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RESEARCH ARTICLE

Segmentation of Tuta Absoluta’s Damage on Tomato 
Plants: A Computer Vision Approach
Loyani K. Loyani a, Karen Bradshawb, and Dina Machuve a

aSchool of Computational and Communication Science and Engineering, The Nelson Mandela Institution 
of Science and Technology, Arusha, Tanzania; bDepartment of Computer Science, Rhodes University, 
Eastern Cape, South Africa

ABSTRACT
Tuta absoluta is a major threat to tomato production, causing 
losses ranging from 80% to 100% when not properly managed. 
Early detection of T. absoluta’s effects on tomato plants is 
important in controlling and preventing severe pest damage 
on tomatoes. In this study, we propose semantic and instance 
segmentation models based on U-Net and Mask RCNN, deep 
Convolutional Neural Networks (CNN) to segment the effects of 
T. absoluta on tomato leaf images at pixel level using field data. 
The results show that Mask RCNN achieved a mean Average 
Precision of 85.67%, while the U-Net model achieved an 
Intersection over Union of 78.60% and Dice coefficient of 
82.86%. Both models can precisely generate segmentations 
indicating the exact spots/areas infested by T. absoluta in 
tomato leaves. The model will help farmers and extension offi-
cers make informed decisions to improve tomato productivity 
and rescue farmers from annual losses.

ARTICLE HISTORY 
Received 27 April 2021  
Accepted 20 August 2021  

Introduction

Tomato (Solanum Lycopersicum L.) is one of the most grown and extensively 
consumed crops worldwide. Globally, about 160 million tonnes of tomatoes 
are produced each year (FAOSTAT 2019). Approximately a quarter of this is 
grown for the processing industry, making tomato the world’s leading proces-
sing vegetable (Tomato News 2020). Owing to this, tomatoes can increase 
countries’ foreign exports and boost their GDP. Small-scale farmers and rural 
families often rely on tomatoes for their livelihoods; therefore, the crop 
contributes significantly to poverty reduction (Mutayoba and Ngaruko 2018).

Currently, the invasion of an exotic and rapidly spreading pest known as 
tomato leaf miner (Tuta absoluta) threatens tomato production in the world 
(Zekeya et al. 2016). It causes heavy losses in tomato production ranging from 
80% to 100% (Maneno et al. 2016). The pest originated from South America 
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and spread to other parts of the world (Never et al. 2017). The pest first 
invaded Africa in 2008 and has since spread to 41 of the 54 countries in 
Africa with huge economic losses (Guimapi et al. 2016).

Tuta absoluta can yield up to 12 generations per year and each mature 
female adult can produce between 250 and 300 eggs in its lifetime (Doğanlar 
and Yİğİt 2011). It has four development stages (egg, larva, pupa, adult) in its 
life cycle, exhibited for about 26–28 days (Desneux et al. 2010). All four 
development stages are harmful and can attack different parts of the host 
plant (Guimapi et al. 2016). The larva is the most dangerous stage that 
usually affects plant leaves but can also be found in fruits and stems where 
they feed and develop, creating conspicuous mines and galleries 
(Cuthbertson et al. 2013). Figure 1 shows the damage caused by 
T. absoluta on tomatoes.

Over the years, farmers have been using different methods in efforts to 
control the pest unsuccessfully. These include the use of pheromone traps and 
natural enemies to monitor the population, cultivation of resistant tomato 
varieties, and incessant spraying of chemical pesticides, which is still the main 
control method (Guedes and Picanço 2012). The excessive use of these che-
micals is not only uneconomical but also has harmful effects on non-targeted 
organisms and can also lead to the development of pest resistance and 
irreparable damage to the environment (Materu et al. 2016). Although farmers 
and extension officers struggle with different methods to control the pest, there 
has not yet been an effective mechanism to exploit the extent to which 
T. absoluta infected tomato leaves at early stages before causing significant 
yield loss to farmers.

Inspired by the advancement and promising results of Deep Learning 
techniques in image-based plant pest and disease diagnosis, this research 
proposes a model based on Convolutional Neural Networks (CNNs) for 
segmenting T. absoluta’s damage to tomato leaf images at pixel level. The 
exact location of tuta mines in plants can be obtained. This will enable 

Figure 1. Tuta absoluta’s life cycle and its damage to tomatoes. (a) Four stages of T. absoluta’s life 
cycle. (b) Tomato leaf with T. absoluta mines. (c) Severe damage on tomato field. (d) Damaged 
tomato fruits in the field. (e) Damaged tomato fruit on the market.
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farmers to make informed decisions in controlling the pest, improving 
tomato productivity, and rescuing them from the losses they incur 
annually.

Related works

Computer Vision using Deep Learning methods such as CNNs have presented 
promising and impressive results in diagnosing a diverse range of plant 
diseases and pests (Singh et al. 2018). Brahimi, Boukhalfa, and Moussaoui 
(2017) presented deep CNN models based on AlexNet and GoogleNet trained 
using a dataset of 14,828 images to automatically determine 9 diseases in 
tomatoes. The model attained an accuracy of 99.185%. Also, Mkonyi et al. 
(2020) developed a model based on VGG16, VGG19, and ResNet50 architec-
tures to identify T. absoluta in tomato plants using a dataset of 2145 tomato 
leaf images. VGG16 achieved a high accuracy of 91.9%. Nevertheless, there is 
still a need to detect the exact location and shape of T. absoluta’s damage.

