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Summary 

The importance of autonomous in situ chemical sensors for ocean observations has 

increased drastically over the last decades. Yet, the huge potentials of sensor-based 

data collection remain underutilized by the scientific and regulatory communities, 

despite wider than ever usage of sensors. This thesis is part of a growing body of 

work to extend the usability of sensors and is embedded in the Ocean Best Practice 

approach, which could improve data quality in ocean observation in general. 

The here presented work focuses on pH and nitrate, both essential ocean variables 

in the quest of the scientific community to understand the state of ocean 

acidification and disruptions in marine productivity, which threaten marine 

ecosystem health. Given the enormous dimensions of the oceans and the 

challenging conditions for field research, expanding the utilization of autonomous 

chemical sensors for monitoring those parameters brings structural advancements 

for the research community. Besides that, sensor-based output of well-resolved data 

overcomes the issue of undersampling by conventional methods, an issue which 

was highlighted in the first focus of this thesis. Specifically, it could be mentioned 

that undersampling is a particularly crucial issue in highly dynamic water systems. 

Yet, the highly capable LOC pH sensor (ClearWater Sensors, Southampton, UK) 

had not been tested in highly dynamic coastal and estuarine systems to date. In order 

to expand its operational limits, the sensor was deployed in such systems. The 

evaluation of the collected pH and auxiliary data shows the potentials of expanding 

LOC deployment into highly dynamic marine systems. Not only the usability in low 

salinity environments was illuminated, also a substantially more comprehensive 

coverage of rapid events could be achieved, compared to traditional benchtop 

approaches. 

The second focus is the optimization of the data processing procedures and 

therefore the quality of nitrate data collection through the OPUS sensor (TriOS 

GmbH, Germany). Following a range of laboratory and field tests, a new algorithm 

was introduced, which took the specific properties of the OPUS into account.  
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It could be shown that through our improved algorithm for the OPUS sensor, the 

nitrate measurements had an accuracy of better than ca. 2 µM, yielding a significant 

advancement in line with the overarching goal of improved data quality. 

In the third focus, unwanted distortions also referred to as errors of the measured 

spectrum due to the non-ideal behaviour of compact charge-coupled device (CCD) 

spectrometers were identified. Although the CCDs are optimal and highly sensitive 

tools, preferred in a variety of applications such as space, ocean, and 

telecommunications, they suffer from a range of internal error sources linked to 

dark currents, stray light, non-linearity etc. Therefore, characterization and 

correction of errors are essential when accurate spectral measurements are a need. 

In agreement with such a necessity, we characterized the non-linearity error of a 

Hamamatsu C10082CA mini-spectrometer experimentally and developed a 

universally applicable correction algorithm. Results pointed to a significant 

improvement in signal-to-noise ratio of spectral readings, after the new algorithm 

was applied. The non-linearity error of a compact spectrometer was reduced from 

several hundred counts to ca. 40 counts. This provides the attempt of improving 

output data quality by autonomous sensors in a general sense. 

In summary, this Ph.D. thesis provides improvements in the area of autonomous 

spectrophotometric data collection of essential biogeochemical parameters. The 

achievements are associated with the acquisition of accurate and temporally well-

resolved real-time data. A more reliable sensor-based data collection and improved 

deployability promotes a broader usage of autonomous sensors in general. Thus, a 

financially more sustainable ocean monitoring approach can be achieved, since a 

broader adaptation of autonomous sensors in research yields a higher cost 

efficiency. 

It contributes to the increasing demand for high quality and in situ data of particular 

ocean areas of concern i.e., ocean acidification and eutrophication. Furthermore, it 

widens our understanding of crucial biogeochemical processes and physiological 

conditions of marine waters. 
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Zusammenfassung 

Die Bedeutung autonomer chemischer In situ Sensoren für die Meeresbeobachtung 

hat in den letzten Jahrzehnten drastisch zugenommen. Dennoch wird das enorme 

Potenzial der sensorbasierten Datenerfassung von den wissenschaftlichen und 

behördlichen Gremien noch nicht ausreichend genutzt, obwohl die Sensoren 

häufiger denn je zum Einsatz kommen. Diese Arbeit ist Teil einer wachsenden 

Anzahl von Arbeiten zur Erweiterung der Nutzbarkeit von Sensoren und ist 

eingebettet in den Ocean Best Practice-Ansatz, der die Datenqualität in der 

Meeresbeobachtung im Allgemeinen verbessern könnte. 

Die hier vorgestellte Arbeit konzentriert sich auf pH-Wert und Nitrat, beides 

wichtige Meeresvariablen, die die wissenschaftliche Gemeinschaft benötigt, um 

den Zustand der Ozeanversauerung und die Störungen der Meeresproduktivität zu 

verstehen, die die Gesundheit der marinen Ökosysteme bedrohen. Angesichts der 

enormen Ausmaße der Ozeane und der schwierigen Bedingungen für die 

Feldforschung bringt die Ausweitung des Einsatzes autonomer chemischer 

Sensoren zur Überwachung dieser Parameter strukturelle Fortschritte für die 

Forschungsgemeinschaft. Darüber hinaus überwindet die sensorgestützte Ausgabe 

von gut aufgelösten Daten das Problem der Untererfassung durch konventionelle 

Methoden, ein Problem, das im ersten Schwerpunkt dieser Arbeit hervorgehoben 

wurde. Insbesondere kann erwähnt werden, dass die Unterabtastung in 

hochdynamischen Wassersystemen ein besonders wichtiges Problem darstellt. Der 

hochleistungsfähige LOC-pH-Sensor (ClearWater Sensors, Southampton, UK) 

wurde jedoch bisher noch nicht in hochdynamischen Küsten- und Ästuarsystemen 

getestet. Um seine Einsatzgrenzen zu erweitern, wurde der Sensor in solchen 

Systemen eingesetzt. Die Auswertung der gesammelten pH- und Hilfsdaten zeigt 

das Potenzial eines erweiterten Einsatzes des LOC in hochdynamischen 

Meeressystemen. Nicht nur die Verwendbarkeit in Umgebungen mit niedrigem 

Salzgehalt wurde beleuchtet, sondern es konnte auch eine wesentlich umfassendere 

Erfassung von schnellen Ereignissen im Vergleich zu traditionellen Benchtop-

Ansätzen erreicht werden. 
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Der zweite Schwerpunkt ist die Optimierung der Datenverarbeitungsverfahren und 

damit der Qualität der Nitratdatenerfassung durch den OPUS-Sensor (TriOS 

GmbH, Deutschland). Nach einer Reihe von Labor- und Feldtests wurde ein neuer 

Algorithmus eingeführt, der die spezifischen Eigenschaften des OPUS 

berücksichtigt. 

Es konnte gezeigt werden, dass durch unseren verbesserten Algorithmus für den 

OPUS-Sensor die Nitratmessungen eine Genauigkeit von besser als ca. 2 µM 

aufwiesen, was einen bedeutenden Fortschritt im Einklang mit dem übergeordneten 

Ziel einer verbesserten Datenqualität darstellt. 

Im dritten Schwerpunkt wurden unerwünschte Verzerrungen, auch als Fehler des 

gemessenen Spektrums bezeichnet, festgestellt, die auf das nicht-ideale Verhalten 

kompakter CCD-Spektrometer zurückzuführen sind. Obwohl die CCDs optimale 

und hochempfindliche Instrumente sind, die in einer Vielzahl von Anwendungen 

wie Raumfahrt, Ozean und Telekommunikation bevorzugt werden, leiden sie unter 

einer Reihe interner Fehlerquellen, die mit Dunkelströmen, Streulicht, 

Nichtlinearität usw. zusammenhängen. Daher sind die Charakterisierung und 

Korrektur von Fehlern unerlässlich, wenn genaue Spektralmessungen erforderlich 

sind. In Übereinstimmung mit dieser Notwendigkeit haben wir den 

Nichtlinearitätsfehler eines Hamamatsu C10082CA Mini-Spektrometers 

experimentell charakterisiert und einen universell anwendbaren 

Korrekturalgorithmus entwickelt. Die Ergebnisse zeigten eine deutliche 

Verbesserung des Signal-Rausch-Verhältnisses der Spektralmessungen, nachdem 

der neue Algorithmus angewendet wurde. Der Nichtlinearitätsfehler eines 

kompakten Spektrometers konnte von mehreren hundert Zählungen auf ca. 40 

Zählungen reduziert werden. Damit wird der Versuch unternommen, die Qualität 

der Ausgabedaten von autonomen Sensoren im Allgemeinen zu verbessern. 
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Zusammenfassend lässt sich sagen, dass diese Dissertation Verbesserungen im 

Bereich der autonomen spektrophotometrischen Datenerfassung wesentlicher 

biogeochemischer Parameter liefert. Die Errungenschaften stehen im 

Zusammenhang mit der Erfassung von genauen und zeitlich gut aufgelösten 

Echtzeitdaten. Eine zuverlässigere sensorgestützte Datenerfassung und eine 

verbesserte Einsatzfähigkeit fördern eine breitere Nutzung autonomer Sensoren im 

Allgemeinen. 

Auf diese Weise kann ein finanziell nachhaltigeres Meeresüberwachungskonzept 

erreicht werden, da eine breitere Anwendung autonomer Sensoren in der Forschung 

zu einer höheren Kosteneffizienz führt. Sie trägt dazu bei, die steigende Nachfrage 

nach qualitativ hochwertigen In situ Daten zu bestimmten Problembereichen der 

Ozeane, wie z.B. Ozeanversauerung und Eutrophierung, zu befriedigen. Darüber 

hinaus erweitert es unser Verständnis der entscheidenden biogeochemischen 

Prozesse und physiologischen Bedingungen der Meeresgewässer. 
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1. Introduction 

 Background 

1.1.1. Autonomous Ocean Observations 

The ocean is home to a wide range of ecosystems, including small and large organisms, which 

provide a source of livelihood for humankind, and have a central role in shaping the world’s 

economy and regulating climate. However, the health of the oceans is under constant threat by 

anthropogenic activities. Pressures related to climate change, including global warming, 

unsustainable use of marine resources, deoxygenation, acidification, pollution including 

eutrophication, and habitat loss are causing detrimental impacts on ocean ecosystem 

functioning (Doney et al., 2012). 

Monitoring the state of the oceans is vital for identifying various environmental problems, 

including climate change, and using our ocean in a sustainable manner (Visbeck, 2018). Studies 

focusing on ocean observations help us get a clearer picture of the impact of anthropogenic 

stressors on the marine environment and project potential future scenarios. Monitoring the 

GOOS Essential Ocean Variables (EOVs, http://www.goosocean.org/eov), such as 

temperature, salinity, ocean color, oxygen, nutrients, inorganic and dissolved organic carbon, 

pH, particulate matter, phytoplankton biomass, and biodiversity, throughout the worlds’ oceans 

have a high research priority. Although extensive and collective studies are essential for ocean 

monitoring research, the complexity and enormous dimensions of the oceans set a high bar. 

The exploration and data collection, especially in remote and hostile environments, is labour 

intensive, expensive and often limited in scope. 

The ocean is a suitable environment for the deployment of various sensor and autonomous 

monitoring systems. Figure 1.1 shows the dynamic evolution of autonomous ocean monitoring 

systems, which is ongoing. Each platform has specific purposes and areas of operation (Chai 

et al., 2020). 

http://www.goosocean.org/eov
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Figure 1.1: Timeline of oceanographic observation platforms used for monitoring marine 

biogeochemistry (Source: Chai et al., 2020). 

 

A pioneering exercise in ocean observations is believed to be the Challenger Expedition 

between 1873 and 1876 (C. Wyville-Thomson and J. Murray, 1885). Since then, several tens 

of thousands of ship-based oceanographic studies have taken place, but our knowledge is still 

rather incomplete. Traditionally, discrete seawater samples for the analysis of specific 

parameters are collected on ships using Go-Flo or Niskin bottles, or underway water pump 

systems, and the samples are then preserved until land-based laboratory analysis following best 

practice guidelines. The conventional methods rely on decades-long applied experience, are 

broadly tested and precise, and therefore essential for validation of new methods. On the other 

hand, this traditional approach requires generally long sampling and analysis times, and 

involves a risk of sample contamination during sample transfer, and also may involve storage 

issues. 

With conventional methods alone, our understanding of the intricate physical (wind-

driven/convective/isopycnal-mixing, up-/down-welling, diapycnal diffusion, horizontal 

advection), chemical (air-sea CO2 exchange, ocean acidification, deoxygenation), biological 

(primary production, phytoplankton growth/loss) processes, and biogeochemical cycles in 

marine waters would stay limited, despite the extensive efforts (Chai et al., 2020). 
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Recent efforts, such as the Global Ocean Ship-Based Hydrographic Survey (GO-SHIP, 

https://www.go-ship.org/) and the GEOTRACES Program (https://www.geotraces.org/), 

improved the global coverage of measurements. However, classical ship-based ocean 

observations are not sufficient for capturing many of the complex events in real-time, and 

samplings are limited to the expedition period, mostly in moderate weather, leading to a bias 

towards the summer season. 

An alternative option is to use satellites. Satellites are great remote sensing tools for enabling 

predictions of long-term trends in ocean ecosystem change at the basin and global scales (Chai 

et al., 2020). For example, the ocean-color satellite observations in the late 1970s provided the 

first global view of phytoplankton distribution (Gordon et al., 1980). Unfortunately, satellite 

ocean-color time series often have data gaps during the winter season due to increased 

cloudiness. In addition, they only cover the surface ocean, not the entire water column (Gregg 

and Casey, 2007), and observations are available for a limited numbers of variables only. 

Therefore high-resolution and real-time biogeochemical data collection tools and methods are 

required to improve the efficiency and scope of our monitoring efforts beyond the ships and 

satellites. These requirements can be met with the latest advances in ocean technology and 

miniaturization (Whitt et al., 2020). 

Over the last few years, ocean observing systems have evolved to make necessary observations 

possible through the development and implementation of gliders and wave gliders, Argo floats 

(including Biogeochemical (BGC-Argo), Deep), and unmanned surface vehicles (USVs) 

(Thurnherr et al., 2015; Braga et al., 2017; Jayne et al., 2017; Hall et al., 2019; Whitt et al., 

2020). These platforms can be at sea for many months and a number of sensors can be placed 

on them to measure various ocean variables. For example, a wave glider, powered by wave 

energy, is used for underway surface carbon measurements in the open ocean and coastal 

waters with excellent durability in rough seas over eight months (Willcox et al., 2009). It acts 

like an airplane; the vertical motion of the submersed glider through the water column allows 

its wings to convert some of this upward motion to forward propulsion force (Hine et al., 2009). 

BCG-Argo floats can provide high-resolution and cost-effective measurements of the water 

column compared to ship-based surveys. Most Argo floats are parked at a depth of 1,000 

meters, and they profile the ocean by going down to 2,000 meters, deep Argo floats down to 

6,000 meters, and gradually moving up to the sea surface at 10-day cycles (Roemmich et al., 

2019). They are equipped with multiple submersible autonomous sensors for measurements of 

https://www.go-ship.org/
https://www.geotraces.org/
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EOVs. The acquired data is sent to the satellite via iridium and processed in different 

laboratories and regions of the world. There are nearly 4,000 active floats in the ocean now, 

and data is accessible online (https://biogeochemical-argo.org/). The floats which can measure 

temperature and salinity have been extremely important in understanding the structure and the 

current systems in the oceans. AUVs, propeller-driven, are capable of doing large surveys of 

ocean variables like nitrate and oxygen in relatively short times (Johnson and Needoba, 2008). 

Very novel sail drone surface vehicles, equipped with multiple sensors, can acquire data at the 

air-sea interface up to 12 months by sailing on the ocean (Vazquez-Cuervo et al., 2019; 

Gentemann et al., 2020).For more than two decades, the number of sensors utilized on 

autonomous platforms has been increasing (Schofield et al., 2010; Tintoré et al., 2013; Whitt 

et al., 2020). To date, various submersible sensors exist for autonomous, real-time, and in situ 

monitoring of a range of EOVs (Wang et al., 2019). Each sensing technology has unique 

advantages, challenges, and maturity levels. NASA has classified the maturity of the sensors 

into nine levels, called technology readiness levels, from TRL 1 (least mature) to 9 (highest 

mature) (Olechowski et al., 2015; Héder, 2017). Sensor prototypes at TRL 7-8 level produce 

excellent data on many platforms, and those reaching TRL 9 are commercialized. 

Some of today’s most advanced sensors are for physical parameters like ocean conductivity-

temperature-depth (CTD), which were developed in the 1960s (Brown, 1991). Over the past 

few decades, Sea-Bird Scientific’s CTD units (https://www.seabird.com/) have been widely 

used on BCG-Argo floats and other autonomous platforms around the world (Wong et al., 

2020). The next most advanced oceanographic sensor is the Aanderaa oxygen optode 

(Aanderaa Data Instruments AS), and still improvements are made to them (Bittig et al., 2018). 

While some biogeochemical sensors, such as dissolved inorganic carbon, total alkalinity, 

phosphate, and trace metal (like iron, manganese), are still at relatively lower TRLs, bulky and 

expensive, others like pH and nitrate sensors are at TRL 9, a range of commercial units are 

available from different manufacturers (Sastri et al., 2019; Wang et al., 2019; Daniel et al., 

2020; Geißler et al., 2021). Small size, low power and reagent consumption, and low cost are 

main requirements for in situ biogeochemical sensors. Current state-of-the-art pH and nitrate 

sensors are detailed in Chapters 2 and 3.  

  

https://biogeochemical-argo.org/
https://www.seabird.com/
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A global network of biogeochemical sensors, such as the BCG-Argo Program 

(https://biogeochemical-argo.org/), OceanOPS (https://www.ocean-ops.org/board), and Global 

Ocean Data Analysis Project (GLODAP, https://www.glodap.info/), is an important step 

forward to meet the enormous geographical scales of the oceans better. Such networks have 

the potential to make the data available to broader communities, including non-academics. 

However, the volume of data obtained is drastically increasing in line with the increasing 

number of autonomous platforms and advanced ocean observation systems with sensors 

deployed to measure a range of EOVs (Tanhua et al., 2019). Handling large datasets with 

harmonized documentation is one of the main challenges in this context. Wilkinson et al. 

(2016) introduced the FAIR (Findable, Accessible, Interoperable, and Reusable) Data 

Principles to support data management with a modernized form of scientific communication. 

Later, Hörstmann et al. (2020) issued an “Intergovernmental Oceanographic Commission 

(IOC) Manual and Guide” for increased FAIRness particular to the operational oceanography 

community, which has become globally significant across data providers and users. Ocean Best 

Practices (OBP) system was founded with the goal "to have methods that are accepted and 

widely adopted across ocean exploration, operations and practices" as stated by them, and is 

an open-access repository of best practices (oceanbestpractices.org) documentation (Pearlman 

et al., 2019). The OBP perspective enables better coordination and interdisciplinary 

understanding of various methods and data (Hörstmann et al., 2021). 

The broad background knowledge required to conduct automated, high-resolution, in situ 

monitoring strategies of essential biogeochemical parameters is a base for this research 

focusing on specific sensors. The questions for this Ph.D. thesis are: Which particular ocean 

observational areas are in most need of autonomous, high-resolution, in situ data? What is the 

maturity level of commercially available sensing technologies? What needs to be done to 

improve output data quality utilising an OBP approach? 

  

https://biogeochemical-argo.org/
https://www.ocean-ops.org/board
https://www.glodap.info/
http://oceanbestpractices.org/
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1.1.2. The Marine Carbonate Chemistry: Significance and Monitoring Strategies of pH 

Since the beginning of the Industrial Era (mid-18th century), carbon dioxide levels in the 

atmosphere have increased over 40% as a consequence of combustion of fossil fuels, cement 

production and land-use changes, and projections expect that this will continue to rise under 

the current circumstances. Figure 1.2 shows the monthly mean of atmospheric CO2 

concentration at Mauna Loa Observatory from 1958 to 2021, and the current levels are about 

413.93 ppm in October 2021 (Retrieved from https://gml.noaa.gov/ccgg/trends/). 

 

Figure 1.2: Time series of monthly average atmospheric CO2 levels (ppm) between 1958 

and 2021 at Mauna Loa Observatory in Hawaii maintained by NOAA Global Monitoring 

Laboratory and the Scripps Institute of Oceanography 

(Source: https://gml.noaa.gov/ccgg/trends/). 

 

The ocean is a significant component of the global carbon cycle as it plays an essential role in 

regulating atmospheric CO2 levels. Over the past 200 years the oceans have absorbed about 

30% of global anthropogenic CO2 emissions (Le Quéré et al., 2010). 

Ocean acidification (ongoing decrease in the pH value due to rising CO2 levels in the ocean, 

(Doney et al., 2009)) has been a global phenomenon for decades, and it has received public 

attention in recent years.  

https://gml.noaa.gov/ccgg/trends/
https://gml.noaa.gov/
https://gml.noaa.gov/
https://gml.noaa.gov/ccgg/trends/


Chapter 1 – Introduction 

7 

 

The average surface ocean pH has dropped 0.1 units from 8.21 to 8.10 since the pre-industrial 

period (Royal Society, 2005), and projections report that pH will further drop about 0.1–0.4 by 

2100 and about 0.3–0.7 by 2300 (Caldeira and Wickett, 2003, 2005; Doney et al., 2009). 

Marine carbonate chemistry describes the processes of dissolution of CO2 in the ocean and its 

consequences for the marine ecosystem. When CO2 dissolves in surface seawater, it is 

converted into a carbonic acid [H2CO3], hydrogen [H+], bicarbonate [HCO3
-], and carbonate 

[CO3
2-] ions (Byrne, 2014) as follows: 

𝐶𝑂2 (𝑔) ↔ 𝐶𝑂2 (𝑎𝑞) + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 ↔ [𝐻𝐶𝑂3
−] + [𝐻+] ↔ [𝐶𝑂3

2−]  + [𝐻+]  

 

Of the carbonate system variables shown above, only four can be analytically determined: pH, 

the partial pressure of carbon dioxide (pCO2), dissolved inorganic carbon (DIC) and total 

alkalinity (AT) (Millero, 2007). Measuring a pair of these four variables allows quantification 

of the rest with some uncertainty (Millero, 2007; Cullison Gray et al., 2011). 

The mathematical expression of pH, a measure of the concentrations of [H+] on a logarithmic 

scale, is as follows: 

𝑝𝐻 = −𝑙𝑜𝑔[𝐻+] 

 

pH is a "master variable" defining the chemical properties of aqueous solutions, controlling the 

speciation and solubility of numerous dissolved inorganic elements and trace metals (C, P, Fe, 

Al, As, Cu, Cd, Si, V, Zn) (Gundersen and Steinnes, 2003; Doney et al., 2009; Kroeker et al., 

2013; Garg et al., 2018; Bagshaw et al., 2021). Therefore, it is essential to monitor the pH 

levels of marine waters globally. The pH measurements, for example, can be used to quantify 

the carbon cycle in the ocean (Zhang, 2000) and calculate surface pCO2 levels (Williams et al., 

2017). 

The first measurement of seawater pH can be traced back to the early 20th century (Sørensen 

and Palitzsch, 1910). Until the late 1980s, glass electrodes were used to measure seawater pH 

with uncertainties of about 0.1 units. The development of spectrophotometric pH measurement 

methods in the 1990s (Byrne and Breland, 1989; Clayton and Byrne, 1993; Dickson, 1993) 

marked a milestone for detecting minor pH changes, such as those expected from ocean 

acidification. 
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Traditionally, the analysis of discretely collected seawater samples is done in the laboratory 

using a benchtop spectrophotometer. Yet, this method is labor and cost-inefficient and the 

device itself big, bulky and not submersible. In order to cope with the vastness, remoteness, 

and complexity of the ocean, there is a need to increase the spatial and temporal resolution of 

measurements (Wang et al., 2019). 

Considering the advantages of in situ ocean monitoring discussed in section 1.1.1., submersible 

spectrophotometric pH sensors have been developed. Further developments in ocean 

acidification sensor technology are still ongoing today. Detailed reviews of in situ sensors for 

ocean acidification research, as well as needs and availabilities, can be found in the literature 

(Rérolle et al., 2012; Martz et al., 2015b; Bushinsky et al., 2019; Sastri et al., 2019; Tilbrook 

et al., 2019; Wang et al., 2019; Wright-Fairbanks et al., 2020). 

