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Abstract

The specification of multivariate prediction regions, having coverage probability closed

to the target nominal value, is a challenging problem both from the theoretical and the

practical point of view. In this paper we define a well-calibrated multivariate predic-

tive distribution giving suitable conditional prediction intervals with the desired overall

coverage accuracy. This distribution is the extension in the multivariate setting of a cal-

ibrated predictive distribution defined for the univariate case and it is found on the idea

of calibrating prediction regions for improving the coverage probability. This solution is

asymptotically equivalent to that one based on asymptotic calculations and, whenever

its explicit computation is not feasible, an approximation based on a simple bootstrap

simulation procedure is readily available. Moreover, we state a simple, simulation-based,

procedure for computing the associated improved conditional prediction limits.

Keywords: bootstrap calibration, coverage probability, prediction region, simultaneous

prediction, time series.

1 Introduction

Predictive inference for an unobserved multivariate random variable may be of considerable in-

terest in a number of application, such as the specification of simultaneous prediction intervals

for future time series observations and the construction of prediction regions for observables

from multivariate models. In this paper, prediction is considered from the frequentist per-

spective and the aim is to define a well-calibrated multivariate predictive distribution giving

conditional prediction intervals, and in particular conditional prediction limits, with overall

coverage probability closed to the target nominal value. The associated prediction regions are

not necessarily of rectangular form, in the two-sided case, or of semi-infinite rectangular form, in

the one-sided case. This is an important point and it will be appropriately discuss throughout
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the paper.

Let (Y, Z) be a continuous random vector having joint density function p(y, z; θ), with

θ ∈ Θ ⊆ Rd, d ≥ 1, an unknown d-dimensional parameter; Y = (Y1, . . . , Yn), n ≥ 1, is

observable, while Z = (Z1, . . . , Zm), m ≥ 1, denotes a future, or yet unobserved, random

vector. This is a fairly general formulation which includes both the simple case with Y1, . . . , Yn

and Z independent, identically distributed, multivariate random variables and the more general

situation with dependent Y and Z and, in particular, with Y and Z defined within a stochastic

process model. For ease of exposition we consider Y = (Y1, . . . , Yn) as a random vector with

density f(·; θ) and Z as an independent future random vector with density g(·; θ), possibly

different from f(·; θ), with θ the same d -dimensional parameter as before; G(·; θ) indicates

the distribution function of Z. We also assume that f(·; θ), g(·; θ) and G(·; θ) are sufficiently

smooth functions of the parameter θ. The extension of the results to the case with dependent

Y and Z is considered in the final part of the paper.

Although prediction problems may be tackled with different objectives, the aim here is to

define an α-prediction region for Z, that is a random set R(Y, α) ⊂ Rm, depending on the

observable sample Y and on the nominal coverage probability α, such that

PY,Z{Z ∈ R(Y, α); θ} = α, (1.1)

for every θ ∈ Θ and for any fixed α ∈ (0, 1). The above probability is called coverage probability

and it is calculated with respect to the joint distribution of (Z, Y ); moreover, it can be rewritten

as EY [PZ{Z ∈ R(Y, α); θ}; θ], where the expectation is with respect to Y and PZ{·; θ} is the

probability distribution for Z.

Given a suitable predictive probability distribution for Z, namely P̃Z{·;Y }, defined as an
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estimator for the true PZ{·; θ} based on the sample Y , we may define an α-prediction region

for Z as a set R̃(Y, α) ⊂ Rm such that

P̃Z{Z ∈ R̃(Y, α);Y } = α.

Under this respect, we aim at introducing a predictive distribution function such that the

corresponding α-prediction region R̃(Y, α) fulfils (1.1) exactly or with a high degree of accuracy,

for each α ∈ (0, 1).

Although there are some special cases where there is an exact solution to (1.1), these

situations are extremely rare. Thus, in general, we look for approximate solutions satisfying

(1.1) almost exactly, for each α ∈ (0, 1). The easiest way for making prediction on Z is by using

the estimative predictive distribution PZ{·; θ̂}, where the unknown parameter θ is substituted

with an asymptotically efficient estimator θ̂ based on Y , such that θ̂ − θ = Op(n
−1/2); we

usually consider the maximum likelihood estimator or any asymptotically equivalent alternative

estimator. However, it is well-known that the estimative α-prediction regions Re(Y, α) are not

entirely adequate predictive solutions, since their coverage probability differs from α by a term

usually of order O(n−1) and prediction statements may be rather inaccurate for small n. In fact,

this naive solution underestimates the additional uncertainty introduced by assuming θ = θ̂.

Concerning the univariate case, Barndorff-Nielsen and Cox (1994, 1996), Ueki and Fueda

(2007) and Vidoni (1998, 2009) suggest a way to correct, by means of asymptotic calculations,

the quantiles of the estimative predictive distribution, thus obtaining prediction intervals with

a coverage error of order o(n−1). A calibrating approach, useful in the multivariate case as well,

has been suggested by Beran (1990) and applied, for example, by Hall et al. (1999), using a

bootstrap procedure for improving the estimative prediction intervals. The key idea, behind
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this approach, is to determine a suitable value ᾱ such that the coverage probability of the

estimative, recalibrated, prediction region Re(Y, ᾱ) is equal or close to the target value α. The

effect of (bootstrap) calibration is that of reducing the magnitude of the coverage error but it

is valid for a specific α and it does not provide a general solution to the problem, such as those

based based on the notion of predictive distribution.

Recently, Fonseca et al. (2014) extend the calibrating procedure to predictive distribution

functions in such a way that the associated prediction intervals have coverage probability equal

or close to the target value. This solution has similarities with that one specified by Lawless

and Fredette (2005), involving (approximate) pivotal quantities, but it has the advantage that,

whenever its computation is not feasible, it can be approximated using a suitable bootstrap sim-

ulation procedure or considering high-order asymptotic expansions, giving the same improved

predictive distributions already known in the literature.

