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Numerical approximation of the non-essential spectrum
of abstract delay differential equations

Rossana Vermiglioa

aDepartment of Mathematics and Computer Science, University of Udine (Italy)

Abstract

Abstract Delay Differential Equations (ADDEs) extend Delay Differential
Equations (DDEs) from finite to infinite dimension. They arise in many
application fields. From a dynamical system point of view, the stability
analysis of a steady-state solution is the first relevant question, which can be
reduced to the stability of the zero solution of the corresponding linearized
system. In the understanding of the linear case, the essential and the non-
essential spectra of the infinitesimal generator are crucial. We propose to
extend the infinitesimal generator approach developed for linear DDEs to
approximate the non-essential spectrum of linear ADDEs. We complete the
paper with the numerical results for a homogeneous neural field model with
transmission delay of a single population of neurons.

Keywords: abstract delay differential equations, numerical stability of
equilibria, infinitesimal generator approach

1. Introduction

Abstract Delay Differential Equations (ADDEs) extend Delay Differential
Equations (DDEs) from finite to infinite dimension. They arise in different
application fields [1, 2, 10, 13, 16]. In this paper our interest is in the stabil-
ity of steady-state solutions of ADDEs. The principle of linearized stability
allows one to turn the analysis of stability of a steady-state solution into the
stability of the zero solution of the corresponding linearized system. There-
fore the understanding of the linear case plays a crucial role in the analysis
of the asymptotic behaviour, which can be analyzed by the spectrum of the
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solution operator semigroup and of the associated Infinitesimal Generator
(IG) operator. Dealing with linear DDEs in finite-dimensional spaces, the
semigroup is eventually compact and the IG has only point spectrum [8].
Therefore the stability of the zero solution is characterized by the position
in the complex plane of the eigenvalues of the generator: the zero solution is
asymptotically stable if and only if the real part of the rightmost eigenvalue
is negative. Recently a numerical approach to approximate the eigenvalues
of the infinitesimal generator associated to DDEs has been proposed [3, 4, 7].
By using the pseudospectral discretization technique, the original infinite-
dimensional eigenvalue problem is turned into a matrix eigenvalue problem.
The spectral accuracy of the so-called IG-approach allows to obtain very ac-
curate approximations with a small discretization parameter. It has been
extended to linear partial differential equations of evolution involving time
delay, coupling the pseudospectral method with the spectral method [6]. Par-
tial Retarded Differential Equations (PRFDEs) have been deeply studied in
[16]. The linear PRDEs can be recasted as linear ADDEs, whose particular
structure allows to prove that the semigroup is eventually compact and the
associated infinitesimal generator has only point spectrum. But when deal-
ing with general linear ADDEs, the eventually compactness of the solution
semigroup is generally lacking and the essential and non-essential spectrum
play a relevant role in the stability analysis. Having in mind the IG-approach
for DDEs and for PRFDEs, we investigate how we can extend it to construct
an approximation of the non-essential spectrum of IG for linear ADDEs. For
the neural field models with space-dependent delay introduced in [10, 14]
and analyzed in [13] the essential spectrum consists of a single point in the
left-half complex plane and as a consequence the stability of the zero-solution
may be inferred from the location of the non-essential spectrum in the com-
plex plane. For this reason we propose the model as test equation. But it
is not the only situations one can think of and other examples of ADDEs
can be find in the literature [1, 2, 16]. As further example we recall the
reformulation of DDEs with uncertain parameters as ADDEs considered in
[15] and presented at conference “SDS 2014 - Structural Dynamical Systems:
Computational Aspects”.

The paper is organized as follows. In Section 2 we introduce the notations
and we summarize some general results on the well-posedness of the initial
value problems for nonlinear autonomous ADDEs. Moreover we recall the
linearization principle and the semigroup approach for the stability analysis
of the zero-solution of linear ADDEs, primarily following [1]. In Section 3 the
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IG-approach is applied to approximate the non-essential spectrum of linear
ADDEs. Finally the numerical results are presented in Section 4.

