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ABSTRACT

The unsteady, laminar and two-dimensional pulsatile flow of both, Newtonian and non-

Newtonian chemically reacting blood in an axisymmetric stenosed artery subject to body ac-

celeration and magnetic fields were studied. In the case of non-Newtonian blood, heat transfer

was taken into consideration. The combined effects of body acceleration, magnetic fields and

chemical reaction on blood flow were considered. The non-Newtonian model was chosen to

suit the Herschel-Bulkley fluid characteristics.

The non-dimensional governing equations were solved using the explicit finite difference

method and executed using MATLAB package. The solutions showing the velocity, temper-

ature and concentration profiles were illustrated. The effects of Reynolds number, Hartman

number, Schmidt number, Eckert number and Peclet number were examined. Additionally, the

effects of stenosis and body acceleration on blood flow were explored.

The study found that, body acceleration, magnetic fields and stenosis affect the normal flow

of blood. Body acceleration was observed to have more effect on blood flow than the mag-

netic fields and stenosis. Furthermore, as the key findings of the study, it was noticed that the

combined effect of stenosis, body acceleration, magnetic field and chemical reaction, reduce

the concentration profile of the blood flow and the blood flow velocity. It was also observed

that, the axial velocity, concentration and skin friction, decrease with increasing stenotic height.

The velocity on the other hand increased as the body acceleration increased. Furthermore, as

the Hartman number increased, both the radial and axial velocities diminished. The higher the

chemical reaction parameter was, the lower were the concentration profiles.

For the non-Newtonian blood, the velocity profile diminished with increase in the Hartman

number and increased with the body acceleration. The temperature profile was observed to

rise by the increase of body acceleration and the Eckert number, while it diminished with the

increase of the Peclet number. It was also found that, the concentration profile increased with

the increase of the Soret number and decreased with the increase of the chemical reaction. It

was further observed that the shear stress deviated more when the power law index, n > 1 than

when n < 1.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the study

In day to day activities, the human body is subjected to different situations that disturb the

normal flow of blood. There are several crucial roles played by blood in the human body.

Hence when blood flow is not normal, it jeopardizes one’s life. Blood transports (inta alia)

oxygen to cells and tissues thus: (a) providing essential nutrients to cells (such as amino acids,

fatty acids, and glucose) (b) removing waste materials such as carbon dioxide, urea, and lactic

acid (c) protecting the body from infection and foreign bodies through the white blood cells, (d)

transporting hormones from one part of the body to another and (e) regulating acidity (pH) levels

of the body. Therefore, situations that disturb the normal flow of blood jeopardize human life.

This brings one to the attention of studying the dynamics of blood flow theoretically (through

mathematical modeling) and experimentally.

According to the World Health Organization (WHO)(2019), Cardiovascular Diseases (CVDs)

are the number one cause of death globally. More people die annually from CVDs than any other

cause. Cardiovascular disease usually refers to conditions that involve narrowing or blocking

of blood vessels. This can lead to a heart attack or stroke (the sudden death of brain cells due

to lack of oxygen which is caused by the blockage of the blood flow or the rupture of an artery

that supplies the blood to the brain). Thus, CVDs often are caused by the condition that damage

one’s heart or blood vessels by atherosclerosis. The atherosclerosis is a build-up of fatty plaques

in the blood vessels. Plaque build-up thickens and stiffens artery walls, and this can inhibit blood

flow through arteries to tissues and organs.This narrowing of the artery is known as stenosis.

Cardiovascular Diseases are sometimes referred to as the coronary artery disease because they

involve the coronary arteries. Coronary heart disease refers to the narrowing of the coronary

artery which is the major artery that supplies blood, oxygen, and other nutrients to the heart.

The presence of stenosis in arteries has attracted many mathematicians to model blood flow.

The current study is motivated by the need to continue investigating the blood flow in stenosed

arteries. In particular, the study focus is to model blood flow through a stenosed artery subject

to different situations that disturb the normal flow of blood.
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1.1.1 Circulatory system

Circulatory system (sometimes known as cardiovascular system, CVS) generally has three vital

features: the fluid (in this case is the blood) which transports materials, the network of blood

vessels and the heart that pumps the fluid through the vessels. The human circulatory system is

closed in the manner that the blood is repeatedly cycled throughout the body inside a system of

blood vessels. The blood flow in human arterial system can be considered as a fluid dynamics

problem. Simulation of blood flow in the arterial network system will provide a better under-

standing of the physiology of human body. Hence, hemodynamics plays an important role in

the development and progression of arterial stenosis (Thomas & Sumam, 2016).

The cardiovascular system circulates blood in two circuits: the Pulmonary circulation that trans-

ports oxygen-poor blood from the right ventricle to the lungs where blood picks up a new oxy-

gen supply and the systemic circulation that returns oxygen rich blood and nutrients to the left

atrium and is pumped out all over the body. Figure 1 shows the schematic diagram of the cir-

culatory system. It shows the systemic and pulmonary circulations, the chambers of the heart,

and the distribution of blood volume throughout the system.

 

Figure 1: Schematic diagram of the circulatory system (Keener & Sneyd, 1998)
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1.1.2 Blood vessels

Blood vessels involve the routes by which the blood travels to and through the tissues and back

to the heart. There are three well known blood vessels; arteries, veins and capillaries. The

blood vessels decrease in size as they move away from the heart to capillaries. Arteries are

blood vessels that carry blood away from the heart to other parts of the body. They are much

thicker than veins and capillaries because of the high pressure of blood coming from the heart.

The veins transmit blood back to the heart. Veins have much thinner walls than arteries, making

it susceptible of easy collapse. Capillaries carry blood from the arteries to the body’s cells, and

then back to the veins.

1.1.3 Blood flow in a stenosed artery

Mekheimer and El Kot (2015), Awaludin and Ahmad (2013) and Ismail et al. (2008) postulated

that stenosis is a partial occlusion of the blood vessels due to the accumulation of cholesterol

and fats and the abnormal growth of tissue. Stenosis is one of the main causes of anomaly in

blood flow. The presence of stenosis in the arterial wall diminishes the diameter of the artery,

and if stenosis continues to grow, it leads to cardiovascular diseases. Awojoyogbe et al. (2011)

presented the normal and stenosed artery (Fig 2).

 

Figure 2: The normal and stenosed arteries (Awojoyogbe et al, 2011)
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1.1.4 Basic equations governing the flow

The focus of the current study is computational modeling of chemically reacting blood flow,

heat, and mass transfer through a stenosed artery in the presence of body acceleration and mag-

netic fields. Considering heat and mass transfer, the fluid flow is governed by the equations of

continuity, motion (also known as Navier-Stokes Equations), energy and concentration trans-

port. These equations, respectively, represent the conservation principles of mass, momentum,

energy, and mass concentration transport via Ficks law.

1.1.5 Transport Phenomena

According to Hauke (2008), application of classical mechanics conservation principles of

mass, momentum, energy, and concentration were initially developed for particle systems (La-

grangian) or pieces of matter (Eulerian). In transport phenomena, there are pieces of matter

that deform in a complex way making it a difficult task to follow the motion and evolution of

matter that are continuously changing their shape and size. Thus for convenience, the equations

of mechanics and thermodynamics are best written in a way for solving transport problems by

using transport theorems.

To solve a practical transport problem, it is convenient that the equations are applied to an

arbitrarily chosen volume of fluid, part of which could be fixed or in motion. Matter could

flow across boundaries of the arbitrary volume or its boundaries could follow the fluid. Such a

volume is called a control volume and is defined as follows:

Definition: A control volume is an arbitrary volume selected to analyze a transport problem. It

is denote by V (t) and it moves with a velocity v.

The control volumes contain only fluid, however a control volume can contain any parts of

the analysed system. According to Hauke (2008), the transport integral equations are made of

integrals of the form:
d
dt

∫∫∫
V (t)

f (x, t)dV (1.1)

Upon differentiating the equation (1.1) with respect to time t, gives the transport integral equa-

tions. It is noticed that both the domain integral V (t) and the integrand f (x, t) depend on time t.

Therefore to perform calculation on equation (1.1), the Leibnitz differentiation rule for integrals

can be used.
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1.1.6 Reynolds Transport Theorem

There are three Reynolds Transport Theorems (RTT). The 1st RTT is for a fluid volume, the 2nd

RTT is for a control volume, and the 3rd RTT is for combined fluid volume and control volume.

Considering the 2nd RTT is considered.

The 2nd RTT

Consider a closed control volume, V (t), within a flow field. The control volume considered to

be fixed in space and the fluid to be moving through it. The control volume is considered to

occupy reasonably large finite region of the flow field.

The second RTT states that, The rate of change of a thermodynamic entity, φ , of a system equals

the sum of the rate of change of that entity inside the control volume and the rate of efflux of the

entity across the control surface.

Mathematically, the 2nd RTT is expressed as follows:

Theorem (2nd RTT): Let V (t) be a region in Euclidean space with boundary S(t). Let x(t) be

the positions of points in the region and let v(x, t) be the velocity field in the region. Let n(x, t)

be an outward unit normal to the boundary. Let φ(x, t) be a vector (or scalar) field in the region.

Then:
D
Dt

∫∫∫
V (t)

φ(x, t)dV =
∫∫∫

V (t)

∂φ(x, t)
∂ t

dV +
∫∫

S(t)
(v.n)φ(x, t)dS (1.2)

Proof : Let V (t) be the domain at time t, shown in Fig. 3 whose surface moves at velocity v At

some time t +∆t the domain will occupy space denoted by the volume V (t,∆t). This volume at

t +∆t can be decomposed as:

V (t,∆t) =V (t)+V2(∆t)−V1(∆t) (1.3)

The intersection of surfaces V (t) and V (t,∆t) decomposes S(t) into two surfaces S1t and S2t as

shown in Fig 3.
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Figure 3: Moving domain of integration V(t) with surface S(t)

Applying the definition of derivative,

d
dt

∫∫∫
V (t)

φ(x, t)dV = lim
∆t→0

1
∆t

[∫∫∫
V (t+∆t)

φ(x, t +∆t)dV −
∫∫∫

V (t+∆t)
φ(x, t)dV

]
(1.4)

Next, the decomposition (1.3) is substituted in the integral on V (t +∆t):

d
dt

∫∫∫
V (t)

φ(x, t)dV = lim
∆t→0

1
∆t

[∫∫∫
V (t)

φ(x, t +∆t)dV +
∫∫∫

V2(∆t)
φ(x, t +∆t)dV

]
− lim

∆t→0

1
∆t

[∫∫∫
V1(∆t)

φ(x, t +∆t)dV −
∫∫∫

V (t)
φ(x, t)dV

]
(1.5)

By definition of derivative, the combination of the first and last integrals, gives∫∫∫
V (t)

∂φ(x, t)
∂ t

dV = lim
∆t→0

1
∆t

[∫∫∫
V (t)

φ(x, t +∆t)dV −
∫∫∫

V (t)
φ(x, t)dV

]
(1.6)

By the Stokes’ theorem, the volume integrals over V2 and V1 are transformed into surface inte-

grals, respectively as: ∫∫∫
V2(∆t)

φ(x, t +∆t)dV =
∫∫

S2(t)
φ(x, t)v.ndS (1.7)

∫∫∫
V1(∆t)

φ(x, t +∆t)dV =
∫∫

S1(t)
φ(x, t)v.ndS (1.8)

The efflux across the surface is given by the sum of the efflux over S1(t) and S2(t), i.e.∫∫
S(t)

φ(x, t)v.ndS =
∫∫

S1(t)
φ(x, t)v.ndS+

∫∫
S2(t)

φ(x, t)v.ndS (1.9)

Gathering all the contributions, the desired result is attained.
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1.1.7 Conservation Principles

(i) Principle of Mass Conservation

Principle of mass conservation states that mass of a fluid in a control volume,
∫∫∫

V (t)ρdV is a

constant, therefore its rate of change equals to zero. That is, The rate of change of mass for a

system equals the sum of the rate of change of mass inside the control volume and the rate of

efflux of mass across the control surface, thus:∫∫∫
V (t)

∂ρ

∂ t
dV +

∫∫
S(t)

ρ(v.n)dS = 0 (1.10)

By Stokes’ Theorem and Leibnitz differentiation rule for integrals, Equation (1.10) becomes∫∫∫
V (t)

[
∂ρ

∂ t
+▽.ρv

]
dV = 0 (1.11)

Since all variables are continuous throughout V (t), then equation (1.11) becomes

∂ρ

∂ t
+▽.ρv = 0 (1.12)

Equation (1.12) is the conservation of mass, also known as continuity equation.

(ii) Principle of Momentum Conservation

Principle of linear momentum conversation states that the rate of change of linear momentum

for a system is equal to the net external force acting on it. By RTT, ”The rate of change of

momentum for a system equals the sum of the rate of change of momentum inside the control

volume and the rate of efflux of momentum across the control surface”, hence

• Rate of change of momentum inside the control volume

∂

∂ t

∫∫∫
V (t)

ρ vdV =
∫∫∫

V (t)

∂

∂ t
(ρv)dV (1.13)

The integral and derivative are interchanged since t is independent of space variable

• Rate of efflux of momentum through control surface∫∫
S(t)

ρv(vdS) =
∫∫

S(t)
ρvv.ndS =

∫∫∫
V (t)

(v(▽.ρv)+ρv.▽v)dV (1.14)

• Surface force acting on the control volume (with σ a symmetric stress tensor)∫∫
S(t)

σdA =
∫∫∫

V (t)
(▽.σ)dV (1.15)
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• Body force acting on the control volume (with fb the body force per unit mass)∫∫∫
V (t)

ρ fbdV (1.16)

Now, equations (1.1) to (1.4) give,∫∫∫
V (t)

(
∂

∂ t
(ρv)+(v(▽.ρv)+ρv.▽v)

)
dV =

∫∫∫
V (t)

(▽.σ +ρ fb)dV (1.17)

Since the variables are continuous, thus:

ρ
∂v
∂ t

+v
∂ρ

∂ t
+ρv.▽v+v(▽.ρv) =▽.σ +ρ fb (1.18)

or

ρ

(
∂v
∂ t

+v.▽v
)
+v
(

∂ρ

∂ t
+▽.ρv

)
=▽.σ +ρ fb (1.19)

Since the mass conservation is
∂ρ

∂ t
+▽.ρv = 0 (which is continuity equation), the equation

(1.19) reduces to:

ρ

(
∂v
∂ t

+v.▽v
)
=▽.σ +ρ fb (1.20)

or

ρ
Dv
Dt

=▽.σ +ρ fb (1.21)

Since
D
Dt

≡ ∂

∂ t
+v.▽ is the material time (or constitutive) derivative.

(iii) Principle of Energy Conservation

From the first law of thermodynamics, the energy is conserved, which means, energy can neither

be created nor destroyed, it can only be transferred or changed from one form to the other. The

internal energy E of the system equals to the net heat transfer into the system Q plus the net

work done on the system W . This is mathematically presented in equation (1.22).

E = Q+W =⇒ dE
dt

=
dQ
dt

+
dW
dt

(1.22)

Following the similar procedure as done for mass and momentum conversations, the energy

equation via RTT is obtained to be:

ρ
De
Dt

+ e
(

Dp
Dt

+ρ ▽ .v
)
=−▽ .q

′′
+q

′′′
−P▽ .v+µΦ (1.23)
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where q′′
is the heat flux, e is specific internal energy, q

′′′
is the rate of internal heat generation,

P is the pressure, µ is the dynamic viscosity, Φ is the viscous dissipation function, and v is the

flow velocity.

The advection-diffusion equation is now introduced. This equation is a result of Fick’s sec-

ond law. The concentration equation is sometimes referred to as the species equation. In this

equation, the principle which states that ’the difference between the mass of material entering

a control volume and that leaving the control volume must be equal to the rate of accumulation

of concentration inside the control volume’ is used. The known concentration equation is as

expressed hereunder in equation (1.24);

∂C
∂ t

+▽.(vC) =▽.(D▽C)−βC (1.24)

where, D is the molecular diffusivity coefficient and β is the chemical reaction.

1.1.8 The Lorentz force (Electromagnetic forces)

The Lorentz force is defined as the force that is exerted on a charged particle moving with ve-

locity v through an electric field E and magnetic field B. Lorentz force is just the perpendicular

force on a charged particle moving in magnetic fields. Now, consider the electromagnetic body

force F= J×B where J is the current density presenting the generalized Ohm’s law by ignoring

the hall effect, as expressed in equation (1.25):

J = σ((E+v×B)) (1.25)

where, σ is the electrical conductivity of the fluid (blood), E the electric field and B is the

magnetic field. The terms σE and σv×B respectively, represent the conduction and induction,

Turkyilmazoglu (2010). The induced fields are assumed further to be negligibly small so that

equation (1.25) reduces to equation (1.26).

J = σ(v×B) (1.26)

which eventually, leads to equation (1.27).

J =−σB2
0w (1.27)

where w is the velocity in the axis of the flow.
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1.1.9 Blood as material

Keener and Sneyd (1998), reported that blood is composed of two major ingredients: the liq-

uid blood plasma and several types of cells suspended within the plasma. The cells constitute

approximately 40% of the total blood volume and are grouped into three major categories: ery-

throcytes (red blood cells), leukocytes (white blood cells), and thrombocytes (platelets). Red

blood cells comprise water, hemoglobin and membrane components. Hemoglobin is biolog-

ically able to combine reversibly with oxygen and hence enables blood to carry substantial

amounts of oxygen around the body. White blood cells include granulocytes, lymphocytes and

monocytes, and have their primary role in the immune system, scavenging micro-organisms

and forming antibodies. Platelets are cell fragments used in blood clotting and are useful to

stop bleeding. The liquid component of blood is called plasma. This is the main component

of blood and consists mostly of water, proteins, ions, nutrients, and wastes mixed in. Plasma

carries different types of blood cells to all parts of the body. Besides the primary function of

blood being to deliver oxygen and nutrients to body cells and to remove waste from the body

cells, also specific functions of blood include defense, distribution of heat and maintenance of

homeostasis (DeSaix et al, 2018).

1.1.10 Blood’s viscosity

Blood has been treated to be a either a Newtonian fluid or a non-Newtonian fluid where various

behaviours have been considered. Payne (2017) described that plasma is a pale yellow fluid

that is a solution of proteins and electrolytes and that can be considered to be very close to a

Newtonian fluid. The Newtonian fluid is the one that follows Newton’s law of viscosity, that the

shear stress τ is directly proportional to the velocity gradient. The constant of proportionality

µ is referred to as the viscosity of the fluid.

τ = µ
du
dy

(1.28)

Payne (2017) described further that though, plasma is a Newtonian fluid, the presence of other

particles means that blood highly, shows non-Newtonian characteristics and the relationship

between shear stress and strain rate is non-linear. At high shear rates, blood is thus close to a

Newtonian fluid and an assumption of Newtonian behavior (with a suitable value for viscosity)

is often made in large vessels.

Non-Newtonian fluids are the ones that do not obey the Newton’s law of viscosity. In this
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regard, the shear stress is not directly proportional to the velocity gradient.

τ = µ f (γ̇) (1.29)

where γ̇ is the rate of strain. According to Sochi (2015), the most common descriptions of

blood being a non-Newtonian fluid that have been given by various scholars, including the ones

in equations (1.30)− (1.36):

τ = Kγ̇
n Power law (1.30)

τ = τ0 +µγ̇ Bingham (1.31)
√

τ =
√

τ0 +
√

µγ̇ Casson (1.32)

τ = τ0 +µγ̇
n Herschel-Bulkley (1.33)

µ = µ∞ +
µ0 −µ∞

1+(λ γ̇)n Cross (1.34)

µ = µ∞ +(µ0 −µ∞)
[
1+(λ γ̇)2](n−1)/2

Carreau (1.35)

µ = µ∞ +(µ0 −µ∞)

[
sinh−1(γ̇λ )

γ̇λ

]
Powell-Eyring (1.36)

where, K is the consistency index, τ0 is the yield stress, µ0 the viscosity at zero shear rate, µ∞

is the infinite-shear viscosity, and λ is the characteristic time constant. All models given by

Equations (1.29) to (1.35) can be reduced to a Newtonian model with appropriate choices of

model parameters. The current study considers both Newtonian and non-Newtonian models

to describe the blood. For the non-Newtonian fluid, the Herschel-Bulkley model is considered

because it is more advantageous as it gives more information than Casson, Bingham and power

law.

The Herschel-Bulkley fluid is a non-Newtonian fluid that requires a certain amount of yield

stress for it to flow. The stress tensor components are as given in equation(1.37):

τi j =

(
Kγ̇

n−1 +
τ0

γ̇

)
γ̇i j for τ ≥ τ0

γ̇ = 0 for τ < τ0

(1.37)

where, the subscripts i j = r,z. τ0 is the yield stress at zero shear rate, K is the consistency

coefficient, n is the flow behavior index and γ̇i j =
(

∂ui
∂ r j

+
∂u j
∂ ri

)
are the components of the rate

of strain tensor and γ̇ is the second invariant of the rate of strain which is as given in equation

(1.38):

γ̇ =

√√√√2

[(
∂u
∂ r

)2

+
(u

r

)2
+

(
∂w
∂ z

)2
]
+

(
∂u
∂ z

+
∂w
∂ r

)2

(1.38)
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From equation (1.37) there are special cases that can arise. Thus, one can be able to see different

types of behaviors of fluids. This is as shown in table 1.

Table 1: Different types of behaviors of fluids

Type of fluid model K n τ0

Herschel-Bulkley > 0 0 < n < ∞ > 0

Newtonian > 0 1 = 0

Power law for n < 1 (shear-thinning) > 0 0 < n < 1 = 0

Bingham > 0 1 > 0

Power law for n > 1 (shear-thickening) > 0 1 < n < ∞ = 0

1.1.11 Magnetohydrodynamics

According to Davidson (2002), Magnetohydrodynamics (MHD for short) is the study of the in-

teraction between magnetic fields and moving, conducting fluids. Yuduvanshi and Parthasarathy

(2010), described further that, the word magnetohydrodynamics is derived from magneto-

meaning magnetic field, hydro- meaning liquid, and dynamics meaning movement. Magne-

tohydrodynamics therefore describes the dynamics of conducting fluids, which are grounded

on the interaction of electromagnetic fields with the flow of particles in the fluid. The theory

syndicates the Navier-Stokes equations of fluid dynamics with the electromagnetism defined by

Maxwell’s equations.

In Magnetohydrodynamics situation there is a mutual interaction of magnetic field B and the

fluid velocity field v which arises partly as a result of laws of Faraday and Ampere, and partly

due to the Lorentz force. This brings the relative movement of a conducting fluid (in this case

is the blood) and a magnetic field causes an electromagnetic force v×B in accordance with

the Faraday’s law of induction. On the other hand, electrical currents will ensue, the current

density being of order σ(v ×B), σ being the electrical conductivity. These induced currents

must, according to Ampere’s law, give rise to a second magnetic field. This complements to

the original magnetic field and the change is such that the fluid looks to drag the magnetic field

lines.

The combined magnetic field (imposed and induced) interacts with the induced currents density

J to give rise to a Lorentz force J×B. As indicated in subsection (1.1.5)
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According to Nallapu (2015), in recent years, the study of magnetohydrodynamic (MHD) flow

of blood through arteries has gained considerable interest because of its significant applications

in physiology. It is known that blood is a suspension of several cells in plasma, the main bulk

of the cells being erythrocytes. Since erythrocytes have negative charge (although small), an

applied magnetic field can impact the motion of erythrocytes; thus, blood flow is affected due

to the action of an external magnetic field Sinha et al. (2016). The use of magnetic fields in

the field of medicine has been on the increase. This include, in hospitals, the use of magnetic

resonance imaging (MRI). Magnetic resonance imaging for blood vessels such as arteries is

used to check inta alia, the blocked blood arteries, cardiovascular diseases, problems caused by

a heart attack, and problems with the structure of the heart. All these use strong magnetic fields.

 

Figure 4: Person being subjected into MRI (Stoppard, 2017)

The use of magnetic fields in health-related interventions is also manifested in various situa-

tions, including the treatment of ailments. In sports such as football and athletics, magnets are

used to perform magnetic therapy to maintain health and treat illnesses. Magnetic therapy is

an alternative medical practice that uses magnets to alleviate pain and other health concerns. It

is, therefore, possible that magnetic therapy in sports can be applied to a person with stenosis
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because all people are susceptible to have stenosis or plaques in the body.

1.1.12 Body acceleration

Body acceleration may be defined as the shaking or vibration of the human body. In day to

day activities, the human body is subjected to accelerations such as when traveling in vehicles,

boats, planes, or in doing physical exercises. These accelerations disturb the normal flow of

blood that is why some people feel a headache or vomiting when traveling using vehicles or

airplanes. Nagarani and Sarojamma (2008), Sankar and Ismail (2010), and Tanwar et al. (2016)

highlighted that the prolonged exposure to high level unintended external body accelerations

may cause disturbance to the blood flow and this leads to serious diseases which have symptoms

like headache, abdominal pain, increase in pulse rate, venous pooling of blood in the extremities.

1.1.13 Chemical reaction

Chemical reaction involves the law of mass action. This law describes the rate at which chemi-

cals, whether large macromolecules or simple ions, collide and interact to form different chem-

ical combinations (Keener & Sneyd, 1998).

Biologically, blood reacts and is soluble at the arterial wall as arteries may be basically consid-

ered as a living tissues that need supply of metabolites including oxygen and removal of waste

products. Every living cell in the body produces heat which needs to be spread around the body,

and this is done by the blood, which heats some organs and cools others by conduction and

other processes.

Misra and Adhikary (2016) pointed out that the rate at which blood flows through arteries can

also be enhanced/slowed down by the application of drugs. They further explained that this

is the observation of the clinicians, when they treat patients suffering from various types of

degenerative/tissue-destroying diseases, including multiple atherosclerosis (narrowing of arte-

rial lumen due to deposition of different fatty substances, cholesterol, etc.), arthritis, Alzheimer

disease, Parkinson disease, heart failure.

According to Casiday and Frey (2007), when the human body is subjected to the external body

acceleration such as physical exercise, the muscles consume a lot of oxygen as they convert

chemical energy (in glucose) to mechanical energy. This oxygen gas comes from hemoglobin

in the blood. Carbon dioxide gas (CO2) and hydrogen irons (H+) are produced during the
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breakdown of glucose, and are removed from the muscle via the blood. The production and

removal of CO2 and H+, together with the use and transport of oxygen gas, cause chemical

changes in the blood (Fig. 5).

 

Figure 5: Reactions taking place during exercise (Casiday & Frey, 2007)

1.2 Statement of the problem

The arterial blood flow may be affected by several factors such as physical exercises. The

normal flow of blood needs to be maintained so that human healthy is not jeopardized. It is

therefore important to study and model different situations that endanger the arterial blood flow.

