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Abstract

The paper presents a new analytical tool to solve the classical photogrammetric bundle block adjustment. The analytical
model is based on the generalized extension of the anisotropic row-scaling Procrustes analysis, that has been recently
proposed by the same authors to solve the image exterior orientation problem. The main advantage of the method is
given by the fact that the problem solution does not require any approximate value of the unknown parameters, nor any
linearization procedure. Moreover, the algorithm is exceedingly simple to describe and easy to implement. Empirical
results indicate that a zero-information initialization of the iterative relaxation procedure leads almost always to the
correct final least squares solution. Experiments confirm the accuracy of the proposed method, when compared to the
results obtained by applying a classical photogrammetric bundle block adjustment.

Keywords: photogrammetric bundle block adjustment, anisotropic row-scaling Procrustes analysis, alternating least
squares, block relaxation

1. Introduction

Bundle block adjustment is the most classical analyti-
cal problem in photogrammetry. Great effort was given to
the problem solution since the middle of the last century
(Baetsle, 1956; Brown, 1958; Ackermann, 1962; Cunietti,
1968, e.g.). An exhaustive synthesis of the analytical de-
velopments carried out in this fundamental field of pho-
togrammetry can be found, for instance, in Triggs et al.
(2000). The standard formulation requires the lineariza-
tion of the collinearity equations and the satisfaction of the
least squares principle for the equation residuals. Some ad-
ditional unknown terms can be considered for each equa-
tion in order to calibrate the camera for some systematic
error terms or for simultaneously estimating the image in-
terior orientation parameters. Robust least squares solu-
tions have been also proposed in the literature in order to
reduce the influence of outliers (Zhang et al., 2006, e.g.).

According to Triggs et al. (2000), the most significant
bundle block adjustment paradigmatic enhancements in
chronological sequence, are:

1. recursive partitioning by Gyer (1967) and Brown (1968)
that led to the modern sparse matrix techniques;

2. S transformations and criterion matrices by Baarda
(1973), that allowed the correct estimate of the net-
work degrees of freedom and the uncertainty model-
ing in the adjustment process;
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3. photogrammetric precision and reliability over-para-
metrization and model choice by Gruen (1980) and
Foerstner (1985), that opened the way to modern
robust statistics and model selection in photogram-
metry;

4. “geometrically constrained multiphoto and globally
enforced least squares matching” by Gruen and Balt-
savias (1986), that introduced the so called image-
based matching technique procedures.

In spite of these fundamental steps in the methodologi-
cal development of bundle adjustment, the common under-
lying scheme, based on the least-squares solution of a large
non-linear system of equations, has been the same since its
origins. In this paper we propose instead a new analytical
bundle block solution method rooted in the framework of
orthogonal Procrustes analysis, in particular focusing on
its generalized anisotropic variant. The main advantage
of the method is that – upon convergence – it furnishes
a least squares solution without any linearization of the
original equations, and without any approximate value of
the unknown parameters and of the tie-points 3-D coordi-
nates.

Recently, the authors of this paper applied the aniso-
tropic row-scaling Procrustes analysis technique to suc-
cessfully solve the exterior orientation problem of one im-
age (Garro et al., 2012). The process is carried out by an
iterative relaxation of the unknown translation, rotation
and anisotropic scaling of each image point.

This paper, in particular, extends the same relaxation
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procedure by considering also the presence of unknown tie-
points imaged to some or all exposures. Their role is to
constraint the different images one to each other in order to
iteratively update their approximate exterior orientation
parameters until a global convergence of the entire block.

The method introduced in this paper represents a fur-
ther extension of the generalized (isotropic) Procrustes
analysis, already applied for the least squares registra-
tion of photogrammetric 3-D models (Crosilla and Beinat,
2002, e.g.), where just one isotropic scale factor is required
for all the points of the same model.

The new method falls in the wider structure-from-motion
family. Its closest neighbours are the iterative factoriza-
tion methods and the global motion-first methods.

Iterative factorization methods (Sturm and Triggs, 1996;
Heyden, 1997; Oliensis, 1999; Oliensis and Hartley, 2007)
yield a projective model from multiple images by a two
step iteration (a block relaxation, in fact), where in one
step a measurement matrix, containing image points coor-
dinates, is factorized with SVD, and in the subsequent step
the depths of the points are computed, assuming all the
other parameters fixed. This bears some resemblance of
the scheme described in this paper, which however, deals
with calibrated cameras (i.e., known interior orientation)
and outputs a Euclidean model1 instead of a projective
one. Moreover, unlike these algorithms, our method does
not require all points to be visible in all views.

The issue of visibility in matrix factorization methods
can be side-stepped by matrix completion techniques, ex-
ploiting the low rank of the measurement matrices (Brand,
2002; Kennedy et al., 2013; Hartley and Schaffalitzky, 2003),
or by providing additional information. Indeed, Kaucic
et al. (2001); Rother and Carlsson (2002), describe algo-
rithms based on SVD for the projective modeling from
multiple perspective views, based on having four points
on a reference plane visible in all views. Unlike iterative
factorization ones, these algorithms does not require all
points to be visible in all views and are also direct. If three
orthogonal vanishing points are specified in addition, the
model can be upgraded to Euclidean. Hartley and Schaf-
falitzky (2003) scheme, in particular, can be contrasted
with ours, since its iteration can be interpreted as linearly
solving alternately for camera matrices and 3D points until
their product converges to the measurement matrix.

Projective methods, though, respond to a practical sit-
uation (i.e., unknown interior orientation), which is differ-
ent from the one addressed in this paper. Moreover, we
do not put any constraint on the input (like having four
points on a reference plane visible in all views).

