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Abstract
Estimation of configurational entropy from molecular dynamics trajectories is a difficult task

which is often performed using quasi-harmonic or histogram analysis. An entirely different

approach, proposed recently, estimates local density distribution around each conforma-

tional sample by measuring the distance from its nearest neighbors. In this work we show

this theoretically well grounded the method can be easily applied to estimate the entropy

from conformational sampling. We consider a set of systems that are representative of

important biomolecular processes.

In particular:

i. reference entropies for amino acids in unfolded proteins are obtained from a database of res-
idues not participating in secondary structure elements;

ii. the conformational entropy of folding of β2-microglobulin is computed from molecular
dynamics simulations using reference entropies for the unfolded state;

iii. backbone conformational entropy is computed from molecular dynamics simulations of
four different states of the EPAC protein and compared with order parameters (often used
as a measure of entropy);

iv. the conformational and rototranslational entropy of binding is computed from simulations
of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin
bound to a citrate coated gold surface.

This work shows the potential of the method in the most representative biological pro-

cesses involving proteins, and provides a valuable alternative, principally in the shown

cases, where other approaches are problematic.
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Introduction
Entropy, weighted by the system temperature and counterbalanced by enthalpy is key in pre-
dicting the outcome of natural processes through the well-known Gibbs equation. At the
microscopic level it determines the behavior of cell’s complex machinery by regulating pro-
teins’ biophysical processes, such as folding and binding. These depend on several thermody-
namic contributions to the free energy so that when the stabilization of structures causes large
decreases of the entropic contribution, its understanding becomes essential to streamlining and
controlling such processes.

Notwithstanding the efforts in this field the experimentally available information about the
enthalpy and entropy of processes involving proteins or peptides is still not completely under-
stood because it arises from several different contributions (electrostatic, hydrophobic, vibra-
tional and from more extended molecular flexibility) which are difficult to disentangle.

In the following the configurational entropy will be addressed and the entropy arising from
the different conformations of a molecule will be referred to as “conformational entropy” as
usual in protein thermodynamics literature.

NMR has given a first idea of how relevant can conformational entropy be in protein ligand
association by linking entropy changes to changes in measured order parameters (from protein
relaxation data) or more generally protein dynamics [1, 2], but the quantification suffers from
modeling and from the atomic probes available which are typically backbone HN internuclear
vectors. More recently an NMR experiment able to provide entropy variations corresponding
to global or partial unfolding has been proposed [3, 4], but still, although local processes can be
addressed, it is impossible to disentangle conformational from solvation entropies.

Theoretical methods have been recently reviewed [5–7] in the context of protein-ligand
complex formation and an in-depth discussion of the thermodynamics of binding, including a
discussion of all entropic contributions, has been given by Gilson, McCammon and coworkers
[8, 9].

In this respect molecular dynamics simulations have been seen as a way to compute confor-
mational entropic contributions from the analysis of sufficiently long trajectories. Unfortu-
nately the comparison with experimental data in this field is not straightforward because as the
temperature is varied (as done in experiments aiming at measuring entropy) hydrophobic and
electrostatic solvation energies are significantly changed. Also, at higher temperature protein
structure becomes more loose and more conformational space may become available beyond
what expected e.g. for an ensemble of oscillators.

Methodologies developed or at least fully exploited more or less recently could change the
situation and make it possible to assess the various contribution to the folding or binding
entropy from molecular dynamics simulations. In particular:

1. solvation terms could be obtained by the accurate implicit solvent representation based on
the Onufriev Bashford and Case approximation to volume integrals [10], which allows also
to speed up significantly simulations;

2. advanced sampling methods, reviewed by Adcock and McCammon [11] which allow on
one hand a better sampling of the conformational space of the simulated systems and on the
other hand, with some methodologies, to assess the effect of temperature on the conforma-
tional space of the molecule under study [12];

3. and lastly, the kth nearest-neighbor estimate of entropy for a general probability distribution,
proposed by Demchuk and collaborators [13] and developed by Hnizdo, Gilson and others
[14–16], that allows an efficient estimation of entropy for multivariate probability
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distributions. The latter method has been applied mainly by the developers and few other
groups [14–23].

In this work we explore the application of the nearest-neighbor method to estimate the
entropy for a few systems that are representative of important biomolecular processes like fold-
ing, allosteric transitions and ligand binding. Although results cannot be directly compared
with experimental data, they agree with previous theoretical estimates and in all cases are in the
expected range.

The present work adds to the few works that make use of the approach of Demchuk and
coworkers, showing its potential in most common applications and develops to some extent
the subject by addressing the entropy of folding and the rototranslational entropy loss upon
binding.

The paper is organized as follows:

i. methods are first reviewed and linked to the formalism used here;

ii. reference entropies for amino acids in unfolded proteins are obtained from a database of
residues not participating in secondary structure elements;

iii. the conformational entropy of folding of β2-microglobulin [24–26] is computed from
molecular dynamics simulations after subtraction of the reference entropies for the
unfolded state;

iv. backbone conformational entropy is computed for molecular dynamics simulations of four
different states of the EPAC protein [2, 27, 28] and compared with order parameters (often
used as a measure of entropy) and overall conformational entropy;

v. the conformational and rototranslational entropy of binding is computed from simulations
of 20 tripeptides bound to the peptide binding protein OppA [29, 30] and of β2-microglobu-
lin bound to a citrate coated gold surface.

vi. finally the results and the comparison with experimental data are discussed.

The main conclusion of this work is that for a set of systems representative of important bio-
molecular processes, where other approaches to the computation of entropies are problematic,
the method based on the nearest neighbor can be readily applied to molecular dynamics trajec-
tory as a valid alternative to other widely used methods.

Materials and Methods

The thermodynamic potential of a solvated molecule
In this subsection we recall the basic equations for the thermodynamic potential of a solvated
molecule, following the book of McQuarrie [31] and the review of Gilson et al. [8] and Roux
and Simonson [32]. We will use in the following molecular instead of molar quantities.

The standard chemical potential is expressed in terms of configurational integrals:

m0
A ¼ �kBT log

8p2

C0

Y 2pmA
i kBT
h2

� �
3

2

Z
expð�bðUð~rAÞ þ DGsolvð~rA;TÞÞÞd~rA

� �
þ P0 �VA

NAv

ð1Þ

with b ¼ 1
kBT

, where kB is the Boltzmann constant and T is the temperature, h is Planck’s con-

stant,mA
i the mass of atom i of the solute and solute (and solvent, in the following) coordinates

are indicated by~rA (and~rS, respectively). P
0 is the standard pressure, �VA the partial molar vol-

ume of the solute, C0 is the standard 1 M concentration and NAv is Avogadro’s number.
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The solvation potential of mean force DGsolvð~rA;TÞ is defined by the configuration integral:

expð�bDGsolvð~rA;TÞÞÞ ¼
R
expð�bðUASð~rA;~rSÞ þ USð~rSÞÞd~rSR

expð�bUSð~rSÞÞd~rS
ð2Þ

In what follows we will not consider the kinetic energy terms in the partition functions
because they will cancel in processes involving isolated proteins, and the term P0 �VA will be
neglected because it is typically small for proteins and its variations upon conformational changes
are negligible. For instance upon folding protein volume changes by less than 0.5 percent at stan-
dard pressure [33], which amounts to a mean free energy variation of just about 20 J/mol for a
protein of 50 kDa. The picture would obviously change completely at high pressures.

