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Abstract

Finite-Difference Time-Domain schemes permit changes in the grid density on selected regions

of the wave propagation domain, which can reduce the computational load of the simulations. One

possible alternative to varying the spatial density is to change the simulation temporal rate. This idea

looks attractive when the wave signals exhibit pronounced bandwidth fluctuations across time. This is

particularly true in sound synthesis, where a physically-based acoustic resonator can be conveniently

modeled using such schemes. To overcome the computational constraints that must be met by real-time

distributed resonator models, this paper deals with the decimation in time and space of isotropic lossless

finite-difference time-domain schemes holding conventional Nyquist-Shannon limits on the bandwidth of

the wave signals. Formulae for the reconstruction of these signals at runtime over the interpolated grid

are provided for both the 1D and 2D orthogonal case, depending on the ideal boundary conditions (either

Neumann or Dirichlet) holding at each side of the grid in connection with the domain side lengths (either

even or odd). Together, the boundaries and size determine the type of Discrete Cosine Transform used

in the corresponding interpolation formula. Numerical artifacts arising as a consequence of decimating

in space in 2D are discussed in terms of dispersion error and aliasing. Considerations concerning the

temporal reconstruction of components lying at the decimated Nyquist frequency are addressed in the

conclusion.
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Decimation in Time and Space of

Finite-Difference Time-Domain Schemes:

Standard Isotropic Lossless Model

I. INTRODUCTION

Finite-difference time-domain (FDTD) methods provide numerical solutions to several important wave

propagation problems. Such methods are useful in a number of application areas, including electro-

magnetic transmission [1] and sound analysis and synthesis [2], [3]. The transmission and reflection

properties of an electromagnetic or air pressure field, as well as an acoustically resonating solid body

can be modeled by means of a differential problem in continuous space and time. Once geometric and

physical parameters such as dimensionality, spatial extension, medium and boundary characteristics are

specified, then FDTD methods use stable numerical schemes whose integration accuracy can be scaled

to the available machine computation speed and memory resources.

One critical issue affecting multidimensional numerical simulation is the time needed for integrating

the solution along a sufficient temporal window. In spite of the recent progress in this area, (in particular,

modular FDTD scheme implementations running on accelerated graphics hardware [4], [5]), fast and

accurate solvers are yet to appear. In sound synthesis, the real-time constraint to date seems to be out of

reach for all but FDTD grids containing a few thousand nodes; such grids typically correspond to small

and/or low resolution domains of integration. This is especially true when 3D propagation must be dealt

with, as solid shape descriptions rapidly lead to explosion of the number of nodes. Another option reduces

the sampling rate: this allows real-time schemes of the order of a hundred thousand nodes to be defined

which are capable of computing a fraction of the auditory range in medium and large room models. For

instance, simulating a bandwidth of about 1-2 kHz is especially interesting for the observation of the

standing waves appearing in large scale rooms. [?].

On the other hand, FDTD methods are appealing for their applicability in object-based interactive

sound synthesis and real-time processing. They can describe the elementary parts forming a resonating

body, a musical instrument, a reverberant room, or even all of them together in the same scenario [6].

Hence, they are still the best candidates for modeling the nonlinear closed-loop interaction occurring when

mechanical or fluid-dynamical energy is transferred from an excitation object to the acoustic resonator
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[7], [8]. The accurate reproduction of this interaction is the basis of almost any realistic physics-based

sound generation [9]. Alternative approaches to interactive sound synthesis including modal or spectral

methods [10], [11] conversely seem, (at least in the short term and in spite of their efficiency) unable

to incorporate the nonlinear excitations. These domain transformations become complicated especially

when a physical scenario contains multiple interacting objects [?].

Multidimensional force and pressure waves propagating across a lossless and isotropic media modeled

by finite difference schemes (more precisely, by a subset of computationally equivalent structures called

digital waveguide meshes) have been shown to fill the spectrum until the Nyquist limit [12], [13].

Unfortunately, preserving the precision of the simulation across the whole spectrum (until the Nyquist

frequency) requires complex communication among the nodes [14] as well as sophisticated impedance

and boundary models [15], [16]. The progressive loss of accuracy with frequency in an FDTD scheme

occurs due to

i) numerical dispersion,

ii) the approximated geometry of the interface between propagation media having different impedance,

iii) the finite boundary reflection.

Ultimately, all such artifacts are a consequence of the spatial discretization of the domain where the

differential problem was originally defined. In absence of sophisticated models, then, their mitigation

requires the use of dense grids running at high sampling rates, resulting in schemes whose Nyquist limit

can be many times larger than the auditory band, with consequent waste of computational resources.

In addition to accuracy, physically real sounds (apart from noisy or impulsive events such as sustained

air flows or clicks) possess high frequency components only during the attack transient. These usually

cover a minor portion of the sonic event; these components rapidly fade during the steady state evolution

of the resonating system. Consequently, an FDTD scheme for physics-based sound synthesis requires

only a fraction of the otherwise available bandwidth except during and immediately after the excitation.

Literature concerned with the local reduction of computation and memory in FDTD schemes, or sub-

gridding, can be found in electromagnetic transmission modeling. The proposed methods put an emphasis

on modeling selected regions of a propagation domain using node densities that are commensurate to

the local medium impedance and wave speed [17], [18]: once known issues of instability and potential

sources of artifacts have been solved or mitigated, subgrids do offer substantial computational advantages.

However, to date these methods have found convenient application inside wave propagation models that

are essentially stationary [17]. This characteristic is typical in radio transmission, where the information

is carried by high-frequency periodic signals.
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As mentioned previously, instead of being stationary, audio signals are characterized by the presence

of abrupt discontinuities and by frequency components in the audible range that sway a lot across time.

