is the function of constant value
(ug,vg) € Chtd2, By subtracting we get

(2.10) en = KxLy—1en + Karu

for the collocation error ens := (par, qur) — (¢,¢), where rar := (Lay—1 — I)(0, )
is the interpolation remainder on the exponential solution of (2.8). The solutions of
(2.10) are the functions ey = Kxéps for ép7 a solution of

(2.11) em = Ly 1K én + 7.

By virtue of Lemmas 2.1 and 2.3 we can apply a corollary of the Banach perturbation
lemma (see, e.g., [24, Theorem 10.1]) to get that there exists My € N s.t. for all
M > Mj and independently of A the operator I — L1 K is invertible and ||(I —
La—1 K7 < 2||(I - Kx)7t||. This implies in cascade that (2.11), (2.10), and (2.9)
admit a unique solution. Moreover,

learlly xz < 2EANT = Kx) " Hllramlly xz-

Beyond numerical constants, for the first factor at the right-hand side it is not difficult
to prove that [|[K,|| < [M\7 by recalling that ||(y,2)|lyxz = |ylly + ||z]|z. For the
second factor Lemma 2.1 holds. For the third factor we obtain
AT)M _
Irarlvscz < P tmasef1, %07 g, wy)

by applying the standard Cauchy’s remainder for interpolation, since the interpolated
function is the exponential solution of (2.8). The final bound on the collocation error
is a direct consequence of Stirling’s approximation M! > /27 M (M /e)M. d
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Now, as anticipated, we conclude the convergence analysis by stating without
proof a theorem on the error between continuous and discrete eigenvalues. This final
result accounts for steps (iii) and (iv) and can be recovered by following [4, Lemmas
3.4 and 3.5, Theorem 3.6] in a straightforward manner.

Assumption 2.5. L is bounded.

THEOREM 2.6. Let \* € o(A) with multiplicity v. Under Assumptions 2.2 and

2.5, there exist pg > 0 and My € N s.t. for all M > My and for sufficiently small

Le™ — Le
o sup |Le™ (ug, vo) e (ug, vo)|

AEB(M 1p0) | (o, vo)|
(u0,v0)€C1T2\{(0,0)}

)

there exist \; € o(An), 1 =1,...,v, counted with multiplicities, satisfying

(2.12) NN <G er = (& a
’ z:Hl17a'X,V =02 \/M M

with C1 and Cy constants independent of M.

The term ¢ in (2.12) takes into account the approximation L of the exact right-
hand side L of (1.13). As already remarked, for realistic Daphnia models such as
(1.11)—(1.12), this quantity accounts for the error committed in the numerical solution
of the external ODEs (1.2)—(1.3), as well as in the numerical quadrature of the integrals
at the right-hand side of (1.11)-(1.12). These contributions are discussed in section
3. However, in general, one can guarantee that ¢ < TOL for a given tolerance TOL
(e.g., machine precision). If so, the meaning of (2.12) is that, modulo multiplicity, the
error falls down to TOL by following a spectrally accurate behavior, i.e., O(M ~).
Finally, we also remark that by virtue of [4, Proposition 3.7], the existence of physically
spurious eigenvalues [2, Chapter 7] is excluded: all the eigenvalues of Aj; converge to
eigenvalues of 4 as M — co.

Finally, we wish to remark that, beyond the above analysis of the analytic er-
rors, other numerical and computational issues should be taken into account in gen-
eral when approximating infinite dimensional eigenvalue problems through colloca-
tion, for instance, the role of the constant C; in (2.12), whose value can be easily
recovered from the proof of Theorem 2.4 and guarantees higher accuracy for eigen-
values of smaller magnitudes. This and other general aspects of the method have
been appropriately commented on in [3, 4, 6, 7]. As a general and cornerstone ref-
erence see [2, Chapter 7], where a heuristic rule of thumb for the choice of M is
established and spurious solutions are adequately treated, and also the recent mono-
graph [21] for challenging nonstandard eigenvalue problems, where suitable eigen-
value solvers in finite dimension are also discussed, like, e.g., Jacobi-Davidson type
methods [28].

