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A blood cell lineage consists of several consecutive developmental stages starting from the
pluri- or multipotent stem cell to a state of terminal differentiation. Despite their importance
for human biology, the regulatory pathways and gene networks that govern these
differentiation processes are not yet fully understood. This is in part due to challenges
associated with delineating the interactions between transcription factors (TFs) and their
corresponding target genes. A possible step forward in this case is provided by the
increasing amount of expression data, as a basis for linking differentiation stages and gene
activities. Here, we present a novel hierarchical approach to identify characteristic
expression peak patterns that global regulators excert along the differentiation path of
cell lineages. Based on such simple patterns, we identified cell state-specific marker genes
and extracted TFs that likely drive their differentiation. Integration of the mean expression
values of stage-specific “key player” genes yielded a distinct peaking pattern for each
lineage that was used to identify further genes in the dataset which behave similarly.
Incorporating the set of TFs that regulate these genes led to a set of stage-specific
regulators that control the biological process of cell fate. As proof of concept, we
considered two expression datasets covering key differentiation events in blood cell
formation of mice.

Keywords: developmental genes, transcription factor, gene ontology, gene expression, cell fate, master regulator,
cell lineage

1 INTRODUCTION

Cell fate describes a biological program, which determines how a less specialized cell type develops
into a more specialized one. For each transition out of a particular state, this involves a decision
between either self-renewal or differentiation into daughter cells (Garcia-Ojalvo and Martinez Arias,
2012). It is well accepted that such processes are tightly regulated by transcriptional networks,
typically centered around a discrete number of transcription factors (Moignard and Göttgens, 2014).
Knowing the “key players” involved in these events may thus not only serve as a predictive marker to
help determining differentiation stages of cells, but furthermore could potentially be useful for
clinical purposes, for example by aiding in the search for therapeutic targets across different diseases
involving aberrations in the composition of cell types or stages, respectively (An et al., 2014). One of
the best-studied examples are blood cells, which are already widely used in diagnostics. Especially in
complex blood-related diseases such as leukemia, understanding the manifestation of the disease and
monitoring its progression and response to treatment could greatly benefit from a deeper
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understanding of the underlying regulatory processes and key
“actors” that govern blood cell differentiation. However,
delineating lineage-specific regulatory networks is a
challenging task, typically requiring the costly integration of
multiple data types; particularly from various “omics”
technologies. Previous work using a complex multi-omics
approach identified a set of 16 “global regulators” that drive
the differentiation of blood cells across six discrete stages -
Embryonic stem cells (ESCs), Mesoderm (MES),
Hemangioblast (HB), Hemogenic endothelium (HE),
Hematopoietic progenitor (HP) and Macrophages (MAC)
(Goode et al., 2016). It is very plausible to assume that these
global regulators stand at the top of the regulatory hierarchy and
indirectly govern particular cellular identity. Interestingly,
although the overall network is preserved across
developmental stages, analysis of the characteristic changes in
expression (Figure 1) suggests that these “global regulators”
contribute differently at various stages. We have previously
developed a method that reconstructs the core components of
a regulatory network from gene expression data and defines a so-
called “minimum dominating set” (MDS), i.e. the minimum set of
TFs that control the entire network by their interactions. A
modification of this concept is the “minimum connected

dominating set” (MCDS), which searches for a minimum
number of genes that are connected and control the
underlying co-network (Nazarieh et al., 2016; Nazarieh, 2018;
Nazarieh and Helms, 2019). When applied to expression data,
one should expect that a key transcription factor being most
strongly associated with a certain differentiation stage exhibits a
peak in expression at that stage compared to the other stages of
that lineage. Genes directly regulated by such a key player can be
expected to somehow mimic its expression profile, thus allowing
their assignment to a given regulator and cellular stage. In the
present work, we introduce an approach to identify stage-specific
key regulators that are likely to control cell fate in a
differentiation/developmental or resistance pathway.
PathDevFate is a method for identifying the set of connected
influencers and connectors that play roles in cell differentiation
and cell commitment. The method implements a workflow to
initially identify influencers that follow a lineage-specific pattern
defined by integrating cell-specific genes and TFs in a stage. Then,
it identifies the set of TFs that regulate these influencers. Finally, it
introduces a regulatory pathway of a connected set of influencers
and connectors whereby the path length is determined by the
number of influencers and connectors. We demonstrate the
usefulness of this approach by the example of two expression

FIGURE 1 | Expression of 16 global regulators driving hematopoietic specification for six stages of blood development starting from ESCs (stage 1) up to terminally
differentiated macrophages (stage 6) (Goode et al., 2016).
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data sets that were used to investigate blood cell differentiation in
mice (Bock et al., 2012; Goode et al., 2016).