As opposed to focusing on changes of the node density across space, as subgridding does, we propose

varying the sampling rate of the simulation at runtime. This paper investigates the effects on the FDTD

grid following a switch of the sampling rate to a different value.

A family of FDTD schemes whose sampling frequency may be varied at runtime, (depending on

the bandwidth of the signals propagating along the grid) would in principle permit dynamic resolution

adaptation. This idea has fostered some early research from the authors leading to simulations of time-

decimated schemes [25]. For the computation of musical instrument sounds, in which the exciter is often

statistically active for less than 0.1% of the total processing time [10], the proposed method could be

employed for percussion instrument models [?], [6]. The corresponding FDTD scheme would run at

high-definition audio rate only during and immediately after every hit from the stick, i.e. across a minor

part of the total simulation time.

A. Definition of the problem and content of the paper

Filtering out the wave components above half Nyquist frequency that have already been solved by

an FDTD scheme implies that about 50% of the memory locations and 75% of the computations are

wasted. This inefficiency occurs when one dimension of propagation is modeled: in the 1D case, in fact,

a decimated scheme using a grid having half the node density and running at half the sampling rate

would in principle produce signals containing the same information.

By continuing this reasoning, if two dimensions are modeled then about 25% memory locations and

12.5% computations are needed to represent the spectral information of the original wave components until

the half Nyquist frequency. Fig. 1 shows the nodes (in black) that should be updated at half the sampling

rate on an orthogonal FDTD scheme in order to maintain spectral content until the half Nyquist frequency

contrasted with the original 8× 15 grid providing spectral information until the Nyquist frequency.

Let us consider a uniform P -dimensional orthogonal grid G forming a hyper-rectangle whose i-th

dimension counts Mi nodes. Hence G counts M =
∏P
i=1Mi nodes, and the decimated grid, that is

useful until the half Nyquist frequency, contains
∏P
i=1bMi/2c ≤M/2P nodes (The operator b c rounds

down to the nearest integer). The same relation holds for any (e.g. triangular [12], [13]) grid. Since the

decimated scheme can run at half the original sampling rate, then the number of computations that need

to be made after the decimation amounts to about 1/2P+1 times the computations in the original scheme.

Note that if the number of nodes is even in one direction, then the symmetry of the grid is lost after
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Fig. 1. 8 × 15 orthogonal FDTD grid and its decimated version. Black nodes and white nodes together provide spectral

information until the Nyquist frequency; black nodes alone provide spectral information until half the Nyquist frequency. Square

nodes define Neumann boundaries; triangular nodes define Dirichlet boundaries. Black squares and triangles define the decimated

boundary. Note that the decimated grid is shifted toward the Dirichlet boundary, hence losing symmetry along the even-sized

direction.

the decimation. For instance, in Fig. 1, the black dots are offset toward the bottom edge of the grid.

Later we will see that the parity and the boundary conditions along each direction depend on each other

through the type of Discrete Cosine Transform representing the decimated second-difference matrix.

We will call Decimated FDTD (DFDTD) scheme the set of black nodes in Fig. 1, along with the

operator built upon them. As opposed to subgridding methods (based on spatial interpolations of dif-

ferent kinds) we propose an algebraic rearrangement of the time difference operator approximating the

continuous differential problem. The resulting decimation in time and space of the numerical waves does

not change the dynamic evolution and, hence, the stability properties of the original scheme.

Our work will deal with the linear second-order case, i.e., with schemes that integrate the signal

numerically through the following system of difference equations:

un+1 = AMun −BMun−1, (1)

in which

un =
(
un0 · · · unM1−1 u

n
M1
· · · unM1M2−1 u

n
M1M2

· · · unM−1
)T (2)

June 17, 2015 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, DECEMBER ?? 6

is an array containing the values at time t = nδT of a continuous signal u(x1, . . . , xP , t) sampled on

the grid G. The symbol δT represents the temporal step in seconds and δxi will be the grid spacing

in meters along the direction xi, moreover T denotes transposition. The generic element in un, hence,

represents the signal value unl1,...,lP on the node of spatial coordinate (l1, . . . , lP ) at step n. Furthermore,

AM and BM are M ×M square matrices governing the time-difference operation.

Specifically, our analysis will be limited to 1D and 2D isotropic lossless models, both admitting a

simple structure of these matrices. A focus on these models has little applicability; however it builds a

formal platform, prospectively supporting future investigations on dissipative and/or anisotropic FDTD

schemes. In this perspective, (1) neither poses constraints on the grid geometry nor on the spatial

communication among nodes; moreover it can incorporate also implicit linear operators provided that the

relation CMun+1 = AMun −BMun−1 admits an explicit formulation after inversion of CM .

Moving from relation (1), in Sec. II we introduce the 1D and 2D schemes under consideration along

with a general form expressing their decimation in time. Based on this form, in Sec. III we derive a

decimation in space of the 1D scheme thereby providing the equations which hold the necessary band

limitation of the wave signals. These equations reconstruct the original spatial components and, ultimately,

the exact runtime interpolation the signal. In Sec. IV a similar procedure is repeated for the 2D case; yet,

in this case the exact reconstruction in space requires manipulating the decimated scheme in ways that

maintain the structure of the original operator. The error resulting from this manipulation is evaluated,

and then interpreted in terms of numerical dispersion. In Sec. V, the reconstruction problem in presence

of dispersion and/or aliasing error will be examined through simulations. Sec. VI is finally devoted to

understanding why time interpolation occasionally introduces singularities during the computation of the

missing samples.