3. Numerical implementation. In this section we construct the matrix A,
relevant to the linear operator (2.4) for realistic Daphnia models (1.11)—(1.12). Recall
that d; = da = 1. The exact linear functionals at the right-hand side of (1.13) are

(81)  Lud-— /_ ; " B (0)(0)db,

" B )60+ / " B @),

—h

(82)  Ligt = Awp(0) + /

—aa
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0 —aa
63 Lwo= [ B @eOw+ [ D@00,
0 —aa

B (0)6:(0)d6 + / B (0)(6)d0

—h

(84) Loyt = Appv(0) + /

—aa

for the scalars
A =b / Bo(a)Fla, S)da,  Ass = f/(S)— b / ~o(a)F(a, §)da
aa 0

and the functions Bz'(f) :[-aa,0] = R and Bl-(f) :[=h,—aa] = R, 4,5 = 1,2 (exclud-

ing Bg)), respectively given for the juveniles (superscript J) by
ba+ _

By (6) = gﬁ—_f(cu, S)K(@a, aa +0)

_ pmin{—0+aa,h} B

+b F(o,S)

aa

+ (gi _ 1> (51 (0)K(0.0 +6) — 5(0) / " n(p)Klp, o+ e)dp) ] do

“_giﬁ(awm,a 0)

aa
h

+b 7 [ﬁl (0)F(0,9)K(o,0 +0) + B(o)H(o,0 + 0)] do,

B{(6) = —(-0)F(-6.5),

byt —~— _
BD®) = 272 pa, 8)k(an,an + )

g
_ pmin{—0+aa,h} B
~5 / F(o,9)

. (ii - 1) (wma,a +0)=o(0) [ m<p>ic<p,a+0>dp) ]da

- _ 7t
B F o)K(@a,o+0)

9

aa

h
b [ (o) F @ S)K(0.0 +6) + (o), +6)] do

and for the adults (superscript A) by

B () = B(~0)F(~4,5),
(= —pu')

p B(o)K(aa,o +0)

(A) _ pmin{—0+aa,h} B
B, (0):+b/ F(0,9)
—0

+ <z_+ - 1) (51(U)K(Ua‘7 +0) — B(o) /a: pwi(p)K(p, o + 0)dp> ] do
h
+b y [B1(0)F (0, S)K(0,0 + 6) + B(0)H (0,0 + 0)] do,
B (6) = —y(~0)F (-6, 5),

B -8

—0

min{—0+aa,h} +)

F(0,5) [uy(a)m(% o+ 0)

9
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+(gi—1)<%()K@wr+®—vwﬂlguﬂmK@ﬁ+ﬁﬁw>Lw

A

—b/ Y1 (o ,S)K(o,0 +0) +~(0)H(o,0 + 0)] do.

As anticipated in section 2, the functionals (3.1)—(3.4) cannot be evaluated ex-
actly for a general choice of model rates. Therefore, approximation is needed for
(i) computing the integrals in (3.1)—(3.4)—we call them the outer integrals; and (ii)
evaluating the scalars A’s and the functions B’s, first, because X (-, S) and F(-, S) are
obtained as solutions of (1.2)—(1.3) which, in general, cannot be solved analytically,
and second, for the presence of further integrals, which we call the inner integrals. In
the following sections we address separately all these computational issues, eventually
leading to the explicit construction of Aj; through a piecewise variant of the method
illustrated in section 2.

3.1. Quadrature of outer integrals. The integration intervals in (3.1)-(3.4)
are separated between the juvenile and adult periods because of the possible discon-
tinuities in the vital rates. It is then natural to separate the quadrature as well. On
each interval, as suggested in [3], we adopt the interpolatory formula based on Cheby-
shev extremal nodes, known as the Clenshaw—Curtis formula [32, 33]. In general, for
a positive integer n and f : [a,b] = R,

b n
(3.5) [ @18~ 3" s
a k=0

with wy’s and 6;’s the Clenshaw—Curtis weights and Chebyshev extremal nodes on
[a, b], respectively. Both are obtained straightforwardly from the weights and nodes
n [—1,1] by shift and scaling and can be computed efficiently as explained in [32].