We may use the probability distribution

pð~rA;TÞ ¼
expð�bðUð~rAÞ þ DGsolvð~rA;TÞÞÞ

ðR expð�bðUð~rAÞ þ DGsolvð~rA;TÞÞÞd~rAÞ
ð3Þ

to express the entropy as:

S ¼ �kB

Z
pð~rA;TÞ log ðpð~rA;TÞÞd~rA �

Z
@DGsolvð~rA;TÞ

@T
pð~rA;TÞd~rA ð4Þ

The first term is a classical conformational entropy term for the solute.
The second term is the entropy due to the solute-solvent interactions.
Note that the latter term cannot be simply estimated from the known or modeled depen-

dence of DGsolvð~rA;TÞ on the temperature because it depends also on the conformational space
available which depends in turn on the temperature.

In the present work we are interested in the characterization of the first term, i.e. the entropy
term arising from the conformational freedom of the protein.

Calculation of entropy from samples in conformational space
We follow here the approach of Singh et al. [13] developed and applied by Hnizdo, Gilson and
coworkers [14, 15, 34, 35]. The approach considers n configurational samples for a random s-
dimensional variable distributed according to the probability density p(x1, x2, . . ., xs) (or pð~xÞÞ for
short). Given an s-dimensional sphere of radius r centered at~x a reasonable estimate for the local
probability density (p̂ð~xÞ) may be expressed by counting howmany samples are found inside the
volume of the sphere Vr. If this number is k, then p̂ð~xÞ is reasonably defined by the equation:

p̂ð~xÞVr ¼
k
n

ð5Þ

Note that in general Vr depends on the metric defined on the space which is considered. For
euclidean distances the volume is given by:

V̂ r ¼
p

s
2 rs

G
s
2
þ 1

� � ð6Þ

where Γ() is the Γ function.
With an estimate for the density the entropy can be estimated (we omit here the kB factor

for generality) as the average of log pð~xÞ:

S ¼ � R
pð~xÞ log pð~xÞ � � 1

n

X
i

log ðp̂ð~xiÞÞ ð7Þ
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For each sample i we take a sphere of radius ri and count the number of samples ki found in the
sphere. By substituting Eqs 5 and 6 into the above equation we can reasonably approximate
entropy by:

S � 1

n

X
i

log
np

s
2 rsi

kiG
s
2
þ 1

� �
0
B@

1
CA ¼ s

n

X
i

log ðriÞ þ log
np

s
2

G
s
2
þ 1

� �
0
B@

1
CA� 1

n

X
i

log ðkiÞ ð8Þ

In the approach described by Singh et al. [13] the radius of the sphere centered about each con-
formational sample is taken as the distance to the k-th nearest neighbor and ki is therefore the
same for all samples. The above heuristic equations are corrected as to provide an unbiased
estimator of the entropy for the probability distribution pð~xÞ:

ŜðnÞ
k ¼ s

n

X
i¼1;n

logRi;k þ log
np

s
2

G
1

2
sþ 1

� �� Lk�1 þ g ð9Þ

In the above equation Ri,k is the distance of the i-th sample from its k-th nearest neighbor, Γ()
is, as before, the Γ function, γ is Euler’s constant (0.5772. . .) and Lk−1 is defined as: L0 = 0,
Lj ¼

P
i¼1;j

1
i
.

It is easy to recognize the similarity of the heuristic and exact equation.

Note that Ri,k has a unit of measure and therefore the numerical value of ŜðnÞ depends on the
latter unit. This is consistent with the fact that in the equation for the entropy S = −kB

R
plog(p)

the probability density p has units of measure.
To illustrate the symbols in the above equation consider a long molecular dynamics trajec-

tory for a small molecule possessing only two rotatable bonds. The i-th (out of 1000) sample of
the conformational space could be represented by the 2 torsional angles describing its confor-
mation (assuming rigid bonds and angles) taken from the i-th snapshot. In this case the
dimensionality of the system s would be 2 and the number of samples n would be 1000.

The distance d of each sample from all other samples would be computed according to the
metric chosen (for torsional angles this is described below), and ranked, e.g. for the i-th snapshot
Ri,k would be then the k-th shortest computed distance. For each choice k we could use Eq (9) to
estimate the configurational entropy of the molecule. In the following, unless otherwise stated,
we will use k = 1, i.e. for each sample we consider the distance from its first nearest neighbor.

Limitations in the sampling capabilities of molecular dynamics
simulations
A caution word is due about the possibility of sampling the conformational space of a molecule
by molecular dynamics simulations. Indeed typical simulation times extend up to a hundred
nanoseconds. It is likely that on this time scale sampling of the conformational space will not
be complete. This consideration will apply to the approach used in this work as well as to other
approaches found in the literature.

When comparing the entropy of different macrostates of the same molecule the effect of
neglected accessible conformational space could be greatly reduced if the missing portion of
sampled conformations is similar in the two simulations.

We will not address the issue here in detail as it affects similarly all methods that estimate
conformational entropy from molecular dynamics simulations snapshots. For the shortest sim-
ulations we will only check convergence by considering the first and the last half of the
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simulations and compare the results obtained from the two subsets of snapshots. Even such
test does not guarantee that other conformations will not be accessible in longer simulation
times.

The main interest here however is a proof of principle and to show that even from standard
simulations it is possible to get valuable information about conformational entropy.

Calculation of the conformational entropy from molecular dynamics
simulations
A widespread approach to compute the conformational entropy of a protein uses semi-classical
quasi-harmonic analysis [36–41] or, in a refined approach, fitting probability distributions (see
e.g. [42, 43]). Here we assume that the largest changes in the conformational entropy of a pro-
tein in most interesting biological processes arise from energetic restraints in the torsional free-
dom of backbone and sidechain groups. For this reason we consider torsional angles as
variables and we neglect bond lengths and bond angles. The latter approximation amounts to
assuming that the torsional degrees of freedom are decoupled from bond and angle degrees of
freedom, which is mostly a good approximation for proteins, and that the vibrational partition
function of bonds and angles is not significantly changed by conformational changes [38].

The latter observation might be system dependent. To give an estimate of the quality of this
approximation, we considered the particular case of the residue undergoing the largest changes
in conformational freedom between the holo/active and apo/inactive EPAC simulations
described later. We computed the entropy using the method of Schlitter [40] as implemented
in the software Carma [44] from molecular dynamics trajectories fixing or not the bond lengths
and angles to their equilibrium values. In this way we were able to assess the bond and angle
relative contributions to the entropy. The change in entropy between holo/active and apo/inac-
tive, after fitting the residue to the first snapshot, was 0.264 kJ/(mol K) for free covalent geome-
try and 0.279 kJ/(mol K) for fixed covalent geometry. The effect appears therefore rather
limited, compared to the overall computed entropy or the effect of the fitting reference chosen.
This is in line with the observed changes in bond length and angle variances (about 6% with
different signs). Note that the computed entropy change appears artifactually very large, possi-
bly as a consequence of the adopted harmonic oscillator model.