2 METHODS

2.1 Overview
Figure 2 illustrates the workflow of the entire approach. First, we
derive diagnostic expression profiles to identify genes that are
likely centrally involved in a cellular differentiation path
(Figure 2A). Next, we integrate the expression pattern of
stage-specific developmental genes across full individual
lineages (Figure 2B). From this, a set of correlated genes and
associated TFs is identified (Figure 2C). This preliminary
network is further refined by incorporating experimentally
validated data e.g. from a TF-gene interaction database such as
TRRUST (Han et al., 2017) to define a sub-regulatory network
whose target genes follow the aforementioned lineage-specific
expression pattern and have a well-defined TF regulator
(Figure 2D). The regulatory relationships are modeled as a
directed graph as is commonly done in such analyses. The
source nodes are TFs and target nodes can be genes and/or
TFs. The edges correspond to the regulatory interactions between
them. Finally, we present an algorithm that finds the shortest
regulatory path that connects the target genes that are tightly

regulated by multiple TFs (Figure 2E). We suggest that the set of
target genes and TFs that connect them forms an important
group of driver genes for the respective cell fate process. A
functional enrichment analysis is then used to investigate the
biological processes these identified TFs have previously shown to
be involved in. Details of the individual steps of this algorithm
and the motivation behind the steps will be explained below in
section 2.4.

2.2 Datasets
The first case study is based on genome-wide RNA-seq expression
profiles (Goode et al., 2016) in form of FPKM values across six
consecutive differentiation stages, namely ESC,MES, HB, EH, HP
and MAC (GEO accession GSE69080). The microarray data for
the second case study were published by Bock et al. (2012). As
mentioned in that paper, the data were obtained as CEL files and
normalized in the same order to reduce batch effects. The data
includes 13 cell populations sorted by FACS analysis across 6
lineages.

2.3 Regulatory Relationships
Data on the relationship between TFs and their target gene(s)
were taken from the TRRUST database v2 (Han et al., 2017) that
was compiled based on literature curation. This release of the
database includes 6552 TF-target interactions for 828 mouse TFs.

FIGURE 2 |Overview of how biomarkers are identified that control or drive a developmental cell fate process. (A) Fictitious expression profiles (y-axis) of six selected
transcription factors (TFs) across six developmental stages (x-axis). TFs are identified having peak expression in the respective stage. This step yields the stage-specific
key regulators (TFs). (B) A lineage-specific pattern is constructed by integrating the stage-specific patterns across the lineage. (C) Further genes are identified having
highly correlated expression profiles to one of the stage-specific key regulators of (B) (here, one of the TFs peaking in the terminal stageMAC). (D) A gene-regulatory
(GRN) network is constructed including all stage-specific key regulators and their correlated target genes. This GRN includes TFs and target genes from all stages. (E) A
regulatory pathway is identified (see methods) that connects (blue colored nodes) all “influencer” nodes (red colored nodes).
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2.4 Workflow: Prioritization of the
Candidates of the Cell Fate Process
1) As input, we use existing knowledge about a small gold-

standard set of tissue-specific global regulators. All
differentiation stages of the particular cell lineage under
consideration are arranged in a linear sequence (see
Figure 2A). First, we identify which ones of the mentioned
global regulators peak in the individual stages.

2) Then, we aim at identifying an expression signature of each
particular stage. For this, we now identify further genes and
TFs having a closely matching expression profile to the stage-
specific expression pattern of the global regulators peaking in
this stage just defined. The genes identified in this manner are
termed first layer candidates. (see Figure 2A).

3) After having identified sets of signature genes for
particular stages, we now combine the stage-specific
expression pattern across the entire lineage. The mean
expression value of all identified stage-specific genes is
considered as a representative for each stage. This
averaging is done to capture the typical behavior of all
stage-specific genes by a single profile. This then yields a
lineage-specific pattern. (see Figure 2B). Alternatively, one
could have normalized the expression values of all stage-
specific genes to a particular interval.

4) In the next step, we find further genes and TFs having an
expression pattern that closely mimics the integrated lineage-
specific expression pattern. These are then termed second
layer candidates. (see Figure 2C).

5) Now, we determine TFs that regulate the candidates in the
second layer identified in step 4. These are then termed third
layer candidates.

6) We now aggregate the regulators identified in step 5 and the
target genes identified in step 4 into a regulatory subnetwork.
By way of design, this network includes those genes having a
particular lineage-specific expression pattern and their
regulators. We consider this subnetwork of the full
regulatory network of a cell as the essential part governing
the fate of a particular cell lineage. (see Figure 2D).

