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Abstract

In this paper the effect of biaxial and uniaxial strain on the mobility of single-layer MoS2 for tem-

peratures T > 100 K is investigated. Scattering from intrinsic phonon modes, remote phonon and

charged impurities are considered along with static screening. Ab-initio simulations are utilized to

investigate the strain induced effects on the electronic bandstructure and the linearized Boltzmann

transport equation is used to evaluate the low-field mobility under various strain conditions. The

results indicate that the mobility increases with tensile biaxial and tensile uniaxial strain along

the armchair direction. Under compressive strain, however, the mobility exhibits a non-monotonic

behavior when the strain magnitude is varied. In particular, with a relatively small compressive

strain of 1% the mobility is reduced by about a factor of two compared to the unstrained condition,

but with a larger compressive strain the mobility partly recovers such a degradation.
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I. INTRODUCTION

Since the successful experimental isolation of graphene in 2004 [1], ultra-thin two-

dimensional structures are being widely studied as potential building blocks for future

electronic devices. Graphene exhibits some remarkable electronic properties [2–4], however,

the absence of a bandgap has so far precluded its exploitation in electronic applications

[5, 6]. Several strategies have been proposed to open a gap, but a band gap larger than 400

meV remains a challenge [5, 7–9]. Other two-dimensional materials with non-zero band gap

show promising electronic, optical, and mechanical properties and are considered as poten-

tial candidates for future electronic applications [10]. Having a two dimensional structure

similar to graphene, transition metal dichalcogenides of the form MX2, where M denotes a

transition metal and X ∈ {S, Se, Te}, have recently attracted the attention of the scientific

community [11, 12]. These materials form layered structures, where layers of covalently

bonded X-M-X groups are held together by Van der Waals interactions [13]. Because of

weak inter-layer van der Waals bonds in their layered structure, single to few-layers of these

materials can be obtained by mechanical or chemical exfoliation techniques [11, 14, 15].

Out of the transition metal dichalcogenide family, MoS2 is of particular interest [12, 16–

18]. A single MoS2 layer is composed of one atomic layer of molybdenum sandwiched between

two atomic layers of sulfur and has a total thickness of 0.65 nm [see Fig. 1]. Both theoretical

and experimental studies indicate a strong dependency of the band structures on the number

of layers [19, 20]. Bulk MoS2 is a semiconductor with an indirect bandgap of 1.2 eV and a

carrier mobility in the range of 50-200 cm2/(Vs) at room temperature [21]. The bandgap

increases as the number of layers is reduced [19, 22]. For a single MoS2 layer a direct bandgap

of 1.8 to 1.9 eV has been reported [12, 17, 21], which makes it suitable for various electronic

applications [23]. Recently, field effect transistors based on single-layer MoS2 with an Ion/Ioff

ratio as high as ∼ 108 and a sub-threshold swing of ∼ 70 mV/decade have been reported [24–

27]. The near ideal sub-threshold swing is due to the strong suppression of short channel

effects in low-dimensional materials and excellent electrostatic control of the gate over the

channel [28]. Moreover possible applications to hetero-junction inter-layer tunneling FETs

have also been proposed and theoretically investigated [29]. Room temperature mobility of

n-type single-layer MoS2 has been reported to be in the range of 0.5–3 cm2/(Vs) and can be

increased to about 200 cm2/(Vs) with the use of high-κ dielectrics [25].
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The effects of strain on the electronic bandstructure of single layer MoS2 have been

studied in several works [30, 31]. It has been shown that the application of compressive

and tensile biaxial strain results in an indirect band gap in single-layer MoS2 [32–34]. Even

though the low-field mobility is one of the most important transport properties for a large

number of physical systems and electronic devices, a comprehensive study of strain effects

on the mobility of single layer MoS2 has not been reported yet. In the present work, the

effects of biaxial and uniaxial strain on the bandstructure and low-field mobility of single-

layer MoS2 is investigated. We employed ab-initio simulations for calculating the electronic

bandstructure parameters for single-layer MoS2 in the presence of strain. Thereafter, we

utilized the linearized Boltzmann transport equation (BTE) that evaluates the low-field

mobility without introducing any a priori [35, 36].

In Sec. II some details about the ab-initio calculations of the electronic bandstructure in

the presence of strain are discussed. The formulation of various scattering rates is described

in Sec. III. In Sec. IV, the approach for mobility calculation with anisotropic bandstructure

and scattering processes is introduced. The effects of different scattering processes on the

mobility in the presence of biaxial and uniaxial strain are presented in Sec. V. Finally,

concluding remarks are presented in Sec. VI.

II. BANDSTRUCTURE

We carry out first-principle simulations based on the density-functional theory (DFT)

along with the local density approximation (LDA) as implemented in the SIESTA code

[37–39] to investigate the relevant electronic properties of a single layer MoS2 under strain.

While DFT-LDA, in general, underestimates band gaps, the resulting dispersion of individ-

ual bands, i.e., effective masses and energy differences between valleys, is less problematic

[40]. A cutoff energy equal to 600 Ry is used and a vacuum separation of 30 Å is adopted,

which is sufficient to hinder interactions between adjacent layers. Sampling of the reciprocal

space Brillouin zone (BZ) is performed by a Monkhorst-Pack grid of 18× 18× 1 k-points.