We consider only the torsional degrees of freedom involving heavy atoms or polar hydro-
gens of serine, threonine, tyrosine, whereas proline, aromatic rings, amide and guanidinium
moieties are taken as rigid. Other terminal hydrogens that could define torsional angles, but
possess ternary symmetry, i.e. methyl and amino groups are considered free to rotate (or more
generally we assume that their conformational distributions are not affected by the processes
considered here) and therefore the contribution to the entropy of any conformational change
will be zero for these moieties. For torsional angles distances we use the distance d1 (d for sim-
plicity here) studied in the work of Hnizdo and coworkers [20], which amounts to the circular

distance in the torsional angle space. For two angular vectors~y1 ¼ ðy11; y12; :::y1nÞ and~y2 ¼
ðy21; y22; :::y2nÞ of n angles each, and with periodicities Θi the distance is defined as:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1;n

Yi

2
� jYi

2
� jy1i � y2ijj

� �2
s

ð10Þ

with θ1i and θ2i reported in the interval ½� Yi
2
; Yi

2
� It must be noted that on changing from carte-

sian to BAT (bond, angle, torsion) coordinates the Jacobian of the transformation enters the
configurational integral [8, 45]. Under the assumption of rigid bond and angle geometry this
extra term cancels out between reference (or initial) and final state of the system. The proof of
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independence of the Jacobian from the configuration has been given by Go and Scheraga [46]
cited in ref. [45] for a linear chain. The proof can be extended to a branched chain and for an
arbitray atom taken as the reference point for global translation. For this reason it will not be
further considered here.

Nearest neighbor estimate of entropy is superior to classical harmonic
analysis
It might be questioned whether the approach used here is needed at all when other methods
are widely used. Most widely used methods are based on the quasi-harmonic approximation.
The limitations and remedies to the quasi-harmonic approximation have been thoroughly
described by McCammon and coworkers [42, 43] and Numata et al. [18]. We will not deal with
this subject here but just provide a simple example demonstrating the issue.

If a system freely moving in one-dimension is considered and the range of movement is
restricted, the quasi-harmonic approximation will give the correct change of entropy upon
restriction. Indeed the square root of the variance for a uniform distribution is proportional to
the range of the distribution itself. However it is sufficient to consider a toy model where we
have a single freely rotatable bond (torsion angle θ) with three atoms fixed and the end atom
moving, to see that the quasi-harmonic approximation breaks down.

We consider the unrestricted rotation as the reference state (probability density 1
2p and a

restricted rotational macrostate where the rotational angle is freely varying between θ1 and θ2
with Δθ = θ2 − θ1. The entropies of the two probability distributions are:

Sf ¼ �kB

Z
pf log ðpf Þ ¼ kB log ð2pÞ

and

Sr ¼ �kB

Z
pr log ðprÞ ¼ kB log ðDyÞ

with the difference in entropy from the free to the restricted macrostate being

DS ¼ �kB log
2p
Dy

� �

When we compute (classical) entropies using the harmonic approximation we must compute
the variance-covariance matrix for two coordinates. The analysis will result in two harmonic
oscillators whose classical entropy change from free to restricted macrostate is overestimating
the true entropy for all choices of Δθ. In particular for a reasonable restriction to an interval of
Δθ = π/3 the entropy is overestimated roughly by a factor 2, whereas it is estimated with an
average root mean square error of 5 percent by the nearest neighbor method with just one hun-
dred samples.

Calculation of unfolded proteins conformational entropy from database
structures
Crystallographic structures of proteins are generally the most representative conformations
adopted by proteins in their range of stability, and for this reason are considered a good repre-
sentation of the native protein ensemble. However, the conformational preferences of amino
acids observed experimentally in the folded structure are not excluded from the conforma-
tional diversity of the set of partially folded and unfolded conformations that proteins can
adopt. Indeed it is reasonable to assume that a reversible process like folding (at least for small
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proteins) simply freezes a set of amino acid conformations which can be adopted in the
unfolded protein ensemble.

This principle has driven the refinement of available forcefields [47–49] and received an
important validation from long time molecular dynamics simulations where the superiority of
forcefield refined against experimental torsion angles distributions, and further refined after-
wards, were able not only to fold small protein domains, but also to reproduce their folding
rates [49, 50].

Based on the above considerations, we collected all possible conformations of all residues
not directly involved in secondary structures of proteins, thus avoiding artifacts due to correla-
tions, in the culled pdb dataset (3600 proteins) [51], as they provide samples of the conforma-
tional space available to aminoacids in their unfolded state, averaged over sequence details.
This procedure assumes the presence of an identical interaction between the neighboring resi-
dues (i.e. the rest of the chain) and the unfolded and/or the database samples.

Therefore additional correlations between aminoacids in the unfolded state are not
considered.

It should be noted that obtaining the same information from molecular dynamics simula-
tions would not be easy because of the presumably largely asymmetric simulation box.

Obviously the accessible conformational space depends on the temperature, but it is reason-
able to expect that this dependence is limited for stable proteins in their stability range. Indeed
we can consider that for each torsional angle there is a number of preferred values (rotamers)
and that the range of values explored about the most frequent ones increases with temperature.
This situation is very similar to that of the harmonic oscillator. For a harmonic oscillator with
frequency ν the vibrational partition function qvib, the corresponding entropy Svib and its deriv-
ative with respect to temperature, in the high temperature limit are given by:

qvib ¼
kBT
hn

ð11Þ

Svib ¼ kB þ kB log
kBT
hn

� �
ð12Þ

@Svib
@T

¼ kB
T

ð13Þ

If we approximate the effect of temperature on the conformational landscape of unfolded pro-
teins with that of a collection of N harmonic oscillators, where N is the number of torsional
degrees of freedom we obtain:

@S
@T

� NkB
T

ð14Þ

Wemay therefore expect that the dependence of the computed entropy on the temperature
would be rather mild. We consider a typical range of temperatures of 30 K around 300 K,
where most proteins are stable. To avoid misunderstanding we remark that here we are consid-
ering the effect of temperature on the variability of each single rotamer, i.e. about a well defined
torsional energy minimum, and not different rotamers which are already sampled in the
dataset.

The expected change in the entropy (per oscillator) corresponding to changes in distribu-
tion about the minimum energy rotamers due to temperature are limited by kB

30
300

which

appears negligible compared to the overall entropy associated with the loss of conformational
freedom.
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All database proteins have been processed adding hydrogens by the program Reduce [52].
Torsional angles have been computed using the programMolmol [53]. Only rotatable torsional
angles involving four heavy atoms or three heavy atoms and a polar hydrogen have been
considered.

For polar hydrogens only residues involved in hydrogen bonds have been considered in
order to avoid large artifactual entropy contributions from the preference in trans conforma-
tion for the program Reduce in the absence of favorable interactions. This choice was adopted
for tyrosines, serines, threonines and cysteines. Cysteines involved or not in disulfide bridges
were considered separately for analysis.