Global motion-first methods share a common scheme:
they start from known interior orientation, compute epipo-
lar or trifocal geometry which results in relative rotations
and relative translations (up to a scale). Then solve the
rotation registration or rotation averaging (Hartley et al.,

1A projective/Euclidean model differs from the true one by a
projectivity/similarity transformation.

2013) problem that gives the rotational component of the
cameras orientation; this problem, if one ignores outliers,
can be solved directly by eigen-decomposition of a ma-
trix (Martinec and Pajdla, 2007; Arie-Nachimson et al.,
2012). Finally, camera location is solved (a.k.a. translation
registration) by a variety of direct/iterative methods, in-
cluding solving a linear system of equations (Kraus, 1997,
Sec. 4.1), (Arie-Nachimson et al., 2012; Jiang et al., 2013),
eigen-decomposition (Brand et al., 2004), linear program-
ming (Moulon et al., 2013), Second Order Cone program-
ming (Kahl and Hartley, 2008; Martinec and Pajdla, 2007),
non-linear least squares (Wilson and Snavely, 2014).

Since some of these methods are direct and the scheme
proposed in this paper is iterative, they can be considered
superior from this point of view. However, they minimize
algebraic residuals, which in certain cases are based only
on the orientations (Brand et al., 2004, e.g.), ignoring the
3D points until the final intersection. On the other hand,
our method minimizes a geometric residual, similarly to
photogrammetric bundle block adjustment. As a matter
of fact, the experiments reported show that the method in-
troduced in this paper achieves RMS error values (wrt. gro-
und control points) practically equal to those obtained by
photogrammetric bundle block adjustment.

2. Procrustes Analysis and Photogrammetry

Let us start this section by summarily presenting the
main characteristics of the generalized (isotropic) Procrustes
analysis in Photogrammetry and laser scanning applica-
tions. Afterwards, the anisotropic row-scaling Procrustes
analysis will be presented, and its capabilities to success-
fully solve the exterior orientation of one image and the
bundle block adjustment problem will be emphasized.

2.1. Registration of multiple 3-D models
As well known, photogrammetric relative orientation

and laser scanning can provide numerical 3-D models of
real objects by sampling the positions of a set of repre-
sentative surface points. Depending on the extension and
on the shape complexity of the geometric entity to be sur-
veyed, its complete acquisition often leads to the creation
of a set of partial and independent 3-D models. These
parts must be joined together to reconstruct the complete
object model into a unique frame by matching common
points or features, or by directly aligning portions of cor-
responding surfaces.

The registration of multiple 3-D models or n-view regis-
tration problem requires to simultaneously transform into
a unique mean coordinate system a set of m ≥ 2 models,
each composed of n points coordinates in R3 defined in a
different reference frame.

If these models are expressed by m n × 3 matrices
A1, . . . Am, the problem is equivalent to:

min
m∑

i<j

‖(λiAiRi + 1tT
i )− (λjAjRj + 1tT

j )‖2F (1)
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where 1 is the all-ones vector and (λi, Ri, ti) are the pa-
rameters of a similarity (a.k.a. Helmert) transformation.
This is a generalized (isotropic) Procrustes analysis (GPA)
model (Gower, 1975), whose solution allows to directly
register all the 3-D models into a unique mean reference
frame, minimizing a geometric error.

The analogy with the photogrammetric independent
models block adjustment is evident:

• the number of the Ai matrices is equal to the number
m of the models composing the block adjustment.
The matrices contain the coordinates of the available
points for each model;

• all matrices Ai have the same dimension, equal to
the global number n of the block adjustment obser-
vations by the coordinate space dimension (usually
3);

• in the case of missing data, the generic matrix Ai has
specified components only for the points belonging to
the i-th model, the other ones being unspecified.

Figure 1 explains these positions.
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The case considered in the previous paragraph, is directly demonstrable considering that Pi (i
= 1…m) = P are constant.
These results are extremely useful for our purposes, since the general formulation can be
applied to cases of missing matching points between configuration matrices. Consequently
we are no more compelled to handle full sets of corresponding point matrices but we can
handle the real cases where the matrices Ai contain tie-point coordinates and the
corresponding tie points are not defined (visible) in all datasets (views).
An elegant formulation of the GP problem for incomplete matching datasets has been
developed by Commandeur (1991). The author associates to every matrix Ai a diagonal
binary matrix Mi, containing unit values where the corresponding rows of Ai are effectively
defined and zero where they are missing. Figure 2 exemplifies a simple situation.
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diag(M1) = [1 1 1 1 0 0];     diag(M2) = [0 1 1 1 0 1];     diag(M3) = [0 0 1 1 1 1]
Figure 2: Incomplete Ai matching datasets and resulting Mi Boolean matrices.

Generalising the result, every diagonal matrix Di can be seen as the product of a weighting
component 1

i Pi
−=P Q  by the corresponding Boolean component Mi:

i i i i i= =D M P PM [16]
Finally, the solution of the global registration problem can be approached by different ways.
One of these will be briefly illustrated in the following.

3  Program implementation

The algorithms of the Procrustes analysis, concisely described in the paper, have been
implemented in a Matlab® procedure, to perform the simultaneous global registration of a set
of partial overlapping 3-D models. The process runs in two main steps.

3.1  General initial registration

Assuming one of the models as fixed - e.g. A1 - all the others are incrementally linked and
oriented respect to it by the WEOP algorithm. Instead of sequentially registering pairs of
single models, every model (when possible) is oriented respect to the topological union of all

Figure 1: Analogy between a block adjustment scheme and a GPA
problem with missing data (from Beinat and Crosilla (2001)).