In the present paper, this result is properly extended to deal with multivariate prediction

problems. In particular, a well-calibrated multivariate predictive distribution is derived. We

prove that the associated joint predictive density is asymptotically equivalent to that one pro-

posed by Corcuera and Giummolè (2006), which gives improved conditional prediction limits.

This new solution, contrary to the Corcuera and Giummolè’s one, has a simple and intuitive

form and, when computations are hard to perform, it is readily available an approximation

based on bootstrap simulation methods. Furthermore, generalizing a result presented in Ueki

and Fueda (2007), we state a simple, simulation-based, procedure for computing the associated

improved conditional prediction limits. The paper is organized as follows. Section 2 reviews

some known results on improved predictive procedures. Section 3 introduces the new approach
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based on the calibrated multivariate predictive distribution. Section 4 presents the procedure

for calculating the improved conditional prediction limits, following the Ueki and Fueda’s ap-

proach, and Section 5 briefly considers the extension to the case of dependent observations.

Finally, Section 6 is dedicated to a simple example concerning autoregressive time series mod-

els.

2 Review on improved multivariate prediction

Let us review the calibrated predictive distribution function proposed by Fonseca et al. (2014)

for the univariate case, that is for m = 1. Let us consider the estimative α-prediction limit

q̂(α) = q(α; θ̂), defined as the α-quantile of the estimative distribution function G(z; θ̂), such

that G{q̂(α); θ̂} = α. The associated coverage probability is

PY,Z{Z ≤ q̂(α); θ} = EY [G{q̂(α); θ}; θ] = C(α; θ).

By substituting α with G(z; θ̂) in C(α; θ), we obtain

Gc(z; θ̂, θ) = C{G(z; θ̂); θ},

which is a predictive distribution function if C(·; θ) is a sufficiently smooth function. The

associated density function is a suitable modification of the estimative predictive density g(z; θ̂)

given by

gc(z; θ̂, θ) = g(z; θ̂)C ′{G(z; θ̂); θ},

with C ′(α; θ) = dC(α; θ)/dα. It is quite easy to prove that it gives, as quantiles, well-calibrated

prediction limits qc(α; θ̂, θ) achieving, for all α ∈ (0, 1), coverage probability equal to the target

nominal value α. Although Gc(z; θ̂, θ) depends on the unknown θ, and therefore it is not
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useful in practice, we may consider the corresponding plug-in estimator Ĝc(z; θ̂) = Gc(z; θ̂, θ̂)

or suitable approximations based on asymptotic expansions or bootstrap simulation procedures,

which give improved prediction limits having coverage error reduced to order o(n−1).

Let us consider the multivariate setting assumingm > 1. We focus on a particular estimative

prediction region Re(Y, α) based on the system of prediction limits defined as quantiles of the

conditional distributions of the components of vector Z = (Z1, . . . , Zm). More precisely, we set

Re(Y, α) = {z ∈ Rm : zi ≤ q̂i(αi), i = 1, . . . ,m}, (2.1)

where q̂i(αi) = qi(αi, z(i−1); θ̂), i = 1, . . . ,m, is the αi-quantile of the conditional distribution

of Zi given Z(i−1) = z(i−1), evaluated at θ = θ̂, with q̂1(α1) = q1(α1; θ̂) = q1(α1, z(0); θ̂) the

α1-quantile of the marginal distribution of Z1. Hereafter, we state Z(i−1) = (Z1, . . . , Zi−1), and

analogously for z(i−1); whenever i = 1, the conditional event Z(i−1) = z(i−1) is not considered.

Finally, we assume
∏m

i=i αi = α in order to assure that Re(Y, α) is an α-prediction region,

namely that PZ{Z ∈ Re(Y, α); θ̂} = α. Note that the conditional prediction limit q̂i(αi),

for each i = 2, . . . ,m, is obtained recursively as a function of the previous, unknown future

observations z(i−1). Thus, the specification of the prediction region is strongly dependent on

the factorization of the joint distribution of vector Z which is adopted. Although this fact

may reduce the generality of the approach, there are situations where there exists a convenient

ordering among the components of Z, such as within time series models or panel data models.

Furthermore, the choice of these particular prediction limits determines a shape for the

multivariate estimative prediction region which is usually non-rectangular. This could be in-

terpreted as a drawback, since in the applications it is quite common to specify a multivariate

prediction region as a sequence of simultaneous marginal prediction intervals, associated to the
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components of the future random vector Z. However, when one uses a rectangular prediction

region, it is implicitly assumed that the first realizations of the future path do not influence

the location and the size of the prediction intervals associated to the future subsequent ob-

servations. The conditional prediction regions studied in this paper overtake this limitation.

Indeed, they enable a suitable conditional predictive analysis, where alternative sequences of

conditional prediction intervals may be derived, according to different potential scenarios for

the future observations. A related point concerns the visualization of the prediction region,

which is surely possible for m ≤ 3. Although, for larger values of m a complete graphical

representation is unfeasible, we may consider as well a sequence of m conditional prediction

intervals or prediction limits, specified by assuming a particular path forecast scenario for the

future realization z. For example, as a path forecast we can consider a vector of point predictors

for Z, defined according to a suitable predictive optimality criterion.

The coverage probability of the estimative prediction region (2.1) is

PY,Z{Z ∈ Re(Y, α); θ} = EY [PZ{Z ∈ Re(Y, α); θ}; θ] = EY

{∫ q̂1(α1)

−∞
· · ·
∫ q̂m(αm)

−∞
g(z; θ)dz; θ

}
= Cm(α1, . . . , αm; θ). (2.2)

Since Cm(α1, . . . , αm; θ) = α + O(n−1), as n → +∞, there is a coverage error term of order

O(n−1), which may be not negligible, thus reducing the accuracy of the predictive procedure.

Corcuera and Giummolè (2006) derive an explicit expression for the O(n−1) error term and

introduce a system of modified estimative prediction limits achieving a coverage error reduced

to order o(n−1). The modification consists of two quantities: the first one takes into account the

additional uncertainty introduced by putting θ = θ̂, and it corresponds to that one proposed

by Barndorff-Nielsen and Cox (1994, 1996) and Vidoni (1998) in the univariate case, while the
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second one considers the additional dependency introduced among the components of Z, since

the αi-quantiles qi(αi) = qi(αi, z(i−1); θ) of the conditional distribution of Zi given Z(i−1) = z(i−1),

i = 1, . . . ,m, are all estimated by substituting θ with the same θ̂. As the estimative one, also

the Corcuera and Giummolè’s prediction region does not present a rectangular shape.