2. Abstract delay differential equations

Let Y be a infinite-dimensional Banach space and denote | · |Y the norm.
Given the delay τ > 0, we consider the Banach space C := C([−τ, 0];Y) of
Y-valued continuous functions defined on the delay interval [−τ, 0] equipped
with the norm �Φ� = maxθ∈[−τ,0] |Φ(θ)|Y .

Given a continuous function F : C → Y , we define Abstract Delay Differ-
ential Equation (ADDE) the following relation

dY (t)

dt
= F(Yt), t ≥ t0, (1)

where Yt ∈ C, defined as

Yt(θ) = Y (t+ θ), θ ∈ [−τ, 0],

represents the state at time t and C is the state-space.
Such equations arise in many different application fields. In fact several

classes of differential equations, such as delayed reaction-diffusion equations,
wave equations and age-dependent populations equations can be reformu-
lated as ADDEs [2, 16]. Others examples can be found in [1] and in the
references therein. Recently [10, 14] consider neural field models with space-
dependent delay reformulated as non autonomous ADDE on Y = L2(Ω,Rd),
where Ω is an open subset of Rq, q = 1, 2, 3. In particular in [10] the existence
and the uniqueness of the solution given an initial condition is shown, while
in [14] the focus is on the center manifold theorem. For such models, simi-
lar questions are analyzed by sun-star calculus on Y = C(Ω) in [13], where
one finds also some remarks about the different choices of the space Y . In
what follows we briefly recall some basic results and we referee to [1, 2, 8]
for further details.

Given Φ ∈ C, an initial value problem (IVP) for (1) is
�

dY (t)
dt = F(Yt), t ≥ t0,

Yt0 = Φ.
(2)

A function Y is a solution of the IVP (2) on ([t0 − τ, t0 + α) if there exists
α > 0 such that Y ∈ C([t0− τ, t0+α);Y)∩ C1([t0, t0+α);Y) and it satisfies
(2) on ([t0 − τ, t0 + α). If α = +∞ we say that Y is a global solution.
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Here we recall an existence and uniqueness result which requires a global
Lipschitz condition for the function F . In the literature one can find local
existence and uniqueness results, relaxing this condition.

Theorem 1. If F : C → Y is a continuous and globally Lipschitz function,
i.e.

|F(Φ)−F(Ψ)|Y ≤ L�Φ−Ψ�,Φ,Ψ ∈ C,
where L is a positive constant, then any Φ ∈ C fixes a unique global solution
of the IVP (2).

2.1. The semigroup approach for linear abstract delay differential equations

Our aim is to study the local behaviour of the solutions of the ADDE (1)
around a steady-state solution, which is a solution Y ∈ Y independent of t.
Let F be a continuously differentiable function. The principle of linearized
stability also applied to ADDE (1) and then we can reduce the original
problem to the stability analysis of the zero-solution of the corresponding
linearized ADDE

dY (t)

dt
= LYt, t ≥ 0, (3)

where L : C → Y is the Fréchet derivative of F at Y , i.e. L = DF(Y ).
The operator L is linear and bounded. The Theorem 1 ensures that for any
Φ ∈ C the IVP �

dY (t)
dt = LYt, t ≥ 0,

Y0 = Φ.
(4)

has a unique global solution.
Therefore for any t ≥ 0, we can define the Solution Operator (SO) T (t) :

C → C as the linear bounded operator which associates to the initial state Φ
the state Yt, i.e.

T (t)Φ = Yt, (5)

where Y is the solution of (4). The family {T (t)}t≥0 is a C0-semigroup on
the space C.