Different iterative procedures have been proposed in
the literature to minimize the cost function (1). In partic-
ular we will follow the approach of Commandeur (1991),
which is based on the following property:

m∑
i<j

‖Ap
i −Ap

j‖
2
F = m

m∑
i=1

‖Ap
i − S‖2F (2)

where Ap
i = λiAiRi +1tT

i is the matrix Ai transformed by

the similarity with parameters λi, Ri, ti, and S = 1
m

m∑
i=1

Ap
i

is the centroid of the group of matrices, or mean shape:
its rows are the coordinates of the geometric centroid of
corresponding transformed points.

By comparing formula (2) with the objective function
(1) it is possible to define a solving criterion based on iter-
ative computation of the centroid, that leads to great ad-
vantages in terms of simplicity and efficiency. In summary,
these are the two steps that are repeated until stabilization
of the centroid S:

a) The solution of independent similarity transforma-
tions for each matrix Ap

i with respect to the centroid
S;

b) The computation of the centroid S following the se-
quential updating of matrices Ap

i .

Step a) is a simple extended orthogonal Procrustes analysis
(EOPA) model, whose solution will be formulated ahead
in this section.

In case of missing data, the problem can be handled
with the procedure presented in Crosilla and Beinat (2002),
where for each matrix Ai, a diagonal matrix Mi can be in-
serted, containing unit values along the main diagonal in
case the corresponding row of Ai is specified and zero on
the contrary. Hence, the cost function can be written as:

m∑
i<j

tr (Ap
i − S)T Mi (Ap

i − S) (3)

where the centroid S, is now defined as:

S =

(
m∑

k=1

Mk

)−1 m∑
i=1

MiA
p
i (4)

2.1.1. Extended Orthogonal Procrustes Analysis
We outline here the extended orthogonal Procrustes

analysis model; for more details please refer to Schönemann
and Carroll (1970). The EOPA model considers the least
squares similarity transformation between two matrices.
Given matrices A and B, with the same meaning as Ai

in the preceding paragraph, EOPA allows to define an or-
thogonal matrix R, a translation vector t and a global
scale factor λ which attain:

min‖B − λAR− 1tT‖2F (5)

subject to the condition: RTR = RRT = I . The solution
is the following. Let

Y = AT
(
I − 1 1T/n

)
B; (6)

perform the Singular Value Decomposition of Y

Y = UDV T

and set
R = U diag

(
1, 1,det(UV T)

)
V T. (7)

The central diagonal matrix is necessary if R is required
to be a rotation matrix (Wahba, 1965; Arun et al., 1987).

Once R is known, the scale factor λ can be computed
as:

λ =
tr
(
RTAT

(
I − 1 1T/n

)
B
)

tr (AT (I − 1 1T/n) A)
. (8)

And, finally:

t = (B − λAR)T
1
n

. (9)

A proof can be derived with the Lagrangian method as
in Schönemann and Carroll (1970) (the AEOPA solution
reported in Appendix A works along the same line). Re-
lated methods that aim at estimating the rotation can be
found in (Wahba, 1965) and (Arun et al., 1987).
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Summarizing, the Procrustean Multiple Models
Registration (PMMR) algorithm is the following2:

Algorithm 1 PMMR

Input: a set of 3-D models Ai i = 1 . . .m
Output: scale λi, translation ti and attitude Ri of each

model

1. Initialize Ap
i = Ai ∀i

2. Compute centroid S = 1
m

m∑
i=1

Ap
i

3. Register each model Ap
i to S:

(a) Compute Ri = Udiag
(
1,1,det(UV T)

)
V T

with UDV T = Ap
i
T(

I − 1 1T/n
)
S;

(b) Compute λi =
tr(RTApT

i (I−1 1T/n)S)
tr(ApT

i (I−1 1T/n)Ap
i )

;

(c) Compute ti = (S − λiA
p
i Ri)

T 1/n;

(d) Update Ap
i = λiAiRi + 1tT

i

4. Iterate from step 2 until convergence.

The algorithm always converges (Commandeur, 1991),
though not necessarily to the global minimum.

In the field of terrestrial laser scanning, the registration
of multiple 3-D models via PMMR (with a rigid transfor-
mation) has been discussed in Beinat and Crosilla (2001);
Toldo et al. (2010). In the field of photogrammetry, Crosilla
and Beinat (2002) applied the PMMR to the solution of
block adjustment by independent models. A good review
can also be found in Akca (2003).

2.2. Exterior Orientation of one image
Given at least three control points and their projec-

tions, the exterior orientation problem requires to find a
rotation matrix R and a vector c (specifying attitude and
position of the camera) such that:

pi = ζ−1
i R(si − c) (10)

for some positive scalar ζi, where

si is the coordinate vector of the i-th control point
in the external system;

c is the coordinate vector of the projection center in
the external system;

ζi is a positive scalar proportional to the “depth”
of the point, i.e., the distance from the i-th control
point to the plane containing the projection center
and parallel to the image plane;

R is the rotation matrix transforming from the ex-
ternal system to the camera system;

2In order to reduce clutter, the formulae in the algorithm refer to
the case without missing data.

pi is the coordinate vector of the i-th control point
in the camera system, where the third component is
equal to −c, the principal distance or focal length.

Equation 10 describes the central perspective projec-
tion and it leads to the well-known collinearity equations,
as it expresses the fact that pi and R(si− c) are collinear.

In a recent paper (Garro et al., 2012) the image exterior
orientation problem has been solved using anisotropic row-
scaling Procrustes analysis. We shall briefly review here
its derivation and then move forward to the bundle block
adjustment.

Expressing (10) with respect to si yields:

si = ζiR
Tpi + c. (11)

After transposing

sT
i = ζipT

i R + cT (12)

and extending to n control points s1 . . . sn it results:s
T
1
...
sT
n


︸ ︷︷ ︸

S

=

ζ1 . . . 0
...