Several scholars have studied arterial blood flow. This includes the study of Alsemiry et al.

(2020) who investigated blood flow and mass transfer through a stenosed artery. The study

assumed that the arterial wall had multiple stenoses. The magnetic fields and body accelera-

tion were not taken into consideration. Liu and Liu (2020) investigated a non-Newtonian fluid

model of blood flow through a tapered artery with stenosis. Heat transfer was also investigated.

However Magnetic fields, body acceleration, and chemical reactions were not studied. Misra

et al. (2018) modeled blood flow in arteries subject to vibrating environments. The presence of

stenosis and magnetic fields were not considered. Sharma and Yadav (2019) analyzed a math-

ematical model of blood flow in arteries under the presence of magnetic fields. The aspect of

body acceleration was not investigated. To the best of our knowledge, it is clearly seen that the

computational modeling of unsteady arterial blood flow heat and mass transfer for chemically
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reacting blood in the presence of body acceleration and magnetic fields is not studied despite

its manifestation health-related interventions. The current study, therefore, intends to fill the

gap by studying the combined effect of unsteady blood flow, heat, and mass transfer through a

stenosed artery in the presence of body acceleration, magnetic fields, and chemical reaction.

1.3 The rationale of the study

Understanding the dynamics of heat, and mass transfer of blood flow when the body is subjected

to body accelerations, magnetic fields, and chemical reaction is very important in the field of

medicine and in the field of computation. Most authors model blood flow through a stenosed

artery when the body is subjected to accelerations or to magnetic fields.For example Mwangi

(2016), Saleem and Munawar (2016) and Sinha et al. (2016). The combined effect of body

accelerations, magnetic fields, and chemical reactions has not been taken much attention in

modeling despite its manifestation in different situations such as magnetic therapy in sports. The

current study combines the effect of body acceleration, magnetic fields, and chemical reactions

taking into consideration that the arterial wall has plaques or stenosis. This is beneficial in

health-related matters, in the field of fluid dynamics, in the field of computational science and

engineering in general as the findings of this study can be used in making or improving health

devises such as MRI scanning machine.

1.4 Research objectives

1.4.1 General objective

The general objective of this study is to model and analyze heat and mass transfer of unsteady

flow of blood in a stenosed artery in the presence of body acceleration, magnetic field, and

chemical reaction.

1.4.2 Specific objectives

The specific objectives of this study are as follows:

(i) To formulate mathematical models for the unsteady MHD flow of a Newtonian and non-

Newtonian blood through a stenosed artery in the presence of body acceleration, magnetic

fields, and chemical reaction.

(ii) To solve and analyze the model for the Newtonian case and consider mass transfer.
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(iii) To solve and analyze the model for the non-Newtonian case and consider heat and mass

transfer.

(iv) To validate the model by comparing the current results with previous similar studies.

1.5 Research Questions

The study was guided by the following research questions:

(i) How can mathematical models for the unsteady MHD flow of a Newtonian and non-

Newtonian blood through a stenosed artery in the presence of body acceleration, magnetic

fields, and chemical reaction be formulated?

(ii) How can a mathematical model describing the unsteady MHD flow of a Newtonian blood

and considering mass transfer be solved and analyzed?

(iii) How can a mathematical model describing the unsteady MHD flow of a non-Newtonian

blood and considering heat and mass transfer be solved and analyzed?

(iv) How can mathematical models formulated be validated?

1.6 Significance of the study

This study is useful in the following ways:

(i) The study provides more knowledge on the dynamics of blood’s velocity, temperature, and

concentration subject to the combined effects of magnetic fields, vibration environment,

and chemical reaction.

(ii) The study is useful for the clinical purpose which requires reducing the volumetric flow

rate of the blood. For example during surgery.

(iii) The study is useful for scientists in medicine for further research, for example, to separate

iron-oxide from the entire blood in case this is needed. This can be done by making use

of magnetic fields.

(iv) The study is useful in quantifying the arterial wall shear stress and knowing their dynamics

when subjected to vibrations and magnetic field.
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1.7 Delimitation of the study

The current study focuses on both Newtonian and non-Newtonian blood. The arterial wall is

taken to be rigid. The study therefore, does not consider the elasticity of the arterial wall.

For non-Newtonian blood, the study only focuses on the Herschel-Bulkley constitutive model.

Furthermore, the study is limited to theoretical model validation.
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CHAPTER TWO

LITERATURE REVIEW

The purpose of this chapter is to review the relevant literature on blood flow through a stenosed

artery. The study on unsteady blood flow through a stenosed artery in the presence of body

acceleration, magnetic fields and chemical reaction draws much attention as their presence,

may disturb the normal flow of blood, mass as well as the heat transfer. The chapter therefore

puts in place the review of literature on studies involving body acceleration, magnetic fields,

chemical reaction (mass transfer) and heat transfer.

Kumari et al. (2019) studied blood flow through a stenosed artery under the presence of mag-

netic fields. The arterial wall was assumed to be permeable. The blood was treated as the

elastico-viscous, incompressible and electrically conducting. The study also investigated the

effect of slip velocity. The expressions for axial velocity, volumetric flow rate and wall shear

stress were presented and computed using appropriate transformation. The study concluded that

the axial velocity and volumetric flow rate increases considerably with the increase of slip veloc-

ity parameters in the presence of magnetic field. Furthermore, the application of magnetic field

was observed to be useful in controlling the axial velocity. The study assumed unidirectional

flow where only one dimension was taken into consideration. The effect of body acceleration

was not investigated.

An investigation of an oscillatory blood flow in an indented artery with heat source in the ex-

istence of magnetic field was carried out by Bunonyo et al. (2018). The models expressed for

the study were solved using the Frobenius method. The computational results of velocity and

temperature profiles were presented graphically. The study revealed that the blood flow is in-

fluenced by the presence of the magnetic field and the Grashof number. As it was expected, it

was observed that the presence of magnetic field retards the velocity profile as well as the flow

rate. It was concluded that the temperature profile increases with increasing values oscillatory

frequency and radiative heat source parameter. The model on the energy equation did not in-

clude the viscous dissipation term, notwithstanding of its importance in exploring temperature

profiles. Body acceleration and chemical reactions were also not examined.

Saleem and Munawar (2016) presented a study that dealt with the flow of blood through a

stenotic artery in the presence of a uniform magnetic field. Different flow situations were taken
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into account by considering the regular and irregular shapes of stenosis inside the walls of

artery. The blood was assumed to suit the Eyring–Powell fluid. The solution for the axial

velocity was obtained using the regular perturbation method. The study presented graphically

the variations in pressure drop across the stenosis length, the impedance and the shear stress.

The study concluded that the pressure variations and the pressure drop inside the channel for

the case of asymmetric stenosis were large as compared to symmetric stenosis. Furthermore,

The Eyring–Powell fluid was observed to be helpful in reducing the frictional effects inside the

channel and hence helpful in reducing the resistance to flow. The resistance to the flow was

observed to increase as the magnetic effects increases.

Mwangi (2016) investigated magnetohydrodynamic fluid flow in a collapsible tube. The study

aimed at determining the velocity profiles, temperature profiles and the effects of fluctuating

dimensionless numbers on the flow variables. The fixed magnetic field was perpendicular to

the direction of flow of the conducting fluid. The equations governing the flow were non-linear

and could not be solved analytically. Therefore, an approximate solution to the equations was

determined numerically using the finite difference method. The study revealed that increase in

Reynolds number leads to an increase in magnitude of the primary velocity of the flow. Increas-

ing Hartmann number, results showed that the temperature profiles increases. Furthermore,

increase in Eckert number was observed to increase the temperature profiles.

The study on the effect of heat transfer on unsteady MHD flow of blood in a permeable vessel

in the presence of non-uniform heat source was also studied by Sinha et al. (2016). The non-

uniform heat source or sink effect on blood flow and heat transfer was taken into consideration.

The model equations were first treated mathematically by reducing to a system of coupled non-

linear differential equations, which were then solved by employing the similarity transformation

and boundary layer approximation. The resulting nonlinear coupled ordinary differential equa-

tions were then solved numerically by using an implicit finite difference scheme. The results

of velocity, temperature, coefficient of skin friction, and heat transfer rate were obtained. The

study revealed that heat transfer rate is boosted as the value of the unsteadiness parameter rises,

but it diminishes as the space dependence parameter for heat source or sink rises. The effects

of body acceleration and chemical reactions were not part of the study.

Sinha et al. (2016) presented a mathematical model which was established for studying the ef-

fect of body acceleration on pulsatile blood flow through a catheterized artery with an axially
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non-symmetrical mild stenosis. The study considered blood to be a Newtonian fluid. The non-

linear partial differential equations were solved using the perturbation method. The analytical

expressions for velocity profile, volumetric flow rate, wall shear stress and effective viscosity

were obtained. The study found that the axial velocity increases as the body acceleration in-

creases and the axial velocity declines as the phase angle of body acceleration rises. The effect

of magnetic field and chemical reactions were not investigated.

The study of arterial blood flow in vibrating environment was also done by Misra et al. (2018).

In this case the blood was treated to be a couple stress fluid. The study also considered the

oscillatory flow in a porous channel. Velocity of blood and the volumetric flow rate were both

observed to diminish as the external pressure gradient is enhanced. Blood velocity, volumetric

flow rate and also wall shear stress all were observed to reduce as the frequency of oscillation

is raised. Furthermore, it was found that the presence of couple stress in the fluid boosts the

velocity of the fluid in both axial and transverse directions, while a contrary phenomenon was

observed for the wall shear stress.

Changidar and De (2015) developed a nonlinear mathematical model for blood flow in a mul-

tiple stenosed arterial segment under the impact of body acceleration. The finite difference

scheme was employed to study the dynamics of blood flow through the cylindrical shape artery.

To use that method, first they transformed the cylindrical domain into the rectangular domain

by using the radial transformation. The study revealed that as the Reynolds number increases,

the wall shear stress increases. The multiple stenosis was observed to have a significant effect

on the wall shear stress in such a way that it developed more at the constricted locations than

all other places of the artery.

Jamil et al. (2018) examined the unsteady blood flow with nanoparticles through a stenosed

arteries in the existence of periodic body acceleration. The study modelled blood as a non-

Newtonian Bingham plastic fluid subjected to periodic body acceleration and slip velocity. The

flow governing equations were solved analytically by means of the perturbation method. By

using the numerical approaches, the physiological parameters were scrutinized, and the blood

flow velocity distributions were generated graphically and discussed. From the flow results, it

was seen that the flow speed increases as slip velocity increases and decreases as the values of

yield stress increases.
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Mwapinga (2012) studied blood flow and heat transfer in a stenosed artery in the presence

of body exercise. The study assumed the unidirectional flow in which one dimension was

considered. The blood was assumed to be Newtonian in character. The study found that the

increase of body acceleration rises the velocity of blood and temperature. It is also found that

as stenotic height increases the velocity decreases. It was further shown that increasing the

hematocrit ratio increases the velocity of the fluid. On the other hand, it was observed that

increasing the radial distance, declines the temperature profile.

The study of the chemical reactions on blood flow has become quite interesting because of

the quantitative prediction of blood flow rate. For the sake of examining the effects of the

chemical reaction on blood flow through an artery, Chitra and Bhaskran (2019) studied the

dynamical influence of heat and mass transfer on unsteady visco-elastic fluid on blood flow

through an artery with the effects of chemical reaction. The model equations for the problem

were solved analytically using the Bessel function. The main outcomes of the study were that

concentration profile declines with increase in chemical reaction parameter. The increase in

Schmidt number was also observed to increase the concentration profile. On the other hand,

increase in Pecklet number revealed to enhance the temperature profile of blood. The study

did not take into account the presence of stenosis on the arterial wall and the effect of body

vibration.

Tripathi and Sharma (2018) presented the mathematical model of heat and mass transfer effects

on an arterial blood flow under the effect of an applied magnetic field with chemical reaction.

The corresponding non-linear differential equations were solved by using an analytical scheme,

homotopy perturbation method was used to obtain the solution for the velocity, temperature and

concentration profiles of the blood flow. The study showed that in an inclined artery, the size

of the wall shear stress at stenosis throat increases as values of the applied magnetic field rise

while it diminishes as the values of both the chemical reaction and porosity parameters increase.

The study assumed that the flow is one dimensional and the effect of vibration was not in place.

The study on the influence of heat and chemical reactions on blood flow through an anisotrop-

ically tapered elastic arteries with overlapping stenosis was presented by Mekheimer et al.

(2012). The blood was considered to be a micropolar fluid. The effect of varying the Soret

number on concentration was done. The study showed that the concentration of the fluid de-

creases as the Soret number increases. The study did not involve the effect of body acceleration.
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On the other hand, the effect of chemical reaction parameter received little attention.

Sarojamma et al. (2012) explained, that when blood flows in large vessels it shows the charac-

teristics of Newtonian fluid, but when it flows in smaller diameter vessels, the apparent viscosity

of blood increases markedly and hence shows a highly non-Newtonian character. The study of

blood flow in the vascular system is complicated in many respects and thus simplifying assump-

tions are often made for the purpose of analysis. In large vessels of 1 to 3cm in diameter, where

shear rates are high, blood is assumed to have constant viscosity and thus is assumed to be

Newtonian (Khambhampati, 2013). Noutchie (2005) explained that blood flow in large arteries

and clearly showed that in the larger vessels it is reasonable to assume blood has a constant

viscosity, because the vessel diameters are large compared to the individual cell diameters and

because shear rates are high enough for viscosity to be independent of them. Hence in these

vessels the non-Newtonian behavior becomes insignificant and blood can be considered to be a

Newtonian fluid.

Zaman et al. (2015) pointed out that, it is generally accepted that the rheological behavior of

blood is assumed as Newtonian for values of shear rate greater than 100s−1 and a such situation

occurs in larger arteries. But in smaller arteries the blood does not obey the Newtonian postulate

and therefore cannot be modeled as a Newtonian fluid. Categorically, blood is classified as

a non-Newtonian fluid. Tu and Deville (1996), Gijsen et al. (1999) and Rodkiewicz et al.

(1990) concluded that it is very crucial that blood is modeled as a non – Newtonian fluid. The

Herschel-Bulkley fluid is of general type and can be reduced to Newtonian, Bingham plastic

and Power-law fluid models, by selecting appropriate flow parameters (Biswas & Laskar, 2011).

According to Vajravelu et al. (2011), the Herschel-Bulkley constitutive equation contains one

more parameter than the Casson equation does, and thus more information about the blood

properties can be obtained when the Herschel-Bulkley equation is used than when the Casson

one is used.

The current work studies blood flow in both cases, Newtonian and Non-Newtonian. In both

cases the human body is assumed to be subjected to the magnetic fields, body acceleration and

the chemical reactions. Blood is considered to flow in a tube (artery) with plaques/stenosis. The

results obtained in both cases are compared.
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CHAPTER THREE

MATERIALS AND METHODS

This chapter presents the model assumptions, formulation of the models and the solution of the

models. The chapter is divided into two sub-chapters. The first section assumes that the blood is

Newtonian in nature, in the second section blood is considered in its non-Newtonian character.

In both sub-chapters, the assumptions considered are stipulated, then models formulated and the

corresponding boundary conditions prescribed. Non-dimensionalisation is done and the method

used to solve the formulated models explained.

3.1 Newtonian model for MHD arterial blood flow and mass transfer

In this section blood flow through a stenosed artery in the presence of magnetic fields, body

acceleration and chemical reaction is considered. All these situations that may disturb the nor-

mal flow of blood, may be physically manifested through a case of magnetic therapy taken to a

patient to reduce pain in sports.

3.1.1 Mathematical formulation of the theoretical model for the Newtonian case

The mathematical formulation, the following assumptions were considered:

(i) The flow is unsteady: In this regard, the velocity varies with time and space. Throughout

the study, it will therefore mathematically be considered partial derivative
∂

∂ t
(.) ̸= 0.

(ii) The flow is two dimensional: The current study considers that two spatial variables de-

scribe the flow. In this case the two space variables are the radial direction and the axial

direction, that is r and z.

(iii) The flow is laminar: In this case, it is assumed that blood flows in infinitesimal parallel

layers with no any disruption between them. That is, the layers slide in parallel, with no

eddies or mixing. The study therefore is of streamline flow.

(iv) The flow is axisymmetric: In this case, it is assumed that, the cylindrical velocity compo-

nents are independent of the angular variable θ . This means that there is also no variation

of the velocity with angle θ , therefore,
∂

∂θ
(.) = 0 with z− axis coinciding with the axis

of symmetry of the flow.
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(v) The flow is incompressible: This takes into account that, the material density, ρ , of the

blood is a constant, variations with pressure are considered negligible.

(vi) The flow is fully-developed: In this case, it is assumed that the momentum of the fluid

does not change in the flow direction. The momentum is considered to be changing only

in the radial direction.

(vii) The fluid is Newtonian: In this particular section, blood is assumed to follow Newton’s

law of viscosity where the shear stress τ is directly proportional to the velocity gradient.

(viii) Magnetic field B0 is applied in the direction perpendicular to that of blood flow.

(ix) Electrical conductivity σ is constant.

(x) Diffusion coefficient D is constant.

(xi) The force due to electric field is very small compared with the Lorentz force due to mag-

netic field.

Figure 6, is the schematic blood flow diagram, where r and z are the radial and axial direc-

tions whose corresponding velocities are respectively u and v. B0 is the applied magnetic

field intensity, r0 is the radius of the normal artery, δ is the protuberance of the stenosis, 2z0 is

the length of stenosis, and h(z) represents the radius of the stenosed artery.

 

 Figure 6: Schematic flow diagram

In cylindrical polar coordinate, under the mentioned assumptions, equations 1.12, 1,21, and

1,24 of respectively, continuity, motion and mass concentration reduce to:
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∂u
∂ r

+
u
r
+

∂w
∂ z

= 0 (3.1)

ρ

(
∂u
∂ t

+u
∂u
∂ r

+w
∂u
∂ z

)
=−∂P

∂ r
+µ

(
∂ 2u
∂ r2 +

1
r

∂u
∂ r

− u
r2 +

∂ 2u
∂ z2

)
(3.2)

ρ

(
∂w
∂ t

+u
∂w
∂ r

+w
∂w
∂ z

)
=−∂P

∂ z
+µ

(
∂ 2w
∂ r2 +

1
r

∂w
∂ r

+
∂ 2w
∂ z2

)
+G(t)−σB2

0w (3.3)(
∂C
∂ t

+u
∂C
∂ r

+w
∂C
∂ z

)
= D

(
∂ 2C
∂ r2 +

1
r

∂C
∂ r

+
∂ 2C
∂ z2

)
−βC (3.4)

where ρ is the density of the blood, µ is its viscosity, P is the pressure, G(t) is the body accel-

eration, C is the concentration, t is the time, D and β are the diffusion coeffient and chemical

reaction parameters, respectively.

In the radial direction it is assumed that the pressure gradient is small due to the fact that the

lumen radius of an artery is small in comparison to the pressure wave. Under such assumption

therefore, the radial pressure gradient
∂P
∂ r

≈ 0. Following Ismail et al. (2008), the pressure

gradient in axial direction can be written as seen in equation 3.5:

− ∂P
∂ z

= A0 +A1 cos(n1t) (3.5)

Where A0 is the steady state part of pressure gradient, A1 is the amplitude of pulsatile blood flow

that gives rise to systolic and diastolic pressure, n1 = 2π f1, with f1 being the pulse frequency.

On other hand, according to Nagarani and Sarojamma (2007), body acceleration term G(t) may

be given as equation 3.6.

G(t) = ρa0 cos(n2t +ψ) (3.6)

Where ρa0 is the amplitude of body acceleration, n2 = 2π f2, with f2 being body acceleration

frequency, and ψ is the phase angle.

The equations can now be re-written as follows, see equations 3.1-3.4:

∂u
∂ r

+
u
r
+

∂w
∂ z

= 0 (3.7)

ρ

(
∂u
∂ t

+u
∂u
∂ r

+w
∂u
∂ z

)
= µ

(
∂ 2u
∂ r2 +

1
r

∂u
∂ r

− u
r2 +

∂ 2u
∂ z2

)
(3.8)

ρ

(
∂w
∂ t

+u
∂w
∂ r

+w
∂w
∂ z

)
= A0 +A1 cos(n1t)+µ

(
∂ 2w
∂ r2 +

1
r

∂w
∂ r

+
∂ 2w
∂ z2

)
+ρa0 cos(n2t +ψ)−σB2

0w (3.9)(
∂C
∂ t

+u
∂C
∂ r

+w
∂C
∂ z

)
= D

(
∂ 2C
∂ r2 +

1
r

∂C
∂ r

+
∂ 2C
∂ z2

)
−βC (3.10)
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Following Das and Saha (2009), the geometry of stenosis (Fig. 4) can mathematically be ex-

pressed as follows:

h(z) =

r0 −δ

(
1+ cos πz

z0

)
−z0 ≤ z ≤ z0

r0 otherwise
(3.11)

3.1.2 Boundary and initial conditions

In this part, the initial and boundary conditions are prescribed. In this work it is assumed there

is no slip condition on the arterial wall. See equation 3.12:

u(r,z, t) = w(r,z, t) = 0 at r = h(z) (3.12)

and at the center of the artery (at the line of symmetry) it is assumed that there is no shear rate

and no radial flow. See equation 3.13 hereunder:

∂w(r,z, t)
∂ r

= u(r,z, t) = 0 at r = 0 (3.13)

Similarly, for concentration, the boundary conditions are as shown in equation 3.14

∂C(r,z, t)
∂ r

=C(r,z, t) = 0 at r = h(z) (3.14)

Since blood can flow even in the absence of magnetic field and body acceleration, it is therefore

assumed that initially, there is non-zero velocity and concentration when t = 0. This is as shown

in equation 3.15:

u(r,z,0) = u0, w(r,z,0) = w0, C(r,z,0) =C0 (3.15)

3.1.3 Skin friction

After determining the velocity, one can now easily determine the skin friction factor C f . The

skin friction in this regard, is the friction between the stenosed arterial wall and the fluid. Con-

sider first the arterial wall shear stress τw as shown in equation 3.16.

τw = µ
∂w
∂ r r=h(z) (3.16)

The skin friction is defined as:

C f =
τw

ρw2
c

(3.17)
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3.1.4 Non- dimensionalisation of variables

In this part the non-dimensional variables are introduced. The fluid’s characteristic velocity and

distance wc and r0 respectively are used. The wc is assumed to be average blood’s velocity

flowing along the artery and r0 is the radius of normal artery.

η =
r
r0
, z∗ =

z
r0
, w∗ =

w
wc

, u∗ =
u

wc
, t∗ =

twc

r0
, a∗0 =

a0r0

w2
c
, A∗

0 =
A0r0

ρw2
c

(3.18)

m1 =
r0n1

wc
, m2 =

r0n2

wc
, A∗

1 =
A1r0

ρw2
c
, e =

δ

r0
, C∗ =

C
C0

, D∗ =
D
υ2 , β

∗ =
β r2

0
υ

(3.19)

Now substitution of the non-dimensional variables into equations 3.7 to 3.17 is done. Upon

substitution, the continuity equation 3.7 becomes:

wc

r0

(
∂u∗

∂η
+

u∗

η
+

∂w∗

∂ z∗

)
= 0, (3.20)

dividing throughout equation 3.20 by
wc

r0
yields equation 3.21 below

∂u∗

∂η
+

u∗

η
+

∂w∗

∂ z∗
= 0, (3.21)

Equation 3.21 above is our continuity equation in non-dimensional form. Again, substitution of

the non dimensional variables into u− momentum equation 3.8 is done.

ρw2
c

r0

(
∂u∗

∂ t∗
+u∗

∂u∗

∂η
+w∗∂u∗

∂ z∗

)
=

µwc

r2
0

(
∂ 2u∗

∂η2 +
1
η

∂u∗

∂η
− u∗

η2 +
∂ 2u∗

∂ z∗2

)
(3.22)

dividing equation 3.22 by
ρw2

c
r0

leads to equation 3.23 hereunder:

∂u∗

∂ t∗
+u∗

∂u∗

∂η
+w∗∂u∗

∂ z∗
=

µ

ρr0wc

(
∂ 2u∗

∂η2 +
1
η

∂u∗

∂η
− u∗

η2 +
∂ 2u∗

∂ z∗2

)
(3.23)

which can be written as

∂u∗

∂ t∗
+u∗

∂u∗

∂η
+w∗∂u∗

∂ z∗
=

1
Re

(
∂ 2u∗

∂η2 +
1
η

∂u∗

∂η
− u∗

η2 +
∂ 2u∗

∂ z∗2

)
(3.24)

where Re in equation 3.24 is the Reynolds’s number defined as Re =
ρwcr0

µ
.

Similarly, the v− momentum equation 3.9 becomes:

ρw2
c

r0

(
∂w∗

∂ t∗
+u∗

∂w∗

∂η
+w∗∂w∗

∂ z∗

)
=

ρw2
c

r0
(A∗

0 +A∗
1 cosm1t∗)+

µwc

r2
0

(
∂ 2w∗

∂η2 +
1
η

∂w∗

∂η
+

∂ 2w∗

∂ z∗2

)
+

ρw2
c

r0
cos(m2t∗+ψ)−wcσB2

0w∗, (3.25)
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dividing equation 3.25 by
ρw2

c
r0

leads to equation 3.26 hereunder:

∂w∗

∂ t∗
+u∗

∂w∗

∂η
+w∗∂w∗

∂ z∗
=A∗

0 +A∗
1 cosm1t∗+

µ

ρr0wc

(
∂ 2w∗

∂η2 +
1
η

∂w∗

∂η
+

∂ 2w∗

∂ z∗2

)
+cos(m2t∗+ψ)−

r0B2
0σ

ρwc
w∗ (3.26)

which can be written as:

∂w∗

∂ t∗
+u∗

∂w∗

∂η
+w∗∂w∗

∂ z∗
=A∗

0 +A∗
1 cosm1t∗+

1
Re

(
∂ 2w∗

∂η2 +
1
η

∂w∗

∂η
+

∂ 2w∗

∂ z∗2

)
+cos(m2t∗+ψ)− H2

a
Re

w∗ (3.27)

where Ha is the Hartman number given as Ha = r0B0

√
σ

µ
.