II. LOSSLESS ORTHOGONAL FDTD SCHEMES

In both the 1D and 2D case it can be observed that lossless propagation and reflection imply that BM

is the M ×M identity matrix: BM = IM .

The simplest FDTD scheme modeling lossless wave transmission on an orthogonal grid is realized by

un+1
l = unl+1 + unl−1 − un−1l (3)

in one dimension, and by

un+1
l,m =

unl+1,m + unl−1,m + unl,m+1 + unl,m−1
2

− un−1l,m (4)
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in two dimensions [18]. Two alternative conditions are typically set to provide lossless boundary wave

reflection: Dirichlet or Neumann. Dirichlet corresponds to a constant (usually null) wave field and

Neumann to a constant field derivative at the boundary. If we label the boundaries of a 1D grid with

−1 and M and M non-boundary nodes with 0, . . . ,M − 1, then when simulating a domain measuring

`0 = (M − 1)δX meters, every step n is such that:

un−1 = unM = 0 (5)

for Dirichlet and
un1 − un−1

2
=
unM − unM−2

2
= 0 (6)

for Neumann. Now, at the edges of an FDTD scheme governed by (3) it is easy to derive

un+1
0 = un1 − u

n−1
0

un+1
M−1 = unM−2 − u

n−1
M−1

(7)

for Dirichlet and
un+1
0 = 2un1 − u

n−1
0

un+1
M−1 = 2unM−2 − u

n−1
M−1

(8)

for Neumann, where the first derivative has been approximated on un0 and unM−1 using normalized center

differences. This type of approximation is also called meshpoint symmetry [19]. The extension of these

formulas to 2D grids, as well as the introduction of mixed Dirichlet/Neumann conditions over different

boundary regions follows immediately from either (7) or (8).

The structure of AM in the 1D case follows from (3) and (7) and (8):

AM =



0 αL

1 0 1

1 0 1

. . . . . . . . .

1 0 1

αR 0


, (9)

in which αL and αR are equal to 1 or 2 depending on the type (Dirichlet or Neumann). The left and

right boundaries have been labeled respectively with subscripts L and R. If M is even, then AM has

full rank; conversely, if M is odd then its rank is equal to M − 1. This property does not depend on

the type of the boundary, and conditions the temporal interpolation of the signal as we will see later in

Sec. III-A.
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In addition, in the 2D case, if we set a uniform boundary type at each side of the rectangular region

then from (4), (7) and (8) it follows that

AM =
1

2

(
IMy
⊗AMx

+AMy
⊗ IMx

)
,

where ⊗ denotes the Kronecker product, and AMx
, AMy

have the same structure as in (9) accounting

for the wave propagation and reflection respectively along the vertical and horizontal direction. For the

details see [?, p. 254]. In particular, for rectangular domains, the signal un is more naturally represented

by a matrix Un whose elements correspond to the respective nodes in the orthogonal grid: Un(l,m) =

unM1l+m
. For these domains the Kronecker product simplifies in ways that (1) can be written as:

Un+1 − 1

2
(AMx

Un +UnAMy
) +Un−1 = 0. (10)

III. 1D DFDTD SCHEME

Let BM = IM in (1). By rewriting (1) three times respectively for computing un, un+1, and un+2,

we obtain a system of three equations spanning the discrete-time range [n+2, n−2]. It is straightforward

to eliminate the unknowns un+1 and un−1 from this system, and come up with the following relation:

un+2 = (A2
M − 2IM )un − un−2, (11)

in which the node values at step n+ 2 are expressed as a linear combination of un and un−2.

Relation (11) describes a new lossless FDTD scheme, whose dynamic evolution equals the original

except for the temporal step that is now twice as long. At this point it is convenient to label with ↓Q all

symbols that refer to a temporal domain decimated by a factor Q, and thus we rewrite (11) as

un+1
↓2 = AM↓2u

n
↓2 − un−1↓2 , (12)

see also [21]. The decimated matrix AM↓2 = A2
M − 2IM has the following structure:

αL−2 0 αL

0 αL−1 0 1

1 0 0 0 1

1 0 0 0 1

. . . . . .

1 0 0 0 1

1 0 αR−1 0

αR 0 αR−2



.
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Notably, AM↓2 computes the decimated signal in time at no additional cost compared to AM , since it

still has two non-null elements in each row apart from the first and the last one.

We can sort the elements in un↓2 so that the even and odd-indexed values are in the upper and lower part

of a new array. This rearrangement is obtained by means of a proper M×M permutation matrix ΠM ; more

precisely, if we define unE and unO to contain the even and odd elements of un, then ΠT
Mun = [unE u

n
O]
T .

At this point, (12) can be rewritten in the permuted array ΠT
Mun↓2:

ΠT
Mun+1
↓2 = ΠT

MAM↓2ΠMΠT
Mun↓2 −ΠT

Mun−1↓2 , (13)

in which we make use of the property ΠT
MΠM = IM of the permutation matrix [?, p. 6].

The matrix PM↓2 = ΠT
MAM↓2ΠM governs the evolution of the permuted system. This matrix is

made of two anti-diagonal blocks containing null elements, plus two diagonal square blocks QM↓2 and

RM↓2. These blocks have sizes equal to either (M + 1)/2 and (M − 1)/2 if M is odd, or to M/2 if

M is even. In either case we conclude that the time-decimated scheme in the 1D case operates through

(12) on the even and odd nodes separately via the sub-matrices QM↓2 and RM↓2:
un+1
E↓2 = QM↓2u

n
E↓2 − un−1E↓2

un+1
O↓2 = RM↓2u

n
O↓2 − un−1O↓2

. (14)

If M is even then the square sub-matrices are equal to

QM/2 =



αL−2 αL

1 0 1

. . . . . .