Furthermore, the predictive density, which gives the modified prediction limits as (condi-

tional) αi-quantiles, i = 1, . . . ,m, is defined as

g̃(z;Y ) = g(z; θ̂)

[
1− br(θ̂) log ĝr +

1

2
irs(θ̂)

{
log ĝr log ĝs − log ĝrs + [2]

m∑
i=1

ĥi

+[2]
m∑
i=2

∑
j<i

ĥij

}]
, (2.3)

where br(θ̂), r = 1, . . . , d, is the O(n−1) bias term br(θ) of the r-th component of the maximum

likelihood estimator, evaluated at θ = θ̂, and irs(θ̂), r, s = 1, . . . , d, is the (r, s)-element irs(θ) of

the inverse of the expected information matrix based on Y , evaluated at θ = θ̂. Moreover, log ĝr

and log ĝrs are the first and the second partial derivatives of log g = log g(z; θ), with respect

to the corresponding components of vector θ, evaluated at θ = θ̂. Here we use index notation

and the Einstein summation convention, according to which if an index occurs more than once

in a summand then summation over that index is understood; [2] indicates the sum of two

terms obtained by permutation of the indices. We shall indicate with Gi = Gi(zi|z(i−1); θ) and

gi = gi(zi|z(i−1); θ), i = 1, . . . ,m, respectively, the distribution function and density function of

Zi given Z(i−1) = z(i−1); if i = 1, we have G1 = G1(z1; θ) and g1 = g1(z1; θ), corresponding to

the marginal distribution of Z1. Indeed,

ĥi = hi(z(i); θ̂) =
(d log ĝir/dzi) Ĝ

i
s

ĝi
, i = 1, . . . ,m,

ĥij = hij(z(i); θ̂) =

{
d ĝi/dzj
ĝi

+ log ĝir

(
d

dzj
log

i−1∏
k=j+1

ĝk

)}
Ĝj
s

ĝj
, i = 2, . . . ,m, j < i,
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where log ĝir and Ĝi
s are the first partial derivatives of log gi and Gj, with respect to the cor-

responding components of vector θ, evaluated at θ = θ̂. In the particular case where the

components of Z are independent, the computation of the predictive density g̃(z;Y ) is greatly

simplified.

3 Calibrating multivariate predictive distributions

The Corcuera and Giummolè’s solution, thought theoretically notable, may be difficult to

apply since the computation of the predictive density (2.3) and of the associated conditional

prediction limits can be rather involved, and sometimes unfeasible, excluding the simple and not

particularly interesting case of m independent future observations Z1, . . . , Zm. In this paper

we shall overcome these practical difficulties and we shall specify a simpler, asymptotically

equivalent predictive procedure, which can be actually considered in the multivariate setting

in order to improve the estimative solution. This objective is achieved by defining a well-

calibrated multivariate predictive distribution which is the multidimensional extension of that

one introduced by Fonseca et al. (2014) in the univariate case and reviewed in Section 2.

Let us consider the estimative prediction region Re(Y, α) defined by (2.1) and based on the

system of estimative prediction limits q̂i(αi), i = 1, . . . ,m; the coverage probability of Re(Y, α)

corresponds to Cm(α1, . . . , αm; θ). By substituting αi with Gi(zi|z(i−1); θ̂) in Cm(α1, . . . , αm; θ),

for each i = 1, . . . ,m, we obtain

Gc(z; θ̂, θ) = Cm{G1(z1; θ̂), . . . , G
m(zm|z(m−1); θ̂); θ}, (3.1)

which is a proper multivariate predictive distribution function, provided that function Cm(·; θ)

is sufficiently smooth. The corresponding predictive density is the following modification of the
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estimative predictive density g(z; θ̂)

gc(z; θ̂, θ) = g(z; θ̂) ∂m1 Cm{G1(z1; θ̂), . . . , G
m(zm|z(m−1); θ̂); θ}, (3.2)

where ∂m1 indicates partial differentiation of Cm(α1, . . . , αm; θ) with respect to α1, . . . , αm. Since

the coverage probability Cm(α1, . . . , αm; θ) is defined by (2.2), provided that expectation with

respect to Y and differentiation may be interchanged, we obtain that

∂m1 Cm(α1, . . . , αm; θ) = EY

{
∂m

∂α1 · · · ∂αm

∫ q̂1(α1)

−∞
· · ·
∫ q̂m(αm)

−∞
g(z; θ)dz; θ

}

= EY

[
g{q̂1(α1), q2(α2, q̂(1); θ̂), . . . , qm(αm, q̂(m−1); θ̂); θ}
g{q̂1(α1), q2(α2, q̂(1); θ̂), . . . , qm(αm, q̂(m−1); θ̂); θ̂}

; θ

]
,

where vectors q̂(1), . . . , q̂(m−1) are defined recursively by considering the updating relation q̂(i) =

(qi(αi, q̂(i−1); θ̂), q̂(i−1)), for i = 2, . . . ,m− 1, with q̂(1) = q̂1(α1).

Although Gc(z; θ̂, θ) and gc(z; θ̂, θ) are not of direct use for prediction, since the true pa-

rameter value θ is unknown, we may determine, as in the univariate case, the corresponding

plug-in estimators. We obtain the following result.

Proposition 3.1 Under suitable regularity assumptions, assuring
√
n-consistency for the max-

imum likelihood estimator θ̂, the plug-in estimator gc(z; θ̂, θ̂) of function (3.2) is such that

gc(z; θ̂, θ̂) = g̃(z;Y ) + op(n
−1),

with g̃(z;Y ) given by (2.3).

Proof See Appendix A.