Similarly, researchers such as Ferentinos (2018), Zhang et al. (2018), 
Fuentes et al. (2017), and Sladojevic et al. (2016) proposed deep CNN models 
for detecting different diseases and pests in various plants like banana, tomato, 
pear, cherry, peach, apple, and grapevine using leaf image datasets.

Although the problem of plant leaf disease detection has been addressed in 
several studies, only a few of these have focused on developing systems capable 
of segmenting infected areas. K. Lin et al. (2019) proposed a segmentation 
model based on U-Net architecture to segment powdery mildew on cucumber, 
a common fungal disease that mainly infects plant leaves. A dataset of 50 
cucumber leaf images captured in a cucumber fruit leaf phenotype automated 
analysis platform was used in their experiment. The model performed well 
with an averaged accuracy of 96.08% on test data, outperforming conventional 
Machine Learning methods, such as K-means and Random Forest.

Q. Wang et al. (2019) presented a tomato disease detection model based on 
Faster R-CNN and Mask RCNN. The model detects and segments the loca-
tions and shapes of the infected area on tomato fruits. In their experiment, 
a dataset of 286 tomato fruit images obtained from the internet was used. The 
models achieved mean Average Precision (mAP) of 88.53% and 99.64% for 
Faster R-CNN and Mask RCNN, respectively.

Also, Pérez-borrero et al. (2020) proposed a deep learning method based on 
Mask RCNN architecture for instance segmentation of strawberries. In their 
experiment, a dataset of 3100 strawberry images along with their annotations 
was used. They modified the Mask RCNN structure and proposed a new 
performance metric, the Instance Intersection Over Union (I2oU) to assess 
the instance segmentation. Their model achieved a mAP of 43.85% compared 
to 45.36% of the original Mask RCNN and the mean I2oU of 87.27% compared 
to 87.70% of the original Mask RCNN.
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Tang, Wang, and Chen (2020) developed a dilated encoder network (DE- 
Net) model based on U-Net architecture for automatic butterfly ecological 
image segmentation. In their proposed method, the U-Net architecture was 
modified by replacing the last two pooling layers, the last three convolution 
layers and all fully connected layers with the hybrid cascade dilated convolu-
tion (HCDC) to capture deeper semantic features. A public dataset of 832 
butterfly ecological images was used and the DE-Net model achieved an 
accuracy of 98.67%.

The study by Liu, Hu, and Li (2020) proposed a method to segment overlapped 
poplar seedling leaves under heavy metal stress by combining Mask RCNN with 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) cluster-
ing algorithm. The Mask RCNN was used to segment leaves and then DBSCAN 
was used to cluster single leaves from detected overlapping leaves. A dataset of 
2000 RGB-D images with their corresponding annotations was used to complete 
the task. In their experiment, the model obtained a pixel-wise Intersection over 
Union (p-IoU) and mean accuracy of 0.874 and 0.888, respectively.

Generally, these studies have achieved excellent results in image-based plant 
diagnosis using CNNs. However, none addresses the segmentation of 
T. absoluta’s effects on tomato plants. Some studies also used a limited dataset 
size and images from online repositories that may not reflect the actual field 
situation. Therefore, this study proposes a deep learning-based approach for 
segmenting T. absoluta at the early stages of the tomato plant’s growth using 
images collected from the field to determine its damage.

Material and methods

The dataset

This study was conducted in Tanzania with two in-house experiments that were 
set up in Arusha and Morogoro regions. The two regions are the major areas on 
tomato production and highly prone to T. absoluta infestation. In each region, 
we constructed a net house and then planted healthy tomato seedlings (free 
from other diseases and pests) as shown in Figure 2. We inoculated T. absoluta 
on randomly selected tomato plants on the second day after transplanting by 

Figure 2. Experimental setup in a field. (a) A nethouse. (b) Researcher and an agricultural expert 
performing infestation in Arusha and Morogoro fields.
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placing 2 to 8 larvae on top of each plant’s leaves. The pest immediately started 
to mine the leaves. The inhouse experiments prevented any other pests into the 
net house and T. absoluta from getting out of the experimental area, hence 
maintaining a controlled environment for the study.

We collected tomato plant images using a camera. The data collection work 
took two weeks after infestation. The two-week period reflects the plant’s early 
growth stages. A dataset of 5235 tomato images was collected and manually 
labeled with the help of an agricultural expert. This includes 2319 and 2916 
images collected in Arusha and Morogoro, respectively, as shown in Table 1. 
Figure 3 shows sample images from our dataset demonstrating the develop-
ment of “tuta” mines on different days.

Table 1. Dataset distribution.
Region Healthy Infested with T. absoluta Total Number of Images

Arusha 1107 1212 2319
Morogoro 1870 1046 2916
Total 2977 2258 5235

Figure 3. Some images from our dataset showing the development of tuta mines on different 
days.
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Research framework

Figure 4 shows the research framework of our study and gives a clear under-
standing of how the research was undertaken from data collection to model 
development and validation until the delivery of an optimized model. Two deep 
meta-architectures, namely U-Net and Mask RCNN, were used to develop 
a semantic and an instance segmentation model, respectively. The segmentation 
model can determine the exact spot in the plant infected with T. absoluta. The 
model’s performance was then evaluated using different evaluation metrics and 
the model’s parameters are tuned to get an optimized model.

Image pre-processing

In this work, the image pre-processing involved image labeling, annotation, 
resizing and augmentation.