1 0 1

1 αR−1


, (15)

and

RM/2 =



αL−1 1

1 0 1

. . . . . .

1 0 1

αR αR−2


. (16)

Now, if the left boundary is modeled with Neumann and the right one with Dirichlet then αL = 2 and

αR = 1, hence QM/2 = AM/2. Symmetrically, if we swap the boundary types then αL = 1 and αR = 2,

hence RM/2 = AM/2.
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Alternatively, if M is odd then the square sub-matrices are such that Q(M+1)/2 = A(M+1)/2 if

both boundaries are modeled with Neumann conditions, and similarly R(M−1)/2 = A(M−1)/2 if both

boundaries are modeled with Dirichlet conditions.

As we discussed in the introduction, the relationship between domain size and boundary conditions

constrains the decimation in space: even-sized 1D FDTD grids result in AM/2 if one boundary is modeled

with Dirichlet conditions and the other with Neumann conditions; odd-sized grids need Dirichlet or

Neumann boundaries on both sides instead. The existence of a sub-matrix having the same structure as

AM is necessary for proceeding with the decimation in space, i.e., for limiting the computation to either

the first or the second decimated scheme in (14) while possibly reconstructing un↓2 at any moment from

either unE↓2 or unO↓2.

A. 1D Signal Reconstruction

At this point it is interesting to understand first whether un↓2 can be obtained by spatial interpolation

of either unE↓2 or unO↓2, and secondly whether un can be obtained by temporal interpolation of un↓2.

The derivation makes use of an elegant result by Strang, who showed that each Discrete Cosine

Transform basis is formed by the eigenvectors of a symmetric second-difference matrix [19]. This matrix

is equal to 2IM−AM for an M -point transformation, and classifies all types of Discrete Cosine Transform

(DCT) as well as Discrete Sine Transform (DST) depending on how the Dirichlet and Neumann conditions

are formulated and then combined together in the corresponding second-difference scheme.

We show the derivation for even values of M , with Neumann conditions on the left boundary and

Dirichlet conditions on the right. In this case (14) was shown to be equal to
un+1
E↓2 = AM/2u

n
E↓2 − un−1E↓2

un+1
O↓2 = RM/2u

n
O↓2 − un−1O↓2

. (17)

The eigenvalues and eigenvectors of AM and RM are known in closed form [19]. In the case under

study, the eigenvectors of AM form the basis C
(III)
M =

(
c
(III)
M (0) · · · c

(III)
M (M−1)

)
of the M -point

DCT of type III, whereas the eigenvectors of RM form the basis C
(IV )
M of the M -point DCT of type IV:

AMC
(III)
M = C

(III)
M ΛM

RMC
(IV )
M = C

(IV )
M ΛM

, (18)
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in which the matrices of the eigenvectors have elements

C
(III)
M (i, j) = cos π

M i(j +
1
2)

C
(IV )
M (i, j) = cos π

M (i+ 1
2)(j +

1
2)

, (19)

and the matrix of eigenvalues has elements only in the diagonal:

ΛM (i, j) =

 2 cos π
M (j + 1

2), i = j

0 otherwise
, (20)

with i, j = 0, . . . ,M − 1.

Similar to the Fourier basis, both the type-III and type-IV DCT admit simple inversion of their matrix.

In fact, C(IV )−1
M = 2

MC
(IV )
M and C

(III)−1
M = C

(III)T
M D2

M , with D2
M = diag

(
1
M ,

2
M , . . . ,

2
M

)
an M×M

diagonal matrix. Hence,
AM = C

(III)
M ΛMC

(III)T
M D2

M

RM = 2
MC

(IV )
M ΛMC

(IV )
M

. (21)

Next, we need to recall that an M -point DCT can be factored into two M/2-point DCT’s, possibly

belonging to different types [22]. In our case we make use of the following relation:

ΠT
MC

(III)
M =

 C
(III)
M/2 C

(III)
M/2 JM/2

C
(IV )
M/2 −C(IV )

M/2JM/2

 , (22)

in which JM is an M ×M exchange matrix [?, p. 215]. Since ΠMD2
MΠT

M = D2
M , and by transposing

(22), then:

C
(III)T
M D2

Mun↓2 = C
(III)T
M ΠMD2

MΠT
Mun↓2

= C
(III)T
M ΠM

 1
2D

2
M/2u

n
E↓2

2
MunO↓2


=

 1
2C

(III)T
M/2 D2

M/2u
n
E↓2 +

2
MC

(IV )
M/2u

n
O↓2

1
2JM/2C

(III)T
M/2 D2

M/2u
n
E↓2 −

2
MJM/2C

(IV )
M/2u

n
O↓2


(23)

If the upper half of the DCT coefficients are null then the lower M/2 elements of the vector (23) will

satisfy:
2

M
C

(IV )
M/2u

n
O↓2 =

1

2
C

(III)T
M/2 D2

M/2u
n
E↓2, (24)
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that is,

unO↓2 = C
(IV )
M/2C

(III)T
M/2 D2

M/2u
n
E↓2 = C

(IV )
M/2C

(III)−1
M/2 unE↓2, (25)

which proves that unO↓2 can be reconstructed without error by a type-III anti-transformation followed by

a type-IV transformation of unE↓2.

Once we have reconstructed un↓2 exactly in space from unO↓2 and unE↓2, then the signal can be

interpolated across time. Specifically, from (1) and (12) we obtain

AMun−1 = un + un−2 = un↓2 + un−1↓2 , (26)

and finally un−1 after solution of the system (26).

