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ABSTRACT

Fall armyworm (FAW-Spodoptera frugiperda), a highly destructive and fast spreading agricul-
tural pest native to North and South America, poses a real threat to global food security. It
is estimated that intermittent FAW outbreaks could cause up to $US 13 billion per annum in
crop losses throughout sub-Saharan Africa. Considering this projected loss it is imperative that
various tools and techniques be utilized to infer on the various factors that affect FAW maize in-
teraction and in-turn affect the final maize biomass. Mathematical modeling has proved to be an
important tool that is capable of shedding light on the FAW-maize interaction dynamics. In this
study, three mathematical models were proposed to evaluate the impact of memory effects and
controls, seasonality and Integrated Pest Management strategy (farming awareness and larvae
predation) on FAW infestations in maize crops and on final maize biomass. Firstly, to evaluate
the impact of memory effects and control, a new dynamical system for FAW-maize biomass
interaction via Caputo fractional-order operator was proposed and analyzed. In the proposed
model, four equilibrium points which revealed the existence of a threshold parameter defined
by R0 were computed and analyzed. Further, it was observed that, R0, the average number of
newborns produced by one individual female moth during its life span was an integral compo-
nent for stability of the aforementioned model equilibria. Secondly, to evaluate the implications
of seasonality on FAW maize interaction and on the final maize biomass, a non-autonomous
mathematical model was proposed and analyzed. The analysis revealed that the model solution
was non-negative, unique, permanent and bounded admitting global asymptotic and continuous
periodic function. Further, the model was extended into an optimal control problem with the
aim of determining optimal pesticides and traditional methods that are capable of minimizing
FAW egg and larvae populations at minimum cost. Results from the study demonstrated that
a combination of pesticides use at low intensity with traditional methods at higher intensity
could eradicate FAW in a maize field in a period less than half the life span of the crop in the
field. Thirdly, to evaluate the impact of farming awareness campaigns and larvae predation,
a fractional-order model that incorporated farming awareness campaigns and larvae predation
was proposed and analysed. Overall, the study highlighted that, non-time dependent farming
awareness campaigns should be close to 100% all the time to eradicate the FAW. However,
when time-dependent farming awareness was implemented, it was observed that even less than
50% intensity level could lead to eradication of FAW. In all the proposed models, comprehen-
sive numerical simulations were carried out in MATLAB programming language to support the
analytical findings. In a nutshell, the results of this study showed that mathematical models can
be important tools to evaluate FAW and maize interaction dynamics.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Problem

Maize (Zea mays L.) is ranked the third most important cereal grain after wheat and rice glob-
ally and is also referred to as the “Queen of Cereals” due to its high genetic yield potential
(Jeyaraman, 2017). The demand for maize is increasing, not only because of its higher nutri-
tional value but also its ability to feed the growing global population and contribution to food
security (Kandel & Poudel, 2020). According to FAO (2018b), food security is a situation that
exists when all people, at all times, have physical, social, and economic access to sufficient,
safe, and nutritious food that meets their dietary needs and food preferences for an active and
healthy life.

Maize is believed to have originated from central Mexico about 7000 years ago from a wild
grass, and was transformed by Native Americans into a better source of food (Bariw et al.,
2020). It is one of the three most widely cultivated crops in the world (Sharon et al., 2020),
with USA, China, and Brazil contributing about 63% of the global maize production, followed
by Mexico, Argentina, India, Ukraine, Indonesia, France, Canada, Nigeria, South Africa, and
other Sub-Sahara African countries including East Africa (Sharon et al., 2020).

Goergen et al. (2016) estimated the total maize harvest in Africa at 40 million hectares, with
Nigeria being the top producer (16%), followed by Ethiopia, and Tanzania. Globally, maize is
a staple food for more than 1.2 billion people in Sub-Saharan Africa (SSA) (Jeyaraman, 2017;
FAO, 2018a). Worldwide maize consumption is estimated to be more than 116 million tons
with, 30% and 21% of the consumption occurring globally and in SSA, respectively.

In Africa, around 14 countries in SSA consume 85–95% of white maize as their staple food
(De Groote et al., 2020). However, sustainable production of maize crops in these countries,
and consequently, the livelihood of maize growers has recently been constrained by the signif-
icant widespread infestation, damage, and destruction caused by the interaction between maize
biomass and exotic (invasive) pest called the fall armyworm (FAW) (Spodoptera frugiperda)
(Lepidoptera: Noctuidae). In this interaction, FAW extremely affects maize plants by eating the
plant materials which are collectively called ”biomass” (Kandel & Poudel, 2020).

FAW is a highly destructive and fast spreading agricultural pest native to North and South
America (Kandel & Poudel, 2020; Day et al., 2017). It is an infecting insects of members
from a family of Poaceace which include major food crops such as corn, sorghum, rice, wheat,
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maize, and diverse pasture (Rukundo et al., 2020). Prior studies suggest that FAW prefers maize
than other crops and pastures (De Groote et al., 2020). In maize, FAW attacks all crop stages
from the emergence of seedlings through to ear development. They defoliate and destroy young
plants; whorl damage can result in yield losses, and ear feeding can result in reduced yields and
grain quality (Sisay et al., 2019).

According to Battude et al. (2016) and Chowdhury et al. (2019), biomass comprises plant ma-
terials such as tissues of greenish parts of the plant, corn or kernel, leaves and stems. In particu-
lar, the FAW feeds on maize biomass in all stages from seedling emergence to ear development
with much preference on maize biomass (foliage or whorls) and then to ear, cob, and kernels.
Cognizant of this, the effect becomes severe when the biomass of the growing points and photo-
synthetic areas of maize plants is attacked. This reduces the ability of maize plants manufacture
their own food which subsequently reduce the final grain yield which is highly needed to feed
the growing population (Bhusal & Chapagain, 2020; Prasanna et al., 2018).

The current estimates from 12 African countries suggest an annual loss of 4.1 to a massive 17.7
million tons of maize due to FAW infestations (De Groote et al., 2020). In particular, farm-level
estimates from Ghana and Zambia suggest yield losses of 22–67% (Day et al., 2017), 47% in
Kenya (Rukundo et al., 2020) and 9.4% in Zimbabwe (Baudron et al., 2019) due to FAW. As
outlined by the United-Nations (2014) and Shiferaw et al. (2013), the world’s population is
expected to reach 9.3 billion by the end of 2050, with an approximated yearly increase of more
than 80% of the global increase, and a quarter of this increase is expected to occur in developing
countries (De Groote et al., 2020). This unprecedented global population increase poses a
serious challenge for maize producers and policymakers, especially regarding the minimization
of food losses due to the effect of interaction between maize biomass and FAW (Faithpraise
et al., 2015).

1.1.1 Life Cycle of the FAW

The FAW as an holometabolous insect undergoes complete metamorphosis with four stages of a
life cycle: (a) eggs, (b) six growth stages of larval development (instars), (c) pupa, and (d) adult
moth. The life cycle of FAW is completed in approximately 30 days during the summer, but 60
days in the spring and autumn, and between 80-90 days during the winter (FAO, 2018a). The
number of generations occurring in an area depends on the appearance of the dispersing adults.
For instances, studies in Kansas have reported generations between one to two, while those in
Carolina and Louisiana, have reported three and four generations, respectively (FAO, 2018b).
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(i) Egg stage

The egg is dome-shaped; the base is flattened and the egg curves upward to a broadly rounded
point at the apex. The egg measures about 0.4 mm and 0.3 mm in diameter and height respec-
tively. The number of eggs per egg-mass varies considerably but is often 100 to 200, and total
egg production per female averages about 1500 with a maximum of over 2000 (Bista et al.,
2020; Sharanabasappa et al., 2019). The eggs are sometimes deposited in layers, but most are
spread over a single layer attached to foliage. The female also deposits a layer of grayish scales
between the eggs and over the egg mass that imparts a furry or moldy appearance (Prasanna
et al., 2018). The duration of the egg stage is only 2-3 days during the summer months (FAO,
2018a). Figure 1 illustrates egg mass of FAW.

Figure 1: Egg mass of FAW (FAO, 2018b)

(ii) Larval stage

There are usually six instars in FAW. The head capsule widths are about 0.35, 0.45, 0.75, 1.3,
2.0, and 2.6 mm for instars 1 to 6 respectively. The larvae attain lengths of about 1.7, 3.5, 6.4,
10.0, 17.2, and 34.2 mm during these instars respectively. The young larvae are greenish with a
black head which turns orangish in the 2nd instar. In the 2nd, but particularly the 3rd instar, the
dorsal surface of the body becomes brownish, and lateral white lines begin to form (Abrahams
et al., 2017).

In the 4th to the 6th instars, the head is reddish brown, mottled with white, and the brownish
body bears white subdorsal and lateral lines. Elevated spots occur dorsally on the body; these
are usually dark in color, and bear spines. The face of the mature larva is also marked with a
white inverted “Y” and the epidermis of the larva is rough or granular in texture when examined
closely (Bista et al., 2020). However, this larva does not feel rough to touch, like the corn ear-
worm, (Helicoverpa zea) (Boddie), because it lacks the microspines found on the corn earworm
(FAO, 2018a).
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In addition to the typical brownish form, the FAW larva may mostly be green dorsally. In the
green form, the dorsal elevated spots are pale rather than dark. The larvae tend to conceal
themselves during the brightest time of the day. The duration of the larval stage tends to be
about 14 days during the summer, and 30 days during cool weather. The mean development
time was determined to be 3.3, 1.7, 1.5, 1.5, 2.0, and 3.7 days for instars 1 to 6, respectively,
when larvae were reared at 25◦ C (FAO, 2018a). Figure 2 depicts the larvae instar stages of
FAW.

(a)

(b)

Figure 2: (a) FAW Larvae from the 1st instar to the 6th instar (left to right) (b) FAW
larvae at 6th stage (FAO, 2018b)

(iii) Pupa stage

Pupation normally takes place in the soil, at a depth 2-8 cm. The larva constructs a loose oval
cocoon of 20-30 mm in length, by tying together particles of soil with silk. If the soil is too
hard, the larvae may web together leaf debris and other material to form a cocoon on the soil
surface. The pupa is reddish-brown in color, and measures 14-18 mm in length and about 4.5
mm in width. The duration of the pupal stage is about 8-9 days during the summer, but reaches
20 to 30 days during the winter in Florida (FAO, 2018a). Figure 3 shows the pupae stage of the
FAW.

The pupal stage of fall armyworm cannot withstand protracted periods of cold weather. Recent
study of the winter survival of the pupal stage in Florida suggest that, 51% of the survival in

4



southern Florida only 27.5% survival in central Florida, and 11.6% survival in northern Florida
(Pitre & Hogg, 1983).

Figure 3: Pupae stage of the FAW (FAO, 2018b)

(iv) Adult stage

Adult moths have a wingspan of 32-40 mm. In the male moth, the forewing is generally shaded
gray and brown, with triangular white spots at the tip and near the center. The forewings of
females are less distinctly marked, ranging from a uniform grayish brown to a fine mottling
of gray and brown. The hindwing is iridescent silver-white with a narrow dark border in both
sexes (Abrahams et al., 2017). Figure 4 shows the male and female adult moth of the FAW.

(a) (b)

Figure 4: (a) Male adult of the FAW (b) Female adult of the FAW (FAO, 2018b)

Adult moth are nocturnal, and most active during warm, humid evenings. After a pre-
oviposition period of 3-4 days, the female normally deposits most of her eggs during the first
4-5 days of life, but some oviposition occurs for up to three weeks. The duration of the adult
moth’s life is estimated to average about 10 days, with a range of about 7-21 days (Prasanna
et al., 2018). Figure 5 shows the complete life cycle of the FAW.
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Figure 5: The life cycle of the FAW (Assefa & Ayalew, 2019)

1.1.2 Host Plants

The FAW, is a destructive insect pest that feeds on 353 host plants in 76 families with the most
agriculturally important found in Poaceace (106), Asteraceae (31), and Fabaceae (31) (Day
et al., 2017). The most frequently destroyed plants are field corn and sweet corn, sorghum,
Bermudagrass, and grass weeds such as crabgrass, Digitaria spp. When the larvae are very
numerous they defoliate the preferred plants, acquire an “armyworm” habit and disperse in
large numbers, consuming nearly all vegetation in their path (Assefa & Ayalew, 2019).

Many host records reflect such periods of abundance, and are not truly indicative of oviposition
and feeding behavior under normal conditions (Prasanna et al., 2018). Field crops that are
frequently attacked by FAW include; alfalfa, barley, Bermudagrass, buckwheat, cotton, clover,
corn, oat, millet, peanut, rice, ryegrass, sorghum, sugarbeet, Sudangrass, soybean, sugarcane,
timothy, tobacco, and wheat. Among vegetable crops, only sweet corn is regularly damaged,
but others are attacked occasionally (Sisay et al., 2019).

Other crops that are sometimes attacked by FAW are apples, grapes, oranges, papayas, peachs,
strawberry and a number of flowers. Weeds known to serve as hosts include bentgrass, Agrostis

sp.; crabgrass, Digitaria spp.; Johnson grass, Sorghum halepense; morning glory, Ipomoea

spp.; nutsedge, Cyperus spp.; pigweed, Amaranthus spp.; and sandspur, Cenchrus tribuloides

(Fotso Kuate et al., 2019).
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1.1.3 Damage to Plants

The larvae of FAW cause damage by consuming foliage. Young larvae initially consume leaf
tissue from one side, leaving the opposite epidermal layer intact (Shiferaw et al., 2013). By the
2nd or 3rd instar, larvae begin to make holes in leaves, and eat from the edges inwards. Feeding
on the whorl of corn often produces a characteristic row of perforations on the leaves. Due to
cannibalistic behavior, larval densities are usually reduced to one or two per plant when feed in
close proximity to one another (Assefa & Ayalew, 2019).

Older larvae cause extensive defoliation, often leaving only the ribs and stalks of corn plants, or
a ragged, torn appearance. Marenco et al. (1992) studied the effects of FAW injury on the early
vegetative growth of sweet corn in Florida. Their study showed that, the early whorl stage was
least sensitive to injury, the mid whorl stage was intermediately sensitive, and the late whorl
stage the most sensitive to injury. They further noted that, mean densities of 0.2-0.8 larvae per
plant during the late whorl stage could reduce crop yield by 5 to 20%.

Larvae can also burrow into the growing points of plants (bud, whorl, etc.), destroying the
growth potential of plants, or clipping the leaves. In corn, the larvae sometimes burrow into the
ear, feeding on kernels in the same manner as the corn earworm, Helicoverpa zea. Unlike corn
earworm, which tends to feed down through the silk before attacking the kernels at the tip of
the ear, the FAW feeds by burrowing through the husk on the side of the ear (FAO, 2018a).

In a study by Pannuti et al. (2016) on larval feeding behavior, it was shown that although young
(vegetative stage) leaf tissue is suitable for larval growth and survival on more mature plants, the
leaf tissue is unsuitable, and the larvae tend to settle and feed on the ear zone, and particularly
on the silk tissues. However, silk was not very suitable for growth and larvae attaining the
corn kernels display the fastest rate of development. Similarly, although the closed tassel was
suitable with respect to survival, it resulted in poor growth. Thus, tassel tissue may be suitable
for initial feeding, perhaps until the larvae locate the silk and ears, but feeding on tassel tissue
only is suboptimal.

Understanding how often the effects of the FAW on maize biomass occurs and spread in the
field not only helps to plan a good strategy to prevent the effect but is also a guiding tool for its
management. As reported by Chapman et al. (2000), the effect caused by FAW on maize starts
immediately after hatching when the young larvae feeds on maize biomass (foliage or whorls)
and then move to the growing points of the maize plants, leaving semi-transparent patches called
windows and developing kernels inside the cobs of older plants protected by leaf bracts ( Figure
6).
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Figure 6: The damage of maize at different stages of plant caused by larvae of the FAW

The small larvae hide in the joints between the biomass and stem of the maize plants and move
out during the night to feed on biomass. The FAW larvae are voracious feeders causing huge
damages to older plants by feeding on both vegetative and reproductive structures where it
defoliate the host when foliage or whorls is attacked and damage the young plant when the
stem and growing point are attacked. When the number of larvae increases in a field, they begin
to defoliate every plant that comes on their way while spreading in the maize field. However,
when food is limited the older FAW larvae exhibit a cannibalistic behavior on the smaller larvae
(Assefa & Ayalew, 2019; Bhusal & Chapagain, 2020).

The severity and extent of FAW infestations are enhanced following the onset of the wet season
when the wind-borne immigrations of adult moths are attracted to lay eggs which transform
into larvae within 2 to 5 days (Bhusal & Chapagain, 2020). The newly hatched larvae benefit
from the flush of green maize biomass vegetation resulting from the rain and develop rapidly
over three weeks and outbreaks can have a very high density. The larvae can severely devastate
maize plantations over several thousand square kilometers with a very high population density
(De Groote et al., 2020; Faithpraise et al., 2015).

These severe effects of FAW outbreaks particularly occur when rainstorms follow droughts
(Bhusal & Chapagain, 2020). Since The pest does not have the ability to diapause (a biological
resting period), infestations by FAW occur continuously throughout the year where the pest is
endemic. In non-endemic areas, migratory FAW arrive when environmental conditions allow
and may have as few as one generation before they become locally extinct.

1.1.4 Natural Enemies

The predators of FAW are general predators that attack many other larvaes, among them are
various ground beetles (Coleoptera: Carabidae); the striped earwig, Labidura riparia (Pallas)
(Dermaptera: Labiduridae); the spined soldier bug, Podisus maculiventris (Say) (Hemiptera:
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Pentatomidae); and the insidious flower bug, Orius insidiosus (Say) (Hemiptera: Anthocoridae).
Vertebrates such as birds, skunks, and rodents also consume larvae and pupae readily. Predation
may be quite important, as Pair & Gross Jr (1984) demonstrated 60 to 90% loss of pupae to
predators in Georgia.

Cool, wet springs followed by warm, humid weather in the overwintering areas favor survival
and reproduction of FAW, allowing it to escape suppression by natural enemies. Once dispersal
northward begins, the natural enemies are left behind. Therefore, although FAW has many
natural enemies, few act effectively enough to prevent crop injury (Assefa & Ayalew, 2019;
Chapman et al., 2000) .

1.1.5 Introduction and Spread of FAW in Africa

The FAW is native to the western hemisphere, particularly North and South America (Pannuti
et al., 2016), where the insect has been a problem pest in crops for several decades (FAO,
2018a). Several reports confirmed that FAW was initially established in São Tomé and Prı́ncipe,
Benin, Nigeria, and Togo in 2016 (Prasanna et al., 2018). It is believed that FAW came into
Africa through stowaways on commercial aircrafts, in cargo, or airplanes (Day et al., 2017).

As of December 2018, the trans-boundary pest was reported to be present in almost all SSA
countries and in August 2018 the pest was detected in Yemen and India Rukundo et al. (2020).
As was predicted by modelling (Day et al., 2017), FAW has spread to all SSA countries, parts
of the Middle East and Asia (Rwomushana et al., 2018), and there are chances that the pest will
spread to Europe. The spread is suspected to be attributable to natural migration and trade (Day
et al., 2017). The map in Figure 7 shows the distribution of the FAW in Africa as at August
2017.
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Figure 7: The distribution of the fall armyworm, Spodoptera frugiperda (J.E. Smith) in
Africa as at August 2017 (Day et al., 2017)

1.1.6 Impact of FAW on Crop Production in Africa

Maize is the most widely grown crop in Africa and a staple food for around half of the conti-
nent’s population. The crop is grown across diverse agro-ecological zones (AEZs) where over
200 million people depend on it for food security (Day et al., 2017). Since its invasion in Africa
the FAW has had a major economic and environmental implications. The costs of management,
losses of grain yield, hunger or food insufficiency, losses of quality and quantity of crops, and
risks of chemical pesticides on health and environments are the major ones (Figure 8). The
estimated percentage yield losses of maize across African countries as reported by various au-
thors indicated variations, for instance, 22% in Ghana, 67% in Zambia, 32% in Ethiopia, 47%
in Kenya, 11.57% in Zimbabwe, and 57% in Namibia (Yigezu & Wakgari, 2020; Kandel &
Poudel, 2020).
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Figure 8: Estimated lower and upper yield and economic losses in the 12
maize-producing countries included in the study (Day et al., 2017)

The overall estimated potential impacts of FAW on Africa’s maize yield losses is assumed to
range from 4.1 to 20.6 million tons annually, out of the total expected production of 39.3 million
tons (Day et al., 2017). The capital losses in terms of money are also estimated to be 1088 to
4661 USD million annually, out of the total expected value of USD 10343 million per year
(Yigezu & Wakgari, 2020; Kandel & Poudel, 2020). In SSA countries alone, the yield losses
of maize was estimated to be USD 13 billion per annum after 2018, thereby threatening the
livelihoods of millions of poor farmers (Yigezu & Wakgari, 2020; Kandel & Poudel, 2020).

As of mid-March 2017, damages to hundreds of hectares of maize planted earlier in the year
in Tanzania in Kagera, Geita, Kongwa (Tanga), Simiyu, Mwanza, Morogoro, Kilimanjaro,
Njombe, western region of Rukwa and 3000 hectares of maize farms in Chalinze ward (Pwani)
in the coastal region were reported (Makirita et al., 2019). Nkasi district, in Rukwa, was par-
ticularly affected, as many households in the region depend on maize for access to income and
food. These findings of the two authors indicated that yield losses caused by FAW increased
from year to year. Using the data from Ghana and Zambia as reported by Rwomushana et al.

(2018), the estimates of the potential impacts on national yield and revenue in 10 other major
maize-producing countries in maize producing seasons are shown in Table 8.
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1.1.7 Effect of Climate change on FAW

Being originally a tropical insect, FAW performs better in hot climates where the lower and
upper limits of tolerance of temperature are 10◦C and 42◦C, respectively (Caniço et al., 2020).
The optimal range of temperature for its development is between 30◦C and 35◦C, and its survival
and development rates seems to be affected by humidity (Caniço et al., 2020). Depending on
the weather conditions, the development cycle of FAW can be significantly affected. Like any
other insect pests, weather conditions of different seasons have an effect on FAW dynamics.

Prior studies on pest biology have shown that, the distribution and abundance of FAW pests dy-
namics is largely influenced by relationship between their developmental rates and fluctuation
of weather condition (Du Plessis et al., 2020). In particular, different development stages of
insects are favored by fluctuation of weather condition, hence, fluctuation of weather condition
influence the development rates, duration of life-cycles, and, ultimately, the survival of insects
(Du Plessis et al., 2020). Moreover, an increase in the ambient temperature to the near ther-
mal optimum for insects causes increases their metabolism, and, consequently, their activities
(Du Plessis et al., 2020).

Since weather condition fluctuates in the natural environment, it follows that the development
rates of insects varies seasonally. For FAW in particular, prior studies suggest that their popula-
tions in a given area directly depends on the time of the year, host plants availability, and weather
conditions (Caniço et al., 2020). Under unfavorable weather condition for the development and
reproduction of the FAW, it is forced to migrate to other suitable locations for survival (West-
brook et al., 2016; Caniço et al., 2020). For example, According to Prasanna et al. (2018),
duration of the eqqs stage is time-dependent mostly is 2 to 3 days during the warm summer
months while the larval stage tends to be about 14 days during the warm summer months and
30 days during cooler weather with a mean development time of 3.3, 1.7, 1.5, 1.5, 2.0, and 3.7
days for instars 1 to 6, respectively, when reared at 25◦C.

1.1.8 FAW Control Strategies and Associated Challenges

A number of strategies can be used to control the poised by FAW whenever they infest in a
field (Matova et al., 2020). The control strategies are classified in the following categories:
(a) Synthetic and botanical pesticides control practices (b) Cultural agronomic practices (c)
Biological control practices.
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(i) Synthetic and botanical pesticides control practices

This entails the use of synthetic and botanical pesticides to control the spread of FAW. This
approach is considered to be the most expensive relative to other control strategies (Matova
et al., 2020).

(ii) Cultural agronomic practices

Farming practices such as weeding, inter-cropping maize with pumpkin and crop rotation are
classified under cultural agronomic practices. Prior studies have shown that intercropping of
two or more crops, or inclusion of non-host crop plants in the field, can reduce FAW oviposition
on the maize plant (Matova et al., 2020).

(iii) Biological control practices

The FAW has several natural enemies, such as predators, parasitoids, and pathogens that regu-
late its population levels. In some cases, intercropping creates an environment that favors de-
velopment and growth of a population of natural enemies, large enough to control FAW (FAO,
2018b). This phenomenon has resulted in popularization of the “push–pull technology” (PPT)
which is currently being recommended for FAW control (Matova et al., 2020).

The PPT is based on intercropping maize with greenleaf desmodium [Desmodium intortum

(Mill.) Urb.] and bordering the intercrop with Brachiaria ‘Mulato II’ (Midega et al., 2018).
The Desmodium protects the maize by emitting semiochemicals that repel (push) the moths
that are concurrently attracted (pulled) by semiochemicals released by the border crop. Midega
et al. (2018) and Hailu et al. (2018) reported that FAW infestations can be reduced by at least
80% in a field where the technology is being implemented.

Following the invasion of SSA by FAW, a combination of the aforementioned strategies have
been used to control FAW and the process of implementing more than one control strategy
is known as Integrate Pest management (IPM). The IPM strategy is based on the principle of
controlling a pest using a combination of methods while causing the minimum possible damage
to the environment, animals, and people. In particular, IPM combines cultural, biological, host-
plant resistance, and safe pesticide control methods (Hurley & Mitchell, 2014; Onstad, 2014;
Matova et al., 2020).

The FAW IPM strategies are targeted at preventing or avoiding pest infestations, and man-
agement of established infestations. This involves routine scouting to identify and respond to
infestations, to suppress the pest using the IPM triangle strategies, that is, minimum application
of safe pesticides, provision of safe, scientifically proven or evidence-based options to farmers,
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and managing insect resistance to pesticides (Onstad, 2014; Prasanna et al., 2018; Matova et al.,
2020).

1.1.9 Challenge on Control Strategy of FAW

Farmers’ choice of FAW control strategy is affected by various factors, which include avail-
ability of a control strategy (including its effectiveness and ease of use) and resources, gender,
and age among other issues (Matova et al., 2020). Recently, control of FAW and its associ-
ated damages on maize is a challenge in Africa particulary to small holder farmers due to its
feeding and sheltering behavior on the host plant. Different common management strategy for
the FAW which include pesticide sprays, bilogical control and genetically modified crops (Bt
maize) were applied in weatern countries and later in Africa. However, the FAW young larvae
hide in the maize funnel during the day but emerges at night to feed on the maize biomass (Day
et al., 2017).

Therefore, spraying application of pesticides are not effective due to the tendency of the younger
and older FAW larvae stay inside the maize funnel and so are protected by the foliage from spray
application. Furthermore, Use of pesticides to control FAW predisposes farmers to harmful
insecticide contamination and also destabilizes the ecosystem by killing non-target organisms
(Matova et al., 2020). Hence, development of sustainable and environment-friendly control
strategies for FAW is paramount. Additionally, its short life cycle, ability to travel across large
geographical areas, and its wide host range promote its rapid multiplication and spread, making
it difficult to control (Onstad, 2014; Prasanna et al., 2018).

In addition, most small holder farmers in African countries cannot afford repeated spray of
pesticide and according to De Groote et al. (2020), approximately 10 000 people die per day
each year in developing countries from pesticide when applied in huge amount and 400 000
people suffer acutely as pesticide travel through food chain. FAW being a recent invader in the
continent, genetically modified crops (Bt maize) not available to majority of the small holder
farmers and information on natural enemies (Biological Control) associated with this pest is not
well documented for Africa (Onstad, 2014).
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1.2 Statement of the Problem

FAW and other diseases have been threatening our food security at all levels of life, causing con-
siderable economic losses for decades. Within the last decade, several scientists have utilized
mathematical models to describe the plant-pest interaction dynamics (Yigezu & Wakgari, 2020;
Kandel & Poudel, 2020) and to assess effectiveness of the control measures (Day et al., 2017).
Despite all these efforts, however, mathematical models for understanding the implications of
FAW-maize interaction are still lacking, regardless of serious threats to food security caused by
FAW infestations in maize fields. In particular, to the best of the author’s knowledge, there are
no mathematical models in the literature that have been developed to qualitatively and quanti-
tatively assess the effects of rolling out either single or multiple FAW intervention strategies on
pest population density over time and the final maize biomass during an infestation in a maize
field. To fill this gap, this study presents three new mathematical models for FAW and maize
interaction. Mathematical models developed in this study were quantitatively and qualitatively
used to describe multiple scenarios, simulate the impact of interventions and provide estimates
for the final maize biomass. In particular, the first mathematical model aimed at determining the
effects of intervention and memory effects on FAW-maize interaction dynamics over time and
the resultant final maize biomass. There is no doubt that seasonal variations and daily changes
in weather patterns affect the existence of both the pest and plant population dynamics as high-
lighted in the introduction. Based on these facts, the second mathematical model focused on
qualitatively and quantitatively analysing the effects of seasonal variations and intervention on
FAW-maize interaction over time and the resultant final maize biomass. Unlike insecticides,
bio-control methods (larvae predatio) are environmentally friendly. Based on this and other
several advantages their use in managing the pests has been increasing within the last decade.
Motivated by the aforementioned facts, the final mathematical model, sought to qualitatively
and quantitatively estimate changes in pest population density over time and resultant maize
biomass due to the implementation of bio-control methods during an outbreak.
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1.3 Research Objectives

1.3.1 Main Objective

The main objective of this study was to construct, calibrate (using data in literature) and anal-
yse mathematical models for FAW-maize interaction, that incorporate either single or multiple
intervention strategies, with a goal to estimate changes in pest population density over time and
the resultant maize biomass.

1.3.2 Specific Objectives

The specific objectives of the study were:

(i) To construct, calibrate and analyse a new mathematical model for FAW-maize interac-
tion that incorporates intervention strategies, with a goal to estimate the changes in pest
population density over time and the resultant maize biomass.

(ii) To construct, calibrate and analyse a new mathematical model for FAW-maize interaction
that incorporates effects of seasonal variations and intervention strategy, with a goal to
estimate changes in pest population density over time and the resultant maize biomass.

(iii) To construct, calibrate and analyze a new mathematical model for FAW-maize interaction
that incorporates farming awareness campaigns and bio-control methods, with a goal to
estimate changes in pest population density over time and the resultant maize biomass

1.4 Research Questions

This study was influenced by the following research questions:

(i) What are the effects of intervention strategies on FAW population density over time and the
resultant maize biomass, during an outbreak?

(ii) What are the effects of seasonal variations and intervention strategies on FAW population
density over time and the resultant maize biomass, during an outbreak?

(iii) What are the effects of farming awareness campaigns and bio-control (larvae predation)
methods on FAW population density over time and the resultant maize biomass, during
an outbreak?

1.5 Rationale of the Study

Maize is the second most important cereal crop in the world after wheat, contributing sub-
stantially to the total cereal grain production in the world economy as a trade, food, feed, and
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industrial grain crop. The demand for maize is increasing, not only because of its higher nutri-
tional benefits but also its ability to feed the growing global population and contribution to food
security. However, the production of this crop and consequently the livelihood of the growers is
threatened by the invasion and widespread infestation of the fall army worm (FAW), Spodoptera
frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) which has led to substantial maize yield
losses.

Therefore, understanding the spread, effects and symptoms of the FAW on maize biomass will
help small holders farmers in Sub-Sahara African counties be aware and plan a good strategy
to prevent and manage the effect of FAW in the field. The study will also help agricultural
officers, policy makers and other stake holders to select the best control strategies and be able to
implement them to minimize the migration of the pest to other location. Besides, knowing the
effects of seasonal (specific temperature) variations on the dynamics of FAW will help the stake
holders to allocate and implement resources at the right place and time. In addition to that, the
selected topic of study will add knowledge in the literature review for further studies.

1.6 Significance of the Study

This study will study will make several immeasurable contributions, among the following:

(i) Enhance the existing knowledge on the role of memory effects on plant-pest interaction,
particularly FAW-maize interaction.

(ii) Enhance the existing knowledge on influence of seasonality on FAW-maize interaction and
the associated effects on the final maize biomass.

(iii) Enhance the existing knowledge on the impact of IPM strategy on FAW management and
maize productivity following FAW infestations in a maize field.

1.7 Delineation of the Study

In recent years, the FAW has spread globally and emerged in countries where it had rarely or
never before been present, posing a real threat to global food security (Assefa & Ayalew, 2019).
Current estimates from 12 African countries suggest an annual loss of 4.1 to a massive 17.7
million tons of maize due to FAW (De Groote et al., 2020). It is imperative that mathematical
models be proposed and utilized to assess the implications of FAW infestations in a maize field
and its impact on maize productivity (maize biomass). Mathematical modeling has become a
tool used to explore many real world phenomena. Mathematical modeling, analysis and sim-
ulation for plant-pest interaction have proved to be an essential guiding tool that could give a
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sound direction to policy makers and farmers on how to increase plant productivity (Bokil et al.,
2019). The models and results presented in this dissertation are new and make a significant con-
tribution to the existing body of knowledge on FAW infestation in a maize field and its impact
on the final maize biomass.

1.8 Mathematical Preliminaries

1.8.1 Preliminaries on the Caputo fractional calculus

We begin by introducing the definition of Caputo fractional derivative and state related theorems
(see, (Caputo, 1967; Diethelm, 2010; Podlubny, 1999)) that will be utilized to derive important
results in this work.

Definition 1.1
Suppose that q > 0, t > a,q,a, t ∈ R. The Caputo fractional derivative is given by

c
aDq

t f (t) =
1

Γ(n−q)

∫ t

a

f n(ξ )

(t −ξ )q+1−n dξ , n−1 < q,n ∈ N. (1.1)

Where the Gamma function Γ(n−q) in equation (1.1) generalizes the factorial and allows n, to
take non-integer values.

Definition 1.2
Let q > 0. The fractional integral of order q for a function f (t) ∈Ca(a ≥−1), initially defined
by Riemann-Liouville which is presented in (Podlubny, 1999) is defined by

Jq f (t) =
1

Γ(q)

∫ t

0
(t −ξ )q−1 f (ξ )dξ , (1.2)

J0 f (t) = f (t).

Definition 1.3
As seen in (Liang et al., 2012). Let q > 0, n − 1 < q < n − N. Suppose that
f (t), f ′(t), ..., f (n−1)(t) are continuous on [t0,∞) and the exponential order and that c

t0Dq
t f (t)

is piece-wise continuous on [t0,∞). Then

L {c
t0Dq

t f (t)}= sqF (s)−
n−1

∑
k=0

sq−k−1 f (k)(t0) (1.3)

where F (s) = L { f (t)}.
Lemma 1.1
As observed in Vargas-De-León (2015). Let x(·) be a continuous and differentiable function
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with x(t) ∈ R+. Then, for any time instant t ≥ t0, one has

c
t0Dq

t

(
x(t)− x∗− x∗ ln

x(t)
x∗

)
≤
(

1− x∗

x(t)

)
c
t0Dq

t x(t), x∗ ∈ R+, ∀q ∈ (0,1). (1.4)

Lemma 1.2
Ahmed et al. (2007) considered the following fractional order system:

c
t0Dqx(t) = f (t,x),

x(0) = x0

}
(1.5)

where f (t,x) : R+×Rn → R
n. The equilibrium points (1.5) are locally asymptotically stable

if all eigenvalues λi(i = 1,2,3,4...) of the Jacobian matrix ∂ f (t,x)
∂x evaluated at the equilibrium

points satisfy the following condition:

|arg(λi)|>
qπ

2
. (1.6)

1.8.2 Existence and Uniqueness Theorem

Definition 1.4
Suppose that D = {(t,y)|a ≤ t ≤ band−∞ < y < ∞} and that f (t,y)is continuous on D.If f

satisfy a Lipschitz condition on D in the variable y,then the solution y(t) for the initial value
problem

ẏ = f (t,y), a ≤ t ≤ b, y(a) = α (1.7)

exists and unique (Richard, 2005).

1.8.3 Adam-Bashforth-Moulton Method

Adam-Bashforth-Moulton method is a numerical technique developed by John Couch Adam for
approximating solution of a dynamical system (Richard, 2005). Given a differential equation

dαx(t)
dtα

= f (t,x(t)), (1.8)

for fractional order, Adam-Bashforth-Moulton method as in (Diethelm, 2010) is a variant of the
one step method given by

xn+1 =
[α]−1

∑
i=0

t i
n+1

i!
xi

0 +
hα

Γ(α +2)

n

∑
i=0

ai,n+1 f (ti,xi)+
hα

Γ(α +2)
f (tn+1,x

p
n+1), (1.9)
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where ti = ih with some fixed h and :

ai,n+1 =

{
nα+1 − (n−α)(n+1)α , i = 0,
(n− i+2)α+1 +(n− i)α+1 −2(n− i+1)α+1, 1 ≤ i ≤ n.

(1.10)

To determine the error in this method, by assuming that ti = ih = iτ
N where τ = b−a, with some

N ∈ N, and we have:)

max
0≤i≤N

|x(ti)− xi|=
{

O(h2), α ≤ 1,
O(h1+α), α < 1.

1.8.4 Logistic Equation

According to Iannelli & Pugliese (2015), an equation

Ṅ = rNF(N), and F(N) = 1− N
K

(1.11)

with an intrinsic carrying capacity K is said to be a logistic equation if:

(i) F(0) = 1 (the population grows exponentially with growth rate r when N is small).

(ii) F(K) = 0 (the population stops growing at the carrying capacity K).

(iii) F(N)< 0 when N > K (the population decays when it is larger then the carrying).

1.8.5 Reproduction Number

The reproduction number R0 which also is a threshold quantity is the average number of off-
spring generated by an adult female during its entire lifespan (Iannelli & Pugliese, 2015). The
R0 provides the necessary condition for the persistence or extinction of an individual in the
population as well as the stability of the equilibrium points. In particular, we have that:

(i) When R0 < 1 the pest extinct in the population and the equilibrium point is asymptoti-
cally stable.

(ii) When R0 > 1 the pest persist in the population and the equilibrium point is asymptotically
unstable.
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1.8.6 Population Dynamics

Population dynamics involves two processes: reproduction and death of an individual (Iannelli
& Pugliese, 2015). The equation which describes the population dynamics of a population can
be written in the general form:

ẋ = F(x), or ẋ = x f (x) with, (1.12)

F(x) = B(x)−D(x) or f (x) = b(x)−d(x) (1.13)

where B(x) is the absolute reproduction, D(x) is the absolute mortality rates of individuals, b(x)

is the corresponding per capita reproduction, and d(x) is the death rates, that is fecundity and
mortality.

1.8.7 Routh-Hurwitz Criteria

Lemma 1.3
Given the polynomial

P(λ ) = λ
n +a1λ

n−1 +a2λ
n−2 +a3λ

n−3 +a4λ
n−4 + · · ·+an−1λ +an, (1.14)

where the coefficients ai for (i = 1, ...,n) are real constants. According to Allen (2007), the n

Hurwitz matrices using the coefficients ai of the characteristic polynomial defined as follows:

H1 =
[

a1

]
, H2 =

[
a1 1
a3 a2

]
, H3 =

 a1 1 0
a3 a2 a1

a5 a4 a3

 , (1.15)

and

Hn =



a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · an


, (1.16)

where a j = 0 if j > n. All of the roots of the polynomial P(λ ) are negative or have negative
real part if and only if the determinants of all Hurwitz matrices are positive:

det(H j)> 0, j = 1,2, ...,n. (1.17)
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Routh-Hurwitz criteria for n = 2,3, and 4 are as follows

(C1) n = 2 : a1 > 0, and a2 > 0,
(C2) n = 3 : a1 > 0, a3 > 0, and a1a2 > a3

(C3) n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a2
3 +a2

1a4. (1.18)
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Mathematical modelling is commonly regarded as the art of applying mathematics to a real
world problem to better understand the problem (Cheng, 2009). Yanagimoto (2005) argues that
mathematical modelling is not just a process of solving a real-life problem using mathematics,
but the process that involves applying mathematics in a situations where the results are useful
in society. In recent years, Mathematical models have proved to be an important tool to explore
and guide policy formulation in many real world phenomena. Ordinary Differential Equations
(ODEs) and Partial Differential Equations (PDEs) with and without memory effects are some
of the tools that have commonly been used to formulate equation(s) that mirror real world
problem(s) (Tang et al., 2010; Faithpraise et al., 2015; Bokil et al., 2019; Helikumi et al., 2020).
Models enable researchers to create frameworks that can be accurately utilized to conceptualize
and communicate ideas regarding the behavior of a particular system (Keeling, 2005). Through
these frameworks, solutions to phenomena that are difficult to measure in the field can be found.

This chapter provides a review of mathematical models for plant-pest interaction. According
to Páezchávez et al. (2017), such mathematical models are essential for understanding and pro-
viding useful abstractions of the underlying biological phenomena and ecological interactions
taking place in pest control applications .

2.2 Mathematical Models of Plant-Pest Interactions

Recently, a number of mathematical models have been developed to explore plant-pest inter-
actions (Jiang et al., 2005; Hui & Zhu, 2006; Pearce et al., 2006; Rafikov et al., 2008; Tang
et al., 2010; Kang et al., 2013; Faithpraise et al., 2015; Gao et al., 2016; Anguelov et al., 2017;
Páezchávez et al., 2017; Bokil et al., 2019; Chowdhury et al., 2019; Li et al., 2019; Abraha
et al., 2021) to mention a few.

Liu et al. (2005) utilized a mathematical model to asses the impact of spraying pesticides at a
fixed time on the pest reproductive cycles. Among several outcomes, their study showed that
there exists optimal time of pest control if the pesticides were to be applied just before each
birth pulse of the cycle.

Jiang et al. (2005) developed an autonomous piecewise linear system with impulses governed
by state feedback control to study the dynamics of a stage-structured pest management system.
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The authors determined the sufficient conditions of existence and stability of periodic solutions
through the method of the sequence convergence rule and the analogue of the Poincare criterion.
The authors also illustrated the attractive region of periodic solutions. Utilizing the Poincare
map, bifurcation diagrams of the periodic solutions were obtained. In addition, the superiority
of the state feedback control strategy was also discussed.

Pearce et al. (2006) utilized a two Lotka-Voltera predator-prey model to investigate the role
of pest predators on the dynamics of pest-plant interactions. In their study, the pest such as
mites,insects, spiders and snails were considered as predators while Egg, Larval, and pupal
parasites were considered as prey. Their aim was to investigate the dynamics and compare
the results for the ordinary differential model corresponding to continuous biological control
with those for the impulsive differential equation model corresponding to impulsive biological
control. The results indicated that under sufficient conditions, with impulsive differential equa-
tion model, the pest population were reduced below economic threshold relative to ordinary
differential model.

Tang et al. (2010) proposed impulsive differential equation models or hybrid dynamical sys-
tem to model the introduction of a periodic IPM strategy which includes periodic spraying of
pesticide and release of natural enemies at critical time. From their study, optimal periods for
spraying were determined.

Kang et al. (2013) proposed a stage-structured pest control model with impulse effects by state
feedback control to determine the optimal control strategies for agricultural pests. The sufficient
conditions for existence and attractiveness of order one periodic solution were determined using
the method of successor functions. It was established that the superiority of the state feedback
control strategy occurred due to the need to monitor the sum of immature and mature pest
populations.

Faithpraise et al. (2015) developed a mathematical framework to determine the role of naturally
beneficial insects on controlling African armyworm (AAW) pest infestations in cereal crop
fields. The model incorporated egg and larvae predators. The results from the study demon-
strated that the proposed model was valuable in offering possible solutions for the control of
AAW outbreaks.

Gao et al. (2016) developed a compartmental model for plant-pest interaction to represent the
dynamics of plant disease in a periodic environment. The model incorporated impulsive rouging
as a control strategy. The results from the study showed that when the infection rate of plants
is high, it may be impossible to eradicate the disease by simply rouging the infectious plants,
hence, there is a need to also identify latently infected plants and rouge them. This study also
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noted that, increased replanting is not a good strategy for disease control.

Páezchávez et al. (2017) proposed and analyzed mathematical models ranging from classical
smooth differential equations to differential equations with reformulation of impulses with a
goal to investigate the impact of combining chemical (pesticides), biological (natural enemy
predation, bio-pesticides), and cultural (rouging, replanting) methods to control pests. In a nut-
shell, the proposed model investigated the implications of the IPM strategy on minimizing pest
population in a crop field. Important results that include fold and flip bifurcation of limit cycles,
periodic doubling cascade leading to chaotic behavior, and hysteric effects were observed.

Chowdhury et al. (2019) formulated and extensively investigated a continuous and discrete
predator-prey models concerning the IPM strategy. From their study, optimal threshold levels
for the IPM strategy that are essential to efficiently minimize plant attack were determined.
Discrete host parasitoid models have also been proposed for circumstances when the timing
of pesticide application leads to the death of parasitoid, and four different cases involving the
timing of pesticide applications were also investigate by Anguelov et al. (2017).

Li et al. (2019) proposed pest control models that incorporated birth pulse and were based on
the assumption that pesticides killed adult pests or larvaes or both. Using numerical simula-
tions, , the author demonstrated that the optimal time for pesticide applications was different
for different elimination rates of larvae and adults moth.

Abraha et al. (2021) developed a mathematical model for plant-pest interaction with an aim
to investigate the impact of time delays and optimal use of bio-pesticides by considering plant
biomass and the effect of farming awareness. The time delay factor incorporated by the authors
in this study accounted for the time needed by farmers to become aware of the control strategies
or taking the necessary steps following pest attack. The results from their study highlighted
that optimal control can be an essential tool for designing the control strategies for plant-pest
interactions.