Image annotation
We selected 1212 and 1240 images of infested plants dataset to develop 
U-Net and Mask RCNN models respectively. For each image, a ground 
truth labeled image was manually generated containing the individual 
segmentation of all the T. absoluta’s mines present in the image. 
Labelme (Russell et al. 2008) and VGG Image Annotator (Dutta and 
Zisserman 2019), open-source tools were used to annotate images for 
semantic and instance segmentation tasks, respectively. The specific opera-
tion was to define the continuous contour of all T. absoluta’s mines by 
marking the area and shape of the infested spot with irregular polygons 
and then labeling the spot with “tuta.” Each image contained at least one 
tuta mask indicating the presence of the T. absoluta’s mine. The obtained 
annotations were saved in VOC (Everingham et al. 2010) and COCO (T. 
Lin, Zitnick, and Doll 2014) formats with their corresponding images for 
semantic and instance segmentation tasks, respectively. We split the 

Figure 4. Research conceptual framework.
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annotated dataset into training and test sets in a ratio of 80:20, respec-
tively, as shown in Table 2. The training set was used to train the model, 
while the test set was used to evaluate the model’s performance.

Resizing the images
A large input image requires the neural network to learn from many pixels 
adding up the training time and other computational costs. Therefore, many 
CNN architectures require that the input images are of the same size. The 
images in our dataset varied in size, so we used a standard resize function in 
Keras to resize all images to 512 × 512 pixels.

Augmentation
Deep neural networks are data-hungry. They need a large amount of training 
data to achieve good performance and avoid overfitting (Lawrence and Giles 
2000). Unfortunately, we were not able to collect enough data to sufficiently 
train a CNN model. This is because the experiment was designed to collect 
data for 14 days after T. absoluta infestation to analyze the effects of the pest in 
the early growth stages of the tomato plants. Data augmentation is a solution 
to the problem of limited data. Image data augmentation encompasses a suite 
of techniques that can be used to artificially expand the size and enhance the 
quality of the training dataset by creating modified versions of the original 
images in the dataset (Shorten and Khoshgoftaar 2019). Specifically, the 
following set of augmentation was applied to the training set only with data 
values in a range of (0, 1).

- Horizontal flip. All images were horizontally flipped with a probability 
of 0.5.

- Vertical flip. All images were vertically flipped with a probability of 0.2.
-Random Crop. A random crop was applied on images with the interval of 

(0, 0.1).
- Gaussian Blur. A gaussian blur with a probability of 0.5 was applied to 

images with a random sigma of between 0 and 0.5.
- Contrast Normaization. Applied to strengthen or weaken the contrast in 

each image in the interval (0.75, 1.5).
- Gaussian Noise. Gaussian noise with a probability of 0.5 was added to 

images.
- Brightness modification. A change of brightness was applied with a 

probability of 0.2 and a random value in the interval (0.8, 1.2) was chosen.

Table 2. Train/test set splits.
Model Data Ratio Training set Test set Total

U-Net (VOC format) 80:20 969 243 1212
Mask RCNN (COCO format) 80:20 992 248 1240
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- Affine Transformation. Zooming/scaling images to 90 - 110% of their 
height/width (each axis independently). Translate/move images by -20 to +20 
relative to their height/width per axis. Rotate images by -5 to +5 degrees and 
slightly shear them by -2to +2 degrees.

Proposed models

This work aims to develop two models based on deep CNNs to detect the 
regions in tomato plants infected by T. absoluta. We employed transfer 
learning based on the CNN models, Mask RCNN and U-Net that were trained 
and shown best performance on COCO (T. Lin, Zitnick, and Doll 2014) and 
International Symposium on Biomedical Imaging (ISBI) (Ronneberger, 
Fischer, and Brox 2015) datasets for instance and semantic segmentation 
tasks respectively.

U-net for semantic segmentation
In semantic segmentation, different instances of the same object are not 
distinguished and are given the same label. Ronneberger, Fischer, and Brox 
(2015) introduced a U-shaped CNN architecture designed to be trained end-to 
-end with very few images and yet produce more precise segmentations. This 
makes it very suitable for the agricultural field since there is not enough labeled 
data to train complex CNN architectures in the real world (K. Lin et al. 2019). 
The model has performed well first in the biomedical image segmentation and 
later in many other fields outperforming the earlier segmentation methods 
(Ciresan et al. 2012). The U-Net architecture consists of three sections: an 
encoder, a bottleneck, and a decoder, hence the name encoder-decoder struc-
ture. The encoder down-samples the input image, captures its context, and 
outputs a tensor containing information about the object, its shape, and size. 
The decoder which has up-sampling layers takes this information and pro-
duces segmentation maps using transposed convolutions. This up-sampling 
process makes the network’s output the same size as the input image achieving 
pixel-level segmentation. The bottleneck section mediates between the enco-
der and decoder sections. It uses skip connections to concatenate the inter-
mediate outputs of the encoder with the inputs to the intermediate layers of 
the decoder at appropriate positions. This concatenation process enables the 
precise localization of the target objects. The U-Net architecture is described in 
Figure 5.

Mask RCNN for instance segmentation
Mask Region-based CNN takes an input image and outputs a bounding box, 
label, and the corresponding mask (He et al. 2018). It is an extension of the 
Faster RCNN model, which has two outputs for each candidate object, a class 
label and a bounding-box offset (Ren et al. 2017). Mask RCNN adds a third 
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branch that outputs the object mask, decoupling class prediction and mask 
generation. This makes it an effective algorithm for more challenging instance 
segmentation tasks. The architecture of the proposed Mask RCNN model is 
illustrated in Figure 6.