This completes the interpolation procedure when M is even. The condition of having the upper half

of the DCT coefficients equal to zero is equivalent to having the energy of un bounded within the lower

half of the spatial Fourier spectrum computed over the grid.

Similar results can be found if the Dirichlet or Neumann conditions are set on both sides of the

boundary. Remember, however, that AM is singular when M is odd: this prevents interpolation across

time directly after matrix inversion in (26). In Sec. VI we will see how this singularity can be handled.

Conversely, the even size of the grid makes the interpolation particularly interesting when M is a

power of two. In fact, if M = 2K then the decomposition (14) can be iterated k times with k ≤ K,

each time via a proper permutation yielding either QM↓2k = AM/2k or RM↓2k = AM/2k depending

on the boundary conditions. This decomposition permits to compute the corresponding 2k sub-schemes

independently1. If the spectral power of the signal is null in the upper 2k−1 sub-bands, then a sufficient

condition exists for the reconstruction of the original signal from its decimated version in space by a

factor 2k.

IV. 2D DFDTD SCHEME

We decimate (10) across time and come up with the following scheme:

Un+1
↓2 − 1

2
(AMx↓2U

n
↓2 +Un

↓2AMy↓2) +Un−1
↓2 = 0, (27)

in which, by analogy with (12), AMx↓2 = A2
Mx
− 2IMx

and AMy↓2 = A2
My
− 2IMy

. Again, we can

multiply (27) by ΠT
Mx

and ΠMy
respectively, hence obtaining

Ũ
n+1

↓2 − 1

2
(PMx↓2Ũ

n

↓2 + Ũ
n

↓2PMy↓2) + Ũ
n−1
↓2 = 0 (28)

1We deliberately avoid investigating the links existing between this decomposition and similar matrix rearrangements used by

fast DCT algorithms [22]: such an investigation would, in fact, open a chapter going beyond the scope of this work.
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with PMx↓2 = ΠT
Mx

AMx↓2ΠMx
as well as PMy↓2 = ΠT

My
AMy↓2ΠMy

, and furthermore

Ũ
n

↓2 = ΠT
Mx

Un
↓2ΠMy

=

 Un
EE↓2 Un

EO↓2

Un
OE↓2 Un

OO↓2

 (29)

which is a permutation containing the even-even, even-odd, odd-even, and odd-odd ordered elements of

Un
↓2 respectively in the first, second, third, and fourth quadrant.

Holding, for either direction, the same relationships between size and boundary conditions as those

seen in the 1D case (i.e., Dirichlet/Neumann or Neumann/Dirichlet for even sizes, and Dirichlet/Dirichlet

or Neumann/Neumann for odd sizes), then identical conclusions can be drawn about the structures of

the sub-matrices forming PMx↓2 and PMy↓2. In particular, if both Mx and My are even and we set the

boundary to Neumann at top and left as well as to Dirichlet at bottom and right, then QMx↓2 = AMx/2

and QMy↓2 = AMy/2. Therefore, from (28) and in analogy with (17),

Un+1
EE↓2 =

1
2(AMx/2U

n
EE↓2 +Un

EE↓2AMy/2)−Un−1
EE↓2

Un+1
EO↓2 =

1
2(AMx/2U

n
EO↓2 +Un

EO↓2RMy/2)−Un−1
EO↓2

Un+1
OE↓2 =

1
2(RMx/2U

n
OE↓2 +Un

OE↓2AMy/2)−Un−1
OE↓2

Un+1
OO↓2 =

1
2(RMx/2U

n
OO↓2 +Un

OO↓2RMy/2)−Un−1
OO↓2

. (30)

A. 2D Signal Reconstruction

By applying the transformations (21) to the scheme (27), we can extend the reconstruction in space

to the 2D case. In fact, a type-III DCT of Un
↓2 can be obtained by reversing the permutation (29) and

subsequently transforming:

Û
n

↓2 = C
(III)−1
Mx

Un
↓2C

(III)
My

= C
(III)−1
Mx

ΠMx
Ũ
n

↓2Π
T
My

C
(III)
My

,

(31)

in which the transformed matrix has been denoted with a hat. By factoring out (22) as

ΠT
MC

(III)
M =

 C
(III)
M/2

C
(IV )
M/2

 IM/2 JM/2

IM/2 −JM/2

 , (32)
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then (31) can be rewritten as

Û
n

↓2 =
1

2

 IMx/2 IMx/2

JMx/2 −JMx/2

 ·
·

 Û
n

EE↓2 Û
n

EO↓2

Û
n

OE↓2 Û
n

OO↓2

 IMy/2 JMy/2

IMy/2 −JMy/2

 ,

(33)

Now, if only the top-left quadrant of Û
n

↓2 is non null then (33) can be split in four subsystems, whose

solution and subsequent inverse transformation gives

Un
EO↓2 = Un

EE↓2C
(III)
My/2

C
(IV )−1
My/2

Un
OE↓2 = C

(IV )
Mx/2

C
(III)−1
Mx/2

Un
EE↓2

Un
OO↓2 = C

(IV )
Mx/2

C
(III)−1
Mx/2

Un
EE↓2C

(III)
My/2

C
(IV )−1
My/2

. (34)

As in the 1D case, once we have reconstructed Un
↓2 exactly in space then the signal can be interpolated

across time via solution of the linear system resulting directly from (10) and (27):

AMx
Un−1 +Un−1AMy

2
= Un +Un−2 = Un

↓2 +Un−1
↓2 . (35)

This completes the interpolation procedure when Mx and My are even, under the hypothesis of null

Fourier power spectrum above the half Nyquist frequency for either spatial direction.