Table 1.1 presents the list of some commercially available and custom-made sensors for 

marine carbonate system. To date, many pH sensors are available based on potentiometric, 

fluorescent, and spectrophotometric methods. Each sensor has unique potentials and limits 

(Moore et al., 2009; Rérolle et al., 2012; Sastri et al., 2019). 

Briefly, the potentiometric pH sensors like Honeywell Durafet Ion-Sensitive Field Effect 

Transistor (ISFET) are based on the detection of the difference in voltage values between the 

reference electrode and the source electrode. The sensor voltage can be converted to pH values 

using the Nernst equation (Bresnahan et al., 2014). Potentiometric pH sensors are advantageous 

due to high-resolution measurements (6 s per measurement) with no chemical reagents. 

However, their application is limited to waters with a salinity of 20 to 40 (Sea-Bird Electronics, 

Inc.). They require preconditioning for about 5 to 10 days and frequent calibration to maintain 

the stability of the reference electrode and overcome potential drift, which is in the order of 

0.03-0.05 pH units (Sabine et al., 2004; Martz et al., 2010; Bresnahan et al., 2014; Johnson et 

al., 2016; Mclaughlin et al., 2017; Miller et al., 2018). 

Fluorescent-based pH optodes utilize pH-sensitive indicator dyes fixed in a matrix or polymer 

layer (termed sensor spot). The protonated and deprotonated forms of the indicator have 

different fluorescence (light emission) intensities at different wavelengths. Although these 

sensors are cost-effective and easily miniaturized, since they do not require reference electrodes 

and moving components, they have low maturity levels compared to potentiometric and 
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spectrophotometric pH sensors. The main drawbacks of the pH optodes are the high light 

sensitivity of the sensor spot, and ionic strength dependence of measurements (-0.01 pH units 

per salinity between 25 and 35) (Clarke et al., 2015). Moreover, biofouling is an issue for long-

term deployments, and also measurements need to be corrected for drift over time (Staudinger 

et al., 2018). 

The analytical principle of spectrophotometric pH measurement relies on the color change of 

a seawater sample after the addition of pH-sensitive chemical dye (a sulfonephthalein 

compound) (Dickson, 2010). The sample pH is related to the absorbance of protonated and 

deprotonated dye forms. Although the sensors consist of pumps, valves, and other microfluidic 

components for the injection of the sample, and dye, they are advantageous for being robust, 

stable, and calibration-free (Rérolle et al., 2012). The most reliable approach for determining 

seawater pH has shown to be the spectrophotometric method (Okazaki et al., 2017; Müller et 

al., 2018). Various studies reported successful deployments of spectrophotometric sensors in a 

wide variety of environments for fine-scale pH monitoring (in the order of 0.001 units) (Martz 

et al., 2003; Seidel et al., 2008; Aßmann et al., 2011; Darlington, 2017; Müller et al., 2018; 

Rérolle et al., 2018; Yin et al., 2021). The detailed theory of the spectrophotometric method, 

equations used to calculate pH, field applications and the accuracy levels of various pH sensors 

are described in Chapter 2. 

Besides pH, pCO2 and AT can be monitored using submersible or underway autonomous 

sensors. As yet, while the number of reports on field deployments and in situ analysis of pCO2 

and AT are still scarce, pH sensors have the highest maturity levels among all (Wang et al., 

2019). The pH data from the sensors listed in Table 1.1 are in the total pH scale (pHT), the 

most favourable in oceanography among other scales (NBS, free, and seawater) (Mosley et al., 

2004; Dickson, 2010; Fassbender et al., 2020). Although the spectrophotometric pH sensors 

are well-established in the frame of ocean best practices, there is still a need to evaluate the 

performance of the particular sensor in a range of environments, such as coastal waters, surface 

and deep ocean waters. 

In Chapter 2, we present a field deployment of the LOC pH sensor in highly dynamic estuarine 

and coastal waters of the Kiel Fjord. In addition, we briefly review the advantages and 

limitations of commercially existing technologies with current accuracy levels for monitoring 

pH.  
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Table 1.1: Some of the commercially available marine carbonate system sensors. 

 

Parameter 

 

Method Model, Manufacturer Reference 

pHT Potentiometric Durafet ISFET, Honeywell International Inc., USA (Martz et al., 2010; Bresnahan et al., 2014; 

Johnson et al., 2016; Gonski et al., 2018) 

  SeaFET, Sea-Bird Scientific, USA (Miller et al., 2018) 

 

pHT Fluorescent pH Optode, Custom-made (Clarke et al., 2015; Staudinger et al., 2018) 

 

pHT Spectrophotometric CONTROS HydroFIA pH, Kongsberg, Germany  (Aßmann et al., 2011; Müller et al., 2018) 

  SAMI-pH, iSAMI, Sunburst Sensors, LLC, USA (Seidel et al., 2008; Darlington, 2017) 

  LOC pH, ClearWater Sensors Ltd, UK (Rérolle et al., 2018; Yin et al., 2021) 

 

pCO2 Fluorescent Aanderaa optode 4797, Aanderaa, Norway (Atamanchuk et al., 2014) 

 

pCO2 NDIR CONTROS HydroC CO2, Kongsberg, Germany (Marrec et al., 2014) 

  CO2-Pro, Pro-Oceanus, Canada (Jiang et al., 2014) 

 

pCO2 Spectrophotometric SAMI-CO2, Sunburst Sensors, LLC, USA (DeGrandpre et al., 1995) 

 

AT Spectrophotometric CONTROS HydroFIA TA, Kongsberg, Germany (Seelmann et al., 2020) 

  SAMI-Alk, Sunburst Sensors, LLC, USA (Spaulding et al., 2014) 
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1.1.3. Macronutrients of the Ocean: Significance and Monitoring 

Strategies of Nitrate 

Macronutrients (dissolved inorganic nitrogen, phosphate, and silicic acid) play 

an essential role in marine biogeochemical processes and are key water quality 

indicators. The concentration levels of macronutrients (in the range of 

micromoles per liter, μmol·L–1) differ by several orders of magnitude between 

different marine environments: coastal waters, surface and deep ocean waters. 

The availability of macronutrients in marine ecosystems is mainly governed by 

natural processes, such as atmospheric deposition, organic matter 

decomposition, lightning, and geological formations. However, a range of 

anthropogenic processes (enhanced use of fertilizers, anthropogenic inputs to 

coastal waters from domestic and industrial wastes) affect the nutrient supply 

tor marine microbial organisms, thereby changing the state of marine 

ecosystems. The health of oceans depends on a balance between multiple 

elements and factors. For example, phytoplankton build their biomass with a 

stoichiometric carbon-to-nitrogen-to-phosphorus (C:N:P) ratio of 106:16:1, 

known as the Redfield ratio (Redfield, 1958). 

Nitrogen is a key element for all forms of life and is the fourth most abundant 

element after carbon, oxygen, and hydrogen in organic matter (Zehr and 

Kudela, 2011). It is available in different chemical forms and has oxidation 

states between -3 and +5. Major chemical forms of nitrogen in the marine 

environment are nitrate (NO3
-), ammonium (NH4

+), nitrite (NO2
-), dinitrogen 

(N2), nitrous oxide (N2O), dissolved organic nitrogen (DON, e.g. amino acids) 

and urea ((NH2)2CO) (Zehr and Kudela, 2011). Figure 1.3 presents the 

conversion of nitrogen forms with related microbial processes (such as nitrate 

assimilation, denitrification, nitrification, and anammox) in the water column. 

The assimilation of NO3
-, NO2

- and NH4
+ is related to the photosynthetic 

fixation of carbon by phytoplankton. Nitrification is defined as conversion of 

the fixed organic nitrogen to NO3
- by remineralisation processes, and 

denitrification is the sequential reduction of nitrogen from NO3
- to N2. 
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The transformation of NO2
- and NH4

+ to N2 is referred to as anammox process 

and only occurs in anoxic waters (Gruber, 2008; Voss et al., 2013). These 

microbial processes also affect the habitat of nitrogen forms. For example, in 

surface waters, nitrogen fixation is an important process and N2 is the most 

abundant form but only accessible by nitrogen-fixing microorganisms. NH4
+, 

NO2
-, DON, and (NH2)2CO are mostly present in low concentrations, as they 

are rapidly recycled and assimilated by autotrophic and heterotrophic 

organisms. In coastal upwelling zones and in deep ocean NO3
- is the dominant 

form of bioavailable nitrogen (Zehr and Kudela, 2011). 

 

Figure 1.3: The oxidation states of nitrogen in the marine environment and 

microbial processes related to the transformation of major nitrogen forms. 

Processes shown in grey is valid only in anoxic environments (Source: 

Gruber, 2008). 
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Nitrate (NO3
-) is the primary nutrient utilised for photosynthesis and primary 

production. Oceans have a dynamic distribution of NO3
- concentrations ranging 

from nearly nanomolar (nM) levels in tropical and subtropical surface waters, 

to several tens of µM in the Arctic and Antarctic Oceans (Voss et al., 2013). 

A depletion or an increase in NO3
- levels negatively affect marine ecosystems; 

for example, under low NO3
- conditions primary production is limited and when 

NO3
-supply is enhanced excessive growth or eutrophication may occur. 

Therefore, monitoring NO3
- levels in marine waters helps us to understand the 

state of the ecosystem. NO3
- is a routinely analyzed parameter in oceanographic 

studies based on conventional methods of discrete collection of bottled 

seawater samples and a benchtop laboratory analysis (Hansen and Koroleff, 

1999). However, the spatial and temporal resolution of conventional analysis is 

not sufficient for obtaining an ecosystem-scale perspective. Currently, a suite 

of wet-chemical colorimetric and ultraviolet (UV) spectrophotometric sensors 

exist to assess NO3
- in situ and overcome the under-sampling issue with discrete 

water sampling (Daniel et al., 2020). The sensors proved to be suitable for 

measurements of NO3
- concentrations in almost all natural waters (Zielinski et 

al., 2007; Sakamoto et al., 2009, 2017b; Beaton et al., 2011, 2017; Johnson et 

al., 2013; Frank et al., 2014; Pasqueron de Fommervault et al., 2015). The wet-

chemical colorimetric sensors have a high sensitivity but the drawback of 

requiring chemical reagents, waste storage, and using fragile moving 

microfluidic components like syringes, pumps, and valves. To date, the most 

common commercially available NO3
- sensors are based on the UV 

spectrophotometric principle, as they do not require chemical reagents and are 

suitable for high-resolution, cost-effective, long-term monitoring. However, the 

validity of the NO3
- data must be carefully assessed. The analytical principle of 

the UV spectrophotometric sensors is based on the determination of light 

absorbed by the sample in a particular wavelength range. The absorbed light is 

then proportional to the concentration of the NO3
- from Beer Lambert’s Law. 
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NO3
- naturally absorbs light in the UV wavelengths below 240 nm (Johnson 

and Coletti, 2002). However, at the same wavelength range other natural 

compounds in seawater like bromide (Br-) absorb light, and interfere with the 

NO3
- measurements. The quality of NO3

- data, therefore, depends on elaborate 

mathematical corrections, which is specific to a particular sensor. So far, 

several algorithms have been proposed to successfully estimate the Br- 

absorbance (using the temperature, salinity, and pressure dependence of its 

absorption spectra) in raw spectral data before computing NO3
- concentrations 

(Sakamoto et al., 2009, 2017a; Frank et al., 2014; Pasqueron de Fommervault 

et al., 2015; Johnson et al., 2018). 

In Chapter 3, we describe the principle of hyperspectral nitrate detection, the 

data post-processing algorithm used to compensate for interferences, the 

accuracy levels of multiple sensors, and highlight the need for standardizing the 

data processing of optical nitrate sensors by taking the sensor-specific 

properties into account. In addition, we provide new insights specific to the 

TriOS OPUS sensor used for high-resolution, in situ monitoring of nitrate in 

marine waters. 
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1.1.4. Principle of Spectrophotometers: The Current Advantages and 

Limitations of Compact Versions 

Spectrophotometers have a broad range of applications in various branches 

such as chemical, environmental, pharmaceutical, medical, and astronomical 

instrumentations. The instruments are composed of four main components: a 

light source, a sample holder, a monochromator, and a detector. 

The basic principle is that each chemical substance or solution interacts with 

light (such as absorbance transmission, reflection, scattering) over a particular 

wavelength range. Then, spectrophotometers detect the amount of light that 

passes through the sample (Germer; et al., 2014). The quantity of light 

interaction is directly related to the concentration of the solution, as stated by 

the Beer-Lambert Law, and the mathematical expression is as follows; 

𝐴 = 𝜀 · 𝑙 · 𝑐 

where A is the absorbance, 𝜀 is the molar extinction coefficient or molar 

absorptivity, and c is the concentration of the sample solution. 𝑙 is the patch 

length of light in the sample cuvette. 

The commercialization of the first instrumental spectrophotometry can be 

traced back to the mid-1930s by Dr. Arnold J. Beckman and his colleagues at 

National Technologies Laboratories (Arnold and Mabel Beckman Foundation). 

Since then, it has been a convenient tool for the analysis of most chemical 

compounds. 

The improvements in spectrophotometric devices are still ongoing to meet the 

requirements of complex applications better. Although the classical benchtop 

spectrophotometers are high in sensitivity with low stray light (Germer; et al., 

2014), their large dimensions limit their field applications in real-time and in 

situ. Advancements in technology and miniaturization have allowed the 

reduction of benchtop instruments to handheld-scale without sacrificing 

performance. 
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To date, a wide range of compact spectrophotometers is available from various 

manufacturers, i.e., Hamamatsu Photonics, Avantes, StellarNet Inc., Ocean 

Insight, Zeiss, etc. New generation, compact spectrophotometers are highly 

portable, rapid, and cost-effective. They can also be embedded in submersible 

environmental monitoring devices to provide on-site measurements, such as the 

optical sensors presented throughout the thesis. Figure 1.4 shows an exemplary 

illustration of a classic benchtop and modern compact analyzers. In general, 

compact spectrometers are more sensitive to stray light than benchtop versions; 

the increased noise may interpret as a signal, leading to misinterpretation of the 

measured data. Besides, real-time and in situ spectrophotometric measurements 

in highly dynamic marine waters are challenging compared to measurements 

of discretely collected water samples under laboratory conditions. Both 

physical and electronic limitations of detectors may enhance the noise in the 

measured signal, which restricts their use in some dynamic environmental 

applications. Therefore, compensating for potential interference and improving 

the signal-to-noise ratio have been the goal of various studies to obtain high-

quality spectral data using compact spectrophotometers. In Chapter 4, the 

potential noise sources (dark currents, temperature variations, blooming, the 

uncertainty of integration time, wavelength calibration, stray light, and detector 

non-linearity) are explained in detail. In theory, the detector signal should 

increase linearly with increasing light intensity. However, any deviation from 

this can seriously affect the quality of data. We provide optimization work to 

overcome this specific to the compact charge-coupled device (CCD) 

spectrometer, the core element of optical sensors used in autonomous ocean 

observation studies. 
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Figure 1.4: An example demonstration of the evolution of 

spectrophotometric analysers from lab to field: a benchtop SEAL AA3 

Flow Injection Nutrient Analyser and a submersible optical nitrate sensor. 

(Retrieved from: https://seal-analytical.com/Products/Segmented-Flow-

Analyzers/AA3-HR-AutoAnalyzer and TriOS GmbH, 2017). 

 

  

https://seal-analytical.com/Products/Segmented-Flow-Analyzers/AA3-HR-AutoAnalyzer
https://seal-analytical.com/Products/Segmented-Flow-Analyzers/AA3-HR-AutoAnalyzer
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 Dissertation and Chapter Overview 

The overarching goal of this Doctoral thesis is to improve and demonstrate 

autonomous chemical sensors for marine waters, with a particular focus on the 

optimization of sensors based on the spectrophotometric method. The 

dissertation is written in a cumulative manner and subdivided into the following 

five chapters. Chapters 2, 3 and 4 have been published in peer-reviewed 

journals. 

This introductory Chapter 1 describes the necessary theoretical background of 

the particular ocean observational areas (in most need of autonomous, high-

resolution, in situ data) and present levels of autonomous sensing technologies 

for marine waters. Additionally, this chapter gives an overview of current 

autonomous ocean observing systems with their advantages and drawbacks and 

highlights the main research gaps. 

Currently, spectrophotometric pH sensors are at the highest maturity level 

among submersible carbonate chemistry analyzers. Chapter 2 investigates the 

performance of an automated, submersible spectrophotometric analyzer, a LOC 

sensor, for high-resolution in situ pH determinations in dynamic estuarine and 

coastal waters. The sensor was deployed in Kiel (Germany) in the southwest of 

the Baltic Sea. Its suitability to reveal pH dynamics on a fine-scale was 

assessed. In situ pH data from the LOC sensor were compared with those from 

benchtop laboratory analysis of discrete water samples. This chapter has been 

published as: 

Münevver Nehir, Mario Esposito, Socratis Loucaides, Eric P. Achterberg: 

Field Application of Automated Spectrophotometric Analyzer for High-

Resolution In Situ Monitoring of pH in Dynamic Estuarine and Coastal 

Waters, doi.org/10.3389/fmars.2022.891876 

 

Author Contributions: Münevver Nehir performed the laboratory and field 

work, statistical analysis and data visualization. Mario Esposito performed the 

installation of the sensors on the deployment platform. Münevver Nehir wrote 

the first draft of the manuscript. All authors contributed to the article and 

approved the submitted version. 

https://doi.org/10.3389/fmars.2021.663800
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TriOS OPUS UV sensor, which is portable, reagent-free, small in size, and light 

in weight, is the latest version of commercially available optical nitrate sensors 

for marine waters. Chapter 3 describes the optimization efforts for the TriOS 

OPUS UV sensor and explains the need to improve output data quality utilizing 

an OBP approach by providing advanced calibration and data processing 

procedures. To assess whether the calibration coefficients were sensor 

dependent, five OPUS were deployed simultaneously under the same 

conditions in the laboratory, and similarities and differences among sensors 

were evaluated. In situ data from the field deployments of the sensor, through 

underway surface measurements in the southeastern North Sea and vertical 

profiles (down to 4,000 meters depth) on a CTD frame in the tropical Atlantic 

Ocean, were evaluated against the reference discrete water samples. This 

chapter has been published as: 

 

Münevver Nehir, Mario Esposito, Christian Begler, Carsten Frank, Oliver 

Zielinski, Eric P. Achterberg: Improved Calibration and Data Processing 

Procedures of OPUS Optical Sensor for High-Resolution in situ 

Monitoring of Nitrate in Seawater, doi.org/10.3389/fmars.2021.663800 

 

Author Contributions: Münevver Nehir and Eric P. Achterberg conceptualized 

the study and methodology. Christian Begler and Oliver Zielinski supported 

experimental tools. Christian Begler provided initial Matlab scripts and assisted 

in the development of the OPUS controller. Mario Esposito assisted during 

laboratory and field tests. Münevver Nehir wrote the article with edits and 

contributions from all co-authors. 

  

https://doi.org/10.3389/fmars.2021.663800
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Compact charge-coupled device (CCD) spectrometers are a core component of 

various analytical laboratory devices and autonomous sensors. The physical 

and electronic capabilities of CCD spectrometers may limit their usability as 

analytical applications become more complex. Chapter 4 describes a more 

technical aspect of optimizing spectrophotometers to improve the signal-to-

noise ratio of readings and expand the use of CCD spectrometers by proposing 

a simple experimental approach to compensate for their nonlinear effects. A 

Hamamatsu C10082CA mini-spectrometer was used to display the results for 

each pixel. This chapter has been published as: 

Münevver Nehir, Carsten Frank, Steffen Aßmann, Eric P. Achterberg: 

Improving Optical Measurements: Non-Linearity Compensation of 

Compact Charge-Coupled Device (CCD) Spectrometers, 

doi.org/10.3390/s19122833 

Author Contributions: Carsten Frank and Steffen Aßmann developed the 

concept of this study. Münevver Nehir, Carsten Frank, Steffen Aßmann and 

Eric P. Achterberg contributed to the implementation of the research, to the 

analysis of the results, and the preparation of the manuscript. 

 

Chapter 5 finalizes the dissertation with a summary of the main findings and 

concluding remarks for the oceanographic community, also gives future 

suggestions to fill the gaps in current knowledge. 

 

 

https://doi.org/10.3390/s19122833
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Abstract 

High quality pH measurements are required in estuarine and coastal waters to 

assess the impacts of anthropogenic atmospheric CO2 emissions on the marine 

carbonate system, including the resulting decrease in pH. In addition, pH 

measurements are needed to determine impacts on carbonate chemistry of 

phytoplankton blooms and their breakdown, following enhanced anthropogenic 

nutrient inputs. The spectrophotometric pH technique provides high quality pH 

data in seawater, and is advantageous for long-term deployments as it is not 

prone to drift and does not require in situ calibration. In this study, a field 

application of a fully automated submersible spectrophotometric analyzer for 

high-resolution in situ pH measurements in dynamic estuarine and coastal 

waters is presented. A Lab-on-Chip (LOC) pH sensor was deployed from a 

pontoon in the inner Kiel Fjord, southwestern Baltic Sea, for a total period of 6 

weeks. We present a time-series of in situ pHT (total pH scale) and ancillary 

data, with sensor validation using discretely collected samples for pHT and 

laboratory analysis. The difference between the sensor and laboratory analyses 

of discrete samples was within ±0.015 pHT unit, with a mean difference of 

0.001 (n=65), demonstrating that the LOC sensor can provide stable and 

accurate pHT measurements over several weeks. 

 

Keywords: pH sensor, Lab-on-Chip, Spectrophotometric, mCP, Kiel Fjord, 

coastal carbonate system, ocean acidification.  
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 Introduction 

The oceans play a significant role in the global carbon cycle as one of the main 

reservoirs of carbon. Since the beginning of the Industrial Revolution, 

anthropogenic CO2 emissions have perturbed the exchange of CO2 between the 

atmosphere and oceans. Oceans have absorbed about a quarter of anthropogenic 

carbon dioxide (CO2) emissions (Friedlingstein et al., 2020), a process causing 

a long-term pH decrease (ocean acidification). To date, several studies have 

focused on determining the progression of ocean acidification by using long-

term ocean observations datasets (Dore et al., 2009; Midorikawa et al., 2010; 

Hu et al., 2015; Van Dam and Wang, 2019; Ishida et al., 2021). Time-series 

measurements of surface ocean pH over the past two decades have reported a 

decrease of about 0.1 units since the pre-industrial era from ca. 8.2 to 8.1 (Orr 

et al., 2005). An additional decrease in surface ocean pH of more than 0.4 units 

is expected by the end of the 21st century (Feely et al., 2009; Jiang et al., 2019; 

Kwiatkowski et al., 2020). 

Estuarine and coastal waters are more complex than open ocean waters and are 

highly dynamic environments where freshwater discharges mix with seawater, 

with many systems impacted by anthropogenic activities. For example, nutrient 

run-off results in eutrophication with the ensuing breakdown of organic matter 

produced by phytoplankton blooms causing high pCO2 and reduced pH values, 

adding to the acidification caused by anthropogenic CO2 uptake (Wallace et al., 

2014; Zhao et al., 2020). The acidification of estuarine and coastal waters is 

affecting ecosystems negatively and various biogeochemical processes in a 

water column (Guinotte and Fabry, 2008; Hall et al., 2020; Thomas et al., 

2022). For example, enhanced acidic conditions threaten the growth, 

abundance, and survival of shell-forming organisms (corals, some plankton 

species, and commercial shellfish (Doney et al., 2020; Fox et al., 2020; Wilson 

et al., 2020; Blaisdell et al., 2021) and affect the solubility and speciation of 

trace metals (Millero et al., 2009; Hoffmann et al., 2012). To improve our 
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understanding of the current state of the kinetics and dynamics of various 

physical and biogeochemical processes in estuarine and coastal waters, 

monitoring activities with a high-resolution are essential (Carstensen et al., 

2018), and pH is one of the keystone parameters to be observed. 