Backbone: CNN backbone architecture is used to extract features from an 
input image. The proposed Mask RCNN uses ResNet50 and ResNet101 for 
feature extraction. The extracted features act as an input for the next layer.

Region Proposal Network (RPN): The RPN is applied to the feature maps 
from the previous step and outputs a set of object/region proposals i.e., 
Regions of Interest (ROIs), each with its objectness score. RPN uses a sliding 
window over the convolutional feature maps producing anchor boxes of 
different shapes and sizes to generate region proposals. Then, for each anchor 

Figure 5. U-Net architecture.

Figure 6. Proposed Mask RCNN model architecture.
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box, the RPN predicts the probability that an anchor is an object. Using the 
non-maximum suppression technique, the RPN refine anchors with a high 
objectness score and suppress or reject all other boxes.

Regions of Interest Align: Both RoIs and their corresponding feature maps 
from the previous step are passed through the RoI Align layer which converts 
them to a fixed shape and size. RoI Align uses binary interpolation to generate 
a small feature map of fixed size (e.g., 7 × 7) from each RoI. The RoI Align layer 
properly aligns the extracted features with the input and accurately maps RoIs 
from the original image onto the feature map without rounding up to integers.

Fully Connected Layers: On top of the fully connected network, a softmax 
layer is used to predict classes in the image. A linear regression layer is also 
used alongside the softmax layer to output bounding box coordinates for 
predicted classes.

Fully Convolutional Network: The output of the ROI Align layer also goes 
separately to the convolutional layer to predict the masks. This network takes 
an RoI as input and outputs the m*m mask representation. The mask shape is 
normally 28 × 28.

Training phase

U-net: Hyperparameters tuning and network training
A Keras U-Net architecture was used in this implementation to develop 
a T. absoluta semantic segmentation model. We set 32 convolutional filters 
in the initial convolutional block which will be doubled after every block while 
setting 4 total number of layers in the encoder path. To increase the conver-
gence rate of the architecture to our dataset, we use batch normalization for 
each layer in our network. Since our problem is binary segmentation, we set 
the sigmoid as the activation function in the output layer. All images in our 
dataset were rescaled by 1/255 to range (0–1) then resized to 512 × 512 pixels. 
Since our training set contains only 969 images which are insufficient to train 
the network, we perform random data augmentation to expand these 969 
images to train the neural network effectively. The augmentation techniques 
include rotation in a range of 5.0 degrees, horizontal and vertical flipping, 
width and height shift in a range of 0.05, shear in a range of 40, and the zoom 
range of 0.2. When an image is transformed, its corresponding annotation is 
transformed in the same way. The generated images with their corresponding 
annotation images are shown in Figure 7.

We trained our networks using 200 epochs with a learning rate of 0.01 and 
Adam (Kingma and Ba 2014) as the optimization function. The IoU threshold 
for minimum detection probability is kept at 0.5.
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Mask RCNN: Hyperparameters tuning and network training
Two CNN architectures, namely, ResNet50 and ResNet101, were used sepa-
rately as backbone architectures of our Mask RCNN model. Since we ran 
inference on one image at a time, we set the batch size to 1 where each batch 
has 1 image per GPU. A learning rate, weight decay, and learning momentum 
of 0.001, 0.0001, and 0.9, respectively, have been used in this implementation. 
The detection minimum probability is kept at 0.7 so that RoIs with score larger 
than this threshold are kept and below that are skipped. The training was 
developed during 200 epochs and the model was evaluated on the validation 
set at the end of each epoch.

Loss function
U-Net Loss Function: The U-Net uses a pixel-wise cross-entropy loss that 
examines each pixel individually comparing it to the ground truth pixel then 
averaged over all pixels. This loss weighting scheme helps the U-Net model 
segment tuta mines in tomato leaf images in a discontinuous fashion such that 
individual mines can be easily identified within the binary segmentation map.

The loss is defined as 

L ¼
Pm

i¼1
� yilog pið Þ þ 1 � yið Þlog 1 � pið Þð Þ (1) 

Where
L is the total loss in U-Net.
m is the number of pixels in an image.
i is the index of a pixel.

Figure 7. Augmented images with their corresponding annotations.
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yi is the binary indicator i.e. the ground truth or real value of the i-th pixel 
whose value is 0 or 1.

log is the natural log.
pi is the predicted probability/value of the i-th pixel. Its value ranges from 0 

to 1.
Mask RCNN Loss Function: We define a multitask loss function calculated 

as the weighted sum of various losses at each stage of Mask RCNN model 
training. This comprises three (3) losses: loss due to classification, regression, 
and mask prediction. The regression and mask loss are only applied to positive 
examples.

The total loss is defined as 

LT ¼
P

i
Lcls pi; gið Þ þ

P

i
giLreg ti; t�i

� �
þ
P

i
giLmask mi; m�i

� �
(2) 

Where
LT ¼ L pif g; tif g; mif gð Þ is the total loss in Mask R-CNN.
i is the index of an anchor.
pi is the predicted probability of an anchor i being an object.
gi is the ground-truth probability of anchor i. Ground-truth label gi is 1 if 

the anchor is positive and is 0 otherwise.
ti ¼ tx

i ; t
y
i ; th

i ; tw
i

� �
is a vector with the horizontal and vertical coordinates of 

the center point and the height and width coordinates of the predicted 
bounding box.

t�i is a vector representing four (4) parameterized coordinates (x,y,h,w) of 
the ground-truth bounding box associated with a positive anchor i.