One can then apply the non-dimensional variables to the concentration equation 3.10.

wcC0

r0

(
∂C∗

∂ t∗
+u∗

∂C∗

∂η
+w∗∂C∗

∂ z∗

)
=

υC0D∗

r2
0

(
∂ 2C∗

∂η2 +
1
η

∂C∗

∂η
+

∂ 2C∗

∂ z∗2

)
− υC0

r2
0

βC∗ (3.28)

dividing equation 3.28 by
wcC0

r0
gives the equation 3.29:

∂C∗

∂ t∗
+u∗

∂C∗

∂η
+w∗∂C∗

∂ z∗
=

υD∗

r0wc

(
∂ 2C∗

∂η2 +
1
η

∂C∗

∂η
+

∂ 2C∗

∂ z∗2

)
− υ

r0wc
βC∗ (3.29)

Equation 3.29 above can be written as shown in equation 3.30

∂C∗

∂ t∗
+u∗

∂C∗

∂η
+w∗∂C∗

∂ z∗
=

1
ScRe

(
∂ 2C∗

∂η2 +
1
η

∂C∗

∂η
+

∂ 2C∗

∂ z∗2

)
− 1

Re
βC∗ (3.30)

where Sc is the Schmidt number defined as Sc =
υ

D

The boundary and initial conditions in non-dimensional form becomes:

u∗(η ,z∗, t∗) = w∗(η ,z∗, t∗) =C∗(η ,z∗, t∗) = 0 at η = H(z∗) (3.31)

∂w(η ,z∗, t∗)
∂η

=
∂C(η ,z∗, t∗)

∂η
= u∗(η ,z∗, t∗) = 0 at η = 0 (3.32)

u∗(η ,z∗,0) =U0 w∗(η ,z∗,0) =W0 C∗(η ,z∗,0) = c0 (3.33)

For convenience, the asterisks are dropped, yielding to the following model equations in non-

dimensional form:

29



∂u
∂η

+
u
η
+

∂w
∂ z

=0 (3.34)

∂u
∂ t

+u
∂u
∂η

+w
∂u
∂ z

=
1

Re

(
∂ 2u
∂η2 +

1
η

∂u
∂η

− u
η2 +

∂ 2u
∂ z2

)
(3.35)

∂w
∂ t

+u
∂w
∂η

+w
∂w
∂ z

=A0 +A1 cosm1t +
1

Re

(
∂ 2w
∂η2 +

1
η

∂w
∂η

+
∂ 2w
∂ z2

)
+cos(m2t +ψ)− H2

a
Re

w (3.36)

∂C
∂ t

+u
∂C
∂η

+w
∂C
∂ z

=
1

ScRe

(
∂ 2C
∂η2 +

1
η

∂C
∂η

+
∂ 2C
∂ z2

)
− 1

Re
βC (3.37)

subject to conditions:

u(η ,z, t) =w(η ,z, t) =C(η ,z, t) = 0 at η = H(z) (3.38)

∂w(η ,z, t)
∂η

=
∂C(η ,z, t)

∂η
= u(η ,z, t) = 0 at η = 0 (3.39)

u(η ,z,0) =U0 w(η ,z,0) =W0 C(η ,z,0) = c0 (3.40)

On the other hand, skin friction (see equation 3.17) in non dimensionless form becomes:

C f =
1

Re
∂w
∂η

(3.41)

3.1.5 Radial coordinate transformation

In this section the transformation of the equations from cylindrical to rectangular domain is

done. The artery is taken to be cylindrical, with stenosis, Therefore transforming the constric-

tion, another variable ξ is introduced, such that

ξ =
η

H(z)
(3.42)

This suitable radial coordinate transformation helps to map the constricted domain into a rectan-

gular one. Equation3.42 above has the effect of immobilizing the arterial wall in the transformed

coordinate ξ . Using equation 3.42 and re-arranging, equations 3.34-3.41 become:
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1
H

∂u
∂ξ

+
u

Hξ
+

∂w
∂ z

− ξ

H
dH
dz

∂w
∂ξ

= 0 (3.43)

∂u
∂ t

=− u∂u
H∂ξ

−w
(

∂u
∂ z

− ξ

H
dH
dz

∂u
∂ξ

)
+

1
ReH2

(
∂ 2u
∂ξ 2 +

1
ξ

∂u
∂ξ

− u
ξ 2

)
+

1
Re

[
∂ 2u
∂ z2 − 2ξ

H
dH
dz

∂ 2u
∂ξ ∂ z

− ξ

H
d2H
dz2

∂u
∂ξ

+
ξ 2

H2

(
dH
dz

)2
∂ 2u
∂ξ 2 +

3ξ

H2

(
dH
dz

)2
∂u
∂ξ

]
(3.44)

∂w
∂ t

=− u∂w
H∂ξ

−w
(

∂w
∂ z

− ξ

H
dH
dz

∂w
∂ξ

)
+(A0 +A1 cos(m1t))+a0 cos(m2t +ψ)

+
1

ReH2

(
∂ 2w
∂ξ 2 +

1
ξ

∂w
∂ξ

)
− 1

Re
H2

a+

1
Re

[
∂ 2w
∂ z2 − 2ξ

H
dH
dz

∂ 2w
∂ξ ∂ z

− ξ

H
d2H
dz2

∂w
∂ξ

+
ξ 2

H2

(
dH
dz

)2
∂ 2w
∂ξ 2 +

3ξ

H2

(
dH
dz

)2
∂w
∂ξ

]
(3.45)

∂C
∂ t

=− u∂C
H∂ξ

−w
(

∂C
∂ z

− ξ

H
dH
dz

∂C
∂ξ

)
+

1
ScReH2

(
∂ 2C
∂ξ 2 +

1
ξ

∂C
∂ξ

)
− 1

Re
βC+ (3.46)

1
ScRe

[
∂ 2C
∂ z2 − 2ξ

H
dH
dz

∂ 2C
∂ξ ∂ z

− ξ

H
d2H
dz2

∂C
∂ξ

+
ξ 2

H2

(
dH
dz

)2
∂ 2C
∂ξ 2 +

3ξ

H2

(
dH
dz

)2
∂C
∂ξ

]
subject to:

u(ξ ,z, t) =w(ξ ,z, t) =C(ξ ,z, t) = 0 at ξ = 1 (3.47)

∂w(ξ ,z, t)
∂ξ

=
∂C(ξ ,z, t)

∂ξ
= u(ξ ,z, t) = 0 at ξ = 0 (3.48)

u(ξ ,z,0) =U0 w(ξ ,z,0) =W0 C(ξ ,z,0) = c0 (3.49)

And, the skin friction (equation 3.41) becomes:

C f =
1

ReH
∂w
∂ξ

ξ=1 (3.50)

3.1.6 Radial velocity transformation

The radial velocity u(ξ ,z, t) is now obtained in terms of the axial velocity w(ξ ,z, t). The conti-

nuity equation 3.43 is then multiplied by ξ H and then integrate it with respect to ξ . This leads

to equation 3.51.

u(ξ ,z, t) = ξ
dH
dz

w− 2
H

dH
dz

∫
ξ

0
wξ dξ − H

ξ

∫
ξ

0
ξ

∂w
∂ z

dξ (3.51)

Applying our boundary conditions, yields equation 3.52:∫ 1

0

2
H

dH
dz

wξ dξ =−H
ξ

∫ 1

0
ξ

∂w
∂ z

dξ (3.52)

Comparing the integrals and integrands of equation 3.52, results into equation 3.53:

∂w
∂ z

=− 2
H

dH
dz

w (3.53)
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Substituting equation 3.53 into 3.51 yields

u(ξ ,z, t) = ξ
dH
dz

w (3.54)

Equation 3.54 is the radial velocity component expressed in terms of axial velocity.

Now, substitution of the radial velocity obtained into v− momentum equation (see equation

3.45) and into the concentration equation (see equation 3.46) is done. Also, using the product

rule one ca easily find the derivatives
∂u
∂ξ

and
∂u
∂ z

as shown in equations 3.55 and 3.56

∂u
∂ξ

=
dH
dz

(
ξ

∂w
∂ξ

+w
)

(3.55)

∂u
∂ z

= ξ

(
dH
dz

∂w
∂ z

+w
d2H
dz2

)
(3.56)

This process therefore, eliminates u, and write radial velocity u in terms of axial velocity w. In

this regard, the equations 3.57 and 3.58 are easily obtained. These are the model equations that

need to be numerically solved.

∂w
∂ t

=−
(

ξ

H
dH
dz

w
)

∂w
∂ξ

−w
(

∂w
∂ z

− ξ

H
dH
dz

∂w
∂ξ

)
+(A0 +A1 cos(m1t))+a0 cos(m2t +ψ)

+
1

ReH2

(
∂ 2w
∂ξ 2 +

1
ξ

∂w
∂ξ

)
− 1

Re
H2

a w+

1
Re

[
∂ 2w
∂ z2 − 2ξ

H
dH
dz

∂ 2w
∂ξ ∂ z

− ξ

H
d2H
dz2

∂w
∂ξ

+
ξ 2

H2

(
dH
dz

)2
∂ 2w
∂ξ 2 +

3ξ

H2

(
dH
dz

)2
∂w
∂ξ

]
(3.57)

∂C
∂ t

=−
(

ξ

H
dH
dz

w
)

∂C
∂ξ

−w
(

∂C
∂ z

− ξ

H
dH
dz

∂C
∂ξ

)
+

1
ScReH2

(
∂ 2C
∂ξ 2 +

1
ξ

∂C
∂ξ

)
− 1

Re
βC+

1
ScRe

[
∂ 2C
∂ z2 − 2ξ

H
dH
dz

∂ 2C
∂ξ ∂ z

− ξ

H
d2H
dz2

∂C
∂ξ

+
ξ 2

H2

(
dH
dz

)2
∂ 2C
∂ξ 2 +

3ξ

H2

(
dH
dz

)2
∂C
∂ξ

]
(3.58)

The model equations above, are solved subject to the boundary and initial conditions expressed

in equations 3.47-3.49.

3.1.7 Numerical Discretization by Finite Difference Method

In this section, the solution of the problem is obtained. Equations 3.57 and 3.58 are non-linear,

therefore, it is very difficult to find its analytical solution subject to the boundary described by

equations 3.47-3.49. Therefore, a numerical procedure has been employed to obtain the solution

of problem (see sub-section 3.1.8 below).
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3.1.8 Finite difference schemes

The finite difference method (FDM) substitutes derivatives in the governing field equations by

difference quotients, which comprise values of the solution at discrete mesh points in the area

under study. That is for all numerical solutions, the continuous partial differential equations are

written in finite difference form. The numerical solution is identified only at a finite number of

points in the physical domain. There are several finite difference techniques that can be applied

to solve the model equations. In this study, the explicit finite difference method was employed,

where quantities at time k+1 depend explicitly on quantities at time k.

The finite difference scheme is based on the use of the central difference approximations to

discretize all the spatial derivatives and the explicit forward finite difference approximation to

discretize the time derivatives. This is done in the following manner:

∂w
∂ξ

=
wk

i, j+1 −wk
i, j−1

2∆ξ
,
∂ 2w
∂ξ 2 =

wk
i, j+1 −2wk

i, j +wk
i, j−1

(∆ξ )2 ,
∂w
∂ t

=
wk+1

i, j −wk
i, j

∆t
(3.59)

∂w
∂ z

=
wk

i+1, j −wk
i−1, j

2∆z
,
∂ 2w
∂ z2 =

wk
i+1, j −2wk

i, j +wk
i−1, j

(∆z)2 (3.60)

Similar expressions are also obtained for other spatial derivatives of C(i, j,k). See equation 3.61

and 3.62 here under:

∂C
∂ξ

=
Ck

i, j+1 −Ck
i, j−1

2∆ξ
,
∂ 2C
∂ξ 2 =

Ck
i, j+1 −2Ck

i, j +Ck
i, j−1

(∆ξ )2 ,
∂C
∂ t

=
Ck+1

i, j −Ck
i, j

∆t
(3.61)

∂C
∂ z

=
Ck

i+1, j −Ck
i−1, j

2∆z
,
∂ 2C
∂ z2 =

Ck
i+1, j −2Ck

i, j +Ck
i−1, j

(∆z)2 (3.62)

where ∆ξ is the increment in radial direction, ∆z is the increment in axial direction and ∆t is the

increment in time.

Also the discretization of w(i, j,k) and C(i, j,k) is done by writing it as wk
i, j and Ck

i, j respectively.

It is further defined:

ξ j = ( j−1)∆ξ ; j = 1,2,3, ...,N +1 where, ξN+1 = 1 (3.63)

zi = ( j−1)∆z; i = 1,2,3, ...,M+1 (3.64)

tk = (k−1)∆t; k = 1,2,3... (3.65)

The boundary conditions (see equation 3.47-3.49) are also discretized. The Neumann boundary
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condition at ξ = 0 is given as:

∂w
∂ξ

=
wk

i, j+1 −wk
i, j−1

2∆ξ
= 0 (3.66)

This gives, wk
i, j+1 −wk

i, j−1 = 0 which implies that wk
i, j+1 = wk

i, j−1. Now at ξ = 0 implies that

j = 1 which eventually gives wk
i,2 = wk

i,0. Since wk
i,0 is a ghost point, the derivative

∂w
∂ξ

j=1 is

now approximated using the denominator ∆ξ as shown in equation 3.67.

∂w
∂ξ

j=1 =
wk

i, j+1 −wk
i, j

∆ξ
= 0 (3.67)

which gives wk
i,2 =wk

i,1. In the same way, the Neumann boundary condition is obtained at ξ = 0.

Thus, the discretized conditions are as given in equation 3.68.

wk
i,2 = wk

i,1, Ck
i,2 =Ck

i,1, w1
i, j =W0, C1

i, j = c0 (3.68)

the initial axial velocity W0 =W (ξ ) is given as

W0 =

(
A0 +A1

4

)(
1− (Hξi)

2) (3.69)

The equations (3.59)-(3.62) are then substituted into equations 3.57 and 3.58. This gives (in

discretized form) the equations 3.70 and 3.71. In this regard, wk
i, j+1 and Ck

i, j+1 are made the

subject of the formula.

wk
i, j+1 =wk

i, j −∆t

[
ξ j

Hi

(
dH
dz

)
i

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)]
+(A0 +A1 cos(m1t))+a0 cos(m2t +ψ)

−∆twk
i, j

[
wk

i+1, j −wk
i−1, j

2∆z
−

ξ j

Hi

(
dH
dz

)
i

wk
i, j+1 −wk

i, j−1

2∆ξ

]

+
∆t

ReH2

[
wk

i, j+1 −2wk
i, j +wk

i, j−1

(∆ξ )2 +
1
ξ j

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)]

+
∆t
Re

[
wk

i+1, j −2wk
i, j +wk

i−1, j

(∆z)2 −
2ξ j

Hi

(
dH
dz

)
i

(
wk

i+1, j+1 −wk
i−1, j+1 −wk

i+1, j−1 +wk
i−1, j−1

4∆ξ ∆z

)]

−
∆tξ j

ReHi

(
d2H
dz2

)
i

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)
+

∆tξ 2
j

ReH2
i

(
dH
dz

)2

i

(
wk

i, j+1 −2wk
i, j +wk

i, j−1

(∆ξ )2

)

+
3∆tξ j

ReH2
i

(
dH
dz

)2

i

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)
− ∆t

Re
Ha2wk

i, j (3.70)
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Ck
i, j+1 =Ck

i, j −∆t

[
ξ j

Hi

(
dH
dz

)
i

(
Ck

i, j+1 −Ck
i, j−1

2∆ξ

)]

−∆twk
i, j

[
Ck

i+1, j −Ck
i−1, j

2∆z
−

ξ j

Hi

(
dH
dz

)
i

Ck
i, j+1 −Ck

i, j−1

2∆ξ

]

+
∆t

ReScH2

[
Ck

i, j+1 −2Ck
i, j +Ck

i, j−1

(∆ξ )2 +
1
ξ j

(
Ck

i, j+1 −Ck
i, j−1

2∆ξ

)]

+
∆t

ReSc

[
Ck

i+1, j −2Ck
i, j +Ck

i−1, j

(∆z)2 −
2ξ j

Hi

(
dH
dz

)
i

(
Ck

i+1, j+1 −Ck
i−1, j+1 −Ck

i+1, j−1 +Ck
i−1, j−1

4∆ξ ∆z

)]

−
∆tξ j

ReScHi

(
d2H
dz2

)
i

(
Ck

i, j+1 −Ck
i, j−1

2∆ξ

)
+

∆tξ 2
j

ReScH2
i

(
dH
dz

)2

i

(
Ck

i, j+1 −2Ck
i, j +Ck

i, j−1

(∆ξ )2

)

+
3∆tξ j

ReScH2
i

(
dH
dz

)2

i

(
Ck

i, j+1 −Ck
i, j−1

2∆ξ

)
− ∆tβ

Re
Ck

i, j (3.71)

The skin friction in discretized form is as shown in equation 3.72

C fi =
1

ReHi

wk
i, j+1 −wk

i, j

∆ξ
(3.72)

3.2 Magnetohydrodynamics blood flow through a stenosed artery, a case of non-

Newtonian model

In this sub-section, a mathematical model of MHD flow of blood through a stenosed artery is

studied. Blood is considered to be non-Newtonian of Herschel-Bulkley type. Effects of mass

and heat transfer on the flow are investigated in the presence of body acceleration, magnetic

fields and chemical reaction.

3.2.1 Theoretical model formulation of the problem

In this work, it is considered that the flow is unsteady, laminar, two-dimensional, pulsatile,

incompressible, and axisymmetric in the sense that there is no variation of the velocity with

the angle θ in the cylindrical polar coordinate system (r,θ ,z), with the z-axis coinciding with

the axis of symmetry of the flow. The blood is considered to behave as a non - Newtonian

fluid satisfying the Herschel-Bulkley model. Furthermore, body acceleration (G(t)), and the

strength of magnetic field (B0) act in the axial direction of the artery. Biologically, every cell

in the body can produce heat which needs to be spread around the body, and this is done by

the blood, which heats some organs and cools others by conduction and other processes. Thus,
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the study takes into account the presence of the chemical reaction such as exothermic reaction.

Figure 7 shows the schematic diagram of the stenosed artery.

 

Figure 7: Schematic diagram of the stenosed artery

where δ is the height of stenosis and 4z0 is the total length of stenosis.

The geometry of stenosis using cosine function is defined as shown in equation 3.73

R(z) =

r0 −δ

(
1+ cos πz

2z0

)
−2z0 ≤ z ≤ 2z0

r0 otherwise
(3.73)

Under mentioned assumptions, the equations for the z and r components of momentum together

with the equation of continuity, energy and concentration in the cylindrical coordinate system

are as shown in equations 3.74-3.78:

∂u
∂ r

+
u
r
+

∂w
∂ z

= 0 (3.74)

ρ

(
∂u
∂ t

+u
∂u
∂ r

+w
∂u
∂ z

)
=−∂P

∂ r
+

1
r

∂ (rτrr)

∂ r
+

∂ (τrz)

∂ z
(3.75)

ρ

(
∂w
∂ t

+u
∂w
∂ r

+w
∂w
∂ z

)
=−∂P

∂ z
+

1
r

∂ (rτrz)

∂ r
+

∂ (τzz)

∂ z
+F(t)−σB2

0w (3.76)

ρcp

(
∂T
∂ t

+u
∂T
∂ r

+w
∂T
∂ z

)
= k
(

∂ 2T
∂ r2 +

1
r

∂T
∂ r

+
∂ 2T
∂ z2

)
+ τrr

∂u
∂ r

+ τrz
∂w
∂ r

+ τrz
∂u
∂ z

+ τzz
∂w
∂ z

(3.77)(
∂C
∂ t

+u
∂C
∂ r

+w
∂C
∂ z

)
= D f

(
∂ 2C
∂ r2 +

1
r

∂C
∂ r

+
∂ 2C
∂ z2

)
+

D f KT

T0

(
∂ 2T
∂ r2 +

1
r

∂T
∂ r

+
∂ 2T
∂ z2

)
−β (C−C0) (3.78)
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In the above equations, u, w, T and C are respectively radial velocity, axial velocity, temper-

ature and concentration of the fluid. cp,k,KT ,D f ,and β are, respectively the specific heat

capacity, thermal conductivity, the thermal-diffusion ratio, diffusion coefficient, and chemical

reaction parameter. Furthermore, τrr,andτzz represent the normal stress components. τrz is the

shear stress component. The current study considers that blood obeys the Herschel-Bulkley

constitutive model. The stress tensor components are as given in equation 3.79.

τi j =

(
Kγ̇

n−1 +
τ0

γ̇

)
γ̇i j for τ ≥ τ0

γ̇ = 0 for τ < τ0

(3.79)

where, K is the consistency index, n is the flow behavior index and τ0 is the yield stress at zero

shear rate.

Now,from equation 3.79 the shear stresses are written as shown in equations 3.80-3.82.

τrr =2
(
Kγ̇

n−1 + τ0γ̇
−1)(∂u

∂ r

)
(3.80)

τzz =2
(
Kγ̇

n−1 + τ0γ̇
−1)(∂w

∂ z

)
(3.81)

τrz =2
(
Kγ̇

n−1 + τ0γ̇
−1)(∂u

∂ z
+

∂w
∂ r

)
(3.82)

The pulsatile pressure gradient which is responsible for driving the blood’s flow in the axial

direction and the body acceleration term are as given in equation 3.5 and 3.6 respectively.

3.2.2 Boundary and initial conditions

The boundary and initial conditions for the developed model are as shown in equations 3.83-

3.87

w(r,z, t) =0, u(r,z, t) = 0 on r = R(z) (3.83)

∂w(r,z, t)
∂ r

=0, u(r,z, t) = 0 on r = 0 (3.84)

∂T (r,z, t)
∂ r

=0, on r = 0 and T (r,z, t) = Tw on r = R(z) (3.85)

∂C(r,z, t)
∂ r

=0, on r = 0 and C(r,z, t) =Cw on r = R(z) (3.86)

u(r,z,0) =u0, w(r,z,0) = w0, C(r,z,0) =C0 (3.87)

where, Tw, Cw stands for arterial wall temperature and concentration on the arterial wall, respec-

tively.
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3.2.3 Non - dimensionalisation of the model variables

In this section, the non-dimensional variables are introduced. It is considered that, wc as the

average fluid’s velocity which is therefore the characteristic velocity. It is also defined that, r0

as the radius of normal artery. The dimensionless variables are now as shown in equations 3.88

to 3.90.

η =
r
r0
, w∗ =

w
wc

, u∗ =
u

wc
, t∗ =

twc

r0
, z∗ =

z
r0
, P∗ =

P
ρw2

c
, (3.88)

A∗
0 =

A0r0

ρw2
c
, A∗

1 =
A1r0

ρw2
c
, m1 =

r0m1

wc
, m2 =

r0m2

wc
, a∗0 =

r0a0

w2
c
, τ

∗
i j =

τi j

ρw2
c

(3.89)

T ∗ =
T −T0

Tw −T0
, C∗ =

C−C0

Cw −C0
, β

∗ =
β r2

0
ν

, e =
δ

r0
R∗(z∗) =

R(z)
r0

. (3.90)

Now, substitution of equations 3.88 to 3.90 into equations 3.74-3.87 is done. However, for

convenience, the asterisk/stars are dropped.

∂u
∂η

+
u
η
+

∂w
∂ z

= 0 (3.91)

∂u
∂ t

+u
∂u
∂η

+w
∂u
∂ z

=
∂P
∂η

+

(
∂τrr

∂η
+

1
η

τrr +
∂τrz

∂ z

)
(3.92)

∂w
∂ t

+u
∂w
∂η

+w
∂w
∂ z

= (A0 +A1 cos(m1t))+
(

∂τrz

∂η
+

1
η

τrz +
∂τzz

∂ z

)
+a0 cos(m2t +ψ)− H2

a
ReG

w (3.93)

∂T
∂ t

+u
∂T
∂η

+w
∂T
∂ z

=
1
Pe

(
∂ 2T
∂η2 +

∂T
η∂η

+
∂ 2T
∂ z2

)
+Ec

[
τrr

∂u
∂η

+ τrz
∂w
∂η

+ τrz
∂u
∂ z

+ τzz
∂w
∂ z

]
(3.94)

∂C
∂ t

+u
∂C
∂η

+w
∂C
∂ z

=
1
Pe

(
∂ 2C
∂η2 +

1
η

∂C
∂η

+
∂ 2C
∂ z2

)
+Sr

(
∂ 2T
∂η2 +

1
η

∂T
∂η

+
∂ 2T
∂ z2

)
− βC

Re
(3.95)

Where, ReG =
rn

0ρ

Kwn−2
c

, Ha = B0

√
σrn+1

0

Kwn−1
c

, Pe =
ρwcr0cp

k
, Ec =

w2
c

cp(Tw −T0)
and

Sr =
D f KT (Tw −T0)

νTm(Cw −C0)
are the, generalized Reynold, Hartman, Peclet, Eckert, and Soret numbers

respectively (see appendix 1 for more elaboration on the generalized Reynolds and Hartman

numbers). The stress component in non-dimensional form is as shown in equation 3.96.