Calculations begin with the determination of the optimized geometry, that is the config-

uration in which the residual Hellmann-Feynman forces acting on atoms are smaller than

0.01 eV/Å. The calculated lattice constant of unstrained single-layer MoS2 is 3.11 Å that

has a good agreement with the reported value in Ref. 22 and 41. Fig. 2(a) shows the en-
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ergy contours of the conduction-band in the first BZ for unstrained single layer MoS2. In

an unstrained material the lowest and the second lowest minimum in the conduction band

are denoted as K-valley and Q-valley, respectively. The 6 K valleys are degenerate in the

unstrained and in all the strained conditions explored in this paper. The 6 Q-valleys are

degenerate in unstrained conditions, while under uniaxial strain they split into 4 QA-valleys

and 2 QB-valleys with different effective masses and energy minima, as discussed and illus-

trated in Sec. V. The energy distance between K-valley and Q-valley for unstrained material

is evaluated to be 160 meV, in agreement with Ref. 40. Fig. 2(b) shows the calculated

DFT-LDA band structure and depicts a direct band gap of 1.92 eV at the K-point which is

very close to the experimentally measured value of 1.85 eV [17].

III. SCATTERING RATES

In this section the formulation of scattering with intrinsic phonon, charged impurities,

remote phonon, and the screening effects are presented.

A. Scattering with MoS2 phonon modes

Scattering rates due to intrinsic phonons (including acoustic, optical and polar-optical

phonons), to remote phonons and to charged impurities are taken into account. Piezoelectric

coupling to the acoustic phonons is only important at low temperatures and is neglected

in this work [42]. If the surrounding dielectric provides a large energy barrier for confining

electrons in the MoS2 layer, the envelope function of mobile electrons can be approximated

as Ψ~k(~r, z) = χ(z) exp
(
i~k.~r

)
/
√
S with χ(z) =

√
(2/a) sin(πz/a) [43], where S is the area

normalization factor, ~k is the in-plane two-dimensional wave vector, a is the thickness of

single layer MoS2 and ~r is the in-plane position vector. The scattering rates for the acoustic

and optical phonon are discussed first.

Using Fermi’s golden rule the scattering rate from an initial state ~k in valley v to the

final state ~k′ in valley w can be written as

Sv,w(~k, ~k′) =
2π

h̄
|M v,w(~k, ~k′)|2δ[Ew(~k′)− Ev(~k)∓ h̄ω(q)] , (1)

where |M v,w(~k, ~k′)| is the matrix element for the mentioned transition and h̄ω(q) is the

phonon energy that may depend on q = |~k − ~k′|. The intra-valley transitions (v = w)
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assisted by acoustic phonons can be approximated as elastic and the rate is given by

Sac(~k,~k
′) =

2πkBTD
2
ac

ρSh̄v2
s

δ[E(~k′)− E(~k)] , (2)

where kB is the Boltzmann constant, T is the absolute temperature, Dac is the acoustic

the deformation potential, ρ = 3.1 × 10−7 [gr/cm2] is the mass density and vs is the sound

velocity of single layer MoS2. On the other hand, the rate of inelastic phonon scattering,

including intra and inter-valley optical phonons, and inter-valley acoustic phonons, can be

expressed as

Sv,w
ac/op(~k, ~k′) =

π(Dv,w
ac/op)2

ωac/opρS

[
nop +

1

2
∓ 1

2

]
δ[Ew(~k′)− Ev(~k)∓ h̄ωac/op(q)] , (3)

where Dv,w
ac/op is the acoustic/optical deformation potential for a transition between valleys v

and w, h̄ωac/op(q) is the phonon energy, and nop is the phonon occupation (upper and lower

sign denote phonon absorption and phonon emission, respectively). The phonon assisted

inter-valley transitions considered in this work, and the corresponding phonon momentum

are shown in Fig. 3. In our calculations, we employed the deformation potentials and phonon

energies from Ref. 44 that are reported in Table I and Table II. It should be noted that the

same deformation potentials are used for QA and QB valleys.

B. Remote Phonon Scattering

Another important scattering source considered in this work is the remote phonon or

surface-optical (SO) phonon scattering mechanism. The source of this scattering is in the

surrounding dielectrics via long-range Coulomb interactions, provided that the dielectrics

support polar vibrational modes. By assuming semi-infinite oxides and neglecting the pos-

sible coupling to the plasmons of the two-dimensional material, the energy dispersion of SO

phonons can be obtained by solving the secular equation [45]

(εbox(ω) + ε2D)(εtox(ω) + ε2D)− (εbox(ω)− ε2D)(εtox(ω)− ε2D)e−2qa = 0 , (4)

where the thickness a of the single layer MoS2 is set to a = 3.17 Å [46], ε2D is the dielectric

constant of the two-dimensional material (single layer MoS2 in this work), the index box

and tox denote the back-oxide (z < 0) and the top-oxide (z > a), respectively, q = |~k − ~k′|

and ε2D for MoS2 is set to 7.6 [43]. A numerical solution of Eq. 4 shows that the frequency
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of remote phonon has a very weak dependence on q, that consequently we neglected in our

calculations by setting e−2qa ≈ 1 in Eq. 4. With this approximation, Eq. 4 simplifies to