The aforementioned studies and those cited therein certainly improved our qualitative and quan-
titative knowledge on plant-pest interactions. However, despite all these studies, several chal-
lenges remain in the mathematical modeling of plant-pest interaction. First, a majority of the
aforementioned studies were general and not pest-specific which implies that their results were
also general. However, in those studies which were not general, plants such as Jatropha curcas

and the associated pests were considered. Practically, pests are not general, they follow differ-
ent biological development cycles, hence more informative plant-pest interaction models need
to be pest specific and closely follow the life cycle of the pest involved. For example, some pest
diapause (for example Tarnished plant bugs) while others such as FAW, the ability to diapause
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is not present. In short, diapause is a state of arrested growth or reproduction of many hibernat-
ing or estivating arthropods. There is no doubt that these difference alter plant-pest interaction
dynamics.
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CHAPTER THREE

MATERIALS AND METHODS

3.1 Introduction

In this Chapter, three mathematical models for FAW-maize interactions have been developed,
with the aim of evaluating the implications of this interactions on the final maize biomass
(biomass at the end of the season). The models presented in this chapter are original (which
extend many of the published models in the literature) and incorporate all the relevant biological
details that characterize FAW-maize interactions.

The first model was developed to evaluate the impact of memory effects and control on the final
maize biomass due to FAW-maize interactions. There is no doubt that mathematical models
of plant-pest interactions reviewed in Chapter 2 and several others cited therein have certainly
produced many useful results and improved the existing knowledge on plant-pest interactions.
However, one of the limitations of these studies is that their models were based on integer-
order ordinary differential equations. Recent studies suggest that models that use integer-order
differential equations do not adequately capture memory effects as well as hereditary properties,
which are inherent in many real world problems (Helikumi et al., 2020). As such, in recent
years, fractional calculus has become an intriguing field. Several researchers have shown that
models that utilize fractional calculus are more likely to replicate real world problems compared
to those that use integer-order differential equations since fractional-order differential equations
are able to capture memory effects (Helikumi et al., 2020; Mouaouine et al., 2018).

Like any other insect pest, the weather conditions in maize growing seasons have an effect on
FAW dynamics. Prior studies on pest biology have shown that the distribution and abundance
of pests is largely influenced by relationship between their developmental rates and fluctuation
of weather conditions (Du Plessis et al., 2020). In particular, different development stages
of insects are favored by different ranges of weather conditions, hence, variations of weather
conditions influence the development rates, duration of life cycles, and, ultimately, the survival
of insects (Du Plessis et al., 2020). Moreso, an increase in the ambient temperature to the
near thermal optimum for insects causes increases their metabolism, and, consequently, their
activities (Du Plessis et al., 2020).

Since weather conditions fluctuates in the natural environment, it follows that the development
rates of insects vary seasonally. For FAW in particular, prior studies suggest that their popula-
tions in a given area directly depends on the time of the year, host plant availability, and weather
conditions (Caniço et al., 2020). Under unfavourable weather conditions for the development
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and reproduction, the FAW is forced to migrate to other suitable locations for survival (Caniço
et al., 2020; Westbrook et al., 2016). In the present study, a second mathematical model was
proposed and analyzed to evaluate the effect of seasonality on FAW-maize interaction in a maize
growing season.

Host plant resistance and chemical insecticide use are ranked among the best ways of effectively
managing FAW during an outbreak (Sisay et al., 2019). However, due to the limited financial
capacity of the smallholder farmers and governments of most African countries, it follows that
either massive spraying of chemical insecticides or use of genetically modified crops remain
elusive. Thus, effective management of the pest in the African continent remains a challenge
(Sisay et al., 2019). Besides, the excessive use of chemical insecticides is associated with
negative environmental effects and can lead to the development of pesticide resistance (Matova
et al., 2020).

At the backdrop of this, integrated pest management (IPM) has attracted more attention among
researchers and its application is also increasing the crop yield in the field (Abraha et al., 2021).
In a nutshell, IPM entails the use of several of low-cost cultural practices to manage FAW dur-
ing an outbreak. Thus the IPM approach seeks to minimize the reliance of pesticide use by
emphasizing the contribution of biological control agents. In the present study, a third mathe-
matical frame work to evaluate the impact of IPM on effective management of FAW during an
outbreak was proposed and analyzed. The model incorporated mass media campaigns and bi-
ological control (larvae predation). To gain insights into the qualitative features of FAW-maize
interactions and its impact on the final maize biomass, the following mathematical models were
developed and analyzed.

3.2 FAW-Maize Interaction Model with Memory Effects and Control

This section describes a fractional order model that was developed and analyzed in the present
study to gain insights into the impact of memory effects on the final maize biomass due to FAW-
maize interactions. To analyze the impact of memory effects and control on final maize biomass,
a fractional-order model with control strategies was formulated consisting of two populations:
maize biomass and the FAW population where one of the populations, the FAW was stage-
structured to give a total of five populations. Meanwhile, the FAW population was divided into
four classes which represented the FAW life cycle: egg stage E(t), Larval stage L(t), pupal
stage P(t), and adult stage (Moth) A(t). Although the FAW typically has six larval instars,
however, to reduce complexity of the model in a biological sensible way, all larval instars were
represented by class L(t). The life cycle of the FAW starts when eggs are laid in masses on
maize biomass, mostly underside of these biomass. For maize biomass in particular, when
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plant biomass (plant seeds) are planted at a time t = 0 in a field whose maize biomass carrying
capacity is KM, the maize biomass emerge in a period of 0 to 7 days. It was assumed that the
planting of maize seed per hectare at the beginning of the season is done in one day. Further,
it was also assumed that weather condition, environment condition and the planting system of
maize seeds favour seed germination and the corresponding growth of maize biomass with no
natural death rate before harvest. In this regard, M(t) represented the population density of
maize biomass per hectare. Therefore, formulation of a fractional order calculus was utilized
and a new mathematical framework was developed based on the assumptions listed in (i)-(v):

(i) Maize biomass was modeled via a logistic growth in the absence of FAW. The biomass
decreases due to consumption by FAW larvae at rate β . Thus, the dynamics of maize
biomass over time were modeled as shown in equation (3.1):

c
aDq

t M(t) = rqM

(
1− M

Kq
M

)
−β

qLM, (3.1)

where r is the growth rate of maize biomass

(ii) The dynamics of FAW egg population in relation to time grows logistically and were
modeled by the equation (3.2):

c
aDq

t E(t) = bq
(

1− E
Kq

E

)
wA− (α

q
E +uq

E +µ
q
E)E, (3.2)

In the term b
(

1− E
KE

)
wA of equation (3.2), b represented egg laying rate for an adult

female FAW, that is, an average number of eggs each adult female FAW will lay per day,
KE represented the egg carrying capacity, that is, the availability of space to lay eggs, w

was the proportion of female adult FAW, αE was the egg hatching rate and uE accounted
for the effects of intervention strategies a farmer would implement once they observe eggs
laid on the maize biomass, µE was the egg mortality rate. FAW larvae generally emerge
simultaneously 3-5 days following oviposition (FAO, 2018b). The efficiency with which
FAW larvae converted consumed maize biomass into larvae’s biomass was modelled by
parameter e(0 < e < 1).

(iii) The emergence of the FAW larvae following oviposition and their entire growth in the
presence of maize biomass is a logistic growth. Therefore, equation (3.3) summarizes the
dynamics of the FAW larvae population over time:

c
aDq

t L(t) = α
q
E

(
1− L

Kq
L

)
E +θ

qLM− (α
q
L +uq

L +µ
q
L)L. (3.3)
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In equation (3.3), the transition rate from the egg stage to larvae was αE . The older lar-
vae of FAW exhibit a cannibalistic behavior on the smaller larvae when food is limited
(Chapman et al., 2000). Hence, the model assumed that the death rate due to lack of food
was proportional to the smaller larvae αEE and to the coefficient L/KL that represented
the availability of food for each larvae. Therefore KL represented the availability of food
and space for the larvae population, µL natural mortality rate of the larvae, and 1/αL the
average duration of the larval stage which was estimated to range from 14-30 days (As-
sefa & Ayalew, 2019; Chapman et al., 2000; FAO, 2018b). In particular, it estimated that
this duration is shorter, around 14 days during warm summer months and longer, around
30 days during cooler weather (FAO, 2018b; Chapman et al., 2000). Hence, parameter
uL modelled the role of intervention strategies implemented by the farmer, which may be
use of pesticides or handpicking of the larvae. The term θ qLM represents the interaction
of the larvae and maize biomass which results in conversion of maize biomass into larvae
biomass. Hence we can write θ q = eqβ q, where eq is the leaf-impact factor or efficiency
of biomass conversion.

(iv) Pupation of the FAW normally occurs in the soil at a depth of 2-8 cm (Chapman et al.,
2000). Here, the larva constructs a loose cocoon which is oval in shape and 20-30 mm
in length, through tying soil particles together with silk (Assefa & Ayalew, 2019). In
areas where soil is too hard, larvae web together leaf debris and other materials to form a
cocoon on the soil surface (Assefa & Ayalew, 2019). Therefore, equation (3.4) represents
the dynamics of pupal stage:

c
aDq

t P(t) = α
q
LL− (µ

q
P +α

q
p +uq

P)P, (3.4)

where µP was the natural mortality rate, 1/αP the duration of the pupal stage which is
approximately 8-9 days during the summer, however, during winter it may reach 20-30
days (Assefa & Ayalew, 2019; FAO, 2018b). The parameter uP accounted for the effects
of artificial intervention strategies aimed at reducing FAW pupae population. It was worth
noted that the pupal stage of FAW does not enter a diapause period to withstand protracted
periods of winter or summer seasons in the absence of host plants (Assefa & Ayalew,
2019).

(v) Adult female FAW are responsible for laying eggs on the surface of biomass, a process
which usually starts after a pre-oviposition period of 3-4 days, and continue until they
become 3 week old. Therefore, equation (3.5) summarizes the dynamics of the adult
FAW:

c
aDq

t A(t) = α
q
PP− (µ

q
A +uq

A)A, (3.5)
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where µP accounted for the proportion of FAW pupa population that successfully pro-
gressed to the adult stage, uA denoted the effects of intervention strategies, and 1/µA the
life span of the adult FAW, which is estimated to average about 10 days, with a range
of about 7-21 days (Assefa & Ayalew, 2019). It was worth noted that the duration of
FAW life cycle lasts for about 30 days at 28◦C but may take longer, 60-90 days when the
weather is cooler (FAO, 2018b). In addition, under favorable conditions the FAW has a
potential to feed and breed on maize leaves year-round (FAO, 2018b).

The summary of the definitions of model state variables and parameters are given in Tables 1
and 2.

Table 1: Description of state variables of FAW-maize interaction model used in this study

Symbol Definition
M(t) Maize biomass per plant
E(t) FAW egg population
L(t) FAW larvae population
P(t) FAW pupae population
A(t) FAW adult moth population
Z(t) FAW Larvae predator population

Table 2: Model parameters and their biological definitions

Symbol Definition
b Number of eggs laid per day per female moth
bL Growth rate of larvae
w Proportion of adult female moth
α
−1
E Average duration of egg stage

α
−1
L Development time of the larva

α
−1
P Development time of pupae

µ
−1
A Moth life span

KM Maximum carrying capacity of the maize biomass
KE Egg environmental carrying capacity
KL Larvae environmental carrying capacity
µE Natural mortality rate of eggs
µL Natural mortality rate of larvae
µP Natural mortality rate of pupae
β Plant attack rate by the larvae
r Growth rate of maize biomass
e Efficiency of biomass conversion
uE Intervention strategies on egg population
uL Intervention strategies on larvae population
uP Intervention strategies on pupae population
η−1 Average life span of larvae predator
σ Attack rate of the larvae by predators
. ρ Efficiency of conversion
η Average life span of predators
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Based on the assumptions stated above on the dynamics of the FAW in a maize biomass pop-
ulation density and mathematical preliminaries on the Caputo fractional calculus presented in
subsection (1.8.1), the following mathematical model was presented in system (3.6) and the
model flow diagram is in Figure (9):

c
aDq

t M(t) = rqM

(
1− M

Kq
M

)
−β

qLM,

c
aDq

t E(t) = bq
(

1− E
Kq

E

)
wA− (α

q
E +uq

E +µ
q
E)E,

c
aDq

t L(t) = α
q
E

(
1− L

Kq
L

)
E +θ

qLM− (α
q
L +uq

L +µ
q
L)L,

c
aDq

t P(t) = α
q
LL− (µ

q
P +α

q
p +uq

P)P,
c
aDq

t A(t) = α
q
PP− (µ

q
A +uq

A)A.


(3.6)

where the symbol c
aDq

t in (3.6) represented the Caputo fractional derivative of order q (0 <

q < 1). The Caputo fractional derivative of order q is defined in Podlubny (1999) as shown in
equation (3.7):

c
aDq

t f (t) =
1

Γ(n−q)

∫ t

0

f n(ξ )

(t −ξ )q+1−n dξ , n−1 < q < n ∈ N, (3.7)

where Γ represented the gamma function.
Remark 3.1
Note that, to avoid flaws regarding the time dimension, q was introduced in the model pa-
rameters (right-hand side) of system (3.6) so that the dimensions of these parameters became
(time)−q which was in agreement with the left-hand side of the model.
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Figure 9: Model flow diagram for system (3.6) illustrating the dynamics of FAW in a field
of maize biomass

3.2.1 Positivity and Boundedness of Model Solutions

Since model (3.6)) was formulated to evaluate the impact of memory effects and control on
FAW-maize interaction and on final maize biomass, it was essential to investigate its biological
and mathematical feasibility as follows:
Theorem 3.1
There exists a unique solution for the fractional-order model (3.6) in (0,∞). Moreover, the
solution is non-negative for all t > 0 and it remains in R5

+.
Proof. In proving this theorem, Firstly, it was demonstrated that R5

+ = {(M,E,L,P,A) ∈ R5
+ :

M ≥ 0,E ≥ 0,L ≥ 0,P ≥ 0,A ≥ 0} is positively invariant. For that, it was demonstrated that on
each hyper-plane bounding the non-negative orthant, the vector field pointed to R5

+. Therefore,
the following cases 1-3 presented below were considered as follows:
Case 1. It was assumed that there exists a t∗> t0 such that M(t∗)= 0, and M(t)< 0 for t ∈ (t∗, t1],
where t1 is sufficiently close to t∗. If M(t∗) = 0, then it follows that:

c
t0DqM(t∗) = 0. (3.8)

Therefore c
t0DqM(t)≥ 0 for all t ∈ [t∗, t1].

Case 2. It was assumed that there exists a t∗ > t0 such that E(t∗) = 0, and E(t)< 0 for t ∈ (t∗, t1],
where t1 is sufficiently close to t∗. If E(t∗) = 0, then it follows that:

c
t0DqE(t∗) = bqWA > 0, (3.9)
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Therefore it follows that c
t0DqE(t)> 0 for all t ∈ [t∗, t1].

Case 3. It was assume that there exists a t∗ > t0 such that L(t∗) = 0, and L(t)< 0 for t ∈ (t∗, t1],
where t1 is sufficiently close to t∗. If L(t∗) = 0, then it follows that:

c
t0DqL(t∗) = α

q
EE > 0, (3.10)

From the last two equations of system (3.6), it can easily be verified that:

c
t0DqP(t) = α

q
LL > 0,

c
t0DqA(t) = α

q
PP > 0.

}
(3.11)

From the above discussion, it was observed that each hyper-plane bounding the non-negative
orthant, the vector field points to R5

+, that is, all the solutions of system (3.6) remains non-
negative for all t ≥ 0.
Theorem 3.2
Let X (t) = (M(t),E(t),L(t),P(t),A(t)) be the unique of the model (3.6) for t ≥ 0. Then, the
solution X (t) is bounded above, that is, X (t) ∈ Ω where Ω denotes the feasible region and is
given by:

Ω =


(

E(t),L(t),P(t),A(t)

)∣∣∣∣∣∣∣∣∣∣
0 ≤ E(t)≤ KE

0 ≤ L(t)≤CL

0 ≤ P(t)≤CP

0 ≤ A(t)≤CA

 , (3.12)

which its interior, denoted by int(Ω), is given by:

int(Ω) =


(

E(t),L(t),P(t),A(t)

)∣∣∣∣∣∣∣∣∣∣
0 < E(t)< KE

0 < L(t)<CL

0 < P(t)<CP

0 < A(t)<CA

 . (3.13)

Proof. Secondly, it was demonstrated that the solutions of system (3.6) are bounded ∀t ≥ 0.
For biological relevance the least possible lower bound for each of the variables in system
(3.6) is zero. Based on this, discussion was on determining the upper-bound for these variables.
Moreover, it was easily established that for biological relevance, the following conditions should
hold,0 ≤ M(t)≤ KM and 0 ≤ E(t)≤ KE . For instance,

c
aDq

t M(t) = rqM

(
1− M

Kq
M

)
−β

qLM

≤ rqM

(
1− M

Kq
M

)
. (3.14)

34



Therefore, it follows that limsupt∞ M(t)≤ KM. Based on these bounds, it was found that:

c
aDq

t L(t) = α
q
E

(
1− L

Kq
L

)
E +θ

qLM− (α
q
L +uq

L +µ
q
L)L.

≤ α
q
EKq

E −
[(

α
q
L +uq

L +µ
q
L +

α
q
EKq

E
Kq

L

)
−θ

qKq
M

]
L. (3.15)

Applying the Laplace transform leads to:

sqL [L(t)]− sq−1L(0)≤ α
q
EKq

E
s

−
[(

α
q
L +uq

L +µ
q
L +

α
q
EKq

E
Kq

L

)
−θ

qKq
M

]
L [L(t)]. (3.16)

Grouping like terms one gets:

L (L(t)) ≤ α
q
EKq

Es−1

sq +
[(

α
q
L +uq

L +µ
q
L +

α
q
E Kq

E
Kq

L

)
−θ qKq

M

]
+

sq−1L(0)

sq +
[(

α
q
L +uq

L +µ
q
L +

α
q
E Kq

E
Kq

L

)
−θ qKq

M

]
=

α
q
EKq

Esq−(1+q)

sq +
[(

α
q
L +uq

L +µ
q
L +

α
q
E Kq

E
Kq

L

)
−θ qKq

M

]
+

sq−1L(0

sq +
[(

α
q
L +uq

L +µ
q
L +

α
q
E Kq

E
Kq

L

)
−θ qKq

M

] . (3.17)

Applying the inverse Laplace transform leads to:

L(t) ≤ L −1

 α
q
EKq

Esq−(1+q)

sq +
[(

α
q
L +uq

L +µ
q
L +

α
q
E Kq

E
Kq

L

)
−θ qKq

M

]


+L −1

 sq−1L(0

sq +
[(

α
q
L +uq

L +µ
q
L +

α
q
E Kq

E
Kq

L

)
−θ qKq

M

]


≤ α
q
EKq

EtqEq,q+1

(
−
[(

α
q
L +uq

L +µ
q
L +

α
q
EKq

E
Kq

L

)
−θ

qKq
M

]
tq
)

+L(0)Eq,1

(
−
[(

α
q
L +uq

L +µ
q
L +

α
q
EKq

E
Kq

L

)
−θ

qKq
M

]
tq
)

≤ max

{
α

q
EKq

E[(
α

q
L +uq

L +µ
q
L +

α
q
E Kq

E
Kq

L

)
−θ qKq

M

] ,L(0)}

×
([(

α
q
L +uq

L +µ
q
L +

α
q
EKq

E
Kq

L

)
−θ

qKq
M

]
tqEq,q+1
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×
(
−
[(

α
q
L +uq

L +µ
q
L +

α
q
EKq

E
Kq

L

)
−θ

qKq
M

]
tq

)

+Eq,1

(
−
[(

α
q
L +uq

L +µ
q
L +

α
q
EKq

E
Kq

L

)
−θ

qKq
M

]
tq)

)

=
C

Γ(1)
:=CL, (3.18)

where CL = max
{[(

α
q
L +uq

L +µ
q
L +

α
q
EKq

E
Kq

L

)
−θ

qKq
M

]
,L(0)

}
. Thus, L(t) is bounded from

above. From the equation for the pupa population, it follows that:

c
aDq

t P(t) = α
q
LL− (µ

q
P +α

q
p +uq

P)P ≤ α
q
LCL − (µ

q
P +α

q
p +uq

P)P. (3.19)

Applying the Laplace transform leads to:

sqL [P(t)]− sq−1P(0)≤ α
q
LCL

s
− (µ

q
P +α

q
p +uq

P)L [P(t)]. (3.20)

Combining the like terms one gets:

L (P(t)) ≤ α
q
LCL

s−1

sq +(µ
q
P +α

q
p +uq

P)
+P(0)

sq−1

sq +(µ
q
P +α

q
p +uq

P)

= α
q
LCL

sq−(1+q)

sq +(µ
q
P +α

q
p +uq

P)
+P(0)

sq−1

sq +(µ
q
P +α

q
p +uq

P)
. (3.21)

Applying the inverse Laplace transform leads to:

P(t) ≤ L −1

{
α

q
LCL

sq−(1+q)

sq +(µ
q
P +α

q
p +uq

P)

}
+P(0)L −1

{
sq−1

sq +(µ
q
P +α

q
p +uq

P)

}
≤ α

q
LCLtqEq,q+1(−(µ

q
P +α

q
p +uq

P)t
q)+P(0)Eq,1(−(µ

q
P +α

q
p +uq

P)t
q)

≤ α
q
LCL

(α
q
P +µ

q
p +uq

P)
(µ

q
P +α

q
p +uq

P)t
qEq,q+1(−(α

q
P +µ

q
p +uq

P)t
q)

+P(0)Eq,1(−(α
q
P +µ

q
p +uq

P)t
q)

≤ max

{
α

q
LCL

(α
q
P +µ

q
p +uq

P)
,P(0)

}
((α

q
P +µ

q
p +uq

P)t
qEq,q+1(−(α

q
P +µ

q
p +uq

P)t
q)

+Eα,1(−(α
q
P +µ

q
p +uq

P)t
q))

=
C

Γ(1)
:=CP, (3.22)
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where CP =max
{

α
q
LCL

(α
q
P +µ

q
p)
,P(0)

}
. Thus, P(t) is bounded from above. From the last equation

of system (3.6) one gets

c
aDq

t A(t) = α
q
PP− (µ

q
A +uq

A)A ≤ α
q
PCP − (µ

q
A +uq

A)A. (3.23)

By applying the Laplace transform it follows that:

sqL [A(t)]− sq−1A(0)≤ α
q
PCP

s
− (µ

q
A +uq

A)L [A(t)]. (3.24)

Grouping similar terms leads to:

L (A(t)) ≤ α
q
PCP

s−1

sq +(µ
q
A +uq

A)
+A(0)

sq−1

sq +(µ
q
A +uq

A)

= α
q
PCP

sq−(1+q)

sq +µ
q
A
+A(0)

sq−1

sq +µ
q
A
. (3.25)

Utilizing inverse Laplace transform one gets:

A(t) ≤ L −1

{
α

q
PCP

sq−(1+q)

sq +(µ
q
A +uq

A)

}
+A(0)L −1

{
sq−1

sq +(µ
q
A +uq

A)

}
≤ α

q
PCPtqEq,q+1(−(µ

q
A +uq

A)t
q)+A(0)Eq,1(−(µ

q
A +uq

A)t
q)

≤ α
q
PCP

(α
q
A +uq

A)
(µ

q
A +uq

A)t
qEq,q+1(−(µ

q
A +uq

A)t
q)+A(0)Eq,1(−(µ

q
A +uq

A)t
q)

≤ max

{
α

q
PCP

(µ
q
A +uq

A)
,A(0)

}
((µ

q
A +uq

A)t
q

Eq,q+1(−(µ
q
A +uq

A)t
q)+Eq,1(−(µ

q
A +uq

A)t
q))

=
C

Γ(1)
=CA, (3.26)

where CP = max
{

α
q
PCP

(µ
q
A +uq

A)
,A(0)

}
. Thus, A(t) is bounded from above. This completes the

proof.

3.2.2 Model Equilibria

By direct calculations it was observed that, system (3.6) has four equilibrium points and these
are:
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(i) Trivial equilibrium:

E 1 = {E1 = 0,L1 = 0,P1 = 0,A1 = 0,M1 = 0}. (3.27)

(ii) First axial equilibrium point:

E 2 = {M2 = Kq
M,E2 = 0,L2 = 0,P2 = 0,A2 = 0}. (3.28)

(iii) Second axial equilibrium point: E 3 = {M3,E3,L3,P3,A3}, where:

E 3 :



E3 =
Kq

EKq
Lm1m2m3m4

α
q
E(bqWKq

Lα
q
Lα

q
P +Kq

Em1m3m4)

(
bqWα

q
Eα

q
Lα

q
P

m1m2m3m4
−1
)
,

L3 =
Kq

EKq
Lm1m2m3m4

bqW (KEαE +Kq
Lm2)α

q
Lα

q
P

(
bqWα

q
Eα

q
Pα

q
L

m1m2m3m4
−1
)
,

P3 =
Kq

EKq
Lm1m2m3m4

bqW (KEαE +Kq
Lm2)α

q
Pm3

(
bqWα

q
Eα

q
Lα

q
P

m1m2m3m4
−1
)
,

A3 =
Kq

EKq
Lm1m2m3m4

bqW (KEαE +Kq
Lm2)m3m4

(
bqWα

q
Eα

q
Lα

q
P

m1m2m3m4
−1
)
,

M3 = 0,



(3.29)

with

m1 = (µ
q
E +α

q
E +uq

E), m2 = (µ
q
L +α

q
L +uq

L),

m3 = (µ
q
P +α

q
p +uq

P), m4 = (µ
q
A +uq

A). (3.30)

It was observed that this equilibrium point makes biological sense whenever

bqWα
q
Eα

q
Lα

q
P

m1m2m3m4
> 1. (3.31)

Let

R0 = bqW

(
α

q
E

µ
q
E +α

q
E +uq

E

)(
α

q
L

µ
q
L +α

q
L +uq

L

)(
α

q
P

µ
q
P +α

q
P +uq

P

)(
1

µ
q
A +uq

A

)

=
bqWα

q
Eα

q
Lα

q
P

m1m2m3m4
. (3.32)
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Biologically, R0 is a threshold quantity that accounts for the persistence of the FAW
population, thus when R0 > 1 the FAW population persists and they will be an attack on
maize biomass and finally the population of maize plants extinct. Hence, R0 can precisely
be defined as the average number of off-springs generated by an adult female FAW during
its entire life span. Precisely, it was noted that, a proportion W of moth will each lay b

eggs per day for an average duration of
1

µ
q
A +uq

A
, laid egg has a probability

α
q
E

µ
q
E +α

q
E +uq

E
of surviving to become larva, larvae that emerge following oviposition has a probability

of
α

q
L

µ
q
L +α

q
L +uq

L
of surviving to become pupa which also has a probability

α
q
P

µ
q
P +α

q
P +uq

P
of surviving to become moth.

(iv) Interior equilibrium point:

E 4 :



E4 =
−bqKq

EWα
q
Lα

q
Ph2 +bqKq

EWα
q
P

√
h2

2 −4h1h3

−bqWα
q
Lα

q
Ph2 +bqWα

q
P

√
h2

2 −4h1h3 −2Kq
Eh1m1m4

,

L4 =
−h2 +

√
h2

2 −4h1h3

2h1
,

P4 =
−α

q
Lh2 +α

q
L

√
h2

2 −4h1h3

2h1m3
,

A4 =
−α

q
Pα

q
Lh2 +α

q
Pα

q
L

√
h2

2 −4h1h3

2h1m3m4
,

M∗ =
2h1rqKq

M −βqKq
Mh2 +β qKq

M

√
h2

2 −4h1h3

2h1r
,



(3.33)

where

h1 = bqKq
Lθ

qKq
MWα

q
Pα

q
L,

h2 = −(bq
θ

qrqWKq
LKq

Mα
q
Lα

q
P +θ

q
β

qeqKq
EKq

LKq
Mm1m2m3+

bqrqWKq
EKq

Lα
q
Eα

q
Lα

q
P −bqrqWKq

Lα
q
Lα

q
Pm2),

h3 = −(θ qKEKq
LKq

Mm1m2m3 + rqKq
EKq

Lm1m2
2m3),

 (3.34)

Basing on (3.33), h1,h2 and h3, the ∆ = (h2
2 − 4h1h3) > 0 implying that the equilibrium

point E 4 has a unique feasible equilibrium.
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3.2.3 Local Stability of Equilibrium Points

In this section, local stability behavior of the four equilibrium points computed earlier using
the Jacobian matrix and the Routh-Hurwitz Criteria (1.3) were examined and discussed. The
Jacobian matrix for model (3.6) is given by:

J(M,E,L,P,A) =



0 −β
qM 0 0 Θ1

Θ2 0 0 Θ3 0

Θ4 −m2 −
α

q
E

KL
0 0 θ

qL

0 α
q
L −m3 0 0

0 0 α
q
P −m4 0


, (3.35)

with:

Θ1 = rq − 2Mrq

KM
−β

qL, Θ2 =−m1 −
bqWA

KE
,

Θ3 = bqW
(

1− E
KE

)
, Θ4 =

(
1− L

Kq
L

)
α

q
E . (3.36)

(i) Trivial equilibrium point:
Evaluating the Jacobian matrix (3.35) about E 1 it follows that:

J(E 1) =


rq 0 0 0 0
0 −m1 0 0 bqW

0 α
q
E −m2 0 0

0 0 α
q
L −m3 0

0 0 0 α
q
P −m4

 . (3.37)

From the Jacobian matrix (3.37), it was observed that the trivial equilibrium point is lo-
cally stable if all eigenvalues λi(i= 1,2,3,4) of the J(E 1) satisfy the following condition:
|arg(λi)|>

qπ

2
(Ahmed et al., 2007). It was evident that one of the eigenvalues of (3.37) is

rq > 0. Thus, the other equilibrium points were obtained from the following characteristic
equation:

λ
4 + c1λ

3 + c2λ
2 + c3λ + c4 = 0, (3.38)
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with
c1 = m1 +m2 +m4,

c2 = m1m2 +(m1 +m2)(m3 +m4)+m3m4,

c3 = m1m2(m3 +m4)+m3m4(m1 +m2),

c4 = m1m2m3m4 −bqWα
q
Eα

q
Lα

q
P

= m1m2m3m4(1−R0).


(3.39)

The Routh-Hurwitz criteria for local asymptotic stability of the equilibrium point E 1 were
as shown in equation (3.40)

H1 = c1 > 0, c3 > 0, c4 > 0,
H2 = c1c2c3 − c2

3 − c2
1c4 > 0.

}
(3.40)

Based on equation (3.38), it was observed that all the coefficients of the characteristic
polynomial were positive whenever R0 < 1, implying that condition H1 holds for R0 < 1.
Since it was also established that the trivial equilibrium point E 1 had another eigenvalue
rq which is always positive, the positivity of condition H2 was not investigated, hence it
was concluded that E 1 is an unstable equilibrium point.

(ii) First axial equilibrium point E 2:
Evaluating the Jacobian matrix (3.35) about E 2 leads to:

J(E 2) =


−rq 0 −β qKq

M 0 0
0 −m1 0 0 bqW

0 α
q
E θ qKq

M −m2 0 0
0 0 α

q
L −m3 0

0 0 0 α
q
P −m4

 . (3.41)

From (3.41), it was observed that one of the eigenvalues is −rq < 0 and the other eigen-
values are roots of the characteristic equation (3.42) :

λ
4 +b1λ

3 +b2λ
2 +b3λ +b4 = 0, (3.42)

with:
b1 = m1 +m2 +m4 −θ qKq

M,

b2 = (m1 +m2)(m3 +m4)+m1m2 +m3m4

−θ qKq
M(m1 +m3 +m4),

b3 = m1(m3m4 +m2(m3 +m4))+m2m3m4

−θ qKq
M(m1(m3 +m4)+m3m4),

b4 = m1m2m3m4((1−R0)−θ
qKq

M).


(3.43)
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The Routh-Hurwitz criteria for local asymptotic stability of the equilibrium point E 2 are
as follows:

Ĥ1 = b1 > 0, b3 > 0, b4 > 0,
Ĥ2 = b1b2b3 −b2

3 −b2
1b4 > 0.

}
(3.44)

If conditions specified in (3.44) hold then the equilibrium point E 2 is locally asymptoti-
cally stable.

(iii) Second axial equilibrium point E 3:
Evaluating the Jacobian matrix (3.35) about E 3 one gets:

J(E 3) =


rq −β qL3 0 0 0 0

0 −n̂1 0 0 n̂2

n̂3 n̂4 −n̂5 0 0
0 0 α

q
L −m3 0

0 0 0 α
q
P −m4

 , (3.45)

with

n̂1 = −m1 −
bqWA3

KE
, n̂2 = bqW

(
1− E3

KE

)
, n̂3 = θ

qL

n̂4 =

(
1− L3

Kq
L

)
, n̂5 = m2 +

α
q
EE
KL

. (3.46)

From (3.45) we can observe that −rq

(
β qL3

rq −1

)
is an eigenvalue and other eigenvalues

can be determined from the following characteristic polynomial

λ
4 +d1λ

3 +d2λ
2 +d3λ +d4 = 0,

with

d1 = m1 +m3 +m4 + n̂5,

d2 = n̂1n̂5 +m3m4 +(m3 +m4)(n̂1 + n̂5),

d3 = n̂1n̂5(m3 +m4)+m3m4(n̂1 + n̂5),

d4 = m3m4n̂1n̂5 − n̂2n̂4α
q
Lα

q
P. (3.47)

Ahmed et al. (2007) presented some Routh-Hurwitz stability conditions for fractional or-
der system. One well known Routh-Hurwitz conditions is that an equilibrium point is
locally stable if all eigenvalues of the community matrix satisfy the following condition
|arg(λi)| >

qπ

2
. The Routh-Hurwitz criteria for local asymptotic stability of the equilib-
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rium point E 3 are
ξ1 = d1 > 0, d3 > 0, d4 > 0,
ξ2 = d1d2d3 −d2

3 −d2
1d4 > 0.

}
(3.48)

Since the existence of the equilibrium point E 3 is based on R0 > 1, (3.29), one can
conclude that the equilibrium point E 3 is locally asymptotically stable provided the con-
ditions in (3.48) hold and (i) rq < β qL3 (ii) R0 > 1.

(iv) Interior equilibrium point E 4:
Evaluating the Jacobian matrix (3.35) about E 4 one gets:

J(E 4) =


n1 0 −n2 0 0
0 −n3 0 0 n4

n5 n6 n7 0 0
0 0 α

q
L −m3 0

0 0 0 α
q
P −m4

 , (3.49)

with

n1 = rq − 2Mrq

KM
−β

qL, n2 =−β
qM, n3 =−m1 −

bqWA
KE

n4 = bqW
(

1− E
KE

)
, n5 = θ

qL, n6 =

(
1− L

Kq
L

)
α

q
E ,

n7 = θ
qM−m2 −

α
q
EE
KL

. (3.50)

The characteristic equation of (3.49) is

λ
5 + z1λ

4 + z2λ
3 + z3λ

2 + z4λ + z5 = 0, (3.51)

where

z1 = m3 +m4 +n3 −n1 −n7,

z2 = n2n5 −n1n3 +m3(m4 +n3 −n1 −n7)+n1n7 −n3n7

−m4(n1 −n3 +n7),

z3 = n3(n1n7 +n2n5)+m4(n2n5 −n3n7 +n1(n7 −n3))

−m3(n1(n3 −n7)+n3n7 +m4(n1 −n3 +n7)−n2n5),

z4 = n3m4(n2n5 +n1n7)+m3(n3(n2n5 +n1n7)

+m4(n2n5 −n3n7 +n1(n7 −n3)))

−α
q
Lα

q
Pn4n6,

z5 = α
q
Lα

q
Pn1n4n6 +n3m3m4(n2n5 +n1n7). (3.52)
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The Routh-Hurwitz criteria that are necessary and sufficient for local asymptotic stability
of the equilibrium point E 4 are that the Hurwitz determinant Hi are all positive (1.3). For
a fifth degree polynomial these criteria are

H1 = z1 > 0,
H2 = z1z2 − z3 > 0,
H3 = z1z2z3 + z1z5 − z2

1z4 − z2
3 > 0,

H4 = (z3z4 − z2z5)(z1z2 − z3)− (z1z4 − z5)
2 > 0,

H5 = c5H4 > 0.


(3.53)

This leads to the following result.
Theorem 3.3
The interior equilibrium point E 4 is locally asymptotically stable if conditions in (3.53)
hold, otherwise it is unstable.

3.2.4 Global Stability of Equilibrium Points

In this section, global stability of the equilibrium points determined earlier that is E 1, E 2, E 3,
and E 4 were studied.

(i) Trivial equilibrium point E 1

Let us consider the following Lyapunov function:

U1(M,E,L,P,A) = M(t)+
( m4

bqW

)
E(t)+

(
m1m4

bqWα
q
E

)
L(t)

+

(
m1m2m4

bqWα
q
Eα

q
L

)
P(t)+

(
m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)
A(t). (3.54)

As one can observe, Lyapunov functional U1(M,E,L,P,A) is defined, continuous and
positive definite for all M(t), E(t), L(t), P(t) and A(t). It is evident that U1 vanishes at
E 1. The fractional derivative of U (t) along the solutions of system (3.6) lead to:

c
t0Dq

t U1(t) = c
t0Dq

t M(t)+
( m4

bqW

)
c
t0Dq

t E(t)+
(

m1m4

bqWα
q
E

)
c
t0Dq

t L(t)

+

(
m1m2m4

bqWα
q
Eα

q
L

)
c
t0Dq

t P(t)+
(

m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)
c
t0Dα

t A(t)

= rqM(t)

(
1− M(t)

Kq
M

)
−β

qL(t)M(t)

+
( m4

bqW

)(
bq
(

1− E(t)
Kq

E

)
WA(t)−m1E(t)

)
+

(
m1m4

bqWα
q
E

)(
α

q
E

(
1− L(t)

Kq
L

)
E(t)+θ

qL(t)M(t)−m2L(t)
)
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+

(
m1m2m4

bqWα
q
Eα

q
L

)(
α

q
LL(t)−m3P(t)

)
+

(
m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)(
α

q
PP(t)−m4AV

)
= −m4

E(t)A(t)
KE

−m1m2
E(t)L(t)

KL
− m1m2m3m2

4
bqWα

q
Eα

q
Lα

q
P

×
(

1− bqWα
q
Eα

q
Lα

q
P

m1m2m3m4

)
A(t)−θ

q

(
bqWα

q
Eβ q

m1m4θ q −1

)
L(t)M(t)

+rqM(t)

(
1− M(t)

Kq
M

)

= −m4
E(t)A(t)

KE
−m1m2

E(t)L(t)
KL

− m4

R0
(1−R0)A(t)

−θ
q

(
bqWα

q
Eβ q

m1m4θ q −1

)
L(t)M(t)+ rqM(t)

(
1− M(t)

Kq
M

)
. (3.55)

One can note that c
t0Dq

t U1(t) = 0 if M(t) = Kq
M, R0 = 1 and m1m4θ q ≤ bqWα

q
Eβ q. Thus

c
t0Dq

t U1(t) is negative definite if M(t) =Kq
M, R0 ≤ 1 and m1m4θ q ≤ bqWα

q
Eβ q. The above

discussion leads to the following theorem.

Theorem 3.4
The trivial equilibrium point E 1 is globally asymptotically stable if M(t) = Kq

M, R0 ≤ 1
and m1m4θ q ≤ bqWα

q
Eβ q otherwise it is unstable.

(ii) First axial equilibrium point E 2:
Define the function function:

U2(M,E,L,P,A) = M(t)−M∗−M∗ ln
M(t)
M∗ +

( m4

bqW

)
E(t)

+

(
m1m4

bqWα
q
E

)
L(t)+

(
m1m2m4

bqWα
q
Eα

q
L

)
P(t)

+

(
m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)
A(t). (3.56)

Evidently the function U2(M,E,L,P,A) is defined, continuous and positive definite for all
M(t), E(t), L(t), P(t) and A(t). Furthermore, it U2 vanishes at E 2. Hence, the fractional
derivative of U2(t) along the solutions of system

c
t0Dq

t U2(t) ≤ −rqM∗
(

1− M(t)
Kq

M

)(
1− M(t)

M∗

)
−m4

E(t)A(t)
KE
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−m1m2
E(t)L(t)

KL
− m1m2m3m2

4
bqWα

q
Eα

q
Lα

q
P

(
1− bqWα

q
Eα

q
Lα

q
P

m1m2m3m4

)
A(t)

−β qbqWα
q
E +m1m4θ q

bqWα
q
E

(
1− β qbqWα

q
E

m1m4θ q +β qbqWα
q
E

M∗

M(t)

)

= −rqM∗
(

1− M(t)
Kq

M

)(
1− M(t)

M∗

)
−m4

E(t)A(t)
KE

−m1m2
E(t)L(t)

KL

−β qbqWα
q
E +m1m4θ q

bqWα
q
E

(
1− β qbqWα

q
EM∗

(m1m4θ q +β qbqWα
q
E)M(t)

)

− m1m2m3m2
4

bqWα
q
Eα

q
Lα

q
P
(1−R0)A(t). (3.57)

Therefore c
t0Dq

t U2(t) is negative definite if the following conditions hold (i) R0 ≤ 1, (ii)
M < M∗ (iii) β qbqWα

q
EM∗ ≤ (m1m4θ q + β qbqWα

q
E)M(t). This leads to the following

theorem.
Theorem 3.5
The trivial equilibrium point E 2 is globally asymptotically stable if the following con-
ditions hold (i) R0 ≤ 1, (ii) M < M∗ (iii) β qbqWα

q
EM∗ ≤ (m1m4θ q + β qbqWα

q
E)M(t),

otherwise it is unstable.

(iii) Global stability of equilibrium points E 3 and E 4:
The following Lyapunov function was used to investigate the global stability of the equi-
librium points E 3 and E 4:

U3(t) = a0

[
M(t)−M∗−M∗ ln

(
M(t)
M∗

)]
+a1

[
E(t)−E∗−E∗ ln

(
E(t)
E∗

)]

+a2

[
L(t)−L∗−L∗ ln

(
L(t)
L∗

)]
+a3

[
P(t)−P∗−P∗ ln

(
P(t)
P∗

)]

+a4

[
A(t)−A∗−A∗ ln

(
A(t)
A∗

)]
, (3.58)

where a1, a2, a3 and a4 are positive constants to be determined. Let g0(M)= rq
(

1− M
Kq

M

)
,

g1(E,A) = bq
(

1− E
Kq

E

)
WA and g2(E,L) =α

q
E

(
1− L

Kq
L

)
E. Recall that at this equilibrium

the following identities hold:

g0(M) = β qL∗M∗, g1(E∗,A∗) = m1E∗,

g2(E∗,L∗)+θ qL∗M∗ = m2L∗,

α
q
LL∗−m3P∗, α

q
PP∗ = m4A∗.

 (3.59)
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Setting

a1 = g2(E∗,L∗), a3 =
g1(E∗,A∗)g2(E∗,L∗)

α
q
LL∗ ,

a2 = g1(E∗,A∗), a4 =
g1(E∗,A∗)g2(E∗,L∗)

α
q
PP∗ .

 (3.60)

It follows from Lemma 1.1 that

c
t0Dα

t U2(t) ≤ g0(M∗)
(

1− M∗

M

)(
g(M)

g(M∗)
− LM

L∗M∗

)
+θ

qg1(E∗,A∗)
(

1− L
L∗

)(
1− M

M∗

)
+g1(E∗,A∗)g2(E∗,L∗)

(
1− E

E∗ −
E∗g1(E,A)
Eg1(E∗,A∗)

+
g1(E,A)

g1(E∗,A∗)

)

+g1(E∗,A∗)g2(E∗,L∗)

(
3− A

A∗ −
A∗P
AP∗ −

P∗L
PL∗

− L∗g2(E,L)
Lg2(E∗,L∗)

+
g2(E,L)

g2(E∗,L∗)

)
. (3.61)

Let Φ(x) = 1− x+ lnx, for x > 0. It follows that Φ(x) ≤ 0, with the equality satisfied if
and only if x = 1. Using this relation leads to

1− E
E∗ −

E∗g1(E,A)
Eg1(E∗,A∗)

+
g1(E,A)

g1(E∗,A∗)

= Φ

(
E∗g1(E,A)
Eg1(E∗,A∗)

)
− E

E∗ +
g1(E,A)

g1(E∗,A∗)
− ln

(
E∗g1(E,A)
Eg1(E∗,A∗)

)

≤ g1(E,A)
g1(E∗,A∗)

− ln

(
g1(E,A)

g1(E∗,A∗)

)
− E

E∗ + ln

(
E
E∗

)
. (3.62)

Similarly, one can write

3 − A
A∗ −

A∗P
AP∗ −

P∗L
PL∗ −

L∗g2(E,L)
Lg2(E∗,L∗)

+
g2(E,L)

g2(E∗,L∗)

= Φ

(
A∗P
AP∗

)
+Φ

(
A∗P
AP∗

)
+Φ

(
L∗g2(E,L)
Lg2(E∗,L∗)

)
− A

A∗

+
g2(E,L)

g2(E∗,L∗)
− ln

(
A∗g2(E,L)
Ag2(E∗,L∗)

)

≤ g2(E,L)
g2(E∗,L∗)

− ln

(
g2(E,L)

g2(E∗,L∗)

)
− A

A∗ + ln

(
A
A∗

)
. (3.63)
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Therefore c
t0Dq

t U3(t) is negative definite if the following conditions hold

(i)
(

1− M∗

M

)(
g(M)

g(M∗)
− LM

L∗M∗

)
≤ 0

(ii)
(

1− L
L∗

)(
1− M

M∗

)
≤ 0.

Therefore the following theorem holds.
Theorem 3.6
The equilibrium point(s) E 3 and E 4 is globally asymptotically stable if the following
conditions hold

(i)
(

1− M∗

M

)(
g(M)

g(M∗)
− LM

L∗M∗

)
≤ 0

(ii)
(

1− L
L∗

)(
1− M

M∗

)
≤ 0.

otherwise it is unstable.