τi j =

(
1

ReG
γ̇

n−1 + τ0γ̇
−1
)

γ̇i j

γ̇ = 0 for τ < τ0

(3.96)
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with second invariant of the rate of strain given in equation 3.97

γ̇ =

√√√√2

[(
∂u
∂η

)2

+

(
u
η

)2

+

(
∂w
∂ z

)2
]
+

(
∂u
∂ z

+
∂w
∂η

)2

(3.97)

and

τrr = 2
(
ReGγ̇

n−1 + τ0γ̇
−1)( ∂u

∂η

)
(3.98)

τzz = 2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂w

∂ z

)
(3.99)

τrz = 2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂u

∂ z
+

∂w
∂η

)
(3.100)

subject to the dimensionless initial and boundary conditions

w(η ,z,0) = w0, T (η ,z,0) = T0, C(η ,z,0) =C0 (3.101)

w(η ,z, t) = u(η ,z, t) = 0,T (η ,z, t) = Tw,C(η ,z, t) =Cw on η = R(z) (3.102)

∂w(η ,z, t)
∂η

=
∂T (η ,z, t)

∂η
=

∂C(η ,z, t)
∂η

= u(η ,z, t) = 0,onη = 0 (3.103)

3.2.4 Transformation of domain

To obtain the numerical solution, the cylindrical domain is transformed into the rectangular

domain by using the following radial transformation, then the new variable ξ is introduced

such that ξ =
η

R(z)
. This transformation, leads to equations 3.104-3.115. This method of

transforming the constricted part into rectangular domain was also adapted by Nezamidoost

et al. (2013), Mustapha and Amin (2008), Changidar and De (2015), Mandal (2005), Majee

and Shit (2017) and Joshua et al. (2020).
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1
R

∂u
∂ξ

+
u

Rξ
+

∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

= 0 (3.104)

∂u
∂ t

=− ∂P
R∂ξ

− u∂u
R∂ξ

−w
(

∂u
∂ z

− ξ

R
dR
dz

∂u
∂ξ

)
+

1
R

∂τξ ξ

∂ξ
+

τξ ξ

Rξ
+

∂τξ z

∂ z
− ξ

R
dR
dz

∂τξ z

∂ξ
(3.105)

∂w
∂ t

= (A0 +A1 cos(m1t))− u∂w
R∂ξ

−w
(

∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)
+

1
R

∂τξ z

∂ξ
+

τξ z

Hξ
+

∂τzz

∂ z

− ξ

R
dR
dz

∂τzz

∂ξ
+a0 cos(m2t +ψ)− H2

a
ReG

w (3.106)

∂T
∂ t

=−u∂T
R∂ξ

−w
(

∂T
∂ z

− ξ

R
dR
dz

∂T
∂ξ

)
+

1
Pe

(
∂ 2T

R2∂ξ 2 +
1

R2ξ

∂T
∂ξ

+
∂ 2T
∂ z2

)
+

1
Pe

[
3ξ

R2

(
dR
dz

)2
∂T
∂ξ

− 2ξ

R
dR
dz

∂ 2T
∂ξ ∂ z

− ξ

R
d2R
dz2

∂T
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2T
∂ξ 2

]
(3.107)

+Ec

(
τξ ξ

R
∂u
∂ξ

+
τξ z

R
∂w
∂ξ

)
+Ecτξ z

(
∂u
∂ z

− ξ

R
dR
dz

∂u
∂ξ

)
+Ecτzz

(
∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)
∂C
∂ t

=−u∂C
R∂ξ

−w
(

∂C
∂ z

− ξ

R
dR
dz

∂C
∂ξ

)
+

1
Pe

(
∂ 2C

R2∂ξ 2 +
1

R2ξ

∂C
∂ξ

+
∂ 2C
∂ z2

)
+

1
Pe

[
3ξ

R2

(
dR
dz

)2
∂C
∂ξ

− 2ξ

R
dR
dz

∂ 2C
∂ξ ∂ z

− ξ

R
d2R
dz2

∂C
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2C
∂ξ 2

]
− βC

Re

+Sr

[
3ξ

R2

(
dR
dz

)2
∂T
∂ξ

− 2ξ

R
dR
dz

∂ 2T
∂ξ ∂ z

− ξ

R
d2R
dz2

∂T
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2T
∂ξ 2

]
(3.108)

With,

γ̇ =

√√√√2

[(
∂u

R∂ξ

)2

+

(
u

Rξ

)2

+

(
∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)2
]
+

(
∂u
∂ z

− ξ

R
dR
dz

∂u
∂ξ

+
∂w

R∂ξ

)2

(3.109)

τξ ξ =2
(
ReGγ̇

n−1 + τ0γ̇
−1)( ∂u

R∂ξ

)
(3.110)

τzz =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂w

∂ z
− ξ

R
dR
dz

∂w
∂ξ

)
(3.111)

τξ z =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂u

∂ z
− ξ

R
dR
dz

∂u
∂ξ

+
∂w
∂η

)
(3.112)

Radial transformation leads to the following boundary and initial conditions:

w(ξ ,z,0) = w0, T (ξ ,z,0) = T0, C(ξ ,z,0) =C0 (3.113)

w(ξ ,z, t) = u(ξ ,z, t) = 0, T (ξ ,z, t) = Tw,C(ξ ,z, t) =Cw on ξ = 1 (3.114)

∂w(ξ ,z, t)
∂ξ

=
∂T (ξ ,z, t)

∂ξ
=

∂C(ξ ,z, t)
∂ξ

= u(ξ ,z, t) = 0, on ξ = 0 (3.115)
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3.2.5 Transformation of the Radial velocity

In this part, the radial velocity is obtained, this will be substituted into v− momentum, energy

and concentration equations. The equation 3.104 is multiplied by ξ R(z) and then integrated

with respect to ξ to obtain equation 3.116:∫
ξ

∂u
∂ξ

dξ +
∫

udξ +
∫

ξ R
∂w
∂ z

dξ +
∫

ξ
2 dR

dz
∂w
∂ξ

dξ (3.116)

Re-arranging equation 3.116 yields equation 3.117:∫
ξ

∂u
∂ξ

dξ +
∫

udξ =
∫

ξ
2 dR

dz
∂w
∂ξ

dξ −
∫

ξ R
∂w
∂ z

dξ (3.117)

Applying integration by parts and simplifying the equation 3.117 results into equation 3.118:

u =
dR
dz

ξ w− 2
ξ

dR
dz

∫
wξ dξ − R

ξ

∫
ξ

∂w
∂ z

dξ (3.118)

Making use of the boundary conditions in equations 3.114 and 3.115 and making re-

arrangement, the equation 3.119 is obtained:

2
ξ

dR
dz

∫ 1

0
wξ dξ =−R

ξ

∫ 1

0
ξ

∂w
∂ z

dξ (3.119)

Multiplying by ξ and dividing by R yields 3.120

2
R

dR
dz

∫ 1

0
wξ dξ =−

∫ 1

0
ξ

∂w
∂ z

dξ (3.120)

Now, making comparison of the integrals and the integrands of equation 3.120, the equation

3.121 is obtained.
∂w
∂ z

=− 2
R

dR
dz

w (3.121)

Now substitution of equation 3.121 into equation 3.119 is done. Such substitution gives equa-

tion 3.122:

u =
dR
dz

ξ w− 2
ξ

dR
dz

∫
wξ dξ − R

ξ

∫
ξ

(
− 2

R
dR
dz

w
)

dξ (3.122)

which simplifies to equation 3.123:

u =

(
ξ

dR
dz

w
)

(3.123)

Equation 3.123 above, is the radial velocity component which needs to be calculated. Now,

the substitution of this radial velocity into axial momentum, energy and concentration equa-

tions is done. Also, using the product rule the derivatives,
∂u
∂ξ

=
dR
dz

(
ξ

∂w
∂ξ

+w
)

and
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∂u
∂ z

= ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)
are obtained. This process therefore eliminates u, as the radial

velocity u is now written in terms of axial velocity w. This gives equations 3.124-3.130. These

equations are later written in the discretized form.

∂w
∂ t

= (A0 +A1 cos(m1t))−
(

ξ
dR
dz

w
)

∂w
R∂ξ

−w
(

∂w
∂ z

− ξ

H
dR
dz

∂w
∂ξ

)
+

1
R

∂τξ z

∂ξ
+

τξ z

Rξ
+

∂τzz

∂ z

− ξ

R
dR
dz

∂τzz

∂ξ
+a0 cos(m2t +ψ)− H2

a
ReG

w (3.124)

∂T
∂ t

=−
(

ξ

R
dR
dz

w
)

∂T
∂ξ

−w
(

∂T
∂ z

− ξ

R
dR
dz

∂T
∂ξ

)
+

1
Pe

(
∂ 2T

R2∂ξ 2 +
1

R2ξ

∂T
∂ξ

+
∂ 2T
∂ z2

)
+

1
Pe

[
3ξ

R2

(
dR
dz

)2
∂T
∂ξ

− 2ξ

R
dR
dz

∂ 2T
∂ξ ∂ z

− ξ

R
d2R
dz2

∂T
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2T
∂ξ 2

]

+Ec

[
τξ ξ

R
dR
dz

(
ξ

∂w
∂ξ

+w
)
+

τξ z

R
∂w
∂ξ

]
+Ecτξ z

[
ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)]
(3.125)

−Ecτξ z

[
ξ

R

(
dR
dz

)2(
ξ

∂w
∂ξ

+w
)]

+Ecτξ z

(
∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)
∂C
∂ t

=−
(

ξ

R
dR
dz

w
)

∂C
∂ξ

−w
(

∂C
∂ z

− ξ

R
dR
dz

∂C
∂ξ

)
+

1
Pe

(
∂ 2C

R2∂ξ 2 +
1

R2ξ

∂C
∂ξ

+
∂ 2C
∂ z2

)
+

1
Pe

[
3ξ

R2

(
dR
dz

)2
∂C
∂ξ

− 2ξ

R
dR
dz

∂ 2C
∂ξ ∂ z

− ξ

R
d2R
dz2

∂C
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2C
∂ξ 2

]

+Sr

[
3ξ

R2

(
dR
dz

)2
∂T
∂ξ

− 2ξ

R
dR
dz

∂ 2T
∂ξ ∂ z

− ξ

R
d2R
dz2

∂T
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2T
∂ξ 2

]

+Sr

(
∂ 2T

R2∂ξ 2 +
1

R2ξ

∂T
∂ξ

+
∂ 2T
∂ z2

)
− βC

Re
(3.126)

With,

γ̇ =

√√√√√√√√√
(2

[(
dR
Rdz

(
ξ

∂w
∂ξ

+w
))2

+

(
dR
Rdz

w
)2

+

(
∂w
dz

− ξ

R
dR
dz

∂w
∂ξ

)2
]
+

(
ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)
− ξ

R
dR
dz

dR
dz

(
ξ

∂w
∂ξ

+w
)
+

∂w
R∂ξ

)2
(3.127)

and

τξ ξ =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(dR

dz

(
ξ

∂w
∂ξ

+w
))

(3.128)

τzz =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂w

∂ z
− ξ

R
dR
dz

∂w
∂ξ

)
(3.129)

τξ z =2
(
ReGγ̇

n−1 + τ0γ̇
−1)[

ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)
− ξ

R

(
dR
dz

)2(
ξ

∂w
∂ξ

+w
)
+

∂w
R∂ξ

]
(3.130)
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3.2.6 Numerical discretization by Finite difference method

In this part, the application of the finite difference discretization scheme to solve nonlinear

model equations 3.124-3.126 is done. The finite difference schemes are based on the central

difference approximations for all the spatial derivatives and the explicit forward finite difference

approximation to discretize the time derivative. The approximate derivatives are as given here

under equations 3.131-3.133. Similar method was adapted by Liu and Liu (2020), Zaman and

Khan (2020), Haghighi and Aliashrafi (2018), Priyadharshini and Ponalagusamy (2019), Reddy

et al. (2017), Sankar et al. (2010) and Hossain and Haque (2017).

∂w
∂ξ

=
wk

i, j+1 −wk
i, j−1

2∆ξ
,
∂ 2w
∂ξ 2 =

wk
i, j+1 −2wk

i, j +wk
i, j−1

(∆ξ )2 ,
∂w
∂ t

=
wk+1

i, j −wk
i, j

∆t
(3.131)

∂T
∂ξ

=
T k

i, j+1 −T k
i, j−1

2∆ξ
,
∂ 2T
∂ξ 2 =

T k
i, j+1 −2T k

i, j +T k
i, j−1

(∆ξ )2 ,
∂T
∂ t

=
T k+1

i, j −T k
i, j

∆t
(3.132)

∂C
∂ξ

=
Ck

i, j+1 −Ck
i, j−1

2∆ξ
,
∂ 2C
∂ξ 2 =

Ck
i, j+1 −2T k

i, j +T k
i, j−1

(∆ξ )2 ,
∂C
∂ t

=
Ck+1

i, j −Ck
i, j

∆t
(3.133)

Partial derivatives with respect to z are obtained in a similar manner, furthermore, the approxi-

mations of derivatives of τξ z,andτzz are as given in equation 3.134

∂τξ z

∂ξ
=

(
τξ z
)k

i, j+1 −
(
τξ z
)k

i, j−1

2∆ξ
,
∂τzz

∂ξ
=

(τzz)
k
i, j+1 − (τzz)

k
i, j−1

2∆ξ
,
∂τzz

∂ z
=

(τzz)
k
i+1, j − (τzz)

k
i−1, j

2∆z

(3.134)

where ξ j, tk and zi are as defined in equations 3.63-3.65. Now, substitution of equations

3.131-3.134 into equations 3.124-3.130 and make subject w,T, and C is done. The dis-

cretization of radial velocity from equation 3.123 is also included. This yields the equations

3.135-3.144 in discretized form.

uk+1
i, j = ξ j

(
dR
dz

)
i
wk

i, j (3.135)

wk+1
i, j = wk

i, j +∆t
(

A0 +A1 cos(m1tk)+a0 cos(m2tk +ψ)− H2
a

ReG
wk

i, j

)
−∆t

(
ξ j

Ri

(
dR
dz

)
i
wk

i, j

)(wk
i, j+1 −wk

i, j−1

2∆ξ

)
−∆twk

i, j

(
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i+1, j −wk
i−1, j

2∆z

)

+∆twk
i, j

ξ j

Ri

(
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dz

)
i

(
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i, j+1 −wk
i, j−1

2∆ξ

)
−

ξ j

Ri

(
dR
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)
i

(
(τzz)

k
i, j+1 − (τzz)

k
i, j−1

2∆ξ

)

+∆t

 1
Ri

(τξ z
)k

i, j+1 −
(
τξ z
)k

i, j−1

2∆ξ

+

(
τξ z
)k

i, j

Riξ j
+

(
(τzz)

k
i+1, j − (τzz)

k
i−1, j

2∆z

) (3.136)
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T k+1
i, j = T k

i, j −∆t

[
ξ j

Ri

(
dR
dz

)
i
(wk

i, j)

(
T k

i, j+1 −T k
i, j−1
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(
T k
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+∆t
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(
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2∆ξ
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∆t
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+
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∆t
Pe

[
3ξ j

R2
i

(
dR
dz

)2

i

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)]

−
2ξ j(∆t)
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−∆tEc(τξ z)
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−Sr∆t
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With,
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√√√√√√√√√√
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(τzz)
k
i, j =2

(
ReGγ̇

n−1 + τ0γ̇
−1)[wk

i+1, j −wk
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−

ξ j
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(
dR
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)
i

(
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The boundary and initial conditions are also discretized as follows:

w1
i, j = w0, T 1

i, j = T0, C1
i, j =C0; wk

i,2 = wk
i,1, T k

i,2 = T k
i,1, Ck

i,2 =Ck
i,1 (3.143)

wk
i,N+1 = 0, uk

i,N+1 = 0, T k
i,N+1 = Tw, Ck

i,N+1 =Cw,
(
τξ z
)k

i,1 = 0. (3.144)

Condition for Stability

The explicit finite difference method is conditionally stable. The condition of stability as per

Von Neumann analysis was taken into consideration. In that regard therefore, 0 <
∆t

(∆ξ )2 ≤ 0.5.
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CHAPTER FOUR

RESULTS AND DISCUSSION

In this chapter, the numerical results and discussion of the study are presented. The chapter

includes both, the numerical results of the Newtonian model and that of non-Newtonian model.

The chapter first presents the numerical results of the Newtonian model. Later, the results for

non-Newtonian will be presented. The MATLAB codes for the discretized equations (3.70)-

(3.71) were written and implemented to produce graphs. To maintain stability using the explicit

finite difference method, it was ensured that 0 <
∆t

(∆ξ )2 ≤ 0.5. The constants and parameters

were chosen by following other scholars and some were assumed by ensuring that they are

realistic situations.For example, the Reynolds number was changed to suit the laminar flow. For

convenience, constants were wisely chosen as follows:

Table 2: Values of the parameters

Parameters Range of values Source

Hartman number Ha 1−3 Sharma et al (2019)

Stenotic height e 0.1−0.3 Sankar and Ismail, (2010)

Body acceleration a0 1−3 Tanwar et al. (2016)

Reynolds number Re 3−100 Assumed

Schmidt number Sc 3−4 Liu and Liu, (2020)

Chemical reaction β 0.1−0.8 Kumar et al. (2021)

The following constants were also used:

Table 3: Values of the constants used

Constants Value Source

Steady state part of pressure gradient A0 1 Mathur and Jain (2011)

Amplitude of the pulsatile A1 0.5 Mathur and Jain (2011)

Pulse frequency m1 1 Agarwal and Varshney (2016)

Body acceleration frequency m2 1 Agarwal and Varshney (2016)

Phase angle Φ 0.6 Agarwal and Varshney (2016)
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Figure 8: Effect of increasing stenotic height on axial velocity

The effect of increasing stenotic height on axial velocity is shown in Fig. 8. It is shown (as

expected) that as stenosis increases, the axial velocity diminishes. The decline of axial velocity

is due to the reason that increase in stenosis makes more blood (which is viscous) be on contact

with arterial wall. This can further be explained physically that as stenotic height increases,

the size of the artery in terms of radius is reduced, that is the vasoconstriction or narrowing

the size of the artery. Now as the resistance is inversely proportional to the radius, decrease

in radius therefore, increases the resistance of blood to flow and hence, the velocity decreases.

Medically, if the stenosis keeps on growing therefore, velocity will keep on decreasing affecting

supply of oxygen in different parts of the body, including brain. This can result into heart attack

or stroke. Figure 9 displays the variation of the axial velocity profile due to Hartman number.

From the Fig. 9 it is observed that, increase in Hartman number reduces the axial velocity.

This can be explained physically that the velocity decreases due to the fact that as the magnetic

fields is applied to the body, the Lorentz force tend to oppose the blood flow and as a results

the velocity get decreased. The Lorentz force is able to oppose the motion of the blood because

blood consists of red blood cells which contains ions. Similar result was obtained by Uddin

et al. (2020), Sharma and Yadav (2019) and Maiti et al. (2020).
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Figure 9: Effect of increasing Hartman number on axial velocity

 
Figure 10: Effect of increasing body acceleration on axial velocity

Figure 10 shows the effect of increasing body acceleration on axial velocity. From the graph it

is observed that for the fixed values of Hartman number and height of stenosis, axial velocity
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increases as body acceleration increases. The increase in velocity is due to the reason that body

acceleration increases the heart beats and the pulse rate. When the body is subjected to body

acceleration, the heart speeds up to pump blood so that more blood can reach the muscles. This

helps to supply more oxygen and other nutrients in different parts of the body.

The effect of increasing Reynolds number Re on axial velocity is illustrated on Fig. 11. The

Reynolds number is the ratio of a fluid’s inertial force to its viscous force. This dimension-

less number plays a prominent role in foreseeing the patterns in a fluid’s behavior. Increasing

Reynolds number implies that inertial force is dominant than the viscous force. This in turn

enhances the fluid’s velocity.

 
Figure 11: Effect of increasing body the Reynolds number on axial velocity

It is also observed that, both steady state part of pressure gradient and the amplitude of its os-

cillatory part influences the axial velocity. Their increase leads to the increase in axial velocity.

This is exhibited in Fig. 12 and 13. This is also due to the reason that their increase enhances

pressure gradient of blood and consequently increasing the blood flow rate.
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Figure 12: Effect of increasing steady state part of pressure gradient

 
Figure 13: Effect of increasing amplitude of oscillatory
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Figure 14: Effect of increasing Phase angle on axial velocity

The variation of blood’s axial velocity with phase angle is displayed in Fig. 14. The compu-

tational results show that axial velocity declines as the phase angle increases. The variation of

radial velocity due to flow parameters and constants are illustrated in Fig. 15 to Fig. 20.
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Figure 15: Effect of increasing body acceleration on radial velocity

 
Figure 16: Effect of increasing Hartman number radial velocity
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Figure 17: Effect of increasing stenosis radial velocity

 
Figure 18: Effect of increasing Reynolds number radial velocity
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Figure 19: Effect of increasing A0 on radial velocity

 
Figure 20: Effect of increasing A1 on radial velocity
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From Fig. 15, it is observed that increasing body acceleration on radial velocity brings the same

effect as in axial velocity. That is, the velocity get increased. Figure 16 also reveals that radial

velocity declines as Hartman number increases. The same was observed in axial velocity (Fig.

9). The difference and interesting pattern is observed in Fig. 17. From the Fig. 17, it is seen that

increase in stenosis, the radial velocity increases too. It is therefore, very interesting to note that

it has been revealed that increase in stenosis, decreases the axial velocity but increases the radial

velocity. The radial velocity increases as compensation to the axial velocity which decreases.

However, this may medically endanger a person by harming the arterial wall for prolonged

situation. It is also shown that Fig. 19 and 20, the steady state part of pressure gradient and

the amplitude of oscillation, play the same role as in axial velocity. Their increase lead to the

increase in velocity, both axial and radial velocities. Figure 21 illustrates both, the axial velocity

 
Figure 21: Axial and radial velocities

and the radial velocity. From the graph it is shown that the axial velocity is higher than the radial

velocity. This is due to the fact that the pressure gradient is more dominant in the axial direction

than in radial direction. On the other hand, it is also observe that, the axial velocity is maximum

along the axis of symmetry and it is zero on the boundary. The axial velocity is decreasing as

one moves towards the boundary because of the no slip condition at the boundary. The radial

velocity is zero along the line of symmetry because there is no radial flow along that axis. Also,
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it is zero at the boundary, to satisfy the no slip condition. The Transient effects of axial velocity

profiles and radial velocity profiles are illustrated in Fig. 22 and Fig. 23:

 

Figure 22: Transient effects of radial velocity profiles

 

Figure 23: Transient effects of axial velocity profiles
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The combined effect of stenosis, body acceleration and magnetic fields is shown in Fig. 24.

From the graph it is clearly observed that, the combination of stenosis, body acceleration and

magnetic fields highly reduces the velocity of the blood. On the other hand, body exercise

seems to have more effect than magnetic fields and stenosis. In this regard therefore, since

body exercise highly raises the blood’s speed, magnetic therapy for a stenosed person applied

in sports is more advantageous, not only for reducing pain but also regulating blood theology by

reducing blood’s velocity. It is further shown that magnetic fields and stenosis have very small

difference in lowering the blood’s velocity. Stenosis being slightly more hazardous in reducing

axial velocity than magnetic fields.

 
Figure 24: General effects of some parameters

Here below, the simulations of concentration profiles are presented.The effects of stenosis, body

acceleration, magnetic fields and chemical reaction are illustrated and discussed. The effects of

varying the Schmidt number Sc and the Reynolds number Re is also illustrated.

57



 
Figure 25: Effect of Chemical reaction on concentration

 
Figure 26: Effect of Schmidt number on concentration
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The effect of chemical reaction parameter on the concentration profile is displayed in Fig. 25.

From the Fig. 25, it is clearly observed that, as the chemical reaction parameter increases,

the concentration decreases. The decrease of concentration is due to the fact that the presence

of chemical reaction acts as the consumption or destructive agent of chemical species. This

leads to the reduction of the concentration. Figure 26 shows typical concentration profile for

various values of Schmidt number Sc. From the Fig. 26, it is shown that the increase in Schmidt

number diminishes the concentration profiles. The Schmidt number is a dimensionless number

which is the ratio of momentum diffusivity to mass diffusivity. The increase of Schmidt number

implies decrease of molecular diffusion. Hence the decrease in concentration profile with the

increase of Schmidt number is revealed. The effect of Hartman number on the concentration

profile is illustrated in Fig. 27. In the figure, it is observe that, increase in Hartman number

increases the concentration of the fluid. The increase of concentration is due to the reason

that, the presence of magnetic fields induces Lorentz force which effectively impedes the flow

of the fluid and thus more concentration occurs. The reverse situation is observed in case of

increasing body acceleration, it is revealed that as body acceleration increases, the concentration

profile diminishes. The body acceleration increases the fluid’s velocity and therefore making

the concentration profile decline.

 
Figure 27: Effect of Hartman number on concentration
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Figure 28: Effect of body acceleration on concentration

In a similar manner, it is observed that the Reynolds number reduces the concentration of blood.

As it is noticed that Reynolds number enhances velocity (both axial and radial velocities), this

therefore diminishes concentration (Fig. 29). The opposite situation is observed when stenotic

height increases. As shown in Fig. 30, as stenosis increases, the concentration profile increases

too. This is due to the reason that stenosis diminishes the velocity which in turn influences

the concentration profile. Figure 31 exhibits a mesh plot for transient effects of concentration

profile.
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Figure 29: Effect of Reynolds number on concentration

 
Figure 30: Effect of stenosis on concentration
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 Figure 31: Transient effects of concentration

Variation of skin friction due to Reynolds number, Hartman number, body acceleration and

phase angle is shown in Fig. 32-35. Its is observed that, increasing Reynolds number generally

decreases the skin friction. Raising Reynolds number implies increasing the inertial forces

than the viscous force. Now, as viscous forces become small, the skin skin friction declines

accordingly (Fig. 32). The same behavior has been shown when Hartman number increases.

This is displayed in Fig. 33. It is interesting to note that the magnitude of skin friction has

shown to increase with body acceleration.
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Figure 32: Effect of Reynolds number on Cf

 
Figure 33: Effect of Hartman number on Cf
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Figure 34: Effect of body acceleration on Cf

 
Figure 35: Effect of phase angle on Cf
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Figure 36: Effect of steady-state part of the pressure gradient on concentration

 
Figure 37: Effect of amplitude of pressure oscillation on concentration

65



Figure 36 illustrates the effect of increasing the constant steady-state part of the pressure gra-

dient (A0) on concentration. The graph shows that as A0 increases, the concentration profile

decreases. In Fig. 12 it was observed that increasing the steady-state of pressure gradient, in-

creases the velocity profile of blood. Now, the increase in velocity results into the decrease

in the blood’s concentration profile. Figure 37 displays the effect of the amplitude of pressure

oscillation responsible for enhancing the systolic and diastolic pressures on the concentration

profile. From the graph, it is observed, (like A0) that increasing A1 reduces the concentration

profile. On the other hand, concentration profile decreases with increase in the phase angle (Φ).

This is as displayed in Fig. 38. The decrease of the concentration is due to the reason that,

increase in Φ, increases the velocity profile of blood, which in turn, declines the concentration.

 
Figure 38: Effect of increasing phase angle on concentration

The combined effect of stenosis, body acceleration, magnetic fields and chemical reaction is

shown in Fig. 39. From the graph it is seen that, the presence of stenosis, (in absence of

body acceleration, magnetic fields and chemical reaction) highly increases the concentration

profile. The presence of magnetic field has also observed to have similar effect (like stenosis)

of increasing the concentration profile, however stenosis has been observed to increase more

concentration than the magnetic field. (Figure 39, profiles colored with red for stenosis and

magenta for magnetic fields). This therefore tells us that the presence of stenosis in arterial
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wall highly affects the concentration and therefore it is important to take medication or avoid

feedings that lead to stenosis easily. On the other hand, from the same Fig. 39, it is seen that,

the presence of chemical reaction (in the absence of stenosis, body acceleration and magnetic

fields) diminishes the concentration profiles. The same is observed for the case of body ac-

celeration, that the presence of body acceleration in the absence of stenosis, magnetic fields

and chemical reaction, decreases the concentration profile. In this regard, body acceleration

is observed to have more impact of reducing concentration profile than the chemical reaction.

From the same Fig. 39, it is observed the interesting result that the combined effect of stenosis,

body acceleration, magnetic fields and chemical reaction generally increases the concentration

profile. It is noticed that, the presence of stenosis alone, highly increases concentration than the

combined effect of stenosis, body acceleration, magnetic fields and chemical reaction. In this

finding therefore, the magnetic therapy taken during sports for the sake of reducing pain is also

affecting the concentration by decreasing concentration profile of a stenosed person. However,

the case will be different if magnetic therapy is taken to person without stenosis. In that regard,

the magnetic therapy in sports will increase the concentration profile.