εbox(ω) + εtox(ω) = 0, that we solved by using the single polar phonon expression for the

εox(ω) in each oxide:

εox(ω) = ε∞ +
ε0 − ε∞

1− ω2/ω2
TO

, (5)

where ε∞ and ε0 are the high and low frequency dielectric constant, respectively, and ωTO

is the frequency of the polar phonon in the oxide. We could provide analytical solution

for Eq. 5 and express ωso,box as: ω2
so,box = (−B +

√
B2 − 4AC)/(2A) and for ωso,tox as

ω2
so,tox = (−B −

√
B2 − 4AC)/(2A), where A = (ε∞tox + ε∞box), B = −(ε0tox + ε∞box)ω2

TO,tox −

(ε0box + ε∞tox)ω2
TO,box and C = (ε0tox + ε0box)ω2

TO,toxω
2
TO,box. Table III reports the parameters of

dielectric materials that are studied in this work and indicates the corresponding calculated

SO phonon frequencies. The scattering matrix element of remote phonon can be written as

[45]:

Mso,tox(~k, ~k′) =

√
h̄ωso,tox

2Sq

(
1

ε∞tox + εbox(ωso,tox)
− 1

ε0tox + εbox(ωso,tox)

)
, (6)

Mso,box(~k, ~k′) =

√
h̄ωso,box

2Sq

(
1

ε∞box + εtox(ωso,box)
− 1

ε0box + εtox(ωso,box)

)
, (7)

Scattering with SO phonon mode is inelastic and we consider only intra-valley transitions.

The corresponding transition rate is

Sso(~k,~k′) =
2π

h̄
|Mso(~k,~k′)|2

[
nso +

1

2
∓ 1

2

]
δ[E(~k′)− E(~k)∓ h̄ωso] , (8)

where nso and h̄ωso are the SO phonon occupation number and energy, respectively.

C. Scattering with Coulomb Centers

To investigate the effect of the dielectric environment on the scattering of carriers from

charged impurities located inside the single layer MoS2, we assume that the charged im-

purities are located in the center of the single layer MoS2 thickness, that is at z = a/2.

The Fourier transform of the scattering potential due to a charged impurity located at

(~r, z) = (0, a/2) can be written as [47]

φ(q, z) =
e2

2qε2D

[
e−q|z−a/2| + Ceqz +De−qz

]
, (9)
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where e is the elementary charge, and C and D can be written as

C =
(ε2D − ε0box)(ε2D − ε0tox)e−qa/2 + (ε2D + ε0box)(ε2D − ε0tox)eaq/2 − (ε0box − ε2D)(ε0tox + ε2D)

(ε2D + ε0box)(ε2D + ε0tox)e2aq − (ε2D − ε0box)(ε2D − ε0tox)
,

(10)

and

D =
(ε0box − ε2D)

[
C + e−qa/2

]
ε0box + ε2D

. (11)

Using Eq. 9, the χ(z) form χ(z) =
√

(2/a) sin(πz/a) and assuming intra-valley transitions

for scattering with charged impurities, the transition matrix elements take the form

M
(0)
cb (~k,~k′) =

e2

qaε2D

(
1

q
− q

q2 + (2π/a)2

)
×
[
C

2
(eqa − 1) +

D

2

(
1− e−qa

)
− e−qa/2

]
+

e2

qaε2D

(
1

q
+

q

q2 + (2π/a)2

)
,

(12)

where q = |~k − ~k′|. Eq. 12 expresses the matrix element for a Coulomb center located in

(~r, z) = (0, a/2) and does not account for the screening produced by the free carriers in MoS2;

such a screening effect is introduced according to the dielectric matrix approach discussed

in Sec. III D. The overall matrix element produced by a set of Coulomb centers randomly

distributed at positions (~r, a/2) is known to be affected by the statistical properties of the

distribution and, in particular, by a possible correlation between the position of Coulomb

centers. In this paper we do not address these difficulties and simply write the overall matrix

element as |Mcb(~k,~k′)|2 =
[
ND|M (0)

cb (~k,~k′)|2
]
/S, where ND is the impurity density per unit

area and M
(0)
cb is given by Eq. 12. Scattering charged impurities is treated as elastic and the

rate is therefore given by

Scb(~k,~k′) =
2π

h̄
|Mcb(~k,~k′)|2δ(E(~k′)− E(~k)) . (13)
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D. Screening

The effect of static screening produced by the electrons in the MoS2 conduction band is

described by using the dielectric function approach [47], so that the screened matrix element

Mw
scr(
~k,~k′) in valley w is obtained by solving the linear problem:

M v(q) =
∑
w

εv,w(q)Mw
scr(q) , (14)

where M v(q) are the unscreened matrix element. As can be seen in Fig. 2(a), there are three

different valleys in strained single layer MoS2 (K, QA and QB valleys), hence v, w ∈ {K,

QA, QB}. In Eq. 14, εv,w is the dielectric matrix which is introduced as:

εv,w(q) = δv,w −
e2

q(ε2D + εbox)
Πw(q)F v,w(q) , (15)

where δv,w is the Kronecker symbol (1 if v = w, otherwise zero), Πw(q) and F v,w(q) are the

polarization factor and unit-less screening form factor, respectively [47]. In the case at study

the dielectric matrix can be analytically inverted to evaluate screened matrix elements as:

M v
scr(q) =

(
1−

∑
w 6=v ε

v,w(q)
)
M v(q) +

∑
w 6=v ε

v,w(q)Mw(q)

2−
∑

w ε
v,w(q)

. (16)

The static dielectric function approach described above has been directly used for the

scattering due to charged impurities, while the situation is admittedly more complicated for

phonon scattering. For the inelastic, intervalley phonon transitions described in Table I and

Table II the relatively large phonon wave-vector (see also Fig. 3) and the non-null phonon

energies suggest that it is safe to leave these transitions unscreened, because the dynamic de-

screening and the large phonon wave-vectors make the screening very ineffective. Arguments

concerning screening for intra-valley acoustic phonons are more subtle and controversial and

a thorough discussion for inversion layer systems can be found in Ref. 48. We here decided

to leave also intra-valley acoustic phonons unscreened, which is the choice employed in es-

sentially all the studies concerning transport in inversion layers that the authors are aware

of. The screening of the SO phonon scattering is also a delicate subject, because the polar

phonon modes of the high-κ dielectrics can couple with the collective excitations of the elec-

trons in the MoS2 layer and thus produce coupled phonon-plasmon modes [45, 48], whose

treatment is further complicated by the possible occurrence of Landau damping [45, 48, 49].

In this paper we do not attempt a full treatment of the coupled phonon-plasmon modes
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[45, 48], but instead show in in Sec. V results for the two extreme cases of either unscreened

SO phonons or SO phonons screened according to the static dielectric function. We can

anticipate that while the inclusion of static screening in SO phonons implies a significant

mobility enhancement compared to the unscreened case, the mobility dependence on the

strain and on the dielectric constant of the high-κ dielectrics is not significantly affected by

the treatment of screening for SO phonons.

IV. MOBILITY CALCULATION

Acoustic, optical, polar-optical, remote phonon, and charged impurity scatterings are

considered for the calculation of low-field mobility. As it will be discussed in the next section,

the bandstructure for QA and QB valleys is not isotropic and the mobility shows direction-

dependence, hence we calculated mobility by solving numerically the linearized Boltzmann

Transport Equation (BTE) according to the approach described in Ref. 35, which does not

introduce any simplifying assumption in the BTE solution. In particular, mobility has been

calculated along the armchair and zigzag directions and strain has been also studied for the

uniaxial configuration along either armchair or zigzag direction, as well as for the biaxial

configuration.

In order to describe in more detail the mobility calculation procedure, we first recall that

the longitudinal direction of QA-valley is neither the armchair nor the zigzag direction, and

Fig. 2(a) shows that θ is the angle describing the valley orientation with respect to the zigzag

direction in k-space (i.l. armchair direction in real space). Let us now consider first the case

of the mobility µ
(v)
A of valley v along the armchair direction, that can be written by definition

as µ
(v)
A = J

(v)
A /FA, where J

(v)
A is the current component in the armchair direction for the

valley v induced by the electric field FA along armchair direction. The current J
(v)
A can be

expressed as J
(v)
A = J

(v)
l cos (θv) + J

(v)
t sin (θv) in terms of the current components J

(v)
l , J

(v)
t

along, respectively, the longitudinal and transverse direction of the valley v. By denoting the

longitudinal (Fl) and transverse component (Ft) of the electric field as Fl = FAcos(θv) and

Ft = FA sin(θv), the currents J
(v)
l and J

(v)
t in turn can be written as J

(v)
l = µ

(v)
ll Fl + µ

(v)
lt Ft

and J
(v)
t = µ

(v)
lt Fl + µ

(v)
tt Ft, where µll, µtt and µlt are the entries of the two by two mobility
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matrix in the valley coordinate system [47]. Consequently we finally obtain:

µ
(v)
A =

J
(v)
A

FA

= µ
(v)
ll cos2 (θv) + µ

(v)
tt sin2 (θv) + 2µ

(v)
lt sin (θv) cos (θv) . (17)

By following a similar procedure, the mobility µ
(v)
Z of the valley v along the zigzag direction

can be written as:

µ
(v)
Z =

J
(v)
A

FA

= µ
(v)
ll sin2 (θv) + µ

(v)
tt cos2 (θv)− 2µ

(v)
lt sin (θv) cos (θv) . (18)

For the circular and elliptical bands employed in our calculations (see Fig. 4(g)), µ
(v)
lt is

zero for symmetry reasons [47]. After calculating the mobility for each valley, the overall

mobilities µA and µZ are obtained as the average of the mobility in the different valleys

weighted by the the corresponding electron density.