3.3 FAW-Maize Interaction Model with Seasonality

As highlighted earlier in this chapter, the influence of seasonal variations on FAW dynamics
is well documented. However, despite all the documentation, mathematical models meant to
evaluate the effects of seasonal variations on FAW-maize interaction are still lacking. To that
end, the second model proposed in this study was meant to investigate the effects of seasonality
on maize biomass dynamics and on final maize biomass. Biologically, maize seed planted at
the beginning of the season at time t = 0 germinates in 0−7 days (Du Plessis et al., 2020).

Depending on the variety of maize seed planted, harvest of this crop which occurs at the end of
the season (90 - 164) days is influenced by the weather variations within a season. Since maize
growth is affected by weather condition fluctuation, the growth rates of their parts such as leaves,
cobs, kernel, and stems which in fact called biomass according to Chowdhury et al. (2019) and
Battude et al. (2016) are weather dependent. Motivated by recent mathematical models for
plant-pest interactions (Anguelov et al., 2017; Faithpraise et al., 2015; Páezchávez et al., 2017;
Hui & Zhu, 2006; Liang et al., 2012; Kang et al., 2013; Tang et al., 2010; Chowdhury et al.,
2019; Rafikov et al., 2008), in this study a non-autonomous model for FAW infestations in a
field of maize biomass under assumption that weather condition fluctuation in a season have an
impact on maize biomass and FAW dynamics.

The developed model subdivides the FAW population of life cycle into subclasses as: eggs
population E(t), larvae population L(t), pupae population P(t) and adult population which are
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also known as moth A(t). On the other hand, we let the variable M(t) denote the population
density of maize biomass which grow logistically in the absence of the larvae with carrying
capacity KM and a net seasonal growth rate r(t). It was assumed that larvae with a mortality
rate µL(t) is the only threat to maize biomass throughout its growth period and the adult moth
takes over in the reproduction process. The life cycle of FAW starts when eggs are laid in masses
on maize biomass, mostly underside of these biomass (Matova et al., 2020). It was also assumed

that production of FAW egg is a logistic growth b(t)
[

1− E(t)
KE(t)

]
wA(t) with b(t) representing

the average number of eggs laid by a proportion w of moth, A(t) which are females.

Since the growth of maize plants depends on seasonal variations, it suffices to assume that the
egg carrying capacity KE(t), egg hatching rate αE(t) and egg mortality rate µE(t) are season-
dependent. Furthermore, FAW larvae generally emerge simultaneously three to five days fol-
lowing oviposition. Although, the FAW has six larval instar stages, we have considered this
as single group called larvae in order to reduce complexity of the model. Since the population
size of maize biomass is finite and independent of weather fluctuation and because the rate at
which FAW larvae consumes food decreases, a Holling type II functional response also known
as the saturating functional response is included in the equation capturing the dynamics of maize
density and larvae population with half saturation constant a(t).

In particular, when FAW larvae feed on maize biomass, the FAW larvae with an average duration
of 1

αL(t)
in the larval stage convert maize biomass into larvae’s biomass at the rate e(t). Finally,

pupation of the FAW normally occurs in the soil, at a depth of 2-8cm (Capinera, 2002). It was
assume that, duration of the pupal stage with natural mortality rate µP(t) is denoted by 1

αP(t)

which after 8 days in the soil escapes as adult moth and start the cycle again.

The formulation of this model (3.64) was also supported by the following assumptions:

(i) Once the FAW moths migrate into the field, no migration out of the field occurs before
the harvest

(ii) In a natural environment there are weather condition fluctuations which have an impact
on maize biomass and FAW dynamics.

(iii) Population dynamics of FAW egg in the absence of any predators grow logistically.

(iv) The only source of food for the larvae is maize biomass so that in its absence, larvae
becomes extinct.

(v) Maize biomass carrying capacity KM is not affected by weather condition fluctuation.
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A summary of the definitions of model state variables and parameters are given in Tables 1
and 2. Therefore, the proposed model was summarized by the system of non-linear ordinary
differential equations provided in (3.64) and the model flow diagram is in Figure 10:

dM(t)
dt

= r(t)M(t)

[
1− M(t)

KM

]
− β (t)M(t)

a(t)+M(t)
L(t),

dE(t)
dt

= b(t)wA(t)
[

1− E(t)
KE(t)

]
− [αE(t)+µE(t)]E(t),

dL(t)
dt

= αE(t)E(t)+
eβ (t)M(t)
a(t)+M(t)

L(t)− [αL(t)+µL(t)]L(t)

−θ(t)L2(t),

dP(t)
dt

= αL(t)L(t)− [αp(t)+µP(t)]P(t),

dA(t)
dt

= αP(t)P(t)−µA(t)A(t).



(3.64)

where µA(t) represents natural mortality rate of the moth (adult moth) and θ(t) is the density-
dependent death rate of larvae population. Thus, −θ(t)L2(t) reflects of predation, intra-specific
and interspecific competition that is known to exist on FAW larvae population. Precisely, prior
studies suggest that when food is limited, the older FAW larvae exhibit a cannibalistic behavior
on the smaller larvae (Assefa & Ayalew, 2019; Chapman et al., 2000). All model parameters
that are functions of time depend on seasonal variations. For biological significance, it was
assumed that all these parameters are continuous and bounded functions defined on R+.
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Figure 10: Schematic representation of the model (3.64); continuous arrows indicate
either inflow or outflow transition between compartments

Comprehensive mathematical expressions to model parameters that are meant to capture sea-
sonal fluctuations are given in (3.65):

r(t) = r0[1+ r1 cos(2πtω−1)], b(t) = b0[1+b1 cos(2πtω−1)],

β (t) = β0[1+β1 cos(2πtω−1)], KE(t) = KE0[1+KE1 cos(2πtω−1)],

a(t) = a0[1+a1 cos(2πtω−1)], αE(t) = αE0 [1+αE1 cos(2πtω−1)],

µE(t) = µE0[1+µE1 cos(2πtω−1)], αL(t) = αL0[1+αL1 cos(2πtω−1)],

µL(t) = µL0[1+µL1 cos(2πtω−1)], θ(t) = θ0[1+θ1 cos(2πtω−1)],

αP(t) = αP0[1+αP1 cos(2πtω−1)], µA(t) = µA0[1+µA1 cos(2πtω−1)],

µP(t) = µP0 [1+µP1 cos(2πtω−1)], e(t) = e0[1+ e1 cos(2πtω−1)],


(3.65)

where ω > 0 denote the period. Further, r0, β0, KE0, a0, b0, αE0, µE0, αL0 , µL0, θ0, αP0 and
µA0 are the baseline values or the time averages of r(t), β (t), KE(t), a(t), b(t), αE(t), µE(t),

αL(t), µL(t), θ(t), αP(t), µA(t), respectively, and r1, KM1 , β1, KE1, a1, b1, αE1, µE1 , e1, αL1,

µL1, θ1, αP1 and µA1 denote the magnitude of seasonal fluctuations. Note that 0 < r1 < 1,
0 < β1 < 1, 0 < KE1 < 1, 0 < a1 < 1, 0 < b1 < 1, 0 < αE1 < 1, 0 < µE1 < 1, 0 < αL1 < 1,
0 < µL1 < 1, 0 < θ1 < 1, 0 < αP1 < 1 and 0 < µA1 < 1. From (3.65) one can observe that all
model parameters that account for seasonal fluctuations are periodic (with period ω > 0 days),
continuous and bounded below and above. Since

∣∣cos(2πtω−1)
∣∣≤ 1 and 0 < r1 < 1, it follows
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that:

r0(1− r1)≤ r(t)≤ r0(1+ r1). (3.66)

From (3.66), it follows that r(t) is bounded below and above. By following the same approach
one can easily verify that all the other periodic model parameters are bounded below and above.

3.3.1 Positivity, Boundedness and Permanence of Model Solutions

In this section, dynamical behavior of the FAW-maize interaction model (3.64) with season-
ality was studied; that is, investigation of positive invariance, boundedness, permanence, non-
persistence and global stability. This was done with the aid of the definition (3.5) and (3.6):

Definition 3.5
The solution set of system (3.64) is said to be ultimately bounded if there exists M > 0,
such that for every solution (M(t),E(t),L(t),P(t),A(t)) of (3.64), there exists T > 0, such that
∥(M(t),E(t),L(t),P(t),A(t))∥ ≤ M for all t > T , where M is independent of a particular so-
lution while T may depend on the solution.
Definition 3.6
System (3.64) is said to be permanent if there exist positive constants δ ,∆ with 0 < δ < ∆ such
that:

min
{

liminf
t→+∞

M(t), liminf
t→+∞

E(t), liminf
t→+∞

L(t), liminf
t→+∞

P(t), liminf
t→+∞

A(t)
}
≥ δ ,

max
{

limsup
t→+∞

M(t), limsup
t→+∞

E(t), limsup
t→+∞

L(t), limsup
t→+∞

P(t), limsup
t→+∞

A(t)
}
≤ ∆,

hold for all solutions of (3.64) with positive initial values. System (3.64) is said to be non-
persistent if there is a positive solution (M(t),E(t),L(t),P(t),A(t)) of system (3.64) satisfying:

min
{

liminf
t→+∞

M(t), liminf
t→+∞

E(t), liminf
t→+∞

L(t), liminf
t→+∞

P(t), liminf
t→+∞

A(t)
}
= 0. (3.67)

For u∈C(R), define Φ(u(s))=
u(s)

a(s)+u(s)
. As one can observe, Φ(u) is a monotonic increasing
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function. Define:

M1 = supt∈R{KM}, m1 = inft∈R

{
KM

r(t)
[r(t)−β (t)M3]

}
,

M2 = supt∈R

{
b(t)wM5

b(t)wM5 +αE(t)+µE(t)

}
,

m2 = supt∈R

{
b(t)wm5

b(t)wm5 +αE(t)+µE(t)

}
,

M3 = supt∈R

{
αE(t)M2 +

eβ (t)Φ(M1)(t)− (µL(t)+αL(t))
θ(t)

}
,

M4 = supt∈R

{
αL(t)M3

µP(t)+αP(t)

}
,

M5 = supt∈R

{
αP(t)M4

µA(t)

}
,

m3 = inft∈R

{
αE(t)m2 +

eβ (t)Φ(m1)(t)− (µL(t)+αL(t))
θ(t)

}
,

m4 = inft∈R

{
αL(t)m3

µP(t)

}
, m5 = inf

t∈R

{
αP(t)m4

µA(t)

}
.



(3.68)

One can now define Condition (H1) as follows:

(H1) :


inft∈R{[r(t)−β (t)M3]}> 0,

inft∈R

{
αE(t)M2 +

eβ (t)Φ(M1)(t)− (µL(t)+αL(t))
θ(t)

}
> 0,

inft∈R

{
αE(t)m2 +

eβ (t)Φ(m1)(t)− (µL(t)+αL(t))
θ(t)

}
> 0.

 (3.69)

Under Condition (H1), the set:

Ω =


(

M(t),E(t),L(t),P(t),A(t)

)
∣∣∣∣∣∣∣∣∣∣∣∣

m1 ≤ M(t)≤ M1,

m2 ≤ E(t)≤ M2,

m3 ≤ L(t)≤ M3,

m4 ≤ P(t)≤ M4,

m5 ≤ A(t)≤ M5


. (3.70)

was defined which lead us to theorem (3.7):
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Theorem 3.7
(a) If condition (H1) holds, then the set Ω is positively-invariant and permanent for system
(3.64), and the set Ωδ defined by:

Ω =


(

M(t),E(t),L(t),P(t),A(t)

)
∣∣∣∣∣∣∣∣∣∣∣∣

mδ
1 ≤ M(t)≤ M δ

1 ,

mδ
2 ≤ E(t)≤ M δ

2 ,

mδ
3 ≤ L(t)≤ M δ

3 ,

mδ
4 ≤ P(t)≤ M δ

4 ,

mδ
5 ≤ A(t)≤ M δ

5 ,


. (3.71)

is ultimately bounded region of (3.64), where δ > 0 is sufficiently small such that mδ
i > 0(i =

1,2,3,4,5) and (H1) holds when Mi and mi are replaced by M δ
i and mδ

i , respectively. Further,
it was defined that M δ

i =Mi+δ , mδ
i = mi−δ . (b) If Condition (H1) holds, then system (3.64)

has at least one positive ω− periodic solution (M∗(t), E∗(t), L∗(t), P∗(t), A∗(t)) ∈ Ω.

Biological implications of Theorem 3.7: Theorem 3.7 implies that model system (3.64) is
biologically well-poised, that is., the population of species under consideration are non-negative
and bounded.

Proof. To prove Theorem 3.7 (a), the following lemma given by Bai, Yu, Fan and Kang (2020)
was used to demonstrate the positivity, boundedness and permanence of a non-autonomous
predator-prey system with a generalist predator.
Lemma 3.4
Let p(t) and q(t) be bounded continuous functions defined on R with inft∈R p(t) > 0 and
inft∈R q(t)> 0. If the positive function u(t) satisfies:

u′(t)≤ p(t)u(t)−q(t)u2(t), t ∈ [t0,+∞), (3.72)

then limsupt→+∞ u(t) ≤ supt∈R
p(t)
q(t) . Moreover, u(t) ≤ supt∈R

p(t)
q(t) for all t ∈ [t0,+∞) if 0 <

u(t0)≤ supt∈R
p(t)
q(t) . While if the positive function u(t) satisfies:

u′(t)≥ p(t)u(t)−q(t)u2(t), t ∈ [t0,+∞), (3.73)

then liminft→+∞ u(t)≥ inft∈R
p(t)
q(t) . Moreover, u(t)≥ inft∈R

p(t)
q(t) for all t ∈ [t0,+∞) if 0< u(t0)≥

inft∈R
p(t)
q(t) .

In what follows, the proof of Theorem 3.7 was presented as follows.
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From system (3.64), one can obtain the following expressions:

M(t) = M(t0)exp

{∫ t

t0

[
r(s)M(s)

[
1− M(s)

KM

]
− β (s)M(s)

a(s)+M(s)
L(s)

]
ds

}
,

E(t) = E(t0)exp

{∫ t

t0

[
b(s)wA(s)

[
1− E(s)

KE(s)

]
− [αE(s)+µE(s)]E(s)

]
ds

}
,

L(t) = L(t0)exp

{∫ t

t0

[
αE(s)E(s)+

eβ (s)M(s)
a(s)+M(s)

L(s)− [αL(s)+µL(s)]L(s)

−θ(s)L2(s)

]
ds

}
,

P(t) = P(t0)exp

{∫ t

t0

[
αL(s)L(s)− [αp(s)+µP(s)]P(s)

]
ds

}
,

A(t) = A(t0)exp

{∫ t

t0

[
αP(s)P(s)−µA(s)A(s)

]
ds

}
.



(3.74)

From (3.74), one can observe that all the solutions of model (3.64) are non-negative.
Next, Theorem 3.7 (b) was proved under assumption that Ω is positively-invariant for system

(3.64). It was assumed that (M(t), E(t), L(t), P(t), A(t)) be a unique solution of system (3.64)

with (M(t0), E(t0), L(t0), P(t0), A(t0)) ∈ Ω.

From the first equation of (3.64) and the positivity solutions of (3.64), one has:

M′(t) ≤ r(t)M(t)

[
1− M(t)

KM

]
, t ≥ t0, (3.75)

and by Lemma 3.4 and 0 < M(t0)≤ M1, M(t)≤ M1, t ≥ t0.

From the second equation of system (3.64), one has:

E(t) ≤ b(t)wA(t)− [b(t)wA(t)+αE(t)+µE(t)]E(t)

≤ b(t)wM5 − [b(t)wM5 +αE(t)+µE(t)]E(t), , t ≥ t0, (3.76)

by Lemma 3.4 and 0 < E(t0)≤ M2, E(t)≤ M2, t ≥ t0.

From the third equation of model (3.64), one has:

L′(t) ≤ αE(t)+ eβ (t)Φ(M1)(t)L(t)− [αL(t)+µL(t)]L(t)−θ(t)L2(t), t ≥ t0,(3.77)

by Lemma 3.4 and 0 < L(t0)≤ M3, L(t)≤ M3, t ≥ t0.
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From the fourth equation of system (3.64), one has:

P′(t)≤ [µP(t)+αP(t)]

[
αL(t)M3

[µP(t)+αP(t)]
−P(t)

]
, t ≥ t0, (3.78)

by Lemma 3.4 and 0 < P(t0)≤ M4, P(t)≤ M4, t ≥ t0.

From the last equation of system (3.64), one has:

A′(t)≤ µA(t)

[
αP(t)M4

µA(t)
−A(t)

]
, t ≥ t0. (3.79)

Again from the first equation of system (3.64), one gets:

M′(t) ≥ r(t)M(t)− r(t)
KM

M2(t)−β (t)L(t)M(t),

≥ (r(t)−β (t)M3)−
r(t)
KM

M2(t), t ≥ t0, (3.80)

and by Lemma 3.4 and M(t0)≥m1 > 0, one obtain M(t)≥m1, t ≥ t0. From the second equation
of system (3.64), the following result is obtained:

E(t) ≥ b(t)wA(t)− [b(t)wA(t)+αE(t)+µE(t)]E(t)

≥ b(t)wm5 − [b(t)wm5 +αE(t)+µE(t)]E(t), t ≥ t0. (3.81)

By Lemma 3.4 and E(t0) ≥ m2 > 0, it follows that E(t) ≥ m2, holds for t ≥ t0. From the third
equation of system (3.64), I got:

L′(t) ≥ αE(t)+ eβ (t)Φ(m1)(t)L(t)− [αL(t)+µL(t)]L(t)−θ(t)L2(t), t ≥ t0,(3.82)

It follows from Lemma 3.4 and L(t0)≥ m3 > 0 thatL(t)≥ m3, holds for t ≥ t0. From the fourth
equation of system (3.64), I got:

P′(t)≥ [µP(t)+αP(t)]

[
αL(t)m3

[µP(t)+αP(t)]
−P(t)

]
, t ≥ t0, (3.83)

By Lemma 3.4 and P(t0) ≥ m4 > 0 it follows that P(t) ≥ m3, holds for t ≥ t0. Furthermore,
from the last equation of system (3.64), I have:

A′(t)≥ µA(t)

[
αP(t)m4

µA(t)
−A(t)

]
, t ≥ t0, (3.84)

Based on the above proofs, it implies Lemma 3.4 and A(t0) ≥ m5 that A(t) ≥ m5 holds for all
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t ≥ t0. Therefore, Ω is positively-invariant with respect to system (3.64).
Next we prove that if Theorem 3.7 (a) and Condition (H1) holds, then system (3.64) is per-
manent. This started by assuming that (M(t), E(t), L(t), P(t), A(t)) is a unique solution of
system (3.64) with positive initial value (M(t0), E(t0), L(t0), P(t0), A(t0)). If a sufficiently
small δ > 0 chosen such that mδ

i (i = 1,2,3,4,5), and each inequality of (H1) holds when Mi

and mi are replaced by M δ
i > 0 and mδ

i > 0, respectively, then by Lemma 3.4, it follows that
limsupt→+∞ M(t)≤ M1, implying that there exists T0 > t0 such that for t > T0, M(t)≤ M δ

1 .

Then from the first equation of system (3.64), we obtain:

M′(t)≤ r(t)M(t)− r(t)
KM

M2(t), t > T0, (3.85)

which yields by Lemma 3.4 that:

limsup
t→+∞

M(t)≤ sup
t∈R

{KM}. (3.86)

Thus, by the arbitrariness of δ , it follows that limsupt→+∞ M(t)≤ M1. Then, there exists T1 >

T0 such that for t > T1, M(t)≤ M δ
1 , and:

E(t) ≤ b(t)wM δ
5 − [b(t)wM δ

5 +αE(t)+µE(t)]E(t), t > T1. (3.87)

It follows from Lemma 3.4 and inft∈R{b(t)wM δ
5 − [b(t)wM δ

5 +αE(t)+µE(t)]E(t)}> 0 that

limsup
t→+∞

E(t)≤ sup
t∈R

{
b(t)wM δ

5

[b(t)wM δ
5 +αE(t)+µE(t)]E(t)

}
. (3.88)

Thus, by the arbitrariness of δ , I have limsupt→+∞ E(t) ≤ M2, and there exists T2 > T1 such
that for t > T2, E(t)≤ M δ

2 , and

L′(t) ≤ αE(t)+ eβ (t)Φ(M δ
1 )(t)L(t)− [αL(t)+µL(t)]L(t)−θ(t)L2(t), t > T2,(3.89)

It follows from Lemma 3.4 and inft∈R{eβ (t)Φ(M δ
1 )(t)L(t)− [αL(t)+µL(t)]}> 0 that:

limsup
t→+∞

L(t)≤ sup
t∈R

{
αE(t)M δ

2 +
eβ (t)Φ(M δ

1 )(t)− (µL(t)+αL(t))
θ(t)

}
. (3.90)

Thus, by the arbitrariness of δ , I have limsupt→+∞ L(t) ≤ M3, and there exists T3 > T2 such
that for t > T3, L(t)≤ M δ

3 , and:

P′(t)≤ αL(t)M δ
3 − (µP(t)+αP(t))P(t), t > T3, (3.91)
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which yields by Lemma 3.4 that:

limsup
t→+∞

P(t)≤ sup
t∈R

{
αL(t)M δ

3
[µP(t)+αP(t)]

}
. (3.92)

Thus, by the arbitrariness of δ , one has limsupt→+∞ P(t)≤M4. Then, there exists T4 > T3 such
that for t > T4, P(t)≤ M δ

4 , and:

A′(t)≤ αP(t)M δ
4 −µA(t)P(t), t > T4,

which yields by Lemma 3.4 that:

limsup
t→+∞

A(t)≤ sup
t∈R

{
αP(t)M δ

4
µA(t)

}
. (3.93)

Thus, by the arbitrariness of δ , one can obtain limsupt→+∞ A(t)≤ M5. Then, there exists T5 >

T4 such that for t > T4, A(t)≤ M δ
5 . This completes the proof of Theorem 3.7(i).

3.3.2 Global Asymptotic Stability of the Boundary Solution

In this section, global asymptotic stability of the boundary solution were investigated. It was
assumed that maize biomass is the only food source for the FAW in this case; such that in
the absence of the maize plant biomass, the FAW population becomes extinct. Hence the only
boundary solution of system (3.64) is (M(t),0,0,0,0). Substituting this boundary solution into
system (3.64) one gets:

dM(t)
dt

= r(t)M(t)

(
1− M(t)

KM

)
. (3.94)

Equation (3.94) is well known non-autonomous logistic equation. As illustrated in equation
(3.66), r(t) is continuous ω−periodic, bounded below and above by positive constants. Ac-
cording to Fan and Wang (1998), one can obtain the following results:
Lemma 3.5
If r(t) is a continuous periodic function ω− , and bounded below and above by strictly positive
reals for all t ∈ R, the logistic equation (3.94) has exactly a solution Mg(t) bounded below and
above by positive constants (Fan & Wang, 1998). Precisely, this solution is given by:

Mg(t) =

[
exp

(∫
ω

0
r(s)ds

)
−1

]
·
[∫ t+ω

t

r(s)
KM

· exp

(
−
∫ t

s
r(τ)dτ)ds

)]−1

. (3.95)

In addition, Mg(t) is globally asymptotically-stable for M(t) with positive initial value M(t0) =
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M0 > 0 in the sense limt→+∞ |M(t)−Mg(t)|= 0.

By Lemma 3.5, one can obtain the following result:
Lemma 3.6
System (3.64) admits a unique positive ω−periodic solution Mg(t), 0, 0, 0, 0) which is glob-
ally asymptotically-stable for M(t) with positive initial value M(t0) = M0 > 0 in the sense
limt→+∞ |M(t)−Mg(t)|= 0.

For a continuous and periodic function g(t) with periodic ω, we denote:

A (g) :=
1
ω

∫
ω

0
g(t)dt. (3.96)

Lemma 3.7
If r(t) is a continuous ω−periodic function, then the null solution of (3.94) is globally
asymptotically-stable provided that one of the following two conditions is met (Bai et al., 2020):

(i) A (r)< 0;

(ii) A (r) = 0, and A (r/KM)< 0.

Note:If A (r) > 0 and A (r/KM) > 0, then (3.94) has a unique positive ω− periodic solution
Mg(t) which is globally asymptotically-stable (Tineo, 1995). Thus, when r/KM is non-negative
with A (r/KM)> 0, the null solution of (3.94) is globally stable if and only if A (r)≤ 0.

Finally, I provide the proof of Theorem 3.7(b): Define a Poincare mapping F : R5 → R
5 as

follows:

F (ξ ) = (M(t0 +ω, t0,ξ ),E(t0 +ω, t0,ξ ),L(t0 +ω, t0,ξ ),P(t0 +ω, t0,ξ ),

A(t0 +ω, t0,ξ ))

ξ = (M0,E0,L0,P0,A0) ∈ R5, (3.97)

where (M(t0 +ω, t0,ξ ),E(t0 +ω, t0,ξ ),L(t0 +ω, t0,ξ ),P(t0 +ω, t0,ξ ),A(t0 +ω, t0,ξ )) repre-
sents the solution of (3.64) through (t0,ξ ), ξ = (M0,E0,L0,P0,A0) ∈ R5. Then F (Ω)∩Ω by
the positive invariant property of Ω. The continuity of F can be guaranteed by the continuity
of solution of (3.64) with respect to initial value. Note that Ω is a bounded, closed, convex set
in R5. Therefore, it follows from Brouwer’s fixed point theorem that the operator F has at least
one fixed point ξ ∗ = (M∗(t),E∗(t),L∗(t),P∗(t),A∗(t)) in Ω, which is a positive ω− periodic
solution of system (3.64). The proof is complete.
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3.3.3 The Optimal Control Problem

In this section, the basic model (3.64) was extended to incorporate time dependent intervention
strategies with the main goal of reducing FAW egg and larvae populations. Considering the
extent of damage FAW can cause in a short period of time, it is imperative that once this pest has
been identified in a maize field, necessary control approaches should be implemented timeously.

Prior studies suggest that the effective management of FAW depends on the integration of sev-
eral control strategies including the biological, host plant resistance, and use of chemical in-
secticides (Rukundo et al., 2020). Here, model (3.64) was reformulated to incorporate new
parameters u1(t) and u2(t), known as controls. Control u1(t) models the efforts of traditional
control methods like handpicking and destruction of FAW egg masses and larvae on FAW dy-
namics. Control u2(t) accounts for the efforts of chemical pesticide use on FAW dynamics.
Without loss in generality, herein the term traditional methods was used to describe handpick-
ing and destruction of FAW egg masses and larvae. Utilizing the same variable and parameter
names as in system (3.64), the new system of nonlinear differential equations incorporating time
dependent controls was summarized by the following equations:

dM(t)
dt

= r(t)M(t)

[
1− M(t)

KM

]
− β (t)M(t)

a(t)+M(t)
L(t),

dE(t)
dt

= b(t)wA(t)
[

1− E(t)
KE(t)

]
− [αE(t)+µE(t)+u1(t)]E(t),

dL(t)
dt

= αE(t)E(t)+
eβ (t)M(t)
a(t)+M(t)

L(t)− [αL(t)+µL(t)+u1(t)+u2(t)]L(t)

−θ(t)L2(t),

dP(t)
dt

= αL(t)L(t)− [αp(t)+µP(t)]P(t),

dA(t)
dt

= αP(t)P(t)−µA(t)A(t).



(3.98)

As one can note, in (3.98) control efforts u1(t) aims to reduce the egg and larvae population
while the use of chemical insecticide u2(t) mainly reduces the density of larvae population
only. For model (3.98) to be biologically meaningful we set:

M(0)≥ 0, E(0)≥ 0, L(0)≥ 0, P(0)≥ 0, A(0)≥ 0. (3.99)
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The control set for the controls was considered as follows:

Γ = {(u1(t),u2(t)))
∣∣0 ≤ u1(t)≤ u1max,0 ≤ u2(t)≤ u2max}, (3.100)

where u1max and u2max represents the upper bounds for the efforts of traditional methods and use
of chemical insecticide respectively. If ui = 0, (i = 1,2), it implies absence of time dependent
control measures.

A control strategy is said to be successful control strategy if it can reduce the egg and larvae
population thereby reducing or eradicating FAW population in the field. As such, the main goal
was to identify a pair of control (u∗1,u

∗
2) that minimize the population FAW egg and larvae at

minimal cost. Therefore the objective functional was proposed as follows:

J(u1(t),u2(t)) =
∫ T

0

[
C1E(t)+C2L(t)+

W1

2
u2

1(t)+
W2

2
u2

2(t)
]

dt . (3.101)

subject to the constraints (3.98), where C1, C2, W1 and W2 are balancing coefficients (non-
negative) converting the integrals into monetary quantity over a finite period of time, T days. In
(3.101), control efforts (u∗1(t),u

∗
2(t)) with coefficients W1 and W2 are assumed to be nonlinear-

quadratic, since a quadratic structure in the control has mathematical advantages such as: (i)
controls will not disappear after differentiation and this implies that the solution is unique (ii)
all control strategies (u∗1,u

∗
2) are bounded implying that efforts for implementing these controls

are also bounded and characterized (iii) if the control set is compact and convex, it follows that
the Hamiltonian attains its minimum over the control set at a unique point. Further, the goal
was to find a control pair (u∗1(t),u

∗
2(t)) ∈U such that condition (3.102) is attained:

J(u∗1(t),u
∗
2(t)) = min

U
J(u1(t),u2(t)) (3.102)

subject to the state equations in system (3.98) with initial conditions.
In order to study the existence of an optimal control pair (u∗1,u

∗
2), techniques in Fleming

and Rishel’s work (Fleming & Rishel, 1975) were utilized. Theorem 3.8 (i) and (ii) state the
existence of the optimal controls and the their characterization. The proofs of these controls are
presented in Appendix 3.
Theorem 3.8
(a) There exists an optimal control pair (u∗1,u

∗
2) to the problem (3.98). (b) Given an optimal

control u = (u1,u2)∈U and corresponding state solutions M, E, L, P and P, there exists adjoint
functions λi, i = 1,2,3,4,5 satisfying:

dλ1

dt
= −

[
r(t)− 2r(t)M(t)

KM
− β (t)L(t)

a(t)+M(t)
+

β (t)L(t)M(t)
(a(t)+M(t))2

]
λ1(t)
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−
[

eβ (t)L(t)M(t)
a(t)+M(t)

− eβ (t)L(t)M(t)
(a(t)+M(t))2

]
λ3(t),

dλ2

dt
= −C1 +

[
b(t)wA(t)

KE(t)
+αE(t)+µE(t)+u1(t)

]
λ2(t)−αE(t)λ3(t),

dλ3

dt
= −C2 +

β (t)M(t)
a(t)+M(t)

λ1(t)−
[

eβ (t)M(t)
a(t)+M(t)

−2θ(t)L(t)−αL(t)−µL(t)

]
λ3(t)

+[u1(t)+u2(t)]λ3(t)−αL(t)λ4(t),
dλ4

dt
= (αP(t)+µP(t))λ4(t)−αP(t)λ5(t),

dλ5

dt
= −b(t)w

(
1− E(t)

KE(t)

)
λ2(t)+µA(t)λ5(t), (3.103)

with transversality condition λi(T ) = 0, for i = 1,2,3,4,5. Furthermore, these optimal controls
are characterized by:

u1 = min

[
u1max,max

(
E(t)λ2(t)+L(t)λ3(t)

W1
,0

)]
,

u2 = min

[
u2max,max

(
L(t)λ3(t

W2
,0

)]
 (3.104)

Theorem 3.8 (a) There exists an optimal control pair (u∗1,u
∗
2) to the problem (3.98).

Proof. Suppose that f(t,x,u) be the right-hand side of the (3.98) whereby x = (M,E,L,P,A)

and u = (u1(t),u2(t)) represent the vector of state variables and control functions respectively.
The requirements for the existence of optimal control as presented in Fleming & Rishel (1975)
were listed as follows:

1. The function f is of class C1 and there exists a constant C such that |f(t,0,0)| ≤
C, |fx(t,x,u)| ≤C(1+ |u|), |fu(t,x,u)| ≤C;

2. the admissible set of all solutions to system (3.98) with corresponding control in Ω is
non-empty;

3. f(t,x,u) = a(t,x)+b(t,x)u;

4. the control set U = [0,u1max]× [0,u2max] is compact, closed, and convex;

5. the integrand of the objective functional is convex in U.
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To verify these conditions, it was given that:

f(t,x,u) =


m̄1

m̄2

m̄3

m̄4

m̄5

 , (3.105)

with

m̄1 = r(t)M(t)

[
1− M(t)

KM

]
− β (t)M(t)

a(t)+M(t)
L(t),

m̄2 = b(t)wA(t)
[

1− E(t)
KE(t)

]
− [αE(t)+µE(t)+u1(t)]E(t),

m̄3 = αE(t)E(t)+
eβ (t)M(t)
a(t)+M(t)

L(t)− [αL(t)+µL(t)+u1(t)+u2(t)]L(t)

−θ(t)L2(t),

m̄4 = αL(t)L(t)− [αp(t)+µP(t)]P(t),

m̄5 = αP(t)P(t)−µA(t)A(t).



(3.106)

From (3.105), it is evident that f(t,x,u) is of class C1 and |f(t,0,0)|= 0. Furthermore, one can
easily compute |fx(t,x,u)| and |fu(t,x,u)|, and demonstrate that:

|f(t,0,0)| ≤C, |fx(t,x,u)| ≤C(1+ |u|) and |fu(t,x,u)| ≤C. (3.107)

Due to the condition 1, the existence of the unique solution for condition 2 for bounded control
is satisfied. On the other hand, the quantity f(t,x,u) is expressed as a linear function of the
control variables which satisfy the condition 3.

Theorem 3.8 (b) Given an optimal control u = (u1,u2) ∈ U and corresponding state solutions
M, E, L, P and P, there exists adjoint functions λi, i = 1,2,3,4,5 satisfying equations (3.103)
and (3.104).

Proof. To characterize the optimal control problem, Pontryagin’s Maximum Principle (Pon-
tryagin, 2018; Shell, 1969) was used to formulate the following Hamiltonian function:

H(t) = C1E(t)+C2L(t)+
W1

2
u2

1(t)+
W2

2
u2

2(t)

+λ1(t)

[
r(t)M(t)

[
1− M(t)

KM

]
− β (t)M(t)

a(t)+M(t)
L(t)

]

+λ2(t)

[
b(t)wA(t)

[
1− E(t)

KE(t)

]
− [αE(t)+µE(t)+u1(t)]E(t)

]
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+λ3(t)

[
αE(t)E(t)+

eβ (t)M(t)
a(t)+M(t)

L(t)− [αL(t)+µL(t)+u1(t)+u2(t)]L(t)

−θ(t)L2(t)

]
+λ4(t)

[
αL(t)L(t)− [αp(t)+µP(t)]P(t)

]

+λ5(t)

[
αP(t)P(t)−µA(t)A(t)

]
. (3.108)

Next, adjoint equations was determined as follows;
∂λi

dt
=−∂H

∂x
, where x = (M(t), E(t), L(t),

P(t), A(t)), with transversality condition λi(T ) = 0 for i = 1,2,3,4,5, and obtained the results
in equation (3.103). Now, we minimize the Hamiltonian with respect to the controls. Note that

we have required the convexity for minimization,
∂ 2H
∂u2

i
=Wi > 0, i = 1,2. On the interior of the

control set, we have:

∂H
∂u1

= 0 ⇒ u1 =
E(t)λ2(t)+L(t)λ3(t)

W1
, and,

∂H
∂u2

= 0 ⇒ u2 =
L(t)λ3(t

W2
.

}
(3.109)

Using the standard arguments and the bounds for the controls, one gets the characterization of
this optimal pair (3.104).

3.4 FAW-Maize Interaction Model with Farming Awareness and Larvae Predation

To evaluate the role of farming awareness campaigns and FAW larvae predation (IPM) on the
dynamics of FAW-maize interaction and in-turn on final maize biomass, a mathematical model
based on Caputo fractional derivative (Podlubny, 1999) was developed under the following
assumption:

(i) The FAW population was subdivided into two essential classes namely; larvae population
L(t) and the adult FAW population A(t). FAW larvae predator population was modeled
by Z(t). Meanwhile, the variable M(t) was used to account for the dynamics of maize
biomass.

(ii) In the absence of FAW, maize biomass was assumed to follow logistic growth with net
growth rate r and carrying capacity KM. It was laso assumed that FAW larvae consumes
maize biomass at the rate β which in-turn the biomass are converted into larvae’s biomass
at the rate e. Farming awareness campaigns during an outbreak were assumed to reduce
the attack rate of the maize crop by FAW larvae by a factor 1−u, with 0 ≤ u ≤ 1. Thus
u= 0 imply that awareness has no impact on reducing the attack rate of the maize plant by
FAW whereas u = 1 imply that farming awareness is 100% efficient to protect the maize
crop from FAW attack during an outbreak.
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(iii) The dynamics of the FAW larvae were assumed to follow a logistic growth model, with
net growth rate bL and the carrying capacity KL. It was assumed that larvae progress to
the adult stage after approximately 1/αL days. Further, FAW larvae and adult populations
were assumed to decrease due to natural mortality at rates µL and µA, respectively. Apart
from natural mortality, both populations (FAW larvae and adult) were assumed to further
diminish due to mortality attributed to mitigation strategies carried out by farmers as a
result of awareness, at rate ud, where d is the mortality rate of FAW larvae. Note that if
awareness does not have an impact (u = 0) on FAW populations then these populations
suffer natural mortality only.

(iv) Even though biological control may not replace conventional insecticides, a number of
parasitoids, predators and pathogens (birds, rodents, beetles, earwigs) readily attack lar-
vae (Assefa & Ayalew, 2019). To account for the effect of larvae predation parameters σ

and ρ were used to account for the attack rate of the larvae by predators and the efficiency
of prey conversion, respectively. The average life span of predators was assumed to be
1/η days.

The summary of the definitions of model state variables and parameters are given in Tables 1
and 2. Based on the assumptions above the proposed model was summarized by the following
system equations (3.110) and the model flow diagram is in Figure 11:

c
aDq

t M(t) = rqM

(
1− M

Kq
M

)
−β

q(1−u)LM,

c
aDq

t L(t) = bq
LA

(
1− L

Kq
L

)
+ eβ

q(1−u)LM−σ
qZL

−(µL +αL +ud)L,
c
aDq

t A(t) = α
q
LL− (µ

q
A +ud)A,

c
aDq

t Z(t) = ρσ
qLZ −η

qZ,


(3.110)
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Figure 11: Model flow diagram for system (3.110)

The analytical results of the FAW-maize interaction model (3.110) with farming awareness and
larvae predation were comprehensively discussed. The discussion commenced by proving on
positivity and boundedness of solutions.

3.4.1 Positivity and Boundedness of Solutions

In this section, results on the positivity and boundednes of solutions of the proposed fractional
order model (3.110) were established. In particular, the model was investigated if it is mathe-
matically and biological well-poised. It follows from (3.110) that:
Theorem 3.9
Model (3.110) is positively invariant and bounded in R4

+.

Proof. For M(0)≥ 0, L(0)≥ 0, A(0)≥ 0, Z(0)≥ 0, we have:

c
aDq

t M(t) |M=0 = 0,
c
aDq

t L(t) |L=0 = bq
LA ≥ 0,

c
aDq

t A(t) |A=0 = α
q
LL ≥ 0,

c
aDq

t Z(t) |Z=0 = 0.

 (3.111)

Based on the results in (3.111), it follows that model (3.110) is positively invariant in R4
+.
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Further, from the first equation of model (3.110) we demonstrate that M(t) ≤ KM, ∀t ≥ 0. If
there exists t0 such that M(t0)> KM, then due to the continuity of M(t) :

∃Bε(t0) : ∀t ∈ Bε(t0) : M(t)> KM, (3.112)

so,

rM

(
1− M

KM

)
< 0. (3.113)

Thus c
t0DqM(t) < 0. From the continuity of M(t) and

dM
dt

= lim
q→1−

c
t0DqM(t) < 0, hence we

conclude that M(t) is a decreasing function for all t ≥ 0 and it follows that 0 ≤ M(t)≤ M(0)≤
KM, ∀t ≥ 0, and this is a contradiction to (3.112). Thus M(t)≤ KM, for all t ≥ 0. Using a similar
approach it can easily be verified that 0 ≤ L(t) ≤ KL. Now, from the third equation of system
(3.110) we have:

c
aDq

t A(t) = α
q
LL− (µ

q
A +udq)A

≤ α
qKq

L − (µ
q
A +udq)A. (3.114)

Applying the Laplace transform one gets:

sqL [A(t)]− sq−1A(0)≤ α
q
LKq

L
s

− (µq
a +udq)L [A(t)]. (3.115)

After combining like terms one gets:

L [A(t)] ≤ α
q
LKq

L
s−1

sq +(µ
q
a +udq)

+A(0)
sq−1

sq +(µ
q
A +ud)

= α
q
LKq

L
sq−(1+q)

sq +(µ
q
a +udq)

+A(0)
sq−1

sq +(µ
q
a +udq)

. (3.116)

Applying the inverse Laplace transform leads to:

A(t) ≤ L −1

{
α

q
LKq

L
sq−(1+q)

sq +(µ
q
a +udq)

}
+A(0)L −1

{
sq−1

sq +(µ
q
a +udq)

}
≤ α

q
LKq

LtqEq,q+1(−(µq
a +udq)tq)+A(0)Eq,1(−(µq

a +udq)tq)

≤ α
q
LKq

L
(µ

q
A +ud)

(µ
q
A +ud)tqEq,q+1(−(µq

a +udq)tq)

+A(0)Eq,1(−(µq
a +udq)tq)

67



≤ max

{
αqKq

L
(µ

q
a +udq)

,A(0)

}
((µq

a +udq)tqEq,q+1(−(µq
a +udq)tq)

+Eq,1(−(µq
a +udq)tq))

=
C

Γ(1)
=CA, (3.117)

where Eq is the Mittag-Leffler function and CA = max
{

α
q
LKq

L
(µ

q
a +udq)

,P(0)
}

. Thus, A(t) is

bounded from above. From the last equation of system (3.168) we have:

c
aDq

t Z(t) = ρσ
qLZ −η

qZ

≤ −(ηq −ρσ
qKq

L)Z. (3.118)

Applying the Laplace transform in the previous inequality, we get:

sqL [Z(t)]− sq−1Z(0)≤−(ηq −ρσ
qKq

L)L [Z(t)], (3.119)

that can be written as

L [Z(t)] ≤ Z(0)
sq−1

sq +(ηq −ρσqKq
L)
. (3.120)

Applying the inverse Laplace transforms leads to:

Z(t)≤ Z(0)Eq[−(ηq −ρσ
qKq

L)t
q]. (3.121)

Hence, we conclude that Z(t) is bounded.

Biological implications: Theorem 3.9 implies that our proposed model (3.110) is mathemati-
cally and biologically well-defined, i.e., the population of species under consideration is non-
negative and bounded.

3.4.2 Equilibrium Points and their Existence

In this section, equilibrium points of model (3.110) and their existence were computed and
analyzed. Therefore, solving the model system (3.110), the fractional-order model has the
following equilibrium points:
( a) The trivial equilibrium point E0 : (M0,L0,A0,Z0) = (0,0,0,0) always exists. Biologically,

this equilibrium point E0 reflects the total absence of the species defined in (3.110) either
through extinction or intervention strategies.
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(b) The pest-extinction equilibrium point

E1 : (M1,L1,A1,Z1) = (KM,0,0,0). (3.122)

This equilibrium point E1 reflects the growth of maize biomass in the field when there is
no dynamics of FAW and its predator. Thus, in the absence of FAW larvae, the expected
maize biomass at the end of season will be of high yield.

(c) The plant-extinction equilibrium point E2 : (M2,L2,A2,Z2) where

M2 = 0, L2 =
ηq

ρ
, A2 =

ηqα
q
L

(µ
q
A +udq)ρ

,

Z2 =
bq

Lηq +ρKq
L(µ

q
L +α

q
L +udq)

ρσqKq
L

(
bq

LρKq
L

bq
Lηq +ρKq

L(µ
q
L +udq +α

q
L)

−1

)
.


(3.123)

Let R1 =
bqρKq

L
bqηq +ρKq

L(µ
q
L +udq +α

q
L)
. Thus, Z2 > 0 if R1 > 1. The term R1 is a thresh-

old condition for the existence of the FAW predator in the ecosystem. Biologically this
term accounts for the ability of the FAW predator population to grow. If R1 ≤ 1, the
FAW predator will extinct otherwise it will persists. Moreover, from the terms that define
R1, one can observe that the growth of FAW predator depends on the availability of the
FAW larvae. Thus, when the FAW predator exists, growth of the FAW predator entirely
depends on the availability of FAW larvae.

( d) The plant and predator-extinction equilibrium point E3 : (M3,L3,A3,Z3) where

M3 = 0, L3 =
ηqKq

L
bq

L

(
bq

L
(µ

q
L +α

q
L +udq)

−1

)
,

A3 =
α

q
LKq

L(µ
q
L +α

q
L +udq)

bq(µ
q
A +udq)

(
bq

L
(µ

q
L +α

q
L +udq)

−1

)
,

Z3 = 0.


(3.124)

Let R2 =
bq

(µ
q
L +α

q
L +udq)

. Thus, L3 > 0 and A3 > 0 if R2 > 1. The equilibrium point E3

implies that, the FAW larvae population exist if the threshold quantity R2 is greater than
unity. Biologically R2 represents the reproductive rate of FAW larvae in the absence of
FAW predators. Precisely, the produced larvae bq

L will remain in the environment for a

period
1

(µ
q
L +α

q
L +udq)

days.