Distances in the torsional angles space are computed by taking euclidean distances in the
periodic boundary n-dimensional angular space. In order to reduce the large conformational
space, torsion angles involving different aminoacids have been considered as independent and
therefore entropies are computed on a residue basis. The entropy corresponding to each ami-
noacid type, whose conformation is defined by the n–dimensional vector of torsion angles θ, is
calculated with reference to the uniform distribution in the angular space, i.e.:

pref ð~yÞ ¼
Y
i¼1;n

1

Yi
ð15Þ

Sref ¼ kB
X
i¼1;n

log ðYiÞ ð16Þ

where Θi is the periodicity of the i-th torsional angle, typically 2π.
Note that the volume of a n-dimensional sphere enters Eq (9) [34] and therefore suitable

corrections to the equation should be applied when considering distances larger than half of
the minimum periodicity of the torsional angles. This was not the case for our analysis because
of a sufficiently large number of samples, leading to short nearest neighbor distances. Exact for-
mulae have been reported by Hnizdo and coworkers [20].

The conformational entropy of folding
Wildtype β2-microglobulin was simulated for 30 ns, after equilibration at 320 K as previously
described [54].

The entropy for each set of conformations was computed using Eq (9) with reference to the
uniform torsion angle distribution exactly as in the previous section, taking 300 snapshots
from the 30 ns molecular dynamics simulation. Then, the reference entropy computed from
residues in the database representing unfolded amino acids was subtracted from the computed
entropy, and the difference was taken as the conformational entropy of folding.

The conformational entropy of binding
The calculation of the binding free energy of association of biomolecules is very complex due
to the large number of interacting bodies. In order to understand and possibly design novel
interactions the free energy of binding is often approximated by the sum of different contribu-
tions, under the assumption that they can be decoupled. A derivation of this approach and an
exhaustive discussion of its limitations has been given by Gilson et al. [8]. Typically the atten-
tion is focused on solute degrees of freedom and solvent degrees of freedom are taken into
account using the potential of mean force [32]. Evaluation of the entropy loss upon interaction
is not straightfoward because the potential of mean force depends implicitly on the
temperature.
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We take the derivative of the Gibbs’ free energy:

S0AþB!AB ¼ � @DG0
AþB!AB

@T
ð17Þ

where:

DG0
AþB!AB ¼ m0

AB � m0
A � m0

B ð18Þ

The choice of coordinates must allow easy calculation of the probability distribution p(). In this
respect, following Gilson et al. [8], we choose the cartesian coordinates~rA and~rB of a reference
atom on molecules A and B, respectively and other two atoms, assumed to be rigidly positioned
with respect to the formers, on each molecule, to define the overall rotation state of the
molecule.

We use as a criterion that the choice of the atoms must be the most insensitive with respect
to dynamics in the bound state. This is done in order to minimize the correlation of these coor-
dinates with other degrees of freedom, and therefore to decouple them from internal degrees of
freedom.

For the complex we consider the coordinate system defined for molecule A as the reference
one and we define the position of molecule B relative to~rA, i. e. the position of molecule B is
defined by~r 0B ¼~rB �~rA. The entropic contribution due to loss in rototranslational freedom is
computed considering that all positions and orientations are still possible for the complex
whereas the position and the orientation of molecule B is restricted, with respect to the position
and orientation of the reference system of coordinates of molecule A.

Let us now denote by ξA and ξB the overall rotational degrees of freedom and by~xA and~xB

the internal degrees of freedom.
With this notation the entropy of complex formation may be then written as:

SAþB!AB ¼ �kB
R
bound

pð~r 0B; xB;TÞ log ðpð~r 0B; xB;TÞ � 8p2V0Þd~r 0BdxB ð19Þ

�kB
R
bound;internal

pð~xA;~xB;TÞ log ðpð~xA;~xBÞÞd~xAd~xB ð20Þ

þkB
R
free;internal pð~xA;TÞ log ðpð~xAÞÞd~xA ð21Þ

þkB
R
free;internal

pð~xB;TÞ log ðpð~xBÞÞd~xB ð22Þ

�R
bound

@DGsolvð~xA;~xB;TÞ
@T

pðxA;~xB;TÞ ð23Þ

þR
free

@DGsolvð~xA;TÞ
@T

pðxA;TÞd~xA
ð24Þ

þR
free

@DGsolvð~xB;TÞ
@T

pðxB;TÞd~xB
ð25Þ

where the integrals over the bound state require a definition of the bound state, which is typi-
cally easy to attain if the bound state has a deep energy minimimum. Otherwise it may be cho-
sen as to adhere to experimental signal distinguishing bound from free molecules.

The first term of the above equation is difficult to treat and it has been traditionally esti-
mated assuming that rotational and translational degrees of freedom are independent. The
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latter assumption seems however poorly grounded and mostly motivated by the difficulty of
treating the two degrees of freedom together. We will follow however the same approach here
for simplicity.

Note that however, in order to use a distance based estimation of the entropy, a distance
between rotation states must be defined. Rotation states are denoted equivalently by quaterni-
ons or 3 × 3 rotation matrices. There are several metrics which can be defined in the space of
rotations [55]. It must be noted that Eq (9) assumes an euclidean distance in a cartesian space
and therefore the number of points of randomly distributed n-dimensional variables within an

n-dimensional distance d increases as n
p
2dp

Gðp2þ1Þ.

Once a metric is defined we should compute the volume in rotation space corresponding to
each distance and substitute it in the original Eq (9).

If we consider the representation of rotations which specifies the polar and azimuthal angles
ϕ, ψ of the rotation axis and the rotation angle θ, the probability measure for a uniform distri-
bution in rotation space is that with the axis of rotation uniformly distributed over the solid
angle 4π and the rotation angle θ distributed in the range [0, π] with probability density [56]:

2

p
sin 2 y

2

� �
¼ 1

p
ð1� cos ðyÞÞ ð26Þ

The metric we have used defines the distance d between two rotations described by 3 × 3 matri-
ces R1 and R2 as:

d ¼ arccos
TrðR�1

2 R1Þ � 1

2
¼ �y ð27Þ

where Tr is the trace operator, �y is the angle of rotation about the rotation axis for the compos-
ite rotation R�1

2 R1.
With this metric the volume in rotation space is:

4p2

p

Z �y

0

ð1� cos ðy0ÞÞdy0 ¼ 4pð�y � sin �yÞ ð28Þ

Note that here we considered rotations in a range of π and not 2π to avoid double counting of
rotations, because a rotation by an angle θ about the vector~v is the same as the rotation by an
angle −θ about the vector�~v .

Comparison with other methods
Entropies were also calculated according to other methods to provide comparison. A simple
histogram method was applied where the range of the variables is divided in bins and the prob-
ability distribution is approximated as a piece-wise constant function on the bins. The constant
value of the approximated probability distribution p̂i within bin i is the ratio of the number of
counts ni in the bin over the total number of counts nc, i. e. p̂i ¼ ni

nc
. The entropy is computed as

Ŝ ¼ �P
ipilogpi with reference to the uniform distribution of the same number of counts on a

specified interval.
For translational entropies the set of vectors was histogrammed in 3D and the entropy com-

puted with respect to the standard 1 M reference state. The width of the 3D bins was 0.133 Å
×0.133 Å ×0.133 Å for the results reported here.