High-resolution measurements of pH are essential for tracking the 

thermodynamic state of acid-base processes in seawater. pH is a measure of the 

concentrations of hydrogen ion on a logarithmic scale and one of the four 

measurable parameters of the marine carbonate system. Others are the partial 

pressure of carbon dioxide (pCO2), dissolved inorganic carbon (DIC) and total 

alkalinity (AT) (Millero, 2007). The gaseous form of CO2 dissolve in surface 

waters and is converted into carbonic acid (H2CO3), hydrogen (H+), bicarbonate 

(HCO3
-), carbonate (CO3

2-) ions (Dickson et al., 2007) as follows: 

𝐶𝑂2 (𝑔) ↔ 𝐶𝑂2 (𝑎𝑞) 

𝐶𝑂2 (𝑎𝑞) + 𝐻2𝑂(𝑙) ↔ 𝐻2𝐶𝑂3(𝑎𝑞)
 

𝐻2𝐶𝑂3(𝑎𝑞) ↔ 𝐻𝐶𝑂3
−

(𝑎𝑞)
+ 𝐻+

(𝑎𝑞) 

𝐻𝐶𝑂3
−

(𝑎𝑞)
↔ 𝐶𝑂3

2−
(𝑎𝑞)

 + 𝐻+
(𝑎𝑞)  

Four different seawater pH scales; NBS (U.S. National Bureau of Standards), 

free, total, and seawater, are described in literature and the total scale is 

favoured in oceanography as it includes the effect of sulfate ions (Mosley et al., 

2004; Dickson, 2010; Fassbender et al., 2020). The calculation of the 

dissociation constant of the sulfate ion can be eliminated using the total proton 

scale (Zeebe and Wolf-Gladrow, 2001). All pH data reported in this study are 

on the total [H+]T scale, expressed as: 𝑝𝐻𝑇 = 𝐻+ + 𝐻𝑆𝑂4
−. 

The traditional carbonate chemistry observations in marine systems are based 

on discrete water sample collection, storage, transportation, and land-based 

laboratory analysis. Discrete water samples for carbonate chemistry can be 

collected using dedicated samplers such as Niskin bottles, and then stored 

following poisoning using mercuric chloride until laboratory analysis for pH, 



Chapter 2 – Field Application of Automated Spectrophotometric Analyzer for 

High-Resolution In Situ Monitoring of pH in Dynamic Estuarine and 

Coastal Waters 

 

 

25 

 

DIC and AT using standard operational procedures (Dickson et al., 2007). pH 

can be determined directly using potentiometric or spectrophotometric 

techniques (Dickson et al. (2007), but also calculated via the CO2Sys software 

following e.g. AT and DIC measurements (Lewis and Wallace, 1998; Pierrot et 

al., 2006). The main limitations of this approach are the inadequate temporal 

resolution and duration and the high costs associated with the collection, 

preservation, shipping, and analysis of samples. 

Advancements in marine technology and observational oceanography have 

enabled the development of miniaturized in situ pH sensors that can be 

integrated into stationary or autonomous platform for monitoring marine 

environments at a high temporal and spatial resolution (Sastri et al., 2019). To 

date, a range of pH sensors have been reported for autonomous in situ pH 

measurements, and are based on three different analytical methods, 

potentiometry (electrodes), fluorescence (optodes) and, spectrophotometry 

(indicator dyes). Table 2.1 presents examples of the current in situ pH sensors 

and their application in multiple oceanographic studies. Each system has a 

range of advantages and limitations (Rérolle et al., 2012, 2018; Sastri et al., 

2019). Potentiometric pH sensors for seawater (i.e., Honeywell Durafet Ion-

Sensitive Field Effect Transistor (ISFET), SeaFET, SeapHOx) do not require 

chemical reagents and have a fast sampling frequency (6 seconds per 

measurement), but measurements are limited to a salinity range between 20 and 

40 (Sea-Bird Electronics, Inc.). Besides, Honeywell Durafet based pH sensors 

may be prone to drift (potentially more than 0.02 pH unit/week) (Rérolle et al., 

2016), therefore require preconditioning of the electrode for 5 to 10 days and 

frequent calibrations (Sabine et al., 2004; Martz et al., 2010; Bresnahan et al., 

2014; Mclaughlin et al., 2017; Miller et al., 2018). To date, the Deep Sea 

Durafet sensor has been deployed on a range of profiling floats, and the 

assessment and correction for any potential drift to reduce bias in the pH 

measurements have been comprehensively evaluated by Johnson et al., 2016. 

Recent work introduced a self-calibrating SeapHOx system for seawater, 
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periodic flushing of the sample cell with a calibration solution of Tris buffer in 

artificial seawater (Bresnahan et al., 2021), which is yet limited to seawater 

applications. The main limitations of fluorescent-based pH measurements are 

the interfering compounds of natural seawater (i.e., chlorophyll-a), drift with 

time, and the sensor spot is also light sensitive (Clarke et al., 2015). Staudinger 

et al. (2018) presented a stand-alone optode sensor system for pH, oxygen, and 

carbon dioxide with an integrated battery and logger and its short-term 

applications in the Baltic Sea and mentioned the need for drift correction and 

assessment of biofouling for long-term deployments. 

The spectrophotometric method for pH, developed in the 1980s (Robert-Baldo 

et al., 1985), provides many advantages for marine studies as it is robust, stable, 

calibration-free and not prone to drift (Rérolle et al., 2012). Under oceanic 

conditions, spectrophotometric pH measurement systems have demonstrated 

excellent performance (Clayton and Byrne, 1993; Bellerby et al., 2002; 

Aßmann et al., 2011; Rérolle et al., 2016). Commercially available, 

submersible spectrophotometric sensors (see Table 2.1, Lab-on-Chip (LOC) 

and SAMI-pH) have been successfully tested for fine-scale, autonomous and in 

situ monitoring of pH in a wide variety of environments, from freshwater 

(Martz et al., 2003) to seawater (Seidel et al., 2008; Rérolle et al., 2018; Yin et 

al., 2021). Indicator impurities and wavelength accuracy of spectrophotometers 

are some of the potential sources of uncertainty in spectrophotometric pH 

measurements, which DeGrandpre et al. (2014) has reported in detail. The 

quality of the pH data is related to how well the molar extinction coefficients 

and the second dissociation constant of an indicator dye have been determined 

as a function of sample temperature and salinity. To date, the experimental 

characterization and modelling of a meta-Cresol Purple (mCP) for estuarine 

(S≤20, Mosley et al., 2004; Lai et al., 2016, 2017; Douglas and Byrne, 2017b; 

Müller and Rehder, 2018) and hypersaline (35≤S≤100, Loucaides et al., 2017) 

waters have been reported. 
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Table 2.1: Examples of the current in situ pH sensors used in 

oceanographic studies. 

Model, Manufacturer Analytical method pH Monitoring Applications 

 

Honeywell Durafet ISFET, 

SeaFET and SeapHOx 

(Sea-Bird Electronics, 

USA) 

Potentiometric Deployment of ISFET pH sensor on vertical profiling 

platforms from 2,000 m to the surface over several 

months (Johnson et al., 2016): <0.010 pH units 

accuracy. 

 

Deployment of ISFET pH sensor in coastal waters over 

months periods (Bresnahan et al., 2014): <0.030 pH 

units accuracy. 

 

Commercially available SeaFET and SeapHOx sensors 

based on ISFET technology: ±0.050 pH units accuracy 

(https://www.seabird.com/seafet-v2-ocean-ph-

sensor/product-details?id=54627921732&callback=qs). 

 

SeaFET pH sensor deployment in coastal waters of 

south-central Alaska, USA for a period of 3 to 5 months 

(Miller et al., 2018): <0.025 pH units accuracy. 

 

pH optodes 

(Custom-made) 

 

Fluorescent optode  Shipboard surface seawater measurements in the 

Southern Ocean, over a month (Clarke et al., 2015): 

accuracy is not reported, 0.0074 pH units precision. 

 

Profiling on a pier in Southampton, UK, for 6 days 

(Staudinger et al., 2018): 0.020 pH units accuracy. 

 

SAMI-pH (Sunburst 

Sensors, LLC, USA) 

Spectrophotometric Coastal waters, deployment at the pier at Scripps 

Institution of Oceanography for about 22 days (Seidel et 

al., 2008): ±0.0017 pH units accuracy. 

 

Commercially available SAMI-pH sensor: ±0.003 pH 

units accuracy 

(http://www.sunburstsensors.com/products/oceanograp

hic-ph-sensor.html). 

 

CONTROS HydroFIA-pH 

(4H-Jena engineering 

GmbH, Germany) 

Spectrophotometric Shipboard measurements in the North Sea over 6 weeks 

period (Aßmann et al., 2011): 0.0081 pH units accuracy 

compared to CRM and 0.0005 pH units to a reference 

system, short-term precision: ± 0.0007. 

Note: The sensor is a benchtop unit, not yet submersible. 

 

National Oceanography 

Centre, University of 

Southampton, UK, 

Lab-on-Chip pH 

(ClearWater Sensors, 

Southampton, UK) 

Spectrophotometric Deployed in surface waters of northwest European shelf 

seas for about a month period (Rérolle et al., 2018): 

0.004 pH units accuracy compared to CRM. 

 

Deployed on fixed and moving platforms over varying 

environmental salinity, temperature, and pressure 

condition (Yin et al., 2021): +0.003 ± 0.022 pH units 

accuracy compared to discrete validation seawater 

samples. 

https://www.seabird.com/seafet-v2-ocean-ph-sensor/product-details?id=54627921732&callback=qs
https://www.seabird.com/seafet-v2-ocean-ph-sensor/product-details?id=54627921732&callback=qs
http://www.sunburstsensors.com/products/oceanographic-ph-sensor.html
http://www.sunburstsensors.com/products/oceanographic-ph-sensor.html
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Recently, the capabilities of the LOC pH sensor have been successfully 

demonstrated on fixed and moving platforms under different environmental 

conditions, including deployments in surface waters of Southampton (S>24) 

for several months, and in deep ocean waters (~4820 m) (Yin et al., 2021). 

However, the performance of this LOC pH sensor in estuarine and coastal 

waters has not yet been thoroughly investigated. 

The aim of this study was to evaluate the performance of an automated 

spectrophotometric analyser, a LOC sensor, for high-resolution in situ pH 

determinations in dynamic estuarine and coastal waters, and expand the 

applicability of the sensor to waters with a wide salinity range (13.2-21.8). The 

sensor was deployed from a floating pontoon at GEOMAR Helmholtz Centre 

for Ocean Research (Kiel, Germany) in the southwestern Baltic Sea between 

summer and autumn 2018 for a total period of 6 weeks. Ancillary data were 

obtained to assess the control of pH dynamics at the sampling site. Additional 

spectrophotometric pHT measurements were conducted in the laboratory on 

discretely collected samples, and the measurements were validated with 

certified reference material (DIC-AT CRM, Batch-151, obtained from Prof. A. 

G. Dickson at Scripps Institute of Oceanography, USA). 

 Materials and Methods 

2.2.1.  Sensor Overview 

The LOC pH sensor is a submersible unit that performs autonomous in situ pH 

analysis with a spectrophotometric technique using microfluidic components 

and was initially developed in 2012 by the Ocean Technology and Engineering 

group at National Oceanography Centre (NOC) and University of 

Southampton, UK (Rérolle et al., 2013). It is now (since 2021) commercially 

available from ClearWater Sensors, Southampton, UK. A schematic diagram 

of the fluidic design of the sensor is shown in Figure 2.1. All components were 

mounted on a three-layer microfluidic chip made from tinted 
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poly(methylmethacrylate) (PMMA) (Floquet et al., 2011; Perez et al., 2016), 

and together with the electronics placed in a mineral oil-filled (M3516 from 

Merck, viscosity≤30.0cps) pressure compensated, watertight cylindrical 

polyvinylchloride housing (15 cm diameter, 56 cm height, 920 g weight in air). 

Detailed information of the sensor housing and microfluidic chip unit can be 

found in (Grand et al., 2017). 

 

Figure 2.1: The schematic diagram of the fluidic design of the LOC pH 

sensor. 

The operation of the sensor is explained in brief here. A sample and indicator 

dye are injected by two separate syringe pumps, controlled by valves, and 

mixed in a static mixer before entering a 10 mm optical cell. The change in the 

intensity of light transmitted by a Light Emitting Diode (LED, Roithner 

Lasertechnik, Austria) at 435 nm (15 nm full width at half maximum (FWHM)) 

and 590 nm (15 nm FWHM) through the optical cell is recorded by a 

photodiode detector (TSL257, TAOS Inc., USA) (Floquet et al., 2011; Rérolle 

et al., 2013; Perez et al., 2016). To account for slight discrepancies between the 

wavelengths of the LED’s emission and the mCP’s absorption maxima (434 

and 578 nm) the pH sensor is calibrated post-manufacture according to Yang 

et al. (2014). The ratio of absorbances at the absorbance maxima of the acidic 

and basic forms of the indicator dye is then used to assess the pH value of a 

sample (Clayton and Byrne, 1993). In continuous operation mode, the sensor 

requires low power about 3 W or 1300 J per measurement and one measurement 

takes approximately 8 minutes (Yin et al., 2021). For each measurement, 3 µl 

of indicator dye is added to 700 µl of sample according to a pre-programmed 
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measurement routine stored internally on the sensor unit. Approximately 0.4 

mL of indicator is consumed per day when the sensor operates in continuous 

mode. Stock solutions of mCP are stored in 50 mL gas impermeable Flexboy 

bags (Sartorius Stedim Biotech, UK), wrapped in black tape to protect from 

light and avoid photo bleaching. The mCP stock solution remains stable for 

several months up to 2 years, when stored appropriately (Takeshita et al., 2021). 

It is possible to conduct up to 16.666 analyses with one reagent bag of 50 mL, 

which was attached externally to the LOC pH unit. Waste was collected into an 

additional external bag attached to the sensor. The WetChem Graphical User 

Interface (GUI) was used to operate the sensor and visualize intensity values, 

measurement time, pump position, internal temperature in real-time. 

2.2.2. Analytical Principle and Data Processing of the LOC pH Sensor 

The analytical principle of spectrophotometric pH determination is based on an 

addition of a pH-sensitive diprotic sulfonephthalein indicator dye (H2I) to a 

water sample. The dye changes color according to the pH of the seawater 

sample, i.e., the color changes from pink to yellow when it is in the acidic 

[HI-] and to purple when it is in the more basic [I2-] form (Clayton and Byrne, 

1993). Chemical equilibria between three dissociation forms of the dye can be 

expressed as follows: 

H2I 
K1
⇔ HI− + H+            𝐾1 =

[H2I]

[H+]  ·  [HI−]
                                                     (1) 

 

HI−
K2
⇔ I2− + H+             𝐾2 =

[HI−]

[H+]  ·  [I2−]
                                                       (2) 

 

where [] indicates concentration, K1 and K2 are first and second dissociation 

constant of the indicator, respectively. The pK2 (in other terms –log(K2)) of 

mCP is close to the pH of seawater, which is typically between 7.6 to 8.3 

(Dickson et al., 2007).  
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The pH of a seawater sample (𝑝𝐻 = −𝑙𝑜𝑔[𝐻+]) can then be quantified as: 

  pHT = −𝑙𝑜𝑔(𝐾2) + 𝑙𝑜𝑔 (
[𝐼2−]

[𝐻𝐼−]
)                                                                       (3) 

 

According to the Beer-Lambert Law, the amount of [I2-] and [HI-] can be 

calculated using their distinct absorption properties at 434 and 578 nm: 

  Aλ = ( ε λ 
I2− ·  [I2−] + ε λ 

HI− ·  [HI−])  ·  𝑙                                                             (4) 

 

where Aλ is the absorbance, 𝜀λ is the molar absorptivity values at wavelength λ, 

and l is the optical path length. 

Then, the equation used to quantify pH can be rearranged as follows: 

pHT = − 𝑙𝑜𝑔(𝐾2𝑒2) + 𝑙𝑜𝑔 (
R − 𝑒1 

1 − R ·
𝑒3

𝑒2
 
)  

where  𝑒1 =
ε578
[HI−]

ε434
[HI−]

 , 𝑒2 =
ε578
[I2−] 

ε434
[HI−]

 , 𝑒3 =
ε434
[I2−] 

ε434
[HI−]

                                                     (5) 

where R is the ratio of absorbance at 578 (maximum peak for [I2−]) to 434 nm 

(maximum peak for [HI−]), R = A578 / A434 (Clayton and Byrne, 1993; Liu et 

al., 2011). 

A recent study reports on the characterization of a range of sulfonephthalein 

indicator dyes in detail, including mCP, for a broad range of environmental 

conditions (Hudson-Heck et al., 2021). Data processing of the LOC sensors raw 

data involves computation of molar extinction coefficients (in terms of e1, 

e3/e2), and second dissociation constant value (pK2) of mCP at sample 

temperature and salinity using the equations and coefficients obtained from the 

literature (e1, e3/e2 were computed from (Liu et al., 2011) and pK2 was 
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computed from Müller and Rehder, 2018, which is valid for salinity range 5-20 

and temperature range 5-35°C). In situ temperature and salinity data of the 

sample were collected in parallel by external sensors (see section 2.2.3.). 

In this study, a purified mCP (Acros Organics, 99%) indicator dye was used as 

its 𝜀λ and pK2 are well-established for estuarine waters (Lai et al., 2016, 2017; 

Müller and Rehder, 2018). The purification of mCP was done by following the 

protocol described in Liu et al. (2011) and Loucaides et al. (2017). A 4 mM 

mCP reagent solution adjusted to pH 8.0±0.1 at 25°C was prepared and verified 

by a glass pH electrode. 

2.2.3. Field Deployments: Sampling site and ancillary data 

In situ field demonstration of the LOC pH sensor was performed on a floating 

pontoon facility of GEOMAR (Kiel, Germany; 54°19'48.78"N, 10° 8'59.44"E) 

for a period of 6 weeks between August 1st to 13th and October 20th to 

November 19th, 2018. The sampling site is surrounded by dockyards and cruise 

ship terminals, and the city of Kiel with a population of ca. 250,000. The Kiel 

Fjord has a length of 9.5 km, an inner width of 250 m with depth of 10 to 12 m, 

an outer width of up to 7.5 km with depths greater than 20 m (Nikulina et al., 

2008). The fjord drains into the southwest Baltic Sea. The waters in the inner 

fjord are homogeneously mixed, except during the summer period following 

water column stratification. Most of the freshwater delivered to the system is 

from rainwater and the Schwentine River on the eastern shore (Nikulina et al., 

2008). 

The LOC sensor was programmed to sample at hourly intervals (except for the 

first 5 days in August: 20 min intervals). A 0.45 µm Millex HP PES in-line 

filter (Millipore, Merck, Darmstadt, Germany) was placed at the sample inlet 

of the LOC sensor to prevent particles from entering the microfluidic channels 

(Rérolle et al., 2013). The filter surface area is relatively large compared to the 

volume of sample withdrawn and therefore no significant underpressure is 
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required to draw sample through. The sensor was powered externally by a 12 

V power supply. 

Salinity, temperature and oxygen were measured with a sampling interval of 

one minute using a SBE 37-SMP-ODO MicroCAT CTD and dissolved oxygen 

(DO, dO2) sensor (Sea-Bird Electronics, USA). The LOC, CTD, and DO 

sensors were mounted on a stainless steel sensor frame that was lowered from 

the side of the pontoon and positioned at a depth of ca 2 m. Discrete water 

samples were collected daily, once in the morning and/or once in the evening, 

using a peristaltic pump (Cole Palmer, Masterflex L/S series) placed on the 

floating pontoon. The inlet of an acid cleaned (with 1 M HCl) 6.4 mm ID C-

Flex tubing (Cole Palmer Masterflex) was attached to the frame close to the 

sample inlet of the LOC pH sensor. Discrete seawater samples for direct 

spectrophotometric laboratory analysis of pHT (Yin et al., 2021) were pumped 

into 250 mL borosilicate bottles and sealed with a ground stopper. Analyses of 

unpreserved samples were performed within few hours in the laboratory using 

a benchtop spectrophotometric CONTROS HydroFIA pH analyzer (4H-Jena 

engineering GmbH, Aßmann et al., 2011). Measurements of the LOC sensor 

and HydroFIA analyzer were validated using the DIC-AT CRM (Batch-151, 

pHT 7.862 at temperature 25°C and salinity 33) from Prof. A. G. Dickson 

(Scripps Institute of Oceanography, USA) before and after deployments. The 

correction of sample pHT was done using equations described in section 2.2 and 

in situ temperature and salinity values. Seawater samples of inorganic nutrients 

(NO3
-, PO4

3- and SiO4
-4) were collected after filtration through an AcroPak 500 

(Pall GmbH, Germany) in acid-cleaned (1 M HCl) 50 mL polypropylene 

centrifuge tubes (Jet Bio-Filtration Co., Ltd., Guangzhou, China) and stored at 

-20°C for about a month until the wet-chemical colorimetric laboratory analysis 

using a Seal QuAAtro autoanalyser (Becker et al., 2019). 
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The GEOMAR pontoon facility is used for continuous time-series 

measurements of various biogeochemical and physical parameters in Kiel Fjord 

as part of the KIMOCC environmental data monitoring program. Here, we used 

the one-minute interval post-processed pCO2 data of the installed CONTROS 

HydroC CO2 sensor (4H-Jena engineering GmbH, Germany). An overview of 

the analytical principle of the CO2 sensor and data processing can be found in 

Fietzek et al. (2014). CO2Sys was used to calculate concentration of dissolved 

CO2 gas in the water sample. Throughout the study, in situ pCO2 levels are in 

µatm and dissolved CO2 gas levels are in µmol·kg-1 SW. Weather data (wind 

speed, rainfall, solar irradiation) were obtained from the GEOMAR weather 

station, and were available for every 8 min. The tide gauge water level (meter) 

measurements at Kiel Fjord were obtained from the IOC Sea Level Monitoring 

Facility (http://www.ioc-sealevelmonitoring.org/station.php?code=kiel). All 

sensors and ancillary data presented throughout this study were examined and 

processed using Python software (version 3.7.4). 

 Results and Discussion 

2.3.1.  Validation of in situ pH sensor measurements 

A total of 65 individual samples were collected during deployments that were 

analyzed employing a benchtop spectrophotometric analyzer to ensure the 

accuracy of pH values reported using the LOC sensor. The LOC sensor and 

discrete water samples pH data followed a consistent pattern throughout both 

deployments (Figure 2.2a) and were significantly indifferent (a paired t-

test, p ≤ 0.05). A linear regression yielded y=0.998x+0.004 (R2=0.99) for a 

total of 65 samples. No offset was applied to the sensor data and both sensor 

and discrete pH results were calculated independently. The average difference 

between the sensor and discrete samples pH (ΔpHT=LOC sensor-discrete water 

samples) was 0.001 pH units, but ranged from -0.015 to 0.015 over the duration 

of the summer and autumn deployments (Figure 2.3). No clear correlation was 

http://www.ioc-sealevelmonitoring.org/station.php?code=kiel
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found between ΔpHT and ancillary data (T, S, dO2), however, the relationship 

between pHT and ancillary data will be detailed in the next section. Additional 

validation of the sensor pH measurements was done by calculating pHT from 

salinity-derived AT and in situ pCO2. Computational details of salinity-derived 

AT will be clarified in section 2.3.2. pH data from the summer and autumn 

deployments pooled together and for a total pH value of 978, a linear regression 

analysis resulted in R2 =0.86, with an equation of y=1.030x-0.217 (Figure 

2.2b). 

 

Figure 2.2: Linear regression fits between all summer and autumn pHT 

values obtained from a) discrete water samples vs LOC sensor (data: blue 

squares, linear fit; solid red line, n=65), and b) CO2Sys-calculation vs LOC 

sensor (data: grey circles, linear fit; solid pink line, n=978). 
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Figure 2.3: The residuals of ΔpHT (LOC sensor-discrete water samples) 

over the duration of summer and autumn deployments, respectively. 