The Infinitesimal Generator (IG) A : Dom(A) ⊆ C → C associated to
{T (t)}t≥0 is






AΦ = Φ�, Φ ∈ Dom (A)

Dom (A) = {Φ ∈ C : Φ� ∈ C,Φ�(0) = LΦ}
. (6)
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It is a closed densely-defined operator.
The spectra of A and T (t) play an important role in the stability of

the zero-solution. For the spectral analysis it is necessary to work on Banach
space on C and we implicitly assume that C, Y and all the operators involved
have been complexified [8]. So far we have proceeded as for DDEs, but now
we arrive to the main crucial point: in the infinite dimension the eventual
compactness of the semigroup is generally lacking. In this more general
situation the notions of essential and non-essential are relevant [1, 8, 11, 12]).

The spectrum σ(A) of a generic linear (closed or bounded) operator A
can be subdivided into three disjoint subsets

σ(A) = σp(A) ∪ σc(A) ∪ σr(A)

where σp(A) is the point spectrum (i.e. the set of λ ∈ C such that λI −A is
not injective), σc(A) is the continuous spectrum (i.e. the set of λ ∈ C such
that λI −A is injective and the range of λI −A, denoted by R(λI −A), is
not Y but it is dense in Y), σr(A) is the residual spectrum (i.e. the set of
λ ∈ C such that λI−A is injective and R(λI−A) is not dense in Y). There
is another way to divide the spectrum. The essential spectrum σe(A) of A is
the set of λ ∈ σ(A) such that one of the following holds

• R(λI −A) is not closed,

• the generalized eigenspace associated to λ, i.e.

Mλ(A) =
∞�

q=1

N ((λI −A)q), (7)

where N denotes the null space, is infinite-dimensional,

• λ is a limit point of σ(A).

The complementary set, i.e. (σ\σe)(A), is the non-essential spectrum. More-
over we recall that the spectral bound s(A) is the constant

s(A) = sup
λ∈σ(A)

�(λ).

The growth bound ω0 of the semigroup {T (t)}t≥0, is defined as

ω0 = inf{ω ∈ R : there exists M > 0 such that �T (t)� ≤ Meωt, t ≥ 0}.
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and it is related to the asymptotic behaviour of the semigroup. For the
growth bound ω0 of a semigroup {T (t)}t≥0, and the spectral bound s(A) of
the associated generator A one has s(A) ≤ ω0. Since we have that

eσp(A)t = σp(T (t)) \ {0}
e(σ\σe)(A)t = (σ \ σe)(T (t)) \ {0}
eσe(A)t ⊂ σe(T (t))

we can conclude that, if

• �(λ) < 0, for λ ∈ (σ \ σe)(A),

• σe(T (t)) is contained in the interior of the unit disk in the complex
plane,

then the semigroup is exponentially stable.
This result states that for the stability it is important to analyze the

non-essential spectrum of A and the essential spectrum of the semigroup
of solution operators {T (t)}t≥0. The latter is related to the distance of the
operator to the set of compact operators and it is not an easy task. For the
neural field models studied in [13] the essential spectrum ofA is a single point,
which is contained in the left half complex plane, and moreover s(A) = ω0.
Therefore in this case it is important to analyze the non-essential spectrum of
A. This situation seems to be quite common in ADDEs arising in population
dynamics [1].

Theorem 2. Let λ ∈ (σ \ σe)(A). Then λ ∈ σp(A) and, for some positive q,
we have that

C = N ((λI −A)q)⊕R((λI −A)q)

where N ((λI−A)q) is the generalized eigenspace Mλ(A) and q is the small-
est integer with this property (ascent of λ), and dimN ((λI − A)q) < +∞
(geometric multiplicity of λ). Moreover A restricted to N ((λI − A)q) is
bounded with spectrum {λ} and the subspaces are invariant under the semi-
group {T (t)}t≥0.

Proof. See [1, Theorem 2].