Thus, function gc(z; θ̂, θ̂) coincides, up to terms of order Op(n
−1), to the predictive density

defined by Corcuera and Giummolè (2006) and recalled in Section 2. For this reason, we

can state that the new multivariate predictive distribution (3.1) evaluated at θ = θ̂, namely
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Gc(z; θ̂, θ̂), gives, as quantiles of the associated conditional distributions, prediction limits which

are asymptotically equivalent to those ones specified by Corcuera and Giummolè (2006), and

thus achieving a coverage probability equal to α + o(n−1). As a matter of fact, we presume

that the improvement over the pure estimative solution could be substantial or even such that,

as proved by Fonseca et al. (2014) in the univariate case, the target nominal value α is exactly

achieved. Besides coverage accuracy, a further advantage in using the calibrated multivariate

predictive distribution is that whenever explicit calculations or asymptotic approximations

are not feasible, a relatively simple bootstrap simulation procedure is readily available for

estimating the associated prediction limits.

To derive the conditional prediction limits associated to the multivariate calibrated predic-

tive distribution Gc(z; θ̂, θ), we need a procedure for calculating the quantiles of the predictive

distribution of Z1 and of Zi given Z(i−1) = z(i−1), i = 2, . . . ,m. From the multivariate joint

predictive density (3.2), we get the corresponding marginal and conditional predictive densities

g1c (z1; θ̂, θ) = g1(z1; θ̂) ∂1C1{G1(z1; θ̂); θ},

gic(zi|z(i−1); θ̂, θ) = gi(zi|z(i−1); θ̂)
∂i1Ci{G1(z1; θ̂), . . . , G

i(zi|z(i−1); θ̂); θ}
∂i−11 Ci−1{G1(z1; θ̂), . . . , Gi−1(zi−1|z(i−2); θ̂); θ}

,

with i = 2, . . . ,m. Here,

Cj(α1, . . . , αj; θ) = EY

{∫ q̂1(α1)

−∞
· · ·
∫ q̂j(αj)

−∞
g(z1, . . . , zj; θ)dz1 · · · dzj; θ

}
,

for j = 1, . . . ,m, is the coverage probability of the system of estimative prediction limits

q̂1(α1), . . . , q̂j(αj) and ∂ j1 indicates partial differentiation with respect to α1, . . . , αj, so that

∂ j1Cj(α1, . . . , αj; θ) = EY

[
g{q̂1(α1), q2(α2, q̂(1); θ̂), . . . , qj(αj, q̂(j−1); θ̂); θ}
g{q̂1(α1), q2(α2, q̂(1); θ̂), . . . , qj(αj, q̂(j−1); θ̂); θ̂}

; θ

]
.
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It is quite easy to specify the associated marginal and conditional predictive distribution func-

tions as

G1
c(z1; θ̂, θ) = C1{G1(z1; θ̂); θ}, (3.3)

Gi
c(zi|z(i−1); θ̂, θ) =

∂i−11 Ci{G1(z1; θ̂), . . . , G
i(zi|z(i−1); θ̂); θ}

∂i−11 Ci−1{G1(z1; θ̂), . . . , Gi−1(zi−1|z(i−2); θ̂); θ}
, (3.4)

for i = 2, . . . ,m, with ∂i−11 Ci(α1, . . . , αi; θ) given by

EY

[
g{q̂1(α1), q2(α2, q̂(1); θ̂), . . . , qi−1(αi−1, q̂(i−2); θ̂); θ}Gi{qi(αi, q̂(i−1); θ̂)|q̂(i−1); θ}

g{q̂1(α1), q2(α2, q̂(1); θ̂), . . . , qi−1(αi−1, q̂(i−2); θ̂); θ̂}
; θ

]
.

The quantiles qci (αi) = qci (αi, z(i−1); θ̂, θ), i = 1, . . . ,m, which specify the system of improved

prediction limits, are such that

G1
c{qc1(α1); θ̂, θ} = α1, Gi

c{qci (αi)|z(i−1); θ̂, θ} = αi, i = 2, . . . ,m. (3.5)

The plug-in estimators of these prediction limits, namely q̂ci (αi) = qci (αi, z(i−1); θ̂, θ̂), i =

1, . . . ,m, define a system of predition limits which is asymptotically equivalent to the Cor-

cuera and Giummolè’s (2006) solution and thus improves the estimative one.

As mentioned before, there is a fairly natural parametric bootstrap simulation procedure for

estimating the predictive distribution functions Gi
c(zi|z(i−1); θ̂, θ), i = 1, . . . ,m, to be considered

when an explicit expression for Ci(α1, . . . , αi; θ), i = 1, . . . ,m, is not available. This is also a

valid alternative to the improved multivariate predictive distribution proposed by Corcuera and

Giummolè (2006), which is not very useful in applications since its computation can be very

hard.

Let y∗j , j = 1, . . . , B, be parametric bootstrap samples generated from f(y; θ̂) and let θ̂∗j , j =

1, . . . , B, be the corresponding maximum likelihood estimates. Since ∂i−11 Ci−1(α1, . . . , αi−1; θ)
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and ∂i−11 Ci(α1, . . . , αi; θ) are defined as expectations with respect to Y , we define the associated

bootstrap estimators, respectively, as

∂i−11 Ĉi−1(α1, . . . , αi−1; θ)b =
1

B

B∑
j=1

g{q1(α1; θ̂
∗
j ), . . . , qi−1(αi−1, q̂

j
(i−2); θ̂

∗
j ); θ̂}

g{q1(α1; θ̂∗j ), . . . , qi−1(αi−1, q̂
j
(i−2); θ̂

∗
j ); θ̂

∗
j}
,

∂i−11 Ĉi(α1, . . . , αi;θ)b=
1

B

B∑
j=1

g{q1(α1;θ̂
∗
j ), . . . , qi−1(αi−1,q̂

j
(i−2);θ̂

∗
j );θ̂}G i{qi(αi,q̂ j(i−1);θ̂∗j )|q̂

j
(i−1);θ̂}

g{q1(α1; θ̂∗j ), . . . , qi−1(αi−1, q̂
j
(i−2); θ̂

∗
j ); θ̂

∗
j}

,

where vectors q̂ j(1), . . . , q̂
j
(m−1) are defined recursively by q̂ j(i) = (qi(αi, q̂