69



( e) The predator-extinction equilibrium point is E4 : (M4,L4,A4,Z4) where

M4 =

Kq
M

[
rqbq

L +β qKq
L(µ

q
L +α

q
L +udq)

(
1− bq

L
(µ

q
L +α

q
L +udq)

)]
rqbq

L + e(β q(1−u))2Kq
MKq

L
,

L4 =
rqKq

L
rqbq

L + e(β q(1−u))2Kq
MKq

L

(
bq

L + eβ q(1−u)Kq
M

(µ
q
L +αq +udq)

−1

)
,

A4 =
rqαqkq

L
(µ

q
A +udq)(µ

q
L +αL +udq)ñ

(
bq + eβ q(1−u)Kq

M
(µ

q
L +α

q
L +udq)

−1

)
,

Z4 = 0.



(3.125)

Let R3 =
bq + eβ q(1−u)Kq

M
(µ

q
L +α

q
L +udq)

. One can observe that the FAW populations persist if

R3 > 1.

The equilibrium point E4 revealed that, in the absence of FAW predators, growth
of the FAW population significantly increases due to availability of the food source
(maize biomass). In addition, it can also be noted that, growth of FAW larvae population
R2 have a significant impact on maize biomass, since an increase in R2 will decrease
M4.

( f) The coexistence equilibrium point E5 : (M5,L5,A5,Z5) where

M5 =
Kq

Mβ qηq

rqρq

(
rqρ

β qηq −1

)
L5 =

ηq

ηq , A5 =
ηqα

q
L

(µ
q
A +udq)ρ

,

Z5 =
Kq

Me(β q(1−u))2ηq

rqρσq

(
rqρq

β qηq −1

)

+
σq(Kq

Lrqρ(µ
q
L +α

q
L +udq)+bq

rqρ

(
bqKq

Lrqρ

bqrqηq(µ
q
L +α

q
L +udq)Kq

Lrqρ)
−1

)
.


(3.126)

Let R4 =
rqρ

β qηq and R5 =
bqKq

Lrqρ

bqrqηq(µ
q
L +α

q
L +udq)Kq

Lrqρ)
. We can observe that M5 > 0 if

R4 > 1 and Z5 > 0 if R4 > 1 and R5 > 1. The threshold quantities R4 and R5, represents
the persistence of the FAW predator in the presence of FAW and its food source (maize
biomass). Biologically, all the populations defined by system (3.110) co-exist if R4 > 1
and R5 > 1 where R4 reflects the impact of FAW larvae predator on the persistence of
maize biomass. From, both R4 and R5, one can deduce that if FAW predators have a
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long life span, that is ηq, then final maize biomass will be high.

3.4.3 Local Stability Analysis of the Equilibrium Points

The local stability analysis for the fractional order model (3.110) around the equilibrium points
were obtained by computing the Jacobian matrix corresponding to equilibrium points. The
Jacobian matrix of system (3.110) is given as follows:

J(M,L,A,Z) =


rq −β

qL− 2rqM
Kq

M
−β qM 0 0

eβ q(1−u)L n 0 −σqL

0 α
q
L −(µq

A +udq) 0

0 ρZ 0 −ηq +ρL

 . (3.127)

with n = bq + eβ
q(1− u)M − σ

qZ − (µ
q
L +α

q
L + udq)− 2bqL

Kq
L

. Ahmed et al. (2007) studied

some Routh-Hurwitz stability conditions for fractional order systems. In this case, well-known
Routh-Hurwitz conditions are necessary and sufficient for |arg(λi)|>

qπ

2
to be satisfied. To in-

vestigate the local stability of the equilibrium points for model (3.110), Jacobian matrix (3.127),
Lemma 1.2, Lemma 1.3 and Theorem 3.10 were used:

Theorem 3.10 (i) The trivial equilibrium point E0 is locally asymptotically unstable.

(ii) If bq < (µ
q
L +α

q
L + udq), then the pest-extinction equilibrium point E1 is locally asymp-

totically stable.

(iii) If rqρ < β qηq and condition (C1) of Lemma 1.3 holds, then the equilibrium point E2 is
locally asymptotically stable, otherwise it is unstable.

(iv) If bq + eβ q(1− u)Kq
M < (µ

q
L +αq + udq) and condition (C1) of Lemma 1.3 holds, then

the equilibrium point E4 is locally asymptotically stable, otherwise it is unstable.

(vi) If condition (C2) of Lemma 1.3 holds, then the equilibrium point E5 is locally asymptot-
ically stable, otherwise it is unstable.

Proof. (i) The Jacobian matrix of system (3.110) evaluated at E0 is

J(E0) =


rq 0 0 0
0 bq − (µ

q
L +α

q
L +udq) 0 0

0 α
q
L −(µq +udq) 0

0 0 0 0 −ηq

 (3.128)
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The eigenvalues of matrix J(E0) are λ1 = rq > 0, λ2 = bq−(µ
q
L +α

q
L +udq), λ3 =−(µA+

udq) and λ4 =−ηq. Since λ1 > 0 it follows that the trivial equilibrium point E0 is locally
asymptotically unstable.

(ii) The Jacobian matrix of system (3.110) evaluated at E1 is

J(E1) =


−rq 0 0 0

0 bq − (µ
q
L +α

q
L +udq) 0 0

0 α
q
L −(µq +udq) 0

0 0 0 0 −ηq

 (3.129)

The eigenvalues of matrix J(E1) are λ1 =−rq, λ2 = bq − (µ
q
L +α

q
L +udq), λ3 =−(µA +

udq) and λ4 =−ηq. Following Theorem 3.10 (ii), it can be observed that the equilibrium
point E1 is locally asymptotically stable if bq < (µ

q
L +α

q
L +udq)

(iii) The Jacobian matrix of system (3.110) evaluated at E2 is

J(E2) =


rq −β

qL2 0 0 0
eβ q(1−u)L2 m̃ 0 −σqL2

0 α
q
L −(µ

q
A +udq) 0

0 ρZ2 0 −ηq +ρL2

 . (3.130)

with m̃ = bq −σ
qZ2 − (µ

q
L +α

q
L + udq)− 2bqL2

Kq
L

. The eigenvalues of matrix (3.130) are

λ1 = rq − β qηq

ρ
, λ2 =−(µ

q
A +udq) and the remaining eigenvalues can be obtained from

the reduced matrix

J̃(E2) =

 bq −σ
qZ2 − (µ

q
L +α

q
L +udq)− 2bqL2

Kq
L

−σqL2

ρZ2 −ηq +ρL2

 , (3.131)

whose characteristic equation is as follows

λ
2 +a1λ +a2 = 0, (3.132)

with

a1 = η
q +σ

qZ2 +(µ
q
L +α

q
L +udq)−bq,

= η
q +σ

q bqηq +ρKq
L(µ

q
L +αq +udq)

ρσqKq
L

(
bqρKq

L
bqηq +ρKq

L(µ
q
L +udq +αq)

−1

)

+bq

(
(µ

q
L +α

q
L +udq)

bq −1

)
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a2 = σ
q
η

qZ2 +(ηq −ρL2)

(
(µ

q
L +α

q
L +udq)+

2bL2

KL
−bq

)

= σ
q
η

q bqηq +ρKq
L(µ

q
L +αq +udq)

ρσqKq
L

(
bqρKq

L
bqηq +ρKq

L(µ
q
L +udq +αq)

−1

)
.(3.133)

Therefore if rqρ < β qηq and condition (C1) of Lemma 1.3 holds, then the equilibrium point E2

is locally asymptotically stable, otherwise it is unstable.

(iv) The Jacobian matrix of system (3.110) evaluated at E3 is

J(E3) =


rq −β

qL3 0 0 0
eβ qL3 Φ 0 −σqL3

0 α
q
L −(µ

q
A +udq) 0

0 ρZ3 0 −ηq +ρL3

 . (3.134)

with
Φ = bq − (µ

q
L +α

q
L +udq)− 2bqL3

Kq
L

.

One can observe that λ1 = rq − β qηq

ρ
, λ2 = −(µ

q
A + udq) are some of the eigenvalues of the

Jacobian matrix (3.134), hence matrix (3.134) reduces to

J̃(E3) =

 bq − (µ
q
L +α

q
L +udq)− 2bqL3

Kq
L

−σqL3

ρZ3 −ηq +ρL3

 . (3.135)

From (3.135) we have the characteristic equation

λ
2 + ā1λ + ā2 = 0, (3.136)

with

ā1 = bq

(
(ηq +µ

q
L +α

q
L +udq)

bq −1

)
+2η

q

(
bq

(µ
q
L +αq +udq)

−1

)
,

ā2 = η
q(µ

q
L +α

q +udq)

(
1− bq

(µ
q
L +αq +udq)

)(
1− ρKq

L
bq

(
bq

(µ
q
L +αq +udq)

−1

))

+2(ηq)2

(
1−ρ

ηqKq
L

bq

(
bq

(µ
q
L +αq +udq)

−1

))(
bq

(µ
q
L +αq +udq)

−1

)
. (3.137)

Thus, if rqρ < β qηq and condition (C1) of Lemma 1.3 holds, then the equilibrium point E3 is
locally asymptotically stable, otherwise it is unstable.
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(v) The Jacobian matrix of system (3.110) evaluated at E4 is

J(E4) =


rq −β

qL4 −
2rqM4

Kq
M

−β qM4 0 0

eβ q(1−u)L4 n̄ 0 −σqL4

0 α
q
L −(µ

q
A +udq) 0

0 0 0 −ηq +ρL4

 , (3.138)

with n̄ = bq + eβ
q(1− u)M4 − (µ

q
L +α

q
L + udq)− 2bqL4

Kq
L

. The eigenvalues of J(E4) are λ1 =

−(µ
q
A +udq) and

λ2 = −η
q +ρL4

= −η
q − ρrqKq

L
rqbq + e(β q(1−u))2Kq

MKq
L

(
1− bq + eβ q(1−u)Kq

M
(µ

q
L +αq +udq)

)
. (3.139)

Hence, matrix (3.138) reduces to

J̃(E4) =

[
w1 −β qM4

eβ q(1−u)L4 w2

]
, (3.140)

with

w1 = rq −β
qL4 −

2rqM4

Kq
M

= rq − β qrqKq
L

rqbq + e(β q(1−u))2Kq
MKq

L

(
bq + eβ q(1−u)Kq

M
(µ

q
L +αq +udq)

−1

)

−
2rq

[
rqbq +β qKq

L(µ
q
L +α

q
L +udq)

(
1− bq

(µ
q
L +α

q
L +udq)

)]
rqbq + e(β q(1−u))2Kq

MKq
L

,

w2 = bq + eβ
q(1−u)M4 − (µ

q
L +α

q
L +udq)− 2bqL4

Kq
L

= bq + eβ
q(1−u)

Kq
M

[
rqbq +β qKq

L(µ
q
L +α

q
L +udq)

(
1− bq

(µ
q
L +α

q
L +udq)

)]
rqbq + e(β q(1−u))2Kq

MKq
L

−(µ
q
L +α

q
L +udq)− 2bqrq

rqbq + e(β q(1−u))2Kq
MKq

L

(
bq + eβ q(1−u)Kq

M
(µ

q
L +αq +udq)

−1

)
.
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From (3.140), the corresponding characteristic equation is

λ
2 + ã1λ + ã2 = 0, (3.141)

with

ã1 = −(w1 +w2),

ã2 = w1w2 +
eβ 2q(1−u)2rqKq

L
rqbq + e(β q(1−u))2Kq

MKq
L

(
bq + eβ q(1−u)Kq

M
(µ

q
L +α

q
L +udq)

−1

)
.

Therefore, if bq + eβ q(1− u)Kq
M < (µ

q
L +α

q
L + udq) and condition (C1) of Lemma 1.3 holds,

then the equilibrium point E4 is locally asymptotically stable, otherwise it is unstable. Since all
the variables are non-zero at the coexistence equilibrium point, it follows that matrix J (3.127) is
the Jacobian matrix of system (3.110) at this equilibrium point. From (3.127) one can observe,
that λ1 =−(µ

q
A +udq) and the remainder can be obtained from the following reduced matrix:

J̄(E5) =

 w̄1 −β qM5 0

eβ qL5 w̄2 −σqL5

0 ρZ5 w̄3

 . (3.142)

where

w̄1 = rq −β
qL5 −

2rqM5

Kq
M

,

w̄2 = bq + eβ
q(1−u)M5 −σ

qZ5 − (µ
q
L +α

q
L +udq)− 2bqL5

Kq
L

,

w̄3 = −η
q +ρL5. (3.143)

The corresponding characteristic equation at E5 becomes

λ
3 +a∗1λ

2 +a∗2λ +a∗3 = 0,

with

a∗1 = −(w̄1 + w̄2 + w̄3),

a∗2 = w̄1(w̄2 + w̄2)+ w̄2w̄3 +σρL5Z5 + e(β q)2L5M5,

a∗3 = −w̄1(σ
q
ρL5Z5 + w̄2w̄3)− e(β q)2L5M5w̄3. (3.144)

Since λ1 < 0, it follows that condition (C2) of Lemma 1.3 holds, then the equilibrium point E5

is locally asymptotically stable, otherwise it is unstable. This completes the proof.
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3.4.4 Global Stability Analysis of the Equilibrium Points

In this section, global stability of the equilibrium points of the model were investigated by
constructing a Lyapunov functions. To simplify the analysis, it was assumed that g0(M) =

rqM(1−M/KM) and g1(L,A) = bL(1−L/KL)A.

Theorem 3.11
The trivial equilibrium point E0 is globally asymptotically stable whenever

eg0(M)+g1(L,A)≤
(µ

q
L +α

q
L +udq)(µ

q
A +udq)A

α
q
L

+
σqηq

ρ
Z.

Proof. Let us consider the following Lyapunov function

U0(t) = eM(t)+L(t)+
(µ

q
L +α

q
L +udq)

α
q
L

A(t)+
1
ρ

Z(t). (3.145)

The fractional derivative of (3.145) along the solutions of system (3.110) leads to

c
aDq

t U0(t) ≤ c
aDq

t [eM(t)]+c
a Dq

t L(t)+c
a Dq

t

[
(µ

q
L +α

q
L +udq)

α
q
L

A(t)

]
+c

a Dq
t

[
1
ρ

Z(t)

]
= e[g0(M)−β

q(1−u)LM]+g1(L,A)+ eβ
q(1−u)LM−σ

qZL

−(µ
q
L +α

q
L +udq)L+

(µ
q
L +α

q
L +udq)

α
q
L

[
α

q
LL− (µ

q
A +udq)A

]

+
1
ρ

[
ρσ

qLZ −η
qZ

]
= eg0(M)+g1(L,A)−

(µ
q
L +α

q
L +udq)(µ

q
A +udq)A

α
q
L

− ηq

ρ
Z. (3.146)

It follows that if M(t) = M0, L(t) = L0, A(t) = A0 and Z(t) = Z0, then c
aDq

t U1(t) = 0. However,
if

eg0(M)+g1(L,A)≤
(µ

q
L +α

q
L +udq)(µ

q
A +udq)A

α
q
L

+
σqηq

ρ
Z < 0,

then c
aDq

t U1(t)< 0 and the trivial equilibrium point E0 is globally asymptotically stable, other-
wise it is unstable. This completes the proof.
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Theorem 3.12
The equilibrium point E1 is globally asymptotically stable whenever

eg0(M)

(
1− M∗

M
+β

q(1−u)
LM∗

g0(M)

)
+g1(L,A)−

(µ
q
L +α

q
L +udq)(µ

q
A +udq)A

α
q
L

−σqηq

ρ
Z ≤ 0. (3.147)

Proof. Let us consider the following Lyapunov function:

U1(t) = e

[
M(t)−M1 −M1 ln

(
M(t)
M1

)]
+L(t)+

(µ
q
L +α

q
L +udq)

α
q
L

A(t)

+
1

ρq Z(t). (3.148)

The fractional derivative of (3.148) along the solutions of system (3.110) leads to

c
aDq

t U1(t) ≤ e

(
1− M∗

M(t)

)
c
aDq

t M(t)+c
a Dq

t L(t)+c
a Dq

t

[
(µL +αL +ud)

αL
A(t)

]

+c
aDq

t

[
1
ρ

Z(t)

]

= e

(
1− M1

M(t)

)
(g0(M)−β

q(1−u)LM)+g1(L,A)

+eβ
q(1−u)LM−σ

qZL

−(µL +αL +ud)L+
(µ

q
L +α

q
L +udq)

α
q
L

[
α

q
LL− (µ

q
A +udq)A

]

+
1
ρ

[
ρσ

qLZ −η
qZ

]

= eg0(M)

(
1− M1

M
+β (1−u)

LM1

g0(M)

)
+g1(L,A)

−(µL +αL +ud)(µq
A +udq)A

α
q
L

− σqηq

ρ
Z. (3.149)

It follows that if M(t) = M1, L(t) = L1, A(t) = A1 and Z(t) = Z1, then c
aDq

t U1(t) = 0. However,
if

eg0(M)

(
1− M1

M
+β

q(1−u)
LM1

g0(M)

)
+g1(L,A)−

(µ
q
L +α

q
L +udq)(µ

q
A +ud)A

α
q
L

−σqηq

ρ
Z < 0, (3.150)
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then c
aDq

t U1(t)< 0 and the trivial equilibrium point E1 is globally asymptotically stable, other-
wise it is unstable. This completes the proof.
Theorem 3.13
The equilibrium point E2 is globally asymptotically stable whenever

g1(L2,A2)

(
1− L

L2
− L2g1(L,A)

L2g(L2,A2)
+

g1(L,A)
g1(L2,A2)

)
+L2

(
1+

L
L2

− A
A2

− LA2

L2A

)
+eg0(M)− eβ

q(1−u)L2M ≤ 0. (3.151)

Proof. Consider the Lyapunov functional

U1(t) = eM(t)+

[
L(t)−L2 −L2 ln

(
L(t)
L2

)]
+

1
α

q
L

[
A(t)−A2 −A2 ln

(
A(t)
A2

)]

+
1
ρ

[
Z(t)−Z2 −Z2 ln

(
Z(t)
Z2

)]
. (3.152)

The fractional derivative of (3.152) along the solutions of system (3.110) leads to

c
aDq

t U2(t) ≤ e c
aDq

t M(t)+

(
1− L3

L(t)

)
c
aDq

t L(t)+
1

α
q
L

(
1− M3

M(t)

)
c
aDq

t A(t)

+
1
ρ

(
1− Z3

Z(t)

)
c
aDq

t Z(t). (3.153)

At the equilibrium point E2 we have the following identities:

(µ
q
L +α

q
L +udq)L2 = g1(L2,A2)−σ

qZ2L2, (µ
q
A +udq)A2 = α

q
LL2, η

q = σ
q
ρL2.(3.154)

Making use of these identities leads to

c
aDq

t U2(t) ≤ g1(L2,A2)

(
1− L

L2
− L2g1(L,A)

L2g1(L2,A2)
+

g1(L,A)
g1(L2,A2)

)

+L2

(
1+

L
L2

− A
A2

− LA2

L2A

)
+eg0(M)− eβ

q(1−u)L2M. (3.155)

One can easily verify that at the equilibrium point E3, c
aDq

t U2(t) = 0 and c
aDq

t U2(t) < 0 if and
only if:

g1(L2,A2)

(
1− L

L2
− L2g1(L,A)

L2g1(L2,A2)
+

g1(L,A)
g1(L2,A2)

)
+L2

(
1+

L
L2

− A
A2

− LA2

L2A

)

78



+eg0(M)− eβ
q(1−u)L2M < 0. (3.156)

Hence if the above condition holds then E2 is globally asymptotically stable. This completes
the proof.
Theorem 3.14
The equilibrium point E3 is globally asymptotically stable whenever

g1(L3,A3)

(
1− L

L3
− L3g1(L,A)

L3g1(L3,A3)
+

g1(L,A)
g1(L3,A3)

)
+L3

(
1+

L
L3

− A
A3

− LA3

L3A

)

+eg0(M)− eβ
q(1−u)L3M−η

qZ

(
1− σq

ηq L3

)
≤ 0. (3.157)

Proof. Consider the Lyapunov functional

U3(t) = eM(t)+

[
L(t)−L3 −L3 ln

(
L(t)
L3

)]
+

1
α

q
L

[
A(t)−A3 −A3 ln

(
A(t)
A3

)]
+

1
ρ

Z(t). (3.158)

At the equilibrium point E3 we have the identities:

(µ
q
L +α

q
L +udq)L3 = g1(L3,A3), (µ

q
A +udq)A3 = α

q
LL3. (3.159)

Utilizing these identities leads to the following result:

c
aDq

t U3(t) ≤ g1(L3,A3)

(
1− L

L3
− L3g1(L,A)

L3g1(L3,A3)
+

g1(L,A)
g1(L3,A3)

)

+L3

(
1+

L
L3

− A
A3

− LA3

L3A

)

+eg0(M)− eβ
q(1−u)L3M−η

q

(
1− σq

ηq L3

)
. (3.160)

It follows that if M(t) = M3, L(t) = L3, A(t) = A3 and Z(t) = Z3, then c
aDq

t U3(t) = 0. However,
if

g1(L3,A3)

(
1− L

L3
− L3g1(L,A)

L3g1(L3,A3)
+

g1(L,A)
g1(L3,A3)

)

+L3

(
1+

L
L3

− A
A3

− LA3

L3A

)
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+eg0(M)− eβ
q(1−u)L3M−η

q

(
1− σq

ηq L3

)
)< 0, (3.161)

then c
aDq

t U3(t) < 0 and it follows that equilibrium point E3 is globally asymptotically stable,
otherwise it is unstable. This completes the proof.
Theorem 3.15
The equilibrium point E4 is globally asymptotically stable whenever

g0(M4)

(
L
L4

+
g0(M)

g0(M4)
− M4

M
g0(M)

g0(M4)
− LM

L4M4

g0(M)

g0(M4)

)

+L4

(
1+

L
L4

− A
A4

− LA4

L4A

)

+g1(L4,A4)

(
1+

g1(L,A)
g1(L4,A4)

− L
L4

− L4

L
g1(L,A)

g1(L4,A4)

)

+eβ
q(1−u)L4M4

(
1+

LM
L4M4

− L
L4

− L4g1(L,A)
Lg(L4,A4)

)
≤ 0. (3.162)

Proof. Consider the Lyapunov functional

U4(t) = +

[
M(t)−M4 −M4 ln

(
M(t)
M4

)]
+

[
L(t)−L4 −L4 ln

(
L(t)
L4

)]

+
1

α
q
L

[
A(t)−A4 −A4 ln

(
A(t)
A4

)]

+
1
ρ

[
Z(t)−Z4 −Z4 ln

(
Z(t)
Z4

)]
. (3.163)

At the equilibrium point E4 we have the following identities:

g0(M4) = β
q(1−u)L4M4,

g1(L4,A4)+ eβ
q(1−u)L4M4 −σ

qL4Z4 = (µ
q
L +α

q
L +udq)L4,

(µ
q
A +udq)A4 = α

q
LL4, σ

q
ρL4 = η . (3.164)

Utilizing these identities leads to the following result:

c
aDq

t U4(t) ≤ g0(M4)

(
L
L4

+
g0(M)

g0(M4)
− M4

M
g0(M)

g0(M4)
− LM

L4M4

g0(M)

g0(M4)

)

+g1(L4,A4)

(
1+

g1(L,A)
g1(L4,A4)

− L
L4

− L4

L
g1(L,A)

g1(L4,A4)

)
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+eβ
q(1−u)L4M4

(
1+

LM
L4M4

− L
L4

− L4g1(L,A)
Lg(L4,A4)

)

+L4

(
1+

L
L4

− A
A4

− LA4

L4A

)
. (3.165)

It follows that if M(t) = M4, L(t) = L4, A(t) = A4 and Z(t) = Z4, then c
aDq

t U4(t) = 0. However,
if

g0(M4)

(
L
L4

+
g0(M)

g0(M4)
− M4

M
g0(M)

g0(M4)
− LM

L4M4

g0(M)

g0(M4)

)

+g1(L4,A4)

(
1+

g1(L,A)
g1(L4,A4)

− L
L4

− L4

L
g1(L,A)

g1(L4,A4)

)

+eβ
q(1−u)L4M4

(
1+

LM
L4M4

− L
L4

− L4g1(L,A)
Lg(L4,A4)

)

+L4

(
1+

L
L4

− A
A4

− LA4

L4A

)
< 0, (3.166)

then c
aDq

t U4(t) < 0 and it follows that equilibrium point E4 is globally asymptotically stable,
otherwise it is unstable. This completes the proof.

3.4.5 Implications of Time-Dependent Farming Awareness Campaigns

In order to understand effects of time dependent farming awareness campaigns versus non-time
dependent, model (3.110) was modified into an optimal control problem-whose main goal was
to determine optimal farming awareness levels that are capable of minimizing FAW population
or lead to eradication at minimal costs. Hence the constant awareness campaign parameter u in
model (3.110) was remodeled to be time dependent, that is, 0 ≤ u(t)≤ umax < 1, where umax
is the upper bound of the control u(t), which reflect the practical limitation on the maximum
rate of control that can be implemented in a given time period.

Based on the aforementioned goal, the appropriate objective functional was mathematically
formulated as follows:

J[u(t)] =
∫ T

0

[
L(t)+A(t)+

W
2

u2(t)
]

dt, (3.167)
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subject to the system

c
aDq

t M(t) = rqM

(
1− M

Kq
M

)
−β

q(1−u(t))LM,

c
aDq

t L(t) = bq
LA

(
1− L

Kq
L

)
+ eβ

q(1−u(t))LM−σ
qZL

−(µ
q
L +α

q
L +u(t)dq)L,

c
aDq

t A(t) = α
q
LL− (µ

q
A +u(t)dq)A,

c
aDq

t Z(t) = ρσ
qLZ −η

qZ.


(3.168)

In equation (3.167), W is known as the weight constant. The weight constant over the prescribed
time frame, is a measure of the relative costs of the interventions over a finite time horizon. The
optimal control problem hence becomes that, we seek an optimal function, u∗(t), such that
J(u∗(t)) = min

Ω
J(u(t)) subject to the state equations in system (3.168) with initial conditions

(3.169):

M(0)≥ 0, L(0)≥ 0, A(0)≥ 0, Z(0)≥ 0. (3.169)

The Pontryagin’s maximum principle (Pontryagin, 2018; Shell, 1969) was to determine the nec-
essary conditions that optimal controls must satisfy. Through Pontryagin’s maximum principle
system (3.168) was transformed into an equivalent problem, namely the problem of minimizing
the Hamiltonian H(t) given by:

H(t) = L(t)+A(t)+
W
2

u2(t)

+λ1

[
rqM

(
1− M

Kq
M

)
−β

q(1−u(t))LM

]

+λ2

[
bq

LA

(
1− L

Kq
L

)
+ eβ

q(1−u(t))LM−σ
qZL

−(µ
q
L +α

q
L +u(t)dq)L

]

+λ3

[
α

q
LL− (µ

q
A +u(t)dq)A

]
+λ4

[
ρσ

qLZ −η
qZ

]
.



(3.170)

From (3.170), λ1(t), λ2(t), λ3(t) and λ4(t) are the adjoint variables corresponding to the states
M(t), L(t), A(t) and Z(t).

Given an optimal control u∗(t) and the corresponding state solutions M, L, A and Z, there exist
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adjoint functions λi(t), i = 1,2,3,4 satisfying (3.171):

c
aDq

t λ1(T − t) =

[
rq − 2rqM(T − t)

Kq
M

−β
q(1−u(T − t))L(T − t)

]
λ1(T − t)

+eβ q(1−u(T − t))L(T − t)λ2(T − t),
c
aDq

t λ2(T − t) = 1−β
q(1−u(T − t))M(T − t)λ1(T − t)+α

q
Lλ3(T − t)

+σqρZ(T − t)λ4(T − t)+ eβ q(1−u(T − t))M(T − t)λ2(T − t)

−
[
(α

q
L +µ

q
L +u(T − t)dq − bq

LA(T − t)
KL

+σ
qZ(T − t)

]
λ2(T − t),

c
aDq

t λ3(T − t) = 1− (µ
q
A +u(T − t)dq)λ3(T − t)+bL

(
1− L(T − t)

Kq
L

)
λ2(T − t),

c
aDq

t λ4(T − t) = −σ
qL(T − t)λ2(T − t)+(σq

ρL(T − t)−η
q)λ4(T −T ),


(3.171)

with transversality conditions λi(T ) = 0 for i = 1,2,3,4. Furthermore, the optimal controls are
characterized by the optimality conditions (3.172):

u(t) = min
{

max
{

0,
(eβ qM+dq)Lλ2 +dqAλ3 −β qLMλ1

W

}
,umax

}
. (3.172)

3.5 Chapter Overview

In this chapter, three mathematical models meant to understand the effects of FAW infestation in
a maize field on the final maize biomass. In the first model the implications of memory effects
and control on FAW-maize interaction were assessed through a fractional-order mathematical
framework. The second model was developed with a goal to understand the effects of seasonal-
ity on FAW-maize interaction resulting to changes on the final maize biomass. All development
stages of the plant and pest which were considered to be strongly influenced by climate and
weather changes were modeled by periodic functions. The third model was developed to assess
the implications of natural FAW predators and mass farming media campaigns on minimizing
maize destruction by FAW during an outbreak. The analytical and numerical results in all the
proposed models in this chapter are in Chapter 4.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, mathematical models of maize-FAW interactions presented in the chapter three
were simulated in matrix laboratory (MATLAB) programming language to support analytical
findings and demonstrate the strength and impact of mitigation strategies.

4.2 Model Parametrization

In this section, a brief discussion on the baseline values for model parameters used is presented.
FAW infestations in maize fields is a recent phenomena in Africa (Rukundo et al., 2020), hence
data remains scarce. Despite this challenge the present study made use of literature to draw
baseline values for the model parameters. Below is the comprehensive discussion on baseline
values for model parameters.

(i) Natural mortality rate of adult FAW µA : The life span of female adult FAW is (15-21) days.
According to Westbrook et al. (2016), a female adult moth with a life span of 18 days can
oviposit about 125 eggs per day. It follows that the natural mortality rate of the moth as
defined by Hoenig et al. (1983) is:

µA =
1

expected lifetime
.

Hence, in our simulations we set µA = 1/18 per day.

(ii) Egg laying rate b and life span of adult moth µ
−1
A : During its entire life span of (15-

21) days, the FAW adult female’s total egg production per female averages about 1 500
with a maximum of over 2 000 (FAO, 2018b). The average daily egg laying rate can be
expressed as follows:

eggs laid per day =
eggs laid in a lifetime

expected lifetime
.

Based on Westbrook et al. (2016), in our simulations b = 125 eggs per day.

(iii) Egg hatching rate αE and gender ratio W : Mathematically the egg hatching rate is the
inverse of average duration of the egg stage, that is,

αE =
1

Average duration of the egg stage
.
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Despite being climate dependent, the duration of egg stage takes average period of (2-5)
days (FAO, 2018b; Assefa & Ayalew, 2019). Westbrook et al. (2016) estimated a gender
ratio of 50:50 males/females.

(iv) Average duration of the larval stage α
−1
L : The duration of the larval stage is influenced by

climate changes. During summer periods the larval stage is about 14 days and 30 days
during cool weather (FAO, 2018b; Assefa & Ayalew, 2019).

(v) Average duration of the pupal stage α
−1
P : Similar to the larval stage, the pupal stage also

depends of climate. It is about 8-9 days during summer, but reaches 20-30 days during
the winter (FAO, 2018b; Assefa & Ayalew, 2019).

Table 3: Model parameters and their baseline values

Symbol Definition Source
b 125 Eggs per moth per day (FAO, 2018b; Westbrook et al., 2016)
w 0.5 (FAO, 2018b; Westbrook et al., 2016)

α
−1
E 3(3-5) Days (FAO, 2018b; Assefa & Ayalew, 2019)

α
−1
L 14(14-30) Days (FAO, 2018b; Assefa & Ayalew, 2019)

α
−1
P 9(8-30) Days (FAO, 2018b; Assefa & Ayalew, 2019)

µ
−1
A 18(15-21) Days (Westbrook et al., 2016; Sisay et al., 2019)

KM 50 biomass plant−1 (Al Basir et al., 2019; Liu et al., 2020).
KE 108 (Al Basir et al., 2018; Bokil et al., 2019).
KL 106 (Al Basir et al., 2018; Bokil et al., 2019).

µE ,µL,µP 0.01 Day−1 (Faithpraise et al., 2015; Al Basir et al., 2019)
β 5×10−8 Day−1 (Faithpraise et al., 2015; Bokil et al., 2019)
r 0.05 Day−1 (Al Basir et al., 2018, 2019; Liu et al., 2020)
e 0.2 Day−1 (Faithpraise et al., 2015; Bokil et al., 2019)

uE ,uL,uP,uA 0.3 (Al Basir et al., 2018, 2019; Bokil et al., 2019)

4.3 Simulation Results for FAW-Maize Interaction Model with Memory Effects and Con-
trol

4.3.1 Sensitivity Analysis of the Reproduction Number

The analytical results of the FAW-maize biomass interaction model showed that R0 is an im-
portant threshold parameter for the persistence and extinction of FAW during any outbreak.
Since the parameters of the proposed model were mainly drawn from literature, there is need to
investigate the influence of each parameter on the magnitude of R0 so as to understand the un-
certainty regarding their values. In order to infer on the relationship between model parameters
and individual parameters, sensitivity analysis of R0 was performed following the approach in
(Arriola & Hyman, 2005).
Definition 4.7
The normalized sensitivity index of R0, which depends differentiably on a parameter say κ , is
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defined by

Θ
R0
κ =

∂R0

∂κ
× κ

R0
. (4.1)

Model parameters whose sensitivity indices are positive will increase the size of R0 whenever
they are increased while those with negative indices decreases R0 whenever they are increased.
It follows from (4.1) that the normalized sensitivity of R0 with regard to the model parameters
that define it was obtained (4.2):

Θ
R0
b = 1, Θ

R0
W = 1, Θ

R0
αi =

µi +ui

µi +αi +ui
> 0,

Θ
R0
µi = − µi

µi +αi +ui
< 0, Θ

R0
µA =− µA

µA +uA
< 0,

Θ
R0
ui = − ui

µi +αi +ui
< 0, Θ

R0
u j

=− uA

µA +uA
< 0,

for i = E,P,L and j = E,L,P,A.



(4.2)

Results in (4.2) demonstrated that model parameters b, W and αi increase the size of R0

whenever they are increased whereas model parameters µ j and u j decrease the size of R0

whenever they are increased. Precisely an increase in either b or W by 10% may result in an
increase in the magnitude of R0 by 10%. However, an increase by 10% of αi will increase the
size of R0 by a value less than 10%.

In addition, it was also noted that, the model parameter u j has a negative effect on R0 implying
that intervention strategies have an impact on the extinction and persistence of FAW in the
environment. Using the baseline values in Table 3, the numerical outcomes for mathematical
expression in (4.2) were obtained as presented in Table 4 and the graphic illustration is in Fig.
12.

Table 4: Sensitivity index of R0

Parameter b W uA αL uL αP uP µA αE uE µE

Sensitivity
index +1 +1 -0.64 +0.61 -0.55 +0.50 -0.45 -0.36 +0.25 -0.02 -0.05

Parameter µL µP

Sensitivity
index -0.23 -0.06
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Numerical results in Table 4 showed that pest control intervention strategies will have more
effects on minimizing the FAW population in the field if such strategies target the adult FAW
population.

Figure 12: Sensitivity analysis of R0 with respect to model parameters. Baseline values used are
in Table 3

The simulation results in Fig. 13 demonstrates the effects of varying the intervention strategies
on extinction and persistence of pests in the field. The results showed that any value of u > 0.5
will lead to the extinction of the pest and persistence of the pests occurs for u < 0.5.

(a) (b)

Figure 13: Effects of varying intervention strategies on the magnitude of R0

4.3.2 Population Level Effects

In this section, numerical solutions determined from the simulations of model (3.6) in MATLAB
programming language are presented. The algorithms utilized to simulated fractional-order
model are comprehensively presented in (Diethelm, 2010). On simulating system (3.6) the
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following assumed initial population levels were considered: E(0) = 1000, L(0) = P(0) = 0,
A(0) = 500 and M(0) = 15.

(a) (b)

(c) (d)

(e)

Figure 14: Numerical results of system (3.6) demonstrating the convergence of solutions to the
pest-free equilibrium for R0 ≤ 1

Numerical results in Fig. 14 demonstrated the dynamics of the pest and maize biomass when-
ever the reproduction number, R0, is less than unity that is R0 = 0.8630. As one can observe, if
the moth cannot produce more than one off-spring then within a period of 150 days all the FAW
populations (eggs, larvae, pupae and moth) will become extinct while the maize biomass will
increase with time till it reaches the expected maximum biomass per plant (50 biomass plant−1).
Moreover, it is evident that convergence of solutions to their respective limiting points in time
depends on the fractional-order, q, as q approaches unity the time taken by solutions to converge
to the limiting point increases.
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(a) (b)

(c) (d)

(e)

Figure 15: Numerical results of system (3.6) demonstrating the convergence of solutions to the
pest persistence equilibrium point for R0 > 1

From the simulation results shown in Fig. 15, one can observe that whenever each female moth
reproduce more than one off-spring, that is, R0 > 1 (R0 = 2.8931), then the pest population will
persist in the field till the final harvesting time, t = 150 day. In addition, the final maize biomass
per plant will be less than the expected 50 biomass plant−1. Precisely, maize biomass will
increase from the start and reaches a maximum of 50 biomass plant−1 , after approximately 100
days and after that it decreases gradually till it stabilizes at approximated 18 biomass plant−1.
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(a) (b)

(c) (d)

(e)

Figure 16: Model solutions showing the effects of a FAW outbreak with a small initial pest life
cycle population with fixed q = 0.8 and R0 = 1.3583

Figure 16 shows the solutions of model system (3.6) for an experiment set up with small pop-
ulation sizes for the pest, that is, E(0) = 100, L(0) = P(0) = 0 and A(0) = 50, together with
a control rate of uE = uL = uP = uA = 0.45 day −1 leading to R0 = 1.3583. Furthermore, q

has been fixed to 0.8. As one can observe, the pest population will increase rapidly within the
first 100 days and stabilize thereafter. The maize biomass will also increase during the first 50
days and attains a maximum approximately close to the expected value, 50 biomass plant−1,
there after the biomass decreases gradually for approximately 50 days before it becomes stable
at approximately 40 biomass plant−1. Overall, the egg population will dominate all the pest
populations.
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(a) (b)

(c) (d)

(e)

Figure 17: Model solutions showing the effects of a FAW outbreak with a large initial pest life
cycle population with fixed q = 0.8 and R0 = 58

Numerical results in Fig. 17 depicts the effects of a FAW outbreak with a large initial pest life
cycle population, E(0) = 2000, L(0) = P(0) = 0 and A(0) = 15, combined with less effective
control measures, that is, uE = uL = 0.45, and uE = uL = 0.45, uP = uA = 0. More often pesti-
cides which are known to effectively control FAW are expensive such that farmers in some areas
rely on traditional methods of controlling the pest such as hand picking of the larvae, picking
and destroying of egg masses, spraying lime, salt, oil and soap solution.

Prior studies suggests that traditional methods are less effective and are likely to eliminate the
egg and larvae population. Hence, simulation in Fig. 17 were done to explore the effects of a
FAW outbreak with a large initial pest life cycle population coupled with less effective control
measures. As one can observe, an outbreak with a large pest population coupled with less
effective control measure may result in the pest population increasing rapidly such that in less
than 100 days they will reach their respective maximum. After an initial increase, the maize
biomass would gradually decrease to a level below its initial biomass. The results highlight the
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importance of effective control measure on increasing maize biomass whenever there is a FAW
outbreak.

4.4 Numerical Results for FAW-Maize Interaction Model with Seasonality

In this section, simulation results for model (3.64) are presented. Since model (3.64) is non-
autonomous it follows that all model parameters which were modeled as periodic functions
have a baseline value also known as the time averages of their respective periodic functions.
In this section, baseline values in Table 3 were considered as time averages for their respective
parameters. For example, r = r0, β = β0 and so on. In all the simulations the amplitude of
oscillations was set to 0.8 and initial population levels were assumed as follows: E(0) = 500,
L(0) = 0, P(0) = 0, A(0) = 500, and M(0) = 10. Additional parameters that are not in Table 3
are defined in Table 5:

Table 5: Model parameters and their baseline values

Parameter definition Symbol Baseline value Source
Average density dependent mortality rate θ0 0.008 Day−1 (Siekmann, 2009).
Half saturation constant a0 0.8 (Siekmann, 2009).

Since model (3.98) is an optimal control problem, simulations were performed by closely fol-
lowing the forward-backward sweep method (Lenhart & Workman, 2007). Precisely, the Sim-
ulation results presented in this Section are meant to explore the following scenarios:

(i) Effects of implementing traditional control measures alone,

(ii) Effects of implementing time-dependent use of chemical insecticides alone, and

(iii)) Effects of combining time-dependent traditional methods with use of chemical insecti-
cides.

In addition, since the impact of larvae on maize is so apparent, it was assumed that C1 ≤ C2,
that is, the minimization of the larvae is more important than that of FAW eggs. Furthermore,
traditional methods of controlling FAW are known to be less costly compared to chemical in-
secticides and as such, it was assumed that W1 <W2 .

4.4.1 Effects of Implementing Traditional Control Measures Alone

In resource limited settings, majority of the farmers cannot purchase pesticides to control FAW
whenever there is an outbreak and more often they rely on traditional methods like handpicking
and destroying of egg masses and larvae. Here, the goal is to understand the effects of time
dependent implementation of such methods on the dynamics of FAW and maize interaction. To
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investigate this scenario model (3.98) was simulated with u1 ̸= 0 (0 ≤ u1 ≤ 0.1) and u2 ̸= 0 and
the results obtained are in Fig. 18.

(a) (b)

(c) (d)

(e) (f)

Figure 18: Solution of model (3.98) with and without optimal control under scenario 1: u1 ̸= 0
and u2 = 0. We set 0 ≤ u1(t)≤ 0.1

As one can observe, the dynamics of the maize biomass and FAW populations, with and without
control will be associated with oscillations which reflects seasonal variations. Further, the re-
sults also shows that without control, the maize biomass may not exceed 15 per plant, however,
with timely control the biomass may exceed 25 per plant by the final time horizon (t = 150).
Moreover, although, traditional methods will be capable of reducing FAW population and in-
creasing maize biomass, they will not be able to completely eliminate the pest. Figure 18(f)
portrays the optimal control profiles for u1(t). In addition, one can also note that the control
profile for the control u1(t) starts from the maximum (u1 = 0.1) and stays at that level for the
entire duration. From the pattern of the optimal control profile we can conclude that a desirable
outcome can be achieved only if the traditional methods are implemented throughout the entire
time horizon.
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4.4.2 Effects of Implementing Time-Dependent use of Chemical Insecticides Alone

Despite being expensive, chemical insecticides are known to be more efficient compared to
traditional methods on controlling FAW. To explore the impact of chemical control measures on
FAW dynamics model (3.98) was simulated with u1 = 0 and 0 < u2(t)< 0.1 and the results are
depicted in Fig. 19.

(a) (b)

(c) (d)

(e) (f)

Figure 19: Solution of model (3.98) with and without optimal control under scenario 2:
0 < u1 ̸= 0 and 0 < u2 ≤ 0.1

When chemical insecticides are used, one can note that the population of FAW may become
extinct in a period of 50 days. Moreover, the maize biomass per plant may exceed 35 per plant
by the final time (t = 150 days). Comparing Fig. 18 and Fig. 19, one can conclude that use of
chemical insecticides should be encouraged since the final biomass will be higher compared to
when farmers rely on traditional methods only. The control profile for control u2(t) starts from
the maximum initially, but only for a very short time (t < 50), followed by a decrease to some
lower level till the final time horizon. This may attribute to the decrease in FAW populations.
Hence, one can conclude that for chemical insecticides, intensity use needs to be maintained at
maximum for a period of approximately 50 days, thereafter the intensity may be reduced till the
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final time.

4.4.3 Effects of Combining Time-Dependent Traditional Methods with use of Chemical
Insecticides

To understand the implications of combining traditional methods with chemical insecticide use,
model (3.98) was simulated with 0 < u1(t) ≤ 0.1 and 0 < u2(t) ≤ 0.1 over period of 150 days
and the solution results are depicted in Fig. 20.

(a) (b)

(c) (d)

(e) (f)

Figure 20: Solution of model (3.98) with and without optimal control under scenario 3:
0 < u1 ≤ 0.1 and 0 < u2 ≤ 0.1

One can note that when traditional methods are combined with chemical insecticides use then
the time taken to eliminate the FAW from the field is less than the time that will be taken if
only chemical insecticides are in use (Fig. 20). Although the time required to eliminate the
FAW populations will decrease, the final maize biomass may not be significantly different to
that obtained when only chemical insecticides are in use (Fig. 19).

In Figure 20 (f), one can observe that the control profiles for u1(t) and u2(t) starts at their
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respective maximum initially, but only for a very short time, followed by a decrease to some
lower level till the final time. It is worth noting that the control profile for u1(t) remain at its
maximum for a slightly longer period compared to that of u2(t) and this can be attributed to less
cost associated with traditional methods relative to chemical insecticides use. As such we can
conclude that when traditional methods are combined with chemical insecticides use, chemical
control efforts may be ceased after approximately 50 days and the traditional methods can be
implemented for additional 50 days or more but at low intensity.

(a) (b)

Figure 21: Simulation results for model system (3.98) illustrating the effects of varying the
weights, W1 and W2 with 0 ≤ u1 ≤ 0.1, 0 ≤ u2 ≤ 0.1

To assess the effects of costs on implementing the control efforts u1(t) and u2(t), the weight
constants W1 and W2 were varied and the results are illustrated in Fig. 21. From the results one
can note that if the costs are low, for example W1 =W2 = 0.1 then the associated control profile
starts at their respective maximum and stays there till the final time horizon. However, as the
costs increases the respective control profile starts at their respective maxima and stays there
for a reduced duration compared to when the costs are low. In particular, as the costs increases
the control profile for u2(t) stays at its maxima for a relatively short duration compared to that
of u1(t). In a nutshell, one can deduce that depending on the cost parameters associated with
the control, the optimal profiles of u1(t) and u2(t) stays at their respective maxima for a length
duration, before eventually settling at their minimum levels.