7) Now, we determine the high-indegree nodes in the regulatory
subnetwork identified in step 6. The idea behind this is that
these hub genes contribute a major part of all regulatory
activity in the constructed subnetwork. (see red color nodes in
the Figure 2E).

8) Identify additional connector nodes that connect the nodes
identified in step 7 (see blue color nodes in the Figure 2E). The
idea of this step is that this connected pathway forms an
equivalent of a “regulatory pathway”. This step has an analogy
to the concept of an MCDS of dominating nodes that we
defined in our earlier work (Nazarieh et al., 2016). The fourth
layer is a regulatory subnetwork including the set of
influencers and connectors.

The implemented program code for the two afore-mentioned
datasets is available at: https://github.com/ikmb/
KeyDevelopmentalFate in the code section: (KeyDevFate_
Goode2016.R, KeydevFate_Bock2012.R)

2.5 Randomization Algorithm
Input: A set of correlated genes following an integrated pattern of
gene expression across the stages in one lineage. Output: Overlap
significance of the correlated genes based either on the original
data or on the shuffled data.

1) Shuffle the data column-wise, whereby each column
corresponds to the expression value of the genes in a
certain stage.

2) Identify the set of correlated genes following the integrated
expression pattern based on shuffled data.

3) Compute the overlap between the correlated genes in real data
and the correlated genes in the shuffled data.

4) To characterize the statistical significance of the identified
genes, we compared the obtained result to analogous results
identified based on randomly shuffled data. If a considerable
part of the originally correlated genes were also identified
from shuffled data, this would suggest that the findings are
insignificant. Precisely, we counted the number of times when
the overlap (Jaccard index) between the correlated genes in the
original data and the correlated genes in 1000 shuffled data
sets is greater than 0.05. Here, the Jaccard index was computed
as the ratio of the intersection between the set of correlated
genes and the resampled data over the union of the two sets.

The implemented code for the first case study is available at:
https://github.com/ikmb/KeyDevelopmentalFate in the code
section: RandomizationAlgorithm_Goode2016.R

2.6 PathDevFate Algorithm: Find the
Regulatory Path That Involves a Certain Set
of Nodes
Input: A network that is obtained from step 6 of the above-
mentioned pipeline. Output: A set of genes and TFs with assigned
roles of influencers and connectors.

1) Identify the set of nodes that are regulated by at least one TF.
2) Specify a threshold (here denoted by “l”) as a measure of in-

degree threshold.
3) Select the nodes whose number of incoming edges exceeds “l”.

These are termed “influencers”.
4) Find a path that connects the influencer nodes by adding a

minimum number of further (Steiner) nodes (“connectors”).

The implemented code for the algorithm is available at:
https://github.com/ikmb/KeyDevelopmentalFate in the code
section (PathDevFate) In step 2, a threshold is introduced that
provides a balance between the number of influencers with
respect to the number of incoming edges and the number of
TFs that are supposed to connect them (which depends on the
distance these influencers have from each other). This measure
serves to capture the high-indegree nodes and imposes a
minimum number of TFs to the regulatory pathway. The idea
of this algorithm has been taken from our MCDS algorithm
(Nazarieh et al., 2016). In the MCDS algorithm, after finding the
dominator nodes, the next step is to find the connectors and
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minimise the number of dominators and connectors as long as
connectivity persists and the underlying connected network is
covered by the MCDS. In the new algorithm, after finding the
connectors, we keep the set of influencer nodes (nodes with high
in-degree) constant and then minimize the number of connector
nodes. Based on the enrichment analysis, influencers take part
mainly in the development and differentiation processes, whereas
connectors may in addition also contribute to cell fate
commitment.

2.7 Functional Annotation
The biological function of the genes in each stage was evaluated
using the enrichment analysis tool provided by the DAVID portal
of NIH (version 6.8) based on the functional categories in GO
Direct (Huang et al., 2008) and all Mus musculus genes as
background. p-values below the threshold of 0.05 as obtained
by the hypergeometric test were adjusted for multiple testing
using the Benjamini and Hochberg (BH) correction (Benjamini
and Hochberg, 1995).

3 RESULTS

The main goal of this study was to derive an approach that
identifies a connected set of cell-fate regulating genes. For this, we
implemented the hierarchical strategy illustrated in Figure 2. The
first layer includes the stage-specific TFs and genes that are
involved in cellular differentiation. The second layer consists
of further genes and TFs following the same integrated stage-
specific expression pattern. The third layer is formed by those TFs
that regulate the candidates in the second layer. A regulatory
network was constructed from the correlated genes following the
integrated expression pattern with a set of TFs that regulate them
which forms the candidates in the fourth layer. Finally, we derived
a shortest regulatory path that connects the set of correlated genes
that are regulated bymultiple TFs (PathDevFate, seeMethods). In
short, the target genes that are tightly regulated by multiple
transcription factors are flagged as “influencers” and the nodes
that connect them as “connectors”. As proof of concept, we
applied the method to two datasets of murine blood
differentiation. The first case study was a lineage of six stages
starting at ESC and leading toMAC (Goode et al., 2016). We then
extended the concept by setting rules defined for cellular
differentiation in (Artyomov et al., 2010) and applied it to
expression data from across 6 murine cell lineages in blood
formation (Bock et al., 2012) starting at HSC and leading to
either CD4 T-cells, CD8 T-cells, B cells, erythrocytes,
granulocytes or monocytes, respectively.