j
(i−1); θ̂

∗
j ), q̂

j
(i−1)), for i =

2, . . . ,m − 1, with q̂ j(1) = q1(α1; θ̂
∗
j ). When i = 1, we have ∂i−11 Ci(α1, . . . , αi; θ) = C1(α1; θ),

estimated by Ĉ1(α1; θ)b = (1/B)
∑B

j=1G
1{q1(α1; θ̂

∗
j ); θ̂}. Thus, the bootstrap estimators for the

marginal and the conditional predictive distribution functions are

Ĝ1
c(z1; θ̂)b = Ĉ1{G1(z1; θ̂); θ}b,

Ĝi
c(zi|z(i−1); θ̂)b =

∂i−11 Ĉi{G1(z1; θ̂), . . . , G
i(zi|z(i−1); θ̂); θ}b

∂i−11 Ĉi−1{G1(z1; θ̂), . . . , Gi−1(zi−1|z(i−2); θ̂); θ}b
,

for i = 2, . . . ,m. The corresponding αi-quantiles, i = 1, . . . ,m, define a system of prediction

limits having an overall coverage probability equal to the target value α, with an error term

which depends on the efficiency of the bootstrap simulation procedure.

4 Computing the improved prediction limits

The procedure introduced in the preceding section, for computing the calibrated conditional

prediction limits or the associated plug-in estimators, is not direct and it involves the calculation

of the joint predictive distribution (3.1), and in particular the associated conditional predictive

distribution functions. Generalizing a result presented in Ueki and Fueda (2007), we obtain,

as a useful alternative, a simple direct adjustment for the estimative prediction limits, which
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is again equivalent to the system of improved prediction limits proposed by Corcuera and

Giummolè (2006) in order to reduce the coverage error to order o(n−1).

Let us consider the calibrated predictive distribution functions (3.3) and (3.4), calculated

in the estimative prediction limits and evaluated at θ = θ̂, namely

G1
c(q̂1(α1); θ̂, θ̂) =C1(α1; θ̂) = α̂†1, (4.1)

Gi
c(q̂i(αi)|z(i−1); θ̂, θ̂) =

∂i−11 Ci{G1(z1; θ̂), . . . , G
i−1(zi−1|z(i−2); θ̂), αi; θ̂}

∂i−11 Ci−1{G1(z1; θ̂), . . . , Gi−1(zi−1|z(i−2); θ̂); θ̂}
= α̂†i , (4.2)

for i = 2, . . . ,m. Notice that α̂†1 and α̂†i , i = 2, . . . ,m, correspond, respectively, to the plug-

in estimators for the marginal coverage probability of q̂1(α1) and for the conditional coverage

probability of q̂i(αi) given Z(i−1) = z(i−1). The following proposition holds.

Proposition 4.1 Under suitable regularity assumptions, assuring
√
n-consistency for the max-

imum likelihood estimator θ̂, the prediction limits

q̂†i (αi) = 2q̂i(αi)− q̂i(α̂†i ), i = 1, . . . ,m, (4.3)

with q̂i(αi), i = 1, . . . ,m, the estimative prediction limits which define (2.1) and α̂†i , i =

1, . . . ,m, given by (4.1) and (4.2), are such that

q̂†i (αi) = q̂ci (αi) + op(n
−1), i = 1, . . . ,m,

where q̂ci (αi), i = 1, . . . ,m, are specified as solutions to (3.5) with θ = θ̂.

Proof See Appendix B.

The modified estimative prediction limits q̂†i (αi), i = 1, . . . ,m, define suitable high-order

asymptotic approximations for the plug-in calibrated prediction limits q̂ci (αi), i = 1, . . . ,m,

introduced in Section 3, and they are asymptotically equivalent to those ones specified by

Corcuera and Giummolè (2006), achieving a coverage probability α+ o(n−1). For m = 1, (4.3)
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gives the modified estimative prediction limit introduced by Ueki and Fueda (2007) for a future

one-dimensional random variable Z.

The advantage in using (4.3) is that we have a simple, high-order equivalent form for the

calibrated prediction limits, which calculation does not require neither complicated asymptotic

expansions, as in Corcuera and Giummolè (2006), nor the complete specification of the asso-

ciated predictive distribution functions. In fact, to obtain the limits (4.3), we only need the

computation of α̂†i , i = 1, . . . ,m. Whenever an explicit expression is not available, this can

be done using the parametric bootstrap method; that is, we consider the bootstrap estimates

given by

α̂†1b = Ĉ1(α1; θ)b, (4.4)

α̂†ib =
∂i−11 Ĉi{G1(z1; θ̂), . . . , G

i−1(zi−1|z(i−2); θ̂), αi; θ}b
∂i−11 Ĉi−1{G1(z1; θ̂), . . . , Gi−1(zi−1|z(i−2); θ̂); θ}b

, i = 2, . . . ,m, (4.5)

with Ĉ1(·)b, ∂i−11 Ĉi(·)b and ∂i−11 Ĉi−1(·)b specified in Section 3.

5 Dependent observations

A natural generalization of the procedure presented in the previous section concerns the case

with dependent Y and Z. This includes the situation with Y1, . . . , Yn, Z1, . . . , Zm continuous

random variables, defined within a time series model. In this context, prediction is based on

the conditional distribution of Z = (Z1, . . . , Zm) given Y = y, with density and distribution

functions g(z|y; θ) and G(z|y; θ), respectively, and the aim is to define an α-prediction region

R(Y, α) ⊂ Rm for Z such that

PY,Z{Z ∈ R(Y, α); θ} = EY [PZ|Y {Z ∈ R(Y, α)|Y ; θ}; θ] = α, (5.1)
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for every θ ∈ Θ and for any fixed α ∈ (0, 1), with PZ|Y {·|Y ; θ} the conditional distribution of

Z given Y .