4.5 Numerical Results for FAW-Maize Interaction Model with Farming Awareness and
Larvae Predation

In this section, simulation results for model (3.168) are presented. Additional model parameters
to those in Table 3 are given in Table 6. Since model (3.168) is an optimal control problem
the simulation algorithm was adopted from (Lenhart & Workman, 2007) and initial population
levels were assumed as follows: M(0) = 15, L(0) = 500, A(0) = 100, and Z(0) = 50.
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Table 6: Model parameters and their baseline values

Symbol Definition Baseline value Source
bL Growth rate of larva 1/14 day−1 (Pearce et al., 2006)
σ Consumption rate of larva by predators 5×10−5Day−1 (Pearce et al., 2006).
ρ Conversion rate of prey to predator 0.1 Day−1 (Siekmann, 2009).
d Mortality of FAW due to intervention strategies 0.01 Day−1 Estimate.

η−1 Average life span of predator 100 Days (Pearce et al., 2006).

(a) (b)

(c) (e)

Figure 22: Simulation results of model (3.168) with constant farming awareness u = 0.1 and
different fractional order values

Simulation results in Fig. 22 shows the impact of none time dependent farming awareness
campaigns on minimizing or eradicating FAW in the maize field. From the simulation results
one can observe that at this level of farming awareness, the maize biomass increases from the
start and converges to 35 biomass per plant which is less than the expected 50 biomass per plant.
This suggest that farming awareness will minimizing the effects of FAW on maize biomass to
some extent but will not be highly effective for the farmer to achieve the expected biomass per
plant. However, in Fig. 23 one can observe that if u = 0.7, then the level of maize biomass
converges to the expected level even at different fractional order values. Thus, as the awareness
level increases to levels close to 100% (u = 1), the FAW population decreases significantly and
the final biomass level obtained reaches expected levels.
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(a) (b)

(c) (e)

Figure 23: Simulation results of model (3.168) with constant farming awareness u = 0.7 and
different fractional order values

In what follows, effects of time dependent farming awareness campaigns was determined. With-
out loss of generality the fractional-order q, and the control u(t) were set to u(t) = 0.03 and
q = 0.9 , respectively. Associated numerical illustrations are in Fig. 24.
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(a) (b)

(c) (d)

(e)

Figure 24: Simulation results of model (3.168) with time dependent constant farming awareness
0 ≤ u(t)≤ 1, q = 0.9 and W = 10

From the results Fig. 24, one can note that in the presence of time dependent farming awareness
the FAW population (larvae and moth) decreases remarkably compared to when there is no time
dependent farming awareness. Further one can also note that a significant decrease of the FAW
larvae in the presence of optimal farming awareness will also lead to a slightly decrease in the
predator population over time. The results further highlights that in the presence of optimal
farming awareness the final maize biomass will be within the expected level. However, in
the absence of optimal farming awareness the final biomass level will be always less than the
expected final biomass. In addition, one can also observe that the optimal control profile Fig.
24 (e) starts at umax = 1 and remain there for the greater part of time horizon (0 ≤ t ≤ 195
days) till it drops close to the final time period. This suggests that for one to attain the outcomes
in Fig. 24, optimal farming awareness efforts need to be maintained at their maximum intensity
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for the greater part of the time horizon and can be ceased gradually till the final time.

(a) (b)

(c) (d)

(e)

Figure 25: Simulation results of model (3.168) at low maximum intensity umax = 0.5, with
q = 0.9 and W = 100

Simulation results in Fig. 25 shows the impact of the upper bound of the control variable umax
on model solutions. Here, the upper-bound of the control was set to umax = 0.5. From the
results one can note that in this scenario the optimal efforts will need to be maintained at their
maximum intensity throughout the entire time horizon in order for the final maize biomass to
be within the expected level.
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(a) (b)

(c) (d)

(e)

Figure 26: Simulation results of model (3.168) at high cost of implementation, W = 1000,
0 ≤ u(t)≤ 1, and q = 0.9

Simulation results in Fig. 26 show the impact of the costs on the implementation of optimal
farming awareness. Here, the weight constant was set to W = 1000. The results shows that
when the costs of implementing farming awareness are high, the control profile for u(t) does
not start at its maximum, umax = 1, but begins on u(t) = 0.8 and this is followed by a gradual
decrease before it stabilizes at u(t) = 0.4 after approximately 40 days from the start. The control
profile stays at u(t) = 0.4 till the 150th day after which it increases slightly to u(t) = 0.5 and
immediately drops gradually to its minimum until the final time horizon. Although, the pattern
of the control profile is complex, one can deduce that optimum results can be attained if intensity
of the control u(t) is maintained between 0.4 and 0.5 (0.4 ≤ u(t) ≤ 0.5) for the greater part of
the time horizon.
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4.6 Chapter Overview

In this chapter, numerical solutions to the proposed models were presented and their biological
implications were comprehensively discussed. Results from the first model demonstrated that,
the reproduction number, R0 is a threshold parameter that account for the average number of
off-spring generated by an adult female FAW during its entire life span. Further, it was revealed
that, there was a highly positively correlation between b, the number of eggs laid per day per
female moth and w, the proportion of adult female moth in the environment such that if either
of the aforementioned parameters increase by say 10%, will increase R0 by the same size.
Although model parameters accounting for FAW control at each stage were observed to have
significant impact on reducing the size of the reproduction number, they were observed not to
be as highly correlated as those that have positive influence.

In the second model the influence of seasonality on FAW-maize interaction and in-turn on maize
biomass was noted to have a significant impact. The results showed that as the FAW populations
fluctuates seasonally the maize biomass was also fluctuating periodically. In addition, it was
also noted that the time-dependent spraying of insecticides could lead to the eradication on
FAW in the maize field. In the third model, time-dependent farming awareness campaigns
were shown to have more impact on reducing FAW population in the maize field compared to
non-time dependent farming awareness campaigns. For non-time dependent farming awareness
to be more effective, it was noted that they should be greater that 70% efficacy all the time.
However, for time-dependent farming awareness campaigns around 10% efficacy it was found
to bring the final maize biomass extremely close to the expected levels.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions

Invasive plants, insects and diseases are major threat to achieving the sustainable development
goals (SDGs). Since 2016, the invasive fall armyworm (FAW), Spodoptera frugiperda, has
been one of the most rapidly spreading and highly devastating maize pests across African and
Asian countries. Since the pest is new to the African continent, little is known about its impact
on the final maize biomass under different conditions. The present study aims to make use of
mathematical models to investigate the impact of FAW infestations in maize fields and on the
final maize biomass. Three mathematical models which were proposed and rigorously analyzed,
anchored on the following objectives: (a) evaluate the impacts of memory effects and control on
FAW-maize interaction and on the final maize biomass, (b) evaluate the effects of seasonality on
FAW-maize interaction and on the final maize biomass and (c) evaluate the impact of farming
awareness and larvae predation on FAW-maize interaction and on the final maize biomass.

Recently, several researchers have shown that fractional-order models can more accurately de-
scribe many real world phenomena compare to integer order models. It was further noted that,
fractional-order models are non-local operators and contain all characteristics concerned with
memory of the dynamical system. Owing to the advantages of fractional-order models, the
first mathematical framework proposed in this study is a new dynamical system for FAW-maize
interaction based on Caputo fractional-order. The model included all the relevant biological
information and control. In particular, all the development stages namely, the egg stage, larvae,
pupae and adults were included in the formulated model.

Mathematical analysis of the proposed model revealed that, four equilibrium points which re-
vealed the existence of a threshold parameter defined by R0 were computed and analyzed. It
was observed that, R0, the average number of newborns produced by one individual female
moth during its life span was an integral component for stability of the aforementioned model
equilibria. Further, it was noted that, if one female moth is not capable of producing more than
one off-spring then within a period of 150 days all the FAW populations (eggs, larvae, pupae
and moth) will become extinct while the maize biomass will increase with time till it reaches the
expected maximum biomass per plant (50 biomass plant−1) otherwise it persists. Prior studies
on pest biology to the area where the pest is endemic revealed that, with control the pest extinct
in a period of approximately 150 days while without control extinct in a period of approximately
300 days (Assefa & Ayalew, 2019; Chapman et al., 2000). In a nutshell, the numerical results
re-affirm that, once insecticides’ use leads to elimination of the pest during the maize life span,
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then due to residual effects of the insecticides’ and the pest’s life cycle they will be no any other
pest in the field unnecessary another one migrates from another field and the insecticide is no
longer efficient enough.

Moreover, It was noted that a threshold parameter, the reproduction number was qualitatively
and quantitatively used to investigate the local and global stability of the model’s steady state.
For the two steady states the model has (that is the pest-free equilibrium and the pest persistence
equilibrium points), it was observed that they were both locally and globally stable. In particu-
lar, the pest-free equilibrium point is both locally and globally stable whenever the reproduction
number is less than unity. However, when the reproduction number is greater than unity there
exists a pest persistence equilibrium point which is also both locally and globally stable.

Further analysis of the model revealed that, convergence of solutions to their respective limiting
points in time depends on the fractional-order, q, that is as q approaches unity the time taken by
solutions to converge to the limiting point increases. For maize biomass in particular and when
R0 < 1, the increase of the final maize biomass at the end of the season depends on fractional-
order, q, as q decreases, the final maize biomass increases approaching the maximum carrying
capacity in a period less than 100 days. However, as fractional order, q decreases and when
R0 > 1, the final maize biomass per field increases but less than the expected 50 biomass plant−1

. It was also revealed that model parameters, egg laying rate and proportion of female moth in
the environment have a strong positive influence on increasing the size of the reproduction
number. Precisely, an increasing in the proportion of female moth in the environment by say
20% will increase the size of the reproduction number by the same size. Intervention strategies
(controls) aimed at reducing FAW adult populations were observed to have a strong impact in
reducing the size of the reproduction number than any other model parameter. In particular, an
increase in reduction of adult population by 10% will be associated with a reduction of 6.4% on
the reproduction number.

The influence of seasonality on the development of FAW is well documented. In particular,
different development stages of insects are favored by different ranges of weather conditions,
hence, variations of weather conditions influence the development rates, duration of life-cycles,
and, ultimately, the survival of insects. Under unfavourable weather condition for the develop-
ment and reproduction, the pest is forced to migrate to other suitable locations for survival. To
explore the effects of seasonality of FAW-maize interaction, a non-autonomous mathematical
model was proposed and analyzed. All plant and pest development stages that are influenced
by changes in weather patterns were modeled as periodic functions.

The dynamical properties of the proposed model which were comprehensively investigated re-
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vealed that, the model solution was non-negative, unique, permanent and bounded admitting
global asymptotic and continuous periodic function. Meanwhile, the proposed model was ex-
tended into an optimal control problem. The goal of the optimal control problem was to deter-
mine the level of using time dependent traditional methods and pesticides capable of minimizing
or eradicating FAW in the field at minimal cost of implementation.

With sole use of chemical insecticides, it was noted that the population of FAW may become
extinct in a period of 50 days and the final maize biomass per plant will be extremely close to the
anticipated levels at the end of the season. With traditional methods in use, it was observed that
the final maize biomass will be approximately 50% of the expected. However, when pesticides
use and traditional methods are combined, it was observed that the FAW population will become
extinction in approximately 20 days which is shorter than when pesticides alone are being used.

Further analysis of the model revealed that if traditional methods only are in use they will have to
be implemented at their maximum intensity through out the entire season, however, when pesti-
cides are in use they will have to be implemented at their maximum strength for approximately
30 days and their after their intensity can be reduced to 25% of the initial implementation level,
and after 100 days they may be ceased completely. In a scenario when pesticides and traditional
methods are being implemented, the final biomass is relatively higher than when a single control
strategy is in use. Moreover, both methods will not need to be implemented at their maximum
intensity through out the season. Precisely, after 20 days both methods may be implemented at
levels slightly below 50% of their initial implementation level, and after 50 days pesticides use
may be ceased while traditional methods will continue to be used for an additional 60 days after
which they can be ceased.

Since 2016, when FAW outbreak was observed in Africa, African governments adopted emer-
gency actions around chemical insecticides, however, due to financial challenges associated
with governments of African countries and the cost associated with massive spraying pro-
gramme of chemical insecticides and use of genetically modified crops (Bt maize), effective
management of pest in the continent remains a challenge, there need to understand the role of
farming awareness campaigns and natural enemies of FAW larvae on FAW dynamics.

Awareness campaigns, in particular through various media outlets such as radio, newspapers,
TV and so on, does not only make farmers aware of FAW outbreak but also improve trust on
integrated pest management (IPM) each nation will be advocating for (Abraha et al., 2021). In
recent times, attention to health news has been observed play an integral on disease management
(Cui et al., 2008). There is no doubt that correct and relevant knowledge about crop and its pests
is very much essential to farmers (Abraha et al., 2021). To explore the role of farming media
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campaigns a new fractional-order model was developed and analyzed. The proposed model
included FAW larvae predators and media campaigns.

Dynamical analysis of the proposed model revealed that it has five equilibrium points which
may all be globally asymptotically stable if certain conditions outlined in the Appendix 4 are
satisfied. Simulation results of the model with constant awareness campaigns u, showed that
u = 0.7 may lead to achievement of the expected maize biomass at the final time t = 164 for
fractional-order values q = 0.7,0.8,0.9. However for q = 1.0 the final maize biomass at this
level of awareness will be slightly less than the expected. For time dependent farming awareness
it was observed that the expected maize biomass can be attained if the costs of implementing
the strategy are low. In addition, it was observed that if the intensity of implementing are low
then the efforts can be carried out at their maximum intensity throughout the time horizon.
Although, the model was not exhaustive it illustrated the value of optimal control theory as a
tool to suggest effective management strategies during FAW outbreaks.

5.2 Recommendations

Cereal crops play a vital role in the daily diets in Africa and account for up to 46% of the daily
calorie consumption. Maize followed by sorghum are major staple food crops grown in diverse
agro-ecological zones and farming systems in sub-Saharan Africa (Niassy et al., 2021). In this
study, mathematical models were proposed and analyzed to assess the effects FAW infestations
in a maize field on the final maize biomass. Based on outcomes from this study the following
recommendations are made:

(i) Coupling of time dependent traditional methods and insecticides use be considered and
mathematical models be utilized to evaluate the success after a defined time horizon. In
addition, insecticide be applied at intensity lower than that of traditional methods all the
time. From the study it was noted that traditional methods of control FAW alone need to
be at extremely higher efficacy (80%) to sufficiently eliminate FAW in the field. Since
achieving a higher efficacy is practically challenging there is need to combine these meth-
ods with pesticides use which has shown that it can effectively reduce FAW population
even when it is maintained at intensity levels around 10%.

(ii) Mathematical models be utilized together with other mitigation strategies to understand
and evaluate effective ways of managing FAW during an outbreak.

(iii) Policy makers need to enhancing farming awareness campaigns in order to strength ex-
isting knowledge about the pest and the associated control strategies. In particular, from
the study it was observed that reducing the population of adult FAW by 64% will reduce
the generation of new offspring by the same magnitude.
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5.2.1 Possible Future Works

This study is not exhaustive, in future Mathematical models proposed could be extended to
incorporate the following aspects:

(i) Continuous replanting of maize crops. In the mathematical frameworks proposed, the
dynamics were explored without factoring continuous replanting of maize.

(ii) Effects of multiple predators. FAW have several natural enemies. These predators affects
different populations on FAW. Some of these predators can be reared on an alternative
host, and use to control FAW. In this study only FAW larvae predator were considered.

(iii) Effects of knowledge heterogeneity among farmers. Farmers in a community do not
posses uniform knowledge and attitude. One farmer may be aware of the pest and the
associated mitigation strategy while another will not be. Hence the distribution and per-
sistence of pests can be strongly affected by this heterogeneity.

(iv) Validation of the mathematical models presented in this study. The three mathematical
models in this study have not been validated, therefore in future when data are available,
I recommend to validate these models for effective exploring the impact of FAW-maize
interaction dynamics.

5.2.2 Limitation of the Study

This study was limited to various constraints which need to be acknowledged. The following
were the limitations of this study:

(i) The proposed model were calibrated based on data extracted from literature, however,
model validation was not done due to unavailability of observed data for changes in FAW
population and the resultant maize biomass over time due to roll-out of intervention strate-
gies.

(ii) Unavailability of enough funds for travelling to meet my supervisors who were living
outside the country for face to face consultation.
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Abstract
Fall armyworm (Spodoptera frugiperda), a highly destructive and fast spreading
agricultural pest native to North and South America, poses a real threat to global food
security. In this paper, to explore the dynamics and implications of fall armyworm
outbreak in a field of maize biomass, we propose a new dynamical system for maize
biomass and fall armyworm interaction via Caputo fractional-order operator, which is
not only a nonlocal operator but also contains all characteristics concerned with
memory of the dynamical system. We define the basic reproduction number, which
represents the average number of newborns produced by one individual female
moth during its life span. We establish that the basic reproduction number is a
threshold quantity, which determines persistence and extinction of the pest. Finally,
we simulate the Caputo system using the Adam–Bashforth–Moulton method to
illustrate the main results.
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1 Introduction
Fall armyworm (FAW), Spodoptera frugiperda, a highly destructive and fast spreading
agricultural pest native to North and South America, poses a real threat to global food se-
curity. Spodoptera frugiperda remains an important pest of members of family Poaceace
including major food crops such as corn, sorghum, rice wheat, maize, and diverse pas-
ture [1]. According to FAO [2], food security is defined as a “situation that exists when all
people, at all times, have physical, social, and economic access to sufficient, safe, and nu-
tritious food that meets their dietary needs and food preferences for an active and healthy
life” [2]. In recent years, the FAW has spread globally and emerged in countries where it
had rarely or never before been presented, posing a real threat to global food security [3, 4].
Prior studies suggest that FAW pest is native to and widely distributed in the tropical and
subtropical regions of America [1], and its invasion into Africa was reported for the first
time in January 2016 [1]. Since then, it has become an epidemic pest in and beyond sev-
eral African countries [1, 3–5]. FAW is regarded to be a major pest of maize biomass and
other crops, such as rice, millet, sorghum, and cotton [5]. Due to the importance of maize
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biomass in many countries, there is a need to explore the implications of FAW outbreak
in a field of maize biomass to increase the harvest of this crop.

Mathematical modeling has become a tool used to explore many real-world phenom-
ena. Ordinary differential equations (ODEs) and partial differential equations (PDEs) with
and without memory effects are some of the tools that have been commonly used to for-
mulate equation(s) that mirror the real-world problem(s) [6–12]. In recent years a number
of mathematical models were developed to explore plant–pest interaction [11–19]. Tang
et al. [17] proposed impulsive differential equation models or hybrid dynamical system
to model the introduction of a periodic IPM strategy, which includes periodic spraying
of pesticide and release of natural enemies at critical time [14–17]. On the other hand,
Tang et al. [17] developed an impulsive pest-natural enemy model, in which pulsing ac-
tions such as spraying pesticide and releasing natural enemies were considered with the
assumption that the pesticide kills a pest instantly, whereas Chowdhury [18] formulated
and extensively investigated continuous and discrete predator–prey models concerning
IPM strategy. Discrete host parasitoid models were also proposed in circumstances where
the timing of pesticide application leads to the death of parasitoid, and four different cases
involving the timing of applications were investigated [11, 18].

The aforementioned studies and several other cited therein have certainly produced
many useful results and improved the existing knowledge on plant–pest interaction. How-
ever, one of the limitations of these studies is that their models were based on integer-order
ordinary differential equations. Recent studies suggest that models that use integer-order
differential equations do not adequately capture memory effects and hereditary proper-
ties, which are inherent in many real-world problems [20]. As such, in recent years, frac-
tional calculus has become an intriguing field. Several researchers have shown that models
that utilize fractional calculus are more likely to replicate real-world problems compared
those that use integer-order differential equations since fractional-order differential equa-
tions are able to capture memory effects [20, 21].

Therefore the present work aims to utilize fractional calculus to explore the implications
of FAW infestation in a field planted with initial number of maize biomass at time t = 0 and
obtaining maximum harvest of the biomass at the end of the season. The proposed model
incorporates all the relevant biological information. In particular, the FAW population has
been subdivided into egg population, larvae population, pupae population, and the adult
population, also known as moth. Although the FAW has six larval instar stages, we have
considered this as a single group to reduce complexity of the model. The proposed model
also incorporates the use of nonbiological control methods such as use of pesticides and
commonly known traditional methods such as hand picking of caterpillars. The role of
biological control on FAW dynamics was comprehensively explored in [12], and hence
we did not consider this aspect. At larval stage cannibalism is known to occur in FAW
dynamics, and we also incorporate this aspect. We support qualitative and quantitative
analytical results obtained in this study by numerical illustration.

We organize the paper as follows. In Sect. 2, we give some necessary definitions and
some known properties of fractional calculus. In Sect. 3, we propose a fractional-order
model for fall armyworm and maize biomass interaction. We investigate the local and
global stability of the model equilibria. To support analytical findings, we carry out nu-
merical simulation and present their results in Sect. 4. In the last section, we present the
conclusions of this paper.
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2 Preliminaries on the Caputo fractional calculus
We begin by introducing the definition of Caputo fractional derivative and state related
theorems (see [22–24]), which we will utilize to derive important results in this work.

Definition 2.1 ([22–24]) Suppose that q, a, t ∈ R, q > 0, t > a. The Caputo fractional
derivative is given by

c
aDq

t f (t) =
1

�(n – q)

∫ t

a

f n(ξ )
(t – ξ )q+1–n dξ , n – 1 < q, n ∈ N,

where � is the gamma function.

Definition 2.2 ([22, 24]) The Riemann–Liouville fractional integral of arbitrary real order
q > 0 of a function f (t) is defined by the integral

Jqf (t) =
1

�(q)

∫ t

0
(t – ξ )q–1f (ξ ) dξ ,

and J0f (t) = f (t).

Definition 2.3 ([25]) Let q > 0, n – 1 < q < n, n ∈ N. Suppose that f (t), f ′(t), . . . , f (n–1)(t)
are continuous on [t0,∞) and have the exponential order and that c

t0 Dq
t f (t) is piecewise

continuous on [t0,∞). Then

L
{c

t0
Dq

t f (t)
}

= sqF (s) –
n–1∑
k=0

sq–k–1f (k)(t0),

where F (s) = L{f (t)}.

Lemma 2.1 ([26]) Let x(·) be a continuous and differentiable function with x(t) ∈ R+. Then,
for any time instant t ≥ t0, we have

c
t0 Dq

t

(
x(t) – x∗ – x∗ ln

x(t)
x∗

)
≤

(
1 –

x∗

x(t)

)
c
t0 Dq

t x(t), x∗ ∈ R+,∀q ∈ (0, 1).

3 Model formulation and analysis
3.1 Model formulation
A fractional-order model we introduce consists of two populations, maize biomass and the
FAW population, where one of the populations is a stage-structured giving a total of five
populations. Meanwhile, the FAW population is divided into four classes, which represent
the FAW life cycle and are the egg stage E(t), Larvae L(t), pupal P(t), and the adult stage
(Moth) A(t). Although the FAW typically has six larval instars, to reduce complexity of the
model in a biological sensible way, all larval instars are represented by class L(t). The life
cycle of FAW starts when eggs are laid in masses on maize biomass, mostly underside of
these biomass. The following equation describes the FAW egg population dynamics:

c
aDq

t E(t) = bq
(

1 –
E

Kq
E

)
WA –

(
α

q
E + uq

E + μ
q
E
)
E,
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where b represents the egg laying rate for an adult female FAW, that is, an average number
of eggs each female adult FAW will lay per day, KE represents the egg carrying capacity, that
is, the availability of space to lay eggs, W is the proportion of adult FAW that are females,
αE is the egg hatching rate, and uE accounts for the effects of intervention strategies a
farmer will implement once they observe eggs laid on the maize biomass, μE is the egg
mortality rate. FAW larvae generally emerge simultaneously three to five days following
oviposition. The following equation summarizes the population dynamics of the larvae
stage:

c
aDq

t L(t) = α
q
E

(
1 –

L
Kq

L

)
E + θqLM –

(
α

q
L + uq

L + μ
q
L
)
L,

where the transition rate from the egg stage to larvae is αE . Prior studies [3, 27] suggest that
whenever the food is limited, the older larvae of FAW exhibit a cannibalistic behavior on
the smaller larvae. Hence to account for this aspect, we assume that the death rate due to
lack of food is proportional to the smaller larvae αEE and to the coefficient L/KL that rep-
resent the availability of food for each larvae. Therefore KL models the availability of food
and space for the larvae population, μL represents the natural mortality rate of the larvae,
and 1/αL is the average duration of the larvae stage, which is estimated to the of 14–30 days
[3, 28, 29]. In particular, it is estimated that this duration is shorter, around 14 days dur-
ing warm summer months and longer, and around 30 days during cooler weather [28, 29].
The parameter uL models the role of intervention strategies implemented by the farmer,
which may be use of pesticides or handpicking of the larvae. The term θqLM represents
the interaction of larvae and maize biomass, which results in conversion of maize biomass
into larvae biomass. Hence we can write θq = eqβq, where the parameter e represents the
efficiency with which caterpillar (FAW larvae) convert consumed maize biomass.

Pupation of the FAW normally occurs in the soil at a depth of 2–8 cm [29]. Here the larva
constructs a loose cocoon, oval in shape and 20–30 mm in length, through tying together
particles of soil with silk [3]. In areas where the soil is too hard, larvae web together leaf
debris and other material to form a cocoon on the soil surface [3]. The following equation
represents the dynamics of pupae stage:

c
aDq

t P(t) = α
q
LL –

(
μ

q
P + αq

p + uq
P
)
P,

where μP is the natural mortality rate, 1/αP represents the duration of the pupae stage,
which is approximately 8–9 days during the summer; however, during winter it may reach
20–30 days [3, 28]. It is worth noting that the pupal stage of FAW does not enter a dia-
pause period to withstand protracted periods winter or summer seasons in the absence of
the host plant biomass [3, 30]. The effects of intervention strategies on reducing the pop-
ulation of the pupae is modeled by uP . Adult FAW are 20–25-mm long with a wingspan
of approximately 30–40 mm. Female and male adult FAW have different color pattern on
their forewing. Adult female FAW are responsible for laying eggs on the surface of maize
biomass, and this process usually starts after a preoviposition period of 3–4 days and con-
tinues until they become 3-week old. The following equation summarizes the population
dynamics of the adult FAW:

c
aDq

t A(t) = α
q
PP –

(
μ

q
A + uq

A
)
A,
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Figure 1 Model flow diagram illustrating the dynamics of fall armyworm in a field of maize biomass. The fall
armyworm life cycle is divided into four classes: the egg stage E(t), Larvae L(t), pupal P(t), and the adult stage
(Moth) A(t). The compartment M(t) represents maize plant population. The dotted line demonstrates that fall
armyworm larvae are responsible for attacking the maize plant

where αP accounts for the proportion of FAW pupa population that successfully pro-
gresses to the adult stage, uA denotes the effects of intervention strategies, and 1/μA is
the life span, which is estimated to average about 10 days, with a range of about 7–21 days
[3]. It is worth noting that the duration of the life cycle for FAW lasts for about 30 days at
28◦C and may take longer, 60–90 days, when the weather is cooler [28]. In addition, under
favorable conditions, the FAW larvae have a potential to feed and breed on maize biomass
year-round [28].

Plant biomass (plant seeds) planted at time t = 0 emerges in a period of 0 to 7 days.
We assume that planting of maize seed per hectare at the beginning of the season is done
in a day. In this regard, we let M(t) represent the population density of maize biomass
per hectare Therefore the population dynamics of the maize biomass is governed by the
equation

c
aDq

t M(t) = rqM
(

1 –
M
Kq

M

)
– βqLM,

where r is the growth rate of maize biomass, KM is the maximum biomass of maize plants,
and β is rate at which larvae (FAW larva) attacks the biomass of the maize plants.

Our assumptions on the dynamics of fall armyworm in a maize biomass population den-
sity are demonstrated in Fig. 1, and equations are presented in the system

c
aDq

t M(t) = rqM(1 – M
Kq

M
) – βqLM,

c
aDq

t E(t) = bq(1 – E
Kq

E
)WA – (αq

E + uq
E + μ

q
E)E,

c
aDq

t L(t) = α
q
E(1 – L

Kq
L

)E + θqLM – (αq
L + uq

L + μ
q
L)L,

c
aDq

t P(t) = α
q
LL – (μq

P + α
q
p + uq

P)P,
c
aDq

t A(t) = α
q
PP – (μq

A + uq
A)A.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1)

3.2 Positivity and boundedness of solutions to model (1)
Theorem 3.1 There exists a unique solution for the fractional-order model (1) in (0,∞).
Moreover, the solution is nonnegative for all t > 0 and remains in R5

+.
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Proof We begin by demonstrating that R5
+ = {(M, E, L, P, A) ∈ R5

+ : M ≥ 0, E ≥ 0, L ≥ 0, P ≥
0, A ≥ 0} is positively invariant. For that, we have to demonstrate that on each hyperplane
bounding the nonnegative orthant the vector field points to R5

+. Let us consider the fol-
lowing cases.

Case 1. Assume that the exists t∗ > t0 such that M(t∗) = 0 and M(t) < 0 for t ∈ (t∗, t1],
where t1 is sufficiently close to t∗. If M(t∗) = 0, then

c
t0 DqM(t∗) = 0.

Therefore c
t0 DqM(t) ≥ 0 for all t ∈ [t∗, t1].

Case 2. Assume that the exists t∗ > t0 such that E(t∗) = 0 and E(t) < 0 for t ∈ (t∗, t1], where
t1 is sufficiently close to t∗. If E(t∗) = 0, then

c
t0 DqE(t∗) = bqWA > 0.

Therefore c
t0 DqE(t) > 0 for all t ∈ [t∗, t1].

Case 3. Assume that the exists t∗ > t0 such that L(t∗) = 0 and L(t) < 0 for t ∈ (t∗, t1], where
t1 is sufficiently close to t∗. If L(t∗) = 0, then

c
t0 DqL(t∗) = α

q
EE > 0.

From the last two equations of system (1) we can easily verify that

c
t0 DqP(t) = α

q
LL > 0,

c
t0 DqA(t) = α

q
PP > 0.

}

From the discussion above we observe that each hyperplane bounding the nonnegative or-
thant, the vector field points to R5

+, that is, all solutions of system (1), remains nonnegative
for all t ≥ 0. �

Theorem 3.2 Let X (t) = (E(t), L(t), P(t), A(t)) be a unique solution of the model (1) for
t ≥ 0. Then the solution X (t) is bounded above, that is, X (t) ∈ �, where � denotes the
feasible region given by

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(E(t), L(t), P(t), A(t))

∣∣∣∣∣∣∣∣∣

0 ≤ E(t) ≤ KE

0 ≤ L(t) ≤ CL

0 ≤ P(t) ≤ CP

0 ≤ A(t) ≤ CA

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Proof Here we will now demonstrate that the solutions of system (1) are bounded for all
t ≥ 0. For biological relevance, the least possible lower bound for each of the variables in
system (1) is zero. Based on this, our discussion will be on determining the upper bound
for these variables. Moreover, we can easily establish that the following conditions should
hold: 0 ≤ M(t) ≤ KM and 0 ≤ E(t) ≤ KE . For instance, we have

c
aDq

t M(t) = rqM
(

1 –
M
Kq

M

)
– βqLM
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≤ rqM
(

1 –
M
Kq

M

)
.

Therefore it follows that lim supt→∞ M(t) ≤ KM . Based on these bounds, we have

c
aDq

t L(t) = α
q
E

(
1 –

L
Kq

L

)
E + θqLM –

(
α

q
L + uq

L + μ
q
L
)
L

≤ α
q
EKq

E –
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
L.

Applying the Laplace transform leads to

sqL
[
L(t)

]
– sq–1L(0) ≤ α

q
EKq

E
s

–
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
L

[
L(t)

]
.

Grouping like terms, we get

L
(
L(t)

) ≤ α
q
EKq

E s–1

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]

+
sq–1L(0)

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]

=
α

q
EKq

E sq–(1+q)

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]

+
sq–1L(0

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]
.

Applying the inverse Laplace transform leads to

L(t) ≤ L–1
{

α
q
EKq

E sq–(1+q)

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]

}

+ L–1
{

sq–1L(0

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]

}

≤ α
q
EKq

E tqEq,q+1

(
–
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
tq

)

+ L(0)Eq,1

(
–
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
tq

)

≤ max

{
α

q
EKq

E

[(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]
, L(0)

}

×
([(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
tqEq,q+1

×
(

–
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
tq

)
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+ Eq,1

(
–
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
tq

))

=
C

�(1)
:= CL,

where CL = max{[(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M], L(0)}. Thus L(t) is bounded from above.
From the equation for pupa population we have

c
aDq

t P(t) = α
q
LL –

(
μ

q
P + αq

p + uq
P
)
P ≤ α

q
LCL –

(
μ

q
P + αq

p + uq
P
)
P.

Applying the Laplace transform leads to

sqL
[
P(t)

]
– sq–1P(0) ≤ α

q
LCL

s
–

(
μ

q
P + αq

p + uq
P
)
L

[
P(t)

]
.

Combining the like terms, we get

L
(
P(t)

) ≤ α
q
LCL

s–1

sq + (μq
P + α

q
p + uq

P)
+ P(0)

sq–1

sq + (μq
P + α

q
p + uq

P)

= α
q
LCL

sq–(1+q)

sq + (μq
P + α

q
p + uq

P)
+ P(0)

sq–1

sq + (μq
P + α

q
p + uq

P)
.

Applying the inverse Laplace transform leads to

P(t) ≤ L–1
{
α

q
LCL

sq–(1+q)

sq + (μq
P + α

q
p + uq

P)

}
+ P(0)L–1

{
sq–1

sq + (μq
P + α

q
p + uq

P)

}

≤ α
q
LCLtqEq,q+1

(
–
(
μ

q
P + αq

p + uq
P
)
tq) + P(0)Eq,1

(
–
(
μ

q
P + αq

p + uq
P
)
tq)

≤ α
q
LCL

(αq
P + μ

q
p + uq

P)
(
μ

q
P + αq

p + uq
P
)
tqEq,q+1

(
–
(
α

q
P + μq

p + uq
P
)
tq)

+ P(0)Eq,1
(
–
(
α

q
P + μq

p + uq
P
)
tq)

≤ max

{
α

q
LCL

(αq
P + μ

q
p + uq

P)
, P(0)

}((
α

q
P + μq

p + uq
P
)
tqEq,q+1

(
–
(
α

q
P + μq

p + uq
P
)
tq)

+ Eα,1
(
–
(
α

q
P + μq

p + uq
P
)
tq))

=
C

�(1)
:= CP,

where CP = max{ α
q
LCL

(αq
P+μ

q
p)

, P(0)}. Thus P(t) is bounded from above. From the last equation
of system (1) we have

c
aDq

t A(t) = α
q
PP –

(
μ

q
A + uq

A
)
A ≤ α

q
PCP –

(
μ

q
A + uq

A
)
A.

By applying the Laplace transform it follows that

sqL
[
A(t)

]
– sq–1A(0) ≤ α

q
LCP

s
–

(
μ

q
A + uq

A
)
L

[
A(t)

]
.
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Grouping similar terms, we have

L
(
A(t)

) ≤ α
q
PCP

s–1

sq + (μq
A + uq

A)
+ A(0)

sq–1

sq + (μq
A + uq

A)

= α
q
LKq

L
sq–(1+q)

sq + (μq
P + α

q
p)

+ P(0)
sq–1

sq + (μq
P + α

q
p)

.

Utilizing inverse Laplace transform, we get

A(t) ≤ L–1
{
α

q
PCP

sq–(1+q)

sq + (μq
A + uq

A)

}
+ A(0)L–1

{
sq–1

sq + (μq
A + uq

A)

}

≤ α
q
PCPtqEq,q+1

(
–
(
μ

q
A + uq

A
)
tq) + A(0)Eq,1

(
–
(
μ

q
A + uq

A
)
tq)

≤ α
q
PCP

(αq
A + uq

A)
(
μ

q
A + uq

A
)
tqEq,q+1

(
–
(
μ

q
A + uq

A
)
tq) + A(0)Eq,1

(
–
(
μ

q
A + uq

A
)
tq)

≤ max

{
α

q
PCP

(μq
A + uq

A)
, A(0)

}((
μ

q
A + uq

A
)
tq

× Eq,q+1
(
–
(
μ

q
A + uq

A
)
tq) + Eq,1

(
–
(
μ

q
A + uq

A
)
tq))

=
C

�(1)
= CA,

where CP = max{ α
q
PCP

(μq
A+uq

A)
, A(0)}. Thus A(t) is bounded from above. This completes the

proof. �

3.3 Model equilibria
By direct calculations we can observe that system (1) has four equilibrium points:

(i) Trivial equilibrium

E1 =
{

E1 = 0, L1 = 0, P1 = 0, A1 = 0, M1 = 0
}

.

(ii) First axial equilibrium point

E2 =
{

M2 = Kq
M, E2 = 0, L2 = 0, P2 = 0, A2 = 0

}
.

(iii) Second axial equilibrium point E3 = {M3E3, L3, P3, A3}, where

E3 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E3 = Kq
E Kq

L m1m2m3m4
α

q
E(bqWKq

L α
q
Lα

q
P+Kq

E m1m3m4)
( bqWα

q
Eα

q
Lα

q
P

m1m2m3m4
– 1),

L3 = Kq
E Kq

L m1m2m3m4
bqW (KEαE+Kq

L m2)αq
Lα

q
P

( bqWα
q
Eα

q
Pα

q
L

m1m2m3m4
– 1),

P3 = Kq
E Kq

L m1m2m3m4
bqW (KEαE+Kq

L m2)αq
Pm3

( bqWα
q
Eα

q
Lα

q
P

m1m2m3m4
– 1),

A3 = Kq
E Kq

L m1m2m3m4
bqW (KEαE+Kq

L m2)m3m4
( bqWα

q
Eα

q
Lα

q
P

m1m2m3m4
– 1),

M3 = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

with

m1 =
(
μ

q
E + α

q
E + uq

E
)
, m2 =

(
μ

q
L + α

q
L + uq

L
)
,
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m3 =
(
μ

q
P + αq

p + uq
P
)
, m4 =

(
μ

q
A + uq

A
)
.

We can observe that this equilibrium point makes biological sense whenever

bqWα
q
Eα

q
Lα

q
P

m1m2m3m4
> 1.

Let

R0 = bqW
(

α
q
E

μ
q
E + α

q
E + uq

E

)(
α

q
L

μ
q
L + α

q
L + uq

L

)(
α

q
P

μ
q
P + α

q
P + uq

P

)(
1

μ
q
A + uq

A

)

=
bqWα

q
Eα

q
Lα

q
P

m1m2m3m4
.

Biologically, R0 is a threshold quantity that accounts for the persistence of the
FAW population, and thus when R0 > 1, the population of FAW persists and will be
an attack on maize plants leaves, and finally the population of maize plants is
extinct. Hence we can precisely define R0 as the average number of off-spring
generated by an adult female FAW during its entire life span. Precisely, we can note
that a proportion W of moth will each lay b eggs per day for an average duration of

1
μ

q
A+uq

A
; laid egg has the probability α

q
E

μ
q
E+α

q
E+uq

E
of surviving to become larva.

Caterpillars that emerge following oviposition have the probability α
q
L

μ
q
L+α

q
L+uq

L
of

surviving to become pupa, which also has the probability α
q
P

μ
q
P+α

q
P+uq

P
of surviving to

become moth.
(iv) Interior equilibrium point

E4 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E4 = –bqKq
E Wα

q
Lα

q
Ph2+bqKq

E Wα
q
P
√

h2
2–4h1h3

–bqWα
q
Lα

q
Ph2+bqWα

q
P
√

h2
2–4h1h3–2Kq

E h1m1m4
,

L4 = –h2+
√

h2
2–4h1h3

2h1
,

P4 = –α
q
Lh2+α

q
L
√

h2
2–4h1h3

2h1m3
,

A4 = –α
q
Pα

q
Lh2+α

q
Pα

q
L
√

h2
2–4h1h3

2h1m3m4
,

M∗ = 2h1rqKq
M–βqKq

Mh2+βqKq
M
√

h2
2–4h1h3

2h1r ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3)

where

h1 = bqKq
LθqKq

MWα
q
Pα

q
L,

h2 = –(bqθqrqWKq
L Kq

Mα
q
Lα

q
P + θqβqeqKq

E Kq
L Kq

Mm1m2m3

+ bqrqWKq
E Kq

Lα
q
Eα

q
Lα

q
P – bqrqWKq

Lα
q
Lα

q
Pm2),

h3 = –(θqKEKq
L Kq

Mm1m2m3 + rqKq
E Kq

L m1m2
2m3),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Based on (3), h1, h2, and h3, � = (h2
2 – 4h1h3) > 0 implies that the equilibrium point

E4 has a unique feasible equilibrium.
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3.4 Local stability of equilibrium points
In this section, we study the local stability behavior of the four equilibrium points com-
puted earlier by using the Jacobian matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

rq – 2Mrq

KM
– βqL 0 –βqM 0 0

0 –m1 – bqWA
KE

0 0 bqW (1 – E
KE

)

θqL (1 – L
Kq

L
)αq

E θqM – m2 – α
q
EE

KL
0 0

0 0 α
q
L –m3 0

0 0 0 α
q
P –m4

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

(a) Trivial equilibrium point. Evaluating the Jacobian matrix (4) about E1 leads to

J
(
E1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

rq 0 0 0 0
0 –m1 0 0 bqW
0 α

q
E –m2 0 0

0 0 α
q
L –m3 0

0 0 0 α
q
P –m4

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5)

The trivial equilibrium point is locally stable if all eigenvalues λi (i = 1, 2, 3, 4) of
J(E1) satisfy the condition |arg(λi)| > qπ

2 [31]. We can observe that one of the
eigenvalues of (5) is rq > 0. The other equilibrium points are obtained from the
characteristic equation

λ4 + c1λ
3 + c2λ

2 + c3λ + c4 = 0 (6)

with

c1 = m1 + m2 + m4,
c2 = m1m2 + (m1 + m2)(m3 + m4) + m3m4,
c3 = m1m2(m3 + m4) + m3m4(m1 + m2),
c4 = m1m2m3m4 – bqWα

q
Eα

q
Lα

q
P

= m1m2m3m4(1 – R0).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The Routh–Hurwitz criteria for local asymptotic stability of the equilibrium point
E1 are

H1 = c1 > 0, c3 > 0, c4 > 0,
H2 = c1c2c3 – c2

3 – c2
1c4 > 0.

}
(7)

As we can observe, all the coefficients of the characteristic polynomial (6) are
positive whenever R0 < 1, implying that condition H1 holds for R0 < 1. Since we
have established that the trivial equilibrium point E1 has another eigenvalue rq,
which is always positive, we will not investigate the positivity of condition H2, and
hence we conclude that E1 is an unstable equilibrium point.
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(b) First axial equilibrium point E2. Evaluating the Jacobian matrix (4) about E2 leads to

J
(
E2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

–rq 0 –βqKq
M 0 0

0 –m1 0 0 bqW
0 α

q
E θqKq

M – m2 0 0
0 0 α

q
L –m3 0

0 0 0 α
q
P –m4

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8)

From (8) we can observe that one of the eigenvalues is –rq < 0, and the other
eigenvalues are roots of the characteristic equation

λ4 + b1λ
3 + b2λ

2 + b3λ + b4 = 0 (9)

with

b1 = m1 + m2 + m4 – θqKq
M,

b2 = (m1 + m2)(m3 + m4) + m1m2 + m3m4 – θqKq
M(m1 + m3 + m4),

b3 = m1(m3m4 + m2(m3 + m4)) + m2m3m4 – θqKq
M(m1(m3 + m4) + m3m4),

b4 = m1m2m3m4((1 – R0) – θqKq
M).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The Routh–Hurwitz criteria for local asymptotic stability of the equilibrium point
E2 are

Ĥ1 = b1 > 0, b3 > 0, b4 > 0,
Ĥ2 = b1b2b3 – b2

3 – b2
1b4 > 0.

}
(10)

If conditions specified in (10) hold, then the equilibrium point E2 is locally
asymptotically stable.

(c) Second axial equilibrium point E3. Evaluating the Jacobian matrix (4) about E3, we
get

J
(
E3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

rq – βqL3 0 0 0 0
0 –n̂1 0 0 n̂2

n̂3 n̂4 –n̂5 0 0
0 0 α

q
L –m3 0

0 0 0 α
q
P –m4

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

with

n̂1 = –m1 –
bqWA3

KE
, n̂2 = bqW

(
1 –

E3

KE

)
, n̂3 = θqL,

n̂4 =
(

1 –
L3

Kq
L

)
, n̂5 = m2 +

α
q
EE

KL
.

From (11) we can observe that –rq( βqL3

rq – 1) is an eigenvalue, and other eigenvalues
can be determined from the characteristic polynomial

λ4 + d1λ
3 + d2λ

2 + d3λ + d4 = 0



Daudi et al. Advances in Difference Equations         (2021) 2021:99 Page 13 of 27

with

d1 = m1 + m3 + m4 + n̂5,

d2 = n̂1n̂5 + m3m4 + (m3 + m4)(n̂1 + n̂5),

d3 = n̂1n̂5(m3 + m4) + m3m4(n̂1 + n̂5),

d4 = m3m4n̂1n̂5 – n̂2n̂4α
q
Lα

q
P.

Ahmed et al. [31] presented some Routh–Hurwitz stability conditions for
fractional-order systems. One well-known Routh–Hurwitz condition is that an
equilibrium point is locally stable if all eigenvalues of the community matrix satisfy
the condition |arg(λi)| > qπ

2 . The Routh–Hurwitz criteria for the local asymptotic
stability of the equilibrium point E3 are

ξ1 = d1 > 0, d3 > 0, d4 > 0,
ξ2 = d1d2d3 – d2

3 – d2
1d4 > 0.

