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Currently, there are no reports of neurotrophins in adipose tissue of cows. The distribution of nerve growth factor
(NGF), brain-derived neurotrophic factor (BDNF) and their high-affinity tyrosine kinase receptors TrkA and TrkB,
was investigated by immunohistochemical method in the subcutaneous adipose tissue of cow at mid-lactation.
Results revealed the localization of NGF and BDNF along the plasma membrane and cytoplasm of adipocytes.
Neurotrophin receptors TrkA and TrkB showedmoderate and strong positive staining in adipocytes, respectively.
The expression of NGF, BDNF, TRKB — but not of TRKA — was also confirmed at transcriptional level by RT-PCR
analyses.
Considering the involvement of BDNF on fat metabolism and of NGF on activation of the sympathetic response in
human and rodents, these neurotrophins could be related to lipogenesis and lipolysis occurring during lactation in
cows. The local production of these neurotrophins supports their potential paracrine function for the regulation of
adipocyte activity and deserve further investigations.

© 2015 Published by Elsevier Ltd.
In the past, thewhite adipose tissue (WAT)was recognized only as a
reservoir of high-energy substrates such as cholesterol, triglycerides,
and fat-soluble vitamins. Currently, adipose tissue is also considered
an endocrine organ capable of releasing a variety of bioactive substances
known as adipose-derived secreted factors or adipokines (Wang
et al., 2008; Colitti and Grasso, 2014). The WAT is innervated by the
sympathetic nervous system (SNS), although less extensively than
brown adipose tissue (BAT) (Bartness et al., 2001). The SNS is considered
to be the major physiological regulator of lipolysis in WAT and has been
implicated in the regulation of cell number and the synthesis of several
adipokines, particularly leptin (Rayner and Trayhurn, 2001). In a number
of murine tissues, the development and survival of sympathetic neurons
depend upon the presence of target-derived neurotrophins the best
characterized of which is nerve growth factor (NGF) in BAT (Nisoli et al.,
1996) and WAT (Peeraully et al., 2004). In spite of their function as
growth factors primarily for development and survival of neural cells
(Skaper, 2012), Chaldakov et al. (2010) reported that many neuropep-
tides, neurotrophic factors and receptors are shared by the brain and
adipocytes, hence, proposing adipose tissue as a member of the diffuse
neuroendocrine system.

Among the neurotrophin family, NGF binds specifically TrkA, BDNF
and NT-4 recognize TrkB and NT-3 activates TrkC (Bothwell, 2014)
arie e Ambientali, Università di
and all neurotrophins bind to and activate p75 NTR. Neurotrophin/Trk
signaling is regulated by a variety of intracellular signaling cascades,
transmitting positive signals to promote survival and growth. On the
other hand, p75NTR transmits both positive and negative signals
(Reichardt, 2006). To date, neurotrophins have been mainly studied in
nervous cells, but, as multifunctional growth factors, they can exert
various effects through their receptors on non-neuronal cells such
as testis (Müller et al., 2006), thymus (Maroder et al., 2000), skin
(Di Marco et al., 1993), salivary glands and mammary ducts (Shibayama
and Koizumi, 1996; Sariola, 2001) and ovine mammary glands (Colitti,
2015). It is noteworthy that, because NGF and BDNF are secreted by
WAT and BAT (Sornelli et al., 2009) and their levels in the circulation
and tissue are altered in cardiometabolic diseases (Chaldakov et al.,
2009), neurotrophins are considered as metabotrophic factors,
implicating in metabolic diseases (Chaldakov et al., 2010).

To date, nomeasurements of neurotrophic factors and their receptor
in adipose tissues of cattle have been reported, but it is well known that
fat depot mass and biological activity changes dramatically during the
lactation cycle in dairy cows (Saremi et al., 2014). Similarly, a large
body of research has been devoted to the study of fat metabolism and
its implication on physiological regulation during health and disease
conditions in dairy cows (McNamara and Hillers, 1986; Graugnard
et al., 2012 and Sgorlon et al., 2015).