For rotational entropies the rotation matrices were converted into a set of three angles: two
(ϕ, ψ) to specify the rotation axis, and one (θ) to specify the rotation around that axis. θ was
allowed to vary only between� p

2
and p

2
. Since the random distribution of rotation is not

Entropy of Proteins fromMolecular Dynamics Simulations

PLOS ONE | DOI:10.1371/journal.pone.0132356 July 15, 2015 11 / 26



uniform over the three angular ranges, the range was divided in such a way that the integral
over each bin was uniform. With this prescription the three angular ranges were divided in
10 × 10 × 100 bins, respectively. The reference state was the uniform distribution of rotations.

As mentioned above, the method due to Schlitter [40] estimating entropies from the covari-
ance matrix was used as implemented in the software Carma [44]. The source code was modi-
fied as to plot the contributions of each eigenvector to the entropy.

Molecular dynamics simulations
β2-microglobulin. Molecular dynamics simulations of β2-microglobulin were performed

essentially as previously described [54]. Protons were added to the starting molecular structure
(PDB code: 3HLA, chain B) [25] using the program pdb2gmx in the GROMACS software
package [57]. Forcefield parameters (CHARMM v.27 [58] with the CMAP correction [47])
were assigned using the psfgen utility of the NAMD simulation software [59]. Ions were added
as previously described [54] and TIP3P water [60] was added using the solvate module of the
program VMD [61]. The simulation box was ca. 290000 Å3 and the number of atoms was
29638.

The temperature was set to 320 K, well below the β2-microglobulin melting temperature
(ca. 330 K), and controlled using Langevin Dynamics with a relaxation rate of 1 ps−1. The pres-
sure was set to 1.01325 bar and controlled using the Langevin Piston method [62, 63] with an
oscillation time and a decay time of 100 fs. The timestep was 1 fs for bonded interactions, 2 fs
for nonbonded interactions and 4 fs for long range electrostatic interactions.

10 ns equilibration followed by 30 ns production molecular dynamics simulations were run
using the program NAMD v. 2.9b3.

Contact analysis was performed using home-written routines defining a contact whenever
two atoms are closer than 1 Å plus the sum of their van der Waals radii [64].

EPAC. The molecular dynamics simulations of the Exchange Protein directly Activated by
Cyclic AMP (EPAC), which have been analysed in the present work, have been previously
described by Melacini and coworkers [28]. The simulated portion of the protein entails resi-
dues 280 to 612 and 643 to 990, i.e. all the catalytic region except for the flexible, unresolved,
loop 613–642 connecting the REM and the RA domains. Four EPAC states have been simu-
lated: two equlibrium simulations for the cAMP bound (holo-) active state and apo-inactive
state, and the two non-equlibrium apo-active and holo-inactive states. The simulations were
run for 60 ns and the analysis was conducted on the last 50 ns. All the details about the simula-
tions can be found in ref. [28].

OppA-tripeptide complexes. Molecular dynamics (MD) simulations were run on the free
OppA protein (pdb code: 1RKM) and its complexes with tripeptides KLK (1B9J), KIK (1B3G),
KDK (1B4Z), KNK (1B5I), KVK (1QKB), KAK (1JET), KFK (1B40), KMK (1B32), KGK
(1B3L), KSK (1B51), KQK (1B5J), KKK (2OLB), KEK (1JEU), KTK (1B52), KHK (1B3F), KPK
(1B46), KYK (1B58), KRK (1QKA), KCK (1B05), KWK (1JEV).

Crystallization water was removed, and the OppA histidines 55, 117, 142, 161, 405, 440
were protonated in all the systems. The protonation state was calculated using the program H+
+ (available at URL http://biophysics.cs.vt.edu/index.php) [65] at pH 7 and ionic strength
0.05M. The system, neutralised with NaCl was set up in a cubic box with 0.6 nm buffer around
the protein and 0.05M ionic concentration. We used amber99 force field with tip4p water [48].
The cutoff for all the energies is 1.2nm. The system energy is minimized with the steepest
descent algorithm as implemented in Gromacs. MD simulations were run for 45 nanoseconds
(timestep of 0.002ps) for the free protein, its complexes, and the free peptides. We then sam-
pled for the analysis 2,000 snapshots over the last 20ns.
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β2-microglobulin with citrate coated gold nanoparticles. The β2-microglobulin struc-
ture was taken from the NMR solution structure (PDB id: 1JNJ). All titratable protein side
chains, were assigned their standard protonation state at pH 7.7 with H++ [65] corresponding
to the experimental pH. Preliminar rigid-body docking simulations were carried out using
Brownian dynamics (BD) techniques with the ProMetCS continuum solvent model [66] imple-
mented in the SDA code (available at URL http://projects.villa-bosch.de/mcmsoft/sda/6.00/),
from which the preferred binding site of the protein towards the citrate coated gold nanoparti-
cles (cit-AuNPs) were extracted.

Temperature Replica-Exchange (T-REMD) simulations were started from the most repre-
sentative and populated complexes resulted from rigid-body BD docking. More in details, 20
ns of unrestrained T-REMD of 32 replicas covering the temperature range between 290 and
320 K [67] were run yielding an aggregated simulation time of 640 ns. All simulations were
based on the GolP [68] force field with the SPC/E water model as implemented in the GRO-
MACS package [69]. The lengths of bonds were constrained with the LINCS algorithm. Surface
gold atoms and bulk gold atoms were frozen during all simulations but gold dipole charges
were left free. Periodic boundary conditions and the Particle-Mesh-Ewald algorithm were used.
A 2 fs integration time step was used. Analysis of the trajectories was performed over the last
10 ns of simulations. More details on the method and the model for the cit-AuNPs can be
found in Brancolini et al. [70].

Results

Conformational entropy of unfolded proteins
In order to compute conformational entropy changes upon folding it is necessary to have a ref-
erence for the unfolded state. An explicit simulation of the unfolded state of a polypeptide
chain would be unpractical because of both equilibrium constant, dictating the relative popula-
tion, and kinetic constants coupled with free energy landscape, dictating the length of the simu-
lation time.

Reference entropy values computed here may be used for computing conformational
entropy differences from simulations of folded proteins, assuming, as usual, that aminoacid
conformations in the unfolded state are essentially the same for all unfolded proteins. The
assumption is in line with the typical lack of any secondary chemical shift observed in NMR
spectra of unfolded proteins [71]. Conformational entropies for unfolded proteins (with refer-
ence to uniform torsional angle distribution) have been estimated from the conformation of
aminoacids in public structural databases, as motivated in the Materials and methods section.
Residues from the culled pdb dataset [51] not involved in secondary structures were taken as
representative of unfolded conformations. The number of samples for the different aminoacids
within protein sequence is reported in Table 1, together with entropies estimated from the
nearest neighbor distances. Backbone angles ϕ or ψ were removed from the set of torsional
angles to simulate residues at N- and C-termini, respectively. The entropy computed taking
different k-nearest neighbors was reasonably consistent with the adopted choice of 1st-nearest
neighbors. We report in Fig 1 the computed entropy for the alanine residue (only two torsional
angles, ϕ and ψ, both with 2π periodicity) and those of valine, isoleucine, tryptophane and
lysine (3, 4, 5 and 6 torsional angles, respectively) versus the average distance of the nearest-
neighbors which increases as k increases. The entropy versus distance is reported instead of the
entropy versus k because the average distance of the k-nearest-neighbors represents the resolu-
tion of the corresponding histogram approach to probability and entropy computation. As
expected with increasing average distances details of the distribution are lost and the entropy
increases. As the average distance approaches half of the minimum periodicity of the torsional
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angles, corrections should be made to the reference hyperspherical volume implied in Eq (9).
In the absence of corrections artifactual curve behaviour is apparent. In the figure the onset of
such effects takes place at 180 degrees. The entropy computed by the present method cannot
be compared straightforwardly with the many estimates of sidechain entropy reported in the
literature [72] because here the distribution of all residue torsional angles are considered
together. In an approximate analysis we subtracted the entropy corresponding to alanine (as a
model for all aminoacids backbone) from all other entropies and compared the resulting values
with the values calculated by Koehl and Delarue [73]. The results correlate well (r = 0.86),
although the estimated entropy is on average 1.8 times larger, most likely because of finer reso-
lution due to larger database and different method. The trend of computed entropy with aver-
age nearest neighbor distance is observed in Fig 1.