}
(12)

Since the existence of the equilibrium point E3 is based on R0 > 1, (2), we conclude
that the equilibrium point E3 is locally asymptotically stable provided that
conditions (12) hold and (i) rq < βqL3 and (ii) R0 > 1.

(d) Interior equilibrium point E4. Evaluating the Jacobian matrix (4) about E4, we get

J
(
E4) =

⎡
⎢⎢⎢⎢⎢⎢⎣

n1 0 –n2 0 0
0 –n3 0 0 n4

n5 n6 n7 0 0
0 0 α

q
L –m3 0

0 0 0 α
q
P –m4

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

with

n1 = rq –
2Mrq

KM
– βqL, n2 = –βqM, n3 = –m1 –

bqWA
KE

,

n4 = bqW
(

1 –
E

KE

)
, n5 = θqL, n6 =

(
1 –

L
Kq

L

)
α

q
E ,

n7 = θqM – m2 –
α

q
EE

KL
.

The characteristic equation of (13) is

λ5 + z1λ
4 + z2λ

3 + z3λ
2 + z4λ + z5 = 0,

where

z1 = m3 + m4 + n3 – n1 – n7,

z2 = n2n5 – n1n3 + m3(m4 + n3 – n1 – n7) + n1n7 – n3n7 – m4(n1 – n3 + n7),

z3 = n3(n1n7 + n2n5) + m4
(
n2n5 – n3n7 + n1(n7 – n3)

)
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– m3
(
n1(n3 – n7) + n3n7 + m4(n1 – n3 + n7) – n2n5

)
,

z4 = n3m4(n2n5 + n1n7) + m3
(
n3(n2n5 + n1n7) + m4

(
n2n5 – n3n7 + n1(n7 – n3)

))

– α
q
Lα

q
Pn4n6,

z5 = α
q
Lα

q
Pn1n4n6 + n3m3m4(n2n5 + n1n7).

The Routh–Hurwitz criteria necessary and sufficient for local asymptotic stability of
the equilibrium point E4 are that the Hurwitz determinants Hi are all positive [32].
For a fifth-degree polynomial, these criteria are

H1 = z1 > 0,
H2 = z1z2 – z3 > 0,
H3 = z1z2z3 + z1z5 – z2

1z4 – z2
3 > 0,

H4 = (Z3z4 – z2z5)(z1z2 – z3) – (z1z4 – z5)2 > 0,
H5 = c5H4 > 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(14)

Thus we have the following result.

Theorem 3.3 The interior equilibrium point E4 is locally asymptotically stable if condi-
tions in (14) hold; otherwise, it is unstable.

3.5 Global stability of equilibrium points
In this section, we study the global stability of the equilibrium points E1, E2, E3, and E4

determined earlier.
(a) Trivial equilibrium point E1. Let us consider the Lyapunov function

U1(M, E, L, P, A) = M(t) +
(

m4

bqW

)
E(t) +

(
m1m4

bqWα
q
E

)
L(t)

+
(

m1m2m4

bqWα
q
Eα

q
L

)
P(t) +

(
m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)
A(t).

As we can observe, the Lyapunov functional U1(M, E, L, P, A) is defined, continuous,
and positive definite for all M(t), E(t), L(t), P(t), and A(t). It is evident that U1

vanishes at E1. The fractional derivative of U (t) along the solutions of system (1)
leads to

c
t0 Dq

t U1(t) = c
t0 Dq

t M(t) +
(

m4

bqW

)
c
t0 Dq

t E(t) +
(

m1m4

bqWα
q
E

)
c
t0 Dq

t L(t)

+
(

m1m2m4

bqWα
q
Eα

q
L

)
c
t0 Dq

t P(t) +
(

m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)
c
t0 Dα

t A(t)

= rqM(t)
(

1 –
M(t)
Kq

M

)
– βqL(t)M(t)

+
(

m4

bqW

)(
bq

(
1 –

E(t)
Kq

E

)
WA(t) – m1E(t)

)

+
(

m1m4

bqWα
q
E

)(
α

q
E

(
1 –

L(t)
Kq

L

)
E(t) + θqL(t)M(t) – m2L(t)

)
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+
(

m1m2m4

bqWα
q
Eα

q
L

)(
α

q
LL(t) – m3P(t)

)

+
(

m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)(
α

q
PP(t) – m4AV

)

= –m4
E(t)A(t)

KE
– m1m2

E(t)L(t)
KL

–
m1m2m3m2

4

bqWα
q
Eα

q
Lα

q
P

×
(

1 –
bqWα

q
Eα

q
Lα

q
P

m1m2m3m4

)
A(t) – θq

(
bqWα

q
Eβq

m1m4θq – 1
)

L(t)M(t)

+ rqM(t)
(

1 –
M(t)
Kq

M

)

= –m4
E(t)A(t)

KE
– m1m2

E(t)L(t)
KL

–
m4

R0
(1 – R0)A(t)

– θq
(

bqWα
q
Eβq

m1m4θq – 1
)

L(t)M(t) + rqM(t)
(

1 –
M(t)
Kq

M

)
.

Note that c
t0 Dq

t U1(t) = 0 if M(t) = Kq
M , R0 = 1, and m1m4θ

q ≤ bqWα
q
Eβq. Thus

c
t0 Dq

t U1(t) is negative definite if M(t) = Kq
M , R0 ≤ 1, and m1m4θ

q ≤ bqWα
q
Eβq.

Therefore we have the following theorem.

Theorem 3.4 The trivial equilibrium point E1 is globally asymptotically stable if M(t) =
Kq

M , R0 ≤ 1, and m1m4θ
q ≤ bqWα

q
Eβq; otherwise, it is unstable.

(b) First axial equilibrium point E2. Define the function

U2(M, E, L, P, A) = M(t) – M∗ – M∗ ln
M(t)
M∗ +

(
m4

bqW

)
E(t)

+
(

m1m4

bqWα
q
E

)
L(t) +

(
m1m2m4

bqWα
q
Eα

q
L

)
P(t)

+
(

m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)
A(t).

Evidently, the function U2(M, E, L, P, A) is defined, continuous, and positive definite
for all M(t), E(t), L(t), P(t), and A(t). Furthermore, U2 vanishes at E2. Hence the
fractional derivative of U2(t) along the solutions of the system satisfies

c
t0 Dq

t U2(t) ≤
(

1 –
M∗

M(t)

)
c
t0 Dq

t M(t) +
(

m4

bqW

)
c
t0 Dq

t E(t) +
(

m1m4

bqWα
q
E

)
c
t0 Dq

t L(t)

+
(

m1m2m4

bqWα
q
Eα

q
L

)
c
t0 Dq

t P(t) +
(

m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)
c
t0 Dα

t A(t)

= –rqM∗
(

1 –
M(t)
Kq

M

)(
1 –

M(t)
M∗

)
– m4

E(t)A(t)
KE

– m1m2
E(t)L(t)

KL

–
m1m2m3m2

4

bqWα
q
Eα

q
Lα

q
P

(
1 –

bqWα
q
Eα

q
Lα

q
P

m1m2m3m4

)
A(t)

–
βqbqWα

q
E + m1m4θ

q

bqWα
q
E

(
1 –

βqbqWα
q
E

m1m4θq + βqbqWα
q
E

M∗

M(t)

)
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= –rqM∗
(

1 –
M(t)
Kq

M

)(
1 –

M(t)
M∗

)
– m4

E(t)A(t)
KE

– m1m2
E(t)L(t)

KL

–
βqbqWα

q
E + m1m4θ

q

bqWα
q
E

(
1 –

βqbqWα
q
EM∗

(m1m4θq + βqbqWα
q
E)M(t)

)

–
m1m2m3m2

4

bqWα
q
Eα

q
Lα

q
P

(1 – R0)A(t).

Therefore c
t0 Dq

t U2(t) is negative definite if the following conditions hold: (i) R0 ≤ 1,
(ii) M < M∗, (iii) βqbqWα

q
EM∗ ≤ (m1m4θ

q + βqbqWα
q
E)M(t). Therefore we have the

following theorem.

Theorem 3.5 The trivial equilibrium point E2 is globally asymptotically stable if the
following conditions hold: (i) R0 ≤ 1, (ii) M < M∗, and (iii) βqbqWα

q
EM∗ ≤ (m1m4θ

q +
βqbqWα

q
E)M(t); otherwise, it is unstable.

(c) Global stability of equilibrium points E3 and E4. We will use the following Lyapunov
function to investigate the global stability of the equilibrium points E3 and E4:

U3(t) = a0

[
M(t) – M∗ – M∗ ln

(
M(t)
M∗

)]
+ a1

[
E(t) – E∗ – E∗ ln

(
E(t)
E∗

)]

+ a2

[
L(t) – L∗ – L∗ ln

(
L(t)
L∗

)]
+ a3

[
P(t) – P∗ – P∗ ln

(
P(t)
P∗

)]

+ a4

[
A(t) – A∗ – A∗ ln

(
A(t)
A∗

)]
,

where a1, a2, a3, and a4 are positive constants to be determined. Let
g0(M) = rq(1 – M

Kq
M

), g1(E, A) = bq(1 – E
Kq

E
)WA, and g2(E, L) = α

q
E(1 – L

Kq
L

)E. Recall that
at this equilibrium, we have the following identities:

g0(M) = βqL∗M∗, g1(E∗, A∗) = m1E∗, g2(E∗, L∗) + θqL∗M∗ = m2L∗,
α

q
LL∗ – m3P∗, α

q
PP∗ = m4A∗.

}

Setting

a1 = g2(E∗, L∗), a3 = g1(E∗ ,A∗)g2(E∗ ,L∗)
α

q
LL∗ ,

a2 = g1(E∗, A∗), a4 = g1(E∗ ,A∗)g2(E∗ ,L∗)
α

q
PP∗ ,

⎫⎬
⎭

it follows from Lemma 2.1 that

c
t0 Dα

t U2(t)

≤
(

1 –
M∗

M(t)

)
c
t0 Dq

t M(t) + g2
(
E∗, L∗)(1 –

E∗

E(t)

)
c
t0 Dq

t E(t)

+ g1
(
E∗, A∗)(1 –

L∗

L(t)

)
c
t0 Dq

t L(t)
(

g1(E∗, A∗)g2(E∗, L∗)
α

q
LL∗

)(
1 –

P∗

P(t)

)
c
t0 Dq

t P(t)

+
(

g1(E∗, A∗)g2(E∗, L∗)
α

q
PP∗

)(
1 –

A∗

A(t)

)
c
t0 Dq

t A(t)
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= g0
(
M∗)(1 –

M∗

M

)(
g(M)
g(M∗)

–
LM

L∗M∗

)
+ θqg1

(
E∗, A∗)(1 –

L
L∗

)(
1 –

M
M∗

)

+ g2
(
E∗, L∗)(1 –

E∗

E

)(
g1(E, A) – g1

(
E∗, A∗) E

E∗

)

+ g1
(
E∗, A∗)(1 –

L∗

L

)(
g2(E, L) – g2

(
E∗, L∗) L

L∗

)

+
(

g1(E∗, A∗)g2(E∗, L∗)
α

q
LL∗

)(
1 –

P∗

P

)(
α

q
LL – α

q
LL∗ P

P∗

)

+
(

g1(E∗, A∗)g2(E∗, L∗)
α

q
PP∗

)(
1 –

A∗

A

)(
α

q
PP – α

q
PP∗ A

A∗

)

= g0
(
M∗)(1 –

M∗

M

)(
g(M)
g(M∗)

–
LM

L∗M∗

)
+ θqg1

(
E∗, A∗)(1 –

L
L∗

)(
1 –

M
M∗

)

+ g1
(
E∗, A∗)g2

(
E∗, L∗)(1 –

E
E∗ –

E∗g1(E, A)
Eg1(E∗, A∗)

+
g1(E, A)

g1(E∗, A∗)

)

+ g1
(
E∗, A∗)g2

(
E∗, L∗)(3 –

A
A∗ –

A∗P
AP∗ –

P∗L
PL∗ –

L∗g2(E, L)
Lg2(E∗, L∗)

+
g2(E, L)

g2(E∗, L∗)

)
.

Let �(x) = 1 – x + ln x for x > 0. It follows that �(x) ≤ 0 with the equality if and only
if x = 1. Using this relation, we have

1 –
E
E∗ –

E∗g1(E, A)
Eg1(E∗, A∗)

+
g1(E, A)

g1(E∗, A∗)

= �

(
E∗g1(E, A)
Eg1(E∗, A∗)

)
–

E
E∗

+
g1(E, A)

g1(E∗, A∗)
– ln

(
E∗g1(E, A)
Eg1(E∗, A∗)

)

≤ g1(E, A)
g1(E∗, A∗)

– ln

(
g1(E, A)

g1(E∗, A∗)

)
–

E
E∗ + ln

(
E
E∗

)
.

Similarly, we can write

3 –
A
A∗ –

A∗P
AP∗ –

P∗L
PL∗ –

L∗g2(E, L)
Lg2(E∗, L∗)

+
g2(E, L)

g2(E∗, L∗)

= �

(
A∗P
AP∗

)
+ �

(
A∗P
AP∗

)
+ �

(
L∗g2(E, L)
Lg2(E∗, L∗)

)
–

A
A∗

+
g2(E, L)

g2(E∗, L∗)
– ln

(
A∗g2(E, L)
Ag2(E∗, L∗)

)

≤ g2(E, L)
g2(E∗, L∗)

– ln

(
g2(E, L)

g2(E∗, L∗)

)
–

A
A∗ + ln

(
A
A∗

)
.

Therefore c
t0 Dq

t U3(t) is negative definite if the following conditions hold:
(i) (1 – M∗

M )( g(M)
g(M∗) – LM

L∗M∗ ) ≤ 0,
(ii) (1 – L

L∗ )(1 – M
M∗ ) ≤ 0.

Therefore we have the following theorem.
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Theorem 3.6 The equilibrium points E3 and E4 are globally asymptotically stable if the
following conditions hold:

(i) (1 – M∗
M )( g(M)

g(M∗) – LM
L∗M∗ ) ≤ 0

(ii) (1 – L
L∗ )(1 – M

M∗ ) ≤ 0;
otherwise, they are unstable.

4 Numerical results
4.1 Model parameterization
In this section, we present the baseline values for the model parameters. Majority of the
parameter values are taken from previously published studies, and a few not available in
literature were estimated within plausible and reasonable ranges so as to draw reasonably
realistic scenarios.

(i) Natural mortality rate of adult FAW μA: The life span of female adult FAW is 15–21
days. It follows that the natural mortality rate of the moth is

μA =
1

expected lifetime
.

(ii) Egg laying rate b and life span of adult moth μ–1
A : During its entire life span of

15–21 days and adult female FAW’s total egg production per female averages about
1500 with a maximum of over 2000 [28]. The average daily egg laying rate can be
expressed as follows:

eggs laid per day =
eggs laid in a lifetime

expected lifetime
.

Westbrook et al. [33] estimated that a female adult moth with a life span of 18 days
can oviposit about 125 eggs. Hence in our simulations, we set b = 125 eggs per day
and μA = 1/18 per day.

(iii) Egg hatching rate αE and gender ratio W : Mathematically, the egg hatching rate is
the inverse of average duration of the egg stage, that is,

αE =
1

Average duration of the egg stage
.

Depending on the climate, the duration of egg stage takes an average period of 2–3
days [3, 28]. Westbrook et al. [33] estimated a gender ratio of 50:50 males/females.

(iv) Average duration of the larval stage α–1
L : The duration of the larval stage is

influenced by climate changes. During summer periods, the larval stage is about 14
days and 30 days during cool weather [3, 28, 29].

(v) Average duration of the pupal stage α–1
P : Similarly to the larval stage, the pupal

stage also depends on the climate. It is about 8–9 days during summer but reaches
20–30 days during the winter [3, 28].

4.2 Sensitivity analysis of the reproduction number
Analytical results of the model have shown that the basic reproduction number is an im-
portant threshold parameter for the persistence and extinction of FAW during any out-
break. Since the parameters of the proposed model have either been drawn from literature
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Table 1 Sensitivity index of the basic reproduction number

Parameter b W uA αL uL αP uP μA αE

Sensitivity index +1 +1 –0.64 +0.61 –0.55 +0.50 –0.45 –0.36 +0.25
Parameter uE μL μP μE

Sensitivity index –0.23 –0.06 –0.05 –0.02

or estimated, there is need to investigate the influence of each parameter on the magni-
tude of the basic reproduction number R0 so as to understand the uncertainty regarding
their values. To infer on the relationship between the model parameters and individual
parameters, we conduct sensitivity analysis as follows.

Definition 4.1 (See [34]) The normalized sensitivity index of R0, which depends differ-
entiably on a parameter, say κ , is defined by

R0
κ =

∂R0

∂κ
× κ

R0
. (15)

The model parameters whose sensitivity index is positive will increase the size of R0

whenever they are increased, whereas those with negative index decrease R0 whenever
they are increased. It follows from (15) that the normalized sensitivity of R0 with regard
to the model parameters that define it is given by


R0
b = 1, 

R0
W = 1, R0

αi
= μi+ui

μi+αi+ui
> 0,

R0
μi

= – μi
μi+αi+ui

< 0, R0
μA

= – μA
μA+uA

< 0,


R0
ui = – ui

μi+αi+ui
< 0, 

R0
uj = – uA

μA+uA
< 0 for i = E, P, L.

⎫⎪⎬
⎪⎭ (16)

As we can observe from (16), the model parameters b, W , and αj (j = E, L, P, A) increase the
size of R0 whenever they are increased, whereas the model parameters μj and uj decrease
the size of R0 whenever they are increased. It is worth noting that an increase in either
b or W by 10% may result in an increase in the magnitude of R0 by 10%. However, an
increase by 10% of αj increases the size of R0 by a value less than 10%. In addition, note
that uj has a negative effect on R0, implying that intervention strategy has an impact on
extinction and persistence of FAW in the environment. Without loss of generality, we set
uE = uL = uP = uA = 0.3 and computed the sensitivity index for each model parameter that
defines R0. The results are presented in Table 1 and Fig. 2.

Numerical results in Table 1 suggests that pest control intervention strategies more ef-
fects on minimizing the FAW population in the field if such strategies target the adult
FAW population. Simulation results in Fig. 3 demonstrate the effects of varying the inter-
vention strategies on extinction and persistence of pests in the field. For simplicity, we set
u = uE = uL = uP = uA, whereas the other parameter values are taken from Table 2. From
the results we can note that any value of u > 0.5 leads to the extinction of the pest, and
persistence of the pests occurs for u < 0.5.

4.3 Population level effects
In this section, we conducted additional simulations to numerically illustrate the dynam-
ical behavior of system (1) and to validate the analytical results such as the stability of the
equilibria. We used the fractional Adam–Bashforth–Moulton method [35] to conduct the
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Figure 2 Sensitivity analysis of the basic reproduction number R0 with respect to model parameters.
Baseline values used given in Table 2. The exact numerical indices are also presented in Table 1, whereas
control parameters are set to uE = uL = uP = uA = 0.3. Overall, we can note that model parameters b andW are
highly correlated with R0. In particular, an increase in either b orW by 10% may result in an increase in the
magnitude of R0 by 10%

Figure 3 Effects of varying intervention strategies on the magnitude of R0. Here we set u = uE ,uL = uP = uA .
(a) Dynamics of R0 on a wide ranges of values for u. (b) Zoomed graph, that is, an illustration of the dynamics
of R0 for a refined range of values for u. From the results we can note that any value of u > 0.5 leads to the
extinction of the pest, and persistence of the pests occurs for u < 0.5

simulations, that is, for a differential equation

dαx(t)
dtα

= f
(
t, x(t)

)
,

the fractional variant of the one step Adam–Moulton method is given by

xn+1 =
[α]–1∑

i=0

ti
n+1
i!

xi
0 +

hα

�(α + 2)

n∑
i=0

ai,n+1f (ti, xi) +
hα

�(α + 2)
f
(
tn+1, xp

n+1
)
,

where ti = ih with some fixed h, and

ai,n+1 =

⎧⎨
⎩

nα+1 – (n – α)(n + 1)α , i = 0,

(n – i + 2)α+1 + (n – i)α+1 – 2(n – i + 1)α+1, 1 ≤ i ≤ n.
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Table 2 Model parameters and their baseline values

Symbol Definition Baseline value Source

b Number of eggs laid per day per female moth 125 eggs per moth per day [28]
W Proportion of female adult moth 0.5 [33]
α–1
E Average duration of egg stage 3 (3–5) days [28]

α–1
L Development time of the larva 14 (14–30) days [28]

α–1
P Development time of pupae 9 (8–30) days [28]

μ–1
A Moth life span 18 (15–21) days [28]

KM Maximum biomass of maize plants 50 kg plant–1 Estimate.
KE ,KL Egg environmental carrying capacity 108 Estimate.
KL Egg environmental carrying capacity 106 Estimate.
μE ,μL ,μP Natural mortality rate of immature stages 0.01 day–1 Estimate.
β Plant attack rate by caterpillars 5× 10–8 day–1 Estimate.
r Growth rate of maize plants 0.05 day–1 Estimate.
e Leaf impact factor 0.2 day–1 Estimate.
uE ,uL ,uP ,uA Implications of parasite control varied

To determine the error in this method, by assuming that ti = ih = iτ
N with some N ∈ N, we

have (see [35])

max
0≤i≤N

∣∣x(ti) – xi
∣∣ =

⎧⎨
⎩

O(h2), α ≤ 1,

O(h1+α), α < 1.

Simulating system (1), we assumed the following initial population levels: E(0) = 1000,
L(0) = P(0) = 0, A(0) = 500, and M(0) = 15.

Numerical results in Fig. 4 illustrate the dynamics of the pest and maize biomass when-
ever the reproduction ratio R0 is less than unity. As we can note, if the moth cannot pro-
duce more than one off-spring, then within a period of 200 days, all the FAW populations
(eggs, larvae, pupae, and moth) will become extinct, whereas the maize biomass will in-
crease with time till it reaches the expected maximum biomass per plant (50 kg plant–1).
We can also observe that the convergence of solutions to their respective limiting points in
time depends on the fractional order q: as q approaches unity, the time taken by solutions
to converge to the limiting point increases. From the simulation results shown in Fig. 5 we
can observe that whenever each female moth reproduces more than one off-spring, that
is, R0 > 1, then the pest population will persist in the field till the final harvesting time
t = 300 day. In addition, the final maize biomass per plant will be less than the expected
50 k,plant–1. Precisely, maize biomass increases from the start and reaches a maximum
of 50 kg plant–1 after approximately 100 days, and after that, it decreases gradually till it
stabilizes at approximated 18 kg plant–1. Figure 6 shows the solutions of model system
(1) for an experiment set up with small population sizes for the pest, that is, E(0) = 100,
L(0) = P(0) = 0, and A(0) = 50, together with a control rate of uE = uL = uP = uA = 0.45 day
–1, leading to R0 = 1.3583. Furthermore, q was fixed to 0.8. As we can observe, the pest
population increases rapidly within the first 100 days, and then it stabilizes. The maize
biomass also increases during the first 50 days and attains a maximum approximately close
to the expected value 50 kg plant–1, and then the biomass decreases gradually for approx-
imately 50 days before it becomes stable at approximately 50 kg plant–1. Overall, the egg
population will dominate all the pest populations.

Numerical results in Fig. 7 depicts the effects of a FAW outbreak with a large initial pest
life cycle population, E(0) = 2000, L(0) = P(0) = 0, and A(0) = 15, combined with less ef-
fective control measures, that is, uE = uL = 0.45, and uP = uA = 0. More often, pesticides,
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Figure 4 Numerical results of system (1) demonstrating the convergence of solutions to the pest-free
equilibrium for R0 ≤ 1. On construction of the simulations, we considered initial population levels discussed
earlier, while baseline values for the model parameters are as in Table 2. In addition, we set
uE = uL = uP = uA = 0.52 to obtain R0 = 0.8630. We can note that whenever R0 < 1, the pest population
becomes extinct while maize biomass increases with time, reaching its expected maximum of 50 kg plant–1

which are known to effectively control FAW, are expensive such that farmers in some ar-
eas rely on traditional methods of controlling the pest such as hand picking of caterpillars,
picking and destroying egg masses, spraying lime, salt, oil, and soap solution. Prior studies
suggests that traditional methods are less effective and are likely to eliminate the egg and
larvae population. Hence, in Fig. 7, we explore the effects of a FAW outbreak with a large
initial pest life cycle population coupled with less effective control measures. As we can
observe, an outbreak with a large pest population coupled with less effective control mea-
sure may result in the pest population increasing rapidly so that in less than 100 days, they
will reach their respective maximum. After an initial increase, the maize biomass would
gradually decrease to a level below its initial biomass. The results highlight the impor-
tance of effective control measure on increasing maize biomass whenever there is a FAW
outbreak.
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Figure 5 Numerical results of system (1) demonstrating the convergence of solutions to the pest persistence
equilibrium point for R0 > 1. Baseline values for the model parameters are as in Table 2. In addition, we set
uE = uL = uP = uA = 0.35 to obtain R0 = 2.8931. As we can observe, the solutions suggest that the pest will
persist in the field and the final maize biomass will be less than the expected 50 kg plant–1

5 Concluding remarks
In this study, we presented a Caputo fractional-order model for fall armyworm
(Spodoptera frugiperda) infestation in a maize field. Fall armyworm (Spodoptera
frugiperda) commonly known as FAW remain a major pest of maize. The pest has al-
ready been considered as one of the greatest threat to food security in Africa despite the
fact that it was first detected in 2016. The pest is highly destructive and fast spreading.
Moth are capable of flying up to 100 km in one night. Based on its destructiveness, there
is need to gain understanding the dynamics of this pest and the maize plant whenever
there is an outbreak. Through the use of mathematical models, it is possible to predict
many real-world problems in various fields such as agriculture, economics, biology, engi-
neering, and so on. In particular, mathematical models are capable of providing solutions
to phenomena that are difficult to measure in the field. Here fractional derivatives model
have been utilized to model the dynamics of FAW infestation in a maize field based on the
fact that fractional calculus is naturally related to many adaptive systems with memory
and hereditary properties, which widely exist in several fields such as biology, agriculture,
medicine, physics, chemistry, and engineering [21].
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Figure 6 Model solutions showing the effects of a FAW outbreak with a small initial pest life cycle population.
We considered E(0) = 100, L(0) = P(0) = 0, and A(0) = 50. Furthermore, we fixed q = 0.8 and
uE = uL = uP = uA = 0.45 to obtain R0 = 1.3583

Mathematical analysis of the proposed model reveals that there exists a threshold pa-
rameter, the basic reproduction number, which governs the persistence and extinction
of FAW in the field. Biologically, this basic reproduction number represents the average
number of newborns produced by one individual female moth during its life span. We have
noted that if one female moth is not capable of producing more than one off-spring, then
the pest population becomes extinct; otherwise, it persists. The basic reproduction num-
ber was qualitatively and quantitatively used to investigate the local and global stability
of the model steady state. For two steady states, the model has the pest-free equilibrium
and the pest persistence equilibrium. We have observed that both are locally and glob-
ally stable. In particular, the pest-free equilibrium point is both locally and globally stable
whenever the basic reproduction number is less than unity. However, when the basic re-
production number is greater than unity, there exists a pest persistence equilibrium point,
which is also both locally and globally stable.

We have also noted that the model parameters, the egg laying rate and proportion of
female moth in the environment, have a strong positive influence on increasing the size
of the basic reproduction number. Precisely, increasing in the proportion of female moth
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Figure 7 Model solutions showing the effects of a FAW outbreak with a large initial pest life cycle population,
E(0) = 2000, L(0) = P(0) = 0, and A(0) = 15, coupled with less effective control measures, that is, uE = uL = 0.45
and uP = uA = 0, leading to R0 = 58. We set q = 0.8

in the environment by a certain percent increases the size of the basic reproduction by a
similar percentage. FAW intervention strategies aimed at reducing moth population were
observed to have a stronger impact on reducing the size of the basic reproduction number
than any other model parameter. Numerical illustrations are included to support analytical
results and to explore optimal intervention levels essential to minimize persistence of the
pest population. We also used numerical simulations to illustrate the impact of initial pest
population level during an outbreak on maize growth in a field.

The proposed model is not exhaustive. In the future work, we will explore the effects
of temperature and seasonal variation on the dynamics of FAW and its implications on
maize growth. In the current study, we found that there is a need for better metadata in
plant population studies to help explain calibration and validation of proposed models.
Although we did not manage to validate the proposed model with data, due to its unavail-
ability, the proposed model and results will certainly improve the existing knowledge on
FAW dynamics and its implications in maize crops.



Daudi et al. Advances in Difference Equations         (2021) 2021:99 Page 26 of 27

Acknowledgements
Salamida Daudi acknowledges the financial support received from the National Institute of Transport (NIT), Tanzania.
Other authors are also grateful to their respective institutions for the support. In addition, the authors are grateful to the
two anonymous referees and the handling editor for their invaluable comments and suggestions, which have helped to
significantly improve the presentation of this work.

Funding
Not applicable.

Availability of data and materials
All the datasets used and generated in this study are included in the manuscript.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Formal analysis and Methodology, SD; Supervision and writing review, LL, MK, DK, and SM. All the authors read and
approved the final manuscript.

Author details
1School of Computational and Communication Science Engineering, The Nelson Mandela African Institute of Science
and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania. 2Department of Mathematics, Humanities and Social Science
(MHSS), National Institute of Transport (NIT), Tanzania, P.O. Box 705, Dar-es-Salaam, Tanzania. 3Institute of Mathematical
Science, Strathmore University, Nairobi, Kenya. 4Department of Biometry and Mathematics, Botswana University of
Agriculture and Natural Resources, Private Bag 0027, 24105, Gaborone, Botswana. 5Department of Mathematics,
University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 December 2020 Accepted: 25 January 2021

References
1. Rukundo, P., Karangwa, P., Uzayisenga, B., Ingabire, P., Waweru, W.B., Kajuga, J., Bizimana, P.: Outbreak of fall armyworm

(Spodoptera frugiperda) and its impact in Rwanda agriculture production. In: Niassy, S., Ekesi, S., Migiro, L., Otieno, W.
(eds.) Sustainable Management of Invasive Pests in Africa. Sustainability in Plant and Crop Protection, pp. 139–157.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41083-4_12

2. FAO: Trade reforms and food security: conceptualizing the linkages. Rome: Food and Agriculture Organization (2003)
(Accessed September 2020)

3. Assefa, F., Ayalew, D.: Status and control measures of fall armyworm (Spodoptera Frugiperda) infestations in maize
fields in Ethiopia: a review. Cogent. Food Agric. 5, 1641902 (2019)

4. FAO: Integrated management of the fall armyworm on maize a guide for farmer field schools in Africa (2018).
Retrieved from http://www.fao.org/faostat/en/ (Accessed September 2020)

5. Kandel, S., Poudel, R.: Fall armyworm (Spodoptera Frugiperda) in maize: an emerging threat in Nepal and its
management. Int. J. Appl. Sci. Biotechnol. 8, 305–309 (2020). https://doi.org/10.3126/ijasbt.v8i3.31610

6. Li, T., Viglialoro, G.: Analysis and explicit solvability of degenerate tensorial problems. Bound. Value Probl. 2018, 2
(2018). https://doi.org/10.1186/s13661-017-0920-8

7. Murcia, J., Viglialoro, G.: A singular elliptic problem related to the membrane equilibrium equations. Int. J. Comput.
Math. 90, 2185–2196 (2013)

8. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and
boundary conditions. Z. Angew. Math. Phys. 70, 86 (2019). https://doi.org/10.1007/s00033-019-1130-2

9. Mushayabasa, S., Bhunu, C.P.: Modelling the impact of early therapy for latent tuberculosis patients and its optimal
control analysis. J. Biol. Phys. 39, 723–747 (2013)

10. Kalinda, C., Mushayabasa, S., Chimbari, J.M., Mukaratirwa, S.: Optimal control applied to a temperature dependent
schistosomiasis model. Biosystems 175, 47–56 (2019)

11. Anguelov, R., Dufourd, C., Dumont, Y.: Mathematical model for pest–insect control using mating disruption and
trapping. Appl. Math. Model. 52, 437–457 (2017)

12. Faithpraise, F., Idung, J., Chatwin, C., Young, R., Birch, P.: Modelling the control of African armyworm (Spodoptera
exempta) infestations in cereal crops by deploying naturally beneficial insects. Biosyst. Eng. 129, 268–276 (2015)

13. Chàvez, J.P., Jungmann, D., Siegmund, S.: Modeling and analysis of integrated pest control strategies via impulsive
differential equations. Int. J. Differ. Equ. Appl. 2017, Article ID 1820607 (2017)

14. Hui, J., Zhu, D.: Dynamic complexities for prey-dependent consumption integrated pest management models with
impulsive effects. Chaos Solitons Fractals 29, 233–251 (2006)

15. Liang, J., Tang, S., Cheke, R.A.: An integrated pest management model with delayed responses to pesticide
applications and its threshold dynamics. Nonlinear Anal., Real World Appl. 13, 2352–2374 (2012)

16. Kang, B., He, M., Liu, B.: Optimal control of agricultural insects with a stage-structured model. Math. Probl. Eng. 2013,
Article ID 168979 (2013)

17. Tang, S., Tang, G., Cheke, R.A.: Optimum timing for integrated pest management: modelling rates of pesticide
application and natural enemy releases. J. Theor. Biol. 264, 623–638 (2010)

18. Chowdhury, J., Al Basir, F., Takeuchi, Y., Ghosh, M., Roy, P.K.: A mathematical model for pest management in Jatropha
curcas with integrated pesticides—an optimal control approach. Ecol. Complex. 37, 24–31 (2019)



Daudi et al. Advances in Difference Equations         (2021) 2021:99 Page 27 of 27

19. Rafikov, M., Balthazar, J.M., d Von Bremen, H.F.: Mathematical modeling and control of population systems:
applications in biological pest control. Appl. Math. Comput. 200, 557–573 (2008)

20. Helikumi, M., Kgosimore, M., Kuznetsov, D., Mushayabasa, S.: A fractional-order Trypanosoma brucei rhodesiense
model with vector saturation and temperature dependent parameters. Adv. Differ. Equ. 2020, 284 (2020)

21. Mouaouine, A., Boukhouima, A., Hattaf, K., Yousfi, N.A.: Fractional order SIR epidemic model with nonlinear incidence
rate. Adv. Differ. Equ. 2018, 160 (2018)

22. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astron. Soc.
13 (1967). Reprinted in Fract. Calc. Anal. 11, 4–14 (2008)

23. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential
Operators of Caputo Type. Springer, Berlin (2010)

24. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
25. Liang, S., Wu, R., Chen, L.: Laplace transform of fractional order differential equations. Electron. J. Differ. Equ. 2015, 139

(2015)
26. Vargas-De-Leòn, C.: Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci.

Numer. Simul. 24, 75–85 (2015)
27. Chapman, J.W., Williams, T., Martìnez, A.M., Cisneros, J., Caballero, P., Cave, R.D., Goulson, D.: Does cannibalism in

Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation? Behav. Ecol. Sociobiol. 48, 321–327
(2000)

28. FAO and PPD: Manual on integrated fall armyworm management (2020). http://doi.org/10.4060/ca9688en
29. Capinera, J.L.: (2000) Fall armyworm, Spodoptera frugiperda (JE Smith) (Insecta: Lepidoptera: Noctuidae). University of

Florida IFAS Extension
30. Sparks, A.N.: A review of the biology of the fall armyworm. Fla. Entomol. 62, 82–87 (1980)
31. Ahmed, E., El-Sayed, A., El-Saka, A.H.: Equilibrium points, stability and numerical solutions of fractional-order

predator–prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)
32. Lancaster, P.: Theory of Matrices. New York (1969)
33. Westbrook, J.K., Nagoshi, R.N., Meagher, R.L., Fleischer, S.J., Jairam, S.: Modeling seasonal migration of fall armyworm

moths. Int. J. Biometeorol. 60, 255–267 (2016)
34. Arriola, L., Hyman, J.: Lecture notes, forward and adjoint sensitivity analysis: with applications in Dynamical Systems,

Linear Algebra and Optimisation, Mathematical and Theoretical Biology Institute, Summer, 2005
35. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential

Operators of Caputo Type. Springer, Berlin (2010)



Results in Applied Mathematics 12 (2021) 100209

Contents lists available at ScienceDirect

Results in AppliedMathematics

journal homepage: www.elsevier.com/locate/results-in-applied-mathematics

A fractional-order fall armyworm-maize biomassmodel with
naturally beneficial insects and optimal farming awareness
Salamida Daudi a,b,∗, Livingstone Luboobi c, Moatlhodi Kgosimore d,
Dmitry Kuznetsov a

a School of Computational and Communication Science and Engineering, The Nelson Mandela African Institute of Science and
Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
b Department of Mathematics, Humanities and Social Science (MHSS), National Institute of Transport (NIT), P.O. Box
705, Dar-es-Salaam, Tanzania
c Department of Mathematics, Makerere University, P.O. Box 7062, Kampala, Uganda
d Department of Biometry and Mathematics, Botswana University of Agriculture and Natural Resources, Private Bag
0027, Gaborone, Botswana

a r t i c l e i n f o

Article history:
Received 9 August 2021
Received in revised form 8 October 2021
Accepted 13 October 2021
Available online xxxx

Keywords:
Fall armyworm
Mathematical model
Fractional calculus
Farming awareness
Natural enemies

a b s t r a c t

Maize remains an important food crop in Africa. However, the production of this crop,
and consequently the livelihood of the growers are threatened by the invasion and
widespread infestation of the fall armyworm which causes substantial maize yield losses.
In this paper, a fractional-order fall armyworm-maize biomass model with naturally
beneficial insects and optimal farming awareness has been formulated. Comprehensive
analysis of the model has shown that it contains five equilibrium points which are all
locally and globally asymptotically stable if the conditions outlined in Lemma 2.1 and 2.2
are met. We also carried out numerical simulations to support the analytical results and
to illustrate different dynamical regimes that can be observed in the model. We have
found that time-dependent farming awareness can significantly reduce fall armyworm
population if the cost of implementation is relatively low.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the last half century, invasive species have caused unprecedented challenges to agricultural systems globally. In
sub-Saharan Africa (SSA), agriculture is considered the primary source of livelihoods for most households [1,2]. However,
its contribution to food security and poverty reduction is hampered by several, often interacting, biotic and abiotic factors.
For instance, the recent invasion of fall armyworm (FAW-Spodoptera frugiperda JE Smith) in SSA has become a major threat
to food security in the region [2,3]. The first outbreak of FAW in Africa occurred in West Africa in 2016, and to date the
pest has spread to 44 countries in the continent [2]. The FAW can cause damage to more than 80 crop species, including
economically important crops such as maize, rice, sorghum, wheat, sugarcane and cotton just to mention a few.

Current estimates from 12 African countries suggest an annual loss of (4.1–17.6) million tons of maize due to FAW
infestations [2]. In particular, farm-level estimates from Ghana and Zambia suggest yield losses of (22–67) per cent [3],
47% in Kenya [4] and 9.4% in Zimbabwe [5] due to FAW infestations. In maize, FAW attacks all cropping stages from
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seedling emergence through to ear development. They defoliate and destroy young plants whereby, whorl damage can
result in yield losses, and ear feeding can result in the reduction of grain quality and yields [6]. The Management of the
FAW involves the integration of several approaches, including the use of insecticides, host plant resistance, and biological
control. However, all these approaches depend on several characteristics of the involved agro-ecosystems [7]. In South
America where the pest has been a challenge for quite sometime, the common management strategy has been the use of
insecticide sprays and genetically modified crops like Bt maize [6].

Due to financial challenges associated with most of African governments, alongside the cost associated with massive
spraying programs of chemical insecticides and the use of genetically modified crops like Bt maize, the effective
management of this pest in the continent remains a challenge [6]. In addition, excessive use of chemical insecticides
is associated with negative environmental effects and can lead to the development of pest resistance [8]. At the backdrop
of this, integrated pest management (IPM) has been gaining more attention among researchers and its application is also
increasing the crop yields [9,10]. This approach seeks to minimize the reliance on pesticides use by emphasizing the
application of biological control agents.

Mass media can affect the spread and attack poised by FAW during an outbreak. Furthermore, awareness campaigns,
particularly through various media outlets such as radio, newspapers, TV and so on, do not only make farmers aware of
FAW outbreaks but also improve trust on IPM a nation will be advocating for. In recent times, attention to health news has
been observed to play an integral role in disease management [11]. There is no doubt that correct and relevant knowledge
about maize crop and its pests is essential to farmers [10].

The main goal of this paper is to develop a mathematical model to assess the effects of media campaigns during a
FAW outbreak. Mathematical models of plant-pest interactions have provided insights into effective methods for effective
pest management as well as way of increasing plant productivity (e.g. [10,12–22]). In some of the studies (e.g. [10,12–
14,16,23]), mathematical models were used to investigate the effects of biological control on the dynamics of plant pest
interactions, while in other studies (e.g. [17–22]), pest management models based solely on chemical controls were
proposed and analyzed. For instance, Liu and Teng [18] utilized a mathematical model to assess the impact of spraying
pesticides at a fixed time on the pest reproductive cycles. Among several outcomes, their study showed that there exists
an optimal time for pest control if the pesticides were to be applied just before each birth pulse of the cycle. Wei [24]
proposed pest control models that incorporated birth pulse and were based on the assumption that pesticides killed adult
pests or larvae or both. Making use of numerical simulation, the study demonstrated that with the different elimination
rates for larvae and adults, the corresponding optimal times for pesticide applications were also different.

These studies and several others (e.g. [10,12–14,16–22,25]) have certainly produced many useful results and improved
the existing knowledge on plant-pest interaction dynamics. Despite of all these efforts, mathematical models for FAW
management during an outbreak are very few and of the few that exists there are some limitations; (i) majority of these
few were general and not pest-specific, which implies that their results were also general. Practically, pests are not general,
rather, they follow different biological development cycles, hence more informative plant-pest interaction models need
to be pest-specific and closely follow the life cycle of the pest involved (ii) the presented models utilized integer-order
differential equations (IDEs) which according to Caputo [26], do not replicate real-world problems nor capture memory
effects as compared to fractional calculus.

Furthermore, unlike IDEs, models based on fractional calculus have been found to be more accurate with regard to
describing rules and development processes of several phenomena in natural science [27] and this has been attributed
to the fact that fractional order models possess memory effects and hereditary properties. Hence, there has been
growing interest among researchers to use fractional calculus in modeling real-world problems, and some remarkable
achievements have been made [27]. Cognizant of this, a fractional order pest-plant based model has been proposed in the
present study with the aim to study the effects of educational campaigns and FAW larval predation on persistence and
extinction of the pest in a maize field. The model incorporates the maize biomass and two essential development stages
of the FAW, that is, the larval and the moth (adult). In addition, since FAW larvae are prey to several parasitoids, predators
and pathogens like birds, rodents, beetles, earwigs [28], the proposed model incorporates the predator population.

The rest of the paper is organized as follows: In Section 2, a fractional-order FAW model is proposed and analyzed. In
particular, the model’s steady states have been computed and their stability has been investigate as well. In Section 3, we
perform an optimal control study to determine the effects of farming on minimizing the effects of FAW on maize biomass,
through both mathematical analysis and numerical simulation. Finally, we conclude the paper with some discussion in
Section 4.

2. Model formulation and analytical results

2.1. Model formulation

We developed a mathematical model for FAW outbreak in a maize field focusing on investigating the effects of farming
awareness and biological control (FAW predators). The proposed model is based on fractional calculus of Caputo type [26].
The FAW population is subdivided into two classes; the larvae L(t) and the adult which also known as the moth A(t). The
FAW predator population is modeled by Z(t). Meanwhile, the dynamics of maize biomass are represented by M(t). The
proposed model is governed by the following assumptions:

2
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(i) We assume logistic growth for the density of maize biomass, with net growth rate r and carrying capacity KM . Let
β be the consumption rate by FAW larvae and e be the efficiency of biomass conversion. Awareness is assumed to
reduce the attack rate of the maize crop by FAW larvae by a factor 1 − u, with 0 ≤ u ≤ 1. Thus u = 0 implies
that awareness has no impact on reducing the attack rate of the maize plant by FAW whereas u = 1 implies that
farming awareness is 100% efficient in protecting the maize crop from FAW attack during an outbreak.

(ii) The dynamics of the FAW larvae are assumed to follow a logistic growth model, with net growth rate bL and the
carrying capacity KL. The larvae are assumed to progress to the adult stage after approximately 1/αL days. The
FAW larvae and adults suffer natural mortality at rates µL and µA, respectively. Apart from natural mortality, both
populations diminish due to mortality attributed to the mitigation strategies carried out by farmers as a result of
awareness, at the rate ud, where d is the mortality rate of the FAW larvae and adult. Note that if awareness does
not have an impact (u = 0) on FAW populations, then these populations suffer natural mortality only.

(iii) Even though biological control may not replace conventional insecticides, a number of parasitoids, predators and
pathogens like birds, rodents, beetles and earwigs readily attack the larvae [28]. To account for the effect of larval
predation, let σ be the attack rate of the larvae by predators and ρ be the efficiency of conversion. The average life
span of predators is assumed to be 1/η days.