In analogy with (26), the invertibility of the system (35) is not guaranteed. A type-III DCT of this

system in fact gives
ΛMx

Û
n−1

+ Û
n−1

ΛMy

2
= Û

n
+ Û

n−2
. (36)

Hence, element by element, and then forming the reciprocal:

Û
n−1

(i, j) = 2
Û
n
(i, j) + Û

n−2
(i, j)

λMx
(i) + λMy

(j)
. (37)

We conclude that (35) cannot be solved due to components (i, j) such that λMx
(i) + λMy

(j) is null. An

interpretation of this fact will be given in Sec. VI.

B. Dispersion Error

We have been left with the question whether (27) (in spite of its tractability) represents an exact

temporal decimation of (10). Unfortunately, if the calculations leading to (11) are applied to (10) then a

different 2D scheme is found instead. We keep track of this difference by denoting the signal at step n
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in the new scheme with V n instead of Un. More precisely, by rewriting (10) three times respectively

for computing V n, V n+1 and V n+2, we now obtain the following scheme in decimated notation:

V n+1
↓2 + 2V n

↓2 + V n−1
↓2 −

− 1

4
(A2

Mx
V n
↓2 + 2AMx

V n
↓2AMy

+ V n
↓2A

2
My

) = 0,
(38)

Here, both V n+1 and V n−1 have been eliminated by summing up the three resulting equations, after

pre-multiplying (10) by AMx
/2 when computing V n+1 as well as post-multiplying (10) by AMy

/2 when

computing V n+2 from the two previous time steps.

The scheme (38), then, decimates (10) exactly in time. As opposed to what happened in the 1D case,

there is no exact way to put this scheme in the same form as (27). This discrepancy is not surprising: in

fact, (38) characterizes a time-decimated FDTD scheme having the same dispersion as the original one.

Dispersion is a known phenomenon affecting numerical wave propagation, which prevents multidimen-

sional schemes from simulating the isotropic behavior of continuous media exactly [23]. In particular, with

increasing grid sparsity, the multidimensional waves exhibit widening dispersion. Since spatial decimation

leads to node distances that are twice as long, one must expect that a 2D DFDTD scheme is affected

by greater dispersion compared to the original scheme. Now, if (38) also permitted exact decimation in

space then the resulting DFDTD scheme would paradoxically be affected by the same dispersion as the

original one; hence, (38) cannot exhibit exact decimation in space.

Dispersion is computed by performing a Von Neumann analysis [23], linking each wave component

of spatial frequency (ξx, ξy) traveling along the grid across two adjacent temporal steps through the

amplification factor ν(ξx, ξy):

F{un}(ξx, ξy) = ν(ξx, ξy)F{un−1}(ξx, ξy), (39)

in which F{un}(ξx, ξy) is the 2D Fourier transform of the signal ul,m at step n. In particular, the

argument of ν(ξx, ξy) is the temporal phase difference between the spatial component values computed

on such two steps, hence it is proportional to their relative phase velocity. For 2D schemes such as (4),

the Von Neumann analysis concludes that

ν(ξx, ξy) = |ν(ξx, ξy)|ei arg ν(ξx,ξy) = e
i arctan

√
4−b(ξx,ξy)2

b(ξx,ξy) , (40)

with b(ξx, ξy) = cos(2πξxδx) + cos(2πξyδy).

We define the dispersion error to be the ratio between the phase difference in (27), given by (40) when

the distance between adjacent nodes is such that δx = δy = 2δX , and the phase difference in (38), again
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Fig. 2. Dispersion error D↓2(ξx, ξy) with node distance δX = 1.

given by (40) when the spatial components travel the original grid across two time steps:

D↓2(ξx, ξy) =
F{un}(2ξx, 2ξy)/F{un−1}(2ξx, 2ξy)
F{un}(ξx, ξy)/F{un−2}(ξx, ξy)

=
arg ν(2ξx, 2ξy)

2 arg ν(ξx, ξy)

=
arctan

√
4−b(2ξx,2ξy)2
b(2ξx,2ξy)

2 arctan

√
4−b(ξx,ξy)2
b(ξx,ξy)

. (41)

This error is limited to the spatial frequency components lying below half the Nyquist value ξMAX =

1/(2δX) m−1.

In Fig. 2 we have plotted D↓2(ξx, ξy) for positive spatial frequency values within the half Nyquist

frequency, i.e. in the range [0, ξMAX/2] = [0, 1/(4δX)] along both directions, additionally setting a node

distance δX = 1.

V. SIMULATIONS

A simulation of the schemes (27) and (38) confirms the existence of the error shown in Fig. 2.

Fig. 3 shows the outputs vn↓2 and un↓2 from a node near one corner of a 64×64 grid that has been

clamped at two neighboring edges through Dirichlet boundaries and meanwhile set free at the other

two edges through Neumann boundaries. The simulation has been initialized to compute the component

(28,2) by means of either (38) (black line) or (27) (gray line). Scheme (38), in fact, anticipates scheme

(27) in ways that the respective components go into phase opposition after about 15.5 periods. Now,
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Fig. 3. Outputs from a 64×64 grid respectively realizing the scheme (38, black line) and (27, gray line), both initialized with

mode (28,2).

(ξx, ξy)(28,2) = (28/128, 2/128) = (0.219, 0.016) and finally, from (41), D↓2(0.219, 0.016) = 0.967.