Let ∆(λ) : Y → Y be the linear operator given by

∆(λ) := λIY − E (λ) , (8)
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where IY is the identity operator of Y , E (λ) : Y → Y is the linear bounded
operator defined by

E (λ)Y = L(eλ· ⊗ Y ) (9)

and eλ· ⊗ Y ∈ C is the function

�
eλ· ⊗ Y

�
(θ) = eλθY, θ ∈ [−τ, 0] .

Lemma 3. Let λ ∈ (σ\σe)(A). Then the linear operator ∆(λ) is a Fredholm
operator.

Proof. See [1, Lemma 41].

The theory of characteristic values holds for analytic Fredhhom operator
valued function. Let Ω be an open connected set in C. We say that λ ∈ C is
a characteristic value of ∆ : λ ∈ Ω �→ ∆(λ) if there exists Y ∈ Y \ {0} such
that

∆(λ)Y = 0. (10)

The non-essential eigenvalues of A are the characteristic value of the
Fredholm operator valued function ∆. Moreover if we denote Σ the set of
characteristic values of ∆, we get that for any λ∗ ∈ Σ, there exists δ > 0 such
that, for 0 < |λ− λ∗| < δ, we have λ ∈ Ω \ Σ and

∆ (λ)−1 =
∞�

i=−q

(λ− λ∗)i ∆i, (11)

where q > 0 is the ascent, ∆i are linear bounded operators for i ≥ −q, ∆0 is
a Fredholm operator of index zero and ∆−1, . . . ,∆−q are operators of finite
rank.

By rewriting the linear operator L as

LΦ = L0Φ(0) + L1Φ,

where the linear operator L0 : Dom(L0) ⊂ Y → Y describes the no-delay
contribution while L1 : C → Y represents the pure delay operator, we can
state a useful lemma which links the essential spectrum of A to the spectral
properties of the linear operator L0. It is based on the following representation
of the operator (8)

∆(λ) = λIY − L0 − E1 (λ) ,

7



where
E1 (λ)Y = L1(e

λ· ⊗ Y ).

We conclude with a useful Lemma to locate the essential spectrum of A.

Lemma 4. If the operator E1 (λ) is compact for all λ /∈ σ(L0), then σe(A) ⊆
σ(L0).

Proof. Let λ ∈ σ(A) \ σ(L0). Thus (8) can be written as

∆(λ) = (λIY − L0)(IY −K(λ)),

where K(λ) := (λIY − L0)−1E1 (λ) is compact. From the theory of compact
operators, we have that (IY −K(λ)) has closed range in Y . Let Y ∈ R(∆(λ))
and (∆(λ)Xn → Y for some Xn ∈ Y . Let Zn := (IY − K(λ))Xn ∈ R(IY −
K(λ)). We have that {Zn} converges to (λIY −L0)−1Y ∈ R(IY −K(λ)) and
then Y ∈ R(∆(λ). By [1, Lemma 36] we have that the range of λ − A is
closed in C. By definition of essential spectrum we have that λ /∈ σe(A).

Remark 1. The Lemma 4 extends the result in [13, Corollary 18], where
Y = C(Ω), Ω ⊂ Rd bounded, and L0 = aI, with a ∈ R. It allows one to
consider a continuous function a : Ω → Cd×d and the multiplication operator
L0Y = a · Y, with domain Dom(L0) = {Y ∈ Y : a · Y ∈ Y}. We have
that σ(L0) = a(Ω). For Y = L2(Ω) with a : Ω → C a measurable function,
we have that σ(L0) = a(Ω) [9, 2]. For a matrix-valued function a, we have
σ(L0) = σp(a(Ω)) for continuous a, and σ(L0) = σp(a(Ω)) for the measurable
a.