To approximate the outer integrals by (3.5), let M; and M4 be positive integers,
possibly different. Define M := M ;+ M 4 and introduce on [—h, 0] the piecewise mesh

Q= Q(]\‘Z U Qg\?i with, respectively,

6 oD = Lo i_0 M, gD = A () aa
(3.6) M; {91 ,0=0,1,..., My - 0; > (a7 5 [

h—a ' h+a
37 o ::{HZ(A),Z':O,L...,MA:HZ(A):#“Acos(i)— +C‘A}

the meshes of Chebyshev extremal nodes on [—a4,0] and [—h, —a@a]. Notice the
superposition 9(()’4) = —a = 95\‘/[]3 Then we define the approximated functionals as

(3 8 L11¢ _ Zw(A)B(A) ))d)(o]iA))’
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(3.9) Lzt := A1(0 —I-Zwk & ) + Zw<A>B<A> D)o,
M 4
Lo = Zw(J)B“) o0")+ 3w B 00,
k=
L22¢ A22¢ )+ Z wk 22 )+ Z w(A)B(A) ))¢(9£A)).

Here we use A’s and B’s instead of A’s and B’s to include the numerical solutions of
the ODEs (see section 3.3) and the approximation of the inner integrals (see section
3.4).

The choice of a piecewise quadrature based on Chebyshev extremal nodes moti-
vates the piecewise discretization illustrated next. Together they lead to a considerable
cost reduction. Moreover, by assuming sufficiently smooth piecewise vital rates, as
anticipated in section 1.1, the quadrature error is spectrally accurate [32, 33]. Con-
sequently, its contribution to the term ¢ in the final error bound in Theorem 2.6 is of
the same type of the error on the eigenvalues, i.e., O(M~M).

3.2. Piecewise discretization. Correspondingly to (3.6)—(3.7), consider an el-
ement (®,¥) € Yy x Z) with components indexed as

J J A A J J J A A
b= (87,0 o, 8, v (0 )

and construct a piecewise continuous polynomial (Py,Qp) € Y X Z as follows.
(Prr,Qur) is a polynomlal (Pﬁ;), 5\/[ ) of degree at most M; defined on [—aa4,0]
and a polynomial ( MA , Q(A)) of degree at most M4 defined on [—h, —a4]. By using
the Lagrange bases {ZO‘]), él‘]), . ,55\2} and {Z((JA), ZZ(LA), . ,Zg\?i} relevant to (3.6) and
(3.7), respectively, by following (2.2)-(2.3) we have

PO = @O PO + X 4008, o€ a0
=
P 9) = 6§V (0@ + Afj: RO 6 e [—h,—aal,
j=
Qi (0) = 2 76y, 0 [~aa,0,
Qi (0) = féA’(e)\If%?, + Ail DOuD, ge—h—aal.
=
The unknown value P (9(‘])) M(G((JJ)) is determined as a linear function of (&, V)

by virtue of (2.1) and of (3.8)(3.9):

J J A (A A J (A A J
(310)  POF) =i [B05)05) + BE 05 V)w)]

My
+ Apu) + 3w B 0wy
k=0

Ma
A (A A A (A A A
+> ™ [BI e + B 0w ],
k=1
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This leads (Par, Qar) to be an explicit linear function of (®,W¥). The matrix Ay is
obtained by following (2.5)—(2.7). Below we use the coefficients

V= 00)),  i=1,..., M., j=0,1,..., M,

which are the elements of the Chebyshev differentiation matrices relevant to (3.6)—
(3.7) for « = J, A. These matrices can be efficiently computed as explained in [32].
With reference to the resulting structure of Ay, depicted in Figure 1, the first block
from the top accounts for the exact differentiation of P]&]J) at the nodes of (3.6) ex-
cluded 9(()]) = 0. It is the analogue of (2.5) restricted to [—@a,0], but now all the

components of (¥, ¥) contribute by (3.10), hence the size is M; x (2M + 1) and the
entries are

d, j=1,...,M;—1,
d( 7, + diy wgV B (057), j= My,
d((}’) (A)B(A)(%A)), j=My+k k=1..., My,
(Anm)ij = 56]) {A + (J)B£g)(9éJ))} ) j=M+1,
diwi” B (017), G=M 14k k=1,....M;—1,
» 5(A )
d( %Bg)(%ﬁ) + wéA)B§2)(9((JA))} ,  J=M+1+ My,
dDwWBD D), G=M 1+ My+k k=1,..., Mg,
fori=1,..., M . The second block from the top in Figure 1 accounts for the exact

differentiation of Pjig) at the nodes of (3.7) excluding 9(()‘4) = —a4 = 0;2 It is the
analogue of (2.5) restricted to [—h, —a 4], with size M4 x (M4 + 1)) and entries