. . .
...

0 . . . ζn


︸ ︷︷ ︸

Z

p̃
T
1
...

p̃T
n


︸ ︷︷ ︸

P

R +

c
T

...
cT


︸ ︷︷ ︸
1cT

. (13)

In compact form, the above formula reads:

S = ZPR + 1cT (14)

where P is the matrix by rows of image point coordinates
defined in the camera frame, S is the matrix by rows of
point coordinates defined in the external system, Z is the
diagonal (positive) depth matrix.

One can recognize an instance of the extended orthog-
onal Procrustes analysis model (Sec. 2.1.1) generalized by
the fact that the isotropic scale factor λ is substituted by
an anisotropic scaling characterized by a diagonal matrix
Z of different scale values. Indeed, according to Gower and
Dijksterhuis (2004), this can be defined as an anisotropic
extended orthogonal Procrustes analysis problem with row
scaling.

To obtain the least squares solution for the anisotropic
row-scaling Procrustes analysis model (14), one has to
define a Lagrangian function and set to zero the partial
derivatives with respect to the unknowns R, c and the
diagonal matrix Z (details can be found in Appendix A).

The results are:

R = UV T with UDV T=PTZ
(
I − 1 1T/n

)
S (15)

c = (S − ZPR)T 1/n (16)

Z = (PPT � I)−1(PR(ST − c1T)� I) (17)

where � is the Hadamard (or element-wise) product.
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The reader can notice that whereas in the solution of
the extended orthogonal Procrustes analysis problem one
can recover first R, that does not depend on the other un-
knowns, then the isotropic scale factor λ, and finally t, in
the anisotropic case the unknowns are entangled in such a
way that there is no direct solution available. Gower and
Dijksterhuis (2004) suggest an iterative procedure where
each variable is alternatively estimated while keeping the
others fixed3. This scheme is called block relaxation (de Leeuw,
1994) or alternating least squares (Young et al., 1976).

The Procrustean Exterior Orientation (PEO)
algorithm can be sketched as follows:

Algorithm 2 PEO

Input: control points S and their image coordinates P
Output: position c and attitude R of the camera

1. Start with any Z > 0
2. Compute R = U diag

(
1,1,det(UV T)

)
V T

with UDV T = PTZ
(
I − 1 1T/n

)
S

3. Compute c = (S − ZPR)T 1/n

4. Compute Z = (PPT � I)−1(PR(ST−c1T)� I)
5. Iterate from step 2 until convergence.

It is understood that in step 4 one has to take care of
negative values of Z, either by clipping or by non-negative
least squares, as detailed in Appendix A.

Please note that while an iterative solution with guar-
anteed convergence was described by Bennani Dosse and
Ten Berge (2010) for the cases of pre- and post-scaling
of the columns (or “dimensions”), no analogous result is
known in the literature for rows (or “configurations”) scal-
ing, which is the problem we are dealing with here.

Solving exterior orientation with Algorithm 2 can be
seen as iterating between two stages, namely:

• assuming known Z, apply the extended orthogonal
Procrustes analysis to find attitude R and position
c of the image;

• given R and c, solve for Z by finding the position
along the (fixed) optical ray that minimizes the dis-
tance to the (known) 3-D points.

The solution of the anisotropic row-scaling Procrustes
analysis problem finds Z,R and c in such a way to mini-
mize the sum of the squared norm of the difference vectors
between 3-D reference points (S) and the back-projected
2D points (P ) based on their estimated depths (Z) and the
estimated image attitude and position (R, c) (See Fig. 2).

In order to gain some understanding about the error
being minimized – which is ‖S − ZPR − 1cT‖2F – let us

3It would be sufficient to remove the translation, though, to ob-
tain a simpler problem with closed form solution (Gower and Dijk-
sterhuis, 2004)

Δ3

Δ2

Δ1M1

M2

M3

p1 p3

p2

c

Figure 2: The estimated depth defines a 3-D point back-projected
along the optical ray of the image point pi. The segment (perpen-
dicular to the optical ray) joining this point and the corresponding
reference 3-D point Mj is the residual ∆j . The position and attitude
of the camera plus the depth of the points are estimated in such a
way to minimize the length of these ∆j for all the points, in a least
squares sense.

rewrite:

S − ZPR− 1cT = Z
(
Z−1(S − 1cT)RT − P

)︸ ︷︷ ︸
B

. (18)

The term (S − 1cT)RT in the expression of the matrix
B represents the 3-D coordinates of control points in the
camera reference system; let [xj , yj , zj ] be the j-th row of
such matrix and let [uj , vj ,−c] be the i-th row of P . Then
we have:

‖B‖2F = ‖Z−1(S − 1cT)RT − P‖2F =
n∑

j=1

‖ 1
zj

[xj , yj , zj ]− [uj , vj ,−c]‖2 =

n(1− c)2 +
n∑

j=i

‖[xj

zj
,
yj

zj
]− [uj , vj ]‖2.

(19)

The first term is constant while the second term is the
sum of the squared distance between the measured image
points [uj , vj ] and the projection of the corresponding ref-
erence points. Hence minimizing ‖B‖2F is equivalent to
minimizing the sum of squared image coordinate residu-
als of the collinearity equations (i.e., the classical bundle
adjustment error function).

Our method instead minimizes ‖ZB‖2F , which is re-
lated to ‖B‖2F by the following inequality:

min(Z2)‖B‖2F ≤ ‖ZB‖2F ≤ max(Z2)‖B‖2F . (20)

Since the entries of Z are bounded by physical constraints,
i.e., zmin < zi < zmax with suitable constants zmin and
zmax, when ‖ZB‖2F approaches zero so does ‖B‖2F and
viceversa.