3.1 Dataset 1: Differentiation of Murine
Blood Stem Cells
From published multi-omics data on murine blood stem cells
(Goode et al., 2016), we retrieved the gene expression profile of 16
global regulators that were identified in the study of (Goode et al.,
2016). These were averaged to yield a stage-specific expression
pattern that is considered subsequently as signature pattern. We

then identified further genes (and further TFs) having strongly
correlated expression profiles with this stage-specific expression
pattern. Figure 3 shows the expression pattern of the TFs that
were among the identified correlated genes. Obviously, multiple
TFs show peaks in each of the individual differentiation stages.
This analysis, yielding our “first” gene layer, identified between
197 (HP) and 692 (HB) correlated gene expression profiles
(Supplementary Table S1). Included in this are between 10
(MAC) and 57 (HB) TFs, such as SOX2 and ESRRB. For each
stage, we considered the identified genes to reconstruct functional
profiles of the correlated genes based on enriched gene ontology
terms (GO) (Supplementary Tables S2–S5). In order to
understand the molecular mechanisms governing each
differentiation stage, we next performed a functional
enrichment analysis using both gene ontology (GO) terms and
KEGG pathways for the key transcription factors
(Supplementary Tables S6–S11) found in each differentiation
stage, as well as for their (known) target genes (Supplementary
Tables S12–S17), respectively. Supplementary Table S6 for ESC
lists GO terms such as stem cell differentiation (GO:0048863),
multicellular organism development (GO:0007275), endoderm
development (GO:0007492) and cell differentiation (GO:
0030154), respectively. Moreover, the five genes Onecut1,
Esrrb, Id1, Sox2, and Zic3 belong to the KEGG pathway
signaling pathways regulating pluripotency of stem cells
(mmu04550). Supplementary Tables S7–S11 list the enriched
GO terms and KEGG pathways for the identified TFs in MES,
HB, HE, HP and MAC. The lists include further specialized GO
terms in addition to some of the aforementioned terms such as
patterning of blood vessels (GO:0001569), cell fate commitment
(GO:0045165), heart development (GO:0007507) and
hemopoiesis (GO:0030097), respectively and also the KEGG
pathway acute myeloid leukemia (mmu05221). Then, we
inferred the set of target genes for the set of “key player” TFs
at each developmental stage from the TF-gene interaction
database TRRUST (Han et al., 2017). Enrichment analysis for
the set of identified target genes in the ESC stage yielded the
enriched biological process GO terms listed in Supplementary
Tables S12. The list includes GO terms such as proliferation (GO:
0042127), multicellular organism development (GO:0007275),
stem cell differentiation (GO:0048863), cell differentiation
(GO:0030154), cell fate commitment (GO:0045165), cell
development (GO:0048468) and cell proliferation (GO:
0008283), respectively. Supplementary Tables S13–S17 list the
enriched GO terms for the target genes in other developmental
stages. In addition to common GO terms, distinct GO terms, such
as BMP signaling pathway involved in heart development (GO:
0061312) and Wnt signalling pathway (GO:0016055) are added
in the MES stage. More specialized GO terms appear in later
stages HB, HE, and HP, such as liver development (GO:0001889),
B cell lineage commitment (GO:0002326), ear development (GO:
0043583) and eye development (GO:0001654), respectively.
Although the TFs identified in each particular developmental
stage also follow the aforementioned expression pattern, they
exhibit different expression levels. The histograms in Figure 4
show the frequency of TFs based on their expression level. In
general, there are many more TFs with low expression (e.g. 0–10,
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0–20 etc.) than with high expression (above 50). There is an initial
increase in the absolute number of patterned TFs from 13 (ESC),
14 (MES) to 34 (HB), followed by a corresponding decline over 22
(HE), 15 (HP) to 6 (MAC). Genes that act in the same biological
processes are expected to (partially) share activity profiles
(Huttenhower and Troyanskaya, 2008). Figure 5 shows the
mean expression of the identified stage-specific genes. To the
aim of identifying additional members of the candidate network,
we extracted genes that mimic the same expression pattern
exhibited by the stage-specific genes (Figure 5). For this, we
required that their expression patterns across the six stages (from