 

Both the LOC sensor and HydroFIA analyzer measurements were validated by 

consecutive measurements of DIC-TA Certified Reference Material (CRM) 

(Batch-151, pHT=7.862 at T=25°C, S=33) before and after the field 

deployments. The mean pH values obtained from ten consecutive CRM 

measurements in July, September, and November 2018 were 7.858±0.002, 

7.860±0.002 and 7.859±0.001 pH units for the LOC pH sensor and 

7.861±0.001, 7.862±0.002 and 7.860±0.001 pH units for the HydroFIA pH 

analyzer. Both analyzers had a precision about 0.001 pH units, and the accuracy 

of the measurements were slightly better with the HydroFIA analyzer (<0.002 

pH units). 
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2.3.2. Statistical distribution and diel variations of in situ pH and 

ancillary data 

 

The main focus of this work was to demonstrate the capability of the LOC pH 

sensor in a highly dynamic system, and analysis of the biogeochemical data 

was completed to investigate the biogeochemical processes influencing 

carbonate chemistry dynamics in the Kiel Fjord. The statistical distribution of 

all data (seawater temperature, salinity, pHT, dO2, pCO2, NO3
-, PO4

3- and  

SiO4
-4 is presented in Table 2.2 and allows a closer examination of the summer 

and autumn data. The seawater temperature and salinity, characterizing the 

hydrographic situation, showed marked changes; the mean salinity values were 

about 4 units higher and the mean temperature values were about 10 units lower 

in autumn, indicating saltier and colder water intrusion in the fjord, with fresher 

waters in summer. Highly dynamic salinity conditions for Kiel Fjord ranging 

from 2.6 to 22.4 have been reported, with a mean of 14.3 (Schories et al., 2006). 

During our summer deployment the salinity values ranged between 13.2 and 18 

(mean 15.7), and in autumn deployment within 19.6 to 21.8 (mean 20.7). 

Enhanced seawater temperatures ranging between 18.1 and 24.2°C (mean 

22.1°C) characterized the summer deployment. In autumn, temperature 

dropped to a minimum value of 8.7 and ranged up to 14.1°C (mean 11.5°C). 

The LOC sensor determined in situ pHT values were within 7.520-8.275 (mean 

7.954) and within 7.560-7.932 (mean, 7.742) in summer and autumn, 

respectively. High mean pCO2 levels were observed related to lower pH values 

towards autumn. The pCO2 values ranged between 264-1446 µatm (mean 845 

µatm) in summer and between 521-1402 µatm (mean, 904 µatm) in autumn. 

The dO2 observations showed values between 4.5-9.5 mg·L-1 (mean 7.3 mg·L-

1) in summer, and 5.8-8.7 mg·L-1 (mean, 7.7 mg·L-1) in autumn, respectively. 

Although, the mean dO2 levels were almost identical in two seasons, dO2 levels 

were about two times more dynamic in summer (ΔdO2 was 5 mg·L-1 in summer 

and 2.9 mg·L-1 in autumn, respectively). 
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Table 2.2: Summary statistics for in situ pHT and ancillary data from 

summer and autumn deployments. Δ refers to the difference between 

maximum and minimum values, n is the sample size. 

Parameter Summer Autumn Parameter Summer Autumn 

      

T (°C) 

Mean 

Min-Max 

ΔT 

n 

 

22.1 

18.1-24.2 

6.1 

1,325 

 

11.5 

8.7-14.1 

5.4 

6,483 

dO2 (mg·L-1) 

Mean 

Min-Max 

ΔdO2 

n 

 

7.3 

4.5-9.5 

5 

1,170 

 

7.7 

5.8-8.7 

2.9 

6,477 

      

S 

Mean 

Min-Max 

ΔS 

n 

 

15.7 

13.2-18.0 

4.8 

1,325 

 

20.7 

19.6-21.8 

2.2 

6,483 

NO3
-(µM) 

Mean 

Min-Max 

ΔNO3
- 

n 

 

0.31 

0.08-

0.81 

0.73 

32 

 

2.09 

0.84-3.83 

2.99 

75 

      

pHT  

(Sensor) 

Mean 

Min-Max 

ΔpHT 

n 

 

7.954 

7.520-

8.275 

0.755 

346 

 

7.742 

7.560-

7.932 

0.372 

632 

PO4
3- (µM) 

Mean 

Min-Max 

ΔPO4
3- 

n 

 

0.47 

0.16-

1.51 

1.35 

32 

 

1.30 

1.11-1.55 

0.44 

75 

      

pCO2(µatm) 

Mean 

Min-Max 

ΔpCO2 

n 

 

845 

264-1446 

1182 

53,293 

 

904 

521-1402 

881 

41,756 

SiO4
4-(µM) 

Mean 

Min-Max 

ΔSiO4
4- 

n 

 

9.12 

1.7-23.3 

21.6 

32 

 

24.3 

19.9-28.6 

8.7 

75 

Discretely analyzed samples of nutrients exhibited that NO3
- concentrations in 

summer were depleted with values between 0.08 and 0.81 µM (mean 0.31 µM), 

and was followed by an increase in autumn, with concentrations between 0.84 

and 3.83 µM (mean 2.09 µM). Mean PO4
3- and SiO4

-4 concentrations were also 

higher in autumn. In summer, the concentration range for PO4
3- was 0.16-1.51 

µM (mean 0.47 µM) and for SiO4
-4 1.7-23.3 µM (mean 9.12 µM), whilst in 

autumn PO4
3- concentrations varied from 1.1 to 1.55 µM (mean 1.30 µM) and 

SiO4
-4 from 19.9 to 28.6 µM (mean 24.3 µM). The wind speed was maximum 

11 m·s-1 in summer (mean 3.2 m·s-1), and 13 m·s-1 in autumn (mean 4.1 m·s-1). 
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Diel variations of seawater temperature, salinity, pHT, and ancillary variables 

(pCO2, AT, dO2, nutrients, water level, solar irradiance and wind speed) 

obtained during the first deployment in summer 2018 are presented in Figure 

4. A total of 346 LOC sensor measurements and 21 discrete seawater samples 

for pH and 32 for nutrients were collected from August 1 to August 13 on the 

GEOMAR pontoon facility in Kiel Fjord. The 3-day gap in the dataset, between 

August 5 and 8, was associated with an electrical failure of the power supply to 

the sensor. The ranges of all variables and the number of samples measured are 

presented in Table 2.2. 

Co-located deployment of independent sensors facilitated the validation of the 

time-series data at a higher spatial and temporal resolution than can be achieved 

by analysis of discrete samples (Martz et al., 2015). Considering the high diel 

variability in temperature, salinity, pHT, and the ancillary data presented in 

Figure 2.4, there was a clear difference between the waters sampled at the 

beginning and end of the deployment. At the beginning of the deployment 

period until about August 9, 2018, it can be stated that there was not much 

activity in the water, referring to tidal ranges (difference between high tide and 

low tide) below 0.3 m and relatively stable ancillary data.  

A rapid decrease in pHT from 8.249 to 7.573 (determined by the LOC sensor), 

increase in pCO2 from 292 to 1029 µatm and decrease in dO2 from 9.2 to 5.4 

mg·L-1 was observed within 24 h from August 9 to 10, 2018, corresponded to a 

heavy storm event with wind speeds up to 11 m·s-1. This event coincided with 

the extreme weather alert from the German Weather Service 

(https://www.dwd.de/DE/presse/pressemitteilungen/DE/2018/20180830_deut

schlandwetter_august_news.html). A typical tidal range for the Fjord is ±1 m 

(Geißler et al., 2021). The water level, temperature and salinity measurements 

presented in Figure 2.4 illustrate the impact of the storm on the sampled waters. 

The surface waters of the Kiel Fjord are characterized by enhanced temperature 

and low salinity, as opposed to the bottom waters of low temperature and high 

https://www.dwd.de/DE/presse/pressemitteilungen/DE/2018/20180830_deutschlandwetter_august_news.html
https://www.dwd.de/DE/presse/pressemitteilungen/DE/2018/20180830_deutschlandwetter_august_news.html
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salinity. Shifts in seawater temperature (approximately 3°C decrease) and 

salinity (approximately 2 units increase) values were observed during the 

storm. Nutrients were in a trend consistent with pCO2 and both increased in 

response to increased wind speed and decreased temperatures (Figure 2.4). 

Enhanced biological activity was evidenced as while nutrients and pCO2 were 

increasing, AT and dO2 were in decreasing trend. The in situ determined pHT 

values were a reflection of pCO2 and dO2 levels. 

Anomalous characteristics of the Baltic Sea waters with respect to major ions 

and hence alkalinity do not allow a straightforward calculation of 

alkalinity using salinity that applies to all regions of the Baltic Sea in general 

(Hammer et al., 2014; Müller et al., 2016). Müller et al. (2016) describes the 

temporal alkalinity trends in the Baltic Sea using long-term historical datasets 

and shows the relationship between alkalinity and salinity at four different 

basins. Instead, we have theoretically calculated AT using in situ salinity data 

from our deployments and the equation for the Atlantic waters (0°C<T<20°C, 

31<S<37) from Lee et al. (2006) to compute pHT using CO2Sys and have a 

view of AT values for our study site. During the summer deployment, salinity-

derived AT values ranged between 2205 and 2427 µmol·kg-1 with a mean of 

2267 µmol·kg-1. Although the salinity-derived AT values are not exactly 

suitable for our study area, when the pHT values calculated using these AT and 

in situ pCO2 data are compared with the sensor pHT values, a significant 

relationship is seen (Figure 2.2b). 
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Figure 2.4: Diel variations of a) in situ temperature (blue), in situ salinity 

(green), b) in situ pHT (black: LOC sensor, red circles: discrete water 

samples), solar irradiance (light grey), c) in situ pCO2 (dark grey), in situ 

dO2 (coral), d) salinity-derived AT (purple), water height (orange), and e) 

NO3
- (red diamond), PO4

3-, (blue circles), SiO4
-4 (grey squares), and wind 

speed (pale blue dots) with multiple sensors deployed at the GEOMAR 

pontoon in Kiel Fjord in summer 2018, from 01.08 to 05.08 and from 08.08 

to 13.08. 
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The second deployment at the same location took place in autumn 2018, from 

October 20 to November 19, during which 632 LOC sensor measurements were 

conducted, and discrete seawater samples for discrete seawater samples for pH 

(n=44) and for nutrients (n=75) were collected. Diel variations of the seawater 

pHT and ancillary data are shown in Figure 2.5 and the corresponding value 

ranges are provided in Table 2.2. The tide gauge water level measurements at 

Kiel Fjord corresponding to our measuring period indicated that during a heavy 

storm (wind speed up to ca. 13 m·s-1, Figure 2.5e), the water level increased 

by about 1 m (from 4.46 to 5.46 m, Figure 2.5d).  

During the autumn deployment a further notable weather event occurred 

starting from October 26th, a storm flood approached at the sampling site, 

followed by successive winds (speed >10 m·s-1) for about 3 days. Over the same 

period, daily rain intensities (precipitation) of ca. 10 mm were captured, which 

is a threshold of a heavy rainfall event for Germany (Deumlich and Gericke, 

2020), and reductions in water temperature and salinity of about 2 units were 

observed with additional responses in pHT, pCO2, dO2 and NO3
- levels. 

Strongly variable increases in pHT values were observed, presented in the 

yellow circle in Figure 2.5b, and were not included in Table 2.2. This was 

likely due to the variations in the physical conditions of the fjord waters with 

winds and tides. The in line filter of the LOC sensor was changed on November 

1, 2018, to avoid possible clogging after dynamic water conditions. The gaps 

(couple of hours) in the LOC sensor dataset between October 25 and 26, as well 

as November 11 and 12, were related to the power cuts. 
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The salinity-derived AT values ranged between 2075 and 2130 µmol·kg-1 with 

a mean of 2099 µmol·kg-1 in autumn, much lower than those reported in 

summer. Compared to the first deployment (Figure 2.4), the time series data 

presented in Figure 2.5 were relatively uniform with small differences between 

maximum and minimum values of all parameters (as indicated by low Δ values, 

Table 2.2). An increase in NO3
- concentrations, from 1.70 to 3.83 µM, was 

noticed over a one-day period, between November 5 and 6, 2018. The dO2 

levels decreased from 8.5 to 7.9 mg·L-1, whilst pCO2 levels increased from 704 

to 961 µatm. The acidification process was evidenced with decreasing pH 

values from 7.858 to 7.752. This event can be ascribed to supply of subsurface 

waters enriched in DIC due to organic matter respiration process (see also 

section 2.3.3). 
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Figure 2.5: Diel variations of a) in situ temperature (blue), in situ salinity 

(green), b) in situ pHT (black: LOC sensor, red circles: discrete water 

samples), solar irradiance (light grey), c) in situ pCO2 (dark grey), in situ 

dO2 (coral), d) salinity-derived AT (purple), water height (orange), and e) 

NO3
- (red diamond), PO4

3-, (blue circles), SiO4
-4 (grey squares), and wind 

speed (pale blue dots) with multiple sensors deployed at the GEOMAR 

pontoon in Kiel Fjord in autumn 2018, from October 20 to November 19. 
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2.3.3. Carbonate chemistry dynamics in Kiel Fjord 

Estuarine and coastal waters feature complex hydrological conditions, often 

including strong variations in surface salinity (Castelao et al., 2010). Carbonate 

chemistry in coastal waters is regulated by variety of factors, including 

biological metabolic (photosynthesis, respiration, and calcium carbonate 

precipitation or dissolution), and physical processes (ocean currents, tide, 

weather conditions) (Kristiansen et al., 2001; Feely et al., 2010; Stokowski et 

al., 2020; Huang et al., 2021). A change in the mass balance of the carbonate 

system or thermodynamic conditions of the waters affect the surface pCO2 

levels, consequently the pH dynamics (Dai et al 2009). 

pHT and ancillary data, presented in this study, exhibited clear diel variations 

(Figure 2.4 and 2.5), and the patterns were different in the two seasons, 

suggesting that distinct internal processes may be involved in regulating these 

variations. At our deployment site, observations indicated that in the nearshore 

surface waters of Kiel Fjord were colder, saltier, and more acidic in autumn 

compared to summer (Figure 2.6). The ΔpHT was 0.372 units in autumn and 

0.755 units in summer, respectively. 
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Figure 2.6: In situ a) temperature-salinity and b) pHT-salinity diagram of 

the period investigated, illustrating different hydrological periods in 

summer (black, green circles) and autumn (red, orange circles). 

pH, pCO2 and dO2 are important indicators for characterizing water masses and 

biological processes (Orr et al., 2005; Staudinger et al., 2018). An increase in 

dO2 concentrations corresponded to an increase in pH and decrease in pCO2 

levels in waters, due to enhanced photosynthetic activity of algae. The mean 

differences in dO2 between summer and autumn can also be attributed to the 

fact that the effect of wind mixing on the water was sharper in our summer 

distributions, as the waters are generally not well mixed in the summer. The 

increase in nutrient concentrations and pCO2 while the dO2 decreases are 

evidence of the biological life in the environment. The pH time-series data 

mirrors that of pCO2 and dO2, when fit to a linear regression yielded r2=0.85 

and r2=0.77 in summer and yielded r2=0.46 and r2=0.70 in autumn, respectively 

(Figure 2.7). Besides, pCO2 data can be considered as a form of validation of 

the pH data, as in situ measurements were conducted using two different 

sensors; CONTROS HydroC and LOC. 
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Figure 2.7: Linear regression (solid lines) plots between a) pCO2 and pHT 

(black circles present the data from the summer time-series in situ data 

presented in Figure 2.4, linear fit yielded r2=0.85 (n=346) and orange 

circles present the data from the autumn time-series in situ data presented 

in Figure 2.5, linear fit yielded r2=0.46 (n=632), and b) dO2 and pHT (green 

circles present the data from the summer time-series in situ data presented 

in Figure 2.4, linear fit yielded r2=0.77 (n=346) and red circles present the 

data from the autumn time-series in situ data presented in Figure 2.5, linear 

fit yielded r2=0.70 (n=632). 

The observed Redfield ratios, defining the stoichiometry of the photosynthesis 

and respiration reactions (Redfield et al., 1963), are shown in Table 2.3. The 

molar ratios between carbon, nitrogen, and phosphorus from simultaneous 

measurements on the deployment site indicated that the C:N ratio was largely 

above the proposed Redfield ratio of 106C:16N, which may be related to N loss 

processes due to denitrification (Gruber, 2008). The N:P ratio in our data was 

below the Redfield ratio of 16N:1P, which may again be related to N loss 

through denitrification and additional benthic P supply from anoxic sediments 

(Lenton and Watson, 2000). 
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Table 2.3: Molar ratios of C, N and P derived from simultaneous 

observations during deployment periods. 

 C:N Ratio 

Summer 
 

N:P Ratio 

Summer 

C:N Ratio 

Autumn 

 
 

N:P Ratio 

Autumn 

Min 17.6  0.213 10.3   0.650 

Max 224  2.64 48.2   3.07 

Mean 86.9  0.798 21.8   1.65 

Our data from the Kiel Fjord shows strongly elevated in situ pCO2 (maximum 

of 1420 µatm) levels, even higher than reported for other estuaries. For example 

the Polish Oder Estuary which also drains into the Baltic Sea has reported pCO2 

values of <1200 µatm (Stokowski et al., 2020). Higher CO2 levels were related 

to nutrient enrichment in the system (Figure 2.8), with respiration resulting in 

O2 consumption and CO2 production (Figure 2.4 and 2.5). 

 

Figure 2.8: Dynamics of in situ concentration of dissolved CO2 gas in the 

water sample (calculated using the CO2Sys) vs nutrients during the a) 

summer and b) autumn deployment. 
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The physical mixing and enhanced remineralization of organic substances in 

estuaries, promoted by high nutrient loads from land, determine the chemical 

composition of the system (Bauer et al., 2013; Stokowski et al., 2020). While 

it is beyond the scope of this study to precisely quantify the intensity of 

photosynthesis/respiration processes, studies from different estuaries have 

suggested that intensity levels of biological activities are modulated by wind-

driven inputs of nutrients from subsurface waters (Gazeau et al., 2005; Saderne 

et al., 2013; Li et al., 2020). 

Given our in situ data and the main biological and physical drivers of the 

carbonate chemistry of the estuarine systems, the carbonate system in Kiel 

Fjord is regulated by i) respiration, and ii) wind-driven mixing. During the 

deployment periods storm events were captured, in which subsurface waters 

(with enhanced pCO2 and nutrient levels) were transferred to the surface, 

evidenced by temperature and salinity observations. 

 

 Conclusion 

Understanding spatial and temporal changes in pH in association with 

environmental variables is essential for a sustainable management of marine 

systems. Hydrodynamic and biogeochemical processes in coastal estuaries 

change rapidly from minutes to days, triggering acidification in the system (Xu 

et al., 2017; Wright-Fairbanks et al., 2020). Those sudden changes often cannot 

be resolved through sampling and analyses of discrete water samples. The 

automated real-time observation of carbonate chemistry dynamics with sensors 

like LOC offer a potentially substantial improvement in that regard. While the 

performances of the LOC sensor for high-resolution spectrophotometric pH 

measurements has been demonstrated in surface waters of shelf seas with 

salinities above 24 (Rérolle et al., 2018; Yin et al., 2021), this is the first report 

on deployments of the sensor in dynamic estuarine waters (S<20). 
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Our study shows the effects of respiration and wind-driven mixing of water 

masses leading to consecutive impacts on the carbonate chemistry of the Kiel 

Fjord. The presented in situ data from observations conducted within a period 

of six weeks in two seasons (summer and autumn) showed the suitability of the 

LOC pH sensor for revealing the strong dynamics in highly dynamic estuarine 

waters on a fine temporal scale. The applicability of the sensor is broad, it was 

integrated on a Seaglider (iRobot/Kongsberg) (Possenti et al., 2021), on an 

Autosub Long Range AUV (Yin et al., 2021), and on an ROV (Monk et al., 

2021). The unique depth rating (6000 m), low power and reagent consumption, 

low cost, high portability, and ease to use without calibration for long-term 

monitoring make the LOC sensor a good choice for autonomous pH 

observations on various monitoring platforms. Work is currently underway for 

integration of the LOC pH sensor on other AUVs (pers. comm. Socratis 

Loucaides). The measurement frequency (~8 min) is the main weakness of the 

sensor when deployed on fast-moving and profiling platforms such as gliders 

and floats. Future works should focus on optimizing the measurement duration 

of the sensor to achieve better performance on such platforms. 
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Abstract 

Nitrate, an essential nutrient for primary production in natural waters, is 

optically detectable in the ultraviolet spectral region of 217-240 nm, with no 

chemical reagents required. Optical nitrate sensors allow monitoring at high 

temporal and spatial resolutions that are difficult to achieve with traditional 

approaches involving collection of discrete water samples followed by wet-

chemical laboratory analysis. The optical nitrate measurements are however 

subject to matrix interferences in seawater, including bromide, at the spectral 

range of interest. Significant progress has been made over the last ten years in 

improving data quality for seawater nitrate analysis using the ISUS and SUNA 

(Seabird Scientific, USA) optical sensors. Standardization of sensor calibration 

and data processing procedures are important for ensuring comparability of 

marine nitrate data reported in different studies. Here, we improved the 

calibration and data processing of the OPUS sensor (TriOS GmbH., Germany), 

and tested five OPUS sensors simultaneously deployed under identical 

conditions in the laboratory in terms of inter-sensor similarities and differences. 

We also improved the sampling interval of the OPUS to 3 s in a continuous 

mode by a custom-build controller, which facilitates the integration of the 

sensor into autonomous profiling systems. Real-time, high-resolution, in situ 

measurements were conducted through (1) underway surface measurements in 

the southeastern North Sea and (2) depth profiles on a CTD frame in the tropical 

Atlantic Ocean. The nitrate data computed from the optical measurements of 

the sensor agreed with data from discrete water samples analysed via 

conventional wet-chemical methods. This work demonstrates that the OPUS 

sensor, with improved calibration and data processing procedures, allows in 

situ quantification of nitrate concentrations in dynamic coastal waters and the 

open ocean, with an accuracy better than ~2 µM and short-term precision of 0.4 

µM NO3
-. The OPUS has a unique depth rating of 6,000 m and is a good and 

cost-effective nitrate sensor for the research community. 

Keywords: nitrate, optical sensor, data processing, in situ spectrophotometer, 

ultraviolet spectrophotometer, autonomous monitoring. 
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 Introduction 

Nitrogen is a crucial nutrient for the functioning of all living organisms. The 

principal form of fixed dissolved inorganic nitrogen in marine waters is nitrate 

(NO3
-), which is identified as one of the Essential Ocean Variables by the 

Global Ocean Observing System community (EOVs). Nitrate is utilised by 

microorganisms, including phytoplankton, for primary production and thereby 

facilitates ocean uptake of atmospheric carbon dioxide (Wong et al., 2002). The 

availability of nitrate leads to direct and indirect effects on marine ecosystem 

health: it can limit primary productivity when depleted (Kristiansen et al., 2001) 

and cause eutrophication when supplied at high levels (Beusekom, 2018). 

Traditionally, the determination of nitrate in marine waters has been undertaken 

through collection of discrete water samples, preservation if required, and 

laboratory analysis using wet-chemical techniques (Grasshoff et al., 1983; 

Becker et al., 2019). Infrequent sampling intervals result in missing episodic 

and transient events that lead to important temporal and spatial variations in 

nitrate concentrations (Prien, 2007; Pidcock et al., 2010). High-frequency in 

situ observations on autonomous platforms are therefore required to capture the 

variability in nitrate concentrations, overcome risks of sample contamination 

and degradation, and reduce high sampling/analysis costs as well as relatively 

long analysis times. 

Over the past 30 years, advances in technology and analytical chemistry have 

allowed the development of submersible analysers for marine waters that can 

provide in situ NO3
- measurements. To date, wet-chemical colorimetric 

analyzers and ultraviolet (UV) optical sensor technologies are available for 

marine water applications (Daniel et al., 2020). These sensors allow 

autonomous NO3
- analysis in marine waters on various platforms and at 

enhanced temporal and spatial resolution. However, their performance can be 

limited by analytical, biological, optical, and physical factors, including 

detection limit, reagent stability, biofouling, power consumption and depth 

range. Wet-chemical analyzers such as the WIZ probe (Systea, Italy, Vuillemin 
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and Sanfilippo, 2010) and Lab-on-Chip sensor (NOC, UK, Beaton et al., 2012) 

have a measurement frequency of ca. 15 min, a limit of detection of 0.025 µM 

NO3
-, require chemical reagents, and have moving components (pumps, 

syringes). The analytical principle is based on the colorimetric reaction method 

where NO3
- is determined using the Griess assay with a copperized cadmium 

column, and in situ calibration using standard solutions (Beaton et al., 2012). 