 
Figure 39: The combined effect of e, a0, Ha and β on concentration
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The computational analysis results of arterial blood flow through a stenosed artery for a case

of a non-Newtonian is now presented. In this part, the blood was assumed to follow Herschel-

Bulkley (H-B) fluid characteristics. The main parameters for H-B model are the yield stress

τ0, power law index n and the consistency index K. The effects of Hartman number, stenotic

height, body acceleration and Reynolds number are displayed and discussed. The constants and

values of the parameters used in simulations were chosen by following other scholars, some of

the values were assumed based on reality in medical grounds and the type of flow considered

(Table 4). Some of the parameter shown in Table 4 were varied to see their effect. The power

Table 4: Parameter values used

Parameter or constant value (unit free) Source

Yield stress τ0 0.2 Sankar and Lee (2008)

Power law index n 0.95 Sankar and Lee (2008)

Hartman number Ha 1 Sharma and Yadav (2019)

Stenotic height e 0.1 Sankar and Ismail (2010)

Generalized Reynolds number ReG 1 Assumed

Eckert number Ec 1 Tripathi and Sharma (2020)

Peclet number Pe 1 Tripathi and Sharma (2020)

Soret number Sr 0.002 Assumed

Chemical reaction parameter β 0.1 Assumed

Phase angle Φ 0.3 Sankar and Ismail (2010)

Steady state part of pressure gradient A0 0.8 Mathur and Jain (2011)

Amplitude of the pulsatile A1 0.5 Mathur and Jain (2011)

Pulse frequency m1 10 Assumed

Body acceleration frequency m2 10 Assumed

law index (also known as behavior index) n was varied in a range 0 ≤ n ≤ 3. On the other hand,

the yield stress τ0 was varied from τ0 = 0 to τ0 = 0.5.
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Figure 40: Effect of power law index on shear stress

 
Figure 41: Effect of generalized Reynolds number on shear stress
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Figures 40-45 display the results of shear stresses. From the graphs, it is revealed that, the

magnitude of shear stress increases as the power law index n increases. This is shown in Fig.

40. The opposite behavior is illustrated in Fig. 41, where the magnitude of shear stress declines

towards positive values as generalized Reynolds’s number ReG increases. In this regard, in-

creasing the generalized Reynolds’s number implies lowering the consistency index. This also

implies that as the inertial forces increases, the magnitude of shear stress decreases.

Figure 42 illustrates the effect of yield stress on shear stress. It is observed that as the yield

stress increases, the shear stress increases in magnitude. This therefore implies that increasing

certain a amount of stress for blood to flow, increases the shear stress. On the other hand, a

comparison of shear stress for different fluid behaviors of Herschel-Bulkley, Newtonian, power

law and Bingham is shown in Fig. 43. From Fig. 43 it is observed that, the power law fluid

when n > 1 has higher magnitude of shear stress compared to power law fluid for n < 1. The

same has been observed for Herschel-Bulkley fluid where the higher the power law index the

higher the magnitude of shear stress. It is interesting to note further that when power law index

n > 1 the shear stress exhibits more difference than when n < 1 where the difference is small.

This tells us that, shear stress deviates more when n > 1 than when n < 1. Figure 44 shows

the effect of body acceleration on shear stress. It is seen that as body acceleration increases,

the shear stress increases in magnitude. The opposite trend is observed in Fig. 45 where, the

increase in Hartman number diminishes the magnitude of the shear stress. Hartman number

is a ratio of electromagnetic forces to viscous forces. Increasing the Hartman number implies

that the viscous forces become lower than the electromagnetic forces. Physically, the Hartman

number enhances the Lorentz force which opposes the blood’s motion.
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Figure 42: Effect of yield stressτ0 on shear stress

 
Figure 43: Variation of shear stress for different fluid models
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Figure 44: Effect of body acceleration a0 on shear stress

 
Figure 45: Effect of Hartman number on shear stress
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Figures 46-49 below show the variation of axial velocity profiles. In Fig. 46, it is exhibited that,

an increase in body acceleration, raises the axial velocity profile. Similar was observed for a

case of Newtonian blood. This therefore physically implies that increase in body acceleration

(such as body exercise) increase the heart beat and pulse rate as during exercises, muscles and

different parts need more supply of oxygen which is carried by blood. This makes blood’s

velocity raise. Similar as in Newtonian case of blood, it is again seen that increase in Hartman

number declines the blood’s velocity as illustrated in Fig. 47. Presence of magnetic fields

induces the Lorentz force which slows down the motion of blood. This is made possible as

blood contains iron oxide whose motion can easily be affected when subjected to magnetic

fields. Variation of axial velocity due to generalized Reynolds’s number is displayed in Fig. 48.

From the Fig. 48, it is observed that increase in the generalized Reynolds’s number increases the

velocity of the blood. Increasing the Reynolds’s number implies that, the inertial forces increase

than the viscous forces. Now as inertial forces become more dominant than the viscous forces,

the velocity of blood is increased accordingly. The effect of stenosis on blood flow is illustrated

in Fig. 49. It is seen that, increasing the stenotic height, diminishes the blood’s velocity. Similar

behavior was also revealed in a Newtonian case. When stenotic height increases, the radius of

the artery is reduced. This makes more blood be on walls of the artery. As blood is viscous in

nature, it therefore declines in its velocity. This was also expected as mathematically radius is

inversely proportional to the resistance to flow.

Interestingly, it is observed that the effect of body acceleration, Hartman number, and stenosis

on the radial velocity is the same as in axial velocity. The only interesting difference discovered

is that, the increase in stenotic height diminishes axial velocity but enhances the radial velocity.

The graphs for radial velocity are displayed in Fig. 50-53.
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Figure 46: Effect of body acceleration a0 on axial velocity

 
Figure 47: Effect of Hartman number on axial velocity
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Figure 48: Effect of generalized Reynold’d number on axial velocity

 
Figure 49: Effect of stenosis e on the axial velocity
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Figure 50: Effect of body acceleration on radial velocity

 
Figure 51: Effect of Hartman number radial velocity

Temperature profiles against radial distance are displayed in Fig. 54-58. One of the core func-

tions of blood is to transfer heat. Now, the illustration of variation of temperature due to various
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Figure 52: Effect of the generalized Reynolds’s number on radial velocity

 
Figure 53: Effect of stenosis on radial velocity

factors is done. Figure 54 shows the effect of Peclet number on temperature profile. Peclet

number is the ratio of the heat transferred by convection to the heat transferred by conduction.
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Figure 54: Effect of Peclet number on temperature profiles

It is observed that, increase in Peclet number diminishes temperature profile. This means that

heat transfer by motion of blood increases than heat transfer by conduction.

In Fig. 55 it is observed, as expected that, increase in body acceleration raises temperature

profile. This implies that body exercise give rise to the core body temperature. It was used to

know that the core body temperature raises if someone has an abnormal condition of a body,

say a disease. However, through this study it is therefore true to include body exercise as one

of the factors that raises the core body temperature.
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Figure 55: Effect of body acceleration on temperature profiles

Eckert number is defined as the ratio of the advective mass transfer to the heat dissipation po-

tential. It offers a measure of the kinetic energy of the flow relative to the enthalpy difference

across the thermal boundary layer. It is observed in Fig. 56 that the increase in Eckert num-

ber increases the temperature profile, physically implying that as Eckert number increases, the

advective mass transfer dominates the heat dissipation potential and therefore the temperature

increases. Therefore, it is noticed that the increase in the Eckert number is to enhance the

temperature distribution. This is due to the fact that the energy is stored in the fluid region as

a consequence of dissipation due to viscosity. It is also illustrated on Fig. 57 that the tem-

perature diminishes with increase in Hartman number. This is because, the rate of increase

of axial velocity decreases with Hartman number. Further more, as displayed in the Fig. 58,

the dimensionless temperature decreases with the increase of the generalized Reynolds number

ReG.
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Figure 56: Effect of Eckert number on temperature profiles

 
Figure 57: Effect of Hartman number on temperature profiles
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Figure 58: Effect of Generalized Reynolds number on temperature profiles

Figures 59-61 illustrate the variations of concentration profiles. From Fig. 59 it is observed that,

the concentration profile decreases with increasing chemical reaction parameter, which implies

that the chemical reaction parameter acts as a destructive agent of chemical species in blood.

On the other hand, Fig. 60 shows the effect of increasing the Soret number on concentration

profile. Soret number is the ratio of temperature difference to the concentration. From Fig.

60, it is observed two patterns, first the increase in Soret number, declines the concentration

profiles however later, close to the arterial wall, the Soret number is observed to enhance the

concentration profile. The Peclet number may be defined as the ratio of the species transport by

fluid convective motion to the species transport by molecular diffusion that is Pe, is measure of

the mass transfer by convection compared to that due to diffusion. Figure 61 exhibits the effect

of increasing Pe on concentration profile. From Fig. 61, it is revealed that increasing Peclet

number, reduces the concentration profile. This decrease in concentration is expected because

of the loss of solute in the blood. Similar results have been reported by Raja et al. (2017).
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Figure 59: Effect of reaction on concentration profiles

 
Figure 60: Effect of Soret number Sr on concentration profiles
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Figure 61: Effect of Peclet number Pe on concentration profiles

In order to validate the model, the profile of axial velocity for Newtonian model was compared

with Changidar and De (2015). The result is as shown in Fig. 62. The result is found to be in

good agreement though their study did not include magnetic fields. In that regard therefore, For

the purpose of validating model, in the current study, the Hartman number was set to zero. This

way of validation was also done by Changidar and De (2015) and Misra et al. (2018).
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Figure 62: Validation of axial velocity

84



CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The current study investigates the unsteady flow of blood through a stenosed artery in the pres-

ence of body acceleration, uniform magnetic fields and chemical reaction. The study has con-

sidered the blood to behave both, as a Newtonian and a non-Newtonian fluid. The quantities

of radial velocity u, axial velocity w, temperature T and concentration C have been portrayed.

The study has also investigated the effects of varying the flow parameters such as Reynolds,

Hartman, Peclet, Eckert, Schmidt, and Soret numbers on profiles of velocity, temperature and

concentration.

The model equations for both the Newtonian and Non-Newtonian fluid were discretized using

the explicit Finite Difference Method (FDM). Before discretization, the model equations were

transformed from a cylindrical polar coordinated system to a rectangular Cartesian system. The

constriction H(z) was transformed by introducing another variable ξ =
η

H(z)
. The discretized

equations were then implemented in MATLAB package and doing simulations to analyse and

study the effects of various parameters and flow variables.

The study established that the presence of stenosis, body acceleration and magnetic fields have

effects on the flow of blood. Chemical reaction is observed to reduce the concentration profiles.

For the case when blood is considered to be Newtonian, it is established that increasing the

stenotic height, diminishes the axial velocity and increases the radial velocity. The study reveals

further, that the combined effects of stenosis, magnetic fields and body acceleration reduces the

velocity of the blood. In this regard therefore, since body exercise highly raises the blood’s

speed, magnetic therapy for a stenosed person will therefore be more advantageous, not only

for reducing pain but also regulating blood rheology by reducing blood’s velocity.

In the Non-Newtonian case, blood was considered to be a Herschel-Bulkley fluid. It is estab-

lished that the Herschel-Bulkley fluid experience higher velocity than the power law (for both

when n < 1 and when n > 1), the Bingham and the Newtonian fluids. Further more, shear stress

is observed to deviate more when n > 1 than when n < 1. Considering the shear stresses for

different fluids, it is suggested that it is much better to set the power law index n to be less than
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one for modeling blood flow. This is because, (as observed in figure 43) that for power law

index n greater than 1, the shear stress experience higher values than when the power law index

is less than 1. Low shear stress will allow the blood to flow like a liquid as expected.

5.2 Recommendations

According to the findings presented in the previous chapter, the current study recommends the

following:

(i) MRI scanning in hospitals should be done with care, taking into account that the blood

velocity of a patient being subjected to the MRI machine decreases.

(ii) Magnetic therapy in sports is recommended, this provides multiple benefits. The cur-

rent study indicates that magnetic therapy helps in regulating blood flow which has been

increased by body accelerations.

(iii) Blood can be modeled as Newtonian or non-Newtonian, however, through this study it is

strongly recommended that blood should be modeled as a non-Newtonian fluid. This is

after studying the difference in shear stress and velocity profiles between the Newtonian

and Herschel-Bulkley fluids.

(iv) It is better to set the value of power law index n to be less than 1 when modeling blood

flow using the non-Newtonian models.

The following are possible extensions of research:

(i) One can extend the current research by considering that the arterial wall has multiple

stenoses

(ii) One can extend the current research by considering that the constriction is a function of

time t (the geometry of the time-variant stenosis) such that
∂R
∂ t

̸= 0.

(iii) One can consider the viscosity of blood as a variable (varying with different physical

factors such as temperature) and not a constant.
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APPENDICES

Appendix 1: The way Reynold’s and Hartman numbers were obtained during scaling of

variables

As explained before that, the current study considers blood to obey the Herschel-Bulkley con-

stitutive model. The stress tensor presented was:

τi j =

(
Kγ̇

n−1 +
τ0

γ̇

)
γ̇i j for τ ≥ τ0

γ̇ = 0 for τ < τ0

Now writing the above equation in component form, say τzz for example, taking into consider-

ation that γ̇ =
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It is now written in non-dimensional form as follows:

τ
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The generalized Reynolds number is therefore defined as ReG =
rn

0ρ

Kwn−2
c

.

THE HARTMAN NUMBER

From the last term of the axial momentum equation, the following is obtained:
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Now substituting the non dimensional velocity −wcσB2
0w∗ is obtained. Dividing by
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comes from LHS of the said equation yields:
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is defined as Magnetic interaction parameter, let it be M so that
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However, it is known that M =
Ha2

Re
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APPENDIX 2: Nomenclature 

S/No    Constant or variable            Symbol 

1    Radial velocity     𝑢 

2    Axial velocity      𝑤 

3     Dimensional radial distance    𝑟 

4    Axial distance      𝑧 

5    Radius of the normal artery    𝑟0 

6    Dimensional radius of the stenosed artery  ℎ 

7    Mass concentration     𝐶 

8    Density      𝜌 

9    Time       𝑡 

10    Dynamic viscosity     𝜇 

11    Steady state part of pressure gradient   𝐴0 

12    Amplitude of oscillatory    𝐴1 

13    Heart pulse frequency     𝑛1 

14    Body acceleration frequency    𝑛2 

15    Protuberance      𝛿 

16    Body acceleration amplitude    𝑎0 

17    Electrical conductivity    𝜎 

18    Magnetic strength     𝐵0 

19    Diffusion coefficient     𝐷 

20    Reaction rate (first order)    𝛽 

21    Shear stress      𝜏𝑖j 

22    Temperature      𝑇 

23    Specific heat capacity     𝐶𝑝 

24    Thermal conductivity     𝑘 

25    Thermal-diffusion ratio    𝐾𝑇 

26    Yield stress      𝜏0 

27    Consistency index     𝐾 

28    Flow behavior index/power law index  𝑛 

29    Shear rate      𝛾̇ 

30    Non-dimensional radius of the stenosed artery 𝐻 

31    Reynolds Number     𝑅𝑒 
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32    Hartman number     𝐻𝑎 

33    Schmidt number     𝑆𝑐 

34    Generalized Reynolds number   𝑅𝑒𝐺 

35    Peclet number      𝑃𝑒 

36    Eckert number      𝐸𝑐 

37    Soret number      𝑆𝑟 

38    Dimensionless radial distance    𝜂 

39    Transformed radial distance    𝜉 

40    Coefficient of skin friction    𝐶𝑓 
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Appendix 3:  MATLAB codes 

(a)  MATLAB codes for Newtonian blood 

 

L=2;             

r=1;             

t=5;             

M=40;             

N=20;             

maxt=5000;       

dt= t/(maxt);      

dxi=r/(N);         

dz=L/(M);   

A0=1.5; A1=0.5;  omegap=1 ; omegab=1 ; ReG=300; Re=3; e=0.1;a0=1; Ha=1; ppsi=0.6; 

z0=1; K=1;n=1; tau0=0.2;  Ec=1; Pe=25; Pec=25; beTA=0.002; Sc=1;Sr=0.001 ; 

for j=1:N+1  

xi(j)=(j-1)*dxi;      % w(:,:,1) 

end 

for i=1:M+1 

z(i)=(i-1)*dz;   

end  

for k=1:maxt+1 

t(k)=(k-1)*dt;   

end 

for i=1:M+1 

R(i)=1-e*(1+cos(((pi/2)*z(i))/(z0))); 

dR(i)=(pi/2*z0)*e*sin((pi/2)*z(i)/z0); 

ddR(i)=((pi/2*z0))^2*e*cos((pi/2)*z(i)/z0); 

end 

w=zeros(M+1,N+1,maxt+1); 

u=zeros(M+1,N+1,maxt+1); 

for k=1:maxt+1 

for j=1:N 

for i=1:M+1  

w(i,j,1)=((A0+A1)/4)*(1-(R(i)*xi(j))^2); 
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u(i,j,1)=0;  

end 

end 

end 

% % %we now put or insert here the boundary conditions!! 

for i=1:M+1 

for k=1:maxt+1 

w(i,N+1,k)=0;           %boundary condition on the boundary i.e at xi=1 

u(i,N+1,k)=0;   

end 

end 

for k=1:maxt 

for i=2:M 

for j=2:N 

w(i,1,k)= w(i,2,k);   

w(i,j,k+1)=w(i,j,k)+dt*(A0+A1*cos((omegap*t(k))))+dt*a0*cos((omegab*t(k))+ppsi)-

dt*((Ha)^2/(Re))*w(i,j,k)... 

-dt*(xi(j)/R(i))*(dR(i))*w(i,j,k)*(w(i,j+1,k)-w(i,j-1,k))/(2*dxi)...   

-dt*w(i,j,k)*(w(i+1,j,k)-w(i-1,j,k))/(2*dz)... 

+dt*w(i,j,k)*xi(j)/R(i)*dR(i)*((w(i,j+1,k)-w(i,j-1,k))/(2*dxi))... 

+(dt/(Re*(R(i))^2))*((w(i,j+1,k)-2*w(i,j,k)+w(i,j-1,k))/(dxi^2))... 

+(dt/(Re*(R(i))^2)*(xi(j)))*((w(i,j+1,k)-w(i,j-1,k))/(2*dxi))... 

+(dt/(Re)*((w(i+1,j,k)-2*w(i,j,k)+w(i-1,j,k))/(dz)^2))...   

-(dt/(Re))*(xi(j)/(R(i)))*ddR(i)*((w(i,j+1,k)-w(i,j-1,k))/(2*dxi))... 

+(dt/(Re))*(xi(j)/R(i))^2*((w(i,j+1,k)-2*w(i,j,k)+w(i,j-1,k))/(dxi^2))... 

+(dt/(Re))*(3*xi(j)/(R(i))^2)*((dR(i))^2)*(w(i,j+1,k)-w(i,j-1,k))/(2*dxi); 

u(i,j,k)=xi(j)*dR(i)*w(i,j,k);  

end 

end 

end 

L1=2;             

r1=1;             

t1=5;             

M1=40;             
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N1=20;             

maxt1=5000;       

dt1= t1/(maxt1);      

dxi1=r1/(N1);         

dz1=L1/(M1);   

A0=1.5; A1=0.5;  omegap=1 ; omegab=1 ; ReG=300; Re=3; e=0.1;a0=2; Ha=1; ppsi=0.6; 

z0=1; K=2;n=1; tau0=0;  Ec=1; Pe=25; Pec=25; beTA=0.002; Sc=1;Sr=0.001 ; 

for j=1:N1+1  

xi1(j)=(j-1)*dxi1;      % w(:,:,1) 

end 

for i=1:M1+1 

z1(i)=(i-1)*dz1;   

end 

for k=1:maxt1+1 

t1(k)=(k-1)*dt1;   

end 

for i=1:M1+1 

R1(i)=1-e*(1+cos(((pi/2)*z1(i))/(z0)));  

dR1(i)=(pi/2*z0)*e*sin((pi/2)*z1(i)/z0); 

ddR1(i)=((pi/2*z0))^2*e*cos((pi/2)*z1(i)/z0); 

end 

w1=zeros(M1+1,N1+1,maxt1+1); 

u1=zeros(M1+1,N1+1,maxt1+1); 

for k=1:maxt1+1 

for j=1:N1 

for i=1:M1+1 

w1(i,j,1)=((A0+A1)/4)*(1-(R1(i)*xi1(j))^2); 

u1(i,j,1)=0;  

end 

end 

end 

% % %we now put or insert here the boundary conditions!! 

for i=1:M1+1 

for k=1:maxt1+1 
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w1(i,N1+1,k)=0;           %boundary condition on the boundary i.e at xi=1 

u1(i,N1+1,k)=0;  

end 

end 

for k=1:maxt1 

for i=2:M1 

for j=2:N1 

w1(i,1,k)= w1(i,2,k); 

w1(i,j,k+1)=w1(i,j,k)+dt1*(A0+A1*cos((omegap*t1(k))))+dt1*a0*cos((omegab*t1(k))+ppsi)

-dt1*((Ha)^2/(Re))*w1(i,j,k)... 

-dt1*(xi1(j)/R1(i))*(dR1(i))*w1(i,j,k)*(w1(i,j+1,k)-w1(i,j-1,k))/(2*dxi1)...   

-dt1*w1(i,j,k)*(w1(i+1,j,k)-w1(i-1,j,k))/(2*dz1)... 

+dt1*w1(i,j,k)*xi1(j)/R1(i)*dR1(i)*((w1(i,j+1,k)-w1(i,j-1,k))/(2*dxi1))... 

+(dt1/(Re*(R1(i))^2))*((w1(i,j+1,k)-2*w1(i,j,k)+w1(i,j-1,k))/(dxi1^2))... 

+(dt1/(Re*(R1(i))^2)*(xi1(j)))*((w1(i,j+1,k)-w1(i,j-1,k))/(2*dxi1))... 

+(dt1/(Re)*((w1(i+1,j,k)-2*w1(i,j,k)+w1(i-1,j,k))/(dz1)^2))...   

-(dt1/(Re))*(xi1(j)/(R1(i)))*ddR1(i)*((w1(i,j+1,k)-w1(i,j-1,k))/(2*dxi1))... 

+(dt1/(Re))*(xi1(j)/R1(i))^2*((w1(i,j+1,k)-2*w1(i,j,k)+w1(i,j-1,k))/(dxi1^2))... 

+(dt1/(Re))*(3*xi1(j)/(R1(i))^2)*((dR1(i))^2)*(w1(i,j+1,k)-w1(i,j-1,k))/(2*dxi1); 

u1(i,j,k)=xi1(j)*dR1(i)*w1(i,j,k);  

end 

end 

end 

L2=2;             

r2=1;             

t2=5;              

M2=40;             

N2=20;             

maxt2=5000;       

dt2= t2/(maxt2);      

dxi2=r2/(N2);         

dz2=L2/(M2);   

A0=1.5; A1=0.5;  omegap=1 ; omegab=1 ; ReG=300; Re=3; e=0.1;a0=3; Ha=1; ppsi=0.6; 

z0=1; K=2;n=1; tau0=0;  Ec=1; Pe=25; Pec=25; beTA=0.002; Sc=1;Sr=0.001 ; 
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for j=1:N2+1  

xi2(j)=(j-1)*dxi2;      % w(:,:,1) 

end 

for i=1:M2+1 

z2(i)=(i-1)*dz2;   

end 

for k=1:maxt2+1 

t2(k)=(k-1)*dt2;   

end 

for i=1:M2+1 

R2(i)=1-e*(1+cos(((pi/2)*z2(i))/(z0))); 

dR2(i)=(pi/2*z0)*e*sin((pi/2)*z2(i)/z0); 

ddR2(i)=((pi/2*z0))^2*e*cos((pi/2)*z2(i)/z0); 

end 

w2=zeros(M2+1,N2+1,maxt2+1); 

u2=zeros(M2+1,N2+1,maxt2+1); 

for k=1:maxt2+1 

for j=1:N2 

for i=1:M2+1 

w2(i,j,1)=((A0+A1)/4)*(1-(R2(i)*xi2(j))^2); 

u2(i,j,1)=0;  

end 

end 

end 

% % %we now put or insert here the boundary conditions!! 

for i=1:M2+1 

for k=1:maxt2+1 

w2(i,N2+1,k)=0;           %boundary condition on the boundary i.e at xi=1 

u2(i,N2+1,k)=0;  

end 

end 

for k=1:maxt2 

for i=2:M2 

for j=2:N2 
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w2(i,1,k)= w2(i,2,k); 

w2(i,j,k+1)=w2(i,j,k)+dt2*(A0+A1*cos((omegap*t2(k))))+dt2*a0*cos((omegab*t2(k))+ppsi)

-dt2*((Ha)^2/(Re))*w2(i,j,k)... 

-dt2*(xi2(j)/R2(i))*(dR2(i))*w2(i,j,k)*(w2(i,j+1,k)-w2(i,j-1,k))/(2*dxi2)...   

-dt2*w2(i,j,k)*(w2(i+1,j,k)-w2(i-1,j,k))/(2*dz2)... 

+dt2*w2(i,j,k)*xi2(j)/R2(i)*dR2(i)*((w2(i,j+1,k)-w2(i,j-1,k))/(2*dxi2))... 

+(dt2/(Re*(R2(i))^2))*((w2(i,j+1,k)-2*w2(i,j,k)+w2(i,j-1,k))/(dxi2^2))... 

+(dt2/(Re*(R2(i))^2)*(xi2(j)))*((w2(i,j+1,k)-w2(i,j-1,k))/(2*dxi2))... 

+(dt2/(Re)*((w2(i+1,j,k)-2*w2(i,j,k)+w2(i-1,j,k))/(dz2)^2))...   

-(dt2/(Re))*(xi2(j)/(R2(i)))*ddR2(i)*((w2(i,j+1,k)-w2(i,j-1,k))/(2*dxi2))... 

+(dt2/(Re))*(xi2(j)/R2(i))^2*((w2(i,j+1,k)-2*w2(i,j,k)+w2(i,j-1,k))/(dxi2^2))... 