ESC to MAC) showed the same monotonic expression pattern
(i.e. Spearman rank correlation larger than 0.9) as the stage-
specific genes. This led to the identification of 243 genes
(Supplementary Table S18) including 13 TFs. Figure 6 shows
the expression pattern of those genes having perfect Spearman
correlation of 1.0. The 13 TFs are considered as candidates for the
second layer. To verify the statistical significance of the correlated
genes, we resampled the data 1000 times, identified patterned
genes in each case, and measured the overlap between the
correlated genes in the original data set and those determined
from the resampled data, see Supplementary Figure S1. The

FIGURE 3 | Expression pattern of identified TFs in six stages of ESC, MES, HB, HE, HP and MAC that follow the global expression pattern.
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overlap was measured based on the Jaccard index as the ratio of
intersection between the sets of correlated genes in real data and
in resampled data over the union of the two sets. Only 3 out of
1,000 cases had a similarity higher than 0.05 between the
correlated genes in the original data and the correlated genes
in the shuffled data (p-value of 0.003). Thus, the stage-specific
genes identified in the real data are rarely identified based on
randomly shuffled data, which strengthens the biological
meaningfulness of this analysis. Next, we sought to identify
known regulators of this initial set of co-expressed genes using
data from the TRRUST database. This analysis resulted in 83 TFs
which then formed the third layer of our analysis
(Supplementary Table S19). The intersection with cell-specific
TFs of ESC, MES, HB, HE, HP and MAC identified in the first
layer includes (Etv4, Hdac1, Prdm16, Sox2), (Foxo4), (Atf2, Etv2,
Gata4, Msx2, Snail1), (Ebf1, Smad3), (Stat5a, Stat5b, Thra),

(Arid3a, Stat5b), respectively. All these genes were previously
reported to have specific roles in cell fate commitment (Liu et al.,
1996; Avilion et al., 2003; Dunn et al., 2004; Beuling et al., 2008;
Zandi et al., 2008; Ackermann et al., 2011; Rhee et al., 2014;
Babajko et al., 2015; Horvay et al., 2015; Liu et al., 2015; Bourgeois
and Madl, 2018; Garg et al., 2018). Supplementary Table S20
shows the functional enrichment analysis (biological process) and
KEGG pathways for the 83 TFs along with p-values, using a
hypergeometric test and adjusted for multiple testing using the
Benjamini and Hochberg (BH) correction (Benjamini and
Hochberg, 1995) below a threshold of ≤ 0.05. Notable GO
terms on this list include: GO:0008285 negative regulation of
cell proliferation, GO:0008284 positive regulation of cell
proliferation GO:0043066 negative regulation of apoptotic
process, GO:0043065 positive regulation of apoptotic process,
GO:0002360 T cell lineage commitment, GO:1902262 apoptotic

FIGURE 4 | Histograms of stage-specific TF expression levels (FPKM values) in the blood cell lineage show a quasi-exponential decay. Eg. for ESC, 13 TFs have
expression levels between 0 and 20, 6 TFs have expression levels between 20–40.
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process involved in patterning of blood vessels, GO:0048863 stem
cell differentiation, GO:0030154 cell differentiation, GO:0007507
heart development, GO:0007275 multicellular organism
development, GO:0033077 T cell differentiation in thymus,
and GO:0030217 T cell differentiation. Finally, using
information from the TRRUST database, a regulatory network
was reconstructed whose nodes are confined to the candidates of
the second and third layer. The network demonstrates the
connectivity between the candidates in the second and third
layer. The number of TFs in the network exceeds the number of
target genes so that the network contains few genes with a high
number of incoming edges. In the network having 90
interactions, the 83 regulators were taken from the third layer
and 21 target genes taken from the second layer (Supplementary
Table S18). This network contains the three high-indegree nodes
Ccnd2, Pparg and Ihh in the largest connected component that
are connected through Msx2 and Foxo1, see Figure 7. Indeed,
previous experimental work established that these genes and TFs
have important functions in hematopoiesis: Ccnd2 as a target of
Elf5 plays an important role in development and differentiation
(Escamilla-Hernández et al., 2010); Pparg is a regulator of
hematopoietic stem cell homeostasis (Sertorio et al., 2017); Ihh
programs developingmesoderm cells to become hematopoietic or
vascular cells (Sugiyama et al., 2011), and suppression of Foxo1
exhibits myeloid lineage expansion and lymphoid developmental
abnormalities (Tóthová et al., 2007).