Conformational entropy of a folded protein: β2-microglobulin
The conformational entropy change upon folding is obtained in this section as the difference
in the conformational entropy computed from molecular dynamics simulation between the
folded state of the protein and the reference entropies for the unfolded state computed from
database samples in the previous section.

The system chosen here is β2-microglobulin which is a small, well characterized protein.
300 snapshots from 30 ns molecular dynamics simulations of β2-microglobulin have been

converted in torsional angles and entropy was computed, residue by residue. It should be noted

Table 1. Entropy and average nearest neighbor distance of unfolded aminoacids in kB units. The row
CYS (ϕ, ψ, χ1) refers to cysteines involved in disulfide bridges. For N- and C-terminal residues see text.

N-terminal C-terminal

aa Entropy av. dist. Entropy av. dist. Entropy av. dist. counts

ALA −2.4 0.5 −0.6 0.0 −1.0 0.0 23859

CYS −4.7 15.0 −3.1 9.2 −3.3 8.5 845

CYS (ϕ, ψ, χ1) −3.6 4.7 −2.1 1.5 −2.3 1.3 3250

ASP −4.5 5.5 −2.7 2.6 −2.9 2.4 27673

GLU −5.2 11.3 −3.5 7.4 −4.0 6.7 19087

PHE −4.9 7.0 −3.2 3.6 −3.7 3.1 11603

GLY −1.9 0.5 −0.4 0.0 −0.5 0.0 43795

HIS −4.4 8.5 −2.7 4.6 −3.1 4.0 8991

ILE −6.6 4.8 −4.9 2.3 −4.9 2.2 12908

LYS −7.5 16.8 −6.0 12.5 −6.3 11.6 18930

LEU −6.3 4.5 −4.6 2.1 −5.2 1.8 22763

MET −6.1 14.7 −4.5 10.1 −4.9 9.1 4848

ASN −4.7 6.6 −3.0 3.3 −3.1 3.1 20987

PRO −0.8 0.0 −0.8 0.0 0.0 0.0 27620

GLN −5.5 13.7 −3.9 9.3 −4.4 8.3 11567

ARG −6.9 18.2 −5.3 13.6 −5.7 12.7 15776

SER −4.6 8.0 −3.0 4.2 −3.2 3.9 10053

THR −5.1 7.2 −3.4 3.7 −3.6 3.5 8829

VAL −4.6 2.2 −3.0 0.5 −3.0 0.5 17243

TRP −4.8 9.2 −3.1 5.1 −4.1 23.5 4332

TYR −5.4 17.2 −3.9 12.0 −4.2 10.9 3550

doi:10.1371/journal.pone.0132356.t001
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that in the approach only correlations among degrees of freedom of the same residues are con-
sidered, whereas those among torsional angles of different residues would lead to very high
dimensional space. This issue will be addressed in this subsection.

The entropies computed for the model residues in the unfolded protein (see previous sub-
section) have been subtracted from the computed entropies. The plot of computed entropy vs.
residue number is sensitive to the nature of each residue, however, it is worth noting that the
first and last residue display small but positive differential entropy. It is likely that this is due to
the fact that these are really terminal residues, with more conformational freedom than the
model ones, which were taken from residues in the sequence with the terminal torsional angles
ignored. For all other residues the individual entropies range from -6.1 kB for R81 to -0.4 and
-0.7 kB for R89 and K15 in the mobile FG and AB loop, respectively. It is reassuring that most
mobile residues show entropies close to those of the unfolded residues.

The residues displaying the largest differential entropy are mostly located in stable regions
of the protein. For instance, R81 (-6.1 kB) is close to C80 involved in a disulfide bridge in the
most stable region of the protein. R81 is partly exposed to the solvent but is involved in a salt
bridge with residue D38. The picture is however somehow obscured by the individual nature of
residues. In order to overcome this difficulty we consider the sum of entropies of residues clus-
tering together. To this end we list for each residue the contacting residues and sum their com-
puted entropies as representative of the entropy corresponding to a local opening reaction
involving that residue. By local opening we mean the process of partial or global unfolding,
where an amide hydrogen becomes exposed to the solvent, whose global entropy is measured
e.g. by the Bluu-Tramp hydrogen-exchange NMR experiment [3, 4].

The results are reported in Fig 2 where the single residue and the cluster (i.e. the sum over
neighboring residues) entropies are reported, together with experimental results. The latter
include not only the conformational but also solvation entropy, and serve only the purpose to
show the scale of the phenomena under consideration. It is interesting to note that the experi-
mental entropy values which are most largely different from the conformational ones are those
for the only three leucines for which experimental information is available, L39, L40 and L87

Fig 1. Entropy for residues in unfolded proteins calculated according to the kth nearest neighbor vs.
the average distance of the kth nearest neighbor. Distances are increasing with k. The curves are relative
to alanine (continuous line), valine (dotted line), isoleucine (short dashed line), tryptophane (long dashed line)
and lysine (dot dashed line).

doi:10.1371/journal.pone.0132356.g001
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and the two aromatic residues F22 and Y66. For these residues hydrophobic solvation contri-
butions to entropy are expected to be relevant. For other hydrophobic or aromatic residues
data (Y10, Y26, Y67, V82, V93, I46, W95) the same large difference is however not observed,
pointing out the importance of specific details of local opening rather than a general hydropho-
bic effect, which are not captured by our simple model for local openings.