+(dt2/(Re))*(3*xi2(j)/(R2(i))^2)*((dR2(i))^2)*(w2(i,j+1,k)-w2(i,j-1,k))/(2*dxi2); 

u2(i,j,k)=xi2(j)*dR2(i)*w2(i,j,k);  

end 

end 

end 

plot(xi,w(6,:,800),'b','LineWidth',2.5) 

hold on 

plot(xi1,w1(6,:,800),'r','LineWidth',2.5) 

hold on 

plot(xi2,w2(6,:,800),'k','LineWidth',2.5) 

hold off 

xlabel('\xi') 

ylabel('Axial velocity')\\ 

(b) Matlab codes for Non-Newtonian Blood (Herschel-Bulkley Model) 

clear all; 

L=4;             

r=1;             

t=1;             

M=50;             

N=20;             

maxt=5000;       
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dt= t/(maxt);      

dxi=r/(N);         

dz=L/(M);   

A0=0.8; A1=0.5;  omegap=10; omegab=10; ReG=1; Re=0.0001; e=0.1;a0=1; Ha=1; 

ppsi=0.3; 

z0=1; K=2;n=0.95; tau0=0.2;  Ec=1; Pe=1; beTA=0.1; Sc=1;Sr=0.001 ; 

for j=1:N+1   

xi(j)=(j-1)*dxi;      % w(:,:,1) 

end 

for i=1:M+1 

z(i)=(i-1)*dz;   

end 

for k=1:maxt+1 

t(k)=(k-1)*dt;   

end 

for i=1:M+1 

R(i)=1-e*(1+cos(((90)*z(i))/(z0))); 

dR(i)=(pi/2*z0)*e*sin((90)*z(i)/z0); 

ddR(i)=((pi/2*z0))^2*e*cos((90)*z(i)/z0); 

end 

w=zeros(M+1,N+1,maxt+1); 

u=zeros(M+1,N+1,maxt+1); 

tauxixi=zeros(M+1,N+1,maxt+1); 

tauxiz=zeros(M+1,N+1,maxt+1); 

tauzz=zeros(M+1,N+1,maxt+1); 

T=zeros(M+1,N+1,maxt+1); 

C=zeros(M+1,N+1,maxt+1); 

Nusselt=zeros(M+1,N+1,maxt+1); 

Volu=zeros(M+1,N+1,maxt+1); 

Sherwood=zeros(M+1,N+1,maxt+1); 

for j=1:N+1 

for i=1:M+1 

w(i,j,1)=((A0+A1)/4)*(1-(R(i)*xi(j))^2); 

u(i,j,1)=0; 



105 
 

T(i,j,1)=0.1; 

C(i,j,1)=0.1; 

end 

end 

for i=1:M+1 

for k=1:maxt+1 

w(i,N+1,k)=0;           %boundary condition on the boundary i.e at xi=1 

u(i,N+1,k)=0; 

T(i,N+1,k)=1; 

C(i,N+1,k)=4.5; 

end 

end 

for k=1:maxt+1 

for i=1:M+1 

tauxiz(i,1,k)=0;           %boundary condition on the boundary i.e at xi=1 

end 

end 

for k=1:maxt+1 

for i=2:M 

for j=2:N 

w(i,1,k)= w(i,2,k); 

GAMA(i,j,k)=(2*(((1/R(i))*dR(i)*xi(j)*(((w(i,j+1,k)-w(i,j-

1,k))/(2*dxi))+w(i,j,k)))^2)+((1/R(i))*dR(i)*w(i,j,k))^2)... 

+2*(((w(i+1,j,k)-w(i-1,j,k))/(2*dz))-(xi(j)/R(i))*((w(i,j+1,k)-w(i,j-1,k))/(2*dxi)))^2+     ( 

(xi(j)*(dR(i)*((w(i+1,j,k)-w(i-1,j,k))/(2*dz))+w(i,j,k)*ddR(i)))   +   -

((xi(j)/R(i))*(dR(i))^2)*(xi(j)*((w(i,j+1,k)-w(i,j-1,k))/(2*dxi)))-

(xi(j)/R(i))*((dR(i))^2)*w(i,j,k)+(w(i,j+1,k)-w(i,j-1,k))/(2*R(i)*dxi)  )^2; 

gama(i,j,k)=nthroot(GAMA(i,j,k),2);%sqrt(GAMA(i,j,k)); 

tauxixi(i,j,k)=2*((1/ReG)*(gama(i,j,k)^(n-1))+tau0*(gama(i,j,k)^(-

1)))*(1/R(i))*dR(i)*(xi(j)*((w(i,j+1,k)-w(i,j-1,k))/(2*dxi))+w(i,j,k)); 

tauxiz(i,j,k)=2*((1/ReG)*(gama(i,j,k)^(n-1))+tau0*(gama(i,j,k)^(-

1)))*(xi(j)*dR(i)*(w(i+1,j,k)-w(i-1,j,k))/(2*dz))... 

+2*((1/ReG)*(gama(i,j,k)^(n-1))+tau0*(gama(i,j,k)^(-1)))*w(i,j,k)*xi(j)*ddR(i)... 
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-2*((1/ReG)*(gama(i,j,k)^(n-1))+tau0*(gama(i,j,k)^(-

1)))*(xi(j)/R(i))*(dR(i))^2*((xi(j)*((w(i,j+1,k)-w(i,j-1,k))/(2*dxi))+w(i,j,k)))... 

+2*((1/ReG)*(gama(i,j,k)^(n-1))+tau0*(gama(i,j,k)^(-1)))*(w(i,j+1,k)-w(i,j-

1,k))/(2*R(i)*dxi); 

tauzz(i,j,k)= 2*((1/ReG)*(gama(i,j,k)^(n-1))+tau0*(gama(i,j,k)^(-1)))*(w(i+1,j,k)-w(i-

1,j,k))/(2*dz)-... 

2*((1/ReG)*(gama(i,j,k)^(n-1))+tau0*(gama(i,j,k)^(-1)))*(xi(j)/R(i))*dR(i)*(w(i,j+1,k)-w(i,j-

1,k))/(2*dxi); 

w(i,j,k+1)=w(i,j,k)+dt*(A0+A1*cos((omegap*t(k))))+dt*a0*cos((omegab*t(k))+ppsi)-

dt*((Ha)^2/(ReG))*w(i,j,k)... 

-dt*(xi(j)/R(i))*(dR(i))*w(i,j,k)*(w(i,j+1,k)-w(i,j-1,k))/(2*dxi)...   

-dt*w(i,j,k)*(w(i+1,j,k)-w(i-1,j,k))/(2*dz)... 

+dt*w(i,j,k)*xi(j)/R(i)*dR(i)*((w(i,j+1,k)-w(i,j-1,k))/(2*dxi))... 

+(dt*((tauxiz(i,j,k))))/(R(i)*xi(j))... 

+(dt)/(R(i))*(tauxiz(i,j+1,k)-tauxiz(i,j-1,k))/(2*dxi)... 

+dt*(tauzz(i+1,j,k)-tauzz(i-1,j,k))/(2*dz)... 

-dt*(xi(j)/R(i))*(dR(i))*(tauzz(i,j+1,k)-tauzz(i,j-1,k))/(2*dxi);%...  

u(i,j,k)=xi(j)*dR(i)*w(i,j,k);  

T(i,1,k)= T(i,2,k); 

T(i,j,k+1)=T(i,j,k)-dt*(xi(j)/R(i))*(dR(i))*w(i,j,k)*(T(i,j+1,k)-T(i,j-1,k))/(2*dxi)... 

-dt*w(i,j,k)*(T(i+1,j,k)-T(i-1,j,k))/(2*dz)... 

+dt*(xi(j)/R(i))*(dR(i))*w(i,j,k)*(T(i,j+1,k)-T(i,j-1,k))/(2*dxi)...   

+(dt/(Pe))*((T(i,j+1,k)-2*T(i,j,k)+T(i,j-1,k))/(R(i)^2*dxi^2))... 

+(dt/(Pe))*((T(i,j+1,k)-T(i,j-1,k))/(2*xi(j)*R(i)^2*dxi))... 

+(dt/(Pe))*((T(i+1,j,k)-2*T(i,j,k)+T(i-1,j,k))/(dz)^2)... 

+(dt*Ec)*(1/R(i))*tauxixi(i,j,k)*dR(i)*(xi(j)*((w(i,j+1,k)-w(i,j-1,k))/(2*dxi))+w(i,j,k))... 

+(dt*Ec)*(1/R(i))*tauxiz(i,j,k)*((w(i,j+1,k)-w(i,j-1,k))/(2*dxi))... 

+(dt*Ec)*tauxiz(i,j,k)*xi(j)*(dR(i)*((w(i+1,j,k)-w(i-1,j,k))/(2*dz))+w(i,j,k)*ddR(i)) - 

(dt*Ec)*tauxiz(i,j,k)*(xi(j)/R(i))*dR(i)* (dR(i)*xi(j)*((w(i,j+1,k)-w(i,j-

1,k))/(2*dxi))+w(i,j,k))...    

+(dt*Ec)*tauzz(i,j,k)*((w(i+1,j,k)-w(i-1,j,k))/(2*dz))-

(dt*Ec)*tauzz(i,j,k)*((xi(j)/R(i))*dR(i)*((w(i,j+1,k)-w(i,j-1,k))/(2*dxi)))... 

+(dt/(Pe))*(3*xi(j)/(R(i))^2)*((dR(i))^2)*(T(i,j+1,k)-T(i,j-1,k))/(2*dxi)... 
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-((2*xi(j)*dt)/(Pe*R(i)))*dR(i)*((T(i+1,j+1,k)-T(i-1,j+1,k)-T(i+1,j-1,k)+T(i-1,j-

1,k))/(4*dxi*dz))... 

-(dt/(Pe))*(xi(j)/(R(i)))*ddR(i)*((T(i,j+1,k)-T(i,j-1,k))/(2*dxi))... 

+(2*dt/(Pe))*((xi(j)/R(i))*dR(i))^2*(T(i,j+1,k)-2*T(i,j,k)+T(i,j-1,k)/((dxi)^2)); 

C(i,1,k)= C(i,2,k); 

C(i,j,k+1)=C(i,j,k)-dt*(xi(j)/R(i))*(dR(i))*w(i,j,k)*(C(i,j+1,k)-C(i,j-1,k))/(2*dxi)... 

-dt*w(i,j,k)*((C(i+1,j,k)-C(i-1,j,k))/(2*dz))+dt*(xi(j)/R(i))*(dR(i))*w(i,j,k)*(C(i,j+1,k)-C(i,j-

1,k))/(2*dxi)... 

+(dt/(Pe))*(C(i,j+1,k)-2*C(i,j,k)+C(i,j-1,k)/((dxi)^2*R(i)^2))... 

+(dt/(Pe))*((C(i,j+1,k)-C(i,j-1,k))/(2*xi(j)*dxi*(R(i))^2)+((C(i+1,j,k)-2*C(i,j,k)+C(i-

1,j,k))/((dz)^2)))... 

+(dt/(Pe))*(3*xi(j)/(R(i))^2)*((dR(i))^2)*(C(i,j+1,k)-C(i,j-1,k))/(2*dxi)... 

-((2*xi(j)*dt)/(Pe*R(i)))*dR(i)*((C(i+1,j+1,k)-C(i-1,j+1,k)-C(i+1,j-1,k)+C(i-1,j-

1,k))/(4*dxi*dz))... 

-(dt/(Pe))*(xi(j)/(R(i)))*ddR(i)*((C(i,j+1,k)-C(i,j-1,k))/(2*dxi))... 

+(2*dt/(Pe))*((xi(j)/R(i))*dR(i))^2*(C(i,j+1,k)-2*C(i,j,k)+C(i,j-1,k)/((dxi)^2))-

(dt/Re)*beTA*C(i,j,k)... 

+Sr*(((T(i,j+1,k)-2*T(i,j,k)+T(i,j-1,k))/(R(i)^2*dxi^2)))... 

+Sr*((T(i,j+1,k)-T(i,j-1,k))/(2*xi(j)*R(i)^2*dxi))... 

+Sr*((T(i+1,j,k)-2*T(i,j,k)+T(i-1,j,k))/(dz)^2)... 

+(dt*Sr)*(3*xi(j)/(R(i))^2)*((dR(i))^2)*(T(i,j+1,k)-T(i,j-1,k))/(2*dxi)... 

-((2*xi(j)*dt*Sr)/(R(i)))*dR(i)*((T(i+1,j+1,k)-T(i-1,j+1,k)-T(i+1,j-1,k)+T(i-1,j-

1,k))/(4*dxi*dz))... 

-(dt*Sr)*(xi(j)/(R(i)))*ddR(i)*((T(i,j+1,k)-T(i,j-1,k))/(2*dxi))... 

+(2*dt*Sr)*((xi(j)/R(i))*dR(i))^2*(T(i,j+1,k)-2*T(i,j,k)+T(i,j-1,k)/((dxi)^2)); 

end 

end 

end 

plot(t,squeeze(tauxiz(4,20,:)),'b--','LineWidth',2.0) 

xlabel('t') 

ylabel('Shear stress') 
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Abstract. A mathematical model has been developed and used to study pulsatile blood flow 

and mass transfer through a stenosed artery in the presence of body acceleration and 

magnetic fields. An explicit Finite Difference Method (FDM) has been used to discretize 

the formulated mathematical model. The discretized model equations were solved in 

MATLAB software to produce simulations. The effect of Hartman number, Reynolds 

number, Schmidt number, stenotic height, body acceleration and chemical reactions have 

been investigated. It has been observed that, the velocity, concentration and skin friction, 

decrease with increasing stenotic height. Velocity on the other hand increases, as body 

acceleration increases. It has further been observed that as the Hartman number increases, 

both the radial and axial velocities diminish.  Increase of the Reynolds number results in 

the increase of the velocity profiles. The higher the chemical reaction parameter is, the 

lower are the concentration profiles.  

Keywords: Pulsatile flow, stenosis, body acceleration, magnetic fields, chemical reaction, 

magnetic therapy 
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1. Introduction 

The use of magnetic fields in health-related interventions is manifested in various 

situations, this includes in treatment of ailments. In sports such as football and 

athletics,magnets are used to perform magnetic therapy so as to maintain health and treat 

illnesses.Magnetic therapy is an alternative  medical practice that  uses  magnets  to  

alleviate  pain and other  health concerns. It is therefore possible that the magnetic  therapy 
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in sports can be applied to a person with stenosis because all people are susceptible to 
have stenosis or plaques in the body. 

Biologically blood has a number of functions that are central for the survival of 
human being, this includes inta alia, supplying oxygen to cells and tissues, providing 
essential nutrients to cells (such as amino acids, fatty acids, and glucose),  removing 
waste materials, such as carbon dioxide, urea, and lactic acid, transporting hormones 
from one part of the body to another. In this regard therefore, blood can be described as 
the transporting agent in the human body. Blood consists of red blood cells which are 
negatively charged. It is therefore possible that the flow of blood can get affected by the 
magnetic fields.  

Stenosis is one of the causes of the anomalies of blood flow in arteries. The 
abnormal growth of deposits such as fats along the arterial wall causes reduction of the 
diameter of the artery and thus disturbs the normal flow of blood. In day to day activities, 
human being may also be subjected to external body acceleration. This includes, 
travelling in vehicles, airplanes, sports and other activities such as using the lathe 
machine or jack hammer.In this regard therefore, magnetic therapy in sports implies that, 
there is existence of magnetic fields and body acceleration. 

Mathematical modelling of blood flow in a stenosed artery under the presence of 
magnetic fields has been worked on by several researchers. Kumari et al, (2019) [1], 
Haghighi and Aliashrafi (2018) [3], Sharma et al (2019) [4], Rajashekhar et al (2017) [7], 
Mwanthi et al (2017) [8], Shit et al (2014) [6], studied Magnetohydrodynamics through a 
stenosed artery. Their studies revealed that the application of the magnetic field causes a 
decrease in axial speed of blood.  

Karthikeyan and Jeevitha (2019) [2], analyzed the heat and mass transfer effects 
on the two-phase model of the unsteady pulsatile blood flow when it flows through a 
stenosed artery with permeable wall under the effect of chemical reaction. The study 
showed that as the chemical reaction parameter increases, the concentration profiles 
decrease.Further, plots of the volumetric flow rate and the velocity exhibitsinusoidal 
behavior with time. A similar study with similar results was done by Hossain and Haque 
(2017) [13] for bifurcated artery. These studies neglected the presence of body 
acceleration despite the fact that the situation is very common in sports.  

Tanwar et al (2016) [5] investigated the effect of body acceleration on pulsatile 
blood flow through a catheterized artery. The blood was assumed to be a Newtonian fluid 
and the perturbation method was used to solve the problem. In their study, it was 
observed that the velocity of blood increases with the increase in body acceleration and 
the velocity decreases with the increase in phase angle.  

Furthermore, a mathematical model for the blood flow through an overlapping 
stenosed artery under the effect of magnetic field was also studied by Parmar et al. (2013) 
[9]. The flow was assumed to be laminar, incompressible and fully developed. The blood 
was also assumed to follow Herschel-Bulkley fluids. The effects of magnetic fields and 
stenosis was discussed. Their findings found that magnetic fields and stenosis affect the 
normal flow of blood.  
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Sharma and Gaur (2017) [14] reported that, blood is maintained in a delicate 
balance by a variety of chemical reactions, some that aid its coagulation and others its 
dissolution. Biologically blood reacts and is soluble at the arterial wall as arteries may be 
basically considered as a living tissues that need supply of metabolites including oxygen 
and removal of waste products. In this regard therefore, chemical reaction in blood flow 
exists, and it is therefore important know how are macromolecules transported or affected 
by the presence of chemical reaction. Modelling the combined effect of stenosis, body 
acceleration and chemical reactions for magnetic therapy (to the best of our knowledge) 
is missing in all literature despite of its manifestation in different situation like magnetic 
therapy in sports. The current study therefore aims at determining the combined effect of 
stenosis, body acceleration and chemical reaction in in magnetic therapies.  

2. Mathematical formulation 
We consider chemically reacting blood flowing through a stenosed artery in the presence 
of body acceleration and magnetic fields. The flow of blood is assumed to be two 
dimensional, unsteady, laminar, axisymmetric flow, fully developed and incompressible. 
We also assumethat the flow is under the influence of a constant electrical conductivity. 
Blood is assumed to be a Newtonian fluid. We further consider that  � = 0 is the axis of 

the axisymmetric flow where  
��.��� = 0	and	�
, �� are components of the velocityin  �, � 

directions respectively.  Figure 1 shows the schematic diagram of the flow.  

 

Figure 1: Schematic flow diagram 

In cylindrical polar coordinate, under the mentioned assumptions, equations of 
continuity, motion and mass concentration reduce to: �
�� + 
� + ���� = 0																																																																																																																											�1� 
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� ��
�� + 
 �
�� + � �
��� = −���� + � ���
��� + 1� �
�� − 
�� + ��
����																																								�2� 
� ����� + 
 ���� + ������ = −���� + � ������� + 1� ���� + ������� + ���� −  !"��															�3� 
� ��$�� + 
 �$�� +� �$��� = % ���$��� + 1� �$�� + ��$���� − &$																																																					�4� 
where �, �are the radial and axial directions whose corresponding velocities are 
respectively 
 and	�. 	� is the density of the blood and � is the blood’s viscosity.� is the 
pressure, 	is the electrical conductivity, !" is the applied magnetic field intensity, ���� is 
the body acceleration, � is time, $ is the mass concentration, while % and & are the 
diffusion coeffient and chemical reaction parameters, respectively.  

In the radial direction we assume that the pressure gradient is small due to the 
fact that the lumen radius of an artery is small in comparison to the pressure wave. Under 

such assumption therefore, the radial pressure gradient	�(�) ≈ 0. Following Mustapha and 

Amin (2008), the pressure gradient for a human being in the axial direction can be written 
as  −���� = +" + +, cos�0,��																																																																																													�5� 
where +" is the steady state part of pressure gradient, +, is the amplitude of the pulsatile 
blood flow, that gives rise to systolic and diastolic pressure, 0, = 223,, with 3, being the 
pulse frequency. On other hand, according to Nagarani et al (2007), body acceleration 
may be given as ���� = �4" cos�0�� + ɸ�																																																																																																												�6� 
where �4" is the amplitude of body acceleration, 0� = 223� with 3� being body 
acceleration frequency, and  is the phase angle. 
The governing equations 1 − 4 can now be written as follows; 
 �
�� + 
� + ���� = 0																																																																																																																											�7� 
� ��
�� + 
 �
�� + � �
��� = +����
��� + 1� �
�� − 
�� + ��
����																																																				�8� 
 

� ����� + 
 ���� + � ����� = +" ++, cos�0,�� + �4" cos�0�� + ɸ� + � ������� + 1� ���� + ������ � 

− !"��																																																																																																	�9� 
 

� ��$�� + 
 �$�� + � �$��� = % ���$��� + 1� �$�� + ��$���� − &$																																																		�10� 
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Following Das and Saha (2009),  the geometry of stenosis (See Figure 1) can 
mathematically be expressed as follows; 

ℎ��� = ;�" − < �1 + cos
2�2�"� ,�"otherwise

						− �" ≤ � ≤ �" > 																																																															�11� 
where ℎ��� represents the radius of the stenosed artery, �" is the radius of the normal 
artery, 2�" is the length of the stenosis and < is the protuberance of the stenosis.   
 
Boundary and initial conditions 
It is assumed that there is no slip condition on the arterial wall, that is  
��, �, �� = 0, ���, �, �� = 0			at		� = ℎ���																																																												�12� 
and at the center of the artery (at the line of symmetry) it is assumed that there is no shear 
rate and no radial flow, such that  ����, �, ���� = 0, 
��, �, �� = 0						at			� = 0																																																																				�13� 
For mass concentration, symmetric conditions are and concentration is considered 
uniform at the wall, Khan and Mohidul 2017. 
 �$��, �, ���� = 0			at		� = 0						and	$��, �, �� = 0				at				� = ℎ���																																							�14� 

 
Since blood can flow even in the absence of magnetic field and body acceleration, it is 
therefore assumed that initially, there is non-zero velocity and concentration when � = 0 
 
��, �, 0� = 
", ���, �, 0� = �"			, $��, �, 0� = $"																																																							�15� 
 
Non- dimensionalisation of variables  
In this part we introduce the following non-dimensional variables. The variables  �@ and �" used are fluid characteristic velocity and distance. For this case, blood flowing in an 
artery, �@ is the average blood velocity, and �" is the radius of the normal artery.   

A = ��" , �∗ = ��" , 
∗ = 
�@ , �∗ = ��@ ,			C = ��@�" , 4"∗ = 4"�"DE� , +"∗ = +"�"D�E�  

+,∗ = +,�"D�E� , F = <�" , $∗ = $$" , %∗ = %E , &∗ = &�"�E ,G = !"�"H � 

Substituting these non-dimensional variables into equations 7-11 we get 
 
Continuity equation �
∗�A + 
∗A + ��∗��∗ = 0																																																																																																																			�16� 
Equation of motion in the radial direction: �
∗�C + 
∗ �
∗�A �∗ �
∗��∗ = 1IJ ��

�
∗�A� + 1A �
∗�A − 
∗A� + ��
∗��∗��																																															�17� 
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Equation of motion in the axial direction ��∗�C + 
∗ ��∗�A + �∗ ��∗��∗ = +"∗ + +,∗ cos�K,C� + 4"∗ cos�K�C + ɸ� 

+ 1IJ ��
��∗�A� + 1A ��∗�A + ���∗��∗� � −G�IJ �∗																																																																															�18� 

Mass concentration equation 

�$∗�C + 
∗ �$∗�Ƞ + �∗ �$∗��∗ = %∗ ���$∗�A� + 1A �$∗�A + ��$∗��∗�� − &$∗																																							�19� 
whereIJ = MN)OP ,			%∗ = QP = ,R@,		ST are, respectively, the Reynolds number, and Schmidt 

number, and G = !"�"UVW is the Hartmann number.  The mass concentration equation 

becomes �$∗�C + 
∗ �$∗�A + �∗ �$∗��∗ = 1ST ���$∗�A� + 1A �$∗�A + ��$∗��∗�� − &$∗																																							�20� 
The geometry of stenosis (Equation 5) in dimensionless form becomes 
 

X��∗� = ;1 − F �1 + cos�2�∗2 ��1																	otherwise > 	for − 1 ≤ �∗ ≤ 1																																																									�21� 
 
The boundary and initial conditions 12 − 15 in dimensionless form become: 
 

_
∗�A, �∗, C� = 0,				�∗�A, �∗, C� = 0							atA = X��∗����A, �∗, C��A = 0, 						
∗�A, �∗, C� = 0					atA = 0		 > 																																																		�22� 
 $∗�A, �∗, C� = 0,									atA = X��∗�,				�$∗�A, �∗, C��A = 0,				atA = 0																										�23� 
 
∗�A, �∗, 0� = 
"∗ ,							�∗�A, �∗, 0� = �"∗, ,			$∗�A, �∗, 0� = 1,																																�24� 
 
In this work, the initial condition for velocity was obtained from the steady state 
of the equation of motion as ��A� = �+" ++,4 � �1 − A�� = �"																																																																																									�25� 
3. Solutions 
3.1. Radial coordinate transformation 
In this section we are going to transform the equations from cylindrical to 
rectangular domain. Assuming that the artery is cylindrical with stenosis, we 
transform the constriction by introducing another variable ̀  such that 
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` = AX���																																																																																																				�26� 
This suitable radial coordinate transformation helps to map the constricted domain 
intoa rectangular one. That is, this has the effect of immobilizing the arterial wall 
in thetransformed coordinate `. Using the above transformation, re-arranging and 
dropping the asterisks, theequations of continuity, motion, and mass concentration 
transfer become: 
 �
X�` + 
X` + ���� − X̀ aXa� ���` = 0																																																																																													�27� 
�
�C = − 
X �
�` − � b�
�� − X̀ aXa� �
�`c + 1IJ 1X� ���
�`� + 1̀ �
�` − 
̀�� + 1IJ d�

�
��� − 2X̀ aXa� ��
�`��> 
>− X̀ a�Xa�� �
�` + `�X� �aXa��

� ��
�`� + 3`X� �aXa��
� �
�`e																																																																																			�28� ���C = − 
X ���` − � b���� − X̀ aXa� ���` c + +" + +, cos�K,C� + cos�K�C + ɸ�

+ 1IJ 1X� �����`� + 1̀ ���`� >+ 1IJ d�
����� − 2X̀ aXa� ����`�� − X̀ a�Xa�� ���` > + `�X� �aXa��� ����`�

+ 3X̀� �aXa��� ���` e − 1IJG��																																																																																																					�29� 
�$�C = − 
X �$�` − � b�$�� − X̀ aXa� �$�`c + 1ST ���$�`� + 1̀�$�`� + 1ST d��$��� − 2X̀ aXa� ��$�`�� − X̀ a�Xa�� �$�` > 
>+ `�I� �aXa� �� ��$�`� + 3X̀� �aXa��� �$�`e − &$																																																																																																																				�30� 
Similarly, the boundary conditions 22-24 under the given radial coordinate 
transformation, become: 

_
�`, �, C� = 0,				��`, �, C� = 0							at					` = 1���`, �, C��` = 0, 
�`, �, C� = 0					at			` = 0		 > 																																																																			�31� 
 $�`, �, C� = 0,									at					` = 1,				 �$�`, �, C��` = 0,				at			` = 0																																											�32� 
 
�`, �, 0� = 
",							��`, �, 0� = �",			$�`, �, 0� = T",																																																										�33� 
 
Initial velocity �" becomes  �" = �+" + +,4 � �1 − �X`���																																																																																																			�34� 
 
3.2. Radial velocity 
To obtain the radial momentum, we use the continuity equation, we therefore multiply 
equation 27 by ̀X and integratethe resulting equation with respect to		`. This gives 
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�`, �, C� = ` aXa� � − 2XaXa� f�`a`g
"

− X̀f`g
"

���� a`																																																										�35� 
Now, applying the boundary condition 31, we obtain  

f 2XaXa� �`a`
,
"

= −f`,
"

���� a`																																																																																																			�36� 
Comparing integrals and the integrands of equation 36, we have; ���� = − 2X aXa� �																																																																																																																												�37� 
Substituting equation 37 into 35 we obtain 


�`, �, C� = ` aXa� �																																																																																																																						�38� 
Equation 38 is the radial velocity component which has to be calculated. However, 
equation 38 will now be substituted into equations 29 and 30 and obtain: ���C = �− X̀ aXa� �����` − � b���� − X̀ aXa� ���` c + +" + +, cos�K,C� + cos�K�C + ɸ� 

+ 1IJ 1X� �����`� + 1̀ ���` � >+ 1IF d�
2���2 − 2X̀ aXa� �

2��`�� − X̀ a2Xa�2 ���` > + `2X2 �aXa��2 �2��`2 + 3X̀2 �aXa��2 ���` e 
						− 1IJG��																																																																																																																																																		�39� 
�$�C = �− X̀ aXa� �� �$�` − � b�$�� − X̀ aXa� �$�`c + 1ST ���$�`� + 1̀�$�`� + 1ST d��$��� − 2X̀ aXa� ��$�`�� − X̀ a�Xa�� �$�` > 

>+ `�X� �aXa� �
� ��$�`� + 3X̀� �aXa� �

� �$�`e − &$																																																																																																�40� 
3.3. Finite difference schemes 
Equations (39) and (40) are solved numerically using the FDM.The finite difference 
discretization is based on central differences for space and forward difference for time.  