3. The IG-approach for linear abstract delay differential equations

The IG-approach developed for Partial Retarded Functional Differential
Equations (PRFDEs) in the paper [6] can be adapted to the approximation
of the non-essential spectrum of the IG associated to (1), but the analysis
of convergence needs to be developed. In fact the paper [6] deals with semi-
linear PRFDEs, which can be restated as ADDEs of the following type

dY (t)

dt
= BY (t) + F(Yt), t ≥ 0,

where B is the infinitesimal generator of a compact C0-semigroup of bounded
linear operators on a complex Banach space Y . The hypothesis of compact-
ness on B is motivated by the Laplacian, i.e. B = ∆, and the assumption
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B = 0 is not admissible, when the dimension of dimY = ∞. The theory
and the numerical method developed respectively in [2, 16] and [6] can not
be directly applied to (1) and this fact gives the motivation for the recent
papers [1, 10, 14, 13]. In what follows we carry on the same program in [6].

To discretize the infinitesimal generator (6), we need to combine the
pseudospectral approach on [−τ, 0] with an approximation technique in the
Banach space Y . Here we assume that there exists a sequence of finite-
dimensional linear subspaces {YP}∞P=0, such that

�∞
P=0 YP . Moreover we de-

note πP : Y → YP the operator, which associates to each elements Y ∈ Y its
approximation YP = πP (Y ) in the subspace YP , and π2

P = πP .

Remark 2. Different choices for the subspace YP and for the operator πP

can be considered. For instance, when Y = C(K;R), with K a compact
subspace of Rd, YP and πP can be defined respectively as the subspace of
multivariate polynomials of degree P and the multivariate interpolating op-
erator. The Stone-Weierstrass Theorem ensures the density property. If Y
is an Hilbert space, given an orthogonal basis, Y can be approximated by
truncating its Fourier expansion YP and πP is the projection operator.

Let CN,P := ΠN([−τ, 0],YP ) be the space of the YP -valued N -degree
polynomials defined on [−τ, 0]. Each function Φ ∈ C is discretized into the
polynomial ΦN,P ∈ CN,P , which interpolates at the Chebyshev extremal nodes

ΘN := {θj =
τ

2
(cos(

jπ

N
)− 1), j = 0, 1, ..., N}, (12)

the values Φi,P := πP (Φ(θi)) ∈ YP , i = 0, 1, ..., N. Note that θ0 = 0. The dis-
cretization version of the infinitesimal generator (6) is the finite-dimensional
operator AN,P : CN,P → CN,P such that ΨN,P = AN,PΦN,P is given by






ΨN,P (θ0) = πPLΦN,P ,

ΨN,P (θi) = Φ�
N,P (θi), i = 1, ..., N.

(13)

By introducing the Lagrange representation of ΦN,P , i.e.

ΦN,P (θ) =
N�

j=0

�j(θ)Φj,P , θ ∈ [−τ, 0],

9



where �j are the Lagrange coefficients relevant to (12), we get from (13) the
following relations






Ψ0,P =
N�
j=0

πPL(�j(·)⊗ Φj,P ),

Ψi,P =
N�
j=0

��j(θi)Φj,P , i = 1, ..., N.

(14)

We observe that in some cases, for instance in presence of distributed delays,
it could be necessary to introduce an approximation L̃ : C → Y of the linear
operator L.

For λ ∈ C and Y ∈ Y , let pN (·;λ, Y ) ∈ C be the N−degree polynomial
satisfying �

p�N (θN,i;λ, Y ) = λpN (θi;λ, Y ) , i = 1, ..., N,
pN (0;λ, Y ) = Y,

(15)

i.e. pN (·;λ, Y ) is the collocation polynomial at the nodes θi, i = 1, ..., N , for
the initial value problem on the space Y ,

�
y� (θ) = λy (θ) , θ ∈ [−r, 0] ,
y (0) = Y

which solution is
y (·;λ, Y ) = eλ· ⊗ Y ∈ C.

By proceeding as in [6, Lemma 3], one can prove the following lemma.