Eq. 17 and Eq. 18 allow us to calculate the mobility µ
(v)
A and µ

(v)
Z from the longitudinal

µv
ll and the transverse mobility µv

tt of the valley v which are the mobilities obtained from

the linearized BTE when the electric field is either in the longitudinal or in the transverse

direction of the valley v. As already said, the µv
ll and µv

tt have been obtained by using the

approach of Ref. 35, whose derivation for the case at study in this work can be summarized

as follows. The out of equilibrium occupation function f v(~k) for the valley v in the presence

of a field Fx is written as

f v(~k) = f0(Ev(~k))− eFxg
v(~k) , (19)

where f0(E) is the equilibrium Fermi-Dirac distribution function, x ∈ {l, t} is either the

longitudinal or the transverse direction of the valley and ~k = (kl, kt) is the wavevector in

the valley coordinate system. Eq. 19 is a definition of gv(~k), which is the unknown function

of the linearized BTE problem. For a two-dimensional system the linearized BTE can be

written as [35]

gv(~k)

(
1

2πh̄

∑
w

∫
~k′

Λv,w(~k, ~k′)δ[Ew(~k′)− Ev(~k)∓ h̄ωph] ~dk′

)
− 1

2πh̄

∑
w

∫
~k′

Λv,w(~k, ~k′)gw(~k′)δ[Ew(~k′)− Ev(~k)∓ h̄ω] ~dk′ = vvx(~k) ,

(20)

where vvx is the x component of the group velocity of valley v and, for convenience of notation,

we have introduced the quantity

Λv,w(~k, ~k′) = |M v,w(~k, ~k′)|2
[

1− f0(Ew(~k′))

1− f0(Ev(~k))

]
. (21)
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To numerically solve Eq. 20, we employed the discretization scheme introduced in Ref. 35:

~k is discretized according to a uniform angular step ∆β and also a uniform energy step.

The discrete values kv,r,d of the wave-vector magnitude correspond to one of the discrete

energy values and the generic discrete wave-vector ~kv,r,d = (kv,r,d, d∆β) is identified by the

magnitude kv,r,d and the angle d∆β (with d being a positive integer number). For each

scattering mechanism, by converting the integral over ~k in an integral over the energy and

the angle β and then using the above mentioned discretization, Eq. 20 can be rewritten as:

g(kv,r,d)

[
∆β

2πh̄

∑
w,r′,d′

Aw,r′,d′

v,r,d δw,r′,d′

v,r,d

]
− ∆β

2πh̄

∑
w,r′,d′

Bw,r′,d′

v,r,d g(kw,r′,d′)δ
w,r′,d′

v,r,d

=
vx(kv,r,d)f(E(kv,r,d))[1− f(E(kv,r,d))]

kBT
.

(22)

Eq. 22 is a linear problem for the discretized unknown values g(kv,r,d) written in terms of

the coefficients Aw,r′,d′

v,r,d and Bw,r′,d′

v,r,d defined as

Aw,r′,d′

v,r,d = kw,r′,d′

[
dE(kw,r′,d′)

dk

]−1

× |M v,w(kv,r,d, kw,r′,d′)|2
[

1− f0(E(kw,r′,d′))

1− f0(E(kv,r,d))

]
, (23)

Bw,r′,d′

v,r,d = kw,r′,d′

[
dE(kw,r′,d′)

dk

]−1

× |M v,w(kv,r,d, kw,r′,d′)|2
[
f0(E(kv,r,d))

f0(E(kw,r′,d′))

]
, (24)

where the non-zero entries of the matrix representing the linear problem are governed by

the Kronecker symbols δw,r′,d′

v,r,d , that are defined so to enforce energy conservation [35].

Eq. 22 has been written for a single scattering mechanism. In order to accommodate

several scattering mechanisms in our calculations, we do not resort to an approximated

treatment based on the Matthiessen rule [50], but instead follow Ref. 35 and notice that

Eq. 22 can be written in the concise matrix notation ¯̄M (s)ḡ = Ḡ, where ¯̄M (s) is a matrix

specific of the scattering mechanisms s, ḡ is the unknown vector and Ḡ is the vector at the

right hand side of Eq. 22 and consisting of known quantities. Hence the unknown vector

ḡ corresponding to several scattering mechanisms can be obtained by solving the linear

problem [
NSC∑
s=1

¯̄M (s)

]
ḡ = Ḡ , (25)

where Eq. 22–Eq. 24 will totally define the entries of the matrix ¯̄M (s) for each scattering

mechanism.
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V. RESULTS AND DISCUSSIONS

Fig. 4 shows the energy contours of the conduction-band in the first BZ for strained single

layer MoS2. In an unstrained material the lowest and the second lowest minimum in the

conduction band are denoted as K-valley and Q-valley, respectively. The 6 Q-valleys are

degenerate for unstrained and biaxial strain conditions. With the application of uniaxial

strain, however, they split into 4 QA-valleys and 2 QB-valleys with different effective masses

and energy minima. Fig. 5 illustrates the bandstructure of unstrained and strained single

layer MoS2 including K, QA, and QB valleys. Under compressive strain one of the QA or QB

valleys becomes the lowest valley.