The optical sensors are based on direct spectrophotometric NO3
- determinations 

in the UV wavelength region, as NO3
- has a strong spectral signature up to 240 

nm (Johnson and Coletti, 2002), and these sensors have a high measurement 

frequency (up to 1 Hz) (Johnson and Coletti, 2002, Johnson et al., 2006). UV 

optical sensors offer several advantages over colorimetric sensors, as they are 

not prone to issues associated with degradation of chemical reagents, fragile 

microfluidic components and chemical waste. The optical sensors are small in 

size (portable), light in weight (typically 2 kg), capable of operating on the 

order of seconds, and have the potential to be used for long-term deployments 

because of their low power consumption (≤ 8 W). 

Initial sea trials of the first version of a UV optical NO3
- sensor measuring at 

six wavelengths; 205, 220, 235, 250, 265 and 280 nm were reported over 20 

years ago (Finch et al., 1998). High-resolution and long-term hyperspectral 

oceanic measurements of NO3
- have been reported using a ISUS sensor 

(Seabird Scientific, USA) that employed a 256-pixel array detector with a 

spectral range of 200-400 nm (Johnson and Coletti, 2002). Thereafter various 

hyperspectral UV optical sensors such as the SUNA (Seabird Scientific, USA), 

NITRATAX plus sc (Hach Lange GmbH, Germany), S::CAN Spectro::lyser 

(S::CAN Messtechnik GmbH, Austria), ProPS and OPUS (TriOS GmbH, 

Germany), have become commercially available with a range of detectors, light 

sources, and path lengths. These sensors have been used in a range of 

environmental applications, including monitoring of wastewaters (Rieger et al., 

2008), freshwaters (Pellerin et al., 2012), coastal waters (Zielinski et al., 2011; 
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Frank et al., 2014), and the open ocean (Johnson, 2010; Pasqueron de 

Fommervault et al., 2015). 

The ISUS sensor has been mounted on autonomous profiling Biogeochemical 

Argo floats in the ocean, generating high-frequency (1 measurement per 

second) long-term (>2.5 years) NO3
- data (Johnson et al., 2013). Recently, the 

OPUS was deployed in brackish waters of the Baltic Sea in which the potential 

use of the sensor on a Conductivity-Temperature-Depth (CTD) rosette sampler 

(1 measurement per 20 s) was demonstrated (Meyer et al., 2018). Bittig et al. 

(Bittig et al., 2019) deployed the OPUS on an experimental Biogeochemical 

Argo float, however to date, results and data evaluations have not been 

published. The ISUS and OPUS sensors differ in their light sources; ISUS 

utilizes a deuterium and OPUS a xenon lamp. Each lamp has a specific thermal 

and spectral stability, brightness, spectral output and lifetime (Finch et al., 

1998). A xenon flash lamp has a relatively large-scale spectral variability at the 

wavelength range of interest (<240 nm) compared to deuterium (Johnson and 

Coletti, 2002), and an advantageously longer lifetime (a xenon lamp ~2,000-

3,000 h and deuterium ~1,000 h) (Pellerin et al., 2013). 

The UV absorption spectrum of seawater is determined by bromide (Br-) and 

NO3
-, and to a lesser extent by the optically measurable fraction of coloured 

dissolved organic matter (CDOM) (Ogura and Hanya, 1966; Johnson and 

Coletti, 2002). The accuracy of NO3
- data output using UV optical sensors 

depends on how well interfering substances are compensated for (Frank et al., 

2014). Several data post-processing algorithms have been proposed (Sakamoto 

et al., 2009, 2017a; Frank et al., 2014; Pasqueron de Fommervault et al., 2015; 

Johnson et al., 2018; Meyer et al., 2018) to correct for the chemical 

interferences and compute NO3
- concentrations from raw spectral data. The 

need to compensate for Br- interferences in optical nitrate analysis in seawater 

using temperature and salinity dependence of absorption has been reported 

(Zielinski et al., 2007). Over 10 years, various oceanographic studies with the 

ISUS or SUNA sensors commonly used a temperature-corrected salinity 
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subtracted (TCSS) algorithm introduced by Sakamoto et al. (Sakamoto et al., 

2009, 2017a). Calculation strategies of nitrate concentrations from in situ 

optical nitrate sensors, such as the ProPS, were further improved for turbid 

marine environments (Zielinski et al., 2011). 

To date, the OPUS is lacking a reliable sensor calibration and data processing 

approach for marine waters. There is nevertheless a need to standardize the 

handling of the raw spectral data of the sensors in order to ensure the output 

data is comparable among different studies that cover different regions of the 

global ocean (Daniel et al., 2020). 

The objective of this study was to improve the calibration and data processing 

procedures of the OPUS for high-resolution in situ monitoring of NO3
- in 

marine waters. When handling raw spectral data in different ways, such as using 

the LSA-like calibration (from the manufacturer, see Table 3.1) or SUNA-like 

calibration (Johnson et al., 2018) and distinct approaches to compensate for Br- 

and CDOM related interference in measurements, and comparing the output 

NO3
- data might lead to inconsistencies. This study presents a new application 

of the TCSS approach (introduced by Sakamoto et al. (2009) for the 

ISUS/SUNA) for the OPUS sensor. For this, sensor-specific parameters related 

to the calibration and Br--compensation algorithm were derived through a series 

of laboratory experiments. Besides, a total of five OPUS sensors were deployed 

simultaneously under controlled laboratory conditions, and similarities and 

differences between the sensors were evaluated. The temporal resolution of 

NO3
- measurements by the OPUS sensor has been increased to 3 s by a newly 

developed controller, achieving high-resolution monitoring on moving marine 

platforms such as CTD profilers. OPUS sensors were further employed during 

research expeditions in the (1) southeastern North Sea, and (2) tropical Atlantic 

Ocean. Reference discrete water samples were collected in the field and 

analysed in the laboratory using conventional wet-chemical methods for 

validation purposes. 

  



Chapter 3 – Improved Calibration and Data Processing Procedures of OPUS 

Optical Sensor for High-Resolution In Situ Monitoring of Nitrate in Seawater 

 

 

58 

 

Table 3.1: Characteristics of the OPUS sensor, as provided by the 

manufacturer (Operating Instructions, TriOS GmbH). 

 
Parameters  OPUS 

Optical Features  

Light source Xenon flash lamp 

Lamp lifetime ~ 2,000-3,000 h (Pellerin et al., 2013) 

Detector High-end miniature spectrophotometer 

Wavelength range 200-360 nm 

Wavelength resolution 

 

0.8 nm/pixel 

Physical Features  

Instrument housing material Stainless steel or titanium 

Dimensions (Length x Diameter) 470 mm x 48 mm (with 10 mm path) for stainless steel 

(regular) 

511 mm x 59 mm (with 10 mm path) for titanium 

(deep-sea) 

Sample path lengths 0.3, 1, 2, 5, 10, 20, 50 mm 

Weight in air ~ 3 kg for stainless steel and 2 kg for titanium (regular) 

 ~ 4 kg for titanium (deep-sea) 

Sampling frequency 3 s (with a custom-build controller) 

30 s (regular) 

Accuracy  ±5 % + 0.01 of readings 

Precision  0.4 µM 

Maximum depth ratings 300 m for stainless steel 

6,000 m for titanium 

Power consumption ≤8 W 

Input voltage 12 V 

Communication interface Ethernet, RS-232 or RS-485 (Modbus-RTU) 

Operation temperature range 2-40°C 

Internal data storage capacity  2 GB 

Data Processing Features 
 

Manufacturer calibration file Reference sum spectra of the LSA group 

System configuration and data download TriOS web-based interface 
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 Materials and Methods 

3.2.1. Instrument Description 

The OPUS nitrate sensor is portable, small in size, and light in weight (Table 

3.1). The device utilizes a xenon flash lamp, a reference diode and a 256-

channel high-end miniature spectrophotometer. Briefly, a xenon flash lamp is 

directed through an optical path with the sample, and the intensity of light 

passing through the sample is recorded by the spectrophotometer over a 

wavelength (λ) range of 200 to 360 nm with an integration time of 256 ms. A 

reference diode monitors the intensity of the light source. A schematic diagram 

of the sensor is shown in Figure 3.1. All components are housed in a single 

stainless steel or titanium pressure case. 

 

Figure 3.1: Schematic of the OPUS sensor unit (courtesy of TriOS 

GmbH). 
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The regular (factory setting) sampling interval of the OPUS is 30 s when set to 

operate in a continuous sampling mode. This is suitable for stationary 

deployments, but not when deploying the sensor on gliders or autonomous 

profiler systems, such as CTD frames with a vertical profiling speed of 1 m/s. 

We developed at GEOMAR a ATMega128 (Atmel Corporation) based 

controller that triggers the raw spectral (dark and light) measurements of the 

OPUS via a Modbus-RTU protocol. The wiring diagram of the controller is 

provided in Figure 3.2. Electrical power to the OPUS and controller is provided 

through an auxiliary port of the CTD system. Measurements are conducted 

every 3 s at a defined sequence, with measurements of ten times light followed 

by one-time dark spectrum. A drift up to 60 s per day in the internal clock of 

the OPUS was observed. To eliminate this, the controller is set to autonomously 

synchronize time during each dark measurement. Another important feature of 

the controller is that it provides backup power for a few seconds to allow the 

OPUS to finish its measurement in case of power loss. 

 

Figure 3.2: Schematic of the wiring diagram of the controller for 

enhancing measurement frequency of OPUS sensor. 
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3.2.2. Laboratory Tests 

The first part of this study consisted of experiments carried out under controlled 

laboratory conditions. Freshly dispensed deionized water (Milli-Q, resistance 

≥18 MΩ cm-1, Merck Millipore) was used to prepare calibration solutions of 

840 µM Br-, with and without 40 µM NO3
-, and additional 1, 2, 4, 7, 10, 20 and 

60 µM NO3
- solutions, from stock solutions of 1,000 µM KBr (Fisher Scientific 

ACS reagent grade) and 1,000 µM KNO3
 (Merck Millipore ACS reagent 

grade). The calibration solutions were kept in acid cleaned (1 M HCl) glass 

bottles. A total of five OPUS sensors, all with 10 mm optical path length, were 

utilized in parallel under conditions described below. We assigned them 

consecutive numbers, i.e., OPUS1 to OPUS5, to which we refer throughout the 

study. The OPUS1 sensor was a deep-sea version and others were shallow 

water versions (see Table 3.1). The sensors were fully immersed in a thermally 

insulated glass container (15 L) sequentially filled with calibration solutions in 

a deionized water medium. The container was connected via Teflon tubing (I.D. 

50 mm) to a water bath (7 L, Julabo GmbH) to control the temperature and 

circulate the solution (Figure 3.3). A custom-made polystyrene lid was placed 

on top to avoid contamination and heat exchange, and keep the sensors at the 

same height in the container. Prior to the measurements, optical windows of the 

sensors were cleaned with a few drops of acetone and wipes (Kimtech) 

followed by rinsing with deionized water. The surface of the sensors, volume 

of the container, water bath and tubings contacting sample were all rinsed at 

least three times with deionized water at the beginning of the setup and between 

changes of solutions. First, freshly dispensed deionized water was carefully 

poured into the container, care was taken to avoid the formation of air bubbles 

on the optical paths, and a reference spectrum was recorded. Then, UV spectra 

of two calibration solutions were measured as a function of temperature. The 

water bath temperature was set to a total of 4 fixed temperatures between 5 and 

20°C, and enough time was given to stabilize the sample temperature. The 

OPUS1 sensor was set to 3 s while the other sensors were set to 30 s for about 

30 min (as only one controller for higher frequency analysis was available at 
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the time of the experiment). The calibration solutions were used to assess the 

temperature effect and to derive molar extinction coefficients - the strength of 

chemical species to absorb light at a particular wavelength - of Br- (𝜀𝐵𝑟−,𝑐𝑎𝑙) 

and NO3
- (𝜀𝑁𝑂3 

− ,𝑐𝑎𝑙).  

Figure 3.3: The laboratory setup for testing of OPUS sensors. 

Laboratory measurements were conducted in 840 µM Br-, which is equivalent 

to Br- concentrations in seawater with salinity 35. Other chemical interferences 

from small seawater components are expected to be low below 240 nm, and 

therefore these were not the subject of this study. The laboratory experiments 

were conducted in a freshly dispensed deionized water medium in order to have 

full control over the measurements and avoid potential matrix effects. The 

concentration unit of µM reported throughout the study indicates micromoles 

per liter (µmol·L–1). 

During the experiments, in situ temperature in the container was measured with 

a Kelvimat® 4323 thermometer (Burster Präzisionsmesstechnik GmbH) 

equipped with a Pt100 temperature probe, which has an accuracy of ± 0.01°C. 

The sensors, temperature probe of the precision thermometer and external 

computer were all synchronized via coordinated universal time (UTC). The 

TriOS web-based software was used to operate the sensors and download the 

internally recorded data. Power (12 V) was supplied to sensors by an external 

benchtop power supply. 
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3.2.3. Field Campaigns 

One of the OPUS (OPUS1) sensor was employed in the southeastern North Sea 

on April 16-17, 2019 during the Sternfahrt-1 MOSES research expedition 

onboard RV Littorina. The expedition track from Büsum to Helgoland and 

return, and the location of the German Bight are shown in Figure 3.4. 

Helgoland is located about 60 km away from the German coast and Elbe River 

mouth (Ey et al., 2017), and the coastal waters are a mixture of riverine and 

saline North Sea waters. Prior to the deployment, the sensor housing was 

cleaned with deionized water, and the OPUS was fully immersed in a cylinder 

filled with deionized water to update the waterbased spectrum. The sensor was 

fully immersed in a test tank (volume of 160 L) placed on deck of the vessel 

and was continuously supplied with surface water (from 2 m depth) at a flow 

rate of 80 L/min. UV spectral measurements of seawater were recorded with 

the OPUS at a 1-min sampling interval. In situ salinity and temperature values 

were recorded at 1-min interval using a CTD system (Seabird SBE 37-SMS-

ODO), placed in the test tank. Discrete water samples were collected 

periodically at about 30 min intervals to validate the sensor measurements. For 

this, the water samples from the test tank were filtered (0.45 µm pore size PES 

filter, Fisher Scientific) and stored in 50 ml polypropylene tubes (Jet Biofil) 

that had been acid cleaned (1 M HCl). The tubes were rinsed three times with 

filtered seawater prior to collection. Samples were stored at -20°C, and 

analysed within one month at GEOMAR using an autoanalyser (Seal QuAAtro) 

with standard wet-chemical colorimetric techniques (Becker et al., 2019). 
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Figure 3.4: Left panel: Map showing the expedition track of the RV 

Littorina during the Sternfahrt-1 in the southeastern North Sea, from 

Büsum to Helgoland. Right panel: North Sea and location of the German 

Bight. 

 

The second field test took place in the tropical Atlantic Ocean, where the 

OPUS1 was mounted on a CTD frame and deployed on a cast down to 4,000 m 

depth (00°00.00’S, 30°00.00’W, October 15, 2019, CTD71, M158 research 

cruise, R/V Meteor). Ancillary data (including dissolved oxygen and inorganic 

nutrients; NO3
-, nitrite, silicate and phosphate) were obtained at various depths 

during the deployment. 
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 Results and Discussion 

3.3.1. Assessment of the Effect of Temperature on Bromide Absorbance 

Br- is a conservative component of seawater with a concentration of ca. 840 µM 

at salinity 35 (Morris and Riley, 1966). The strength of absorbance for both Br- 

and NO3
- ions are closely related and overlap in the lower UV region, as 

indicated in a figure of their molar extinction coefficients versus wavelength 

(Figure 3.5). Spectral discrimination of these ions is required to accurately 

compute NO3
- concentrations. For this, the spectral region between 217 and 240 

nm, where NO3
- is dominant, is used (Zielinski et al., 2011). 

 

Figure 3.5: Molar extinction coefficient (𝜀) values of 840 µM Br- and 40 

µM NO3
- at wavelengths from 210 to 240 nm at 20°C from OPUS and 

SUNA-specific (Johnson et al., 2018) calibration files. 

 

Br- absorption is temperature-dependent as it occurs through a charge transfer 

process; the rate of charge transfer varies with ambient temperature (Jortner et 

al., 1964; Sakamoto et al., 2009). On the other hand, NO3
- absorbance is 

independent of temperature due to the fact that it occurs within the molecule 

through π to π* transition process (Mack and Bolton, 1999). During the 

laboratory tests, we used the calibration solutions to assess the temperature 

effect on Br- absorbance. The absorbance of the 840 µM Br- solution 
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exponentially increased with an increasing temperature (Figure 3.6a), and 

gradually decreased with increasing wavelength (Figure 3.6b).  

The relative change in absorbance with respect to temperature remained 

constant for 840 µM Br- with and without 40 µM NO3
-, there was no additional 

temperature effect on absorbance due to the presence of NO3
- ions (not shown 

here). It should be noted here that the 840 µM Br- and 40 µM NO3
- do not 

necessarily reflect the real seawater conditions, and the exact in situ levels of 

both constituents might vary in time and space, nevertheless this can be 

computed using the algorithm (see Eqn. 4 in section 3.3.2.). 

 

Figure 3.6: a) The ln(absorbance) values of 840 µM Br- solution plotted 

vs. temperature of the solution; at 216.32, 218.78, 220.42 and 222.88 nm. 

Data are shown in grey. The solid red lines refer to the linear regression 

(r2=0.99), with y=0.0277x-1.9323, y=0.0284x-2.6439, y=0.0282x-3.1159 

and y=0.0271x-3.8135, respectively. b) The slope of ln(absorbance) vs. 

temperature plotted vs. pixel. In here, pixel refers to wavelength-210, 

within 216 and 239 nm. The solid red line presents the third order 

polynomial fit and has y=1e-07x3–9e-05x2+0.0016x+0.0212, r2 =0.99. 

 

The raw spectral data of the calibration solutions were processed using the 

procedure described in section 3.3.2. An example spectral area attributed to 

NO3
- after data processing is shown in Figure 3.7. 
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Figure 3.7: The spectral signature of calibration solutions at 20°C. The 

grey filled area is attributed to absorbance due to NO3
-. 

 

3.3.2. Data Processing Procedure for OPUS 

Raw spectral data of the OPUS was processed by taking potential lamp 

degradation, Br- interference and CDOM-baseline effect into account prior to 

calculating NO3
- concentrations. The lamp degradation was taken into account 

during calculation by recording detector intensities in deionized water before 

and after each deployment (see section 3.3.3.). We determined OPUS-specific 

molar extinction coefficients for Br- and NO3
- prior to data processing and 

developed a new algorithm (Eqn. 4) for the compensation of Br- interferences. 

Data processing procedure is outlined as follows; 

 

1. Calculation of the measured absorbance of a sample in the UV spectral region 

of interest between 200 and 260 nm: The absorbance (𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) is 

logarithmically related to a transmitted light intensity according to Beer-

Lambert’s law: 

                 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = − log (
𝐼𝜆 − 𝐼𝐷
𝐼𝜆0

− 𝐼𝐷 
)                                                   (𝐸𝑞𝑛. 1)  

 

where 𝐼𝜆 refers to detector intensity for the sample and 𝐼𝜆0
 is the detector 

intensity for deionized water. 𝐼𝐷 is the dark current that is periodically recorded 
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by the spectrophotometer when the light source is off. 𝐼𝐷 was subtracted from 

each spectrum to eliminate internal noise (Nehir et al., 2019) before the data is 

used. 𝜆 is the wavelength (nm). 

 

2. Calibration Coefficients: It should be noted here that the calibration coefficients 

were determined in the laboratory following the procedures described in section 

3.2.2, and a sensor-specific calibration file was produced prior to the 

deployments. This file includes wavelength, 𝜀𝐵𝑟−,𝑐𝑎𝑙 , 𝜀𝑁𝑂3 
− ,𝑐𝑎𝑙, calibration 

temperature and reference intensity recorded in deionized water (Johnson et al., 

2018). 𝜀𝐵𝑟−,𝑐𝑎𝑙 and 𝜀𝑁𝑂3 
− ,𝑐𝑎𝑙 were determined from a linear relationship 

between absorbance and concentration of the substance according to Beer-

Lambert’s Law: 

  

     𝜀𝐵𝑟−,𝑐𝑎𝑙 =
𝐴𝐵𝑟− 𝑐𝑎𝑙

𝑆𝑐𝑎𝑙 ·  𝑙 
       𝑎𝑡 𝑇𝑐𝑎𝑙                                                                  (𝐸𝑞𝑛. 2) 

 

      𝜀𝑁𝑂3 
− ,𝑐𝑎𝑙 =

𝐴𝑁𝑂3
− 𝑐𝑎𝑙

𝑐𝑁𝑂3 
− ,𝑐𝑎𝑙 ·  𝑙 

                                                                           (𝐸𝑞𝑛. 3)  

 

where 𝐴𝐵𝑟− 𝑐𝑎𝑙 is the absorbance of Br- calibration solution, and is normalized 

to a salinity of 35 (for [Br-]=840 µM). 𝐴  𝑁𝑂3
− 𝑐𝑎𝑙 is the absorbance of NO3

- 

calibration solution, and 𝑐𝑁𝑂3 
− ,𝑐𝑎𝑙 is the concentration of the solution, 40 µM. 

𝑇𝑐𝑎𝑙 is the temperature value of the solution during the calibration, 20°C. The 

units for 𝜀𝐵𝑟−,𝑐𝑎𝑙 and 𝜀𝑁𝑂3 
− ,𝑐𝑎𝑙 are M-1 cm-1, which are dependent on the path 

length of the sensor. In this study, the optical path length (l) of the OPUS 

sensors was 10 mm.  

 

3. Br- related interference compensation: In order to compensate Br- interference 

in optical nitrate measurements, we determined the relative change in 840 µM 

Br- absorbance –salinity normalized to 35– with respect to wavelength and 

temperature under controlled laboratory conditions. From this, we developed a 

new algorithm (Eqn. 4), based on Figure 3.6, to calculate Br- absorbance 

theoretically at in situ conditions. Previously, it was shown that pressure also 

has an effect on the Br- absorbance of about -2% (Pasqueron de Fommervault 

et al., 2015) or -2.6% per 1,000 dbar (Sakamoto et al., 2017a). This correction 

can be described as follows: 
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𝜀𝐵𝑟−,𝑖𝑛 𝑠𝑖𝑡𝑢 = 𝜀𝐵𝑟−,𝑐𝑎𝑙 · exp
 ( 𝑎 · 𝑤3 + 𝑏 · 𝑤2 + 𝑐 · 𝑤 + 𝑑 ·

(𝑇𝑖𝑛 𝑠𝑖𝑡𝑢 − 𝑇𝑐𝑎𝑙))
          (𝐸𝑞𝑛. 4)  

 
𝜀𝐵𝑟−,𝑖𝑛 𝑠𝑖𝑡𝑢 = 𝜀𝐵𝑟−,𝑖𝑛 𝑠𝑖𝑡𝑢 · ( 1 − (𝑃𝐹 · 𝑃𝑖𝑛 𝑠𝑖𝑡𝑢/1000) )                    (𝐸𝑞𝑛. 5)  

 
𝐴𝑖𝑛 𝑠𝑖𝑡𝑢 𝐵𝑟− = 𝜀𝐵𝑟−,𝑖𝑛 𝑠𝑖𝑡𝑢 · 𝑆𝑖𝑛 𝑠𝑖𝑡𝑢                                                      (𝐸𝑞𝑛. 6) 

 

𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙    =   𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐴𝑖𝑛 𝑠𝑖𝑡𝑢 𝐵𝑟−                                             (𝐸𝑞𝑛. 7) 

 

where w refers to wavelength minus 210, a wavelength offset (wo) value of 

210. It was used for scaling purposes, and is a tuneable parameter (Pasqueron 

de Fommervault et al., 2015; Johnson et al., 2018). 𝜀𝐵𝑟−,𝑖𝑛 𝑠𝑖𝑡𝑢 is the molar 

extinction coefficients of Br- at the in situ temperature (𝑇𝑖𝑛 𝑠𝑖𝑡𝑢, °C). The 

parameters a, b, c and d are regression parameters of 1e-07, -9e-05, 0.0016 and 

0.0212, respectively. The parameters were obtained by fitting the ‘slope of 

absorbance of the Br- calibration solution versus in situ temperature’ to 

‘wavelengths from 216 to 239 nm’ (Figure 3.6) to the third order polynomial 

function. 𝑃𝑖𝑛 𝑠𝑖𝑡𝑢 and 𝑆𝑖𝑛 𝑠𝑖𝑡𝑢 refer to the in situ pressure (dbar) and salinity 

values, respectively. 𝑃𝐹 refers to a pressure factor of 0.026. 𝐴𝑖𝑛 𝑠𝑖𝑡𝑢 𝐵𝑟− (in situ 

Br- absorbance) was then subtracted from 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, and 𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (remaining 

absorbance) was then used to fit NO3
- and CDOM. 