Lcls is the classification loss.
Lreg is the regression loss. The term giLreg means that regression loss is only 

activated for positive anchors (gi ¼ 1) and is disabled otherwise (gi ¼ 0).
Lmask is the mask loss. The term giLmask means that mask loss is only 

activated for positive anchors (gi ¼ 1) and is disabled otherwise (gi ¼ 0).

Results and discussion

Experiment settings

The experiments were conducted on a computer pre-installed with Windows 
10 equipped with one Intel® Core™ i7-8550 U 3.6 GHz CPU, Intel® Iris® Plus 
Graphics, 512 GB SSD storage and 16 GB memory. Google Collaboratory with 
Tesla P100-PCIE GPU and 27GB memory was utilized. Using Python 3, Keras 
(Chollet 2017) library with Tensorflow (Abadi 2016) as backend, we imple-
mented our proposed network.
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Apart from detection rates, the efficiency of the model is another important 
performance criterion. Table 3 shows the training time in minutes of all 
tomato leaves images for each method employed in this study. It can be seen 
that the training time of U-Net is 483.50 minutes which is 169.91 and 
359.45 minutes shorter than that of Mask RCNN with ResNet50 and with 
ResNet101 as backbones respectively. This is because the ResNet101 has 
a more complex structure compared to ResNet50 and U-Net hence longer 
training time.

Table 3. Training time.
Method Training time (minutes)

Mask RCNN-ResNet50 653.41
Mask RCNN-ResNet50 with augmentations 670.57
Mask RCNN-ResNet101 842.95
Mask RCNN-ResNet101 with augmentations 853.40
U-Net 483.50

Figure 8. Training and validation loss curve for Mask RCNN. Loss graph for (a) Mask RCNN- 
ResNet50, (b) Mask RCNN-ResNet101, (c) Mask RCNN-Resnet50 with augmentations, and (d) 
Mask RCNN-Resnet101 with augmentations.
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Loss results

Figure 8 demonstrates the loss diagrams of the proposed model during the 
training process of the Mask RCNN model. The training and validation losses 
were estimated after each training epoch. As the training process progresses, 
the value of training loss rapidly decreases, followed by validation loss. As 
revealed in Figure 8 (a) and (b), the validation loss starts to display an upward 
trend after several epochs while the training loss continues to decrease, 
suggesting overfitting of the model. We select the last epoch that did not 
overfit. Then we retrain the network with augmentation techniques described 
in Image pre-processing section keeping a record of the total loss. A shown in 
Figure 8 (c) and (d), the loss function monotonically decreases during the 
training phase. At the end of the training, the losses are stabilized, indicating 
that our proposed model learns and segments the tuta mines well without 
overfitting.

On the other hand, Figure 9 illustrates the training loss curve of U-Net with 
200 epochs. We can see the losses dropped rapidly during early training 
iterations then start to stabilize at about 50 epochs which implies that the 
model fits well on the features of our dataset at early and later stages of the 
training process. In theory, the U-Net model has the best performance since it 
eventually obtains the lowest loss value compared to Mask RCNN.

Evaluation metrics

In this paper, we analyzed the quality of the semantic segmentation results of 
our model using Intersection over Union and dice coefficient. On the other 
hand, precision, recall and mAP are the performance metrics selected for 
validation of the proposed instance segmentation model.

Figure 9. Training and validation loss curve for U-Net.
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The equations for evaluating the proposed semantic segmentation model 
are shown in Eqs 3 and 4. 

IoU ¼ OverlappingArea
UnionArea (3) 

DiceCoefficient ¼ 2�Intersection
Union þ Intersection (4) 

Figure 10 shows the results of the metrics used to evaluate the performance of 
the proposed model based on U-Net architecture. The model achieved satis-
factory accuracy in segmenting T. absoluta’s mines in tomato plants. As 
shown, the U-Net model obtained a dice coefficient and an IoU of 82.86% 
and 78.60% respectively. The value of the dice coefficient is usually greater 
than that of IoU in the same segmentation performance. Some examples of the 
segmentations carried out by the proposed U-Net model are shown in 
Figure 11. As can be observed, the model generates precise segmentations of 
tuta mines in tomato plants.

Figure 10. The evaluation metrics results for the semantic segmentation model. (a) IoU for U-Net. 
(b) Dice Coefficient for U-Net.

Figure 11. Examples of segmentations carried out by the proposed U-Net model.
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Precision: measures the percentage of correct positive predictions among 
all predictions made. Recall: measures the percentage of correct positive 
predictions among all actual positive cases. The two metrics are calculated 
as follows: 

Precision ¼ TP
TPþFP (5) 

Recall ¼ TP
TPþFN (6) 

Where
TP is the number of positive samples correctly predicted to be positive, i.e., 

the number of correctly detected tuta mines.
FP is the number of negative samples that are wrongly predicted as positive 

i.e the number of falsely detected tuta mines.
FN (False Negative) is the number of negative samples that are correctly 

predicted as negative. i.e the number of missed tuta mines.
Mean Average Precision: is used as the primary evaluation metric to 

measure the quality of the segmentations obtained by the model. It provides 
the average precision of object locations in all predictions matching ground- 
truth objects giving each object equal importance.

mAP is defined as 

mAP ¼ 1
N
P

AP (7) 

Where
mAP is the mean Average Precision of all classes.
AP is the Average Precision.
P

AP is the sum of the Average Precision values.
N is the number of all classes.
The area under the Precision-Recall (PR) curve which defines the Average 

Precision (AP) can be used to summarize the performance of a segmentation 
model; the x-axis being recall and the y-axis being precision. We set 
a threshold of IoU = 0.5 at which any segmentation with a score lower than 
this value is treated as a FP. As shown in Figure 12 the PR curve is mono-
tonically decreasing which is what we want for better performance. The 
precision of a detector with good performance remains high as recall increases, 
which means it will detect a high proportion of TP before it starts detecting FP.