The insight to be gained from this application is that
whereas long-established orthogonal Procrustes analysis
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seeks transformations in 3-D space, the anisotropic exten-
sion allows to deal with problems involving a projection to
2D space by introducing an auxiliary unknown, the depth
of the points, which allows to back-project 2D points into
3-D space, thereby restoring the 3-D problem.

3. Procrustean Bundle block adjustment

Let us now consider m images depicting the same n 3-D
tie-points s1 . . . sn. In the bundle block adjustment prob-
lem it is required to simultaneously find the image exterior
orientation parameters and the tie-points 3-D coordinates
that minimize a geometric error, without introducing in-
termediate models, as opposed to the block adjustment
by independent models. Building on the previous section,
we derive here a novel procrustean solution to the bundle
block adjustment problem.

Starting from Eq. (14), which is an equivalent formu-
lation of the collinearity equations, we can write for each
image i:

S = ZiPiRi + 1cT
i . (21)

In this formula the image coordinates Pi are known,
but all the other quantities are unknown, including the
3-D points S and their depths Zi. If Zi were known,
the problem would reduce to a GPA (with a rigid trans-
formation), where the point sets to be aligned are the
ZiPi i = 1 . . .m.

If we rewrite Eq. (21) as PiRi = Z−1(S − 1cT
i ) the

model becomes the same as the STIMIDIO – modulo the
inversion of the weight matrix – described at pg. 129 of
Commandeur (1991), which in turn derives from the PINDIS
(Lingoes and Borg, 1978) model. The iterative solution we
propose is sightly different, though: along the same line as
in the exterior orientation case, the proposal is to iterate
between the following stages:

• assuming all the Zi known, compute Ri, ci by solving
a GPA problem (cfr. Eq. (1)), as in Algorithm 1:

min
∑
`<j

‖(ZjPjRj + 1cT
j )− (Z`P`R` + 1cT

` )‖2F ;

• the putative 3-D points S are the centroids

S =
1
m

m∑
i=1

(ZiPiRi + 1cT
i );

• given S, solve for Zi independently in each image (as
in Algorithm 2):

Zi = (PiP
T
i � I)−1(PiRi(ST − ci1T)� I).

Since the global scale of the solution is discretionary,
only the ratios of the Zi are relevant. Therefore, at each
iteration the Zi are normalized to unit average, in order
to better condition the convergence.

With respect to the classical photogrammetric bundle
block adjustment, the error being minimized is different:
Procrustean bundle block adjustment minimizes a geomet-
ric error in the 3-D space, whereas photogrammetric bun-
dle block adjustment residuals are measured in the image
plane. In particular, it is easy to see (Commandeur, 1991)
that this procedure minimizes the following objective func-
tion:

m∑
i=1

‖S − ZiPiRi − 1cT
i ‖2F (22)

where each term of the sum represents the difference vec-
tor between 3-D tie-points (S) and the back-projected 2D
points (Pi) based on their estimated depths (Zi) and the
estimated image attitude and position (Ri, ci) of image
i. Let us call ∆ij each individual difference vector rela-
tive to exposure i = 1 . . .m and tie-point j = 1 . . . n (See
Fig. 3). Overall, what is being minimized is the length of
the residuals ∆ij for each exposure and each tie-point, in
a least-squares sense.

The relationship with the classical photogrammetric
bundle block adjustment cost function can be enlightned
by following the same path as before (Eq. (18)-(20)). First
we write the cost function Eq. (22) as

∑
i‖ZiBi‖2F where

Bi = Z−1
i (S − 1cT

i )RT
i − Pi, and then prove that: i)∑

i‖Bi‖2F is equivalent to the photogrammetric bundle
block adjustment residual up to an additive constant ii)
PBBA error is pinched between two functions proportional
to the the bundle adjustment error:

m min
i

min(Z2
i )

m∑
i=1

‖Bi‖2F ≤
m∑

i=1

‖ZiBi‖2F

m∑
i=1

‖ZiBi‖2F ≤ m max
i

max(Z2
i )

m∑
i=1

‖Bi‖2F .

(23)

Mj
Δ i j

ci

Image i

Figure 3: Consider the rays emanating from each point as “sticks” in
space. PBBA optimize camera position and attitude and the length
of each stick so as to bring the sticks’ endpoints as close as possible
to each other, i.e., it minimizes the length of the ∆ij .
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The PBBA solution corresponds to a free adjustment,
as it does not involve any object space constraint. Points
and images are expressed in an arbitrary reference system
(inherent in the GPA), which can be brought into align-
ment with the desired coordinate frame via a similarity
transformation, solving an absolute orientation problem
with given ground control points.

The Procrustean Bundle Block Adjustment
(PBBA) algorithm can be outlined as follows:

Algorithm 3 PBBA

Input: 2D-2D correspondences Pi over m images
Output: position c and attitude R of the images, 3-D

points S

1. ∀i : Initialize Zi > 0
2. Normalize the Zi to unit average;
3. Let Ai = ZiPi; apply PMMR obtaining (Ri, ci)

and centroid S

4. ∀i : Compute Zi=(PiP
T
i �I)−1(PiRi(ST−ci1T)�I)

5. Iterate from step 2 until convergence.

If not all points are visible in all the images there are
missing data, which are handled inherently by PMMR in
step 2, while in step 3, for each image i, only the points
visible in that image are considered.

The PBBA inherits from GPA its slow rate of conver-
gence, which has been already pointed out in Akca (2003).
Also Commandeur (1991) (pg. 134) comments on the slow-
ness of his iterative solution of the STIMIDIO model. This
trait has been partially cured in our implementation by
introducing a damping factor greater than one in the up-
dating of Zi: the algorithm applies a correction to Zi that
is greater than the value computed according to step 4 of a
factor ranging from 1 to 2, depending on the convergence
rate.