(AM)MJ+i,MJ+j dng)a 1= 17"'7MA7 j:0717"'7MA~

The third block from the top in Figure 1 accounts for the exact differentiation of Qg\?

at 9(()‘]). It is the analogue of (2.6) since QM(G(J)) Q(‘]) (6‘( ), but again all the
components of (®,¥) contribute by (3.10), hence the size is 1 x (2M + 1) and the
entries are

w}j)B“)(a“)) j=k k=1,...,M;—1,
) [BEDED) + e B O]+l B, 5=
wi® [BE O + e "B O] 5= My k k=1, Ma,
Azy + e Arg + wf” [Bg) (657) + e6” BYy (98‘]))} , =M1,
o [BR0) + 7 B wé‘”)] , j= M1+t

(Arm)mt1, =
k=1,...,My—1,
D) [ B p(T () (I
wi?) [BS 05 + >B<> )
+ i [B< (05) + B(A)(GA)}, j=M+1+ My,
wiV [BE 0) + e >B<A> )], j=M+1+M;+Fk
k=1,...,Ma,
where we set e(‘]) : (J)B(J)(G( ) for brevity. The fourth block from the top in

Figure 1 accounts for the exact differentiation of Q(]\‘/[]i at the nodes of (3.6) excluding
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My My 1 My M 4

M,

M;

My

FiG. 1. Block structure (thick) and sizes (thin) of Aas for Daphnia models.

96‘]) = 0. Tt is the analogue of (2.7) restricted to [—a4,0], with size M; x (M; + 1)
and entries

(AM)M14iM4145 = dE;-]), i=1,...,M;, j=0,1,...,Mj.

The fifth block from the top in Figure 1 accounts for the exact differentiation of

(A) at the nodes of (3.7) excluding 9( )= —ay = 9%3 It is the analogue of (2.7)
restrlcted to [—h,—aa], the size is M4 x (M4 + 1), and the entries are

(A M rimy iy =dg’,  i=1.., M, j=0,1,..., My,
The remaining part of Ay, has zero entries. Eventually, notice the considerable cost
reduction thanks to the choice made in the previous section, since there is no need
to construct and evaluate Lagrange coefficients, as would be the case if we used a
nonpiecewise polynomial.
Remark 3.1. The arguments illustrated in sections 3.1 and 3.2 can be extended to

systems of linear VFEs/DDEs (1.13) where the generic exact linear functional (1.17)
contains p discrete and distributed delay terms, i.e.,

=3 A® (g, )( m+2/_m 0)(6,)(6)d0
k=0

— Tk

for given delays 0 =: 79 < 71 < --- < T, := T, given matrices AF) e RIXd for | =
0,1,...,p, and given sufficiently smooth matrix functions B*) : [—7;,, —7,_;] — RZ*4
for k=1,...,p, where d = d; + dz. This extension does not introduce any theoretical

difficulty. Indeed, the convergence analysis of section 2.1 also applies with minor
and obvious modifications (see, e.g., [7, section 5.4] for DDEs). In contrast, major
technicalities are the price to pay in terms of indexing w.r.t. number of equations and
delays. For this reason we avoid such generality in the present work. Nevertheless,
the MATLAB codes available from the authors are written in this more (and most)
general setting.

To complete the construction of Ay, it is necessary to compute the A’s and B’s
through the relevant approximations A’s and B’s. Note that the values of the B’s are
required only at the mesh nodes. This is the argument of the forthcoming sections.
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3.3. Numerical solution of ODEs. To address the above task one would re-
quire the knowledge of X (-,S) and F(-,5) on [0,h] (recall the notation introduced
for (1.11)—(1.12)). In practice, we need the values corresponding at minus the mesh
nodes in (3.6)—(3.7), e.g., for B%f), and, in principle, at any other point of [0, h] for the
inner integrals. Indeed, even if the latter are approximated by quadrature, it is rather
difficult to know in advance the quadrature nodes, as explained next in section 3.4.