>
���` = �h,ij,k − �h,il,k2�∆`� , ���� = �hj,,ik − �hl,,ik2�∆�� , �$�� = $hj,,ik − $hl,,ik2�∆�� �$�` = $h,ij,k − $h,il,k2�∆`�����`� = �h,ij,k − 2�h,ik + �h,il,k�∆`�� , ������ = �hj,,ik − 2�h,ik + �hl,,ik�∆��� , ��$��� = $hj,,ik − 2$h,ik + $hl,,ik�∆�����$�`� = $h,ij,k − 2$h,ik + $h,il,k�∆`�� ,	and for time we have 

���C = �h,ikj, − �h,ik∆C , �$�C = $h,ikj, − $h,ik∆C noo
p
ooq	�41� 
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We now substitute the finite difference approximationsfrom equation 42 to equations 39 
and 40 and we make �h,ikj,  and $h,ikj,  the subject, and obtain: 

�h,ikj, = �h,ik + ∆C r�− `iXh �aXa��h �h,ik ���h,ij,k − �h,il,k2�∆`� � − �h,ik d�hj,,ik −�hl,,ik2�∆�� > >− �`iXh �aXa��h��h,ij,k − �h,il,k2�∆`� e> 
+ 1IJ ��hj,,ik − 2�h,ik +�hl,,ik�∆��� � − 1IJ 2`iXh �aXa� �h ��hj,,ij,k +�hl,,il,k − �hl,,ij,k − �hj,,il,k4�∆`��∆�� � 

− 1IJ `iXh �a
�Xa���h

�h,ij,k − �h,il,k2�∆`� + 1IJ `i
�

Xh� �aXa��
�
h ��h,ij,k − 2�h,ik + �h,il,k�∆`�� � 

>+ 1IJ 3`iXh� �aXa��
�
h ��h,ij,k −�h,il,k2�∆`� � − 1IJG��h,ik s																																																														�42� 

$h,ikj, = $h,ik + ∆C r�`i �aXa� �h �h,ik � $h,ij,k − $h,il,k2�∆`� − �h,ik d$h,ij,k − $h,il,k2�∆�� > >− �`iXh �aXa��h�$h,ij,
k − $h,il,k2�∆`� e> 

									+ 1ST d$h,ij,k − 2$h,ik + $h,il,k�∆`�� + 1̀
h �$h,ij,

k − $h,il,k2�∆`� �e + 1ST d$hj,,ik − 2$h,ik + $hl,,ik�∆��� > 
								− 2`iXh �aXa� �h �$hj,,ij,

k + $hl,,il,k − $hl,,ij,k − $hj,,il,k4�∆`��∆�� � − `iXh �a�Xa���h �
$h,ij,k − $h,il,k2�∆`� � 

									+ >`iXh �a
�Xa�� �h

$h,ij,k − $h,il,k2�∆`� s − ∆C&$h,ik + `t2Xu2 �aXa��
2
u v
$u,t+1w − 2$u,tw + $u,t−1w

�∆`�2 x 

>>+ 3`iXh� �aXa��
�
h �$h,ij,

k − �h,il,k2�∆`� �e − &$h,ik s																																																																												�43� 
where we define �h = �u − 1�∆�,						u = 1, 2,… ,G + 1;  ̀ i = �t − 1�∆`,						t = 1, 2, … ,z + 1 Ck = �u − 1�∆C,						w = 1, 2,…													Here ∆� and ∆` represent the spatial increments, 
respectively, in the axial and radial directions while ∆C represents a small increment in 
time. We also discretize the boundary conditions as follows: 
The Neumann boundary condition at ` = 0 we have ���` = �h,ij,k −�h,il,k2�∆`� = 0																																																																																													�44� 
This gives �h,ij,k − �h,il,k = 0	 this implies that �h,ij,k = �h,il,k  now at ̀ = 0 means that 	t = 1, 

thus this means �h,�k = �h,"k . However, �h,"k  is outside the domain of interest. It is 
therefore the ghost point. To get rid of this ghost point we further approximate the 
derivative for the interval ∆` as follows 
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>���` {i|, ≅ �h,ij,k − �h,ik∆` = 0																																																																																												�45� 
This gives		�h,�k = �h,,k , we therefore have 
h,,k = 
h,~j,k = �h,~j,k = 0		,				�h,i, = �", 	$h,i, = T"		, �h,�k = �h,,k 			, $h,�k = $h,,k 												�46� 
The axial initial velocity is therefore discretized as �" = ��Oj��� � �1 − �X`h��� 
4. Results and discussion 
4.1. Numerical simulation 
In this section we implemented the numerical model (equations 42, 43, and 46) and 
performed computer simulations using MATLAB codes. To maintain stability, we 

ensured that 0 < ∆��∆��� ≤ 0.5. Forconvenience, constants were wisely chosen as follows; A" = 1, A, = 0.5,m, = 1m� = 1,ɸ = 0.6, e = 0.1, B" = 1, a" = 1, S� = 3, Re = 3, z =0.2	 
τ = 0.1990, ∆τ = 0.001. Some of these parameters were varied to observe their effects 
as illustrated in Fig. 1 to Fig. 23. 
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                      Figure 4:            Figure 5: 
 

 
                             Figure 6:              Figure 7: 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ξ

A
xi

al
 v

el
oc

ity

Effect of body acceleration on axial velocity

 

 

a0=1

a0=2

a0=3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ξ

A
xi

al
 V

el
oc

ity

Effect of Reynold's number on axial velocity

 

 

Re=3

Re=4
Re=5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ξ

V
el

oc
ity

Axial and radial velocities in a stenosed artery

 

 
Axial velocity in absence of a0 and Bo

Radial velocity in absence of a0 and B0



Annord Mwapinga, Eunice Mureithi, James Makungu and Verdiana Masanja 

96 
 

 
                            Figure 8:                         Figure 9: 
 

 

 
                         Figure 10:                    Figure 11:    
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                            Figure 12:                                                Figure 13: 
 

 
                           Figure 14:                  Figure 15: 
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                           Figure 16:             Figure 17: 
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                          Figure 20:                       Figure 21: 
 

 

  Figure 22:            Figure 23: 
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4.2. Discussion of the simulations 
The effect of Hartmann number on axial velocity profiles is illustrated by figure 3. From 
the graph we observe that as the Hartmann number increases, the velocity decreases due 
to the fact that as the magnetic fields is applied to the body, the Lorentz force tend to 
oppose the flow of blood. The Lorentz force is able to oppose the motion of the blood 
flow because blood consists of red blood cells which contains ions. Similar results were 
obtained by Kumari et al, (2019) [1]  and Sharma et al (2019) [4] who considered the 
navier slip. 

Figure 4 shows the effect of increasing body acceleration on axial velocity. From 
the graph it is observed that for the fixed values of Hartmann number and height of 
stenosis, axial velocity increases as body acceleration increases. The increase in velocity 
is due to the reason that body acceleration increases the heart beats and the pulse rate. 
When the body is subjected to body acceleration, the heart speeds up to pumping blood 
so that more blood can reach the muscles.  

This study also investigated the effect of Reynolds number on axial velocity. 
From the graph we see that, as Reynolds numbers increase, the axial velocity increases. 
The increase in Reynold’s number implies more increase of inertial forces than the 
viscous forces. Thus, as the inertial force increases, the velocity increases.  

Figure 7 shows both, the axial velocity and the radial velocity. From the graph 
we see that the axial velocity is higher than the radial velocity. This is due to the fact that 
the pressure gradient is more dominant in the axial direction than in radial direction. On 
the other hand, we also observe that, the axial velocity is maximum along the axis of 
symmetry and it is zero on the boundary. The axial velocity is decreasing as we move 
towards the boundary because of the no slip condition at the boundary. The radial 
velocity is zero along the line of symmetry because there is no radial flow along that axis. 
Also, it is zero at the boundary, to satisfy the no slip condition. It is very interesting to 
note that it has been revealed that increase in the severity of stenosis, decreases the axial 
velocity but increase the radial velocity. The radial velocity increases as compensation to 
the axial velocity which decreases. However, this may medically endanger a person by 
harming the arterial wall for prolonged situation.  

The effect of Hartman number, body acceleration and Reynolds number on radial 
velocity are shown in figures 9, 10 and 11 respectively. The effect of increasing these 
parameters on the radial velocity is observed to be the same as it is manifested on the 
axial velocity. 

The effect of increasing the chemical reaction parameter on concentration profile 
is illustrated in figure 12. From the graph, we clearly observe that, as the chemical 
reaction parameter increases, the concentration decreases. The decrease of the 
concentration is due to the fact that the presence of chemical reaction acts as the 
consumption or destructive agent of chemical species. This leads to the reduction of the 
concentration.  

Figure 13 shows the effect of increasing the Schmidt number on concentration 
profiles. From the graph it is observed that, as the Schmidt number increases the 
concentration profile increases. This can physically be explained that, the increase in 
Schmidt number implies that the molecular diffusion decreases that is, an increase in the 
Schmidt number, increases the concentration boundary layer thickness, which in turn 
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increases the concentration profiles. Figure 14 shows the effect of increasing the stenotic 
height on concentration profile. From the graph, we have observed that, as the stenotic 
height slightly increases, the concentration profiles decreases. The decrease of the 
concentration profile is due to the reason that the size of artery gets decreased as the 
stenotic height increases, thus the concentration decreases too. Similar effect is observed 
in figure 15 where the increase in Reynolds number reduces the concentration. Figure 18 
shows the effect of increasing the Hartmann number on the skin friction. From the graph, 
we have observed that, as the Hartman number increases, the skin friction profiles 
decreases. The skin friction again varies periodically with time. This physically mean that 
the shear stress decreases due to the presence of magnetic field. Reduction of the shear 
stress in turn leads to the decrease in the skin friction coefficient. On the other hand, 
increasing the Reynolds number implies that the inertial force increases than the viscous 
force. As viscous force is smaller, skin friction gets reduced. This means that, with 
increase of the Reynolds number, the inertial force is more dominant than the viscous 
force. This lowers the skin friction. This has been shown in figure 19.  

The combined effect of stenosis, body acceleration, magnetic field and chemical 
reaction has further been shown in figures 22 and 23. From the graphs we clearly see that 
the combined effect highly reduces the velocity of the blood. However, body exercise 
seems to have more effect than magnetic fields and stenosis. In this regard therefore, 
since body exercise highly raises the blood’s speed, magnetic therapy for a stenosed 
person will therefore be of more advantageous, not only for reducing pain but also 
regulating blood rheology by reducing blood’s velocity. Figure 23 shows the same for 
concentration, from the figure we see that the combined effect of stenosis, body 
acceleration, magnetic field and chemical reaction for the given values of parameters, 
generally reduce the concentration. Thus, the magnetic therapy taken during sports for the 
sake of reducing pain, causes reduction of transportation of some information and 
macromolecules in arterial blood flow. From this study we can therefore say that 
magnetic therapy in sports should be done with care because if a person has stenosed 
artery and such therapy is applied, concentration is generally affected. Medically this 
implies that the transfer of atherogenic molecules such as oxygen and even low-density 
lipoproteins from the blood to the wall get reduced. However, increasing body exercise 
increases the concentration. 

5. Conclusion 
Formulation of a mathematical model and computer simulations of two-dimensional 
blood flow through a stenosed artery in the presence of body acceleration, magnetic fields 
and chemical reaction has been done. Similar with previous studies, it is observed that the 
presence of magnetic fields affects the flow of blood. In this study it has been shown that 
the presence of magnetic fields in the presence of stenosis and body acceleration again 
affects the flow of blood. The current study gives more insights in medical use of 
magnetic fields in treating various diseases related to blood rheology like hypertension. It 
has also been observed that body exercise increases the blood’s velocity. Furthermore, 
the presence of chemical reaction has been shown to reduce the mass concentration. In 
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this regard we suggest that for patients with heart diseases, exposing them to physical 
exercises should be done with care as prolonged exposure to body accelerations may 
cause some serious health problems such as high pulse rate or even sudden death. 
Therapies that involve vibrations should also be handled with care by taking into account 
that blood’s velocity will be increased. In conclusion therefore, magnetic therapy in 
sports is very important, it may offer multiple benefits such as reducing pain and 
regulating blood flow which has been increased by body accelerations. 
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1. INTRODUCTION

The cardiovascular system involves blood, the heart and the blood vessel. Blood is important

because it is a transporting agent in the human body. It is very unfortunate that the human

blood vessels such as arteries and capillaries may contain plaques which disturb the normal

flow of blood and hence leading to cardiovascular diseases such as heart attack and stroke.

The abnormal flow of blood has drawn attention to many researchers due to its implications in

medicine and fluid mechanics.

Blood is categorically classified as a non-Newtonian fluid, thus studies which involve modelling

blood flow should not disregard the non-Newtonian character of blood. In day to day activities,

human body is exposed to situation which disturb the normal flow of blood. This include

(among others), physical exercises, travelling using vehicles and applying magnetic therapy to

a patient.

A number of investigators have carried out theoretical studies on blood flow. Misra et al [15]

modeled blood flow in arteries subject to the vibrating environment. In their study, the fluid

(blood) was treated as a couple stress fluid. However, their study did not take into consideration

the presence of stenoses despite the fact that human arteries are often subjected to fat or solid

deposits that lead to constricted arterial wall.

A recent study of non-Newtonian blood flow in a stenosed artery that was conducted by Liu

and Liu [14] involved the flow of blood in a tapered artery and took into consideration heat

and mass transfer. The study established that as the maximum depth of the stenosis increases,

the blood’s axial velocity increases. Another study on blood flow in a stenosed artery was

done by Jamil et al [12] that took into consideration the effects periodic body acceleration and

nanoparticles. It was proved that velocity decreases as yield stress increases and the velocity

could be controlled by nanoparticles. Numerical solution of blood flow and mass transport in an

elastic tube with multiple stenoses was also investigated by Alsemiry et al [3], where blood was

treated a Newtonian fluid. The result of their study was that the double stenoses and pulsatile

inlet conditions increase the number of recirculation regions and effect higher mass transfer

rate at the throat. Changdar and De [6] conducted a similar study like Alsemiry et al [3] but

considered the presence of body acceleration. As it was expected, the result revealed that the
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presence of body acceleration enhances the axial velocity.

Computational modelling of arterial blood flow for non - Newtonian fluid was investigated (inta

alia ) by Sharma and Yadav [18], Jamalabadi et al [1], Dixit et al [7] and Prasad and Yasa [16].

These studies did not include the aspect of vibration or body acceleration and the heat transfer

in the body which is very important to take into consideration. On the other hand, Bunonyo et al

[5], Eldesoky [8] and Sinha et al [19] studied MHD blood flow along the arterial wall. However,

all these studies, the aspect of body acceleration and mass transfer were not investigated. As

expected, all these studies showed among other things, that magnetic fields affect the blood’s

velocity.

Arteries as living tissues, require supply of metabolites, including oxygen, and removal of waste

products, Akbar et al [2]. Zaman et al [23], pointed out that, it is generally accepted that the

rheological behavior of blood is assumed as Newtonian for values of shear rate greater than

100s−1 and a such situation occurs in larger arteries. But in smaller arteries the blood does not

obey the Newtonian postulate and therefore cannot be modeled as a Newtonian fluid. Several

more scholars conclude that it is very crucial that blood is model as a non – Newtonian fluid.

These include Rodkiewicz et al [17], Tu and Deveille [21], and Gijsen et al [9].

There are several theoretical studies which have attempted to model blood flow in arteries

by considering blood to obey the Herschel-Bulkley fluid characteristics. These include studies

by Srivastava[20] and Kumar and Gupta et al [13]. All these studies assumed unidirectional

blood flow. The Herschel-Bulkley fluid is of general type and can be reduced to Newtonian,

Bingham plastic and Power-law fluid models, by selecting appropriate flow parameters, Biswas

and Laskar [4]. According to Vajravelu et al,[22], the Herschel-Bulkley constitutive equation

contains one more parameter than the Casson equation does, and thus more information about

the blood properties can be obtained when the Herschel-Bulkley equation is used than when the

Casson one is used.

Based on the reviewed literature, the unsteady, MHD flow of blood through a stenosed artery in

the presence of body acceleration, chemical reaction, with mass and heat transfer taking place,

and treating blood as Herschel-Bulkley fluid, has not been considered. Such flows have mani-

fested themselves in several situations like magnetic therapy in sports and in MRI testing. The
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current study therefore intends to fill that gap where, computational analysis of unsteady non –

Newtonian MHD blood flow involving heat and mass transfer in the presence of body acceler-

ation and chemical reaction is investigated.

2. FORMULATION OF THE PROBLEM

In the current study we consider that the flow is unsteady, laminar, two-dimensional, pulsatile,

incompressible, axisymmetric in the sense that there is no variation of the velocity with the angle

θ in the cylindrical polar coordinate system (r,θ ,z), with the z-axis coinciding with the axis of

symmetry of the flow. In that regard therefore, uθ = 0 and ∂u
∂θ

= 0. The blood is considered to be

a non - Newtonian fluid satisfying the Herschel-Bulkley model. Furthermore, body acceleration

(F(t)), and the strength of magnetic field (B0) act in the axial direction of the artery. Every cell

in the body can produce heat which needs to be spread around the body, and this is done by

the blood, which heats some organs and cools others by conduction and other processes. Thus,

the study takes into account for the chemical reaction such as exothermic reaction K for mass

transfer.

We define the geometry of stenosis as shown in equation (2.1)

(2.1) R(z) =


r0 −δ

(
1+ cos πz

2z0

)
−2z0 ≤ z ≤ 2z0

r0 otherwise

Under the mentioned assumptions, the governing blood flow equations, continuity, momen-

tum, energy and concentration equations in the cylindrical polar coordinate system are as written

in equations (2.2) to (2.6).
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FIGURE 1. Schematic flow diagram
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ρcp
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∂ r

+w
∂T
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)
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(

∂ 2T
∂ r2 +

1
r
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∂ r

+
∂ 2T
∂ z2

)
+ τrr

∂u
∂ r

+ τrz
∂w
∂ r

+ τrz
∂u
∂ z

+ τzz
∂w
∂ z

(2.5)

(
∂C
∂ t

+u
∂C
∂ r

+w
∂C
∂ z

)
= D f

(
∂ 2C
∂ r2 +

1
r

∂C
∂ r

+
∂ 2C
∂ z2

)
+

D f KT

T0

(
∂ 2T
∂ r2 +

1
r

∂T
∂ r

+
∂ 2T
∂ z2

)
−β (C−C0)(2.6)

In the above equations, u, w, T and C are respectively radial velocity, axial velocity, tem-

perature and concentration of the fluid. cp,k,KT ,D f ,andβ are, respectively the specific heat

capacity, thermal conductivity, the thermal-diffusion ratio, diffusion coefficient, and chemical

reaction parameter. Furthermore, τrr,andτzz represent the normal stress components. τrz is the



6 ANNORD MWAPINGA, EUNICE MUREITHI, JAMES MAKUNGU, VERDIANA MASANJA

shear stress component. The current study considers that blood obeys the Herschel-Bulkley

constitutive model. The stress tensor components are as given in equation (2.7)

τi j =

(
Kγ̇

n−1 +
τ0

γ̇

)
γ̇i j for τ ≥ τ0

γ̇ = 0 for τ < τ0

(2.7)

where,K is the consistency index, n is the flow behavior index and τ0 is the yield stress at

zero shear rate. From equation (2.7) there are special cases that can arise as we can be able to

see different types of behaviors of fluids. This is as shown in table 1.

Type of fluid model K n τ0

Herschel-Bulkley >0 0<n<∞ >0

Newtonian >0 1 0

Power law for n < 1 (shear-thinning) >0 0<n<1 0

Bingham >0 1 >0

Power law for n > 1 (shear-thickening) >0 1<n<∞ 0

TABLE 1. Different types of behaviors of fluids

In equation (2.7), γ̇ is the second invariant of the rate of strain which is as given in equation

(2.8).

(2.8) γ̇ =

√√√√2

[(
∂u
∂ r

)2

+
(u

r

)2
+

(
∂w
∂ z

)2
]
+

(
∂u
∂ z

+
∂w
∂ r

)2

Again, from equation (2.7) we can write the stresses

τrr = 2
(
Kγ̇

n−1 + τ0γ̇
−1)(∂u

∂ r

)
(2.9)

τzz = 2
(
Kγ̇

n−1 + τ0γ̇
−1)(∂w

∂ z

)
(2.10)

τrz = 2
(
Kγ̇

n−1 + τ0γ̇
−1)(∂u

∂ z
+

∂w
∂ r

)
(2.11)
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The pulsatile pressure gradient which is responsible for driving the blood’s flow in the axial

direction is given as −∂P
∂ z

= A0+A1 cos(ωt), t > 0 where, we define A0 and A1 as the steady

component of pressure gradient and amplitude of its pulsatile component respectively. ω =

2π fp, fp being the pulse frequency. We further define the body acceleration which acts in our

system as F(t) = ρa0 cos(ωbt +ψ) where, ρa0 is the amplitude of body acceleration, ψ is the

phase angle and ωb = 2π fb,with fb the body acceleration frequency.

2.1. Boundary and initial conditions. In this study we assume that initially as shown in

equation (2.12) that;

(2.12) w(r,z,0) = w0, T (r,z,0) = T0, C(r,z,0) =C0,

The boundary conditions for the developed model are as shown in equations (2.13) to (2.16).

(2.13) w(r,z, t) = 0, u(r,z, t) = 0 on r = R(z)

(2.14)
∂w(r,z, t)

∂ r
= 0, u(r,z, t) = 0 on r = 0

(2.15)
∂T (r,z, t)

∂ r
= 0, on r = 0 and T (r,z, t) = Tw on r = R(z)

(2.16)
∂C(r,z, t)

∂ r
= 0, on r = 0 and C(r,z, t) =Cw on r = R(z)

Where, Tw, Cw stands for arterial wall temperature and concentration on the arterial wall,

respectively.

3. NON - DIMENSIONALISATION OF THE MODEL VARIABLES

We now introduce the non-dimensional variables. We use wc as the average fluid’s velocity

which is therefore our characteristic velocity. We define r0 as the radius of normal artery. Our

dimensionless variables are shown in equations (3.1) to (3.3).
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η =
r
r0
,w∗ =

w
wc

,u∗ =
u

wc
, t∗ =

twc

r0
,z∗ =

z
r0
,P∗ =

P
ρw2

c
, τ

∗
i j =

τi j

ρw2
c
,(3.1)

A∗
0 =

A0r0

ρw2
c
,A∗

1 =
A1r0

ρw2
c
,ω∗ =

r0ω

wc
,ω∗

b =
r0ω

wc
, a∗0 =

r0a0

w2
c
, R∗(z∗) =

R(z)
r0

(3.2)

T ∗ =
T −T0

Tw −T0
, C∗ =

C−C0

Cw −C0
, β

∗ =
β r2

0
ν

, e =
δ

r0
.(3.3)

We now substitute equations (3.1)to (3.3) into equations (2.2)to (2.16) so that after dropping

all the asterisks, we to get equations (3.4)to (3.16).
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+
u
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= 0(3.4)
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+

1
η
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)
(3.5)
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+w
∂w
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(

∂τrz

∂η
+

1
η

τrz +
∂τzz

∂ z

)
+a0 cos(ωbt +ψ)− H2

a
ReG

w(3.6)

∂T
∂ t

+u
∂T
∂η

+w
∂T
∂ z

=
1
Pe

(
∂ 2T
∂η2 +

∂T
η∂η

+
∂ 2T
∂ z2

)
+Ec

[
τrr

∂u
∂η

+ τrz
∂w
∂η

+ τrz
∂u
∂ z

+ τzz
∂w
∂ z

]
(3.7)

∂C
∂ t

+u
∂C
∂η

+w
∂C
∂ z

=
1
Pe

(
∂ 2C
∂η2 +

1
η

∂C
∂η

+
∂ 2C
∂ z2

)
+Sr

(
∂ 2T
∂η2 +

1
η

∂T
∂η

+
∂ 2T
∂ z2

)
− βC

Re
(3.8)

Where, ReG =
rn

0ρ

Kwn−2
c

, Ha = B0

√
σrn+1

0

Kwn−1
c

, Pe =
ρwcr0cp

k
, Ec =

w2
c

cp(Tw −T0)
and

Sr =
D f KT (Tw −T0)

νTm(Cw −C0)
are the, generalized Reynold, Hartman, Peclet, Eckert, and Soret numbers

respectively.