We assume that there exists a transitive statistic (see Barndorff-Nielsen and Cox, 1996),

namely a statistic U = U(Y ), with a fixed small dimension independent of the sample size n,

such that Y and Z are conditional independent given U . This happens, for example, when we

consider a time series model or a spatial model with a Markovian-type dependence structure. In

this case, the conditional density of Z given Y = y depends on y only via u, the observed value

of U , so that g(z|y; θ) = g(z|u; θ) and G(z|y; θ) = G(z|u; θ). Consequently, it seems natural

to consider a conditional version of (5.1) and thus to require that, for all θ, the conditional

coverage probability equals the value α, that is

PZ,Y |U{Z ∈ R(Y, α)|U = u; θ} = EY |U [PZ|U{Z ∈ R(Y, α)|U ; θ}|U = u; θ] = α,

for all α ∈ (0, 1), where the probability is calculated with respect to the conditional distribution

of (Y, Z) given U = u and the expectation is with respect to Y given U = u. Of course,

conditional solutions satisfy also condition (5.1) and they are in some settings much easier to

find.

Let us consider the estimative prediction region Re(Y, α), based on the system of estimative

prediction limits; in the presence of a transitive statistic U , the estimative prediction limit

q̂i(αi) = qi(αi, z(i−1), u; θ̂), i = 1, . . . ,m, is the αi-quantile of the conditional distribution of

Zi given Z(i−1) = z(i−1) and U = u, evaluated at θ = θ̂. The associated distribution and

density functions are, respectively, Gi = Gi(zi|z(i−1), u; θ) and gi = gi(zi|z(i−1), u; θ). Note that,

whenever i = 1, q̂1(α1) = q1(α1, u; θ̂), G1 = G1(z1|u; θ) and g1 = g1(z1|u; θ). The conditional
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coverage probability of Re(Y, α) is

PZ,Y |U{Z ∈ Re(Y, α)|U = u; θ} = EY |U [PZ|U{Z ∈ Re(Y, α)|U ; θ}|U = u; θ]

= EY |U

{∫ q̂1(α1)

−∞
· · ·
∫ q̂m(αm)

−∞
g(z|U ; θ)dz|U = u; θ

}
= Cm(α1, . . . , αm, u; θ).

Function Cm(α1, . . . , αm, u; θ) does not match the target value α and there is a coverage error

term of order O(n−1), as in the independence case. By substituting αi with Gi(zi|z(i−1), u; θ̂),

i = 1, . . . ,m, in Cm(α1, . . . , αm, u; θ), we obtain the following calibrated predictive distribution

function

Gc(z|u; θ̂, θ) = Cm{G1(z1|u; θ̂), . . . , Gm(zm|z(m−1), u; θ̂), u; θ}

and, after differentiation, the associated density function gc(z|u; θ̂, θ). This predictive distribu-

tion gives, as quantiles of the corresponding conditional distribution functions, well-calibrated

prediction limits. Thus, it is specified a prediction region which improves the estimative one,

having unconditional and conditional coverage probability closer to the target nominal value

α, for all α ∈ (0, 1). The proof is analogous to that one outlined for the independence case.

As in Section 3, since θ is unknown, we may use the corresponding plug-in estimators

Gc(z|u; θ̂, θ̂) and gc(z|u; θ̂, θ̂). If neither an explicit expression for the conditional coverage

probability nor a first-order approximation is available, we may introduce a suitable parametric

bootstrap estimator for Gc(z|u; θ̂, θ) and for the associate conditional distribution functions.

The procedure is similar to that one considered in the case of independent observations, taking

into account that the parametric bootstrap samples are now generated from the conditional

distribution of Y given the observed value of the transitive statistic U , assuming θ = θ̂. Under

this respect, it could be useful to consider the simulation method proposed by Kabaila (1999)

for estimating conditional expectations. Furthermore, the simplified procedure for computing
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the improved prediction limits presented in Section 4 may be considered in this more general

framework as well.

6 An application to a simple autoregressive model

The multivariate prediction regions considered in this paper are based on systems of conditional

prediction limits, so that they present a peculiar non-rectangular form. This specification is

not frequent in the time series framework, where prediction region are usually of rectangular

form in order to derive simple marginal statements about the single components of the future

random vector Z. However, the current prediction regions turn out to be extremely useful for

forecasting future paths of time series observations as well, since they provide flexible predictive

statements, which may account for alternative path forecast scenarios. In this section we

present an application concerning autoregressive time series models and we shall perform a

simple simulation study in order to emphasize the superiority of the improved solution over the

estimative one.

Let us consider a stationary, first-order autoregressive (AR) process {Yk}k≥1 defined as

Yk = µ+ ρ (Yk−1 − µ) + εk, k ≥ 1,

where µ ∈ R, |ρ| < 1 and {εk}k≥1 is a sequence of independent normal distributed random

variables with zero mean and variance σ2 > 0. Adopting the usual notation, Y = (Y1, . . . , Yn),

Z = (Z1, . . . , Zm) = (Yn+1, . . . , Yn+m) and θ = (θ1, θ2, θ3) = (µ, ρ, σ2) is the unknown parameter.

In this case, the observable random vector Y and the future random vector Z are dependent

and the transitive statistic is U = Yn. Indeed, likelihood inference is conditioned on Y0 = y0,
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with y0 known, and the maximum likelihood estimators are given explicitly and correspond to

µ̂=

∑n
i=1 Yi−ρ̂

∑n
i=1 Yi−1

n(1−ρ̂)
, ρ̂=

∑n
i=1 YiYi−1−n−1

∑n
i=1 Yi

∑n
i=1 Yi−1∑n

i=1 Y
2
i−1−n−1(

∑n
i=1 Yi−1)

2
, σ̂2 =n−1

n∑
i=1

(Yi−µ̂i)2,

with µ̂i = µ̂+ ρ̂ (Yi−1 − µ̂), i = 1, . . . , n.