 

Although, in theory one method for the bromide-temperature relationship 

(calibration and fit coefficient) should be valid for all sensors, our results 

demonstrate that in practice the optical differences among each device (lamp, 

spectrometer, etc.) can have an impact on measurement quality. New fitting 

(Eqn. 4) and calibration coefficients (Figure 3.5) were introduced for the OPUS 

sensor, whilst the overall procedure and handling of the raw spectral data 

followed the well-developed approaches from the literature.  

 

4. CDOM-baseline correction and NO3
- quantification: The absorbance due to 

CDOM, also termed as yellow substances (Frank et al., 2014), often occurs at 

wavelengths above 240 nm, with a maxima near 260 nm, through electron 

transition between lone pairs or π-electrons (Guenther et al., 2001; Stedmon 

and Nelson, 2015). So far, linear (Sakamoto et al., 2009; Zielinski et al., 2011) 

and quadratic (Johnson and Coletti, 2002) mathematical functions have been 

proposed for the compensation of this interference, at wavelengths between 240 
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and 260 nm, based on the shape of the observed absorbance spectra. There 

appears no obvious difference between a linear and quadratic model, as both 

approaches are based on rough estimations of CDOM-related absorption 

spectrum (Frank et al 2014). 

The concentrations and characteristics of CDOM are highly variable in natural 

waters with complex origins. Therefore, the preparation of an artificial solution 

under laboratory conditions is not ideal to compensate for CDOM interference. 

In this study, 𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 was attributed to absorbance due to NO3
- (𝐴𝑁𝑂3

− ) and 

CDOM-baseline (𝐴𝐶𝐷𝑂𝑀). Each spectrum was corrected for the contribution of 

𝐴𝐶𝐷𝑂𝑀 (Eqn. 9), which was determined from the linear regression between 

absorbance and wavelength (see Fig 8): 

 

                      𝐴𝐶𝐷𝑂𝑀 = 𝑖 + 𝑗 · 𝜆                                                   (𝐸𝑞𝑛. 8)  
 

where i and j refer to baseline intercept and slope, respectively, and are 

adjustable parameters based on measured in situ absorbance. 

 

The final determination of NO3
- concentration (𝑐𝑁𝑂3

−) was done by solving a 

linear regression using a singular value decomposition method at 

approximately 30 pixels (0.8 nm/pixel) within 217 and 240 nm. This can be 

expressed as: 

 

         𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =

[
 
 
 
 
 
 1 λ1   𝜀𝑁𝑂3 

− ,𝑐𝑎𝑙,λ1     

 1 λ2    𝜀𝑁𝑂3 
− ,𝑐𝑎𝑙,λ2     

…
 1 λn−1 𝜀𝑁𝑂3 

− ,𝑐𝑎𝑙,λn−1

 1 λ𝑛     𝜀𝑁𝑂3 
− ,𝑐𝑎𝑙,λ𝑛     ]

 
 
 
 
 

 ·  (
𝑖
𝑗

𝑐𝑁𝑂3
−

)                          (𝐸𝑞𝑛. 9) 

 

where λ1 to λ𝑛 refers to wavelengths between 217 and 240 nm where the Br- 

and CDOM interferences are lowest (Sakamoto et al., 2009; Zielinski et al., 

2011).  𝜀𝑁𝑂3 
− ,𝑐𝑎𝑙,λ1

 is shown in Eqn. 3. 

 

Figure 3.8 illustrates an example of the spectral signature of CDOM on optical 

NO3
- determination. 
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Figure 3.8: The spectral signature of CDOM and NO3
- within 217 and 240 

nm (cNO3
-=19.4 µM, S=35.4, T=13.6°C at 211 m depth during the M158-

CTD71 deployment). 

 

All data processing described and statistical analysis throughout the study were 

undertaken in MATLAB (Mathworks, R2018a) software. A mat file with the 

complete data from each recorded activity was produced. The code ingests the 

OPUS raw data file, calibration file, CTD file, and all equations above, and is 

available at https://github.com/uv-nitr/proc. 

3.3.3. Calibration of OPUS Sensors: Inter-Sensor Comparison 

The OPUS sensor is factory calibrated at the manufacturer and a sum absorption 

spectra of expected seawater constituents at pre-defined concentrations is saved 

in the unit (see Table 3.1, Operating Instructions, TriOS GmbH). The other 

optical nitrate sensors, such as the ISUS and SUNA, are calibrated to derive the 

molar extinction coefficients of Br- and NO3
- (Sea-Bird Coastal SUNA, 2015). 

Recent documentation of these sensor’s calibration, and data processing can be 

found in the “Processing Bio-Argo nitrate concentration at the DAC Level” and 

“8th BGC-Argo Meeting” reports (Johnson et al., 2018; Claustre and Johnson, 

2019). In this work, the factory calibration of the OPUS was ignored and 

individual calibration coefficients were obtained (Eqns. 2-3).  
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The correlation for 𝜀𝐵𝑟_𝑐𝑎𝑙 and 𝜀𝑁𝑂3_𝑐𝑎𝑙 for about 75 pixels between 200 and 

260 nm was examined using the Pearson correlation matrix and coefficients. A 

correlation coefficient value close to 1.0 indicates an excellent correlation 

between the respective datasets. Results indicated that the OPUS sensors were 

in excellent agreement (≥0.95) for both 𝜀𝐵𝑟_𝑐𝑎𝑙 and 𝜀𝑁𝑂3_𝑐𝑎𝑙 values (Figure 

3.9), and are greater than 0.99 within 217 and 240 nm (for about 30 pixels, 

wavelength range of the NO3
- fit, not shown here). The sensors wavelength 

values vary about 4-5 nm at the same pixel. Improvement of technical 

characteristics such as wavelength registrations, gratings in CCDs were beyond 

the scope of the study. However, the reason for not identical correlation 

coefficients for the same pixels can be explained not in absolute value of 

sensors but in sensitivity. For example, the OPUS1 sensor had a spectral 

resolution of 0.82 nm while the OPUS2 had 0.79 nm resulting in better 

sensitivity. 

 

 

Figure 3.9: The Pearson’s correlation matrix for 𝜀𝐵𝑟_𝑐𝑎𝑙  and 𝜀𝑁𝑂3_𝑐𝑎𝑙  for 

the OPUS sensors used.  
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Results from the laboratory a test of the OPUS sensors under identical 

conditions, and using a series of 1, 2, 4, 7, 10, 20, 40, 60 µM NO3
- solutions in 

840 µM Br- medium, are presented in terms of NO3
- bias across the five sensors. 

The NO3
- concentration obtained from the OPUS sensor with the mean and 

laboratory analysis of discrete water samples was fit to a linear regression (r2= 

0.99, Figure 3.10). The standard deviation of NO3
- for the lowest concentration 

was ~0.64 µM, which translates to a limit of detection of ca. 2 µM NO3
- (three 

times the standard deviation of blank). An accuracy of better than ~2 µM NO3
- 

was determined from the residuals of the regression, while overall precision of 

NO3
- sensor measurements was ~0.4 µM, from the consecutive measurements 

of the identical sample. 

 

 

Figure 3.10: Linear regression fit (solid line) between mean NO3
- 

concentrations from the OPUS sensors versus laboratory analysis of 

discrete water samples (y=1.021x-0.641, r2 = 0.99). The residuals of the 

regression for each sensor were within ±2 µM NO3
-. 
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An additional parameter used for the calibration is the reference spectrum 

recorded for deionized water medium using the OPUS sensors. The detector 

intensity of the sensor in deionized water was used in Eqn. 1. Each OPUS 

sensor has a unique spectral output of its xenon flash lamp in the UV range 

(Figure 3.11). The design of the OPUS is comparable to the SUNA, except for 

the xenon lamp. Although this is not an OPUS vs SUNA comparison study, a 

demonstration of reference intensity (recorded in deionized water) values of the 

xenon lamp based OPUS sensor and deuterium lamp based SUNA sensor are 

shown in Figure 3.11. Please note here that the data presented for the SUNA 

sensor was adopted from the literature (Johnson et al., 2018). Observing large 

differences in spectral output of xenon and deuterium lamps raised concerns 

regarding the need to derive OPUS specific coefficients. Therefore, it is 

important that the true performance of each specific OPUS sensor is verified in 

the laboratory following well-established guidelines used for other optical 

nitrate sensors, because the varying registrations, resolutions, and flash lamp 

spectra (i.e., 𝜀 values) are specific to each sensor. As this sensor-specific 

calibration is currently not available from the manufacturer, the five units were 

compared in the laboratory. 
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Figure 3.11: The detector intensity of the optical nitrate sensors in 

deionized water at all wavelengths. 

The five OPUS sensors are not identical in terms of their reference spectrum as 

each unit has a unique compact spectrometer and wavelength registration. In 

addition, the sensors are not identical in terms of their age (some were several 

years old and others several months). The reference spectrum needs to be 

updated periodically (before and after each deployment) for each individual 

unit to minimize potential sensor drift due to aging of the lamp or obstacles in 

the optical path (Pellerin et al., 2013) and ensuring sensor stability over time. 

3.3.4. Field Deployments 

The second part of this study focused on the validation of the NO3
- 

computational algorithm for the OPUS. Real-time in situ measurements were 

undertaken with the OPUS1 and CTD sensors during the Sternfahrt-1 MOSES 

expedition in the North Sea, where the influence of the outflow plume of the 

Elbe River is pronounced (Voynova et al., 2017). Temporal trends in surface 

water variables such as temperature, salinity and NO3
- were determined along 

the cruise track. The Elbe system is subject to short-term dynamic extreme 

events such as heatwaves and heavy rainfall which significantly affect the 

waters of the southern North Sea (Voynova et al., 2017; Chegini et al., 2020). 

A total of 730 measurements were performed by the OPUS sensor during the 2 

days cruise period. The time series of NO3
-, temperature and salinity are shown 

in Figure 3.12. The NO3
- values ranged between 24.6-70.9 µM on the first day 

(Figure 3.12A), and 14.2-60.7 µM on the second day (Figure 3.12B). 

Temperature ranged between 7.22 and 8.34°C, and salinity between 24.09 and 

31.66. 
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Figure 3.12: Time series of NO3
- (µM), temperature (°C) and salinity 

during the Sternfahrt-1 expedition on (A) the first day sailing from Büsum 

to Helgoland, and (B) the second day sailing from Helgoland to Büsum. 

Black dots refer to the post-processed OPUS NO3
- data output, and red 

circles are the NO3
- concentrations of the discrete water samples analyzed 

in the laboratory by a wet-chemical analyzer. Blue and green dots indicate 

the in situ temperature and salinity of the sample, respectively. 

 

The high variability in NO3
- concentrations over short time scales during the 

approximately 6-h transects can be attributed to dynamic interactions between 

the waters of the North Sea and the Elbe River, with additional mixing through 

tidal actions. Enhanced salinity levels (towards 32) away from the coast and 

Elbe River coincided with lower NO3
- concentrations (14.2 µM; Figure 3.13) 

and indicates a dilution of the nitrate-rich Elbe waters with lower NO3
- North 

Sea waters. Our values agreed with NO3
- values reported for the southern North 

Sea area; ≥50 µM near Elbe river (Voynova et al., 2017; Sanders et al., 2018) 

and ≤40 µM near Helgoland (Ey et al., 2017) in spring. 
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Figure 3.13: Distributions of surface NO3
- concentrations (µM) obtained 

using the OPUS sensor (left panel) and surface salinity values recorded by 

the CTD (right panel) during the Sternfahrt-1 expedition. Colour bars 

represent the levels of NO3
- (left) and salinity (right) data. 

 

A deep ocean field demonstration took place during the M158 research 

expedition in the tropical Atlantic Ocean in October 2019. The OPUS was 

mounted on a CTD frame and deployed with a vertical profiling speed of 1 m/s, 

which results in a vertical resolution of 2-3 m. The data presented here refers 

to the CTD71 deep cast deployment in which the OPUS sensor generated a total 

of 2,667 measurements (once every 3 s). A total of 13 discrete water samples 

were collected through closure of Niskin water samplers at various depths 

during the deployment. 

Vertical profiles of (1) NO3
- concentrations derived from post-processing of the 

OPUS data with the OPUS coefficients (section 3.3.2) and SUNA coefficients 

(TCSS algorithm and 𝜀𝐵𝑟_𝑐𝑎𝑙 ,  𝜀𝑁𝑂3_𝑐𝑎𝑙 values from Sakamoto et al., 2009; 

Johnson et al., 2018) and discrete water samples analyzed in the laboratory, (2) 

temperature, salinity, and (3) ancillary data (phosphate, silicate and dissolved 

oxygen) are presented in Figure 3.14. The OPUS data were obtained during the 

upcast and downcast profiles, whilst discrete water samples were collected only 

during the upcast profile. The OPUS NO3
- data presented in Figure 3.14 is 
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independent of an offset correction (i.e., adding the NO3
- bias determined in 

surface waters to the rest of the data) and averaging. The mean and standard 

deviation of 18 replicate measurements at the shallowest depth of this cast (27 

m) is 0.16±0.67 µM NO3
-, and 18 replicate measurements at the deepest depth 

(3,905 m) is 22.24±0.97 µM NO3
-. 

 

 

Figure 3.14: Vertical profiles of (A) NO3
- concentrations (µM), (B) in situ 

temperature (°C) and salinity, (C) silicate (µM), phosphate (µM), and 

dissolved oxygen (µM) for cruise M158 cast CTD71 (00°00.00’S, 

30°00.00’W). Black lines show NO3
- values of the post-processed OPUS 

data obtained during the downcast, grey lines show NO3
- values of the 

upcast profile, and red circles are for the discrete water samples analysed 

in the laboratory by the wet chemistry-based method. Brown and orange 

lines are for the NO3
- values of the post-processed OPUS data with the 

SUNA coefficients (Johnson et al., 2018). 

 

Temperature values ranged between 2.3°C and 27.7°C, salinity between 34.4 

and 36.4, characteristic of the hydrographic situation in the water column of the 

tropical Atlantic. The observed silicate values were between 1.02 and 35.3 µM, 
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phosphate were from 0.07 to 2.17 µM, and dissolved oxygen levels were from 

112 to 258 µM. The NO3
- concentrations increased with depth towards the 

thermocline, from below the detection limit of the sensor (2 µM) in the surface 

mixed layer, to 36 µM at 800 m depth and then decreasing to 20-23 µM below 

2,000 m (see NOAA-NODC for literature comparison; NO3
- concentrations in 

October at surface, 800 m and 4,000 m are ca. 0, 35 and 22 µM, respectively). 

The sensor and discrete water samples data followed a broadly consistent 

pattern throughout the deployment period. Direct adoptation of SUNA-

coefficients resulted in bias in NO3
- values of ca. 6 µM (Figure 3.14). Results 

indicate that improving the calibration and data processing procedure of the 

OPUS by deriving specific OPUS-coefficients (Eqn. 4 and OPUS-specific 

calibration file) increases the reliability of the NO3
- data when compared to 

discrete water samples. The time of the sampling was precisely matched to a 

sensor measurement. However, a bias in NO3
- was observed below 500 m 

(Figure 3.14) and attributed to specific optical characteristics of the sensor, 

which can be corrected by modifying wavelength offset and pressure factor 

(Pasqueron de Fommervault et al., 2015). 

 

The sensor NO3
- data presented throughout the study was post-processed with 

a wavelength offset of 210 nm (wo in Eqn. 4), pressure factor of 0.026 (PF in 

Eqn. 5) and calibration file recorded at 20°C. Figure 3.15 shows an example of 

the impact of wo from 206 to 212, pressure factor of 0.020 (at wo=210), and 

calibration file recorded at 5°C (at wo=210) on the deviation of NO3
- for the 

M158-CTD71 cast data. Using a lower wo with respect to the reference value 

of 210 nm results in lower NO3
- values at temperatures below 20°C and higher 

NO3
- values at temperatures above 20°C. Because our laboratory and field data 

are not adequate/sufficient for direct determination and quantification of the 

pressure dependence of Br− spectra for the OPUS sensor, adaptation of the 

pressure factor of 0.020 (Pasqueron de Fommervault et al., 2015) can be 

advantageous to eliminate the overestimated NO3
- at deep waters. Another 
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reason for the deviation in NO3
- could be related to the sharp temperature 

decrease, from 27.7 to 2.3°C, over short time scales (1 h), which might have 

affected the lamp output. The intensity of a xenon flash lamp changes with 

fluctuations in ambient temperature due to the fact that the gas pressure inside 

the bulb is temperature dependent; at 25°C, the intensity is 100% and decreases 

with decreasing temperatures (Hamamatsu Photonics K.K., 2005). 

Determination of the stability of the lamp with respect to temperature was 

beyond the scope of the study; however, reference water-based spectra recorded 

at temperatures close to the sampled environment (i.e., 5°C) might be used for 

data below 500 m to minimize the dispersion. 

 

 

Figure 3.15: Deviation of the NO3
- estimation with a wo of 210 nm, PF of 

0.026 and calibration file recorded at 20°C (OPUS-coefficients data 

presented in Figure 3.14A) as a function of in situ sample temperature. The 

results for PF =0.020 and calibration at 5°C were obtained at wo=210. 

 

The slight increase in sensor NO3
- values with depth between 2,000 and 4,000 

m shown in Figure 3.14 is unlikely to be a temperature effect because at these 

depths the measured temperature decrease was from 3.6 to 2.3°C and a 

comparison of the 20 and the 5°C calibration curves in Figure 3.15 suggests 

only a weak temperature effect (~0.1 µM). Thus, a pressure effect on NO3
- bias 
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is more likely, and the NO3
- values at depths are more vertical when processed 

with PF=0.020 than with PF=0.026 for the M158-CTD71 data presented 

(Figure 3.16). 

 

 

 

Figure 3.16: Vertical profiles of NO3
- concentrations (µM) for cruise 

M158 and cast CTD71, in which the sensor data was processed using both 

PF=0.026 (left panel, black and grey lines) and PF=0.020 (middle panel, 

dark and light blue lines). The offset between them is presented in the right 

panel; ΔNO3
- refers to the sensor NO3

- data obtained with PF 0.020–

obtained with 0.026. Red circles are for the discrete water samples 

analysed in the laboratory (see also Figure 3.14). 

 

The fast sampling interval of the sensor was advantageous for a better spatial 

resolution of NO3
- concentrations in the water column compared to discrete 

water samples. The OPUS sensor successfully captured the NO3
- dynamics in 

the water column, agreeing with the values of discrete water samples analyzed 

in the laboratory during both field tests; the Sternfahrt-1 and the M158. A paired 

t-test confirmed no statistically significant differences (p-value ≤ 0.05) between 

NO3
- values obtained from the sensor and discrete samples. A linear regression 
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yielded y = 0.99x+0.65 (r2=0.99, n=24) for the Sternfahrt-1 and y=0.95x+0.26, 

(r2=0.99, n=13) for the M158 data (Figure 3.17). The residuals of the fit are 

shown in Figure 3.17. The results indicated lower residual values for the open 

ocean deployment when compared to the coastal water deployment, and the 

maximum value for both cases was <2 µM NO3
-. 

 

 

Figure 3.17: Regression plots of NO3
- concentrations determined in situ 

with the OPUS sensor vs in the laboratory via autoanalyser and residuals 

of the regression for the M158 data (A and B, see also Figure 3.14) and 

Sternfahrt-1 data (C and D, Figure 3.12). 

 

The coastal waters can be high in dissolved organic materials that may interfere 

with optical NO3
- determination. Although the algorithm (see section 3.3.2.) 

performs a CDOM correction (Eqn. 8), the high and variable content of CDOM 

might have partly affected the nitrate outputs. We used the difference in NO3
- 

concentrations between the sensor and discrete water samples versus the total 

absorbance in the CDOM wavelength range (240-260 nm) to check whether the 
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NO3
- bias is CDOM related, but no significant relationship was found (not 

shown here). Time series of measured absorbance at 254 nm and at 360 nm 

(wavelengths outside of the NO3
- detection range) can be used to check 

anomalies related to yellow substances and particles, respectively. We checked 

this for both deployments data presented and found stable absorbances over 

time below <0.5 AU at 254 and 360 nm. Further investigation on the impact of 

yellow substances and particles on optical nitrate measurements in regions with 

a high organic matter content is needed. The effect of path length, as well as 

CDOM, on optical NO3
- measurements were reported in detail by Snazelle 

(2016). The absorbance is directly proportional to path length. Another option 

could indeed be the use of a 5 mm or smaller path length instead of 10 mm. 

 

The sensor measurements at the two shallowest depths, where the NO3
- levels 

are below 2 µM, can be improved by small adjustments in data processing 

parameters as shown in Figure 3.15. We would like to mention that this is the 

first demonstration of a deep deployment of the OPUS sensor and so the initial 

step for future investigations such as an OPUS-specific pressure correction 

factor. Pressure-dependent experiments require more sophisticated 

experimental setups (Sakamoto et al., 2017a). 

 

Overall, the laboratory and field data presented throughout the study verified 

the success of the improvement work on calibration and data processing 

procedures of the OPUS. 
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 Conclusion 

This work highlights that the OPUS sensor is a useful tool to determine NO3
- 

dynamics in the water column in real-time by providing high-resolution in situ 

data, and thereby provides strong advantages over traditional laboratory 

analysis of discrete water samples. The data processing strategies of the OPUS 

described in this study strongly improved the quality of the sensor’s NO3
- data 

output, and resulted in a comparable quality to the ISUS and SUNA sensors, 

with an accuracy of ~2 µM, and short-term precision of 0.4 µM NO3
-. An inter-

comparison between five OPUS sensors deployed in parallel under identical 

laboratory conditions showed no significant difference between the sensors. 

Deployment in coastal surface waters and the deep ocean demonstrated that the 

OPUS sensor can capture spatial variations across short spatial scales with 

results that were in excellent agreement with discrete water samples analysed 

in the laboratory. The firmware design of the OPUS sensor is not suitable for a 

faster sampling rate than 3 s. Although the sampling rate of 3 second translates 

to a vertical resolution of 2-3 m, the sensor is advantageous due to the depth 

range of 6,000 m and it is the deepest operating optical nitrate sensor available 

for the research community. Another advantage of the OPUS are the long 

periods between lamp replacements. The previous version of the OPUS sensor 

named as ProPS was using a deuterium lamp and had a lifetime of 2 years, at 

20°C and 15 min sampling interval. The expected lifetime of the OPUS is above 

10 years, at 20°C with 1-min sampling interval (communication from 

manufacturer). Besides, the cost of the OPUS sensor (in Europe, about 10-12k 

€) is considerably lower compared to other commercial UV nitrate sensors (i.e., 

SUNA about >40k €) and therefore economically more affordable, especially 

for EU customers. The OPUS sensor is promising for future oceanographic 

studies. This study provides new insights specific for the OPUS sensors in the 

form of an ‘Ocean Best Practice’ approach. Future work will focus on the 

assessment of the long-term performance of the OPUS on marine autonomous 

platforms, such as FerryBox systems and deep-sea gliders. 
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Abstract 

Charge-coupled device (CCD) spectrometers are widely used as detectors 

in analytical laboratory instruments and as sensors for in situ optical 

measurements. However, as the applications become more complex, the 

physical and electronic limits of the CCD spectrometers may restrict their 

applicability. The errors due to dark currents, temperature variations, and 

blooming can be readily corrected. However, a correction for uncertainty of 

integration time and wavelength calibration is typically lacking in most 

devices, and detector non-linearity may distort the signal by up to 5% for 

some measurements. Here, we propose a simple correction method to 

compensate for non-linearity errors in optical measurements where compact 

CCD spectrometers are used. The results indicate that the error due to the non-

linearity of a spectrometer can be reduced from several hundred counts to 

about 40 counts if the proposed correction function is applied. 