Lemma 5. Let B be a bounded subset of C. There exists a positive integer
N0 = N0 (B) such that, for any N ≥ N0, λ ∈ B and Y ∈ Y, there exists a
unique N−degree polynomial pN (·;λ, Y ) ∈ C satisfying (15) and

��pN (·;λ, Y )− eλ· ⊗ Y
�� ≤ C0√

N

�
C1

N

�N

|Y |Y

holds, where C0 = C0 (B) and C1 = C1 (B). Moreover, for an open bounded
subset B of C and N ≥ N0 (B), the linear operators SN (λ) : Y → C and
S (λ) : Y → C given by

SN (λ)Y = pN (·;λ, Y ) , S (λ)Y = eλ· ⊗ Y, Y ∈ Y ,

10



are analytic functions of λ ∈ B, and, for any k = 0, 1, 2, ... and B̃ ⊆ B,

sup
λ∈B̃, N≥N0

���S(k)
N (λ)− S(k) (λ)

��� ≤ C0,p√
N

�
C1,p

N

�N

where λ �→ S(p)
N (λ) and λ �→ S(p) (λ) are the k−th derivatives of λ �→ SN (λ)

and λ �→ S (λ), respectively, C0,k = C0,k

�
B̃
�
and C1,k = C1,k

�
B̃
�
.

By defining the linear bounded operator EN (λ) : Y → Y

EN (λ)Y = LpN (·;λ, Y ) ,

which is is the discrete counterpart of the operator E (λ) in (9), we have that
λ is an eigenvalue of AN,P if and only if there exists Y ∈ YP \ {0} such that

∆N,P (λ)Y = 0, (16)

where ∆N,P (λ) : YP → YP is the linear operator defined by

∆N,P (λ) = λI − πPEN (λ) |YP . (17)

By Lemma 5, we obtain that EN (λ) and E (λ) are analytic functions of
λ ∈ B and, for any k = 0, 1, 2, ... and B̃ ⊆ B,

sup
λ∈B̃, N≥N0

���E (k)
N (λ)− E (k) (λ)

��� ≤ C0,k �L�√
N

�
C1,k

N

�N

(18)

where λ �→ E (k)
N (λ) and λ �→ E (λ) are the k−th derivatives of λ �→ EN (λ)

and λ �→ E (λ), respectively, and C0,k = C0,k

�
B̃
�
and C1,k = C1,k

�
B̃
�
.

Lemma 6. Let U be an open connected set in C. The operator valued func-
tions ∆N,P |YP : λ ∈ U �→ ∆N,P |YP and ∆N,P : λ ∈ U �→ ∆N,P (λ) have the
same characteristic values with the same geometric and partial multiplicities.

Proof. The thesis follows by proceeding as in [6, Lemma 4].

The eigenvalues of AN,P in U are the characteristic values of ∆N,P . More-
over the algebraic multiplicity as characteristic values of ∆N,P is the same of
the zeros of the equation

det∆N,P (λ) = 0. (19)

The next theorem shows how the eigenvalues of AN,P approximate as
N,P → ∞ the non-essential spectrum A, which are the eigenvalues of finite
type.
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Theorem 7. Let λ∗ ∈ (σ \σe)(A) in the open bounded connected subset U of
C. Let m and q be the algebraic multiplicity and ascent, respectively, of λ∗ as
characteristic value of the analytic operator valued function ∆. For any c > 1,
there exist a neighborhood Y of λ and positive integer N ≥ N0, N0 = N0 (U)
given in Lemma 5 such that, for N ≥ N A has in Y the eigenvalues λ1, ..., λµ

and the sum of the algebraic multiplicities of λ1, ..., λµ, as zeros of (19), is
equal to m. Moreover,

max
i=1,...,µ

|λi − λ∗| ≤ (cεN,P )
1
q (20)

holds, where

εN,P := max
j = −q, ...,−1,
i = j, ...,−1

���
�
πPE

(i−j)
N (λ∗)− E(i−j) (λ∗)

�
∆j

��� ,

∆−i, i = −q, ...,−1, are the finite rank operators in the Laurent series
(11) of ∆−1 (λ) around the characteristic value λ∗, and E(i−j) and E(i−j)

N ,
j = −q, ..., i, are the (i− j)−th derivatives of the analytic operator valued
functions E and EN , respectively.