This means that the latter wave component is about 3.3% slower than the former. Hence, after 15.5

periods it gets delayed by 0.033 ·15.5 = 0.511 periods, and is close to being in opposite phase, as shown

in the plots.

In the following we give temporal plots showing the effects of signal reconstruction for three different

conditions: i) undispersed, non-aliased components, ii) dispersed, non-aliased components, and iii) undis-

persed, aliased components. The initialization is done by setting the grid at n = 0 to the desired initial

value, e.g. to reproduce a spatial mode or a superposition of modes like that in Fig. 5. The reconstruction

is figured out by starting from Un
EE↓2 and Un−1

EE↓2 and then computing, in sequence, Un−1
↓2 and Un

↓2 using

(34), Û
n−1
↓2 = Û

n−2
and Û

n

↓2 = Û
n

using (31), and Û
n−1

using (37). Finally, the inverse transformation

of Û
n−1

gives, along with Un
↓2 = Un, the initial conditions for the computation of the reconstructed

scheme (10).

All such conditions are applied to the previous scheme. As before, signals have been picked up nearby

one corner. Notice, however, that “non-aliased” means that the grid initialization at temporal step n = 0

does not alias in space; this constraint does not prevent the same signal from aliasing in time, as it

happens in practice with any initial excitation that is applied when the grid is at rest.

i) Undispersed wave components that can be decimated without aliasing follow the original evolution

accurately (Fig. 4). Deviations occur because of some unavoidable spectral leakage due to the

aforementioned time aliasing, even in the case of the low-frequency excitation selected for the

example; these deviations are especially visible when a wavefront (that is always rich in high

frequencies) reaches the pick-up node. Once (i.e., at step n = 970) the original grid is restored,

the reconstructed signal follows the decimated signal trajectory and not the original trajectory
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Fig. 4. Condition i). Output from a 64×64 grid (thin black line), its decimated version (gray circles), and reconstruction starting

at temporal step 970 (thick gray line). Original grid initialized with mode (2,2).
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Fig. 5. Condition ii). Initial condition.

since the spectral information above the half Nyquist frequency has been obviously lost during the

decimation.

ii) Dispersed wave components are introduced in the grid using the initial excitation shown in Fig. 5, in

which a sinusoidal wave along one direction has been weighted by a ramp oriented in the opposite

direction. This signal is decimated with low aliasing, but soon deviates from the original trajectory

because of the different dispersion error in the original and the decimated scheme (Fig. 6, above),

expressed by (41). The switch back to the original scheme at step n = 970 restores the original
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Fig. 6. Condition ii). Above: output from a 64×64 grid (thin black line) and its decimated version (gray circles). Below: in

addition to the previous two signals, reconstruction starting at temporal step 970 (thick gray line). Original grid initialized with

the signal shown in Fig. 5.

dispersion, in ways that the reconstructed signal in turn deviates from the decimated and also the

original trajectory (Fig. 6, below), again by (41).

iii) Undispersed wave components that are decimated with aliasing (e.g. the diagonal traveling wave

associated to the mode (41,41)), fold over in a new component within the half Nyquist frequency

(Fig. 7, above). The switch back to the original scheme at step n = 970 preserves this com-

ponent, and the reconstructed signal progressively overwrites the decimated trajectory since the

reconstruction inherits the original initial condition (Fig. 7, below).

VI. CONSIDERATIONS ON THE RANK OF THE SECOND-DIFFERENCE MATRICES

The computation of (3) provides an exact discrete solution of the 1D standard wave equation, once

the differential problem in continuous time and space has been instantiated with boundary and initial

conditions [18]. In particular, Eqs. (3) and (4) compute spatial components that are located exactly at the

Nyquist frequency: For example, an odd-sized 1D grid configuration such that un−1 = (1,−1, . . . ,−1, 1)
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Fig. 7. Condition iii). Above: output from a 64×64 grid (thin black line) and its decimated version (gray circles). Below: in

addition to the previous two signals, reconstruction starting at temporal step 970 (thick gray line). Original grid initialized with

mode (41,41).

and un = (−1, 1, . . . , 1,−1), holding Neumann conditions at both boundaries. Such components appear

at any pick-up node in form of a discrete-time signal un = (−1)n, which cannot be interpolated into an

analog output according to the Nyquist-Shannon theorem.

Specifically under Neumann or Dirichlet boundary conditions, standing waves appear in the continuous

solution in the form of cosine or sine functions whose spatial frequency is a multiple of the fundamental

wavelength2 2`0. Consequently, the spatial period of the fundamental component is equal to 4π`0. If c0

is the wave propagation speed of the medium, the corresponding temporal component is thus periodic

by angular frequency ω0 = 2πf0 = πc0/`0.

Such components, then, form a numerable set of infinitely many harmonic functions that are propor-

tional to either

yNN (kx) = cos
(πkx
`0

)
or yDD(kx) = sin

(πkx
`0

)
(42)

2Recall that in Sec. II we defined `0 as the physical length of the domain.
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respectively for Neumann or Dirichlet conditions, with3 k = 0, 1, . . ..

As also mentioned in Sec. III, decimation in presence of an odd-sized grid is possible if both boundaries

are subject to the same condition (e.g. Neumann or Dirichlet). Under these conditions, the second-

difference matrix AM has a simple null eigenvalue ΛM

(
M−1
2 , M−12

)
with associated eigenvector either

c
(I)
M

(
M−1
2

)
= cos

π

2
i or s

(I)
M

(
M−1
2

)
= sin

π

2
(i+ 1) (43)

with i = 0, . . . ,M−1, holding the Neumann or Dirichlet condition respectively. Now, by (18) it descends

that c
(I)
M (M−12 ) and s

(I)
M (M−12 ) are the M−1

2 -th eigenvector of the type-I DCT and the type-I DST

respectively, both computed as usual on M nodes [19].