 

 

Keywords: charge-coupled device, compact spectrometer, optical 

measurements, spectrometer errors, non-linearity correction.  
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 Introduction 

Charge-coupled device (CCD) spectrometers are compact detectors that 

provide spectral information about the light that reaches the image sensor 

component. The devices usually consist of an entrance slit, a collimating lens, 

a transmission grating, a focusing mirror, a CCD line/image sensor, and some 

electronics. A schematic view of a CCD spectrometer is shown in Figure 4.1. 

While there are various configurations available where a reflective rather than 

a transmissive grating is applied, or the entrance slit is omitted and instead an 

aperture of a fiber bundle is used, the error sources remain the same. 

 

Figure 4.1: Schematic of a Hamamatsu C10082CA miniaturized 

spectrometer  

(Hamamatsu Photonics K. K., 2017). 

 

When using CCD spectrometers, error sources at each pixel that cause a 

deviation of the corresponding signal from the correct value have to be 

considered. The CCD spectrometers usually have a dark current, which has to 

be determined and subtracted from each spectrum before the data is used. For 

older CCD spectrometers, one has to account for blooming of super-saturated 

pixels (Oda et al., 1983). These errors can be readily compensated for, or are 

negligible for the more recent CCD sensors. Li et al. (2017) studied the effect 
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of temperature on the response of CCD spectrometers, and obtained a deviation 

of less than 1% between the measured and calculated responses at randomly 

selected temperatures between 5 and 40 °C. Furthermore, the non-linear 

behavior of the CCD line has to be considered as a significant measurement 

error source. Experiments have indicated that the non-linearity at an intensity 

of about 50,000 (of a maximum of 65,535) counts is in the range of up to 1000 

counts on the intensity scale, or up to 0.04 absorption units on the absorbance 

scale, using a Hamamatsu C10082CA mini-spectrometer (Aßmann et al., 

2011). Non-linearities in the light intensity response of CCD spectrometers 

greater than 10% were found in recent studies and the corresponding 

corrections resulted a non-linearity of less than 0.5% (Xia et al., 2015; Pulli et 

al., 2017); in one study a custom-designed spectrometer (Xia et al., 2015) was 

used and in the other an Avantes Avaspec-ULS2048L spectrometer and a 

StellarNet Blue-Wave spectrometer (Pulli et al., 2017) were used. To the best 

of our knowledge, Ocean Optics Inc. is the only supplier that provides non-

linearity correction software (OOINLCorrect, Ocean Optics Inc., Dunedin, FA, 

USA) for their CCD spectrometers, which provides linearities >99.8% 

(OceanOptics).  

Other miniature spectrometers are equipped with a photodiode detector array 

(PDA) instead of a CCD detector and offer some advantages. There are 

different semiconductor technologies used to build PDAs, one is the 

complementary metal-oxide-semiconductor field-effect transistors (CMOS) 

technology. These PDAs are generally more linear compared to CCD detectors 

and have a wider dynamic range. However, they are less sensitive and therefore 

less common (CCD, PDA Detector Definitions) and were not tested in this 

work. 

Charge-coupled device-based spectrometers are used in a variety of 

applications, including spectrophotometric flow injection analysis using only 

one or two wavelengths for simple absorption measurements (Neves et al., 

2008), multiple wavelengths for multi-component determination (Yuanqian et 
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al., 2002), and for the direct determination of a certain analyte in the context of 

a complex background signal (Frank et al., 2014). 

Specific fields of these applications are the determination of dissolved 

phosphate (Neves et al., 2008), dissolved trace metals (Yuanqian et al., 2002), 

pH (Aßmann et al., 2011; Rérolle et al., 2012; Müller et al., 2018), and hyper-

spectral determination of nitrate, bromide, and colored dissolved organic matter 

(Zielinski et al., 2011; Frank et al., 2014) in seawater. 

Another important application field of CCD spectrometers is in space 

instrumentation, where they are used to explore astronomical objects (Pereyra 

et al., 2016). The CCD spectrometers are also used in meteorology, for 

example, to detect changes in spectral UV irradiance due to changes in the 

thickness of the ozone layer (Seckmeyer et al., 2001). While these applications 

are very different, the challenges with the spectrometers are similar (Seckmeyer 

et al., 2010). 

Further uses of CCD are in imaging applications combined with a single photon 

camera and a multichannel detector, which is straightforward and significantly 

improves the performance of time-correlated photon counting (Canet-Ferrer et 

al., 2019). 

Other optical sensors that use a CCD-detector but rely on a different optical 

setup may also be affected by the non-linear response of the CCD line. One 

example is a method that allows time resolved measurements based on a 

stroboscopic light source and a revolving grating (Smalley et al., 2018). 

Compared with the conventional bench-top spectrophotometers, CCD 

spectrometers have the advantages of being low-cost, small in size, light in 

weight, robust, and suitable for high-speed data assimilation (milli-seconds) 

with a steady performance (Davenport et al., 2015; Huang et al., 2018). 
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In this study, we describe and evaluate a non-linearity correction method for a 

CCD spectrometer that only depends on the intensity of the signal and is 

independent of integration time and wavelength. We aim to broaden the 

applicability of the CCD spectrometers. Our findings are illustrated for each 

pixel using a Hamamatsu C10082CA mini-spectrometer. 

 

 Theory 

4.2.1. Design of a CCD Spectrometer 

In this study, a Hamamatsu S10420-1106-01 CCD line was connected via an 

amplifier to a 16-bit analog-to-digital converter (ADC). The ADC was 

connected to a microcontroller that controlled the measurement parameters 

(e.g., integration time) and transmitted data to the interface via USB and/or 

RS232. Figure 4.2 shows a simple schema, which is nevertheless a good 

approximation of most of the possible circuit variations.  

 

Figure 4.2: Simplified diagram of the basic internal circuit that connects 

the charge-coupled device (CCD) line with the interface (RS232 or USB) 

of the computer. The CCD line is connected via an amplifier (amp) with 

the analog-to-digital converter (ADC). The latter is either part of a 

microcontroller or connected to a microcontroller that communicates with 

the computer. 
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4.2.2. Signal Composition 

There are several error sources for CCD spectrometers, which can also be found 

in common monochromator-based desktop instruments. We describe the 

sources below. 

ADC Offset 

An ADC device is used to convert an analog to a digital signal, and its 

resolution is determined by the number of bits (e.g., a 16-bit device has 216 

discrete digital output values). An ADC offset (wADC) is used to shift the lowest 

possible signal into the range of voltages that can be converted by the ADC 

(Figure 4.3). It can be expected that a similar limitation exists at the upper end 

of the sensitivity range, called ‘headspace’ in Figure 4.3. This, however, is 

inconsequential for the presented approach as the working range is defined up 

to 50,000 counts. 

 

Figure 4.3: Diagram showing how all possible CCD output values (after 

amplification; X-axis) are mapped onto the value range of the analog-to-

digital converter (ADC; Y-axis). As the zero value of the CCD (and the 

amplifier) may vary with time, temperature, and/or other factors, this zero 

value is mapped to a value that lies well inside the value range of the ADC. 
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Dark Current 

 

The dark current is typically dominated by thermal generation of random holes 

and electrons in the photon sensitive layer of the CCD line. Space radiation and 

other charge carriers are among the other sources (Bardoux et al., 2012; 

Cherniak et al., 2016). Independent of the cause, the dark current should be the 

same for all pixels. In this study, the signal received from the spectrometer 

during ‘dark’ is described as follows:  

𝐼𝑑𝑎𝑟𝑘∗(λ) = 𝜔ADC + NL(𝐼𝑑𝑎𝑟𝑘(λ))  ·  𝑡  (1) 

where wADC is the ADC offset, Idark(λ) is the current that is generated by the 

random generation of holes and electrons, t is the integration time, and NL is 

the non-linearity of the detector. However, the term ’dark current’ is commonly 

used for the actual intensities that are transmitted by the spectrometer during 

’dark’ measurements. This value is referred to as Idark*(λ) in Equation (1). 

Non-Linearity 

 

Non-linearity describes the difference between the changes in the detector 

signal in comparison to the changes in the light intensity. The signal of an ideal 

detector would proportionally increase with an increasing light intensity. The 

slope between light intensity and detector counts would thus be constant. Any 

deviation from this behavior is called non-linearity. The error caused by non-

linearity is a systematic error that can seriously diminish the quality of 

measurement results in some specific cases, such as high accuracy 

measurements or relative measurements between two or more wavelengths 

(Aßmann et al., 2011). 

Any existing non-linearity is typically the result of the combined non-linearities 

of the CCD pixel, amplifier, and ADC offset (Wang et al., 2016). Since all CCD 

pixels of one chip are expected to have very similar properties, it can be 

assumed that one non-linearity correction function is valid for all pixels. 
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Blooming 

 

Blooming is the effect where electrons are leaking from one CCD pixel to 

neighboring pixels. This charge transfer only occurs if the blooming pixel is 

saturated. Blooming can be prevented with the aid of an anti-blooming function 

of the CCD spectrometer, which, however, affects the linearity of the pixels as 

well as their sensitivity (Fellers and Davidson, 2019). 

The Hamamatsu sensor used in this study (C10082CA, CCD line: S10420-

1106-01) has an anti-blooming function. 

Stray Light 

 

Stray light, Istray(λ), is unintended light within the detector that may reduce the 

signal to noise ratio. The stray light may have the following sources: i) scattered 

light from internal CCD walls and input optics of the spectrometer, ii) scattered 

light from the dispersive element, usually a diffraction grating, iii) inter-

reflections, and iv) light coupling (Salim et al., 2011). Salim et al. (2011) and 

Zong et al. (2006) suggested the use of a spectrally tunable laser or a lamp with 

a high spectral emission in the UV region combined with a monochromator to 

gain data that can then be used to correct for stray light. Both light sources can 

be used to generate a narrow-band monochromatic light, which is then used as 

a light source for a spectrometer. The stray light is determined as the intensities 

measured at neighboring as well as all wavelengths, after taking the spectral 

resolution of the slit and grating into consideration. The impact of the error 

depends on the intensity of the light source, the extent of absorbance, and on 

the specific spectrometer used. Preliminary estimates based on experiments 

involving spectrophotometric pH measurements in seawater as described in 

Aßmann et al. (Aßmann et al., 2011) indicated a stray light error of 

approximately −0.0004 pH units. More detailed information can be found in 

the studies mentioned above (Zong et al., 2006; Aßmann et al., 2011; Salim et 

al., 2011). 
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Uncertainty of the Integration Time 

 

The linearity of the integration time compared to the value that is termed 

integration time by the software is a critical factor in the method proposed in 

this work. Inside the spectrometer, the integration time is managed by the 

microcontroller that uses an internal timer to close the shutter. This timing is 

therefore only dependent on the quality of the firmware implementation. The 

expected effects would be a constant offset that accounts for the processing 

time of the interrupt handling (in the order of <10−6 s) and a drift in the clocking 

frequency of the oscillator used to drive this timer. The first cannot be 

distinguished from the ADC offset and is therefore part of this value. The 

second should only play a significant role if the spectrometer is exposed to a 

strong temperature drift, which can be ruled out in our study. 

 

Wavelength Calibration 

 

It is required to conduct a wavelength calibration when using a CCD 

spectrometer to determine the corresponding pixel location of each wavelength 

prior to use (Sun et al., 2017). We used a high-end desktop spectrometer (Perkin 

Elmer Lambda 950) as a secondary standard to determine the wavelength 

accuracy of our CCD spectrometer. The accuracy of the wavelength calibration 

of the compact CCD spectrometer was better than any deviation we could 

determine (<±0.2 nm). 
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Overall Signal Composition 

 

In summary, the raw signal (Iraw(λ) in counts) has the following function: 

𝐼𝑟𝑎𝑤(λ) = 𝜔ADC + NL (𝐼𝑑𝑎𝑟𝑘(λ) + 𝐼𝑠𝑡𝑟𝑎𝑦(λ) +  𝐼(λ)) ·  𝑡 (2) 

where I(λ) is the current caused by the generation of holes and electrons by 

photons. It is produced by the light-sensitive area of a highly doped silicon (Si) 

semiconductor. If a photon hits an electron in the light-sensitive area, the 

electron is lifted into the conductive band and instantly drawn to the cathode by 

the internal electrical field, which is generated by the doped Si areas. The 

electrons are accumulated in a charge well and measured after amplification 

with the ADC. The investigation of stray light is beyond the scope of this study. 

In our applications, wADC is subtracted from each signal. This leads to the 

following equation: 

𝐼𝑟𝑎𝑤(λ) = NL(𝐼𝑑𝑎𝑟𝑘(λ) +  𝐼(λ))  ·  𝑡 (3) 
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 Materials and Methods 

4.3.1. Experimental Setup 

Quantification of the measurement errors of the mini-spectrometer used in this 

study was performed with the following setup. A white Futurlec Star-LED 

(spectrum shown in Figure 4.4) combined with a simple, custom-made 

precision current source were used as a light source to produce broadband 

spectra; the spectral range covered 364–893 nm. A Hamamatsu C10082CA 

spectrometer with a Hamamatsu S10420-1106-01 CCD line were used to 

record the intensity counts at each pixel (Table 4.1). A combination of light 

fibers was used to reduce the light intensity of the LED to a degree where the 

minimal integration time of 10 ms yielded a maximum light intensity of about 

1200 counts (445 nm) in comparison to a wavelength where the LED had no 

intensity (380 nm). 

 

Figure 4.4: Light intensity spectrum of the white LED used in this study. 
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Table 4.1: Characteristics of the spectrometer used, as provided by the 

manufacturer (Hamamatsu Photonics K. K., 2017; Hamamatsu Photonics 

K.K., 2018). 

 

Parameter Hamamatsu C10082CA, S10420-1106-01 series 

Built-in sensor Back-thinned CCD image sensor 

Spectral range 200–800 nm 

Number of pixels 2048 

A/D conversion 16-bits 

Integration time 10 to 10,000 ms 

Operating temperature +5 to +40 °C 

Cooling Non-cooled CCD 

Blooming Anti-blooming function applied 

 

The LED with its current source, the optical fiber, and the spectrometer were 

mounted in a modified 48 L cool box (Mobicool W48). The lid of the cool box 

was removed and replaced with a homemade device with more cooling power 

and space for cables (Figure 4.5). Care was taken to isolate the experiment 

inside the box from ambient light. The experiment was conducted at different 

temperatures (20 °C, 25 °C, and 30 °C ± 0.1 °C). 

 

Figure 4.5: Experimental setup with instrumentation in the cool box for 

the quantification of the non-linearity of the miniature spectrometer. 
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All the measurements were controlled using routines written in the Python 

programming language, version 3.7.1, (Python Software Foundation. Python 

Language Reference, version 3.7.1 Available at http://www.python.org) on a 

Linux operating system using custom-made device drivers. The specific device 

drivers ensured that the data from the spectrometer was not modified by the 

manufacturer’s device driver. All data analysis was undertaken using the R 

(2018) language for statistical computing (R-Core-Team, 2018). 

4.3.2. Independent Linearity Test 

To assess the non-linearity of the spectrometer a simple experiment can be 

performed. The results of this experiment are independent of the integration 

time. It is assumed that an increase in the integration time leads to a 

proportional increase in the signal at each pixel. A model for this behavior of 

uncorrected intensities Ii obtained at different integration times (ti) is described 

in Equation (4), which leads via rearrangement (Equation (5)) to the ratio f 

(Equation (6)): 

𝐼1(λ)

𝑡1
= 

𝐼2(λ) 

𝑡2
 (4) 

𝐼1(λ) 

𝐼2(λ) 
= 

𝑡1
𝑡2

 (5) 

𝑓 =  
𝐼1(λ) 

𝐼2(λ) 
 

 

(6) 

Figure 4.6 shows f ratios plotted against wavelength. The f ratios are calculated 

from spectra taken from the same light source (see Figure 4.4) with different 

integration times. Since the only difference between each single spectrum is the 

change in the integration time, the intensities should scale accordingly, 

resulting in a constant value of f for all pixels. 
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The quality of the result of the determination of f strongly depends on the 

accuracy of the determination of the ADC offset. Any deviation in that value 

may result in inconclusive results as Equations (4)–(6) rely on a linear 

relationship (through zero) between the intensities and integration times. A 

second approach could be to subtract the intensities of the so called ‘dark 

pixels’ (pixels that do not receive any light) from all pixels prior to their use in 

this linearity test. This approach was also tested and yielded comparable results, 

however, it should only be used for the linearity tests as the intensities of the 

dark pixels varied with intensity, which led to a reduced accuracy during the 

linearity calibration. 

 

Figure 4.6: Qualitative illustration of the non-linearities of the CCD 

detector. The ratios f of I1(λ) to Ii(λ) are plotted versus the wavelengths 

(nm) for several integration times. In theory, the f ratios should be constant 

for all wavelengths of a spectrum. The dashed red lines are the expected 

characteristics for two arbitrarily chosen integration times, the black lines 

are the observed characteristics for several integration times (compare also 

with Figure 4.11). 
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All the points above 50,000 counts were omitted due to strong increases of the 

non-linearity above 50,000 counts (Figure 4.7). Despite the qualitative nature 

of this way to display the data, it becomes evident that a significant non-

linearity exists. 

 

Figure 4.7: Pixel intensities (counts) versus integration time (ms). A single 

line represents data from one pixel. Data from 200 representative pixels 

(equally spaced between 400–800 nm) are shown. All data lines appear to 

be linear up to 50,000 counts and then deviate strongly from the ideal line. 

 

 Results and Discussion 

4.4.1. ADC Offset 

The ADC offset is the signal which represents the number of counts that are 

read at a theoretical integration time of zero (Figure 4.3). This value reflects 

the signal of the CCD line and a signal that was more or less randomly selected 

by the circuit designer (see Figure 4.3). 

  



Chapter 4 – Improving Optical Measurements: Non-Linearity Compensation 

of Compact Charge-Coupled Device (CCD) Spectrometers 

 

 

102 

 

The ADC offset value is important for the determination of the non-linearity 

correction function, as the ADC offset has to be subtracted from all values prior 

to further operations. The subtraction of the ADC offset allows the forcing of 

the linear regression through zero at a zero integration time. Forcing the linear 

regression through zero using dark measurements is superior as it prevents 

inaccuracies caused by thermal noise associated with a regression using low 

light intensities. 

The estimation of the ADC offset relies on the assumption that the non-linearity 

between the signal of the CCD line and ADC is not too large when only a small 

part of the dynamic range of the CCD is used. To obtain the ADC offset, the 

LED was switched off and spectra were collected at different integration times 

leading to intensities ranging between 350 and 1200 counts. These spectra were 

then used to determine the intensity (in counts) at zero integration time using a 

linear regression for each pixel (red dots in Figure 4.8). Alternatively, the ADC 

offset can be obtained by determining the lowest possible signal, when the LED 

is switched on, at wavelengths without light intensity (e.g., 380 nm, black dots 

in Figure 4.8). Both ways should theoretically yield the same result. While we 

found a difference of one count and a smaller drift over the whole range of 

pixels, this deviation lies well within the theoretical precision of the ADC (±0.5 

counts) and thus can be neglected. In this study, the ADC offset amounted to 

350 counts at 20 °C. 
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Figure 4.8: ADC offset in counts for all pixels of the CCD line. The black 

dots were for an enabled light source (illuminated) and the red dots were 

determined for a disabled light source (dark). 

 

4.4.2. Correction of the Non-Linearity 

The non-linearity correction is based on the assumption that the integration time 

is highly reproducible and determined by the time that was actually selected. 

First, the data were collected by measuring spectra at about 1800 different 

integration times. The variation in integration times ranged from 10 to 1000 ms, 

with at least 30% of the illuminated pixels being saturated at 1000 ms. 

Blooming was prevented by the anti-blooming function of the CCD detector. 

At least 25 spectra were obtained using each integration time and the pixel-

specific data were averaged. 

Figure 4.7 shows a selection of pixels for which intensity values were plotted 

against integration time. As a linear relationship between the intensity and the 

integration time did not exist for intensity values above 50,000 counts, this 

threshold was defined as an upper limit of the usable data range. Of the 

remaining data, the intensities of pixels obtained at the longest integration times 
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were averaged for the intensity range between 47,000 and 50,000 counts in 

order to construct a referential raw intensity (Iraw) versus integration time (t) 

curve. 

A linearization was undertaken using two points, with the first point being the 

origin of coordinates and the second point being more or less freely chosen. A 

linear regression was used to determine the slope. 

The resulting regression function was used to calculate a corrected intensity 

(Icorr) for each integration time, independent of wavelength. Icorr represents the 

expected result (a linear relationship between intensity and integration time) 

while Iraw represents the measured values a0 to a8, which represent values of 

regression coefficients; both datasets (one pair of Icorr and Iraw for all integration 

times) can be used to find a suitable correction function. The models tested for 

the correction functions were simple polynomial functions up to the ninth 

degree: 

𝐼corr = 𝑎0. 𝐼raw + 𝑎1. 𝐼raw
2 + 𝑎2. 𝐼raw

3 + ⋯+ 𝑎8. 𝐼raw
9  

The linear model function (‘lm’) in the R programming language (R-

Core-Team, 2018) was used to fit the data to the model. The differences 

between the corrected data and the theoretical optimum are given in Figure 4.9. 

It is evident that with an increasing degree of the polynomial function, the 

estimation error decreases. However, degrees above nine did not yield 

significantly better results, and even the difference between the third and the 

ninth degrees was quite small (Figure 4.9). 

(7) 
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Figure 4.9: Differences between corrected and referential intensities for 

selected polynomials (Icorr - Iraw; Y-axis) versus integration time (ms). The 

panel above shows a wider range of intensity counts for the first-degree 

polynomial function, while the panel below shows a narrower range for the 

second-, 

third-, and ninth-degree functions. 

 

The optimum is a horizontal line, as the ratio I1(λ) / I2(λ) should be constant for 

all pixels of each spectrum since only the integration time is changed (Figure 

4.6). Differences between corrected (Icorr) and theoretical optimum (Iraw) 

intensities showed a systematic deviation, for example, the absorbance error at 

an intensity of 50,000 counts amounts to 0.04 absorbance units (Figure 4.10). 

After the correction, the deviation of the corrected intensities from the ideal 

linear line amounts to a maximum of 40 counts at higher intensities. These 40 

counts are well below the noise of the detector (200 counts), and do not show a 

systematic pattern (Figure 4.9). 
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Figure 4.10: Differences between corrected and referential raw intensities 

in terms of absorbance error values (Y-axis) at different absorbance levels 

(X-axis). 

4.4.3. Uncertainty in the Integration Time 

The correction function was applied to raw data collected during the experiment 

mentioned in section 4.4.2. The results in Figure 4.11 show a significant 

improvement compared to the data prior to the non-linearity correction (see 

Figure 4.6). 

The overall improvement compared to the initial state also shows that the initial 

assumptions about the linearity of the integration time were correct. Any 

deviation in the reproducibility and scalability of the integration time would 

produce artifacts in Figure 4.11, as data of different integration times and 

intensity ranges are compared with each other in this plot. 
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Figure 4.11: Illustration of the linear dependence of the corrected 

intensities on the integration time. The ratios f of I1(λ) to Ii(λ) are plotted 

versus the wavelengths (nm) for several integration times. The correction 

is valid for different intensities at different integration times and 

wavelengths and thus verifies the applicability of the correction function. 

The dashed red lines are expected characteristics for two arbitrarily chosen 

integration times, the black lines are the corrected observed characteristics 

for several integration times (compare also with Figure 4.6). 

4.4.4. Detector Noise 

Figure 4.12 shows example data of the relative standard deviation of repeated 

intensity measurements (N = 10) as a function of intensity. On a relative basis, 

the error at intensities of around 500 counts is about 30 counts higher (more 

than 1%) than for intensities of around 20,000 counts, where the error of the 

intensity lies at around 200 counts (less than 0.25%). 