Table 4 summarizes mAP values measuring the performance of the pro-
posed methods in detecting and segmenting tuta mines on tomato images. The 
mAP value of Mask RCNN-ResNet50 with augmentations is as high as 85.67%, 
achieving the highest detection rates on tuta mines in tomato plants compared 
to other methods. As can be seen from the table, the performance of Mask 
RCNN-ResNet50 and Mask RCNN-ResNet101 are relatively poor with an 
mAP of 81.01% and 81.09% respectively, possibly because of the complexity 
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of backbone architectures to train on an insufficient amount of data. Examples 

Figure 12. The Precision-Recall Curve.

Table 4. The mAP (primary metric) values of the tomato 
images obtained by different detection methods.

Method(s) mAP (%)

Mask RCNN-ResNet50 81.01
Mask RCNN-ResNet50 with augmentations 85.67
Mask RCNN-ResNet101 81.09
Mask RCNN-ResNet101 with augmentations 82.72

Figure 13. Examples of segmentations carried out by the proposed Mask RCNN model.
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of segmentations performed by the proposed Mask RCNN model are shown in 
Figure 13. As can be observed, the model could detect even the smallest tuta 
mines on tomato leaves.

Conclusion and future work

This paper aimed to tackle the problem of accurately segmenting T. absoluta’s 
damage on tomato plants at their early growth stage. To address this problem, 
this novel work proposed deep CNN models based on U-Net and Mask RCNN 
architectures which are used for automatic semantic and instance segmenta-
tions, respectively. The experimental results indicate that the Mask RCNN- 
ResNet50 model performs best in segmenting tuta mines in tomato leaf 
images, achieving an mAP of 85.67%, while the U-Net model obtained an 
IoU of 78.60% and a dice coefficient of 82.86%. Both proposed models were 
very precise in segmenting the shapes of the areas infected by T. absoluta in 
tomato leaves. This demonstrates that deep learning is the promising techno-
logical approach for fully automatic and early determination of T. absoluta’s 
damage. This novel work contributes to the body of knowledge and can help 
farmers and extension officers to make informed decisions that could improve 
tomato productivity and rescue farmers from the losses they incur annually.

However, it is worth noting that there are some limitations to this study. 
The experiments used insufficient annotated dataset size that considered 
T. absoluta only, leaving out other pests and diseases and also had a limited 
computing power, factors that may affect the performance of the model. Even 
though this study has achieved excellent segmentation results, adding more 
annotated data could further improve the performance of the proposed 
models.

In the future, we expect to develop a CNN quantification model and 
decision support system that will be deployed in a mobile or computer to 
enable farmers and extension officers to make intelligently informed decisions 
on how to control the pest. The system will be able to count the leaves, 
determine the extent of damage and suggest actions to be taken such as 
Integrated Pest Management (IPM) techniques to control the pest based on 
the estimated severity. To facilitate further research in diagnosing T. absoluta’s 
damage to tomato plants, the dataset associated with this work is freely 
available to the research community and can be accessed at the open access 
repository (Rubanga et al. 2020).

Disclosure Statement

The authors declare that there are no conflicts of interest regarding the publication of this 
paper.

1124 L. K. LOYANI ET AL.



Funding

This work was supported by the African Development Bank (AfDB) through Project No. P-Z1- 
IA0-016 under Grant No. 2100155032816.

ORCID

Loyani K. Loyani http://orcid.org/0000-0002-0368-8424
Dina Machuve http://orcid.org/0000-0002-8711-5948

References

Abadi, M. 2016. TensorFlow: learning functions at scale. In Proceedings of the 21st ACM 
SIGPLAN International Conference on Functional Programming 51(9):1–1. Nara, Japan: 
Association for Computing Machinery. 10.1145/3022670.2976746

Brahimi, M., K. Boukhalfa, and A. Moussaoui. 2017. Deep learning for tomato diseases: 
classification and symptoms visualization. Applied Artificial Intelligence 31 (4):299–315. 
doi:10.1080/08839514.2017.1315516.

Chollet, F. 2017. Introduction to keras. In Deep learning with python. 1st ed. 60–62. New York: 
Manning Publications Co.

Ciresan, D. C., A. Giusti, L. M. Gambardella, and J. Schmidhuber. 2012. Deep neural networks 
segment neuronal membranes in electron microscopy images. Advances in Neural 
Information Processing Systems 25: 2843–2851

Cuthbertson, A. G. S., J. J. Mathers, L. F. Blackburn, A. Korycinska, W. Luo, R. J. Jacobson, and 
P. Northing. 2013. Population development of tuta absoluta (meyrick) (lepidoptera: gele-
chiidae) under simulated UK glasshouse conditions. Insects 4 (2):185–97. doi:10.3390/ 
insects4020185.