In [11], (1.2)—(1.3) are solved numerically for computing the equilibria (b, S) by
using DOPRI5. It is an embedded Runge—Kutta pair with dense output, event lo-
cation, and variable stepsize to control the error [19, 26]. Dense output means that
the numerical solution is available at any point of the integration window within a
given tolerance and a uniform convergence order. The variable stepsize control strat-
egy guarantees either a prescribed absolute tolerance TOL, and a relative one TOL,..
The uniform order is 4. Dense output is mandatory here since the points of evalua-
tions of X (-, S) and F(-, S) are, in general and as explained above, different from the
nodes of the used Runge-Kutta mesh (also because the stepsize is variable). More-
over, dense output allows for event location, necessary to compute the maturation age
a4 through X(aa,S) = x4. The latter is solved by substituting X with the numer-
ical dense solution X and by solving X (a,S) — 24 = 0 through, e.g., Netwon-like
methods.

For all these reasons, in this work we apply DOPRI5 and we use a Broyden
method [8] for the maturation age. Everything is implemented in the MATLAB
codes available by the authors.

3.4. Quadrature of inner integrals. The lack of an analytical expression of
X(-,8) and F(-,S) for what was seen in the previous section imposes the numerical
quadrature of the inner integrals. To this aim we adopt the same Clenshaw—Curtis
formula illustrated in section 3.1.

There are different intervals of integration involved in the A’s and B’s. Also,
many of them vary with 6 € Q3 , x = J, A. As a further complication, the integrands
(or their derivatives) have possible discontinuities when juveniles become adults. This
is due, e.g., to the presence of (a1, az) given in (1.6) and of H (a1, az) given in (1.7),
which can be discontinuous at as = a@4. As a consequence, to guarantee convergence
and a spectrally accurate error (as discussed at the end of section 3.1), we use a
piecewise quadrature whenever a4 belongs to the integration interval.

As an example, consider the second term in the last integral in Bé‘zj). All the
other inner integrals in the A’s and B’s are treated analogously. The discretization
of the infinitesimal generator requires the evaluation of

h
I; ::/ o ’Y(O’)H(O’,O’—F@gJ))dO', 1=20,1,..., M.
e‘i

Recall first that (o) = v(X (0, S), S) can be discontinuous across the maturation size
za, ie., at 0 = as. We call v(/) the restriction of v relevant to X € [xp, 4], ie.,
o € [0,a4], and v the restriction of vy relevant to X € [£4, Zmax), i.¢., 0 € [@a, h],
where Ty.x is the maximum size reached by the adults. Notice that X is continuous
as solution of (1.2). Second, from (1.7), we know that H is discontinuous at a4 in the
second argument, since so are K in (1.6) and po (for the same reasoning of v above,

which holds for g2 in (1.6), too). This affects the integrand whenever o = a4 — 95‘]).
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Accordingly and recalling that —95‘1) < a4, we split the integral as

0L

aa—0;

aa
I, = /9“> YD (VHD (0,0 + 6V do + [ AN (@ VHD (0,0 + 6V do

aA

h
+/ AN (@ VHD (5,0 + 6)do

fori=0,1,...,
aa h
I = / L @HD (0,04 6;7)do + / YN YHD (0,0 + 617 do
—0; a

A

for i =i+1,...,M;, where i := max{i : a4 —6\”) < h}. Then (3.5) is applied
separately to each one of the integrals above.

To conclude, we observe that, due to convergence considerations, it would be
appropriate to choose different quadrature degrees n, mainly depending on the length
of the integration intervals. Standard error estimates [33] require the knowledge of
bounds on high-order derivatives of the integrands, which, in our case, differ from
term to term and, above all, are only numerically available. Extending the argument
also to all the other integrals in the A’s and B’s makes it unattainable. Therefore,
we choose to fix n in advance (and independently of M) for all the inner quadratures,
taking into account that spectral convergence guarantees in general high accuracy
with rather low n (e.g., n < 20; see also section 4).

4. Numerical results. We consider the Daphnia model in [11, section 4.1].
Vital rates and relevant parameters are listed in Table 1.