Therefore, the noise-free resolution, which refers to the number of stable ADC 

bits at a constant input signal, is around 211 counts at low intensities and 28 at 

medium intensities. While the resolution can be improved by averaging the 

signal, it would be necessary to average 25 spectra at low intensities and 28 

spectra at medium intensities to obtain a true 16-bit resolution. 
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The full dataset (not shown here) indicates that this behavior is independent of 

the integration time and only depends on the intensity. 

 

Figure 4.12: Relative detector noise as a function of intensity (counts) of 

the CCD detector given as 1 σ standard deviation (%). 

4.4.5. Using Curve Fitting to Reduce the Noise of the Detector 

The detector noise can also be reduced by using standard curve fitting 

procedures (e.g., R’s loess function or polynomials). This curve fitting uses the 

neighboring pixels (usually 10 pixels or more) of the wavelength of interest to 

reduce the noise of the target pixel. This procedure also allows for the 

calculation of wavelengths between two contiguous pixels. However, this 

method can only be applied under certain conditions (no spikes in the spectrum 

of the lamp) and only gains a two- or three-fold noise reduction.  
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4.4.6. Temperature Dependency 

The spectrometer used in this study (Hamamatsu C10082CA) has a small 

temperature dependency (in this study in the range of 2 counts per °C), but the 

resulting offset is usually constant as it is independent of the integration time 

and wavelength. With our spectrometer, the temperature affected the ADC 

offset, which changed from 350 counts at 20 °C to 338 counts at 25 °C and to 

326 counts at 30 °C. The non-linearity correction function remained constant. 

4.4.7. Methodological Summary 

The method to compensate for the non-linearity effects of CCD spectrometers 

can be performed using a very simple setup in a temperature-controlled 

environment. Minimum requirements are a stable temperature (±1 °C) and a 

stable light source (e.g., a white LED with a highly stable constant current 

source). Furthermore, the integration times programmed into the spectrometer 

should be linear and stable with time (see section 4.2.2).  

The following dataset has to be acquired: Light (LED on) and dark (LED off) 

spectra at a wide range of integration times; these depend on the capabilities of 

the spectrometer. In this case, we used 1800 integration times between 10 ms 

(lowest) and 1000 ms and took at least 25 spectra at each integration time for 

averaging. One of the integration times was selected and repeated at regular 

intervals during the measurement to ensure the stability of the system. 

Suggested procedure according to Figure 4.3: 

• Determination of the ADC offset: calculate a linear regression of the dark 

spectra vs. integration time and calculate the dark current (in counts) at an 

integration time of zero. The result is the ADC offset (see Equation (1)) for the 

used spectrometer. 
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• Plot the intensity of a range of pixels versus the integration time to determine 

the level at which the signal response of the spectrometer becomes obviously 

non-linear (see Figure 4.7) and exclude all data above that threshold (e.g., 

50,000 counts in the case of the Hamamatsu C10082CA) during all consecutive 

steps. 

• Select a number of the pixels at high integration times where the intensities are 

close to the threshold and average these pixels to form the reference graph 

(Iraw(t)). Subtract wADC from all intensities of this intensity data curve and 

perform a linear regression (forced through zero). Calculate a corrected 

intensity (Icorr) for all integration times of the reference graph. 

• There is now a value-pair of Iraw and Icorr for all integration times that can be 

used to formulate a relationship. In the R programming language, Equation (7)  

(𝐼corr = 𝑎0 · 𝐼raw + 𝑎1 ·  𝐼raw
2 + 𝑎2 ·  𝐼raw

3 + ⋯+ 𝑎8 · 𝐼raw
9 ) would look like: 

“lm(yNew ~ 0 + y + I(y^2) + I(y^3) + I(y^4) + I(y^5) + I(y^6) + I(y^7) + I(y^8) 

+ I(y^9))” with y = Iraw and yNew = Icorr (see section 4.4.2).  

• Use this function to calculate a linear corrected intensity (Icorr) for each raw 

intensity (Iraw) independent of the integration time. 

The method described here can be applied to all CCD-based spectrometers that 

fulfill the requirements described above. The experimental setup as well as the 

mathematics behind the method are simple. While the data acquisition and 

processing requires some time and processing power, the resulting correction 

function computes efficiently. Restrictions apply to applications where the 

spectrometer is subject to changing temperatures, which can be resolved using 

a temperature-correction function for the ADC offset. 

To the best of our knowledge, only Ocean Optics provides a non-linearity 

compensation algorithm for its CCD units. The non-linearity correction feature 

of this software is based on the polynomial regression between the amount of 

light the detector receives and integration time. When comparing our approach 
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with that provided by the proprietary OOINLCorrect Software (OceanOptics), 

there are similarities concerning the key approach of using a change in 

integration time and subsequent data linearization. However, our approach is 

universally applicable to all CCD units, openly accessible, and has the 

following additional differences: 

• We determined the ADC offset first, which seems to be a key way of achieving 

better accuracy at low light conditions. This is done by forcing the linear 

regression through zero at zero integration time, using dark measurements, 

which is superior as it prevents inaccuracies caused by thermal noise. 

• We excluded data where we knew that the response of the instrument was 

highly nonlinear (>50,000 counts) (see Figure 4.7). While this may not be an 

issue with the Ocean Optics spectrometers, this certainly is an issue for the 

CCD-based Hamamatsu units. It is possible to use the full range of minimum 

and maximum counts of the spectrometer. However, it should be considered 

during data analysis that the error behavior is different for different ranges of 

counts. 

• We provided criteria as to which pixels to select for averaging to give a better 

performance for the correction (see section 4.4.2.). These criteria are not 

provided by the OOINLCorrect Software (OceanOptics) description. 

• We used absorption units instead of percentage for the evaluation of the 

changes in the results (see Figure 4.10). The example data show the benefits of 

our approach. 
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 Conclusion 

As the use of compact charge-coupled device (CCD) spectrometers becomes 

more widespread and the applications become more demanding, the non-

linearity correction method presented in this study will play an important role 

in improving the signal-to-noise ratio of these detectors. We described a simple 

experimental approach, without the need for special sophisticated components, 

for compensating for the error related to non-linearity. The data to derive the 

non-linearity correction function was collected by varying the integration time 

at a stable light emission. According to the experimental data, a one-degree 

change in temperature of the spectrometer resulted in a change in the ADC 

offset of about 2.4 counts. Therefore, the experiment was conducted at a 

constant temperature. Following statistical analysis, an intensity correction 

function was obtained that only depends on the intensity of the signal and is 

independent of integration time and wavelength. The whole method can 

optionally be performed without removing the spectrometer from an existing 

experimental setup. 

We proposed a simple non-linearity correction method for CCD spectrometers 

to improve the signal-to-noise ratio of the readings. The error due to the non-

linearity of a Hamamatsu C10082CA CCD spectrometer can be reduced from 

a systematic error of several hundred counts to a statistical error of about 40 

counts at higher intensities with the correction function applied in this study 

and thus can increase the accuracy of the measurements significantly. This 

increase in accuracy is especially useful for applications that use extinction 

coefficients from the literature or rely on the absorption ratio of two or more 

components in a mixture. In those cases, a change in the intensity of the light 

source or a change in the integration time may yield different results.  
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5. Conclusions and Future Perspectives 

 General Conclusions 

The here presented Ph.D. thesis covers multiple commercial sensors for 

autonomous, high-resolution and in situ measurements of various chemical 

parameters in marine waters. It was motivated by the necessity of improving 

the data quality of autonomous submersible optical sensors and broadening 

their utility. To achieve this, sensor deployments in various aquatic 

environments were conducted. Furthermore, the data obtained via sensors 

based on the same analytical principle was compared with each other, and with 

benchtop laboratory devices to assess the accuracy of the measurements. 

Undersampling, complicated sample storage and handling, and contamination 

and changes of samples are common issues with traditional discrete water 

collection and subsequent laboratory analysis methods. Autonomous sensors 

on the other hand provide cost and labor efficient, in situ, real-time and high-

resolution data, which are required to capture dynamic changes in the marine 

water column. The aspect of cost efficiency is particularly significant, since the 

costs of newer sensor models are many times lower than of traditional 

approaches (Wang et al., 2019). 

To date, the ocean observation community utilized a range of commercial 

sensors for various biogeochemical and physical parameters. Although the 

implementation of various sensors differs, the challenges often remain similar, 

i.e., limited usability due to technical or operational limitations. 
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This thesis is attempting to address those challenges and to expand the utility 

of chemical sensors, evaluate their performance in dynamic aquatic 

environments and assess the output data quality, in order to promote more 

efficient sensor usage in the ocean observer and regulatory communities. A 

common methodological denominator of the autonomous devices covered in 

this thesis is that they are all based on spectrophotometry. Spectrophotometric 

methods rely on correlating the concentration of a chemical parameter with the 

intensity of light passing through the water medium using Beer-Lambert’s Law. 

The findings of this thesis have been split into three chapters; Chapter 2, 3, and 

4. 

In Chapter 2, the performance of a LOC pH sensor (ClearWater Sensors, 

Southampton, UK) was evaluated in highly dynamic estuarine and coastal 

waters. To achieve this, field deployments of the sensor were carried out in 

2018 between August 1 to August 13 (summer) and October 20 to November 

19 (autumn), in Kiel Fjord, southwestern Baltic Sea. Regarding both 

deployments in summer and autumn, the LOC sensor autonomously performed 

978 measurements in six weeks, during which time we were only able to collect 

65 discrete water samples. 

The presented work encompassed diurnal variations of pH obtained from the 

LOC sensor and discretely sampled waters, in addition ancillary hydrographic 

and chemical parameters. In situ pH values obtained from the LOC sensor along 

with the ancillary data were used to understand the carbonate chemistry system 

of the dynamic fjord waters. The correlation analysis showed reasonable 

relationships (p-value>0.5 by a majority) between pH, carbon dioxide, oxygen, 

temperature, salinity and nutrients. The pHT values obtained in situ using the 

LOC sensor were in good agreement with those from discrete samples 

determined via benchtop spectrophotometric analyzer, CONTROS HydroFIA 

pH analyzer (4H-Jena engineering GmbH) (y=0.998x+0.004, R2=0.99, n=65). 
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Given that the sensor has already been used in ocean environments (Rérolle et 

al., 2018; Yin et al., 2021), the novelty of this study was the utilization in coastal 

and estuarine systems. Despite the potential challenges of operating a sensor in 

dynamic estuarine and coastal waters (such as blockage of the sensor's in-line 

filter due to high loads of suspended particulate matter), the results were 

promising for expanding the utility of the sensors to natural waters of S<20. 

During the deployment periods, sudden (<24 h) changes in water characteristics 

were evidenced by in situ temperature and salinity data obtained from co-

located sensors. The LOC sensor had an advantage over the HydroFIA 

benchtop analyzer for resolving the pH dynamics in fine-scale and real-time. 

Besides the aforementioned advantages of autonomous sensors, the LOC 

sensor offers the specific advantages of being highly portable, robust, stable, 

calibration-free, and with no drift over several weeks. 

In Chapter 3, a series of laboratory and field deployments of the TriOS OPUS 

UV sensor were conducted to improve the nitrate data output quality and 

increase its comparability with current approaches in the literature based on a 

similar analytical principle (i.e., SUNA sensor, Sakamoto et al., 2009). Nitrate 

is a routinely measured parameter in various environmental studies and its 

unique importance in oceanography is related to the fact that it is the principal 

nutrient used for photosynthesis and primary production, therefore providing 

information on the health status of marine environments. Conventionally, 

nitrate is analyzed using laboratory benchtop analyzers based on wet-chemical 

methods, which requires discrete sample collection, preservation, 

transportation, and storage of samples, besides chemical reagents, Griess assay 

with a copperized cadmium column, and frequent calibrations. In contrast to 

that, optical UV nitrate sensors are particularly beneficial of being chemical 

reagent and waste free, and having fast sampling intervals, in the order of 

seconds. However, it was identified that matrix interferences in seawater, due 

to bromide and CDOM, are the main disadvantage that limits their performance 

(Sakamoto et al., 2009; Zielinski et al., 2011; Frank et al., 2014). 
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Significant advancements in the intercomparability of seawater nitrate 

measurements can be provided if a standardized computational strategy is 

established. To date, several data processing algorithms have provided 

successful compensation of matrix interferences and computation of nitrate 

concentrations from raw spectral data, through a temperature correction and 

salinity subtraction mathematical equation, particularly tested on the ISUS and 

SUNA sensors (Johnson et al., 2018). 

We have identified some differences between the nitrate data output when those 

algorithms were directly adapted on the OPUS sensor. For example, results 

obtained from the sensor during the vertical profiling deployments in the 

tropical Atlantic Ocean, down to 4,000 m, presented a deviation of ca. 6 µM in 

nitrate concentration compared to the discrete water analysis. This was 

attributed to different optical settings of sensors, i.e., the light sources; the 

OPUS sensor utilizes a xenon and the SUNA sensor has a deuterium lamp. Each 

lamp has a unique intensity at a particular wavelength and lifetime expectancy. 

The expected lifetime of a xenon lamp is more than 10 years at 20°C with a 1-

min sampling interval, whereas this is about 2 years for a deuterium lamp. 

To take the optical differences among sensors into account, a new algorithm 

was proposed for the OPUS, which resulted in reducing the bias in nitrate from 

6 to ca. 2 µM. The new algorithm is based on the derivation of molar extinction 

coefficient values of bromide and nitrate at each wavelength of the sensor and 

at known temperature, termed as calibration coefficients. The laboratory 

intercomparison of five OPUS devices resulted in no significant difference 

among the sensors. Alongside the data processing algorithm optimization and 

sensor intercomparison, the sampling interval of the OPUS in a continuous 

mode has been reduced from a firmware setting of 30 seconds to 3 seconds by 

the custom-built controller, translating to a vertical resolution of 2-3 m, 

improving the sensor's use in vertical profiling deployments. 

Results from the field deployments of the OPUS indicated that the sensor 

determined nitrate values were in excellent agreement with discrete samples 
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analyzed in the laboratory. A linear regression yielded i) y=0.99x+0.65 

(R2=0.99, n=24) for the deployment in coastal surface waters of the 

southeastern North Sea on April 16-17, 2019 onboard the RV Littorina, and ii) 

y=0.95x+0.26 (R2=0.99, n=13) for the deployment in deep waters of the 

Atlantic Ocean on 15 October 2019 onboard the RV Meteor. 

In summary, high-resolution sampling, long lifetime, therefore low cost, and 

high accuracy through the application of the newly proposed algorithm make 

the OPUS UV nitrate sensor a promising tool for future studies. 

Chapter 4 covers the outcomes of performance improvement strategies for a 

compact charge-coupled device (CCD) spectrometer to reduce the potential 

error in measurements, particularly the non-linearity error, and obtain noise 

compensated signal readings, which is required for more demanding 

applications. CCDs have a wide range of uses from space to ocean to imaging 

applications and are integrated into various wet chemical analyzers and 

submersible autonomous sensors. 

In contrast to the traditional benchtop spectrophotometers, compact CCDs are 

beneficial due to their small size, lightweight, high-speed data assimilation, 

hence low cost. Nevertheless, they are subject to a range of internal error 

sources related to ADC offset, dark current, non-linearity, blooming, stray light, 

the uncertainty of the integration time, and wavelength calibration, which are 

also present in monochromator-based benchtop devices. 
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In theory, the signal of an ideal detector increases proportionally with 

increasing light intensity, so there is a constant slope between them. Yet, in 

reality, a deviation from this linear behaviour occurs, which is referred to as 

non-linearity. Errors associated with dark currents, temperature changes, and 

bloom errors were readily corrected. Most devices, however, were lacking a 

compensation for detector non-linearity, which can distort the signal by up to 

5% for some measurements. 

Here, we aimed to assess and overcome issues related to the non-linearity error 

in compact CCD devices. For this, we conducted a series of laboratory 

experiments using the Hamamatsu C10082CA, S10420-1106-01 series 

miniature CCD spectrometers by setting up a simple temperature-controlled 

environment and obtained the light (LED on) and dark (LED off) spectra over 

a wide range of approximately 1800 different integration times at constant light 

emission and stable temperature. After looking at the acquired data and 

resulting statistical analysis, we proposed a mathematical equation that is 

universally applicable and openly accessible for simply correcting the non-

linearity error on compact CCDs. 

The application of this correction function reduced the dimensions of the error 

significantly, due to the non-linearity of a Hamamatsu C10082CA CCD 

spectrometer, from several hundred counts to 40 counts at higher intensities. 

The increase in measurement accuracy or improvement in the signal-to-noise 

ratio of a CCD is particularly beneficial for applications like 

spectrophotometric pH measurements that use absorbance ratio at two 

wavelengths (R=A578/A434). Thus, this study plays a significant role in 

extending the reliability and utility of these detectors.  



Chapter 5 – Conclusions and Future Perspectives 

 

120 

 

 Future Perspectives 

The contribution of this thesis can be seen in a broader frame of Ocean Best 

Practices, (oceanbestpractices.org), which is moving the scientific and 

regulatory communities towards a more data driven and standardized 

approach of ocean observation. Further steps in that regard are crucial, since 

the vastness of the oceans challenges researchers around the globe through its 

complexity. As mentioned throughout this thesis, autonomous chemical 

sensors play a vital role in furthering our understanding of those complexities. 

Specifically, the data collected by those sensors accumulates in the ocean 

observer community. 

While conducting the contributing research of this thesis, it became obvious 

that access to high quality and standardized data from other researchers 

played an important role in evaluating the own findings. As extensively 

discussed in Chapter 1, a range of online data platforms provide a way 

forward in that regard. Accessibility to this data though, remains a challenge 

and should be further improved to make comparisons easier to conduct and 

broader in scope. While autonomous sensor technologies considered as the 

future of marine sciences, its users should be aware of the requirements and 

challenges of handling big data. There is a need to develop solutions to key 

challenges as discussed by Guidi et al. (2020) in data acquisition, handling, 

management and accessibility, interoperability and computing 

infrastructures, by taking advantage of advances in digitalization. Future 

works should focus on training sensor users, networks and collaborations to 

expand the scope of concepts, methods and tools being developed today. 

To gather high-resolution, in situ, time series pH data in dynamic coastal and 

estuarine environments, the LOC sensor was deployed in the Kiel Fjord. As 

mentioned above, such data is very scarce to date, which highlights the need 

for undertaking longer deployments of this sort and their comparison. Only 

with a better coverage of still undersampled water systems like these, a better 

understanding of coastal acidification and other mechanisms can be achieved.  

http://oceanbestpractices.org/
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A common and often impactful issue for submersible chemical sensors like 

the LOC is biofouling, which was experienced during our study as well, as 

the inline filter of the LOC sensor was prone to an accumulation of 

resuspended particulate matter after storm events (Chapter 2). Biofouling is 

detailed in the literature and defined as “the single biggest factor affecting the 

operation, maintenance and data quality” of the deployed autonomous sensors 

(Delgado et al., 2021). If no pre-deployment anti-fouling measures are taken, 

frequent manual cleaning of the sensor is necessary. For many researchers it 

is not clear at which specific point a cleaning is required though. This is due 

to lacking guidelines and different time frames of biofouling, depending on 

the specific conditions of the deployment site. For the LOC, the layout of the 

sensor chip should be re-designed (Yin, 2017), to facilitate the addition and 

flushing of an anti-biofouling reagent through the chip and inline filter. A 

directly implementable approach to curb the impact of biofouling could be 

the establishment of guidelines for frequent manual cleaning, which could 

link essential water parameters yielding biomass production like nutrients to 

a timeframe (including the sampling site specifications and weather, season 

conditions) and establish a best practice cleaning frequency for the LOC pH 

sensor. 

Given the current state of UV optical nitrate sensor technology, platforms like 

FerryBox systems, profiling floats and deep-sea gliders that are suitable to 

perform and extend the laboratory and field intercomparison exercises with 

multiple sensor units are yet to be utilised to their full capability, as well as 

prescribed procedures to conduct such exercises and handle data in a coherent 

way. 

It would be a great advantage and convenience for its users to add the new 

algorithm introduced in this study to the OPUS sensor software to calculate 

nitrate directly after in situ spectral measurements. The spectral nitrate 

measurements are prone to seasalt interference, which is a factor of in situ 

temperature, salinity, and pressure conditions.  
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Although the OPUS sensor has an internal temperature probe, we realized that 

it is about 5 to 6 °C higher than the in situ water temperature, attributed to the 

heating of the internal components. The co-located deployment of a CTD 

sensor is therefore essential to undertake accurate nitrate measurements using 

the OPUS sensor. As mentioned in Chapter 3, users of the OPUS sensor 

should be aware of the time drift issue of up to 60 seconds per day and 

regularly synchronize it to match its time of the CTD sensor. To permanently 

overcome this issue, we have introduced a custom-made controller, which 

also is advantageous to reduce the sampling frequency of the OPUS from 30 

seconds to 3 seconds in continuous mode. Future works should focus on 

reducing the sampling rate to 1 second, which is especially required for 

vertical CTD profiling applications. Like for the LOC sensor, inconsistent 

voltages threaten continuous data gathering for the OPUS sensor. The 

associated risk of data loss could be reduced by our custom-made controller 

as well, since it provides backup power in the order of a few seconds until the 

sensor completes its measurements. Therefore it could prove useful to 

integrate the functions of the controller in the sensor itself, which could 

improve applicability for the ocean observer community. 

Another aspect is that further investigations of the effect of CDOM on spectral 

nitrate measurements would provide the necessary information on whether 

the algorithms are straightforwardly applicable particularly in CDOM-rich 

waters. It should be mentioned that long term deployments in CDOM-rich 

waters remain especially challenging due to the effects of biofouling. Unlike 

for various other autonomous sensors, biofouling on the OPUS sensor has not 

been studied specifically. Like with the LOC sensor, biofouling likely impacts 

data quality on the OPUS as well. Biofouling was observed during our 

deployment exercises in near shore waters, requiring several manual 

cleanings of the optical path. To address this problem, a more repellent 

surface material structure or coating could slow biofouling in general and 

therefore reduce its impact on data quality (Delgado et al., 2021).  
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As an alternative to that, the measurement settings of the OPUS sensor could 

be adjusted to conduct consecutive measurements with a longer 

spectrophotometric exposure time, when deployed in optically dense waters. 

Furthermore, if the OPUS sensor has a built-in function to adjust this in its 

operating system, like the SUNA V2 (Satlantic, 2013), it could be used more 

efficiently in such challenging environments where the sensors performance 

is compromised due to less light transmission. 

Overall, to date, the OPUS is mainly deployed in groundwater systems 

characterised by high nitrate concentrations. We showed that its applicability 

can be extended to marine research if the previously mentioned issues are 

addressed. Further field deployments and studies would be beneficial to 

evaluate its performance in a range of different water environments and 

autonomous marine platforms. 

The potentials of the non-linearity error compensation introduced during this 

thesis do show potentials to improve the accuracy of compact spectrometer 

measurements. Further stray light related error mitigation remains to be 

undertaken. Frank et al. (2014) reported that wavelength-dependent stray 

light might have a significant effect at lower UV wavelengths, where bromide 

interference predominates in nitrate measurements. Future work regarding the 

suppression of stray light could lead to reducing noise in measurements, thus 

improving signal and accuracy levels for UV nitrate sensors.  

As aforementioned, the goal of this work is not only to enhance the 

applicability of autonomous sensors in ocean research in general. Broader 

sensor usage resulting from the improved applicability and a better 

understanding of the efficacy of autonomous sensors in ocean research could 

in itself increase cost efficiency. 

  



Chapter 5 – Conclusions and Future Perspectives 

 

124 

 

Lowering the costs is crucial, since it allows the research community in 

general to utilize saved financial assets for investing into a broader 

deployment of sensors, which addresses the previously mentioned issue of 

widespread undersampling of global water systems. As Wang et al. (2019) 

describes, the needed large scale sensor deployment is relying on cost-

reduction of the sensors itself. 

Sensor developers should react to the surging demand of the ocean observer 

community in high quality autonomous sensors, providing it with more 

affordable and improved sensor models. Additional breakthroughs in the 

evolution of electronics and material research could be supportive in that 

regard. 
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