Considering the relevance of neurotrophins on fat metabolism, the
aim of the study was to investigate the distribution of NGF, BDNF and
their high-affinity receptors TrkA and TrkB in subcutaneous adipose
tissue (scAT) of lactating cows.
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Fig. 2. Expression of mRNA in bovine subcutaneous adipose tissue. NGF, nerve growth
factor; BDNF, brain derived neurotrophic factor; TRKB, neurotrophic tyrosine kinase,
receptor, type 2; ACTB actin, beta. bp = base pairs. Lanes (L1–L6) are the amplifications
of the mRNA extracted from adipose tissue of the six cows.
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Six mid lactation cows (180 ± 20 days in milking, DIM) from a com-
mercial farmwere selected. Biopsies of scATwere collected from the dor-
sal pelvic region as described by McNamara and Hillers (1986), using
a 20 gauge biopsy needle. Tissue samples were divided in two ali-
quots, one immediately frozen at −80 °C and the second fixed in 10%
(w/v) neutral formalin for 24 h at room temperature. Bovine cerebel-
lumwaspromptly collected in a slaughterhouse fixed in 10% (w/v) neu-
tral formalin and used as positive control. The study complied with the
national legislation for animalwelfare andwas approvedby the bioethical
committee of the University of Udine.

Immunohistochemical investigation was performed according to
procedures previously described (Colitti and Parillo, 2013). Primary
antibodies used in this study are listed in Supplementary Table S1.
Total RNA was extracted from about 5 mg of scAT using TRIzol® Plus
RNA Purification System (LifeTechnologiesTM, Monza, Italy), following
the manufacturer's instructions. Primers and product lengths for each
gene are listed in Supplementary Table S2 according to the HUGO
Gene Nomenclature Committee.

Present immunohistochemical analyses revealed that the NGF and
TrkA protein expression presents strong membranous and cytoplasmic
immunostaining (Fig. 1 A–B; A′–B′), but it was negative when primary
antibody was omitted (Fig. 1A and A′, inserts). It is now known in
non-ruminants that WAT not only releases fatty acids and cholesterol
but also a variety of cytokines and growth factors, namely adipokines.
Among the secreted compounds are NGF and BDNF, which improve
glucose and lipid metabolism and control energy balance and feeding
behavior (Chaldakov et al., 2003). The NGF is secreted by rat, mice and
human BAT (Nisoli et al., 1996) and also by WAT in mice (Peeraully
et al., 2004), where its expression and secretion were related to the
role of the neurotrophin in the inflammatory response. It is known
that accumulation of fat could lead to a state of chronic mild inflamma-
tion (Ouchi et al., 2011), as demonstrated by granulocytic infiltration
and cytokine secretion in AT (Osborn and Olefsky, 2012). An infiltration
of macrophages into different AT depots was not observed after calving
(Akter et al., 2012), but later in lactation, an infiltration of immune cells
could occur.

However, the mRNA for NGF was detected, but it was not for TRKA,
suggesting that NGF is synthesized in adipocytes but TRKA is not
(Fig. 2). Although NGF mRNA was clearly expressed in human, an
examination of the Expression Atlas database (Petryszak et al., 2013)
Fig. 1. Representative immunolocalisation of NGF (A–B) and BDNF (C–D) in bovine subcutaneo
borders. Insert: negative control. B. NGF immunoreaction showing cytoplasmic staining. Insert:
Insert: negative control. D. Strong reactivity in cytoplasm of adipocytes. Insert: nervous tissue,
reaction Gill's hematoxylin counterstain. Representative immunolocalisation of TrkA (A′–B′) and
immunostaining showing positivity in cytoplasm of adipocytes. Insert: negative control. B′. TrkA
positive control. TrkA immunoreaction in Purkinje cells of cerebellum displayed a strong cytop
TrkB reactivity in cytoplasm of adipocytes. Insert: nervous tissue, cerebellum used as positive con
revealed no indication of TRKAmRNA expression in human and bovine
adipose tissue. A possible explanation would be that the TrkA protein
enters the adipose cells through the signaling endosomes produced by
peripheral axons of neurons. This mechanism could support adipocyte
survival, similar to that reported in the retrograde signal which controls
sensory neuron development (Harrington and Ginty, 2013). This possible
explanation deserves further investigation.

The changes in lipogenesis and lipolysis during lactation in cows are
part of the control of body reserves and are supported by an adaptation
of SNS in adipose tissue in rats (McNamara and Murray, 2001). In fact,
adipocytes have greater sensitivity to lipolytic stimulation during
lactation and this is associated with more norepinephrine stimulation
of lipolysis in visceral adipose tissue (McNamara, 1995). Therefore,
NGF could support the function of sympathetic innervation of adipose
tissue for lipolysis.