Moreover, it is easy to see that Zi given Zi−1 = zi−1, i = 1, . . . ,m, follows a normal

distribution with mean µn+i = µ + ρ (zi−1 − µ) and variance σ2. Thus, gi(zi|zi−1; θ) =

σ−1φ{(zi − µn+i)/σ} and Gi(zi|zi−1; θ) = Φ{(zi − µn+i)/σ}, i = 1, . . . ,m, where φ(·) and

Φ(·) are, respectively, the density and the distribution function of a standard normal random

variable. Note that for i = 1 the conditional event corresponds to (Z0 = z0) = (Yn = yn).

For this simple stationary time series model, the estimative prediction region Re(Y, α) is

defined by (2.1), with system of conditional prediction limits given by q̂i(αi) = qi(αi, zi−1, θ̂) =

µ̂n+i + uαi
σ̂, i = 1, . . . ,m, with µ̂n+i = µ̂ + ρ̂ (zi−1 − µ̂) and uαi

such that Φ(uαi
) = αi,

where
∏m

i=1 αi = α. In order to improve the coverage accuracy of Re(Y, α) we may consider the

modified prediction limits associated to the improved multivariate predictive density introduced

by Corcuera and Giummolè (2006). This solution, although in this simple model is explicitly

available, is usually based on complicated asymptotic calculations and often unfeasible.

For this AR(1) model, we consider the alternative easier solution introduced in Section

4, extended to the case of dependent observations, and obtained by generalizing the Ueki and

Fueda’s procedure to multivariate prediction. For evaluating the quantities α̂†i , i = 1, . . . ,m, we

use the parametric bootstrap estimators, specified by (4.4) and (4.5), based on 2,000 bootstrap

samples generated keeping fixed the observed value of the transitive statistic Yn.

The following simple simulation study compares the performance of this simplified improved

predictive solution with that one of the estimative solution. Conditional coverage probabilities
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for the estimative and the improved conditional prediction limits of level α = 0.9, 0.95 are cal-

culated by means of the conditional simulation technique presented in Kabaila (1999), keeping

fixed the last observed value yn. The estimates of the conditional coverage probabilities are

based on 2,000 samples of dimension n = 50, 100 simulated from an AR(1) model with the last

observation fixed to yn = 1 and assuming y0 = 0; indeed, we consider µ = 1, σ2 = 1 and (a)

ρ = 0.5, (b) ρ = 0.75. The prediction regions have dimension m = 5, 10, 25, 50 and αi = α1/m,

i = 1, . . . ,m. Similar results are obtained with alternative values for the observations yn, y0

and for the model parameters. The results are collected in Table 1 and show that the improved

procedure remarkably improves on the estimative one. The improvement is more pronounced

when the dimension m of the future random vector is high with respect to n, since the per-

formance of the estimative solution progressively declines. On the other hand, the improved

solution maintains a good coverage accuracy also in the challenging situations where m = 50 for

n = 50 and n = 100. Thus, in accordance with the theoretical findings, the improved predic-

tion limits defined in Section 4 can be fruitfully considered for making multivariate prediction

statements, as a valid and simpler alternative to the improved methods based on asymptotic

analytic calculations.

Table 1 here

A Appendix

We present the outline of the proof of Proposition 3.1.

By considering the explicit expression for the O(n−1) coverage error term of the estimative

prediction region Re(Y, α), determined by Corcuera and Giummolè (2006, Corollary 2), we
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state that

Cm(α1, . . . , αm; θ) = α +Qm(α1, . . . , αm; θ) + o(n−1), (A.1)

with α =
∏m

i=1 αi and the O(n−1) term

Qm(α1, . . . , αm; θ) = −
m∑
i=1

br(θ)

{∫ q1

−∞
· · ·
∫ qi−1

−∞
Gi(qi|z(i−1); θ)r

} m∏
h=i+1

αh

+
1

2

m∑
i=1

irs(θ)

[∫ q1

−∞
· · ·
∫ qi−1

−∞

{
[2]
gi(qi|z(i−1); θ)rGi(qi|z(i−1); θ)s

gi(qi|z(i−1); θ)
−Gi(qi|z(i−1); θ)rs

}] m∏
h=i+1

αh

+
1

2

m∑
i=1

∑
j<i

irs(θ)[2]

{∫ q1

−∞
· · ·
∫ qj−1

−∞

∫ qj+1(j)

−∞
· · ·
∫ qi−1(j)

−∞
Gj(qj|z(j−1); θ)rGi(qi|z(i−1)(j); θ)s

}
m∏

h=i+1

αh,

where we put
∏m

h=i+1 αh = 1, whenever i = m. Here,

∫ qk

−∞
=

∫ qk

−∞
gk(zk|z(k−1); θ)dzk,

∫ qk(j)

−∞
=

∫ qk(j)

−∞
gk(zk|z(k−1)(j); θ)dzk,

qk = qk(αk, z(k−1); θ) and qk(j) = qk(αk, z(k−1)(j); θ) is the αk-quantile of Gk(zk|z(k−1)(j); θ),

with z(k−1)(j) = (z1, . . . , zj−1, qj, zj+1, . . . , zk−1). Indeed, Gi(·|·; θ)r and Gi(·|·; θ)rs, are the first

and the second partial derivatives of Gi(·|·; θ) with respect to the corresponding components of

vector θ. Partial differentiation of both sides of (A.1) with respect to α1, . . . , αm gives

∂m1 Cm(α1, . . . , αm; θ) = 1 + ∂m1 Qm(α1, . . . , αm; θ) + o(n−1)

and the consequent substitution in formula (3.2), evaluated at θ = θ̂, with ∂m1 Qm(α1, . . . , αm; θ̂)

written explicitly, completes the proof.

B Appendix

We present the proof of Proposition 4.1.
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From (A.1), it is easy to see that

α̂†1 = C1(α1; θ̂) = α1 +Q1(α1; θ̂) + op(n
−1),

with

Q1(α1; θ̂)=−br(θ̂)G1{q̂1(α1); θ̂}r +
1

2
irs(θ̂)

{
[2]
g1{q̂1(α1); θ̂}rG1{q̂1(α1); θ̂}s

g1{q̂1(α1); θ̂}
−G1{q̂1(α1); θ̂}rs

}
.