Both of these eigenvectors are parallel to signal components that are located exactly at half the Nyquist

frequency. In the light of the Nyquist-Shannon theorem, these components cannot be reconstructed from

the decimated signal. On the other hand they are reproduced by the decimated scheme described at the

beginning of this section, and additionally are part of the solution of the differential problem. In fact,

in both cases any reasonable numerical solution must contain a fundamental component proportional

from (42) to either yNN (x) or yDD(x). For example, in the Neumann case, the fundamental numerical

component must have discrete wavelength 2˜̀0 = 2(M − 1)δX , discrete wave speed c̃0 = δX/δT , and

hence discrete angular frequency

ω̃0 = 2πf0δT = 2π
c̃0

2˜̀0
δT =

π

M − 1
rad/sample. (44)

Hence, c(I)M (M−12 ) has angular frequency equal to (M − 1) ω̃0/2 = π/2, that is, a multiple integer of ω0

as soon as one naturally sets the domain length and the discrete wave speed to be equal to the respective

physical counterparts: ˜̀
0 = `0 and c̃0 = c0.

In Sec. II we also stated that if M is even then AM has full rank. In fact, holding the Neumann

and Dirichlet conditions alternatively on either boundary, the differential problem exhibits standing wave

components that are proportional to

yND(kx) = cos
(
(k + 1

2)
π

M

x

δX

)
, (45)

with k = 0, 1, . . . and x ∈ [0,MδX].

Once again, from (19) we can see that c(III)M (M−12 ) would be parallel to the component at the half

Nyquist frequency if M were odd. Since M is even instead, then the standing wave yND(M−12 x) is not

accounted for by the numerical solution of the original scheme.

3The standing wave component resulting from k = 0 in practice does not oscillate below the fundamental, since its period is

infinitely long.
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The 2D case extends this interpretation. Briefly, the system (35) does not admit solution in corre-

spondence of the standing wave components that are parallel to the eigenvectors and whose associated

eigenvalues sum up to zero. For instance, if all boundary regions are modeled by Neumann or Dirichlet

in a 2D FDTD scheme with odd size on both directions then such components reduce to the null pair(
λMx

(
Mx−1

2

)
, λMy

(My−1
2

))
, accounting for orthogonal standing waves both oscillating at the half Nyquist

frequency.

More specifically, one wonders whether combinations exist in which two non-null eigenvalues λMx
(i), λMy

(j)

with opposite sign sum up to zero. Indeed, this cannot happen as far as the scheme processes components

only within the half Nyquist frequency: i ≤ (Mx − 1)/2 and j ≤ (My − 1)/2. One example is a square

grid having a Neumann/Dirichlet boundary configuration on both directions, for which Mx =My =M

is even. The sum in fact amounts to

λM (i) + λM (j) = 2 cos π
M

(
i+ 1

2

)
+ 2 cos π

M

(
j + 1

2

)
= 4 cos π

2M (i+ j + 1) cos π
2M (i− j),

(46)

with i, j = 0, . . . ,M − 1. From (46) it follows that all components such that i + j = M − 1 cannot

be reconstructed. As we have seen for 1D schemes, the only pair of components until the half Nyquist

frequency fulfilling this condition would be the null pair, i.e., i = j = (M−1)/2. This pair does not exist

since the length is even along both directions. Also in this case, there are no numerical standing waves

having angular frequency equal to (M − 1) ω̃0/2 = π/2, i.e., oscillating at the half Nyquist frequency.

In conclusion, it is worth mentioning that both (26) and (37) admit a generalized solution if their rank

is not full. This solution makes use of the Moore-Penrose pseudo-inverse [24], which in practice neglects

the dependent eigenvectors. By avoiding the singularity at the half Nyquist frequency, accurate wave

interpolations have been obtained at runtime also in presence of simple absorbing boundaries, i.e., with

BM 6= IM [25]. Yet, the reliability of such solutions cannot be explained based on the results presented

here and, hence, remains to be rigorously studied.

VII. CONCLUSION

Standard orthogonal 1D and 2D FDTD schemes modeling isotropic lossless wave propagation have

been shown to admit decimation and interpolation in time and space of their grids at runtime, holding

conventional Nyquist-Shannon hypotheses on the bandwidth of the wave signals. Although lossless models

have limited application, the results found so far encourage the investigation of FDTD scheme decimation

also in the presence of boundary absorption and/or viscosity of the transmission medium. Likely such

an investigation may ask for substituting the DCT, of which we made intensive use while developing
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our formal derivations, with other mathematical tools able to incorporate dissipation: to this regard,

interesting results have been found which allow for switching the sampling frequency of digital filters

at runtime [21]; concerning FDTD methods instead, so far we have been able to decimate in time and

then interpolate simple dissipative models at runtime by merely applying, in sequence, formulas (11) and

(26) for the 1D case as well as (27) and (37) for the 2D case, in which we put frequency-independent

dissipative terms in the respective second-difference matrices [25]. These simulations look attractive in

terms of a prospective development of the proposed concepts, incorporating dissipation as well.

The generalization of the work done here to the 3D case does not promise to bring answers as important

as those posed by the questions on the decimation of dissipative schemes. Rather, a gap which may be

conveniently filled has been left at the end of Sec. III, concerning the potentially insightful relationship

existing between the proposed decimation/interpolation procedure and the known matrix division and

merge operations that are correspondingly implemented by fast DCT algorithms.
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