Based on the above assumptions, the proposed model is summarized by the following system of nonlinear ordinary
differential equations (Fig. 1 shows the transition diagram):

c
aD

q
tM(t) = rqM

(
1 −

M
K q
M

)
− βq(1 − u)LM,

c
aD

q
t L(t) = bqLA

(
1 −

L
K q
L

)
+ eβq(1 − u)LM − σ qZL − (µL + αL + ud)L,

c
aD

q
t A(t) = α

q
L L − (µq

A + ud)A,
c
aD

q
t Z(t) = ρσ qLZ − ηqZ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1)

with initial conditions as:

M(0) ≥ 0, L(0) ≥ 0, A(0) ≥ 0, Z(0) ≥ 0. (2)

Here, c
aD

q
t represents the Caputo fractional derivative of order q (0 < q < 1). The Caputo fractional derivative of order q

is defined [29]:

c
aD

q
t f (t) =

1
Γ (n − q)

∫ t

0

f n(ξ )
(t − ξ )q+1−n dξ, n − 1 < q < n ∈ N,

where Γ represents the gamma function and the Riemann Liouville fractional integral of arbitrary real order q > 0 of a
function f (t) is defined by the following integral:

Jqf (t) =
1

Γ (q)

∫ t

0
(t − ξ )q−1f (ξ )dξ,

J0f (t) = f (t).

Remark 2.1. Note that, in order to avoid flaws regarding the time dimension, we introduced q in the model parameters
(right-hand side) of system (2) so that the dimensions of these parameters became (time)−q which is in agreement with
the left-hand side of the model.

2.2. Positivity and boundedness of solutions

In this section, we study the positivity and boundedness of solutions of the proposed fractional order model (2) to
establish if it is mathematically and biological poised. It follows from (2) that:

Theorem 2.1. Model (2) is positively invariant and bounded in R4
+
.

Proof. This begin by demonstrating that R4
+

= {(M, L, A, Z) ∈ R4
+

: M(0) ≥ 0, L(0) ≥ 0, A(0) ≥ 0, Z(0) ≥ 0} is positively
invariant. For that, we demonstrated that on each hyper-plane bounding the non-negative orthant, the vector field points
to R4

+
. Therefore, for M(0) ≥ 0, L(0) ≥ 0, A(0) ≥ 0, Z(0) ≥ 0, we have
c
aD

q
tM(t) |M=0 = 0,

c
aD

q
t L(t) |L=0 = bqLA ≥ 0,

c
aD

q
t A(t) |A=0 = α

q
L L ≥ 0,

c
aD

q
t Z(t) |Z=0 = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3)

3
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Fig. 1. Model flow diagram illustrating the dynamics of the FAW in a maize field. The fAW life cycle is divided into two classes; the larvae L(t)
and adult A(t) population. The FAW predator and maize biomass population are represented by compartment Z(t) and M(t) respectively. Continuous
lines indicate either inflow or outflow transition between compartments. Red and blue discontinuous arrows connecting compartment L(t) with
compartments Z(t) and M(t) show the interaction that occurs between the predators Z(t) and FAW larvae L(t) as well as with maize biomass M(t).
Note that the predator has an effect on larvae which in turn have an effect on maize biomass. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Based on the results in (3), it follows that model (2) is positively invariant in R4
+
. Further, from the first equation of model

(2), we demonstrate that M(t) ≤ KM , ∀t ≥ 0. If there exists t0 such that M(t0) > KM , then due to the continuity of M(t) :

∃Bϵ(t0) : ∀t ∈ Bϵ(t0) : M(t) > KM , (4)

so:

rM

(
1 −

M
KM

)
< 0. (5)

Thus c
t0D

qM(t) < 0. From the continuity of M(t) and dM
dt = limq→1−

c
t0D

qM(t) < 0, hence we conclude that M(t) is a
decreasing function for all t ≥ 0 and it follows that 0 ≤ M(t) ≤ M(0) ≤ KM , ∀t ≥ 0, and this is a contradiction to (4).
Thus M(t) ≤ KM , for all t ≥ 0. Using a similar approach it can easily be verified that 0 ≤ L(t) ≤ KL. Now, from the third
equation of system (2) we have:

c
aD

q
t A(t) = α

q
L L − (µq

A + udq)A

≤ αqK q
L − (µq

A + udq)A. (6)

Applying the Laplace transform one gets:

sqL[A(t)] − sq−1A(0) ≤
α
q
LK

q
L

s
− (µq

a + udq)L[A(t)]. (7)

After combining like terms one gets:

L[A(t)] ≤ α
q
LK

q
L

s−1

sq + (µq
a + udq)

+ A(0)
sq−1

sq + (µq
A + ud)

= α
q
LK

q
L

sq−(1+q)

sq + (µq
a + udq)

+ A(0)
sq−1

sq + (µq
a + udq)

. (8)
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Applying the inverse Laplace transform leads to:

A(t) ≤ L−1
{
α
q
LK

q
L

sq−(1+q)

sq + (µq
a + udq)

}
+ A(0)L−1

{
sq−1

sq + (µq
a + udq)

}
≤ α

q
LK

q
L t

qEq,q+1(−(µq
a + udq)tq) + A(0)Eq,1(−(µq

a + udq)tq)

≤
α
q
LK

q
L

(µq
A + ud)

(µq
A + ud)tqEq,q+1(−(µq

a + udq)tq) + A(0)Eq,1(−(µq
a + udq)tq)

≤ max

{
αqK q

L

(µq
a + udq)

, A(0)

}
((µq

a + udq)tqEq,q+1(−(µq
a + udq)tq) + Eq,1(−(µq

a + udq)tq))

=
C

Γ (1)
= CA, (9)

where Eq is the Mittag-Leffler function and CA = max
{

α
q
L K

q
L

(µq
a+udq)

, P(0)
}
. Thus, A(t) is bounded from above. From the last

equation of system (2) we have:
c
aD

q
t Z(t) = ρσ qLZ − ηqZ

≤ −(ηq
− ρσ qK q

L )Z . (10)

Applying the Laplace transform in the previous inequality, we get:

sqL[Z(t)] − sq−1Z(0) ≤ −(ηq
− ρσ qK q

L )L[Z(t)], (11)

which can be written as:

L[Z(t)] ≤ Z(0)
sq−1

sq + (ηq − ρσ qK q
L )

. (12)

Applying the inverse Laplace transforms leads to

Z(t) ≤ Z(0)Eq[−(ηq
− ρσ qK q

L )t
q
]. (13)

Hence, we conclude that Z(t) is bounded. □

2.3. Equilibrium points and their existence

The fractional-order model (2) has the following six equilibrium points:

(a) The trivial equilibrium point E0 : (M0, L0, A0, Z0) = (0, 0, 0, 0) always exists.

(b) The pest-extinction equilibrium point E1 : (M1, L1, A1, Z1) = (KM , 0, 0, 0) always exists.

(c) The plant-extinction equilibrium point E2 : (M2, L2, A2, Z2) where:

M2 = 0, L2 =
ηq

ρ
, A2 =

ηqαq

(µq
A + udq)ρ

,

Z2 =
bqηq

+ ρK q
L (µ

q
L + αq

+ udq)
ρσ qK q

L

(
bqρK q

L

bqηq + ρK q
L (µ

q
L + udq + αq)

− 1

)
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (14)

Thus, the equilibrium point E2 makes biological sense if bqρKq
L

bqηq+ρKq
L (µ

q
L+udq+α

q
L )

> 1.

(d) The plant and predator-extinction equilibrium point E3 : (M3, L3, A3, Z3) where:

M3 = 0, L3 =
ηqK q

L

bq

(
bq

(µq
L + α

q
L + udq)

− 1

)
,

A3 =
α
q
LK

q
K (µ

q
L + α

q
L + udq)

bq(muq
A + udq)

(
bq

(µq
L + α

q
L + udq)

− 1

)
,

Z3 = 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(15)

Therefore the equilibrium point E3 exists and is biologically meaningful if bq > (µq
L + α

q
L + udq).

5
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(e) The predator-extinction equilibrium point is E4 : (M4, L4, A4, Z4) where:

M4 =

K q
M

[
rqbq + βqK q

L (µ
q
L + α

q
L + udq)

(
1 −

bq

(µq
L + α

q
L + udq)

)]
rqbq + e(βq(1 − u))2K q

MK q
L

,

L4 =
rqK q

L

rqbq + e(βq(1 − u))2K q
MK q

L

(
bq + eβq(1 − u)K q

M

(µq
L + αq + udq)

− 1

)
,

A4 =
rqαqkqL

(µq
A + udq)(µq

L + αL + udq)ñ

(
bq + eβq(1 − u)K q

M

(µq
L + α

q
L + udq)

− 1

)
,

Z4 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

where ñ = (rqbq + e(βq(1 − u))2K q
L K

q
M . It follows that the equilibrium point E4 exists and is biologically feasible if

bq + eβq(1 − u)K q
M > (µq

L + α
q
L + udq) with bq < (µq

L + α
q
L + udq).

(f) The coexistence equilibrium point E5 : (M5, L5, A5, Z5) where:

M5 =
K q
Mβqηq

rqρ

(
rqρ
βqηq − 1

)
L5 =

ηq

ηq , A5 =
ηqα

q
L

(µq
A + udq)ρ

,

Z5 =
K q
Me(βq(1 − u))2ηq

rqρσ q

(
rqρq

βqηq − 1

)

+
σ q(K q

L r
qρ(µq

L + α
q
L + udq)) + bq

rqρ

(
bqK q

L r
qρ

bqrqηq(µq
L + α

q
L + udq)K q

L rqρ
− 1

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(17)

Therefore, the equilibrium point E5 exists and is biologically meaningful if bqK q
L r

qρ > bqrqηq(µq
L + α

q
L + udq)K q

L r
qρ

with rqρ > βqηq.

2.4. Local stability analysis of the equilibrium points

The local stability analysis of for the fractional order model (2) around the above equilibrium points is obtained by
computing the Jacobian matrix corresponding to equilibrium points. The Jacobian matrix of system (2) is as follows:

J(M, L, A, Z) =

⎡⎢⎢⎢⎣
rq − βqL −

2rqM
K q
M

−βqM 0 0

eβq(1 − u)L n 0 −σ qL
0 α

q
L −(µq

A + udq) 0
0 ρZ 0 −ηq

+ ρL

⎤⎥⎥⎥⎦ . (18)

with n = bq + eβq(1 − u)M − σ qZ − (µq
L + α

q
L + udq) −

2bqL
Kq
L
. The local stability of the equilibrium points of model (2) is

now investigated making use of the Jacobian matrix (18) and Lemmas 2.1 and 2.2.

Lemma 2.1 ([30]). Consider the following fractional order system:
c
t0D

qx(t) = f (t, x),
x(0) = x0

}
(19)

where f (t, x) : R+
×Rn

→ Rn. The equilibrium points (14) are locally asymptotically stable if all eigenvalues λi of the Jacobian
matrix ∂ f (t,x)

∂x evaluated at the equilibrium points satisfy the following condition:

|arg(λi) >
qπ
2

.

Lemma 2.2 ([31], Routh–Hurwitz Criteria). Given the polynomial:

P(λ) = λn
+ a1λn−1

+ a2λn−2
+ a3λn−3

+ a4λn−4
+ · · · + an−1λ + an,

where the coefficients ai are real constants, i = 1, . . . , n, define the n Hurwitz matrices using the coefficients ai of the
characteristic polynomial

H1 =
[
a1
]
, H2 =

[
a1 1
a3 a2

]
, H3 =

[a1 1 0
a3 a2 a1
a5 a4 a3

]
,

6
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and

Hn =

⎡⎢⎢⎢⎢⎣
a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an

⎤⎥⎥⎥⎥⎦ ,

where aj = 0 if j > n. All of the roots of the polynomial P(λ) are negative or have negative real part if and only if the
determinants of all Hurwitz matrices are positive:

det(Hj) > 0, j = 1, 2, . . . , n.

Routh–Hurwitz criteria for n = 2, 3, and 4 are as follows:

(C1) n = 2 : a1 > 0, and a2 > 0,
(C2) n = 3 : a1 > 0, a3 > 0, and a1a2 > a3
(C3) n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a23 + a21a4.

Theorem 2.2.

(i) The trivial equilibrium point E0 is locally asymptotically unstable.
(ii) If bq < (µq

L + α
q
L + udq), then the pest-extinction equilibrium point E1 is locally asymptotically stable.

(iii) If rqρ < βqηq and condition (C1) of Lemma 2.2 holds, then the equilibrium point E2 is locally asymptotically stable,
otherwise it is unstable.

(iv) If bq + eβq(1− u)K q
M < (µq

L + αq
+ udq) and condition (C1) of Lemma 2.2 holds, then the equilibrium point E4 is locally

asymptotically stable, otherwise it is unstable.
(v) If condition (C2) of Lemma 2.2 holds, then the equilibrium point E5 is locally asymptotically stable, otherwise it is unstable.

Proof.

(i) The Jacobian matrix of system (2) evaluated at E0 is

J(E0) =

⎡⎢⎣rq 0 0 0
0 bq − (µq

L + α
q
L + udq) 0 0

0 α
q
L −(µq

+ udq) 0
0 0 0 0 −ηq

⎤⎥⎦ .

The eigenvalues of matrix J(E0) are λ1 = rq > 0, λ2 = bq − (µq
L + α

q
L + udq), λ3 = −(µA + udq) and λ4 = −ηq. Since

λ1 > 0 it follows that the trivial equilibrium point E0 is locally asymptotically unstable.

(ii) The Jacobian matrix of system (2) evaluated at E1 is

J(E1)

⎡⎢⎣−rq 0 0 0
0 bq − (µq

L + α
q
L + udq) 0 0

0 α
q
L −(µq

+ udq) 0
0 0 0 0 −ηq

⎤⎥⎦ .

The eigenvalues of matrix J(E0) are λ1 = −rq, λ2 = bq − (µq
L +α

q
L +udq), λ3 = −(µA +udq) and λ4 = −ηq. Following

Lemma 2.1, it can be observed that the equilibrium point E1 is locally asymptotically stable if bq < (µq
L + α

q
L + udq)

(iii) The Jacobian matrix of system (2) evaluated at E2 is:

J(E2) =

⎡⎢⎣ rq − βqL2 0 0 0
eβq(1 − u)L2 m̃ 0 −σ qL2

0 α
q
L −(µq

A + udq) 0
0 ρZ2 0 −ηq

+ ρL2

⎤⎥⎦ . (20)

with m̃ = bq − σ qZ2 − (µq
L + α

q
L + udq)− 2bqL2

Kq
L

. The eigenvalues of matrix (20) are λ1 = rq −
βqηq

ρ
, λ2 = −(µq

A + udq)

and the remaining eigenvalues can be obtained from the reduced matrix

J̃(E2) =

⎡⎣bq − σ qZ2 − (µq
L + α

q
L + udq) −

2bqL2
K q
L

−σ qL2

ρZ2 −ηq
+ ρL2

⎤⎦ , (21)

7
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whose characteristic equation is as follows

λ2
+ a1λ + a2 = 0, (22)

with

a1 = ηq
+ σ qZ2 + (µq

L + α
q
L + udq) − bq,

= ηq
+ σ q b

qηq
+ ρK q

L (µ
q
L + αq

+ udq)
ρσ qK q

L

(
bqρK q

L

bqηq + ρK q
L (µ

q
L + udq + αq)

− 1

)

+bq
(
(µq

L + α
q
L + udq)
bq

− 1

)

a2 = σ qηqZ2 + (ηq
− ρL2)

(
(µq

L + α
q
L + udq) +

2bL2
KL

− bq
)

= σ qηq b
qηq

+ ρK q
L (µ

q
L + αq

+ udq)
ρσ qK q

L

(
bqρK q

L

bqηq + ρK q
L (µ

q
L + udq + αq)

− 1

)
. (23)

Therefore, if rqρ < βqηq and condition (C1) of Lemma 2.2 holds, then the equilibrium point E2 is locally
asymptotically stable, otherwise it is unstable.

(iv) The Jacobian matrix of system (2) evaluated at E3 is

J(E3) =

⎡⎢⎢⎢⎣
rq − βqL3 0 0 0

eβqL3 bq − (µq
L + α

q
L + udq) −

2bqL3
K q
L

0 −σ qL3

0 α
q
L −(µq

A + udq) 0
0 ρZ3 0 −ηq

+ ρL3

⎤⎥⎥⎥⎦ . (24)

One can observe that, λ1 = rq −
βqηq

ρ
, λ2 = −(µq

A + udq) are some of the eigenvalues of the Jacobian matrix (24),
hence matrix (24) reduces to

J̃(E3) =

⎡⎣bq − (µq
L + α

q
L + udq) −

2bqL3
K q
L

−σ qL3

ρZ3 −ηq
+ ρL3

⎤⎦ . (25)

From (25) we have the characteristic equation

λ2
+ ā1λ + ā2 = 0, (26)

with

ā1 = bq
(
(ηq

+ µ
q
L + α

q
L + udq)

bq
− 1

)
+ 2ηq

(
bq

(µq
L + αq + udq)

− 1

)
,

ā2 = ηq(µq
L + αq

+ udq)

(
1 −

bq

(µq
L + αq + udq)

)(
1 −

ρK q
L

bq

(
bq

(µq
L + αq + udq)

− 1

))

+ 2(ηq)2
(
1 − ρ

ηqK q
L

bq

(
bq

(µq
L + αq + udq)

− 1

))(
bq

(µq
L + αq + udq)

− 1

)
. (27)

Thus, if rqρ < βqηq and condition (C1) of Lemma 2.2 holds, then the equilibrium point E3 is locally asymptotically
stable, otherwise it is unstable.

(iv) The Jacobian matrix of system (2) evaluated at E4 is

J(E4) =

⎡⎢⎢⎢⎣
rq − βqL4 −

2rqM4

K q
M

−βqM4 0 0

eβq(1 − u)L4 n̄ 0 −σ qL4
0 α

q
L −(µq

A + udq) 0
0 0 0 −ηq

+ ρL4

⎤⎥⎥⎥⎦ , (28)

8
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with n̄ = bq + eβq(1 − u)M4 − (µq
L + α

q
L + udq) −

2bqL4
Kq
L

. The eigenvalues of J(E4) are;

λ1 = −(µq
A + udq)

λ2 = −ηq
+ ρL4

= −ηq
−

ρrqK q
L

rqbq + e(βq(1 − u))2K q
MK q

L

(
1 −

bq + eβq(1 − u)K q
M

(µq
L + αq + udq)

)
. (29)

Hence, matrix (28) reduces to

J̃(E4) =

[
w1 −βqM4

eβq(1 − u)L4 w2

]
, (30)

with

w1 = rq − βqL4 −
2rqM4

K q
M

= rq −
βqrqK q

L

rqbq + e(βq(1 − u))2K q
MK q

L

(
bq + eβq(1 − u)K q

M

(µq
L + αq + udq)

− 1

)

−

2rq
[
rqbq + βqK q

L (µ
q
L + α

q
L + udq)

(
1 −

bq

(µq
L + α

q
L + udq)

)]
rqbq + e(βq(1 − u))2K q

MK q
L

,

w2 = bq + eβq(1 − u)M4 − (µq
L + α

q
L + udq) −

2bqL4
K q
L

= bq + eβq(1 − u)

K q
M

[
rqbq + βqK q

L (µ
q
L + α

q
L + udq)

(
1 −

bq

(µq
L + α

q
L + udq)

)]
rqbq + e(βq(1 − u))2K q

MK q
L

− (µq
L + α

q
L + udq) −

2bqrq

rqbq + e(βq(1 − u))2K q
MK q

L

(
bq + eβq(1 − u)K q

M

(µq
L + αq + udq)

− 1

)
.

From (30), the corresponding characteristic equation is

λ2
+ ã1λ + ã2 = 0, (31)

with

ã1 = −(w1 + w2),

ã2 = w1w2 +
eβ2q(1 − u)2rqK q

L

rqbq + e(βq(1 − u))2K q
MK q

L

(
bq + eβq(1 − u)K q

M

(µq
L + α

q
L + udq)

− 1

)
.

Therefore, if bq + eβq(1 − u)K q
M < (µq

L + α
q
L + udq) and condition (C1) of Lemma 2.2 holds, then the equilibrium

point E4 is locally asymptotically stable, otherwise it is unstable.
(vi) Since all the variables are non-zero at the coexistence equilibrium point, it follows that matrix J (18) is the Jacobian

matrix of system (2) at this equilibrium point. From (18) one can observe, that λ1 = −(µq
A +udq) and the remainder

can be obtained from the following reduced matrix:

J̄(E5) =

[
w̄1 −βqM5 0

eβqL5 w̄2 −σ qL5
0 ρZ5 w̄3

]
. (32)

where

w̄1 = rq − βqL5 −
2rqM5

K q
M

,

w̄2 = bq + eβq(1 − u)M5 − σ qZ5 − (µq
L + α

q
L + udq) −

2bqL5
K q
L

,

w̄3 = −ηq
+ ρL5. (33)

The corresponding characteristic equation at E5 becomes

λ3
+ a∗

1λ
2
+ a∗

2λ + a∗

3 = 0,

9
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with

a∗

1 = −(w̄1 + w̄2 + w̄3),
a∗

2 = w̄1(w̄2 + w̄2) + w̄2w̄3 + σρL5Z5 + e(βq)2L5M5,

a∗

3 = −w̄1(σ qρL5Z5 + w̄2w̄3) − e(βq)2L5M5w̄3.

Since λ1 < 0, it follows that condition (C2) of Lemma 2.2 holds, then the equilibrium point E5 is locally
asymptotically stable, otherwise it is unstable. This completes the proof. □

2.5. Global stability analysis of the equilibrium points

In this section, Lyapunov functions will be constructed in order to investigate the global stability of the equilibrium
points of the model. To simplify the analysis, let g0(M) = rqM(1 − M/KM ) and g1(L, A) = bL(1 − L/KL)A.

Theorem 2.3. The trivial equilibrium point E0 is globally asymptotically stable whenever:

eg0(M) + g1(L, A) ≤
(µq

L + α
q
L + udq)(µq

A + udq)A
α
q
L

+
σ qηq

ρ
Z .

Proof. Let us consider the following Lyapunov function:

U0(t) = eM(t) + L(t) +
(µq

L + α
q
L + udq)

α
q
L

A(t) +
1
ρ
Z(t). (34)

The fractional derivative of (34) along the solutions of system (2) leads to:

c
aD

q
tU0(t) ≤

c
aD

q
t [eM(t)] +

c
a D

q
t L(t) +

c
a D

q
t

[
(µq

L + α
q
L + udq)

α
q
L

A(t)

]
+

c
a D

q
t

[
1
ρ
Z(t)

]
= e[g0(M) − βq(1 − u)LM] + g1(L, A) + eβq(1 − u)LM − σ qZL − (µq

L + α
q
L + udq)L

+
(µq

L + α
q
L + udq)

α
q
L

[
α
q
L L − (µq

A + udq)A

]
+

1
ρ

[
ρσ qLZ − ηqZ

]

= eg0(M) + g1(L, A) −
(µq

L + α
q
L + udq)(µq

A + udq)A
α
q
L

−
ηq

ρ
Z . (35)

It follows that if M(t) = M0, L(t) = L0, A(t) = A0 and Z(t) = Z0, then c
aD

q
tU1(t) = 0. However, if:

eg0(M) + g1(L, A) ≤
(µq

L + α
q
L + udq)(µq

A + udq)A
α
q
L

+
σ qηq

ρ
Z < 0,

then c
aD

q
tU1(t) < 0 and the trivial equilibrium point E0 is globally asymptotically stable, otherwise it is unstable. This

completes the proof. □

Theorem 2.4. The equilibrium point E1 is globally asymptotically stable whenever:

eg0(M)

(
1 −

M∗

M
+ βq(1 − u)

LM∗

g0(M)

)
+ g1(L, A) −

(µq
L + α

q
L + udq)(µq

A + udq)A
α
q
L

−
σ qηq

ρ
Z ≤ 0.

Proof.

U1(t) = e

[
M(t) − M1 − M1 ln

(
M(t)
M1

)]
+ L(t) +

(µq
L + α

q
L + udq)

α
q
L

A(t) +
1
ρq Z(t). (36)

The fractional derivative of (36) along the solutions of system (2) leads to:

c
aD

q
tU1(t) ≤ e

(
1 −

M∗

M(t)

)
c
aD

q
tM(t) +

c
a D

q
t L(t) +

c
a D

q
t

[
(µL + αL + ud)

αL
A(t)

]
+

c
a D

q
t

[
1
ρ
Z(t)

]

= e

(
1 −

M1

M(t)

)
(g0(M) − βq(1 − u)LM) + g1(L, A) + eβq(1 − u)LM − σ qZL

10
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− (µL + αL + ud)L +
(µq

L + α
q
L + udq)

α
q
L

[
α
q
L L − (µq

A + udq)A

]
+

1
ρ

[
ρσ qLZ − ηqZ

]

= eg0(M)

(
1 −

M1

M
+ β(1 − u)

LM1

g0(M)

)
+ g1(L, A) −

(µL + αL + ud)(µq
A + udq)A

α
q
L

−
σ qηq

ρ
Z .

It follows that if M(t) = M1, L(t) = L1, A(t) = A1 and Z(t) = Z1, then c
aD

q
tU1(t) = 0. However, if:

eg0(M)

(
1 −

M1

M
+ βq(1 − u)

LM1

g0(M)

)
+ g1(L, A) −

(µq
L + α

q
L + udq)(µq

A + ud)A
α
q
L

−
σ qηq

ρ
Z < 0,

then c
aD

q
tU1(t) < 0 and the trivial equilibrium point E1 is globally asymptotically stable, otherwise it is unstable. This

completes the proof. □

Theorem 2.5. The equilibrium point E2 is globally asymptotically stable whenever:

g1(L2, A2)

(
1 −

L
L2

−
L2g1(L, A)
L2g(L2, A2)

+
g1(L, A)
g1(L2, A2)

)
+ L2

(
1 +

L
L2

−
A
A2

−
LA2

L2A

)
+ eg0(M) − eβq(1 − u)L2M ≤ 0.

Proof. Consider the Lyapunov functional:

U1(t) = eM(t) +

[
L(t) − L2 − L2 ln

(
L(t)
L2

)]
+

1
α
q
L

[
A(t) − A2 − A2 ln

(
A(t)
A2

)]

+
1
ρ

[
Z(t) − Z2 − Z2 ln

(
Z(t)
Z2

)]
. (37)

The fractional derivative of (37) along the solutions of system (2) leads to:

c
aD

q
tU2(t) ≤ e c

aD
q
tM(t) +

(
1 −

L3

L(t)

)
c
aD

q
t L(t) +

1
α
q
L

(
1 −

M3

M(t)

)
c
aD

q
t A(t)

+
1
ρ

(
1 −

Z3

Z(t)

)
c
aD

q
t Z(t). (38)

At the equilibrium point E2 we have the following identities:

(µq
L + α

q
L + udq)L2 = g1(L2, A2) − σ qZ2L2, (µq

A + udq)A2 = α
q
L L2, ηq

= σ qρL2.

Making use of these identities leads to

c
aD

q
tU2(t) ≤ g1(L2, A2)

(
1 −

L
L2

−
L2g1(L, A)
L2g1(L2, A2)

+
g1(L, A)
g1(L2, A2)

)
+ L2

(
1 +

L
L2

−
A
A2

−
LA2

L2A

)
+ eg0(M) − eβq(1 − u)L2M. (39)

We can note that, at the equilibrium point E3 one can easily verify that c
aD

q
tU2(t) = 0 and c

aD
q
tU2(t) < 0 if and only if:

g1(L2, A2)

(
1 −

L
L2

−
L2g1(L, A)
L2g1(L2, A2)

+
g1(L, A)
g1(L2, A2)

)
+ L2

(
1 +

L
L2

−
A
A2

−
LA2

L2A

)
+ eg0(M) − eβq(1 − u)L2M < 0.

Hence, if the above condition holds then E2 is globally asymptotically stable. This completes the proof. □

11
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Theorem 2.6. The equilibrium point E3 is globally asymptotically stable whenever:

g1(L3, A3)

(
1 −

L
L3

−
L3g1(L, A)
L3g1(L3, A3)

+
g1(L, A)
g1(L3, A3)

)
+ L3

(
1 +

L
L3

−
A
A3

−
LA3

L3A

)

+ eg0(M) − eβq(1 − u)L3M − ηqZ

(
1 −

σ q

ηq L3

)
≤ 0.

Proof. Consider the Lyapunov functional:

U3(t) = eM(t) +

[
L(t) − L3 − L3 ln

(
L(t)
L3

)]
+

1
α
q
L

[
A(t) − A3 − A3 ln

(
A(t)
A3

)]
+

1
ρ
Z(t). (40)

At the equilibrium point E3 we have the identities:

(µq
L + α

q
L + udq)L3 = g1(L3, A3), (µq

A + udq)A3 = α
q
L L3.

Utilizing these identities leads to the following result:

c
aD

q
tU3(t) ≤g1(L3, A3)

(
1 −

L
L3

−
L3g1(L, A)
L3g1(L3, A3)

+
g1(L, A)
g1(L3, A3)

)
+ L3

(
1 +

L
L3

−
A
A3

−
LA3

L3A

)

+ eg0(M) − eβq(1 − u)L3M − ηq

(
1 −

σ q

ηq L3

)
.

It follows that if M(t) = M3, L(t) = L3, A(t) = A3 and Z(t) = Z3, then c
aD

q
tU3(t) = 0. However, if:

g1(L3, A3)

(
1 −

L
L3

−
L3g1(L, A)
L3g1(L3, A3)

+
g1(L, A)
g1(L3, A3)

)
+ L3

(
1 +

L
L3

−
A
A3

−
LA3

L3A

)

+ eg0(M) − eβq(1 − u)L3M − ηq

(
1 −

σ q

ηq L3

)
< 0,

then c
aD

q
tU3(t) < 0 and it follows that equilibrium point E3 is globally asymptotically stable, otherwise it is unstable. This

completes the proof. □

Theorem 2.7. The equilibrium point E4 is globally asymptotically stable whenever:

g0(M4)

(
L
L4

+
g0(M)
g0(M4)

−
M4

M
g0(M)
g0(M4)

−
LM
L4M4

g0(M)
g0(M4)

)
+ L4

(
1 +

L
L4

−
A
A4

−
LA4

L4A

)

+g1(L4, A4)

(
1 +

g1(L, A)
g1(L4, A4)

−
L
L4

−
L4
L

g1(L, A)
g1(L4, A4)

)

+ eβq(1 − u)L4M4

(
1 +

LM
L4M4

−
L
L4

−
L4g1(L, A)
Lg(L4, A4)

)
≤ 0. (41)

Proof. Consider the Lyapunov functional:

U4(t) = +

[
M(t) − M4 − M4 ln

(
M(t)
M4

)]
+

[
L(t) − L4 − L4 ln

(
L(t)
L4

)]

+
1
α
q
L

[
A(t) − A4 − A4 ln

(
A(t)
A4

)]
+

1
ρ

[
Z(t) − Z4 − Z4 ln

(
Z(t)
Z4

)]
. (42)

At the equilibrium point E4 we have the following identities:

g0(M4) = βq(1 − u)L4M4,

g1(L4, A4) + eβq(1 − u)L4M4 − σ qL4Z4 = (µq
L + α

q
L + udq)L4,

12
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(µq
A + udq)A4 = α

q
L L4, σ qρL4 = η.

Utilizing these identities leads to the following result:

c
aD

q
tU4(t) ≤ g0(M4)

(
L
L4

+
g0(M)
g0(M4)

−
M4

M
g0(M)
g0(M4)

−
LM
L4M4

g0(M)
g0(M4)

)

+g1(L4, A4)

(
1 +

g1(L, A)
g1(L4, A4)

−
L
L4

−
L4
L

g1(L, A)
g1(L4, A4)

)

+ eβq(1 − u)L4M4

(
1 +

LM
L4M4

−
L
L4

−
L4g1(L, A)
Lg(L4, A4)

)

+L4

(
1 +

L
L4

−
A
A4

−
LA4

L4A

)
.

It follows that if M(t) = M4, L(t) = L4, A(t) = A4 and Z(t) = Z4, then c
aD

q
tU4(t) = 0. However, if:

g0(M4)

(
L
L4

+
g0(M)
g0(M4)

−
M4

M
g0(M)
g0(M4)

−
LM
L4M4

g0(M)
g0(M4)

)

+g1(L4, A4)

(
1 +

g1(L, A)
g1(L4, A4)

−
L
L4

−
L4
L

g1(L, A)
g1(L4, A4)

)

+ eβq(1 − u)L4M4

(
1 +

LM
L4M4

−
L
L4

−
L4g1(L, A)
Lg(L4, A4)

)

+L4

(
1 +

L
L4

−
A
A4

−
LA4

L4A

)
< 0,

then c
aD

q
tU4(t) < 0 and it follows that equilibrium point E4 is globally asymptotically stable, otherwise it is unstable. This

completes the proof. □

3. Optimal control problem

In this section, we investigate the role of time-dependent intervention strategies on minimizing the growth of the
FAW population during an outbreak. Precisely, we investigate the effects of time dependent awareness campaigns as an
intervention to control the growth of FAW population. Hence the constant awareness campaign parameter u in model (2)
is now considered to be time-dependent, that is, 0 ≤ u(t) ≤ umax < 1, where umax is the upper bound of the control
u(t), which reflects practical limitation on the maximum rate of control that can be implemented in a given period. In
what follows, we introduce an objective functional J which will be utilized to formulate the optimization problem of
interest. In particular, the overall objective here is to minimize the number of FAW larvae and moths over a finite time
interval [0, T ] at minimal costs. Mathematically, this can be captured as follows:

J[u(t)] = min
Ω

∫ T

0

[
L(t) + A(t) +

W
2
u2(t)

]
dt, (43)

subject to the system:

c
aD

q
tM(t) = rqM

(
1 −

M
K q
M

)
− βq(1 − u(t))LM,

c
aD

q
t L(t) = bqLA

(
1 −

L
K q
L

)
+ eβq(1 − u(t))LM − σ qZL − (µq

L + α
q
L + u(t)dq)L,

c
aD

q
t A(t) = α

q
L L − (µq

A + u(t)dq)A,
c
aD

q
t Z(t) = ρσ qLZ − ηqZ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(44)

In Eq. (43), W is known as the weight constant. The weight constant over the prescribed time frame is a measure of the
relative costs of the interventions over a finite time horizon. The optimal control problem hence becomes that, we seek
an optimal function, u∗(t), such that J(u∗(t)) = minΩ J(u(t)) subject to the state equations in system (44) with initial
conditions (2).

13
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3.1. Optimality system

We use Pontryagin’s maximum principle [32,33] to determine the necessary conditions that optimal controls must
satisfy. Through Pontryagin’s maximum principle, system (44) is converted into an equivalent problem, namely the
problem of minimizing the Hamiltonian H(t) given by:

H(t) = L(t) + A(t) +
W
2
u2(t)

+ λ1

[
rqM

(
1 −

M
K q
M

)
− βq(1 − u(t))LM

]

+ λ2

[
bqLA

(
1 −

L
K q
L

)
+ eβq(1 − u(t))LM − σ qZL − (µq

L + α
q
L + u(t)dq)L

]

+ λ3

[
α
q
L L − (µq

A + u(t)dq)A

]
+ λ4

[
ρσ qLZ − ηqZ

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)

where λ1(t), λ2(t), λ3(t) are λ4(t) are the adjoint variables corresponding to the states M(t), L(t), A(t) and Z(t).
Given an optimal control u∗(t) and the corresponding state solutions M , L, A and Z , there exist adjoint functions λi(t),

i = 1, 2, 3, 4 satisfying:

c
aD

q
t λ1(T − t) =

[
rq −

2rqM(T − t)
K q
M

− βq(1 − u(T − t))L(T − t)

]
λ1(T − t)

+eβq(1 − u(T − t))L(T − t)λ2(T − t),
c
aD

q
t λ2(T − t) = 1 − βq(1 − u(T − t))M(T − t)λ1(T − t) + α

q
Lλ3(T − t)

+σ qρZ(T − t)λ4(T − t) + eβq(1 − u(T − t))M(T − t)λ2(T − t)

−

[
α
q
L + µ

q
L + u(T − t)dq −

bqLA(T − t)
KL

+ σ qZ(T − t)

]
λ2(T − t),

c
aD

q
t λ3(T − t) = 1 − (µq

A + u(T − t)dq)λ3(T − t) + bL

(
1 −

L(T − t)
K q
L

)
λ2(T − t),

c
aD

q
t λ4(T − t) = −σ qL(T − t)λ2(T − t) + (σ qρL(T − t) − ηq)λ4(T − T ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(46)

with transversality conditions λi(T ) = 0 for i = 1, 2, 3, 4. Furthermore, the optimal controls are characterized by the
optimality conditions:

u(t) = min
{
max

{
0,

(eβqM + dq)Lλ2 + dqAλ3 − βqLMλ1

W

}
, umax

}
. (47)

4. Numerical results and discussions

In this section, we present some numerical results to support the analytical results presented in Sections 2 (2.2, 2.3, 2.4.
2.5) and 3. For the numerical simulations, we use a forward–backward sweep iterative scheme [33]. The initial population
levels were assumed as follows: M(0) = 15, L(0) = 500, A(0) = 100, and Z(0) = 50. All simulation of the model (2) was
done using the baseline values for model parameters presented in Table 1 obtained from different literature.

Before investigating the effects of time-dependent farming awareness on minimizing or eradicating FAW in the maize
field, we first simulate the model system (2) with constant awareness campaigns u. From the simulation in Fig. 2, we can
observe that at this level of farming awareness (u = 0.1), the maize biomass will increase from the start and converge to
35 biomass per plant which is less than the expected 50 biomass per plant. This suggests that while farming awareness
may minimize the effects of FAW on maize biomass, to some extent it cannot be highly effective towards achieving the
expected biomass per plant. However, in Fig. 3 we can observe that if u = 0.7, then the level of maize biomass converges
to the expected level even at different fractional order values. Thus, as the awareness level increases to levels close to
100% (u = 1), the FAW population decreases significantly and the final maize biomass reaches expected levels.

Next, we investigate the effects of time-dependent awareness campaigns u(t) on minimizing the damage on maize
biomass by FAW. Without loss of generality, we set q = 0.9 and u(t) = 0.03 per day with an upper bound of umax = 1.
The simulation results are presented in Fig. 4.

From the results in Fig. 4, one can note that in the presence of time-dependent farming awareness, the FAW population
(larvae and moth) decreases remarkably compared to when there is no time dependent farming awareness. We also note
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Fig. 2. Simulation results of model (2) with constant farming awareness u = 0.1 and different fractional order values.

Fig. 3. Simulation results of model (2) with constant farming awareness u = 0.7 and different fractional order values.
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Fig. 4. Simulation results of model (2) with time-dependent constant farming awareness 0 ≤ u(t) ≤ 1, q = 0.9 and W = 10.

Table 1
Model parameters and their baseline values.
Symbol Definition Baseline value Source

bL Growth rate of larva 1/14 day−1 [34]
α−1
L Average development time of the larva 30 Days [34]

µ−1
A Average moth life span 21 Days [34]

KM Maximum biomass of maize plants 50 plant−1 [35].
KL Egg environmental carrying capacity 106 [35].
µL Natural mortality rate of larva 0.01 Day−1 [35].
r Growth rate of maize plants 0.05 Day−1 [35].
e Efficiency of biomass conversion 0.2 [35].
β Plant attack rate by larvae 5 × 10−5 Day−1 [36].
σ Consumption rate of larva by predators 5 × 10−5 Day−1 [37].
ρ Conversion rate of prey to predator 0.1 Day−1 [38].
d Mortality of FAW due to intervention strategies 0.01 Day−1 [37].
η−1 Average life span of predator 100 Days [39].

that a significant decrease of the FAW larvae in the presence of optimal farming awareness will also lead to a slight
decrease of the predator population over time. The results also show that in the presence of optimal farming awareness,
the final maize biomass will be within the expected level. However, in the absence of optimal farming awareness the final
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Fig. 5. Simulation results of model (2) at low maximum intensity umax = 0.5, with q = 0.9 and W = 100.

biomass level will always be less than the expected final biomass. In addition, one can observe that the optimal control
profile (Fig. 4(d)) starts at umax = 1 and remains there for the greater part of time horizon (0 ≤ t ≤ 195 days) till it
drops close to the final period. This suggests that for one to attain the outcomes in Fig. 4, optimal farming awareness
efforts need to be maintained at their maximum intensity for the greater part of the time horizon and thereafter ceased
gradually till the final time.

The simulation results in Fig. 5 show the impact of the upper bound of the control variable umax on model solutions.
Here, we set umax = 0.5. We can note that in this scenario, the optimal efforts will need to be maintained at their
maximum intensity throughout the entire time horizon in order for the final maize biomass to be within the expected
level.

The simulation results in Fig. 6 show that the impact of the costs on the implementation of optimal farming awareness.
Here we set W = 1000. We note that when the costs of implementing farming awareness are high, the control profile
for u(t) does not start at its maximum, umax = 1, but begins on u(t) = 0.8, followed by a gradual decrease before it
stabilizes at u(t) = 0.4 after approximately 40 days from the start. The control profile stays at u(t) = 0.4 till the 150th
day after which it increases slightly to u(t) = 0.5 and immediately drops gradually to its minimum until the final time
horizon. Although the pattern of the control profile is complex, one can deduce that optimum results can be attained
if the intensity of the control u(t) is maintained between 0.4 and 0.5 (0.4 ≤ u(t) ≤ 0.5) for a greater part of the time
horizon.
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Fig. 6. Simulation results of model (2) at high cost of implementation, W = 1000, 0 ≤ u(t) ≤ 1, and q = 0.9.

5. Concluding remarks

We have formulated a fractional-order model that incorporates naturally beneficial insects and optimal farming
awareness. Dynamical analysis of the proposed model revealed that it has six equilibrium points which are all locally
and globally asymptotically stable if the conditions outlined in Lemmas 2.1 and 2.2 are met. The simulation results for
the model with constant awareness campaigns u, showed that u = 0.7 may lead to the achievement of the expected maize
biomass at the end of the season (that is t = 160 days) for fractional-order values q = 0.7, 0.8, 0.9. However for q = 1.0,
the final maize biomass at this level of awareness will be slightly less than the expected. For time-dependent farming
awareness, we observed that the expected maize biomass can be attained if the costs of implementing the strategy are
low. In addition, we observed that if the intensity of implementing is low, then the efforts can be carried out at their
maximum intensity throughout the time horizon but when costs are high, the control profile for u(t) does not start at
its maximum, umax = 1, rather at u(t) = 0.8 followed by a gradual decrease before it stabilizes at u(t) = 0.4 after
approximately 40 days from the start. Although this study is not exhaustive, it has illustrated the value of optimal control
theory as tool to suggest effective management strategies during FAW outbreaks. In future, we will explore the effects of
temperature and seasonal variation, migration of the moth and include the parameter of continuous replanting of maize
crops on the dynamics of FAW and its implications on maize biomass.
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Abstract: In this study, we present a non-autonomous model with a Holling type II functional
response, to study the complex dynamics for fall armyworm-maize biomass interacting in a periodic
environment. Understanding how seasonal variations affect fall armyworm-maize dynamics is critical
since maize is one of the most important cereals globally. Firstly, we study the dynamical behaviours
of the basic model; that is, we investigate positive invariance, boundedness, permanence, global
stability and non-persistence. We then extended the model to incorporate time dependent controls.
We investigate the impact of reducing fall armyworm egg and larvae population, at minimal cost,
through traditional methods and use of chemical insecticides. We noted that seasonal variations
play a significant role on the patterns for all fall armyworm populations (egg, larvae, pupae and
moth). We also noted that in all scenarios, the optimal control can greatly reduce the sizes of fall
armyworm populations and in some scenarios, total elimination may be attained. The modeling
approach presented here provides a framework for designing effective control strategies to manage
the fall armyworm during outbreaks.

Keywords: fall armyworm; maize; seasonal variations; mathematical model; optimal control

1. Introduction

Maize (Zea mays) is one of the most important cereals globally and is also referred as the “Queen
of Cereals” due to its high yield potential [1]. Demand for maize is increasing, not only because of its



147

higher nutritional benefits but also its ability to feed the growing global population and contribution to
food security [2]. According to food and agriculture organization (FAO) [3], food security is a
“situation that exists when all people, at all times, have physical, social, and economic access to
sufficient, safe, and nutritious food that meets their dietary needs and food preferences for an active
and healthy life”.

In many African countries, agriculture remains an important contributor to food security, despite its
inability to provide sufficient output to meet the needs of most of their populations. One of the main
threats to food security in these countries is the recent invasion by fall armyworm, (FAW-Spodoptera
frugiperda), a major pest of maize [2, 3], native to tropical and subtropical parts of America [2–4],
where it has more than 350 different crop and non-crop host plants [4]. The FAW was first reported in
West and Central parts of Africa in 2016 but it rapidly spread to other parts of the continent with high
devastating effect on maize production [2, 5, 6].

According to Goergen et al [8], the infestation of African countries with the FAW has huge
consequences for their economies, agricultural yield and access to overseas markets [8]. It is
estimated that about $US13 billion per annum in crop losses throughout sub-Saharan Africa are due
to FAW infestation, thus, threatening the livelihoods with a majority of poor farmers [7, 9]. For
instance, a recent research on the impact of FAW on maize biomass in Ghana and Zambia revealed
that the national mean loss of maize crops was 45% (range 22–67%) and 40% (range 25–50%)
respectively [2].

Like any other insect pests, weather conditions in a season have an effect on maize biomass and
FAW dynamics. Prior studies on pest biology have shown that the distribution and abundance of pests
is largely influenced by relationship between their developmental rates and temperature [10, 11]. In
particular, different development stages of insects are favored by different temperature ranges, hence,
temperature variations influence the development rates, duration of life cycles, and, ultimately, the
survival of insects [11]. Furthermore, an increase in the ambient temperature to the near thermal
optimum for insects causes increase in their metabolism, and, consequently, their activities [11]. Since
temperature fluctuates in the natural environment, it follows that the development rates of insects vary
seasonally. For FAW in particular, prior studies suggest that, populations in a given area directly
depend on the time in a season, host plants availability, and weather conditions [5]. Under unfavourable
weather condition and scarcity of food for the development and reproduction, FAW is forced to migrate
to other suitable locations for survival [5, 12].