Indeed, after some algebra, we obtain that, for i = 2, . . . ,m,

α̂†i =
∂i−11 Ci{G1(z1; θ̂), . . . , G

i−1(zi−1|z(i−2); θ̂), αi; θ̂}
∂i−11 Ci−1{G1(z1; θ̂), . . . , Gi−1(zi−1|z(i−2); θ̂); θ̂}

=
αi + ∂i−11 Qi{G1(z1; θ̂), . . . , G

i−1(zi−1|z(i−2); θ̂), αi; θ̂}+ op(n
−1)

1 + ∂i−11 Qi−1{G1(z1; θ̂), . . . , Gi−1(zi−1|z(i−2); θ̂); θ̂}+ op(n−1)

= αi + ∂i−11 Qi{G1(z1; θ̂), . . . , G
i−1(zi−1|z(i−2); θ̂), αi; θ̂}

−αi∂i−11 Qi−1{G1(z1; θ̂), . . . , G
i−1(zi−1|z(i−2); θ̂); θ̂}+ op(n

−1)

= αi +Qi|(i−1)(αi, z(i−1); θ̂) + op(n
−1),

with

Qi|(i−1)(αi,z(i−1); θ̂) = −br(θ̂)Gi{q̂i(αi)|z(i−1); θ̂}r

+
1

2
irs(θ̂)

[
[2]
gi{q̂i(αi)|z(i−1); θ̂}rGi{q̂i(αi)|z(i−1); θ̂}s

gi{q̂i(αi)|z(i−1); θ̂}
−Gi{q̂i(αi)|z(i−1); θ̂}rs

]

+
1

2

∑
j<i

irs(θ̂)[2]
d/dzj[G

j{zj|z(j−1); θ̂}
∏i−1

k=j+1 g
k{zk|z(k−1); θ̂}Gi{zi|z(i−1); θ̂}]∏i−1

k=j g
k{zk|z(k−1); θ̂}

.

Using a stochastic Taylor expansion for q̂i(α̂
†
i ) around α̂†i = αi, we obtain that

q̂i(α̂
†
i ) = q̂i(αi) +

α̂†i − αi
gi{q̂i(αi)|z(i−1); θ̂}

+ op(n
−1)

= q̂i(αi) +
Qi|(i−1)(αi, z(i−1); θ̂)

gi{q̂i(αi)|z(i−1); θ̂}
+ op(n

−1), i = 1, . . . ,m.
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Hereafter, for i = 1, Q1(α1; θ̂) is considered instead of Qi|(i−1)(αi, z(i−1); θ̂) and g1{q̂1(α1); θ̂}

instead of gi{q̂i(αi)|z(i−1); θ̂}. Substitution in (4.3) gives

q̂†i (αi) = 2q̂i(αi)− q̂i(α̂†i ) = q̂i(αi) + q̂i(αi)− q̂i(α̂†i )

= q̂i(αi)−
Qi|(i−1)(αi, z(i−1); θ̂)

gi{q̂i(αi)|z(i−1); θ̂}
+ op(n

−1), i = 1, . . . ,m, (B.2)

which corresponds, up to terms of order Op(n
−1), to the modified estimative prediction limit

introduced by Corcuera and Giummolè (2006, Corollary 3). Furthermore, since q̂ci (αi), i =

1, . . . ,m, is such that Gi
c{q̂ci (αi)|z(i−1); θ̂, θ̂} = αi, with a suitable stochastic Taylor expansion

around q̂ci (αi) = q̂i(αi), we have that

αi = Gi
c{q̂ci (αi)|z(i−1); θ̂, θ̂} = Gi

c{q̂i(αi)|z(i−1); θ̂, θ̂}

+ {q̂ci (αi)− q̂i(αi)}gic{q̂i(αi)|z(i−1); θ̂, θ̂}+ op(n
−1).

Finally, recalling that Gi
c{q̂i(αi)|z(i−1); θ̂, θ̂} = α̂†i and that gic{q̂i(αi)|z(i−1); θ̂, θ̂} is first-order

equivalent to gi{q̂i(αi)|z(i−1); θ̂}, we obtain that

q̂ci (αi) = q̂i(αi)−
α̂†i − αi

gi{q̂i(αi)|z(i−1); θ̂}
+ op(n

−1)

= q̂i(αi)−
Qi|(i−1)(αi, z(i−1); θ̂)

gi{q̂i(αi)|z(i−1); θ̂}
+ op(n

−1), i = 1, . . . ,m. (B.3)

Therefore, from (B.2) and (B.3), we may conclude that q̂†i (αi) = q̂ci (αi) + op(n
−1), i = 1, . . . ,m.
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(a) (b)
α n m Estimative Improved Estimative Improved

0.9 50 5 0.862 0.896 0.858 0.901
10 0.837 0.890 0.836 0.897
25 0.812 0.890 0.806 0.879
50 0.794 0.888 0.789 0.889

100 5 0.886 0.907 0.876 0.896
10 0.868 0.892 0.874 0.904
25 0.872 0.906 0.866 0.898
50 0.850 0.896 0.836 0.894

0.95 50 5 0.912 0.944 0.919 0.944
10 0.911 0.945 0.902 0.943
25 0.890 0.948 0.879 0.945
50 0.887 0.949 0.861 0.933

100 5 0.930 0.942 0.927 0.942
10 0.932 0.951 0.923 0.940
25 0.924 0.948 0.926 0.949
50 0.911 0.940 0.925 0.958

Table 1: AR(1) Gaussian model with µ = 1, σ2 = 1 and (a) ρ = 0.5, (b) ρ = 0.75. Conditional

coverage probabilities for estimative and improved, bootstrap-based, prediction limits of level

α = 0.9, 0.95, with m = 5, 10, 25, 50. Estimation is based on 2,000 Monte Carlo conditional (on

yn = 1) samples of dimension n = 50, 100, with y0 = 0. Bootstrap procedure is based on 2,000

conditional bootstrap samples. Estimated standard errors are always smaller than 0.0092.
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