τi j =

(
1

ReG
γ̇

n−1 + τ0γ̇
−1
)

γ̇i j

γ̇ = 0 for τ < τ0

(3.9)



NON-NEWTONIAN HEAT AND MASS TRANSFER ON MHD BLOOD FLOW 9

with second invariant of the rate of strain given in equation (3.10)

γ̇ =

√√√√2

[(
∂u
∂η

)2

+

(
u
η

)2

+

(
∂w
∂ z

)2
]
+

(
∂u
∂ z

+
∂w
∂η

)2

(3.10)

and

τrr = 2
(
ReGγ̇

n−1 + τ0γ̇
−1)( ∂u

∂η

)
(3.11)

τzz = 2
(
ReGγ̇

n−1 + τ0γ̇
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)
(3.12)

τrz = 2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂u

∂ z
+

∂w
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)
(3.13)

subject to the dimensionless initial and boundary conditions

w(η ,z,0) = w0, T (η ,z,0) = T0, C(η ,z,0) =C0(3.14)

w(η ,z, t) = u(η ,z, t) = 0,T (η ,z, t) = Tw,C(η ,z, t) =Cw on η = R(z)(3.15)

∂w(η ,z, t)
∂η

=
∂T (η ,z, t)

∂η
=

∂C(η ,z, t)
∂η

= u(η ,z, t) = 0, on η = 0(3.16)

4. SOLUTION OF THE PROBLEM

To obtain the numerical solution, we first of all, transform our cylindrical domain into the

rectangular domain by using the following radial transformation. We introduce new variable

ξ such that ξ =
η

R(z)
. Making use of this transformation, equations (3.4) to (3.16) becomes

equations (4.1) to (4.12).

1
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∂ 2C
∂ξ 2

]
− βC

Re

+Sr

[
3ξ

R2

(
dR
dz

)2
∂T
∂ξ

− 2ξ

R
dR
dz

∂ 2T
∂ξ ∂ z

− ξ

R
d2R
dz2

∂T
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2T
∂ξ 2

]
(4.5)

With,

γ̇ =

√√√√2

[(
∂u

R∂ξ

)2

+

(
u

Rξ

)2

+

(
∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)2
]
+

(
∂u
∂ z

− ξ

R
dR
dz

∂u
∂ξ

+
∂w

R∂ξ

)2

(4.6)

and

τξ ξ =2
(
ReGγ̇

n−1 + τ0γ̇
−1)( ∂u

R∂ξ

)
(4.7)

τzz =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂w

∂ z
− ξ

R
dR
dz

∂w
∂ξ

)
(4.8)

τξ z =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂u

∂ z
− ξ

R
dR
dz

∂u
∂ξ

+
∂w
∂η

)
(4.9)

subect to conditions in equations (4.10)to (4.12).

w(ξ ,z,0) = w0, T (ξ ,z,0) = T0, C(ξ ,z,0) =C0(4.10)

w(ξ ,z, t) = u(ξ ,z, t) = 0, T (ξ ,z, t) = Tw,C(ξ ,z, t) =Cw on ξ = 1(4.11)

∂w(ξ ,z, t)
∂ξ

=
∂T (ξ ,z, t)

∂ξ
=

∂C(ξ ,z, t)
∂ξ

= u(ξ ,z, t) = 0, on ξ = 0(4.12)

We use the initial velocity w0, which is obtained as the solution at steady state in the absence

of body acceleration and magnetic fields. Applying the radial transformation, the initial velocity

is as given in equation (4.13).

(4.13) w0 =

(
A0 +A1

4

)
(1− (Hξ )2)
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4.1. The Radial Momentum. We are now going to obtain the radial velocity. We use the

continuity equation (4.1) to get the radial velocity u(ξ ,z, t). We multiply equation (4.1) by ξ R

and then integrate it with respect to ξ to obtain equation (4.14).

(4.14)
∫

ξ
∂u
∂ξ

dξ +
∫

udξ +
∫

ξ R
∂w
∂ z

dξ +
∫

ξ
2 dR

dz
∂w
∂ξ

dξ

Re-arranging equation (4.14) we get equation (4.15).

(4.15)
∫

ξ
∂u
∂ξ

dξ +
∫

udξ =
∫

ξ
2 dR

dz
∂w
∂ξ

dξ −
∫

ξ R
∂w
∂ z

dξ

Applying integration by parts and simplifying the equation (4.15) we have equation (4.16).

(4.16) u =
dR
dz

ξ w− 2
ξ

dR
dz

∫
wξ dξ − R

ξ

∫
ξ

∂w
∂ z

dξ

Making use of the boundary conditions in equations (4.11) and (4.12) and re-arranging we have

(4.17)

(4.17)
2
ξ

dR
dz

∫ 1

0
wξ dξ =−R

ξ

∫ 1

0
ξ

∂w
∂ z

dξ

multiplying by ξ and dividing by R we get (4.18)

(4.18)
2
R

dR
dz

∫ 1

0
wξ dξ =−

∫ 1

0
ξ

∂w
∂ z

dξ

making comparison of the integrals and the integrands of equation (4.18), we easily get equation

(4.19)

(4.19)
∂w
∂ z

=− 2
R

dR
dz

w

We now substitute equation (4.19) into equation (4.16). Such substitution gives equation

(4.20)

(4.20) u =
dR
dz

ξ w− 2
ξ

dR
dz

∫
wξ dξ − R

ξ

∫
ξ

(
− 2

R
dR
dz

w
)

dξ
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which simplifies to equation (4.21)

(4.21) u =

(
ξ

dR
dz

w
)

Equation (4.21) above, is the radial velocity component which needs to be calculated as well.

However, we substitute this radial velocity into our axial momentum, energy and concentration

equations. Also, using the product rule we find the derivatives,
∂u
∂ξ

=
dR
dz

(
ξ

∂w
∂ξ

+w
)

and

∂u
∂ z

= ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)
. This process therefore eliminates u,as we write radial velocity u in

terms of axial velocity w. We now have equations (4.22)to (4.28);

∂w
∂ t

= (A0 +A1 cos(ωt))−
(

ξ
dR
dz

w
)

∂w
R∂ξ

−w
(

∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)
+

1
R

∂τξ z

∂ξ
+

τξ z

Rξ
+

∂τzz

∂ z

− ξ

R
dR
dz

∂τzz

∂ξ
+a0 cos(ωbt +ψ)− H2

a
ReG

w

(4.22)

∂T
∂ t

=−
(

ξ

R
dR
dz

w
)

∂T
∂ξ

−w
(

∂T
∂ z

− ξ

R
dR
dz

∂T
∂ξ

)
+

1
Pe

(
∂ 2T

R2∂ξ 2 +
1

R2ξ

∂T
∂ξ

+
∂ 2T
∂ z2

)
+

1
Pe

[
3ξ

R2

(
dR
dz

)2
∂T
∂ξ

− 2ξ

R
dR
dz

∂ 2T
∂ξ ∂ z

− ξ

R
d2R
dz2

∂T
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2T
∂ξ 2

]

+Ec

[
τξ ξ

R
dR
dz

(
ξ

∂w
∂ξ

+w
)
+

τξ z

R
∂w
∂ξ

]
+Ecτξ z

[
ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)]
(4.23)

−Ecτξ z

[
ξ

R

(
dR
dz

)2(
ξ

∂w
∂ξ

+w
)]

+Ecτξ z

(
∂w
∂ z

− ξ

R
dR
dz

∂w
∂ξ

)
∂C
∂ t

=−
(

ξ

R
dR
dz

w
)

∂C
∂ξ

−w
(

∂C
∂ z

− ξ

R
dR
dz

∂C
∂ξ

)
+

1
Pe

(
∂ 2C

R2∂ξ 2 +
1

R2ξ

∂C
∂ξ

+
∂ 2C
∂ z2

)
+

1
Pe

[
3ξ

R2

(
dR
dz

)2
∂C
∂ξ

− 2ξ

R
dR
dz

∂ 2C
∂ξ ∂ z

− ξ

R
d2R
dz2

∂C
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2C
∂ξ 2

]

+Sr

[
3ξ

R2

(
dR
dz

)2
∂T
∂ξ

− 2ξ

R
dR
dz

∂ 2T
∂ξ ∂ z

− ξ

R
d2R
dz2

∂T
∂ξ

+2
(

ξ

R
dR
dz

)2
∂ 2T
∂ξ 2

]

+Sr

(
∂ 2T

R2∂ξ 2 +
1

R2ξ

∂T
∂ξ

+
∂ 2T
∂ z2

)
− βC

Re
(4.24)
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With,

γ̇ =

√√√√√√√√√
2

[(
dR
Rdz

(
ξ

∂w
∂ξ

+w
))2

+

(
dR
Rdz

w
)2

+

(
∂w
dz

− ξ

R
dR
dz

∂w
∂ξ

)2
]

+

(
ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)
− ξ

R
dR
dz

dR
dz

(
ξ

∂w
∂ξ

+w
)
+

∂w
R∂ξ

)2(4.25)

and

τξ ξ =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(dR

dz

(
ξ

∂w
∂ξ

+w
))

(4.26)

τzz =2
(
ReGγ̇

n−1 + τ0γ̇
−1)(∂w

∂ z
− ξ

R
dR
dz

∂w
∂ξ

)
(4.27)

τξ z =2
(
ReGγ̇

n−1 + τ0γ̇
−1)[

ξ

(
dR
dz

∂w
∂ z

+w
d2R
dz2

)
− ξ

R

(
dR
dz

)2(
ξ

∂w
∂ξ

+w
)
+

∂w
R∂ξ

]
(4.28)

4.2. Numerical Procedure. In this sub-section, we move from continuous model equations to

discrete model equations through discretization. The finite difference schemes for discretization

of our model equations are based on the forward difference approximations for time derivatives

and central for all spatial derivatives, using the explicit finite difference method. This method

was also used by [10] and [11]. The approximate derivatives are as given in equations (4.29)

and (4.30).

∂w
∂ξ

=
wk

i, j+1 −wk
i, j−1

2∆ξ
,
∂ 2w
∂ξ 2 =

wk
i, j+1 −2wk

i, j +wk
i, j−1

(∆ξ )2 ,
∂w
∂ t

=
wk+1

i, j −wk
i, j

∆t
(4.29)

The approximate derivatives for temperature and concentration are obtained in a similar way as

in equation (4.29)

Similarly, the approximations of derivatives of τξ z,andτzz are as given in equation (4.30)

∂τξ z

∂ξ
=

(
τξ z
)k

i, j+1 −
(
τξ z
)k

i, j−1

2∆ξ
,
∂τzz

∂ξ
=

(τzz)
k
i, j+1 − (τzz)

k
i, j−1

2∆ξ
,
∂τzz

∂ z
=

(τzz)
k
i+1, j − (τzz)

k
i−1, j

2∆z

(4.30)

We here now define ξ j = ( j−1)∆ξ ; j = 1,2,3...N +1 where, ξN+1 = 1,zi = ( j−1)∆z; i =

1,2,3...M+1 andtk = (k−1)∆t;k = 1,2,3...

We now substitute finite difference schemes into equations (4.22)− (4.28) and we make

subject w,T, and C. We also include the discretization of radial velocity from equation
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(4.21). We therefore have equations (4.31)-(4.40).

uk+1
i, j = ξ j

(
dR
dz

)
i
wk

i, j(4.31)

wk+1
i, j = wk

i, j +∆t
(

A0 +A1 cos(ωtk)+a0 cos(ωbtk +ψ)− H2
a

ReG
wk

i, j

)

−∆t
(

ξ j

Ri

(
dR
dz

)
i
wk

i, j

)(wk
i, j+1 −wk

i, j−1

2∆ξ

)
−∆twk

i, j

(
wk

i+1, j −wk
i−1, j

2∆z

)

+∆twk
i, j

ξ j

Ri

(
dR
dz

)
i

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)
−

ξ j

Ri

(
dR
dz

)
i

(
(τzz)

k
i, j+1 − (τzz)

k
i, j−1

2∆ξ

)

+∆t

 1
Ri

(τξ z
)k

i, j+1 −
(
τξ z
)k

i, j−1

2∆ξ

+

(
τξ z
)k

i, j

Riξ j
+

(
(τzz)

k
i+1, j − (τzz)

k
i−1, j

2∆z

)(4.32)

T k+1
i, j = T k

i, j −∆t

[
ξ j

Ri

(
dR
dz

)
i
(wk

i, j)

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)]
−∆twk

i, j

(
T k

i+1, j −T k
i−1, j

2∆z

)

+∆t

[
wk

i, j
ξ j

Ri

(
dR
dz

)
i

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)]
+

∆t
Pe

(
T k

i, j+1 −2T k
i, j +T k

i, j−1

R2
i (∆ξ )2

)

+
∆t
Pe

[
T k

i, j+1 −T k
i, j−1

2ξ jR2
i ∆ξ

+
T k

i+1, j −2T k
i, j +T k

i−1, j

(∆z)2

]
+

∆t
Pe

[
3ξ j

R2
i

(
dR
dz

)2

i

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)]

−
2ξ j(∆t)

PeRi

(
dR
dz

)
i

(
T k

i+1, j+1 −T k
i−1, j+1 −T k

i+1, j−1 +T k
i−1, j−1

4∆ξ ∆z

)

− ∆t
Pe

[
ξ j

Ri

(
d2R
dz2

)
i

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)]
+

2∆t
Pe

(
ξ j

Ri

dR
dz

)2

i

(
T k

i, j+1 −2T k
i, j +T k

i, j−1

(∆ξ )2

)

+∆tEc

[
(τξ ξ )

k
i, j

Ri

(
dR
dz

)
i

(
ξ j

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)
+wk

i, j

)
+

(τξ z)
k
i, j

Ri

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)]

+∆tEc(τξ z)
k
i, j

[
ξ j

((
dR
dz

)
i

(
wk

i+1, j −wk
i−1, j

2∆z

)
+wk

i, j

(
d2R
dz2

)
i

)]

−∆tEc(τξ z)
k
i, j

[
ξ j

Ri

(
dR
dz

)2

i

(
ξ j

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)
+wk

i, j

)]
+∆tEc(τξ z)

k
i, j

(
wk

i+1, j −wk
i−1, j

2∆z

)

−∆tEc(τξ z)
k
i, j

ξ j

Ri

(
dR
dz

)
i

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)
(4.33)
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Ck+1
i, j =Ck

i, j −∆t

[
ξ j

Ri

(
dR
dz

)
i

(
wk

i, j

)(Ck
i, j+1 −Ck

i, j−1

2∆ξ

)]

−∆t

[
wk

i, j

(
Ck

i+1, j −Ck
i−1, j

2∆z
−

ξ j

Ri

(
dR
dz

)
i

(
Ck

i, j+1 −Ck
i, j−1

2∆ξ

))]

+
∆t
Pe

[
Ck

i, j+1 −2Ck
i, j +Ck

i, j−1

R2
i (∆ξ )2 +

Ck
i, j+1 −Ck

i, j−1

2ξ jR2
i ∆ξ

+
Ck

i+1, j −2Ck
i, j +Ck

i−1, j

(∆z)2

]

+
∆t

ScRe

[
3ξ j

R2
i

(
dR
dz

)2

i

(
Ck

i, j+1 −Ck
i, j−1

2∆ξ

)](4.34)

−
2ξ j(∆t)

PeRi

(
dR
dz

)
i

(
Ck

i+1, j+1 −Ck
i−1, j+1 −Ck

i+1, j−1 +Ck
i−1, j−1

4∆ξ ∆z

)

− ∆t
Pe

[
ξ j

Ri

(
d2R
dz2

)
i

(
Ck

i, j+1 −Ck
i, j−1

2∆ξ

)]
+

2∆t
Pe

(
ξ j

Ri

dR
dz

)2

i

(
Ck

i, j+1 −2Ck
i, j +Ck

i, j−1

(∆ξ )2

)

+Sr∆t
3ξ j

R2
i

(
dR
dz

)2

i

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)
−

2ξ j∆t
Ri

(
dR
dz

)
i

(
T k

i+1, j+1 −T k
i−1, j+1 −T k

i+1, j−1 +T k
i−1, j−1

4∆ξ ∆z

)

−Sr∆t

[
ξ j

Ri

(
d2R
dz2

)
i

(
T k

i, j+1 −T k
i, j−1

2∆ξ

)]
+2∆tSr

(
ξ j

Ri

)2(dR
dz

)2

i

(
T k

i, j+1 −2T k
i, j +T k

i, j−1

(∆ξ )2

)

With,

γ̇2 = 2

((dR
dz

)
i

(
ξ j

(
wk

i, j+1 −wk
i, j−1

2∆ξ
+wk

i, j

)))2

+

((
1
Ri

)(
dR
dz

)
i
wk

i, j

)2
(4.35)

+2

(
wk

i+1, j −wk
i−1, j

2∆z
−

ξ j

Ri

(
dR
dz

)
i

(
wk

i, j+1 −wk
i, j−1

2∆ξ

))2

(4.36)

+



[
ξ j

(
dR
dz

)
i

(
wk

i+1, j −wk
i−1, j

2∆z

)
+wk

i, j

(
d2R
dz2

)
i

]

−

[
ξ j

R

(
dR
dz

)2

i

(
ξ j

wk
i, j+1 −wk

i, j−1

2∆ξ
+wk

i, j

)
+

1
Ri

wk
i, j+1 −wk

i, j−1

2∆ξ

]


2

(4.37)

and

(
τξ ξ

)k
i, j =2

(
ReGγ̇

n−1 + τ0γ̇
−1)((dR

dz

)
i

(
ξ j

wk
i, j+1 −wk

i, j−1

2∆ξ
+wk

i, j

))
(4.38)
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(
τξ z
)k

i, j =2
(
ReGγ̇

n−1 + τ0γ̇
−1)


ξ j

((
dR
dz

)
i

(
wk

i+1, j −wk
i−1, j

2∆z

))
+wk

i, j

(
d2R
dz2

)
i
−

ξ j

Ri

(
dR
dz

)2

i

(
ξ j

wk
i, j+1 −wk

i, j−1

2∆ξ
+wk

i, j

)
+

wk
i, j+1 −wk

i, j−1

2Ri∆ξ



(4.39)

(τzz)
k
i, j =2

(
ReGγ̇

n−1 + τ0γ̇
−1)[wk

i+1, j −wk
i−1, j

2∆z
−

ξ j

Ri

(
dR
dz

)
i

(
wk

i, j+1 −wk
i, j−1

2∆ξ

)](4.40)

The conditions in equations (4.10) to (4.12) are discretized as shown in equations (4.41) and

(4.42)

w1
i, j = w0, T 1

i, j = T0, C1
i, j =C0; wk

i,2 = wk
i,1, T k

i,2 = T k
i,1, Ck

i,2 =Ck
i,1(4.41)

wk
i,N+1 = 0, uk

i,N+1 = 0, T k
i,N+1 = Tw, Ck

i,N+1 =Cw,
(
τξ z
)k

i,1 = 0.(4.42)

5. SIMULATION AND DISCUSSION

In this section, we display and discuss the numerical simulation of the discretized equa-

tions (4.31) to (4.40). The simulation was done using MATLAB software using the following

parameter values. A1 = 0.8, A0 = 0.5, ωp = 10, ωb = 10, a0 = 1, Ha = 1, ψ =

0.3, ReG = 1, e= 0.1, z0 = 1, ∆t = 0.0002, ∆z= 0.08, ∆ξ = 0.05, τ0 = 0.2, Ec =

1, Pe = 1, β = 0.1, Sr = 0.002 and n = 0.95. The parameters were varied to deter-

mine their effect.
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Figures 2-7 give the results for shear stresses. From the graphs, it is seen that, the magnitude

of shear stress increases as the power law index increases. This is shown in figure 2. Opposite

behavior is shown in figure 3, where the magnitude of shear stress declines towards positive

values as generalized Reynold’s number increases. This implies that as the inertial forces in-

creases, the magnitude of shear stress decreases. Figure 4 illustrates the effect of yield stress on

shear stress. It is observed that as the yield stress increases, the shear stress increases in mag-

nitude. This therefore implies that increasing certain the amount of stress required for blood

to flow, increases the shear stress. Comparison of shear stress for different fluid behaviors for

Herschel-Bulkley, Newtonian, power law and Bingham is illustrated in figure 5. From figure 5

we observe that the power law fluid when n > 1 has higher magnitude of shear stress compared

to power law fluid for n < 1. The same has been observed for Herschel-Bulkley fluid where

the higher the power law index the higher the magnitude of shear stress. It is interesting to

note further that when power law index n > 1 the shear stress exhibits more difference than

when n < 1 where the difference is small. This tells us that, it deviates more when n > 1 than

when n < 1. Figure 6 shows the effect of body acceleration on shear stress. It is seen that as

body acceleration increases, the shear stress increases in magnitude. The opposite trend is ob-

served in figure 7 where, the increase in Hartman number diminishes the magnitude of the shear

stress. Hartman number is a ratio of electromagnetic forces to viscous forces. Increasing the

Hartman number implies that the viscous forces become lower than the electromagnetic forces.

Physically, the Hartman number enhances the Lorentz force which opposes the blood’s motion.
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The results of radial velocity are presented in figures 8-11. From these figures, it is noted that

the radial velocities are negative in sign. The radial velocity is shown to be zero on the axis of

symmetry as it was assumed that no radial flow takes place along the axis of the symmetry. The

velocity is also zero on the arterial wall (ξ = 1) to satisfy the no slip condition. In figure 8 we

observe that when the power law index n is greater than 1, the radial velocity exhibits smaller

magnitude values than when n < 1. From the same figure 8, we observe that radial velocity for

Herschel-Bulkley fluid when n < 1 has higher values in magnitude as compared to power law,

Bingham, Newtonian and Herschel-Bulkley for n > 1. It is also observed that radial velocity

diminishes in magnitude as Hartman number and power law index increase as shown in figures

9 and 10 respectively. This finding is in good agreement with [10]. On the other hand, it is

further shown that increase in body acceleration increases the magnitude of radial velocity.

Like in radial velocity, it is also illustrated in axial velocity that body acceleration enhances axial

velocity while the Hartman number diminishes the axial velocity due to the Lorentz force which

tend to oppose fluid’s motion. Furthermore, the axial velocity is shown to increase with increase

in steady state part of pressure gradient and the amplitude of pressure oscillation responsible

for enhancing the systolic and diastolic pressures. This is as illustrated in figures 12-15 below.
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Temperature profiles against radial distance are displayed in figures 16-19 below. Figure 16

shows the effect of Peclet number on temperature profile. Peclet number is the ratio of the heat

transferred by convection to the heat transferred by conduction. It is observed that, increase

in Peclet number diminishes temperature profile. This means that heat transfer by motion of

blood increases than heat transfer by conduction. In figure 17 we observe as expected that,

increase in body acceleration raises temperature profile. This implies that body exercise give

rise to the core body temperature. Eckert number is defined as the ratio of the advective mass

transfer to the heat dissipation potential. It offers a measure of the kinetic energy of the flow

relative to the enthalpy difference across the thermal boundary layer. It is observed in figure

18 that the increase in Eckert number increases the temperature profile, physically implying

that as Eckert number increases, the advective mass transfer dominates the heat dissipation

potential and therefore the temperature increases. Figure 19 reveals that as the Hartman number

increases, the temperature profile decreases.
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The effect of chemical reaction on concentration is observed in figure 20. From the figure,

we observe that, the concentration profile decreases with increasing chemical reaction param-

eter, which implies that the chemical reaction parameter acts as a destructive agent. On the

other hand, figure 21 shows the effect of increasing the Soret number on concentration pro-

file. Soret number is the ratio of temperature difference to the concentration. As expected, the

concentration profile increases with increasing the Soret number.

 

FIGURE 20

 

FIGURE 21

6. CONCLUSION

The current study presents numerical results of an unsteady heat and mass transfer blood flow

through a stenosed artery in the presence of magnetic field, body acceleration and chemical re-

action. Blood is considered to be non-Newtonian of Herschel-Bulkley type. It is established that

the presence of magnetic field diminishes the blood’s velocity; the body acceleration and Eckert

numbers enhance temperature profile; while the concentration profile is reduced by increased

chemical reaction. The study strongly suggests that for people with stenosed arteries, physical

exercises in hot environment should be done with care. Further, the study has found out that the

Herschel-Bulkley fluid experience higher velocity than the power law (for both when n < 1 and

when n > 1), Bingham and Newtonian fluids. For non-Newtonian models, Herschel-Bulkley

when n < 1 is also observed to be suitable to blood flow than the Bingham and the power law.

Further more, shear stress is observed to deviate more when n> 1 than when n< 1. Considering

the difference in shear stress and velocity profiles between the Newtonian and Herschel-Bulkley

fluids, it is suggested that it is better to model blood flow using Herschel-Bulkley constitutive

model than Newtonian.
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OUTPUT 3:  POSTER 

COMPUTATIONAL ANALYSIS OF MHD BLOOD FLOW THROUGH A STENOSED 

ARTERY IN THE PRESENCE OF BODY ACCELERATION AND CHEMICAL REACTION 

Introduction 
In day-to-day activities, the human body is 

subjected to different situations that disturb the 

normal flow of blood. 

The presence of stenosis in arteries has attracted 

many mathematicians to model blood flow. The 

current study is motivated by the need to continue 

investigating the blood flow in stenosed arteries. 

In particular, the study focus is to model blood 

flow through a stenosed artery subject to different 

situations that disturb the normal flow of blood. 

Magnetic fields and chemical reactions are 

considered in the current work. Both, Newtonian 

and non-Newtonian blood are studied and 

simulations put in place. For the non-Newtonian 

blood, the Herschel-Bulkley constitutive model 
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Conclusion 
Magnetic therapy in sports is very important, it 

may offer multiple benefits such as reducing pain 

and regulating blood flow which has been 

increased by body accelerations. 

Results 
It is found that body acceleration increases the blood’s velocity, magnetic fields diminish blood’s 

velocity, chemical reaction reduces the mass concentration. The temperature profile rises by the 

increase of body acceleration and the Eckert number, while it diminished with the increase of the Peclet 

number. It was further observed that the shear stress deviated more when the power law index, 𝑛 >

 1than when 𝑛 <  1. 

Recommendations 
MRI scanning in hospitals should be done with care, taking into account that the blood velocity 

of a patient being subjected to the MRI machine decreases. It is better to set the value of power 

law index n to be greater than 1 when modeling blood flow using the non-Newtonian models. 

The current work can be extended by considering multiple stenoses in arteries. One can also can 

also extend the current work by considering the elasticity of the arterial wall. 