TABLE 1
Rates (top) and parameters (bottom) of the considered Daphnia model.

resource intrinsic rate of change  f(S) =a15(1 — S/C)
consumer growth rate  g(z,S) = v (zm fr(S) — z)
consumer mortality rate  u(x,S) = p
consumer adults reproduction rate  B(z, S) = rum fr(S)ax?
consumer ingestion rate  y(x, S) = vg fr(S)z>
Holling type II functional response  f.(S) := &S/(1 + £S)
size at birth  x; = 0.8
size at maturation x4 = 2.5
maximum size  x,;, = 6.0
growth time constant 74 = 0.15
functional response shape parameter & = 7.0
maximum feeding rate vg = 1.8
maximum reproduction rate  r; = 0.1
mortality rate parameter p = varying
environment carrying capacity ~C = varying
flow-through rate a1 =0.5
maximum age h =70

First we test the convergence of the computed eigenvalues, in particular, the
overall spectral accuracy of Theorem 2.6 and how the different error sources affect the
approximation through the term ¢ in (2.12). We recall that the final accuracy depends
on the main index M relevant to the discretization mesh (sections 3.1 and 3.2), on
the absolute and relative tolerances of the DOPRI5 method, respectively, TOL, and
TOL, (section 3.3), and on the degree n of the quadrature of the inner integrals

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/18/15 to 158.110.144.234. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

COMPUTING THE EIGENVALUES OF DAPHNIA MODELS A2625

(section 3.4). The experiments refer to the computation of the rightmost eigenvalue
of the positive equilibrium (b, S) = (0.003833012934926, 0.351318582230538) for y =
0.243845788916114 and C' = 0.887255640320707. We consider as exact this eigenvalue
computed with M = 500, TOL, = 10~'4, TOL, = 1078, and n = 100. We compare
the trends of the error obtained by increasing M from 10 to 50 and by keeping all
the other numerical parameters as fixed except for one. The results are collected in
Figure 2: top panel for varying TOL,, middle panel for varying TOL,, and bottom
panel for varying n. Theorem 2.6 is confirmed in all panels: the error decays following
spectral accuracy O(M ~*) down to a barrier which is due to the term € in (2.12). In
the top and middle panels, respectively, we see that TOL, does not affect the error,
whereas TOL, does. Clearly, the barrier lowers as the relative resolution of DOPRI5
increases. In the bottom panel we see that the barrier decreases as n increases but,
beyond n = 20, we do not appreciate further advantages (as discussed at the end
of section 3.4). Finally, we remark that the lowest barrier around 10~!° may be
due to machine round-off: indeed, during the computations we noticed an instability
phenomenon similar to the one explained in [34]. We may further investigate this
subject in the future and, in this respect, also the study of the (non) normality of the
matrix Ay appears to be an important question [29, 31].

* TOL, = 107"
-+-TOIL, = 10-12
-0 | ——TOL, = 104

- TOL =10
-+-TOL = 1077
10| | ——TOL =103

.......

Fia. 2. Convergence of the error of the rightmost eigenvalue; see text.

Now we compute the eigenvalues for several choices of the mortality p and of the
carrying capacity C in the (u, C')-parameter plane. The aim is to check the correctness
of the transcritical and Hopf bifurcation curves computed in [11, Figure 7], there
called respectively existence and stability boundaries. Below the existence boundary
only the trivial equilibrium exists and it is stable. Above it loses stability in favor
of the existing positive equilibrium. Therefore, the existence boundary is determined
by analyzing the position w.r.t. the imaginary axis of the rightmost eigenvalue of
the trivial equilibrium. The stability boundary, instead, is determined by analyzing
the position w.r.t. the imaginary axis of the rightmost eigenvalue of the positive
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equilibrium (a complex-conjugate pair): below the boundary the latter is stable, above
it is unstable. Such boundaries, obtained with the method in [11] based on the use
of the characteristic equation as discussed at the end of section 1.2, are shown in
Figures 3 and 4. Figure 3 includes a number of rightmost eigenvalues of the trivial
equilibrium computed with the method proposed in this work for several values of
and C corresponding to the points * in the top panel. The series of panels (a)—(c)
and (d)—(f) confirm the transcritical bifurcation from the trivial equilibrium to the
positive one. Similar computations are shown in Figure 4 for the nontrivial equilibrium
and its stability boundary: the series of panels (a)—(c) and (d)—(f) confirm the Hopf
bifurcation of the positive equilibrium. Notice how in both cases the computation of
the eigenvalues allows us to appreciate the positive crossing speed at the bifurcation
points.