3.2 Dataset 2: Blood Stem Cell
Differentiation Along Multiple Lineages
The previous section focused on a single example of cellular
differentiation in blood formation, starting from previously
characterized “key” transcription factors. Therefore, we next

expanded our initial approach and applied our concept of
“key” expression profiles to a more complex dataset, consisting
of six differentiation lineages starting at mouse blood stem cells
(Bock et al., 2012). Differentiation of these lineages was shown by
the authors to follow a gradual path of changing expression
profiles through up to six steps into a fully differentiated cell
(Figure 8). To derive the developmental genes and TFs we not
only relied on the cell-specific expression pattern as outlined
above, but also exploited the computational model and the rules
suggested by (Artyomov et al., 2010). Within this model, each cell
is defined by two network layers representing expression and
epigenetic states. A set of master regulators define the cellular
identity. On the event of cellular differentiation, the activated
gene module suppresses the activity of the competitor cells either
in relationship of parent cell or daughter branch cells. We
modified the rules to the extent that developmental regulators
specific to each cell state have superiority in terms of gene
expression level over neighboring stages while following the
cell-specific expression pattern from the top of the hierarchy
until terminally differentiated cells. The afore-mentioned
patterns led to the identification of between 4 and 128 cell-
stage specific genes for the different cell types under consideration
(Supplementary Table S21), including several well-known TFs.
Figure 9 represents the changes of mean expression value of
constituent cells along the cell lineages starting from HSC until a
terminally differentiated cell type (e.g. CD4 T-cell, CD8 T-cell,
B cell, Erythrocyte (Eryth), Granulocyte (Granu) or Monocyte
(Mono)). The stage-specific genes of erythrocytes and
granulocytes have particularly high expression levels in the
terminally differentiated stage. For CD4 T-cells, CD8 T-cells,
B cells, and monocytes, an inverse trend is observed.

FIGURE 5 | Depiction of the mean expression of stage-specific genes
across six stages of blood cell differentiation (from ESC to MAC).

FIGURE 6 | Depiction of the correlated genes. The red curve shows the
pattern of integratedmean expression of all six stages in the lineage. The black
curves represent correlated genes that have perfectly positive correlation
based on the Spearman method (threshold � 1).
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Supplementary Table S22 shows the number of lineage-specific
correlated genes including the involved TFs. Additionally, it
depicts the number of TFs that regulate the correlated genes
inferred from the TRRUST database and the number of identified
correlated genes that are targets of these TFs. Supplementary
Tables S23–S28 contain the GO terms and KEGG pathways for
the set of TFs that regulate the correlated genes mentioned in the
second layer. GO terms such as GO:0045165, GO: 0001709, GO:
0001708 annotated to cell fate commitment, cell fate
determination and cell fate specification have been identified
in the downstream analysis of almost all the lineage-specific TFs.
Supplementary Table S29 shows the network statistics for the six
lineages. As mentioned before, these networks consist of the
derived TFs in the third layer and the target genes of the second
layer. The network size lies between 81 and 272 nodes having 66
up to 293 interactions. Figure 10 illustrates the CD8 network
constructed by the TFs and their target genes that overlap with

the correlated genes in the second layer. The PathDevFate
program highlighted genes (influencers colored red and
connectors colored blue) that reside along the path to connect
the influencers. Supplementary Tables S30–S35 list these nodes
for the six lineages including their roles and in-degree and out-
degree. Supplementary Table S36 displays the enriched GO
terms and KEGG pathways for the set of genes and TFs
involved in the regulatory pathway of the CD8 T-cell lineage.
Among many terms related to cell differentiation and cell fate,
GO: 0030217, which is annotated to the three involved genes
Gata3, Ctnnb1 and Runx2, stands for T cell differentiation.
Possible validation experiments of our predictions would be
CRISPR-Cas knock out of these genes or siRNA silencing. Our
expectation is that this would impair differentiation. Jun, Gata3,
Nfatc1 and Runx2 are known to be key TFs for memory
CD8 T-cell development based on a genome-wide regulatory
network (Hu and Chen, 2013). Fli1, Smad3, Sp1, Mycn, and Tal1

FIGURE 7 | TF-target network for the set of correlated genes derived from the TRRUST database. Influencers (red nodes) are the stage-specific target genes that
are regulated by more than five TFs. Connectors are TFs (blue nodes).
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FIGURE 8 | Red colored nodes denote the genemodules whose expression pattern are the highest among the stages in the blood differentiation. Blue color nodes
stand for the genes whose expression pattern are lower than the red color nodes. The parent nodes above the red colored node show a gradual increase in the
expression pattern and the daughter blue nodes show a gradual decrease which reaches minimal expression at the terminally differentiated cells. Arrows point in the
direction of decreasing expression level.White color nodes are the cells whose expression levels are not considered for this stage. The rules are listed in detail in the
Appendix:
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play important roles in CD8 T-cell differentiation and
development and in forging T-lymphocyte identity (He et al.,
2016; Rothenberg et al., 2016). Supplementary Tables S37–S40

represent the enriched GO terms and KEGG pathways associated
with the set of genes and TFs involved in the regulatory pathways
of CD4 T-cell, B cell, erythrocyte and granulocyte lineages (Bock
et al., 2012).