The error εN,P vanishes, as N,P → ∞, and it can be bounded by

εN,P ≤ C0√
N

�
C1

N

�N

+ εP , (21)

where C0 and C1 are constants independent of N and P , and

εP := max
j = −q, ...,−1,
i = j, ...,−1

��[πP − I]E(i−j) (λ∗)∆j

�� . (22)

Proof. Since ∆ is a Fredholm operator by Lemma 3, we can apply the
operator version of the Rouchè Theorem to state

��[∆N,P (λ)−∆(λ)]∆ (λ)−1
�� < 1, λ ∈ Γ (ρ) , (23)

where ρ ∈ (0, D) , D is such that

|λ− λ∗| < D =⇒ λ ∈ U ,

and
Γ (ρ) = {λ ∈ C : |λ− λ∗| = ρ}

Now the thesis follows as in [6, Theorem 5].
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Note the in case we use an approximation L̃ of L, such error has to
be added in (21). By computing the rightmost eigenvalue of AN,P in (13),
we have a first insight into the (in)stability properties of the zero solution
of linear ADDEs. As already pointed out in the general case a complete
analysis needs further investigations, as done for the neural model in [13].

4. Numerical results

To test the numerical approach, we consider the delayed neural field model
proposed in [10] and deeply analyzed in [13]. We refer to the latter paper
for all the details. In particular we restrict to a single population of neu-
rons, which are distributed on the interval Ω := [−1, 1]. Let V (t, x) be the
membrane potential at time t, and position x. By taking into account the
spatial delay, the potential evolves according to the delay integro-differential
equation

∂V

∂t
(t, x) = −αV (t, x) +

�

Ω

W (x, y)Sµ (V (t− τ(x, y), y)) dy, t ≥ 0, x ∈ Ω,

(24)
where W (x, y) = c1e−µ1|x−y| + c2e−µ2|x−y|, x, y ∈ Ω is the connectivity kernel,
Sµ(v) =

1
1+e−µv − 1

2 , v ∈ R is the activation function and the delay is τ(x, y) =
τ0 + |x − y|, with τ0 ≥ 0 caused by synaptic processes. By defining τ :=
maxx,y∈Ω τ(x, y) and choosing the Banach space Y = C(Ω,R), the equation
(24) can be modelled as an ADDE (1) on Y , where Y (t) := V (t, ·) and
F : C → Y is defined as

F(Φ) = −αΦ(0) +

�

Ω

W (·, y)Sµ (Φ(−τ(·, y))(y)) dy, Φ ∈ C.

The choice of the space Y is in agreement with [13] and differs from that in
[10], where the authors consider L2(Ω,R). Since Sµ(0) = 0 the model admits
the trivial steady state. By linearizing around the zero-solution, we obtain
the linear ADDE (3), where the linear operator L : C → Y is given by

LΦ = −αΦ(0) +
µ

4

�

Ω

W (·, y)Φ(−τ(·, y))(y)dy, Φ ∈ C. (25)

To discretize the infinitesimal generator corresponding to (3)-(25), we choose
YP as the space of the polynomials of degree P with dimension dP = P + 1.
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Any functions Y ∈ Y is approximated by the interpolating polynomial YP

at the P + 1 extremal Chebyshev points xβ, β = 0, 1, ..., P, relevant to Ω,
and we denote πP the corresponding interpolation operator. We construct
an approximation L̃ of the operator L by using a quadrature rule with nodes
yβ and weights bβ, β = 0, 1, ..., P �, i.e.