As a final remark, although the nature of the two steps
is completely different, one might see some resemblance
of a customary resection-intersection cycle (Kraus, 1997,
Sec. 4.1), as step 3 deals with the orientation while step 4
deals with the 3-D points. Also the iterative factorization
methods described in the Introduction can be contrasted.

4. Experiments on simulated data

In this set of experiments, we tested PBBA on repeated
trials with simulated data.

For each trial, n 3-D tie-points have been randomly
generated in a sphere of unit radius centered on the ori-
gin. Sixteen random cameras (m = 16) looking toward the
origin have been positioned in a 60◦ sector of the sphere,
at an average distance of d units4 from the origin. The

4In these experiments on simulated data, measures are in arbi-
trary “units”.

0 20 40 60 80 100 120 140 160 180

0

10

rays: 3

Figure 4: Top: A depiction of a simulated scene (camera stations and
points) used in the experiment (n = 192, d = 10, p = 36); Bottom:
the simulated visibility matrix, showing which point (x-axis) is visible
in which image (y-axis). Ray multiplicity is 3.

focal length has been chosen so as to yield a view angle
of {60◦, 120◦} with an image size of 1000 × 1000 pixels.
Random noise has been added to the image coordinates.
Missing points have been simulated by zeroing random el-
ements in the visibility matrix.

A sample simulated scene is shown in Fig. 4. Figure
5 reports the convergence of error (as defined in Eq. (22))
and depth values for the first image. Please note that the
initial value of Z needs not to have any relationship with
the actual average depth of the 3-D points, for the global
scale of the solution is meaningless.

Figure 6 shows the average and standard deviation of
the residuals ∆ij for each point, over the number m of
exposures. These residuals are, for each tie-point j imaged
in exposure i, the distance from the back-projected point
(according to its estimated depth) to its centroid, which
represents the estimate of the actual 3-D point (see Fig. 3).

In the experiment aimed at assessing (empirically) the
accuracy of the method, the parameters were set to: n =
96, d = 10, p = 36 (p is the number of tie-points visible in
each image). Increasing random noise with standard de-
viation σ = {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5} has been added to
image points coordinates and 25 trials for each noise level
have been averaged. In each trial first PBBA is run and
then photogrammetric bundle block adjustment, starting
from the output of the former. The output of both meth-
ods have been compared after a least-squares alignment
with the ground-truth 3-D points (Fig. 7 - left). The
RMS error for PBBA is only slightly higher than the error
achieved by photogrammetric bundle block adjustment; it
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Figure 5: Convergence of error (left) and depth values (right) for the simulated scene of Fig. 4. Please note that some axes are logarithmic.
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Average and std dev of 3D residuals

Figure 6: Average and standard deviation of the ∆ij (defined in the
text) for the simulated scene of Fig. 4.

can be considered equal for all practical purposes. Note
how the RMS error of 3-D points position grows linearly
as the standard deviation of the noise increases. Figure 7
- right reports the root of reference variance of the image
coordinate residuals for the same experiments.

A further experiment was designed for characterizing
the failure rate, i.e., counting how many times PBBA failed
to reach the correct solution in 100 random trials, starting
with the usual uninformed initialization (Z = 1). A ran-
dom noise with 1 pixel standard deviation has been added
to image coordinates. The parameters considered in this
simulation are the distance d of the camera from the origin
and the number p of tie-points visible in each image.

For each value of d = {2, 10, 20} 3-D tie-points have
been stretched in the XY plane so as to fit in the view
frustum, while the Z range is kept constant (to the original
two units), so as to give rise to increasing values for the

distance to Z-range ratio, namely {1, 5, 10} respectively.
The number of visible tie-points per image has been set

to p = {18, 36, 54}. When the number of images and the
number of visible tie-points per image are fixed, total num-
ber of points and the ray multiplicity become dependent.
In one case the total number of points has been kept fixed
to n = 96 and the ray multiplicity took the values {3, 6, 9}.
In another case ray multiplicity has been fixed to 3 and the
total number of points took values n = {96, 192, 288}.

Figure 8 reports the results. When the ray multiplicity
is greater than 3 (top row, p = {36, 54}) the convergence
rate is 100%. The case of ray multiplicity= 3 is analyzed
in the bottom row. The case p = 18, view angle of 60◦

(with d = 2, in particular) is the worst; convergence rate
is at least 95% in all the other cases.

Figure 9 reports the median RMS error on 3-D points
position for this experiment. The RMS error is in per-
centage with respect to the radius of the point cloud (i.e.,
1% is 0.01 units on 3-D points in a sphere with radius 1).
This error is always below 2% and in most cases is below
1%. As expected, the error increases with the distance
and decreases with the number of tie-points visible in each
image. It also worsen when switching from a field of view
of 60◦ (left column) to 120◦ (right column).

A final but important remark: although the conver-
gence of PBBA is slow near the optimum, only few it-
erations are needed to dramatically reduce the error and
obtain approximately correct depths (see Fig. 5 which is
a paradigmatic example). This might suggest a combined
use of PBBA and photogrammetric bundle block adjust-
ment: PBBA is run for some iterations (≈ 20) and then
photogrammetric bundle block adjustment takes on and
quickly converges to the minimum.