The energy distance between these K-valley and Q-valley for unstrained material is eval-

uated to be 160 meV, in agreement with Ref. 40. Tensile strain increases this energy

distance, which is instead reduced by a compressive strain. In particularly, a relatively

large compressive strain lowers the energy of Q-valley so that it becomes the lowest valley

as shown in Fig. 6(a)-(c). Here we can anticipate that, while under tensile strain one can

neglect the scattering between Q and K-valleys, under compressive strain this type of scat-

tering can significantly affect the mobility. Assuming a non-parabolic dispersion relation

E(1 + αE) = h̄2k2
l /2m

∗
l + h̄2k2

t /2m
∗
t , the longitudinal m∗l and transverse m∗t effective mass

and also the non-parabolicity factor α are extracted from the DFT-calculated electronic

bandstructure and reported in Fig. 6(d)-(f). As can be seen in Fig. 6(a)-(c), under com-

pressive uniaxial strain the energy minima of all K- and Q-valleys are quite close, while at

large compressive biaxial strain the K-valley lie at higher energy and their contribution to

mobility can be neglected.

We compare in Table IV our calculated mobilities at various carrier concentrations with

the experimental data reported in Ref. 51 for unstrained single-layer MoS2 embedded be-

tween SiO2 and HfO2 with impirity density 4 ×1012. At T = 100 K the effect of piezoelectric

can be ignored [42]. Very good agreement with experimental data validates the bandstruc-

ture and mobility models employed in this work.

The strain-dependency of intrinsic phonon limited mobility is presented in Fig. 7(a).

Apparently, the effects of compressive and tensile strain on mobility are very different, which

can be mainly explained by considering the role of inter-valley scattering. For example,

with tensile strain the minimum energies of QA and QB-valleys are much higher than that

12



of K-valley, which suppresses inter-valley scattering. Under compressive strain, instead, the

inter-valley scattering cannot be neglected because of the smaller energy difference between

these valleys. With tensile biaxial strain, the mobility increases because of the reduction of

the effective mass and also the increase of the energy difference between K and Q-valleys,

which results in the reduction of the inter-valley scattering rate. With a tensile biaxial

strain of 5% the phonon limited mobility becomes 75% higher than that of unstrained

material. In contrast, a compressive biaxial strain of 0.8% strongly reduces the mobility

due to the reduction of energy difference between K and Q-valleys (see Fig. 6(a)) and

increased inter-valley scattering. With further increase of compressive biaxial strain, Q-

valleys become the lowest ones and thus dominate the mobility. At a strain value of about

2.5% the contribution of K-valleys to mobility becomes negligible and the mobility behavior

is completely determined by the Q-valleys. Longitudinal and transverse effective masses

of Q-valleys are not equal and are somewhat changed by strain, however, the different

angular dependency of mobility along the armchair and zigzag direction tends to compensate

the changes of effective masses and the overall mobility remains nearly constant at larger

compressive strain values.

Under tensile uniaxial strain the mobility is hardly affected by a strain along the zigzag

direction, while it increases for strain along the armchair direction. In both cases the vari-

ation of the effective mass and non-parabolicity factor with strain determine the mobility

behavior. Under a compressive uniaxial strain along the armchair direction, QA becomes

the lowest valley, while for a strain along the zigzag direction QB is the lowest one. These

results emphasize that the contribution of both QA and QB valley should be included for an

accurate calculation of mobility. Under a compressive strain of about 1.5% the mobilities are

strongly reduced, but they remain nearly constant for larger strain magnitudes. Moreover,

we notice that for a strain along the zigzag direction, the mobility along the strain direction

becomes slightly larger than the mobility in the armchair direction.

Fig. 7(b) reports the mobility in the presence of intrinsic phonon and charged impurity

scattering. The top and bottom oxide are assumed to be SiO2 and both carrier and impurity

concentrations are 1012 cm−2. Except for a global reduction of the mobility, the behavior

of the mobility with strain is similar to Fig. 7(a) corresponding to phonon limited mobility.

The results presented in Fig. 7(c) correspond to the same parameters as in Fig. 7(b), except

for a reduction of carrier concentration to 1011 cm−2. As the carrier concentration decreases

13



the effect of static screening becomes weaker and the mobility is further reduced. Fig. 7(d)

illustrates the mobility as a function of strain with the same parameters used in Fig. 7(b),

expect for the top and bottom gate oxide which is Al2O3. A high-κ dielectric implies a larger

dielectric screening and increases the mobility. Under this condition, with a tensile biaxial

strain of 5% and a tensile uniaxial strain of 5% along the armchair direction the mobility

increases by 53% and 43%, respectively, compared to an unstrained single-layer MoS2. For a

better comparison, Fig. 8 shows the room temperature mobility versus carrier concentration

and also versus the dielectric constant for the unstrained material and for 5% tensile strain

in either a biaxial or a uniaxial configuration along the armchair direction with an impurity

density equal to 1012 cm−2. As can be seen in Fig. 8(a), because of screening the mobility

increases with the carrier concentration for both unstrained and strained cases. Fig. 8(b)

indicates that the strain induced mobility enhancement with high-κ dielectric materials is

slightly larger than that with low-κ materials.