Desneux, N., E. Wajnberg, K. A. G. Wyckhuys, G. Burgio, S. Arpaia, C. A. Narváez-Vasquez, 
J. González-Cabrera, D. C. Ruescas, E. Tabone, J. Frandon, et al. 2010. Biological invasion of 
european tomato crops by tuta absoluta: ecology, geographic expansion and prospects for 
biological control. Journal of Pest Science 83 (3):197–215. doi:10.1007/s10340-010-0321-6.

Doğanlar, M., and A. Yİğİt. 2011. Parasitoids complex of the tomato leaf miner, tuta absoluta 
(meyrick 1917), (lepidoptera: gelechiidae) in Hatay Turkey. KSU Journal of Natural Sciences 
14 (4):28–37. doi:10.18016/ksujns.36297.

Dutta, A., and A. Zisserman. 2019. The VIA annotation software for images, audio and video. 
In Proceedings of the 27th ACM International Conference on Multimedia (MM '19), 2276– 
79. Nice, France: Association for Computing Machinery, Inc. doi: 10.1145/3343031.3350535

Everingham, M., L. V. Gool, C. K. I. Williams, and J. Winn. 2010. The PASCAL Visual Object 
Classes (VOC) challenge. International Journal of Computer Vision 88 (2):303–38. 
doi:10.1007/s11263-009-0275-4.

FAOSTAT. 2019. Tomato production worldwide. Food and Agriculture Organization (FAO). 
Accessed March 27, 2020. http://www.fao.org/faostat/en/?#data/QC .

Ferentinos, K. P. 2018. Deep learning models for plant disease detection and diagnosis. 
Computers and Electronics in Agriculture 145 (January):311–18. doi:10.1016/j. 
compag.2018.01.009.

Fuentes, A., S. Yoon, S. C. Kim, and D. S. Park. 2017. A robust deep-learning-based detector for 
real-time tomato plant diseases and pests recognition. Sensors 17 (9):9. doi:10.3390/ 
s17092022.

APPLIED ARTIFICIAL INTELLIGENCE 1125

https://doi.org/10.1080/08839514.2017.1315516
https://doi.org/10.3390/insects4020185
https://doi.org/10.3390/insects4020185
https://doi.org/10.1007/s10340-010-0321-6
https://doi.org/10.18016/ksujns.36297
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1007/s11263-009-0275-4
http://www.fao.org/faostat/en/?#data/QC
https://doi.org/10.1016/j.compag.2018.01.009
https://doi.org/10.1016/j.compag.2018.01.009
https://doi.org/10.3390/s17092022
https://doi.org/10.3390/s17092022


Guedes, R. N. C., and M. C. Picanço. 2012. The tomato borer tuta absoluta in south America: 
Pest status, management and insecticide resistance. EPPO Bulletin 42 (2):211–16. 
doi:10.1111/epp.2557.

Guimapi, R. Y. A., S. A. Mohamed, G. O. Okeyo, F. T. Ndjomatchoua, S. Ekesi, and 
H. E. Z. Tonnang. 2016. Modeling the risk of invasion and spread of tuta absoluta in 
Africa. Ecological Complexity 28:77–93. doi:10.1016/j.ecocom.2016.08.001.

He, K., G. Gkioxari, P. Dollár, and R. Girshick. 2018. Mask R-CNN. IEEE Transactions on 
Pattern Analysis and Machine Intelligence 42 (2):386–97. doi:10.1109/TPAMI.2018.2844175.

Kingma, D. P., and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint 
arXiv:1412.6980.

Lawrence, S., and C. L. Giles. 2000. Overfitting and neural networks: conjugate gradient and 
backpropagation. Proceedings of the IEEE-INNS-ENNS International Joint Conference on 
Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the 
New Millennium 1: 114–19. IEEE. doi: 10.1109/IJCNN.2000.857823.

Lin, K., L. Gong, Y. Huang, C. Liu, and J. Pan. 2019. Deep learning-based segmentation and 
quantification of cucumber powdery mildew using convolutional neural network. Frontiers 
in Plant Science 10 (February):1–10. doi:10.3389/fpls.2019.00155.

Lin, T., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. 
2014. Microsoft COCO: Common objects in context. European Conference on Computer 
Vision, ed. D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, 8693: 740–755. Cham, 
Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-10602-1_48.

Liu, X., C. Hu, and P. Li. 2020. Automatic segmentation of overlapped poplar seedling leaves 
combining mask R-CNN and DBSCAN. Computers and Electronics in Agriculture 
178 (May):105753. doi:10.1016/j.compag.2020.105753.

Maneno, C., S. Al-zaidi, N. Hassan, J. Abisgold, E. Kaaya, and S. Mrogoro. 2016. First record of 
tomato leafminer tuta absoluta meyrick (lepidoptera: Gelechiidae) in Tanzania. Agriculture 
& Food Security 5 (1):17. doi:10.1186/s40066-016-0066-4.

Materu, C. L., E. A. Shao, E. Losujaki, and M. Chidege. 2016. Farmer’s perception knowledge 
and practices on management of tuta absoluta meyerick (lepidotera gelechiidae) in tomato 
growing areas in Tanzania. International Journal of Research in Agriculture and Forestry 
3 (2):1–5.

Mkonyi, L., D. Rubanga, M. Richard, N. Zekeya, S. Sawahiko, B. Maiseli, and D. Machuve. 
2020. Early identification of tuta absoluta in tomato plants using deep learning. Scientific 
African 10:e00590. doi:10.1016/j.sciaf.2020.e00590.