4 DISCUSSION

In this work, we devised a pipeline for inferring a set of genes
and TFs that drive the blood differentiation process
controlling the cell fate decisions across a lineage starting
at the stem cell stage leading to a terminally differentiated
stage. We started by identifying a set of genes and TFs having a
particular stage-specific developmental expression pattern.
PathDevFate is a new method based on the biological
observations of (Bock et al., 2012). We first retrieve the
expression level of a given set of global regulators across a
developmental lineage. By averaging these, we define a “stage-
specific pattern”. Before arriving at our pattern definition, we
also experimented with a “loosened” criterion where a stage-
specific gene could e.g. violate one out of six conditions. But
this led to a large increase in the number of identified genes,
which confused their downstream analysis. As cell fate
regulators, we consider those genes that adhere exactly to
the given expression pattern of stage-specific genes across the
lineage and are regulated and connected by a set of TFs. Other
techniques such as Spearman correlation or the method
introduced by (Pavlidis and Noble, 2001) may identify
genes where the expression does not peak in the specified
stage, but that have optimal matches for the other stages. After
determining stage-specific pattern, we identify further genes

FIGURE 9 | Mean expression of stage-specific genes for the cells in each lineage for the six lineages CD4 T-cell, CD8 T-cell, B cell, erythrocyte, granulocyte and
monocyte.

FIGURE 10 | The set of genes and TFs involved in the regulatory
pathway for CD8 T-cells. Influencers (red nodes) are the target genes that are
regulated by more than five TFs. Connectors are TFs (blue nodes).
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having highly correlated expression profiles with this pattern
and term them “stage-specific” genes and TFs. The stage-
specific genes which follow the cell-specific pattern have
different expression levels. Therefore, we consider the mean
expression of all stage-specific genes as a representative value of
all the genes with the same pattern. “Lineage-specific genes” refer to
the set of genes that follow the expression fluctuation of the stage-
specific genes in the respective lineage. As described before, a TF-
gene regulatory network is reconstructed in layer 4 of the workflow.
That comprises of TFs (connectors) and targets (influencers). Here,
we selected CD4 T-cell, CD8 T-cell, and B cell lineages to elucidate
the main biological roles of the influencers and connectors. The set
of TFs is analyzed in Supplementary Tables S23–S25. The
enrichment analysis of the set of target genes (influencers) is
presented in Supplementary File S2. Based on the analysis,
influencers take part mainly in the developmental and
differentiation processes, whereas connectors in addition
contribute to cell fate commitments. At the top level of this
pipeline, we introduce a regulatory pathway in a gene-regulatory
network of TFs and target genes taking into account the identified
correlated genes and the TFs that regulate them. The regulatory
pathway consists of a set of influencers that are regulated by
multiple TFs and a set of connector TFs that join them. The
quality of this pathway depends on several points: First of all, the
correlation threshold is a variable unless only perfectly correlated
genes are to be considered. After that, the number of TFs that
regulate these genes relies on the database(s) and the type of
interaction which can be either experimentally confirmed
(though likely not in the particular case investigated here) or
predicted, or both. After all, the in-degree threshold for
influencers is also a variable. A tighter threshold leads to a
lower number of influencers but is not correlated to the size of
the regulatory pathway. As shown in Supplementary Figure S2,
in the lineages of CD8 T-cells and granulocyte the number of
connectors dramatically increases after a certain threshold. This
observation indicates that those high-indegree influencers are
very distant from each other and the algorithm needs to inject
many connectors to join them. In principle, this work divides
the identified genes and TFs into two groups. The first group
describes the set of TFs that show the stage-specific
developmental patterns and have a tendency to reach the
terminally differentiated state. The second group contains the
set of TFs that regulate the set of genes and TFs which correlate
with the lineage-specific expression pattern. The regulatory
pathway demonstrates a path that encompasses those
correlated genes that are targeted by several TFs. This
signifies the necessity of the genes to be involved in the
process. Moreover, this pathway introduces a set of TFs to
synchronize the activities of these influences in the lineage. At
this point, it is not very straight-forward to highlight the most
important TFs as the number of TFs that are induced for
connectivity highly depends on the number of influencers
and the distance that these influencers have from each other
in the network.