The effect of unscreened and screened remote phonon scattering on the mobility of un-

strained and 5% biaxial strained single layer MoS2 are compared in Fig. 9. Except for a

global increase of mobility values. The mobility dependence on the dielectric constant κ is

not significantly affected by the screening of SO phonons. As can be seen, for relatively small

κ values, mobility improves with increasing κ because of the dielectric screening of charged

impurities [43]. At high κ values, however, the mobility decrease with increasing κ because

the corresponding smaller SO phonon energies (see Table III) tend to increase momentum

relaxation time via SO phonons. For the conditions considered in Fig. 9(temperature, carrier

and impurity concentrations, and semi-infinite dielectrics with SiO2 as the bottom oxide),

AlN appears to be the optimal top dielectric material for strained and also unstrained single

layer MoS2. Fig. 10 shows the temperature dependency of the mobility for unstrained and

5% biaxial strain with HfO2 as the top oxide. As expected the effect of inelastic remote

phonons increases with temperature for both unstrained and strained cases. Therefore, it is

expected that the optimal material as a top dielectric for temperatures above(bellow) 300

K, should have a lower(higher)-κ compared to AlN.
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VI. CONCLUSION

A comprehensive theoretical study on the role of strain on the mobility of single-layer

MoS2 is presented. DFT calculations are used to obtain the effective masses and energy

minima of the contributing valleys. Thereafter, the linearized BTE is solved for evaluat-

ing the mobility, including the effect of intrinsic phonons, remote phonons, and screened

charged impurities. The results indicate that, a tensile strain increases the mobility, while

compressive strain reduces the mobility. Furthermore, biaxial strain and uniaxial strain

along the armchair direction increase the mobility more effectively. The strain-dependency

of the mobility of MoS2 is rather complicated and strongly depends on the relative positions

of Q and K-valleys and the corresponding inter-valley scattering. The presented results pave

the way for a possible strain engineering of the electronic transport in MoS2 based electron

devices and the awareness of the quite critical mobility dependence on strain may also prove

useful in the interpretation of the electron mobility experimental data in single-layer MoS2

transistors.
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TABLE I. Deformation potentials for inelastic phonon assisted transitions in single layer MoS2.

All parameters are taken from Ref. 44.

Phonon momentum Electron transition Deformation potential

Γ K→K Dac = 4.5 eV

Γ K→K Dop = 5.8× 108 eV/cm

K K→K′ Dac = 1.4× 108 eV/cm

K K→K′ Dop = 2.0× 108 eV/cm

Q K→Q Dac = 9.3× 107 eV/cm

Q K→Q Dop = 1.9× 108 eV/cm

M K→ Q Dac = 4.4× 107 eV/cm

M K→ Q Dop = 5.6× 108 eV/cm

Γ Q → Q Dac = 2.8 eV

Γ Q → Q Dop = 7.1× 108 eV/cm

Q Q →Q Dac = 2.1× 108 eV/cm

Q Q →Q Dop = 4.8× 108 eV/cm

M Q →Q Dac = 2.0× 108 eV/cm

M Q →Q Dop = 4.0× 108 eV/cm

K Q → Q Dac = 4.8× 108 eV/cm

K Q → Q Dop = 6.5× 108 eV/cm

Q Q →K or K′ Dac = 1.5× 108 eV/cm

Q Q →K or K′ Dop = 2.4× 108 eV/cm

M Q →K or K′ Dac = 4.4× 108 eV/cm

M Q →K or K′ Dop = 6.6× 108 eV/cm
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TABLE II. Phonon energy for intra-valley and inter-valley transitions at the K, M, and Q points

of single layer MoS2 as reported in Ref. 44. As discussed in Ref. 44, the energy values for acoustic

(optical) phonon modes is the average of phonon energies of transverse and longitudinal (transverse,

longitudinal and homo-polar) modes.

Phonon mode Γ K M Q

Acoustic phonon energy [meV] 0 26.1 24.2 20.7

Optical phonon energy [meV] 49.5 46.8 47.5 48.1
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TABLE III. Parameters for the dielectric materials taken from (a) Ref. 52 and (b) Ref. 53 and

corresponding calculated SO phonon frequencies h̄ωso,tox and h̄ωso,box. In all of the cases an SiO2

bottom oxide is assumed.

Top oxide dielectric material SiO
(a)
2 BN(b) AlN(a) Al2O

(a)
3 HfO

(a)
2 ZrO

(a)
2

ε0tox 3.9 5.09 9.14 12.53 23 24

ε∞tox 2.5 4.1 4.8 3.2 5.03 4

ωTO,tox [meV] 55.6 93.07 81.4 48.18 12.4 16.67

ωso,tox [meV](Evaluated in this work) 69.4 100.5 104.3 83.9 21.3 30.5

ωso,box [meV](Evaluated in this work) 69.4 60.1 58.0 54.2 61.1 62.9
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TABLE IV. Comparison of the calculated mobility in this work with the experimental data of

Ref. 51. T = 100 K and the impurity density is 4× 1012 cm−2.

Carrier concentration [cm−2] 7.6× 1012 9.6× 1012 1.15× 1013 1.35× 1013

Calculated mobility, this work [cm2/(Vs)] 93 106 114 122

Experimental mobility [cm2/(Vs)] 96±3 111±3 128±3 132±3
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LIST OF FIGURES

Fig. 1: Schematic representation of the atomic structure of single-layer MoS2.