As for the computational cost, one iteration of pho-
togrammetric bundle block adjustment requires approxi-
mately the same time spent in 7.4 iterations of PBBA,
considering a MATLAB implementation of both running
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Figure 7: RMS error on 3-D point position (left) and root of reference variance of the image coordinate residuals (right) vs standard deviation
of random noise added to image tie-points. Dark green is the error obtained by photogrammetric bundle block adjustment, while yellow is
the error achieved by PBBA. The regression line is also plotted (in red).
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Figure 8: Failure rate of PBBA as a function of camera distance d and number of tie-points visible in each image. Top row: Corresponding ray
multiplicity values are [3, 6, 9], where n = 96. Bottom row: Corresponding total number of points are [96, 192, 288], where the ray multiplicity
is fixed to 3. Left/right column correspond to 60◦/120◦ field of view, respectively.
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Figure 9: Median RMS error of PBBA as a function of camera distance d and number of tie-points visible in each image p. The error is in
percentage with reference to points distributed on a unit sphere. Top row: Corresponding ray multiplicity values are [3, 6, 9], where n = 96.
Bottom row: Corresponding total number of points are [96, 192, 288], where the ray multiplicity is fixed to 3. Left/right column correspond
to 60◦/120◦ field of view, respectively.

on the simulated data of Fig. 4.

5. Experiments on real data

In this section we report two experiments to better
evaluate the algorithm in real applications. In particu-
lar we selected one close-range experiment and one aerial
(UAV) application (Fig. 10). Table 1 gives the main fea-
tures of these datasets. In both cases image tie-points
have been automatically computed using the structure-
from-motion pipeline proposed by Farenzena et al. (2009);
Gherardi et al. (2010)5. The Matlab implementation of
bundle block adjustment has been taken from the Vision
Lab Geometry Library6.

The close-range data is described in Strecha et al. (2008).
In particular we used the Herz-Jesu-P25 set, composed by

5code available from http://samantha.3dflow.net
6code available from http://vision.ucla.edu/vlg/

Table 1: Datasets features. Image size and cardinality, average
depth, ground sampling distance (GSD).

size avg. Z GSD.
Herz-Jesu-P25 3072 x 2048 x 25 3.4 m 5.2 mm
Hessighein 4288 x 2848 x 15 242 m 61 mm

25 images, which have been carefully oriented in the ref-
erenced work, using a laser scan as the ground truth.

For the Herz-Jesu-P25 image-set (Fig. 11) the final re-
projection RMS error is 0.54 pixels, whereas the PBBA
error (average distance of backprojected points to their
centroid) is 2.0 mm (Fig. 12). The RMS error with respect
to the reference camera stations is 9.2 mm; Fig. 13 reports
the error with respect to ground control points, both as
distance in space and as coordinates differences. After
running photogrammetric bundle block adjustment, this
error improves only slightly, reaching 8.6 mm; this is not
relevant though, for both measures are well within the un-
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Figure 10: Left: one sample image of the Herz-Jesu-P25 set; Right: one sample image of the near-vertical Hessighein set.
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Figure 11: Top: A depiction of points and camera stations of the
Herz-Jesu-P25 image-set; Bottom: the visibility matrix, showing
which point (x-axis) is visible in which image (y-axis). The text
below this matrix reports the minimum and maximum ray multi-
plicity.
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Figure 12: Average and standard deviation of ∆ij (defined in the
text) for the Herz-Jesu-P25 image-set.
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Figure 13: Top: Distance of computed to reference camera stations
for the Herz-Jesu-P25 image-set. Bottom: Differences on each di-
mension (X-Y-Z).
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Figure 14: Convergence of error (left) and depth values (right) for the Herz-Jesu-P25 image-set. Please note that some axes are logarithmic.

certainty affecting the measured camera stations (reported
in Strecha et al. (2008)). Fig. 14 shows the evolution of
the error and depth values of points in the first image as
the algorithm iterates.

The Hessigheim data is described in Cramer (2013).
In particular we used only a small subset of those data,
corresponding to 15 images. Interior orientation has been
obtained by auto-calibration, as part of the structure from
motion pipeline which provided the image tie-points.

For the Hessigheim image-set (Fig. 15) the final repro-
jection RMS error is 0.56 pixels, whereas the PBBA error
(average distance of backprojected points to their centroid)
is 29 mm (Fig. 16). The RMS error with respect to ground
control points is 15.5 cm; Figure 17 reports the errors for
each image and each dimension. After running photogram-
metric bundle block adjustment, this error reaches 15.2
cm. This improvement however has little significance, if
compared with the scale of the problem. Convergence can
be appreciated in Fig. 18.

Please note that, in accordance with the remark on
the global scale already made before, in both cases PBBA
starts with Z = 1 even if actual average depths are com-
pletely different (3.4m and 242m respectively).

The rundown of these experiments on real data is that
the qualitative behavior of PBBA on simulated data is
confirmed in all regards.

6. Conclusions

A new approach to bundle block adjustment based on
anisotropic orthogonal Procrustes analysis has been pre-
sented. Beside its theoretical interest and its simplicity,
this algorithm has the advantage of converging to the cor-
rect solution in most cases, with a zero-information initial-
ization.

According to our empirical evaluation, PBBA and pho-
togrammetric bundle block adjustment are somehow com-

0 20 40 60 80 100
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10

rays: [6, 14]

Figure 15: Top: A depiction of points and camera stations of the
Hessigheim image-set; Bottom: the visibility matrix, showing which
point (x-axis) is visible in which image (y-axis). The text below this
matrix reports the minimum and maximum ray multiplicity.

plemental: while the former converges slowly in proximity
of the solution but requires no specific initialization, the
latter is faster but requires an educated guess of the so-
lution to be started. Furthermore, photogrammetric bun-
dle block adjustment yields theoretically optimal estima-
tors – since it minimizes the observational error – whereas
PBBA enlarges the range of convergence while minimiz-
ing a geometric error that is different but related to that
of photogrammetric bundle block adjustment. In particu-
lar, we have proved that PBBA error is pinched between
two functions proportional to the bundle adjustment error.
Experiments show that there is no substantial difference in
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Figure 16: Average and standard deviation of the ∆ij (defined in
the text) for the Hessigheim image-set.
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Figure 17: Top: Distance of computed 3-D points to ground control
points for the Hessigheim image-set. Bottom: Differences on each
dimension (X-Y-Z).

the RMS error of the results obtained by the two methods.
A formal characterization of the accuracy of PBBA, how-
ever, would require the introduction of a stochastic model,
which is left for future work. The route traced in (Fusiello
et al., 2013) could be possibly followed to deal with the
issue of sensitivity to outliers.
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Appendix A. Derivation of the anisotropic row-
scaling Procrustes analysis solution

We shall report here the complete derivation of the
anisotropic row-scaling Procrustes analysis solution, which
is similar to the one reported by Schönemann and Carroll
(1970) for the extended orthogonal Procrustes analysis.