It should be noted that the approach followed here neglects correlations between degrees of
freedom belonging to different amino acids. For a complete treatment of such correlations,
approaches have been developed by Gilson and coworkers [15, 74]. The correlation within the
same amino acid are expected to be large and actually many studies of protein conformations
have demonstrated the correlation between secondary structure and side chain torsional angles
[75]. It is however true that backbone angles of adjacent residues show often correlated
motions which preserve the overall direction of the chain [76]. Such correlations have been
observed very early in molecular dynamics simulations [77]. In order to assess the magnitude
of this effect we computed the entropies Sϕi

and Sψi−1
corresponding to the 1-dimensional distri-

bution of angles ϕi and ψi−1 separated by the peptide bond and the entropy Sϕi, ψi−1 correspond-
ing to the 2-dimensional joint distribution. The difference (Sϕi

+Sψi−1
−Sϕi, ψi−1), i.e. the mutual

information of ϕi and ψi−1 [74] was found to be positive, as expected, and on average of small
entity (0.13 ± 0.05 kB). An extreme test for contacting side chains is provided by the degrees of
freedom of cysteines involved in a disulfide bridge, where a strong correlation is expected. Also
here the explicit calculation of the entropy corresponding to the two cysteines compared to the
two isolated residues gave a positive difference (1.5 kB) which however amounts to ca. 10% of
the overall entropy of the two residues, before subtraction of free residues one, and 30% of the
entropy after subtraction. We expect that in the absence of restraints on chain direction in the
unfolded state, the correlation should be rather small. A similar test was performed for all tor-
sional angles of R81 with all other torsional angles of β2-microglobulin. The average mutual

Fig 2. Entropy versus residue number from 30 ns β2-microglobulin molecular dynamics simulation.
Residue computed entropy (dashed line), summed entropy corresponding to residue neighborhood
(continuous line). In the low part of the figure residues with defined secondary structure are indicated by black
boxes. Black dots with error bars represent experimentally determined entropy from Bluu-Tramp hydrogen-
deuterium exchange NMR experiments [3]. The latter experiments measure the enthalpy and entropy of the
process (partial or global unfolding) which exposes protein amide hydrogens to solvent.

doi:10.1371/journal.pone.0132356.g002
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information is about 0.06 kB. Overall these data suggest that correlations, other than those
within the same aminoacids may give corrections to the conformational entropies which could
be in the range of one order of magnitude smaller than the single amino acids conformational
entropies of folding.

For this rather short simulation we checked also convergence. The trajectory was divided in
two and the results for the separated halves were plotted together with the results for the total
simulation time. As it can be seen in Fig 3 the results are rather stable with few exceptions. The
largest difference is observed for K58 which loses close interaction with D59 in the second half
of the simulation becoming more flexible.

Conformational entropy and order parameters
In this section we address the relationship between conformational entropies and order param-
eters, which are measured by NMR typically on HN vectors and are taken as a measure of con-
formational dynamics of each aminoacid.

The system chosen for this purpose is the exchange protein directly activated by cAMP
(EPAC) which is a receptor undergoing functionally critical conformational and dynamics
changes upon binding cAMP.

Changes in dynamics have been monitored by changes in HN order parameters, as mea-
sured by NMR, used, in turn, to measure changes in conformational entropy.

Four simulations, starting from the active and inactive conformations in the apo and holo
forms, were previously performed, analysed and compared with experimental data by Melacini
and coworkers [28]. We use the distance-based estimates of entropies for the four trajectories,
which compared well with experimental data, and use this example to address the following
issues:

1. how well the order parameters S2, typically measured on HN vectors using NMR, correlate
with the entropy associated with backbone degrees of freedom;

2. how well the the entropy associated with backbone degrees of freedom correlates with the
entropy of all torsional degrees of freedom.

Fig 3. Entropy versus residue number from 30 ns β2-microglobulin molecular dynamics simulation
(thick line) and from the first and second half of the simulation (thin lines).

doi:10.1371/journal.pone.0132356.g003
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For the first question, a straightforward correlation of the order parameters of the HN vec-
tor with the conformational freedom of backbone torsion angles is not expected because the
HN vector could be kept in place e.g. by a hydrogen bond even with floppy flanking peptide
moieties. Rather, an agreement between order parameters and entropies averaged over chain
segments should be expected. Indeed the raw correlation between backbone entropy and the
order parameter computed on MD trajectories is poor, besides a necessary transformation
between unbounded entropy and bounded order parameter. However, when the backbone
entropy is smoothed using the lowess algorithm [78] implemented in the software R [79], with
the parameter f set to 0.02, the (anti)correlation increases to -0.61 (Fig 4). The plot of order
parameter versus the computed backbone entropy shows a semiquantitative relationship
between the two. Notwithstanding the very different assumptions underlying the present calcu-
lation and the harmonic oscillation model used by Wand and coworkers [80], the points are
scattered about a sigmoidal curve, thus confirming the insight provided by the original link
between order parameters and associated entropy.

The changes in the order parameter S2 occurring upon conformational transitions may be
associated, based on the concept that they reflect overall conformational freedom changes, to
changes in conformational entropy. For this reason we examine how backbone entropy, which
is semiquantitatively measured by the order parameter S2, is correlated with overall conforma-
tional entropy. In other words we wish to estimate the latter from the measured HN order
parameter S2.

We computed the entropy associated with backbone and all torsional angles for all four sim-
ulations and fitted the overall conformational entropy as a linear combination of backbone

Fig 4. HN vector order parameter versus the computed backbone entropy on all four EPACMD
trajectories. The single simlations show some differences, but deviations from a sigmoidal behaviour is
found for all four simulations.

doi:10.1371/journal.pone.0132356.g004
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conformational entropy (coefficient 1.120) and the number of sidechain rotational degrees of
freedom (coefficient -1.425), assuming implicitly that each degree of freedom gives a similar
entropic contribution. Alternatively the difference between the absolute entropy of all degrees
of freedom and backbone degrees of freedom could be fit as linearly dependent on the number
of sidechain degrees of freedom (coefficient -1.633) with similar results. Residues alanine, gly-
cine and proline that do not possess torsions other than backbone ones were removed from the
comparison. The fit shows a strong correlation with fitted data (correlation coefficient 0.859).
This analysis does not take into account whether the residue is exposed or not. A slight modifi-
cation of the approach considers also the exposed area of the residue. In this case the estimated
absolute entropy of the residue is a weighted sum of the backbone entropy (weight: 1.08), of
the number of degrees of freedom of the sidechain (weight: -1.78) and the exposed surface area
in Å2 (weight: 0.012). With this simple linear model the correlation coefficient increases to
0.906 and the root mean square deviation of the predicted versus computed absolute entropy is
0.76 kB (Fig 5).

Rototranslational entropy loss upon binding: OppA-tripeptide complexes
and β2-microglobulin association with a citrate coated gold surface
The free energy of binding of tripeptides with the E. coli peptide protein binding has been
extensively studied by computational methods [30]. We address here the rototranslational

Fig 5. Residue entropy computed for all four EPACMD simulations.On the x-axis the entropy is
computed using all residue torsion angles, on the y-axis the entropy is fitted as a linear combination of
backbone entropy, the number of sidechain degrees of freedom and the solvent accessible surface area of
the residue. Glycine, Alanine and Proline residues that do not possess sidechain torsion angles, are not
reported in the figure.

doi:10.1371/journal.pone.0132356.g005
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entropy loss upon binding. We first select an almost rigid three-atom fragment which is most
decoupled from internal degrees of freedom of the peptide. To this end we consider the
N-CA-C fragment of each of the three aminoacids and we compute the root mean square fluc-
tuations of the three atoms upon superposition of the OppA regions involved in binding. All
three aminoacids gave similar results, depending on the specific tripeptide, and therefore we
kept the central aminoacid backbone atoms as the reference triad atoms.