Fig. 2: (a) Equi-energy contours in the first Brillouin zone for the unstrained single layer

MoS2. The angle θ that describes the QA valleys orientation in ~k-space is also depicted

in the figure. It should be recalled that the zigzag direction in ~k-space corresponds to

the armchair direction in real space. (b) The bandstructure of unstrained single layer

MoS2 in the first Brillouin zone and along the symmetry directions that are illustrated

in (a).

Fig. 3: Illustration of several phonon assisted inter-valley transitions in single layer MoS2

for (a) transitions from K-valley to other valleys; (b) transitions from QA-valley to

other valleys; (c) transitions from QB-valley to other valleys. The figure also sets the

notation used in Table I and Table II to identify phonon assisted transitions.

Fig. 4: Equi-energy contours for single layer MoS2 under: (a) compressive biaxial strain;

(b) tensile biaxial strain; (c) compressive uniaxial strain along the armchair direction;

(d) tensile uniaxial strain along the armchair direction; (e) compressive uniaxial strain

along the zigzag direction; (f) tensile uniaxial strain along the zigzag direction. (g)

Extracted effective mass of K-valley along all directions in polar coordinate for un-

strained MoS2 and under tensile biaxial and uniaxial strain along armchair and zigzag

directions. The nearly circular shape of the effective mass plot justifies the assumption

of isotropic bandstructure. The strain magnitude is 4% in all strained cases. The lon-

gitudinal and transverse effective masses of Q-valleys vary with the strain conditions.

Fig. 5: The band structure of unstrained and strained single layer MoS2. BI: biaxial strain,

UA: uniaxial strain along armchair direction; UZ: uniaxial strain along zigzag direction.

The strain magnitude is 4% in all strained cases.
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Fig. 6: The minimum energies of valleys (solid-lines) and the angle θ (dotted lines) between

the longitudinal direction of QA valleys and zigzag direction in k-space as illustrated

in Fig. 2(a) under: (a) biaxial strain; (b) uniaxial strain along the armchair direction;

(c) uniaxial strain along the zigzag direction. The θ angle in Fig. 6(a)-(c) corresponds

to the QA valley indicated in Fig. 2(a), and the θ angle of the other QA valleys can

be inferred from symmetry considerations. The θ angle for QB valleys has a negligible

dependence on strain (not shown) and it is approximately zero (see Fig. 2(a)). The

effective masses (solid-lines for longitudinal and dashed-lines for transverse) and the

non-parabolicity factor (α) (dotted-lines) of various valleys under: (d) biaxial strain;

(e) uniaxial strain along the armchair direction; (f) uniaxial strain along the zigzag

direction. The longitudinal and transverse effective masses of K-valley are assumed to

be equal.

Fig. 7: (a) Phonon limited mobility of single layer MoS2 as a function of strain with a

carrier concentration n = 1012 cm−2. Mobility limited by phonon and screened charged

impurity scattering with SiO2 as the gate oxide (εr = 3.9) and carrier (n) and charged

impurity concentration (nimp) for: (b) n = nimp = 1012 cm−2; (c) n = 1011 cm−2 and

nimp = 1012 cm−2. (d) Same as (b), except for the gate oxide which is Al2O3. In

the legend, BI, UA, and UZ denote biaxial strain, uniaxial strain along the armchair

direction, and uniaxial strain along the zigzag direction respectively. The subscripts A

and Z indicate the component of the mobility along the armchair or zigzag direction.

For example: UZA is the mobility along armchair direction for a uniaxial strain along

zigzag direction.

Fig. 8: (a) The mobility versus carrier concentration with and without screening for the

unstrained MoS2, for a tensile biaxial strain of 5%, and for a uniaxial strain of 5%

along the armchair direction. nimp = 1012 cm−2. (b) The mobility versus the relative

dielectric constant for unstrained MoS2 and for strain conditions as in (a). n = nimp =

1012 cm−2. The strain induced mobility enhancement is shown on the right-side of the

y-axis.
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Fig. 9: The mobility accounting for intrinsic phonon and charged impurity scattering (tri-

angle), and for either unscreened (rectangle) or screened (circle) SO phonon scattering

as a function of top oxide dielectric constant for unstrained (blue line) and 5% biax-

ial strain (red line). Numbers 1 to 6 indicate the κ value corresponding to dielectric

materials studied in this work (see also Table III). In particular, (1): SiO2, (2): BN,

(3): AlN, (4): Al2O3, (5): HfO2, and (6): ZrO2. In all cases the back oxide is assumed

to be SiO2. T = 300 K, the impurity and carrier concentrations are equal to 4× 1012

cm−2 and 1013 cm−2, respectively. These values are consistent with experimental data

reported in Ref. 51.

Fig. 10: The mobility with the inclusion of intrinsic phonon and charged impurity scat-

tering (dash line) and with the inclusion of screened SO phonon (solid line) versus

temperature for a SiO2/MoS2/HfO2 structure for unstrained (blue line) and 5% bi-

axial strain (red line). The impurity and carrier concentrations are equal to 4 × 1012

cm−2 and 1013 cm−2, respectively.
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