To obtain the least squares solution for (14), let us
make explicit the residual matrix ∆:

∆ = S − ZPR− 1cT. (A.1)

The problem is equivalent to the minimization of the La-
grangian function

F = tr
(
∆T∆

)
+ tr

(
L
(
RTR− I

))
(A.2)

where L is the matrix of Lagrangian multipliers. This
can be solved by setting to zero the partial derivatives of
F with respect to the unknowns R, t and the diagonal
matrix Z.

Let us substitute (A.1) in (A.2):

F =tr
(
STS

)
+ tr

(
RTPTZTZPR

)
+ n tr

(
ccT
)
−

− 2 tr
(
ST1cT

)
− 2 tr

(
STZPR

)
+

+ 2 tr
(
RTPTZT1cT

)
+ tr

(
L
(
RTR− I

)) (A.3)

The projection centre c can be satisfied by equating to
zero the partial derivative:

∂F

∂c
= 2nc− 2ST1 + 2RTPTZT1 = 0 (A.4)

Hence:
c = (S − ZPR)T 1/n (A.5)

Once the derivatives of F with respect to R and c are
set to zero, it results:

∂F

∂R
=PTZTZPR− PTZTS + PTZT1cT+

+ R(L + LT)/2 = 0
(A.6)
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Figure 18: Convergence of error (left) and depth values (right) for the Hessigheim image-set. Please note that some axes are logarithmic.

where Q = (L + LT)/2.
Let us multiply (A.6) on the left by RT:

RTPTZTZPR−RTPTZTS + RTPTZT1cT+

+ RTR(L + LT)/2 = 0
(A.7)

Since matrices RTPTZTZPR and (L+LT)/2 are symmet-
ric, then7

sym [RTPTZTS −RTPTZT1cT]. (A.8)

Substituting (A.5) in (A.8), it results

sym [RTPTZTS−RTPTZT
(
11T/n

)
(S−ZPR) ] (A.9)

which is equivalent to

sym[RTPTZTS −RTPTZT
(
11T/n

)
S+

+ RTPTZT
(
11T/n

)
ZPR ] (A.10)

and finally:

sym[RTPTZT
(
I − 11T/n

)
S+

+ RTPTZT
(
11T/n

)
ZPR ]. (A.11)

Since RTPTZT
(
11T/n

)
ZPR is symmetric, also the first

term must be symmetric, i.e.,

sym [RTPTZT
(
I − 1 1T/n

)
S]. (A.12)

Let us define the matrix T equal to

T = PTZT
(
I − 1 1T/n

)
S (A.13)

7The predicate sym[ ] is true when the argument is a symmetric
matrix.

Matrix RTT is symmetric, therefore the following condi-
tion must be satisfied

RTT = TTR (A.14)

that is equivalent to

TTT = RTTTRT (A.15)

Let T = UDV T be the SVD of T , with matrices V,U
orthonormal. Substituting into (A.15) yields:

UD2UT = RV D2V TRT (A.16)

From (A.16) U = RV and finally R = UV T.
This formula only guarantees that R is orthogonal. The

least squares estimate of a rotation matrix is obtained by
(Wahba, 1965):

R = U diag
(
1, 1,det(UV T)

)
V T. (A.17)

The least squares solution for the diagonal matrix Z
can be obtained by setting to zero the partial derivatives
of (A.3) with respect to Z.

∂F

∂Z
=

∂

∂Z
tr (RTPTZTZPR)− 2

∂

∂Z
tr (STZPR)+

+ 2
∂

∂Z
tr (RTPTZT1cT)

∂F

∂Z
=

∂

∂Z
tr (ZPRRTPZT)− 2

∂

∂Z
tr (PRSTZ)+

+ 2
∂

∂Z
tr (PRc1TZ)

(A.18)

Since Z is diagonal the derivative must be diagonal as
well, so we introduce the Hadamard product X � I which
is simply X with off-diagonal elements set to zero:

∂F

∂Z
=
(
Z(2PRRTPT)− 2PRST + 2PRc1T

)
� I

∂F

∂Z
=
(
2ZPPT − 2PRST + 2PRc1T

)
� I

(A.19)
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By setting the derivatives to zero one obtains:

ZPPT � I = PR(ST − c1T)� I (A.20)

hence

Z = (PPT � I)−1(PR(ST − c1T)� I). (A.21)

The above formula may yield negative values for the
diagonal entries of Z, which do not have a meaningful in-
terpretation. When this happens one may clip them to
zero or take a more principled approach and solve a con-
strained problem. Indeed, the last formula is equivalent
to:

diag Z = (PPT � I)−1 diag (PR(ST − c1T)). (A.22)

So, following Commandeur (1991), we can see v = diag Z
as the solution of the linear system of equations:

(PPT � I)v = diag (PR(ST − c1T))

which can be solved with non-negative least squares (Law-
son and Hanson, 1974) if we require v > 0.
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