05F —
0.4F ® —
©0.3F (C] 4
o2k s @ 1
(b)
0.1 —
(@
0 . . . . .
0.05 0.1 0.15 0.2 025 03
"
1 1 3 1 S
(a) - (b) . ©)
: :
0.5 0.5 K 0.5 :
‘e H
< :
0 0 0
B "
-05 [ 0.5 0.5
-1 -1 : -1 =
-02 0 02 -02 0 0.2 -0.2 0 02
1 1 1
@ : © : )
H H
0.5 05 0.5
0 0 0
-05 0.5 -0.5
-1 -1 -1
-0.2 0 0.2 -02 0 0.2 -0.2 0 0.2

Fi1G. 3. Emistence boundary in the (u, C)-parameter plane (top panel); eigenvalues of the trivial
equilibrium corresponding to points % in the top panel (panels (a)—(f)): relevant parameter values at
machine precision are p = 0.040030019682702 (a)—(c) and 0.236338384280189 (d)—(f) and C = 0.05
(a), 0.102409511357698 (b), 0.2 (c)—(d), 0.330235018740724 (e), and 0.4 (£).

Appendix A. As motivated in [16], by the implicit function theorem the equation
x(7;a,1) = x4 has for a > a4 and ¢ close to S a solution 7(a, 1)) (note that as =
7(a, S) independently of a). Then we can rewrite (1.2) as

(A1) x(1) = xp + /OT g(z(0),Y(—a+ 0))do, T €1[0,7(a,¥)).

With the shorthand notation »(7) = s(7;a, S, %) := Dsz(1;a,S)), we get

w(r) = / " [01(0)(0) + ga(0)(—at o) do, 7€ [0,a4),
or, alternatively,

(A.2) A (1) = g1(7)5(7) + ga(T)b(—a + 7), 7€ (0,aa),
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(@) s (b) < ©
: :
. .
0.5 05 05
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
0.1 0 017 01 0 01 -01 0 0.1
1 1 1
@ H @© : ®
: :
0.5 05 05
0 0 0
-0.5 0.5 0.5
- ° -1 . 1 .
02 -01 0 01 02 -01 0 o0l -02 01 0 01

Fia. 4. Euxistence (dashed) and stability (solid) boundaries in the (u,C)-parameter plane
(top panel); eigenvalues of the nontrivial equilibrium corresponding to points x in the top panel
(panels (a)—(f)): relevant parameter values at machine precision are p = 0.075058160583520 (a)—
(c) and 0.243845788916114 (d)—(f) and C = 0.15 (a), 0.237850694572043 (b), 0.4 (c), 0.5 (d),
0.887255640320707 (e), and 1.2 (f).

with 5(0) = 0, which yields

»(1) = /OT K(r,a)(—a + a)da

through (1.6). For 7 > 7(a,v) we consider instead
(A.3) (1) =24 + / g(z(0),¥(—a + 0))do.

If we differentiate (A.1) in ¢ for 7 1 7(a, ) we get

_ (@ 1 [
(A4) Dy7(a, S)y = —@ = ——_/ K(aa, ) (—a+ a)da.
) g Jo

By using the latter we can differentiate (A.3) to get

#r) = Lo (@) + [ [n(0)x(0) + gulo)il—a+ o) do

aA
for 7 > a4 or, alternatively, (A.2) for 7 > a4 with initial condition
+

(A.5) st (aa) = g—_%* (@a).
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Application of the variation of constants formula to the latter initial value problem
yields that for any 7 < a we get
Dsx(t;a,8) = (1)

T

_ /K(T,a)w(—a—l—oz)doz

(A.6) 0 _
+ aa
FH(r - aa) (g— - 1) / K(r, a)v(—a + a)da.
0
Note that, vice versa, s satisfies (A.2) for all 7 € (0,a4)U (a4, a) together with (A.5),
which shows its correctness. Essentially the same method applied to (1.3) and using
(A.6) yields

D3 F(t;a,8)) = /T H(T, a)b(—a + a)da
0

- _ 4t aa
FH(r — aa)F(7,5) “!/% / K(aa, )(—a + a)da
0

_ (Z_J_r _ 1) /OaA < /aA w1 (0)K (o, a)da) Y(—a+ a)da

(and shows its correctness). Eventually, by defining D> X (a, S)y := Dzx(a;a, S)y and
Dy F(a,S)Y := D3F(a;a,S)y and setting a = a4 in (A.4) we obtain (1.8)—(1.10).
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