In scAT of lactating cows, immunolocalization of BDNF (Fig. 1C–D)
and TrkB (Fig. 1C′–D′) revealed a positive staining. The BDNF immuno-
reactivity was cytoplasmic, localized at the periphery of the adipocyte
cytoplasm consistent with membranous and extracellular staining.
The staining of TrkB was observed in the cytosol and along the plasma
membrane of adipocytes. No immunostaining was detected in the
control when antibody was omitted (Fig. 1C and C′ inserts). Of note, the
immunohistochemical localization was also confirmed at the mRNA
level (Fig. 2). The BDNF can modulate the hypothalamic–pituitary–
adrenal axis (HPA) activity, leading to an alteration of energymetabolism,
us adipose tissue. A. Overview of NGF positive immunostaining that defines adipocyte cell
nervous tissue, cerebellum used as positive control. C. Overview of BDNF immunostaining.
cerebellum used as positive control. BDNF in Purkinje cells of cerebellum displayed good
TrkB (C′–D′) in bovine subcutaneous adipose tissue. A′. Overview of TrkA moderate positive
immunoreaction showing cytoplasmic staining. Insert: nervous tissue, cerebellum used as

lasmic positivity. C′. Overview of TrkB immunostaining. Insert: negative control. D′. Strong
trol. Gill's hematoxylin counterstain.

Image of Fig. 2
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eating behavior and obesity (Jeanneteau et al., 2012). Furthermore, the
corticotrophin-releasing hormone (CRH) is positively regulated by
BDNF through its receptor TrkB via cAMP response element-binding
protein (CREB) signaling (Jeanneteau et al., 2012; Fargali et al., 2012).
These actions are possible because BDNF and its receptor are expressed
in the hypothalamic paraventricular nucleus (PVN) as well as in other
hypothalamic areas such as ventromedial hypothalamic nucleus (VMN),
the dorsomedial hypothalamic nucleus (DMN), and the lateral hypotha-
lamic area (LH) (Conner et al., 1997). From this point of view, the analogy
and the relationship with leptin, secreted by adipose tissue and targeting
to hypothalamus, and BDNF, secreted by both adipose tissue and hypo-
thalamus, is noticeable. In fact, leptin increases the BDNF mRNA expres-
sion in VMN, DMN and in other brain areas where BDNF is widely
expressed (Komori et al., 2006). According to Pardridge et al. (1994) in
the rat the mature form of BDNF does not cross the blood–brain barrier,
suggesting a paracrine/autocrine activity of this protein in scAT, although
other studies reported that about 70% of the BDNF collected from the
jugular vein of humans is of brain origin (Rasmussen et al., 2009). It is
known that central BDNF enhances energy expenditure through the
activation of the sympathetic nervous in rodents (Pelleymounter et al.,
1995), however, the central and peripheral activations of the TrkB recep-
tor in reducing the food intake and obesity observed in rodents is not
maintained across all species, as monkeys and human (Noble et al.,
2011). In cattle, no information is available, but two mutations in the
BDNF region strongly associated with milk fat yield have been identified
in Bos taurus (Zielke et al., 2011), supporting an active role of BDNF on
energy metabolism. It should be considered that catecholamine respon-
siveness of bovine adipose tissue increases prior to parturition and
remains elevated during lactation (McNamara, 1988). In fact, in dairy
cows, the size of adipocytes decreases until about 60 DIM and then
increases until late lactation (McNamara, 1995) and this is consis-
tent with the ratio between lipogenesis and lipolysis. According to
Sumner-Thomson et al. (2011) lipogenesis is observed still in the
presence of lipolysis also in mid-lactation. Therefore, the peripheral
production of BDNF and TrkB observed in the present study could be
considered an interaction between the local control of adipocyte
metabolism with the whole animal energy balance.

A large body of evidence indicated that adipose tissue has endocrine
and paracrine functions and more recently it has been proposed as
member of diffuse neuroendocrine system. This paper provided indica-
tions for the presence and distribution of neurotrophins factor and their
receptors in scAT of dairy cow. These growth factors, being involved in
fat metabolism and in the activation of the sympathetic response,
could be key molecules in the physiology of lactation and deserve
further investigation.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rvsc.2015.08.016.
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