As the evidence for climate impacts on FAW has increased, it is imperative that the mathematical
models designed to explore the relationship between FAW and maize crops accommodate the effects
of seasonal variations. The main goal of this study is to develop and analyze a non-autonomous FAW-
maize interaction model. Despite a considerable number of studies on plant-pest interactions (see, for
example, [15–23]), there are few studies that have been devoted to explore FAW and maize interaction.

One of the notable recent mathematical models for FAW and maize interaction was proposed by
Faithpraise and coworkers [16] who evaluated the effects of biocontrol on managing FAW infestations
in cereal crops among several other outcomes. The findings from their study revealed that, biocontrol
could significantly control FAW infestations in cereal crops. Although this study improved the existing
knowledge on FAW, one of its limitations was that development rates for the pest were all assumed to
be constant yet in reality these depends on time. Thus, the present study is motivated by this existing
research gap. Our results are new and, to our knowledge, very little work has been done so far on
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modelling and analysing the effects of seasonal variation in a FAW-maize interaction model with a
saturation functional response.

2. Basic non-autonomous model

2.1. Model derivations

Biologically, maize seed planted at the beginning of the season at time t = 0 germinates in 0 − 7
days [13]. Depending on the variety of maize seed planted, harvest of this crop which occurs at the
end of the season (90–164) days is influenced by the weather variations within a season. Since maize
growth is affected by weather condition fluctuation, the growth rates of their parts such as leaves,
cobs, kernel, and stems which in fact called biomass according to Chowdhury and Battude [14,22] are
weather dependent [13]. Motivated by recent mathematical models for plant-pest interactions (see., for
example [15–23], in this study we develop a non-autonomous model for FAW infestations in a field
of maize biomass under assumption that (i) once the FAW moths migrate into the field, no migration
out of the field occurs before the harvest (ii) weather condition fluctuation in a season have an impact
on maize biomass and FAW dynamics. The developed model subdivides the FAW population of life
cycle into subclasses as: eggs population E(t), larvae population L(t), pupae population P(t) and adult
population which are also known as moth A(t). On the other hand, we let the variable M(t) denote the
population density of maize biomass which grow logistically in the absence of the larvae with carrying
capacity KM and a net seasonal growth rate r(t). We assume that larvae with a mortality rate µL(t) is
the only threat to maize biomass throughout its growth period and the adult moth takes over in the
reproduction process. The life cycle of FAW starts when eggs are laid in masses on maize biomass,
mostly underside of these biomass [36]. We also assume that production of FAW egg is a logistic

growth b(t)
[
1 − E(t)

KE(t)

]
wA(t) with b(t) representing the average number of eggs laid by a proportion

w of moth, A(t) which are females. Since the growth of maize plants depends on seasonal variations,
it suffices to assume that the egg carrying capacity KE(t), egg hatching rate αE(t) and egg mortality
rate µE(t) are season-dependent. Furthermore, FAW larvae generally emerge simultaneously three to
five days following oviposition. Although, the FAW has six larval instar stages, we have considered
this as single group called larvae in order to reduce complexity of the model. Since the population size
of maize biomass is finite and independent of weather fluctuation and because the rate at which FAW
larvae consumes food decreases, a Holling type II functional response also known as the saturating
functional response is included in the equation capturing the dynamics of maize density and larvae
population with half saturation constant a(t). In particular, when FAW larvae feed on maize biomass,
the FAW larvae with an average duration of 1

αL(t) in the larval stage convert maize biomass into larvae’s
biomass at the rate e(t). Finally, pupation of the FAW normally occurs in the soil, at a depth of 2–8
cm [33]. We assume that, duration of the pupal stage with natural mortality rate µP(t) is denoted by 1

αP(t)
which after 8 days in the soil escapes as adult moth and start the cycle again. The model explanations
above can be represented schematically in Figure 1:
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Figure 1. Schematic representation of the model (1). The green square box represents Maize
biomass and the other dark red square boxes represent the four epidemiological stages of the
FAW, that is., egg E(t), larvae L(t), pupae P(t) and moth also known as the adult stage of FAW
A(t). Continuous arrows indicate either inflow or outflow transition between compartments.
Red dotted lines connecting compartments M(t) with compartments A(t) and L(t) shows the
interaction that occurs between the plant and adult FAW A(t) as well as the larvae L(t). Note
that the moth interacts with the maize plant when it lays eggs on maize biomass, while the
larvae feed on maize biomass.

The proposed model is summarized by the following system of nonlinear ordinary differential
Equations in (1)

dM(t)
dt

= r(t)
[
1 − M(t)

KM

]
M(t) − β(t)M(t)

a(t) + M(t)
L(t),

dE(t)
dt

= b(t)wA(t)
[
1 − E(t)

KE(t)

]
− [µE(t) + αE(t)]E(t),

dL(t)
dt

= αE(t)E(t) +
eβ(t)M(t)

a(t) + M(t)
L(t) − [αL(t) + µL(t)]L(t) − θ(t)L2(t),

dP(t)
dt

= αL(t)L(t) − [αp(t) + µP(t)]P(t),

dA(t)
dt

= αP(t)P(t) − µA(t)A(t).



(1)
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where µA(t) represents natural mortality rate of the moth (adult moth) and θ(t) is the density-dependent
death rate of larvae population. Thus, −θ(t)L2(t) reflects of predation, intra-specific and interspecific
competition that is known to exist on FAW larave population. Precisely, prior studies suggest that when
food is limited, the older FAW larvae exhibit a cannibalistic behavior on the smaller larvae [24, 25].

All model parameters that are functions of time depend on seasonal variations. For biological
significance, we assume that all these parameters are continuous and bounded functions defined on R+.

We now provide a comprehensive definition to model parameters that are meant to capture seasonal
fluctuations, that is;

r(t) = r0[1 + r1 cos(2πtω−1)], b(t) = b0[1 + b1 cos(2πtω−1)],
β(t) = β0[1 + β1 cos(2πtω−1)], KE(t) = KE01 + KE1 cos(2πtω−1),
a(t) = a0[1 + a1 cos(2πtω−1), αE(t) = αE0[1 + αE1 cos(2πtω−1),
µE(t) = µE0[1 + µE1 cos(2πtω−1), αL(t) = αL0[1 + αL1 cos(2πtω−1),
µL(t) = µL0[1 + µL1 cos(2πtω−1), θ(t) = θ0[1 + θ1 cos(2πtω−1),
αP(t) = αP0[1 + αP1 cos(2πtω−1), µA(t) = µA0[1 + µA1 cos(2πtω−1),
µP(t) = µP0[1 + µP1 cos(2πtω−1), e(t) = e0[1 + e1 cos(2πtω−1)],



(2)

where ω > 0 represent the period. Further, r0, β0, KE0 , a0, b0, αE0 , µE0 , e0, αL0 , µL0 , θ0, αP0 and µA0

are the baseline values or the time averages of r(t), KE(t), b(t), αE(t), µE(t), e(t), β(t), αL(t), µL(t), θ(t),
αP(t), µA(t), a(t), respectively, and r1, KM1 , β1, KE1 , a1, b1, αE1 , µE1 , e1, αL1 , µL1 , θ1, αP1 and µA1 denote
the magnitude of seasonal fluctuations. Note that 0 < r1 < 1, 0 < β1 < 1, 0 < KE1 < 1, 0 < a1 < 1,
0 < b1 < 1, 0 < αE1 < 1, 0 < µE1 < 1, 0 < e1 < 1, 0 < αL1 < 1, 0 < µL1 < 1, 0 < θ1 < 1, 0 < αP1 < 1
and 0 < µA1 < 1. From Eq (2) we can observe that all model parameters that account for seasonal
fluctuations are periodic (with period ω > 0 days), continuous and bounded below and above. Since∣∣∣cos(2πtω−1)

∣∣∣ ≤ 1 and 0 < r1 < 1, it follows that:

r0(1 − r1) ≤ r(t) ≤ r0(1 + r1). (3)

Therefore, we conclude that r(t) is bounded below and above. By following the same approach one
can easily verify that all the other periodic model parameters are bounded below and above. Next, we
investigate the dynamics of system (1), in particular we will focus on the positive invariance,
nonpersistence, permanence, global attractivity of the bounded positive solutions and the boundary
solution.

2.2. Positivity, boundedness and permanence of model solutions

In this subsection, we will prove for positivity, boundedness, global asymptotic stability of the
bounded positive solution and permanence of system (1).

Definition 1. The set of solution for the system (1) is said to be ultimately bounded if ∃M > 0, such
that for each solution (M(t), E(t), L(t), P(t), A(t)) of (1), there ∃T > 0, such that ‖(M(t), E(t),
L(t), P(t), A(t))‖ ≤ M ∀t > T, withM independent of a particular solution and T may depend on the
solution.

Definition 2. Model system (1) is said to be permanent if there exists δ+ and ∆+ with 0 < δ+ < ∆+ such
that:

min
{
lim inf

t→+∞
M(t), lim inf

t→+∞
E(t), lim inf

t→+∞
L(t), lim inf

t→+∞
P(t), lim inf

t→+∞
A(t)

}
≥ δ and,
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max
{

lim sup
t→+∞

M(t), lim sup
t→+∞

E(t), lim sup
t→+∞

L(t), lim sup
t→+∞

P(t), lim sup
t→+∞

A(t)
}
≤ ∆,

for all solutions of (1) with initial values being positive hold. Model system (1) is said to be non-
persistent if there exists a positive solution (M(t), E(t), L(t), P(t), A(t)) of system (1) satisfying:

min
{
lim inf

t→+∞
M(t), lim inf

t→+∞
E(t), lim inf

t→+∞
L(t), lim inf

t→+∞
P(t), lim inf

t→+∞
A(t)

}
= 0.

Given u ∈ C(R), we define Φ(u(s)) =
u(s)

a(s) + u(s)
and observe that, Φ(u) is a monotonic increasing

function. Defining;

M1 = supt∈R{KM}, m1 = inft∈R
{KM

r(t)
[r(t) − β(t)M3]

}
,

M2 = supt∈R
{ b(t)wM5

b(t)wM5 + αE(t) + µE(t)

}
, m2 = sup

t∈R

{ b(t)wm5

b(t)wm5 + αE(t) + µE(t)

}
,

M3 = supt∈R
{
αE(t)M2 +

eβ(t)Φ(M1)(t) − (µL(t) + αL(t))
θ(t)

}
, M4 = sup

t∈R

{
αL(t)M3

µP(t) + αP(t)

}
,

M5 = supt∈R
{
αP(t)M4

µA(t)

}
, m3 = inf

t∈R

{
αE(t)m2 +

eβ(t)Φ(m1)(t) − (µL(t) + αL(t))
θ(t)

}
,

m4 = inft∈R
{
αL(t)m3

µP(t)

}
, m5 = inf

t∈R

{
αP(t)m4

µA(t)

}
.



(4)

Then, we define condition (H1) using Eq (4) as follows:

(H1) :



inft∈R{[r(t) − β(t)M3]} > 0,

inft∈R
{
αE(t)M2 +

eβ(t)Φ(M1)(t) − (µL(t) + αL(t))
θ(t)

}
> 0,

inft∈R
{
αE(t)m2 +

eβ(t)Φ(m1)(t) − (µL(t) + αL(t))
θ(t)

}
> 0.



(5)

Using condition (H1) in Eq (5), we define the set:

Ω =



(
M(t), E(t), L(t), P(t), A(t)

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1 ≤ M(t) ≤ M1,

m2 ≤ E(t) ≤ M2,

m3 ≤ L(t) ≤ M3,

m4 ≤ P(t) ≤ M4,

m5 ≤ A(t) ≤ M5



.

Based on definitions 1 and 2, we have Theorem 1 and its proof is in Appendix A.

Theorem 1.
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(i) The solution set Ω of the system (1) is said to be positively invariant if condition (H1) holds and it is
permanent if the solution set Ωδ of the system (1) defined by:

Ωδ =



(
M(t), E(t), L(t), P(t), A(t)

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

mδ
1 ≤ M(t) ≤ Mδ

1,

mδ
2 ≤ E(t) ≤ Mδ

2,

mδ
3 ≤ L(t) ≤ Mδ

3,

mδ
4 ≤ P(t) ≤ Mδ

4,

mδ
5 ≤ A(t) ≤ Mδ

5,



.

is ultimately a bounded region of (1), where δ > 0 sufficiently small so that mδ
i > 0(i = 1, ..., 5) and

condition (H1) holds when Mi and mi are replaced by Mδ
i and mδ

i , respectively. Further, we define
Mδ

i =Mi + δ, mδ
i = mi − δ.

(ii) System (1) has at-least one ω− periodic solution (M∗(t), E∗(t), L∗(t), P∗(t), A∗(t)) ∈ Ω if condition
(H1) holds.

Biological implications of Theorem 1: Theorem 1 implies that model system (1) is biologically well-
poised, that is., the population of species under consideration are non-negative and bounded.

3. Dynamical behaviors of the non-autonomous model with optimal control

3.1. Model formulation

In this section, we extend the basic system (1) to incorporate time dependent intervention strategies
with the main goal of reducing FAW egg and larvae populations. Considering the extent of damage
FAW can cause in a short period of time, it is imperative that once this pest has been identified in a
maize field, necessary control approaches should be implemented timeously. Prior studies suggest that
the effective management of FAW depends on the integration of several control strategies which include
biological control, host-plant resistance, and use of chemical insecticides [6]. Here, we reformulate
system (1) to incorporate new parameter u1(t) and u2(t). Control u1(t) models the efforts of traditional
control methods like handpicking and destruction of FAW egg masses and larvae on FAW dynamics.
Control u2(t) accounts for the efforts of chemical pesticide use on FAW dynamics. Without loss in
generality, herein we will use the term traditional methods to denote handpicking and destruction of
FAW egg masses and larvae. Utilizing similar variable and parameter names as in Eq (1), the new
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system of nonlinear differential equations incorporating time dependent controls is given by:

dM(t)
dt

= r(t)
[
1 − M(t)

KM

]
M(t) − M(t)β(t)

M(t) + a(t)
L(t),

dE(t)
dt

= b(t)wA(t)
[
1 − E(t)

KE(t)

]
− [αE(t) + µE(t) + u1(t)]E(t),

dL(t)
dt

= αE(t)E(t) +
eβ(t)M(t)

a(t) + M(t)
L(t) − [αL(t) + µL(t) + u1(t) + u2(t)]L(t) − θ(t)L2(t),

dP(t)
dt

= αL(t)L(t) − [αp(t) + µP(t)]P(t),

dA(t)
dt

= αP(t)P(t) − µA(t)A(t).



(6)

As we can observe, control efforts u1(t) aims to reduce the egg and larvae population while the use
of chemical insecticide u2(t) mainly reduces the density of larvae population only. For Eq (6) to be
biologically meaningful we set:

M(0) ≥ 0, E(0) ≥ 0, L(0) ≥ 0, P(0) ≥ 0, A(0) ≥ 0.

The control set for the controls is defined as:

Γ = {(u1(t), u2(t)))
∣∣∣ 0 ≤ u1(t) ≤ u1 max, 0 ≤ u2(t) ≤ u2 max}, (7)

where u1 max and u2 max represents the upper bounds for the efforts of traditional methods and use of
chemical insecticide respectively. If ui = 0, (i = 1, 2), it implies absence of time dependent control
measures.

A control strategy is said to be successful control strategy if it can reduce the egg and larvae
population thereby reducing or eradicating FAW population in the field. As such, our aim here is to
identify a pair of characterized control strategy (u∗1, u

∗
2) that reduces the population of FAW egg and

larvae at minimal cost. To obtain a pair of characterized control strategy (u∗1, u
∗
2), we propose an

objective functional with quadratic in control which according to Lahrouz and Gaff [34, 35], (i)
controls will not disappear after differentiation and this implies that the solution is unique (ii) all
control strategies (u∗1, u

∗
2) are bounded implying that efforts for implementing these controls are also

bounded and characterized. Thus, the following objective functional is proposed:

J(u1(t), u2(t)) =

∫ T

0

[
C1E(t) + C2L(t) +

W1

2
u2

1(t) +
W2

2
u2

2(t)
]

dt . (8)

subject to the constraints (6) and where C1, C2, W1 and W2 are balancing coefficients (non-negative)
converting the integrals into monetary quantity over a finite period of time, T days.

The optimal control problem, thus, becomes that, we seek optimal functions, (u∗1(t), u∗2(t)), so that:

J(u∗1(t), u∗2(t)) = min
U

J(u1(t), u2(t)) (9)
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subject to the state equations in system (6) with initial conditions. In order to study the existence of an
optimal control pair (u∗1, u

∗
2), we will make use of Fleming and Rishel’s work [30]. Theorem 2 (i) and

(ii) state the existence of the optimal controls and their characterization.

Theorem 2.

(i) There ∃ an optimal control pair (u∗1, u
∗
2) to the problem (6).

(ii) Given an optimal control u = (u1, u2) ∈ U and corresponding state solutions M, E, L, A and P,
there exists adjoint functions λi, i = 1, ..., 5 satisfying:

dλ1

dt
= −

[
r(t) − 2r(t)M(t)

KM
− β(t)L(t)

a(t) + M(t)
+

β(t)L(t)M(t)
(a(t) + M(t))2

]
λ1(t)

−
[
eβ(t)L(t)M(t)
a(t) + M(t)

− eβ(t)L(t)M(t)
(a(t) + M(t))2

]
λ3(t),

dλ2

dt
= −C1 +

[
b(t)wA(t)

KE(t)
+ αE(t) + µE(t) + u1(t)

]
λ2(t) − αE(t)λ3(t),

dλ3

dt
= −C2 +

β(t)M(t)
a(t) + M(t)

λ1(t) −
[

eβ(t)M(t)
a(t) + M(t)

− 2θ(t)L(t) − αL(t) − µL(t)
]
λ3(t)

+[u1(t) + u2(t)]λ3(t) − αL(t)λ4(t),
dλ4

dt
= (αP(t) + µP(t))λ4(t) − αP(t)λ5(t),

dλ5

dt
= −b(t)w

(
1 − E(t)

KE(t)

)
λ2(t) + µA(t)λ5(t), (10)

with transversality condition λi(T ) = 0, for i = 1, ..., 5. Moreover, these optimal controls are
characterized by:

u1 = min
[
u1 max,max

(
E(t)λ2(t) + L(t)λ3(t)

W1
, 0

)]
,

u2 = min
[
u2 max,max

(
L(t)λ3(t

W2
, 0

)]


(11)

Theorem 2(i) There exists an optimal control pair (u∗1, u
∗
2) to the problem (6).

Proof. Suppose that f(t, x,u) be the right hand side of the (6) whereby x = (M, E, L, P, A) and
u = (u1(t), u2(t)) represent the vector of state variables and control functions respectively. We list the
requirements for the existence of optimal control as presented in Fleming and Rishel (1975) [30]:

1) The function f is of class C1 and there exists a constant C such that |f(t, 0, 0)| ≤ C, |fx(t, x,u)| ≤
C(1 + |u|), |fu(t, x,u)| ≤ C;

2) the admissible set of all solutions to system (6) with corresponding control in Ω is non empty;
3) f(t, x,u) = a(t, x) + b(t, x)u;
4) the control set U = [0, u1 max] × [0, u2 max] is compact, closed, and convex;
5) the integrand of the objective functional is convex in U.
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To verify these conditions, we write:

f(t, x,u) =



r(t)M(t)
[
1 − M(t)

KM

]
− β(t)M(t)

a(t) + M(t)
L(t),

b(t)wA(t)
[
1 − E(t)

KE(t)

]
− [αE(t) + µE(t) + u1(t)]E(t),

αE(t)E(t) +
eβ(t)M(t)

a(t) + M(t)
L(t) − [αL(t) + µL(t) + u1(t) + u2(t)]L(t) − θ(t)L2(t),

αL(t)L(t) − [αp(t) + µP(t)]P(t),
αP(t)P(t) − µA(t)A(t).



. (12)

From Eq (12), it is evident that f(t, x,u) is of class C1 and |f(t, 0, 0)| = 0. Furthermore, one can easily
compute |fx(t, x,u)| and |fu(t, x,u)|, and demonstrate that:

|f(t, 0, 0)| ≤ C, |fx(t, x,u)| ≤ C(1 + |u|) and |fu(t, x,u)| ≤ C.

Due to the condition 1, the existence of the unique solution for condition 2 for bounded control is
satisfied. On the other hand, the quantity f(t, x,u) is expressed as a linear function of the control
variables which satisfy the condition 3. �

Theorem 2(ii) Given an optimal control u = (u1, u2) ∈ U and corresponding state solutions M, E, L, P
and P, there exists adjoint functions λi, i = 1, 2, 3, 4, 5 satisfying Eqs (10) and (11).

Proof. To characterize our optimal control problem we use Pontryagin’s Maximum Principle [31], to
formulate the following Hamiltonian function:

H(t) = C1E(t) + C2L(t) +
W1

2
u2

1(t) +
W2

2
u2

2(t)

+λ1(t)
[
r(t)M(t)

[
1 − M(t)

KM

]
− β(t)M(t)

a(t) + M(t)
L(t)

]

+λ2(t)
[
b(t)wA(t)

[
1 − E(t)

KE(t)

]
− [αE(t) + µE(t) + u1(t)]E(t)

]

+λ3(t)
[
αE(t)E(t) +

eβ(t)M(t)
a(t) + M(t)

L(t) − [αL(t) + µL(t) + u1(t) + u2(t)]L(t) − θ(t)L2(t)
]

+λ4(t)
[
αL(t)L(t) − [αp(t) + µP(t)]P(t)

]

+λ5(t)
[
αP(t)P(t) − µA(t)A(t)

]
.

Next we determine the adjoint equations as follows;
∂λi

dt
= −∂H

∂x
, where

x = (M(t), E(t), L(t), P(t), A(t)), with transversality condition λi(T ) = 0 for i = 1, 2, 3, 4, 5, and
obtained the results in equation (10). Now, we minimize the Hamiltonian with respect to the controls.

Note that we have required the convexity for minimization,
∂2H
∂u2

i

= Wi > 0, i = 1, 2. On the interior of

the control set, we have:

∂H
∂u1

= 0⇒ u1 =
E(t)λ2(t) + L(t)λ3(t)

W1
, and,

∂H
∂u2

= 0⇒ u2 =
L(t)λ3(t

W2
.

}
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Using the standard arguments and the bounds for the controls, one gets the characterization of this
optimal pair (11). �

3.2. Numerical results

In this section, we support analytical results of this study by simulating model (6) by making use of
the following assumed initial conditions:E(0) = 500, L(0) = 0, P(0) = 0, A(0) = 500, and M(0) = 10,
as well as parameter values in Table 1.

Table 1. Model parameters and their baseline values.

Parameter definition Symbol Baseline value Source

Average eggs laid per female moth per day b0 125 [32]
Proportion of adult female moths w 0.5 [12]
Average duration of egg stage α−1

E0 3(3–5)Days [32]
Development time of the larva α−1

L 14 (14–30)Days [32]
Development time of pupae α−1

P0 9(8-30)Days [32]
Moth life span µ−1

A0 18(15–21) Days [32]
Maximum biomass of maize plants KM 50 kg plant−1 [36].
Egg environmental carrying capacity KE0 108 [36].
Averaged natural death rate of immature stages µE0, µL0, µP0 0.01 Day−1 [36].
Rate of plant attack by larvae β0 5 × 10−8Day−1 [36].
Growth rate of maize plants r0 0.05 Day−1 [36].
Efficiency of biomass conversion e 0.2 [36].
Average density dependent mortality rate θ0 0.008 Day−1 [36].
Half saturation constant a0 0.8 Estimate.

Without loss of generality, we will fix all parameters that model the amplitude of seasonal dependent
parameters (r1, KM1 , β1, KE1 , a1, b1, αE1 , µE1 , e1, αL1 , µL1 , θ1, αP1 and µA1) to 0.8. Furthermore, we set
ω = 7, that is., a small period was considered since the life span of FAW and maize in the field is very
short.

It is worth noting that numerical simulations presented here were obtained by solving system (6)
using the forward-backward sweep method [37] and the parameter values in Table 1. In addition, we
considered the following assumed initial conditions; E(0) = 500, L(0) = 0, P(0) = 0, A(0) = 500,
and M(0) = 10. The initial step of the forward-backward sweep method is to assign an initial guess for
the controls and then solve the system forward in time, followed by solving the adjoint state backward
in time. Then these optimal controls are updated for optimality using the Hamiltonian of the optimal
system. “The controls are then updated by using a convex combination of the previous controls and the
value from the characterizations of the controls. This process is repeated and iterations are ceased if the
values of the unknowns at the previous iterations are very close to the ones at the present iterations”
[37]. For a detailed discussion we refer the reader to [37]. The numerical results presented in this
Section are based on the following scenarios:

(i) Effects of implementing traditional control measures alone,

(ii) Effects of implementing time-dependent use of chemical insecticides alone, and
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(iii) Effects of combining time-dependent traditional methods with use of chemical insecticides.

In addition, since the impact of larvae on maize is so apparent, we will assume that C1 ≤ C2, that
is, the minimization of caterpillars is more important than that of FAW eggs. Furthermore, traditional
methods of controlling FAW are known to be less costly compared to chemical insecticides and as
such, we will assume that W1 < W2 .

3.2.1. Effects of implementing traditional control measures alone

In resource limited settings, majority of the farmers cannot purchase pesticides to control FAW
whenever there is an outbreak and more often they rely on traditional methods like handpicking and
destroying of egg masses and larvae. Here, we seek to understand the effects of time dependent
implementation of such methods on the dynamics of FAW and maize interaction. To investigate this
scenario, we simulated model (6) with u1 , 0 (0 ≤ u1 ≤ 0.1) and u2 , 0 and we obtained the results
illustrated in Figure 2. As we can observe, the dynamics of the maize biomass and FAW populations,
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Figure 2. Solution of model (6) with and without optimal control under scenario 1: u1 , 0
and u2 = 0. We set 0 ≤ u1(t) ≤ 0.1. In (a)–(e), the red solid trend-lines represents the
dynamics of the respective populations in the absence of control and the blue solid curves
depict the dynamics in the presence of control. Fig. (f) illustrates the optimal control profile.
As we can observe, with control u1(t) being implemented, the respective populations of the
FAW decrease compared to when there are no controls.
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with and without control, will be associated with oscillations which reflect seasonal variations.
Further, we can also observe that without control, the maize biomass may not exceed 15 kg per plant,
however, with timely control, the biomass may exceed 25 kg per plant by the final time horizon
(t = 150). Moreover, although traditional methods will be capable of reducing FAW population and
increasing maize biomass, they will not be able to completely eliminate the pest. Figure 2(f) portrays
the optimal control profiles for u1(t). We clearly observe that u1(t) starts from the maximum
(u1 = 0.1) and stays at that level for the entire duration. From the pattern of the optimal control profile
we can conclude that a desirable outcome can be achieved only if the traditional methods are
implemented throughout the entire time horizon.

3.2.2. Effects of implementing time-dependent use of chemical insecticides alone

Despite being expensive, chemical insecticides are known to be more efficient compared to
traditional methods on controlling FAW. To explore the impact of chemical control measures on FAW
dynamics we simulated model (6) with u1 = 0 and 0 < u2(t) < 0.1 and the results are depicted in
Figure 3. When chemical insecticides are used, we can note that the population of FAW may become
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Figure 3. Solution of model (6) with and without optimal control under scenario 2: 0 < u1 ,
0 and 0 < u2 ≤ 0.1.

extinct in a period of 50 days. Moreover, the maize biomass per plant may exceed 35 kg per plant by
the final time (t = 150 days). Comparing the results portrayed in Figures 2 and 3, we conclude that
the use of chemical insecticides should be encouraged since the final biomass will be higher
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compared to when farmers rely on traditional methods only. The control profile for control u2(t) starts
from the maximum initially, but only for a very short time (t < 50), followed by a decrease to some
lower level till the final time horizon. This may attribute to the decrease in FAW populations. Hence,
we conclude that for chemical insecticides, intensity use needs to be maintained at maximum for a
period of approximately 50 days, thereafter the intensity may be reduced till the final time.

3.2.3. Effects of combining time dependent traditional methods with use of chemical insecticides

To understand the impact of combining traditional methods with use of chemical insecticides, we
simulated model (6) with 0 < u1(t) ≤ 0.1 and 0 < u2(t) ≤ 0.1 over period of 150 days and the solution
results are depicted in Figure 4. We can note that when traditional methods are combined with chemical
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Figure 4. Solution of model (6) with and without optimal control under scenario 3: 0 < u1 ≤
0.1 and 0 < u2 ≤ 0.1.

insecticides use then the time taken to eliminate the FAW from the field is less than the time that will
be taken if chemical insecticides were in use (Figure 4). Although the time required to eliminate the
FAW populations will decrease, the final maize biomass may not be significantly different from that
obtained when only chemical insecticides were in use (Figure 3). In Figure 4(f), we can observe that
the control profiles for u1(t) and u2(t) starts at their respective maximum initially, but only for a very
short time, followed by a decrease to some lower level till the final time. It is worth noting that the
control profile for u1(t) remain at its maximum for a slightly longer period compared to that of u2(t) and
this can be attributed to less cost associated with traditional methods relative to chemical insecticides
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use. As such we can conclude that when traditional methods are combined with chemical insecticides
use, chemical control efforts may be ceased after approximately 50 days and the traditional methods
can be implemented for additional 50 days or more but at low intensity. To assess the effects of costs
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Figure 5. Simulation results for model system (1) illustrating the effects of varying the
weights, W1 and W2. We set 0 ≤ u1 ≤ 0.1, 0 ≤ u2 ≤ 0.1, C1 and C2 are fixed to 1 and 2,
respectively, and the rest of the model parameters are as in Table 1.

on implementing the control efforts u1(t) and u2(t), we varied the weight constants W1 and W2 and the
results are illustrated in Figure 5. From the results we can note that if the costs are low, for example,
W1 = W2 = 0.1 then the associated control profile starts at their respective maximum and stays there
till the final time horizon. However, as the cost increases the respective control profile starts at their
respective maxima and stays there for a reduced duration compared to when the costs are low. In
particular, as the cost increases the control profile for u2(t) stays at its maxima for a relatively short
duration compared to that of u1(t). In a nutshell, we can deduce that depending on the cost parameters
associated with the control, the optimal profiles of u1(t) and u2(t) stay at their respective maxima for a
longer duration, before eventually settling at their minimum levels.

4. Conclusions

We have formulated a mathematical model to investigate the effects of seasonal variations on the
dynamics of maize biomass and FAW interaction. After a comprehensive analysis of the dynamical
behavior of the proposed framework, we extended it to incorporate time-dependent control strategies,
namely traditional methods (like handpicking and destruction of egg masses and larvae) and the use
of chemical insecticides. Our optimal control is aimed at minimizing the numbers of the eggs and
larvae population at minimal costs. Our results show that, in all the scenarios, the optimal control can
greatly reduce the FAW population and in some instances, complete elimination of the pest may be
attained. Future research could expand our analysis to include climate-sensitive aspects of FAW such
as temperature and predict changes in population dynamics at various temperature ranges.
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Appendix

A. Proof of Theorem 1 and the discussion on global asymptotic stability of the boundary solution

In this section, we will provide the proof of Theorem 1 and we will discuss the global asymptotic
stability of the boundary solutions of the model. We will begin our discussion by considering
Theorem 1 (i):

To prove Theorem 1 (i), we will make use of the lemma as given by Bai et al [26], which was used
to demonstrate the permanence of a non-autonomous prey-predator model with a generalist predator.
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Lemma 1. Suppose p(t) and q(t) are bounded and continuous functions in R with inft∈R p(t) > 0 and
inft∈R q(t) > 0. If there exist a positive function u(t) which satisfies:

u′(t) ≤ p(t)u(t) − q(t)u2(t), t ∈ [t0,+∞),

then lim supt→+∞ u(t) ≤ supt∈R
p(t)
q(t) . Moreover, u(t) ≤ supt∈R

p(t)
q(t) for all t ∈ [t0,+∞) if 0 < u(t0) ≤

supt∈R
p(t)
q(t) . On the other hand, if u(t) satisfies:

u′(t) ≥ p(t)u(t) − q(t)u2(t), t ∈ [t0,+∞),

then lim inft→+∞ u(t) ≥ inft∈R
p(t)
q(t) .Moreover, u(t) ≥ inft∈R

p(t)
q(t) for all t ∈ [t0,+∞) if 0 < u(t0) ≥ inft∈R

p(t)
q(t) .

We now demonstrate the proof for Theorem 1 as follows; Considering system (1), we have the
following expressions:

M(t) = M(t0) exp
{∫ t

t0

[
r(s)M(s)

[
1 − M(s)

KM

]
− β(s)M(s)

a(s) + M(s)
L(s)

]
ds

}
,

E(t) = E(t0) exp
{∫ t

t0

[
b(s)wA(s)

[
1 − E(s)

KE(s)

]
− [αE(s) + µE(s)]E(s)

]
ds

}
,

L(t) = L(t0) exp
{∫ t

t0

[
αE(s)E(s) +

eβ(s)M(s)
a(s) + M(s)

L(s) − [αL(s) + µL(s)]L(s)

−θ(s)L2(s)
]
ds

}
,

P(t) = P(t0) exp
{∫ t

t0

[
αL(s)L(s) − [αp(s) + µP(s)]P(s)

]
ds

}
,

A(t) = A(t0) exp
{∫ t

t0

[
αP(s)P(s) − µA(s)A(s)

]
ds

}
.



(13)

From Eq (13), we can observe that all the solutions of model (1) are non-negative. We now
demonstrate that, the solution set Ω of the system (1) is positively invariant. Let (M(t), E(t), L(t), P(t),
A(t)) be a unique solution of system (1) with (M(t0), E(t0), L(t0), P(t0), A(t0)) ∈ Ω. From the first
equation of (1) and the positivity solutions of (1), we have:

M′(t) ≤ r(t)M(t)
[
1 − M(t)

KM

]
, t ≥ t0,

and by Lemma 1 and 0 < M(t0) ≤ M1, M(t) ≤ M1, t ≥ t0. Considering the second equation of the
system (1), we have:

E(t) ≤ b(t)wA(t) − [b(t)wA(t) + αE(t) + µE(t)]E(t)
≤ b(t)wM5 − [b(t)wM5 + αE(t) + µE(t)]E(t), , t ≥ t0,

by Lemma 1 and 0 < E(t0) ≤ M2, E(t) ≤ M2, t ≥ t0. From the third equation of model (1), we have:

L′(t) ≤ αE(t) + eβ(t)Φ(M1)(t)L(t) − [αL(t) + µL(t)]L(t) − θ(t)L2(t), t ≥ t0,
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by Lemma 1 and 0 < L(t0) ≤ M3, L(t) ≤ M3, t ≥ t0. From the fourth equation of system (1), we have:

P′(t) ≤ [µP(t) + αP(t)]
[

αL(t)M3

[µP(t) + αP(t)]
− P(t)

]
, t ≥ t0,

by Lemma 1 and 0 < P(t0) ≤ M4, P(t) ≤ M4, t ≥ t0. From the last equation of system (1), we have:

A′(t) ≤ µA(t)
[
αP(t)M4

µA(t)
− A(t)

]
, t ≥ t0.

Again from the first equation of system (1), we have:

M′(t) ≥ r(t)M(t) − r(t)
KM

M2(t) − β(t)L(t)M(t),

≥ (r(t) − β(t)M3) − r(t)
KM

M2(t), t ≥ t0,

and by Lemma 1 and M(t0) ≥ m1 > 0, we get M(t) ≥ m1, t ≥ t0. From the second equation of system
(1), we have:

E(t) ≥ b(t)wA(t) − [b(t)wA(t) + αE(t) + µE(t)]E(t)
≥ b(t)wm5 − [b(t)wm5 + αE(t) + µE(t)]E(t), t ≥ t0.

By Lemma 1 and E(t0) ≥ m2 > 0, it follows that E(t) ≥ m2, holds for t ≥ t0. From the third equation of
system (1), we have:

L′(t) ≥ αE(t) + eβ(t)Φ(m1)(t)L(t) − [αL(t) + µL(t)]L(t) − θ(t)L2(t), t ≥ t0,

It follows from Lemma 1 and L(t0) ≥ m3 > 0 thatL(t) ≥ m3, holds for t ≥ t0. From the fourth equation
of system (1), we have:

P′(t) ≥ [µP(t) + αP(t)]
[

αL(t)m3

[µP(t) + αP(t)]
− P(t)

]
, t ≥ t0,

By Lemma 1 and P(t0) ≥ m4 > 0 we have thus P(t) ≥ m3, holds fo t ≥ t0. Furthermore, from the last
equation of system (1), we have:

A′(t) ≥ µA(t)
[
αP(t)m4

µA(t)
− A(t)

]
, t ≥ t0,

which implies that by Lemma 1 and A(t0) ≥ m5 that A(t) ≥ m5 holds ∀t ≥ t0. Hence, the solution set Ω

of the system (1) is positive invariant.
Suppose if the condition (H1) holds, now we prove that the model system (1) is permanent. We

let (M(t), E(t), L(t), P(t), A(t)) be a unique solution of system (1) with positive initial value (M(t0),
E(t0), L(t0), P(t0), A(t0)). Choose δ > 0 which is sufficiently small so that mδ

i (i = 1, 2, 3, 4, 5), and each
inequality of (H1) holds whenMi and mi are replaced byMδ

i > 0 and mδ
i > 0, respectively. By Lemma

1, it follows that lim supt→+∞ M(t) ≤ M1, which follows that there exists T0 > t0 such that for t > T0,
M(t) ≤ Mδ

1. Then from the first equation of system (1), we have:

M′(t) ≤ r(t)M(t) − r(t)
KM

M2(t), t > T0,
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which yields by Lemma 1 that:

lim sup
t→+∞

M(t) ≤ sup
t∈R
{KM}.

Hence, by the arbitrariness of δ, we obtain lim supt→+∞ M(t) ≤ M1. Then, there exists T1 > T0 such
that for t > T1, M(t) ≤ Mδ

1, and:

E(t) ≤ b(t)wMδ
5 − [b(t)wMδ

5 + αE(t) + µE(t)]E(t), t > T1.

It follows from Lemma 1 and inft∈R{b(t)wMδ
5 − [b(t)wMδ

5 + αE(t) + µE(t)]E(t)} > 0 that

lim sup
t→+∞

E(t) ≤ sup
t∈R

{
b(t)wMδ

5

[b(t)wMδ
5 + αE(t) + µE(t)]E(t)

}
.

Hence, by the arbitrariness of δ, we have lim supt→+∞ E(t) ≤ M2, and there exists T2 > T1 such that for
t > T2, E(t) ≤ Mδ

2, and

L′(t) ≤ αE(t) + eβ(t)Φ(Mδ
1)(t)L(t) − [αL(t) + µL(t)]L(t) − θ(t)L2(t), t > T2,

It follows from Lemma 1 and inft∈R{eβ(t)Φ(Mδ
1)(t)L(t) − [αL(t) + µL(t)]} > 0 that:

lim sup
t→+∞

L(t) ≤ sup
t∈R

{
αE(t)Mδ

2 +
eβ(t)Φ(Mδ

1)(t) − (µL(t) + αL(t))
θ(t)

}
.

Hence, by the arbitrariness of δ, we have lim supt→+∞ L(t) ≤ M3, and there exists T3 > T2 such that for
t > T3, L(t) ≤ Mδ

3, and:

P′(t) ≤ αL(t)Mδ
3 − (µP(t) + αP(t))P(t), t > T3,

which yields by Lemma 1 that:

lim sup
t→+∞

P(t) ≤ sup
t∈R

{ αL(t)Mδ
3

[µP(t) + αP(t)]

}
.

Hence, by the arbitrariness of δ, we obtain lim supt→+∞ P(t) ≤ M4. Then, there exists T4 > T3 such that
for t > T4, P(t) ≤ Mδ

4, and:

A′(t) ≤ αP(t)Mδ
4 − µA(t)P(t), t > T4,

which yields by Lemma 1 that:

lim sup
t→+∞

A(t) ≤ sup
t∈R

{αP(t)Mδ
4

µA(t)

}
.

Hence, by the arbitrariness of δ, we obtain lim supt→+∞ A(t) ≤ M5. Then, there exists T5 > T4 such that
for t > T4, A(t) ≤ Mδ

5. This completes the proof of Theorem 1(i).
In what follows, we will investigate the global asymptotic stability of the boundary solution. We

will assume that the maize biomass is the only food source for the FAW in this case; such that in the
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absence of the maize plant biomass, the FAW population becomes extinct. Hence the only boundary
solution of system (1) is (M(t), 0, 0, 0, 0). Substituting this boundary solution into system (1) one gets:

dM(t)
dt

= r(t)M(t)
(
1 − M(t)

KM

)
. (14)

Equation (14) is well known non-autonomous logistic equation. As illustrated in equation (3), r(t)
is continuous ω−periodic, bounded below and above by positive constants. According to Fan and
Wang [27], we have the following results:

Lemma 2. (Reference [27]): If r(t) is a continuous ω− periodic function, and bounded below and
above by strictly positive reals for all t ∈ R, the logistic Eq (14) has exactly a solution Mg(t) bounded
below and above by positive constants. Precisely, this solution is given by:

Mg(t) =

[
exp

( ∫ ω

0
r(s)ds

)
− 1

]
·
[ ∫ t+ω

t

r(s)
KM
· exp

(
−

∫ t

s
r(τ)dτ)ds

)]−1

. (15)

In addition, Mg(t) is globally asymptotically stable for M(t) with positive initial value M(t0) = M0 > 0
in the sense limt→+∞ |M(t) − Mg(t)| = 0.

By Lemma 2, we obtain the following result:

Lemma 3. System (1) admits a unique positive ω−periodic solution Mg(t), 0, 0, 0, 0) which is globally
asymptotically stable for M(t) with positive initial value M(t0) = M0 > 0 in the sense
limt→+∞ |M(t) − Mg(t)| = 0.

For a continuous and periodic function g(t) with periodic ω, we denote:

A(g) :=
1
ω

∫ ω

0
g(t)dt. (16)

Lemma 4. (Reference [28]): If r(t) is a continuous ω−periodic function, then the null solution of (14)
is globally asymptotically stable provided that one of the following two conditions is met:

(1)A(r) < 0;

(2)A(r) = 0, andA(r/KM) < 0.

Note: IfA(r) > 0 andA(r/KM) > 0, then (14) has a unique positive ω−periodic solution Mg(t) which
is globally asymptotically stable (see Tineo [29]). Thus, when r/KM is non-negative with
A(r/KM) > 0, the null solution of (14) is globally stable if and only ifA(r) ≤ 0.

Finally, we we provide the proof of Theorem 1(ii):

Define a Poincare mapping F : R5 → R5 as follows:

F (ξ) = (M(t0 + ω, t0, ξ), E(t0 + ω, t0, ξ), L(t0 + ω, t0, ξ), P(t0 + ω, t0, ξ), A(t0 + ω, t0, ξ))
ξ = (M0, E0, L0, P0, A0) ∈ R5,

Mathematical Biosciences and Engineering Volume 19, Issue 1, 146–168.



168

where (M(t0+ω, t0, ξ), E(t0+ω, t0, ξ), L(t0+ω, t0, ξ), P(t0+ω, t0, ξ), A(t0+ω, t0, ξ)) represents the solution
of (1) through (t0, ξ), ξ = (M0, E0, L0, P0, A0) ∈ R5. By the positive invariant property of Ω, F (Ω) ∩Ω.

The continuity of F can be guaranteed by the continuity of solution of Eq (1) with respect to initial
value. Note that Ω is closed, bounded, convex set in R5. Therefore, it follows from Brouwer’s theorem
of fixed point that the operator F has at least one fixed point ξ∗ = (M∗(t), E∗(t), L∗(t), P∗(t), A∗(t)) in Ω,
which is a positive ω− periodic solution of system (1). The proof is complete.

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)
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Dynamics for a non-autonomous fall armyworm-maize
biomass interaction model with a saturation functional

response

Introduction

Maize (Zea mays) is ranked the third most impor-
tant cereal grain after wheat and rice globally and is
also referred the “Queen of Cereals” due to its high
genetic yield potential [2]. One of the main threats
to food security in these countries is the invasion
by fall armyworm (FAW), Spodoptera frugiperda, a
major pest of maize [1, 2], native to tropical and
subtropical parts of America [1, 2].

Basic non autonomous Mathe-
matical model

Model derivations

Motivated by recent mathematical models for plant-
pest interactions (see., for example [1], in this work
we propose a non-autonomous model for FAW infesta-
tions in a maize field. The proposed model subdivides
the FAW population into subclasses as: eggs popula-
tion E(t), larvae population L(t), pupae population
P (t) and adult population which are also known as
moth A(t) Meanwhile, let the variable M(t) repre-
sents maize biomass population. Due to finite sizes of
fields of maize biomass, we assume a logistic growth
for the biomass of maize plant, with a net seasonal
growth rate r(t) and seasonal carrying capacity KM .
The proposed model is summarized by the following
system of non-linear ordinary differential equations:

All model parameters that are functions of time
depend on seasonal variations. For biological

significance, we assume that all these parameters are
continuous and bounded functions defined on R.

Mathematical model with opti-
mal control

Model derivations

In this section, we re-formulate the problem as an op-
timal control problem with a goal to determine the im-
pact of time-dependent intervention approaches on re-
ducing or eradicating FAW population in maize field.
Here, we re-formulate the model without time depen-
dent control to incorporate new parameters u1(t) and
u2(t). Control u1(t) models the efforts of traditional
control methods like handpicking and destruction of
FAW egg masses and larvae on FAW dynamics. Con-
trol u2(t) accounts for the efforts of chemical pesticide
use on FAW dynamics.

Numerical results
Effects of implementing traditional con-
trol measures alone.
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Figure 1: Solution of model with and without optimal
control under scenario 1: u1 ̸= 0 and u2 = 0. We set
0 ≤ u1(t) ≤ 0.1.

Effects of combining time dependent tradi-
tional methods with use of chemical insecti-
cides
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Figure 2: Solution of model with and without optimal
control under scenario 3: 0 < u1 ≤ 0.1 and 0 < u2 ≤ 0.1.
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