L̃Φ(x) = −αΦ(0)(x) +
µ

4

P ��

β=0

bβW (x, yβ)Φ(−τ(x, yβ))(yβ), x ∈ Ω,Φ ∈ C,

(26)
and finally we obtain

πP L̃Φ(x) = −α
P�

γ=0
mγ(x)Φ(0)(xγ)

+µ
4

P ��
β=0

P�
γ=0

bβmγ(x)W (xγ, yβ)Φ(−τ(xγ, yβ))(yβ), x ∈ Ω,Φ ∈ C,

(27)
where mγ are the Lagrange polynomials relevant to the nodes xγ. Note that
(27) involves dP × (P � + 1) values of the delay function τ . Hereafter we
choose P � = P, and the Clenshaw-Curtis quadrature rule, so that yβ =
xβ, β = 0, 1, ..., P and the values τβγ = τ(xβ, xγ) and wβγ = W (xβ, xγ),β, γ =
0, 1, ..., P define two symmetric square matrices of dimension dP . Note in
[10, 13] the authors use a uniform grid and the composite trapezoidal rule to
approximate the integral in (25). As final step we consider the N+1 extremal
Chebyshev points (12), and from (27) we get for the AN,P : CN,P → CN,P the
following matrix representation





−αIdP + µ
4B0

µ
4B1 . . . µ

4BN

��0 (θ1) IdP ��2 (θ1) IdP . . . ��N (θ1) IdP
...

...
...

��0 (θN) IdP ��1 (θN) IdP . . . ��N (θN) IdP




,

where Bi := (bγwβγ�i(−τβγ))β,γ=0,1,...,P ∈ RdP×dP , i = 0, 1, ..., N.
By choosing τ0 = 1, α = 1, c1 = −5, c2 = 2, µ1 = 2, µ2 = 0 and µ = 4

([13, Fig.1]), we get the results in Figure 1. Note that the eigenvalues ac-
cumulate at −1 which corresponds to the essential spectrum. Moreover
the numerical results confirm that convergence is faster for the eigenval-
ues with smaller modulus and that the spectral accuracy allows to choose

14
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Figure 1: Rightmost part of the spectrum of AN,P with P = 10, 20, 40, N = 20 (left) and
N = 10, 20 P = 80 (right)

small N. In Table 1 the errors in the approximation of the real eigenvalue
λ∗ = −0.158529474453882 (private communication of the authors of [13]) for
N = 20 and varying P are shown. The results indicate a quadratic order of
convergence w.r.t. P.

P |λ∗ − λN,P |
5 6.9856e-02
10 1.7990e-02
20 4.6015e-03
40 1.1568e-03
80 2.8960e-04
160 7.2425e-05

Table 1: Errors in the approximation of the real eigenvalue λ∗ = −0.158529474453882 for
N = 20

In the analysis of neural field equations Hopf bifurcations are relevant.
Let us consider the model (24) with τ0 = 1, α = 1, c1 = 3, c2 = −5.5, µ1 =
0.5, µ2 = 1 and assume that µ in the activation function is a parameter. By
using the IG-approach with N = 20 and P = 80, we obtain that µ∗ ≈ 4.2202
is Hopf bifurcation value (see Figure 2) in accordance with the results in [13,
Table 1,Fig.3]. Finally we consider the connectivity kernel

W (x, y) = c1e
−µ1|x−y−a| + c2e

−µ2|x−y+a|, x, y ∈ Ω, (28)
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Figure 2: Rightmost part of the spectrum of AN,P with P = 80 and N = 20 for µ = 4.2202
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Figure 3: Rightmost part of the spectrum of AN,P with P = 80, N = 20 and W in (28)

with c1 = c1 = 2, µ1 = µ2 = 2 and a = 0.5. For τ0 = 1 and µ = 4 we obtain
the results in Figure 3 and the zero equilibrium is locally asymptotically
stable. Note the accumulation at the essential value −α = −1.
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