Overall complex rototranslation and the movements internal to OppA protein were
removed by superimposing backbone atoms of residues 32–37, 245–246, 269–271, 397–404,
414–419 of the OppA protein to the starting structure. The superimposed structure was then
used for superposition of the three reference ligand backbone atoms and the resulting rotation
matrix and translation vector were written. This procedure is illustrated in Fig 6.

The resulting computed entropies are reported in Table 2. The reference states are the ran-
domly oriented rigid triad of backbone atoms (S = −kBlog(4π

2)), for the rotational state, and

Fig 6. Graphical representation of how the rotation matrix and translation vector describing the rototranslational state of the tripeptide ligand with
respect to OppA is obtained. First, overall rototranslation of the complex is removed by superposition of frame residues. Second, the central residue N, CA
and C atoms are superimposed on the reference structure. The resulting rotation matrix and translation vector describe the rototranslational state of the
tripeptide ligand.

doi:10.1371/journal.pone.0132356.g006
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the 1M concentration state, for the translational state (−kBlog(1/1660)), with angles measured
in radians and distances in Å. The resulting rototranslational entropy of association at room
temperature is ca. 10 kcal/mol. A similar value was predicted earlier based on semiquantitive
considerations by others (e.g. [39, 81]).

Rotational and translational entropies have been computed using also the histogram
method for the same set of 1000 snapshots. The results are dependent on the number of bins
used. The latter was chosen as to limit the number of bins containing a single sample. With this
choice the agreement is remarkable with correlation coefficients over 0.96 and mean square
root difference of less than 0.2 kB (Table 2).

In order to study a less tightly bound system we consider β2-microglobulin non-covalently
bound to a gold nanoparticle coated with citrate. Here the protein is limited in its movements
along the axis perpendicular to the surface plane and in its orientations. We have considered
the distance of the center of geometry of the most structured regions from the plane through
the oxygen atoms of the citrate bound to the gold surface. The reference rotation state is com-
puted through superposition of the backbone atoms of the residues that contact most the sur-
face, i.e. I1, K3, K58, W60 with the corresponding atoms in the first structure. After setting a
common reference frame for the bound state, the rotation matrix is found by superposition of
secondary structure elements. Because the bound state is defined irrespective of the orientation
and position over the plane, the computed rotational entropy must be computed with a modi-
fied formula taking into account the reduction in dimensionality. The translational entropy is

Table 2. Rotational and translational entropies in kB units for the binding of 20 tripeptides to OppA
protein. In parentheses values computed using the histogrammethod are reported. The average nearest-
neighbor distance (in Å for translations and in rad for rotational distances) is reported in Av. dist. columns.

peptide Rot. entropy Av. dist. Transl. entropy av. dist.

KAK −8.17 (-8.44) 0.017 −8.81 (-8.84) 0.04

KCK −8.73 (-8.74) 0.014 −9.03 (-9.00) 0.04

KDK −8.34 (-8.45) 0.016 −9.11 (-9.14) 0.03

KEK −8.76 (-8.73) 0.014 −9.17 (-9.17) 0.03

KFK −8.83 (-8.90) 0.014 −9.10 (-9.17) 0.03

KGK −8.09 (-8.33) 0.018 −8.40 (-8.56) 0.04

KHK −8.85 (-8.94) 0.013 −9.31 (-9.29) 0.03

KIK −7.62 (-8.01) 0.020 −7.98 (-8.22) 0.05

KKK −8.99 (-8.98) 0.013 −9.36 (-9.26) 0.03

KLK −8.04 (-8.08) 0.018 −7.92 (-8.16) 0.05

KMK −8.68 (-8.77) 0.014 −9.14 (-9.15) 0.03

KNK −8.40 (-8.48) 0.016 −9.04 (-8.98) 0.04

KPK −8.55 (-8.64) 0.015 −9.28 (-9.26) 0.03

KQK −8.68 (-8.78) 0.015 −9.12 (-9.11) 0.03

KRK −9.00 (-8.89) 0.013 −9.64 (-9.48) 0.03

KSK −8.30 (-8.53) 0.016 −8.86 (-8.84) 0.04

KTK −8.63 (-8.82) 0.015 −8.98 (-8.98) 0.04

KVK −8.86 (-8.90) 0.014 −9.33 (-9.16) 0.03

KWK −8.90 (-8.92) 0.013 −9.27 (-9.17) 0.03

KYK −8.71 (-8.76) 0.014 −8.90 (-8.85) 0.04

doi:10.1371/journal.pone.0132356.t002
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computed by Eq (9) with dimension one and taking the distance between two sample points as
the difference in the distance from the surface plane.

Similarly for the rotational entropy of the molecule in contact with the surface it should be
considered that it should be corrected by an additional term kBlog(2π) to take into account any
rotation about the axis perpendicular to the surface plane. With these corrections the overall
translational and rotational entropy change from the 1M reference state to the surface bound
molecule amounts to -2.1 kB and -4.8 kB, respectively. These figures, which are considerably
smaller than the corresponding ones for tight binding, could be underestimated because of the
expected correlation between translational and rotational degrees of freedom for the bound
state.

Discussion
In this work we have applied a recently developed method to estimate entropies based on the
distances between conformational samples of proteins. We have considered a set of systems
representative of important processes like protein folding and binding, where the computation
of entropies may be problematic, e.g. when the distribution of conformational variables is mul-
timodal and/or when the dimensionality and the number of samples prevents the use of
histograms.

We have first derived reference entropies for single aminoacids in unfolded proteins. Con-
formational samples have been taken from the regions not involved in secondary structure ele-
ments in a non-redundant database of 3600 protein structures.

The set of reference entropies has been subtracted from the entropies computed from
molecular dynamics simulation snapshots to obtain folding entropy contributions from each
aminoacid of β2-microglobulin. The latter entropies (locally summed) have been compared
with NMRmeasured entropies (which entail also solvation entropy) showing that the confor-
mational entropy gives an important contribution to the measured data.

The effect of correlations between residues appears limited, at least as judged from the few
examples reported in the Results section.

S2 order parameters, which are often taken as a probe for local conformational entropy,
have been compared with the entropy estimated for four molecular dynamics simulations of
different EPAC states showing that:

i. HN order parameter is correlated with the entropy of backbone degrees of freedom;

ii. the relationship has the sigmoidal trend hypothesized by Wand and coworkers [80];

iii. the entropy associated with backbone degrees of freedom is well correlated with the
entropy of all degrees of freedom, when the number of sidechain degrees of freedom and
solvent exposure is taken into account. These results support therefore the use of HN vector
order parameter as a probe for overall entropy.

The rotational and translational entropy loss upon protein-ligand binding and upon pro-
tein-surface binding have been estimated, resulting in values compatible with those based on
simpler models.

With all the limitations that can be envisaged, including lack of consideration of bond
length and angle fluctuations, of correlations among degrees of freedom, poor sampling of con-
formational space, the estimate of entropy based on nearest neighbor distance provides in all
the presented examples insight into the conformational and configurational entropy of the pro-
cesses considered. The method can be readily applied to molecular dynamics snapshots and
provides an entirely alternative route to estimate entropy where other more traditional
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methods based on histograms or on variance-covariance matrix of fluctuations may prove dif-
ficult to apply or less accurate.
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