Mutayoba, V., and D. Ngaruko. 2018. Assessing tomato farming and marketing among 
smallholders in high potential agricultural areas of tanzania. International Journal of 
Economics, Commerce and Management (IJECM) VI (8):577–90.

Never, Z., P. A. Ndakidemi, M. Chacha, and E. Mbega. 2017. Tomato leafminer, tuta absoluta 
(meyrick 1917), an emerging agricultural pest in sub-saharan Africa: Current and prospec-
tive management strategies. African Journal of Agricultural Research 12 (6):389–96. 
doi:10.5897/AJAR2016.11515.

Pérez-borrero, I., D. Marín-santos, M. E. Gegúndez-Arias, and E. Cortés-Ancos. 2020. A fast 
and accurate deep learning method for strawberry instance segmentation. Computers and 
Electronics in Agriculture 178 (February):105736. doi:10.1016/j.compag.2020.105736.

Ren, S., K. He, R. Girshick, and J. Sun. 2017. Faster R-CNN: Towards real-time object detection 
with region proposal networks. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 39 (6):1137–49. doi:10.1109/TPAMI.2016.2577031.

1126 L. K. LOYANI ET AL.

https://doi.org/10.1111/epp.2557
https://doi.org/10.1016/j.ecocom.2016.08.001
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1109/IJCNN.2000.857823
https://doi.org/10.3389/fpls.2019.00155
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1016/j.compag.2020.105753
https://doi.org/10.1186/s40066-016-0066-4
https://doi.org/10.1016/j.sciaf.2020.e00590
https://doi.org/10.5897/AJAR2016.11515
https://doi.org/10.1016/j.compag.2020.105736
https://doi.org/10.1109/TPAMI.2016.2577031


Ronneberger, O., P. Fischer, and T. Brox. 2015. U-net: Convolutional networks for biomedical 
image segmentation. In International Conference on Medical Image Computing and 
Computer-Assisted Intervention - MICCAI 2015, ed. N. Navab, J. Hornegger, W. M. Wells 
and A. F. Frangi, 9351:234–241. Cham, Switzerland: Springer. 10.1007/978-3-319-24574- 
4_28.

Rubanga, D. P., L. Mkonyi, M. Richard, N. Zekeya, L. K. Loyani, S. Shimada, and D. Machuve. 
2020. A deep learning dataset for tomato pest leafminer TUTA ABSOLUTA. Zenodo 
Repository. Accessed December 6:2020. doi:10.5281/ZENODO.4305416.

Russell, B. C., A. Torralba, K. P. Murphy, and W. T. Freeman. 2008. LabelMe : A database and 
web-based tool for image annotation. International Journal of Computer Vision 77 (1– 
3):157–173.

Shorten, C., and T. M. Khoshgoftaar. 2019. A survey on image data augmentation for deep 
learning. Journal of Big Data 6 (1):1. doi:10.1186/s40537-019-0197-0.

Singh, A. K., B. Ganapathysubramanian, S. Sarkar, and A. Singh. 2018. Deep learning for plant 
stress phenotyping: trends and future perspectives. Trends in Plant Science 23 (10):883–98. 
doi:10.1016/j.tplants.2018.07.004.

Sladojevic, S., M. Arsenovic, A. Anderla, D. Culibrk, and D. Stefanovic. 2016. Deep neural 
networks based recognition of plant diseases by leaf image classification. Computational 
Intelligence and Neuroscience 2016:11. doi:10.1155/2016/3289801.

Tang, H., B. Wang, and X. Chen. 2020. Deep learning techniques for automatic butterfly 
segmentation in ecological images. Computers and Electronics in Agriculture 
178 (May):105739. doi:10.1016/j.compag.2020.105739.

Tomato News. 2020. The global tomato processing industry. The Tomato Online Conference. 
Last Modified August 10, 2020. Accessed January 16, 2021. http://www.tomatonews.com/en/ 
background_47.html .

Wang, Q., F. Qi, M. Sun, J. Qu, and J. Xue. 2019. Identification of tomato disease types and 
detection of infected areas based on deep convolutional neural networks and object detec-
tion techniques. Computational Intelligence and Neuroscience 2019. doi:10.1155/2019/ 
9142753.

Zekeya, N., M. Chacha, P. Ndakidemi, C. Materu, M. Chidege, and E. Mbega. 2016. Tomato 
leafminer (tuta absoluta meyrick 1917): A threat to tomato production in Africa. Journal of 
Agriculture and Ecology Research International 10 (1):1–10. doi:10.9734/jaeri/2016/28886.

Zhang, K., Q. Wu, A. Liu, and X. Meng. 2018. Can deep learning identify tomato leaf disease? 
Advances in Multimedia 2018. doi:10.1155/2018/6710865.

APPLIED ARTIFICIAL INTELLIGENCE 1127

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.5281/ZENODO.4305416
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1016/j.tplants.2018.07.004
https://doi.org/10.1155/2016/3289801
https://doi.org/10.1016/j.compag.2020.105739
http://www.tomatonews.com/en/background_47.html
http://www.tomatonews.com/en/background_47.html
https://doi.org/10.1155/2019/9142753
https://doi.org/10.1155/2019/9142753
https://doi.org/10.9734/jaeri/2016/28886
https://doi.org/10.1155/2018/6710865