5 CONCLUSION

In this work, we identified a set of genes and, from within this
set, TFs that can be considered as potential biomarkers for the
cell fate process during blood formation. To infer these
candidates, we took as starting point the expression pattern
of previously described global regulators in a blood lineage.
Using this data, we identified stage-specific genes that are
likely associated with the cellular differentiation based on
correlated activity profiles. By combining the cell-specific
expression pattern we obtained an integrated pattern
specific to each lineage. Inferring the set of correlated genes
and TFs that follow the lineage-specific expression pattern and
incorporating the TFs that regulate the genes that have high
correlation with the integrated pattern led to the identification
of a regulatory subnetwork of TFs and their target genes.
Nodes in these networks were finally prioritized using a
newly developed “regulatory pathway” algorithm to identify
high-indegree genes and TFs by adding additional connector
TFs. All the nodes that reside along this path are suggested to
be of a high priority for network function. Here, the set of TFs
is prioritized in four layers. In the first layer, there are TFs that
are mainly involved in the cellular differentiation process. The
second layer consists of TFs that follow the integrated pattern
of stage-specific expression pattern. TFs that regulate the
correlated genes and TFs in the second layer constitute the
candidate TFs in the third layer. Finally, the TFs that
cooperatively regulate targets genes and connect high-
indegree nodes (influencers) in the network of TFs in the
third layer and the correlated genes and TFs in the second layer
make up the candidates in the fourth layer. Enrichment
analysis demonstrates that these biomarkers are not only
involved in determining cell fate but also in other
developmental processes such as multicellular organism
development etc. KEGG pathway analysis shows that these
biomarkers can be potential targets for disease-related
biomarkers, such as leukaemia In addition to the
computational approach to identify a regulatory pathway
driving blood differentiation and also a set of genes and
TFs that are introduced in four layers as potential
biomarkers, the PathDevFate code can be used as a software
to find the shortest path between a set of influencer nodes in
the largest connected component where a user can set a
threshold for the number of incoming edges. Also, users
who want to apply a different ranking scheme can easily
modify the provided R scripts and study the data sets of
their choice.
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APPENDIX

HSC � (HSC > MPP1) & (MPP1 > MPP2) & (MPP2 > CLP) &
(CLP > CD4) & (CLP > CD8) & (CLP > B cell) & (MPP2 > CMP)
& (CMP > GMP) & (CMP >MEP) & (MEP > Eryth) & (GMP >
Granu) & (GMP > Mono)

MPP1 � (HSC <MPP1) & (MPP1 >MPP2) & (MPP2 > CLP) &
(CLP > CD4) & (CLP > CD8) & (CLP > B cell) & (MPP2 > CMP)
& (CMP > GMP) & (CMP >MEP) & (MEP > Eryth) & (GMP >
Granu) & (GMP > Mono)

MPP2 � (HSC <MPP1) & (MPP1 <MPP2) & (MPP2 > CLP) &
(CLP > CD4) & (CLP > CD8) & (CLP > B cell) & (MPP2 > CMP)
& (CMP > GMP) & (CMP >MEP) & (MEP > Eryth) & (GMP >
Granu) & (GMP > Mono)

CLP � (HSC < MPP1) & (MPP1 < MPP2) & (MPP2 < CLP) &
(CLP > CD4) & (CLP > CD8) & (CLP > B cell) & (MPP2 > CMP)
& (CMP > GMP) & (CMP >MEP) & (MEP > Eryth) & (GMP >
Granu) & (GMP > Mono)

CMP � (HSC < MPP1) & (MPP1 < MPP2) & (MPP2 > CLP) &
(CLP > CD4) & (CLP > CD8) & (CLP > B cell) & (MPP2 < CMP)
& (CMP > GMP) & (CMP >MEP) & (MEP > Eryth) & (GMP >
Granu) & (GMP > Mono)

MEP � (HSC < MPP1) & (MPP1 < MPP2) & (MPP2 > CLP) &
(CLP > CD4) & (CLP > CD8) & (CLP > B cell) & (MPP2 < CMP)
& (CMP > GMP) & (CMP <MEP) & (MEP > Eryth) & (GMP >
Granu) & (GMP > Mono)

GMP � (HSC < MPP1) & (MPP1 < MPP2) & (MPP2 > CLP) &
(CLP > CD4) & (CLP > CD8) & (CLP > B cell) & (MPP2 < CMP)
& (CMP < GMP) & (CMP >MEP) & (MEP > Eryth) & (GMP >
Granu) & (GMP > Mono)

CD4 � (HSC < MPP1) & (MPP1 < MPP2) & (MPP2 < CLP) &
(CLP < CD4) & (CLP > CD8) & (CLP > B cell) CD8 � (HSC <
MPP1) & (MPP1 < MPP2) & (MPP2 < CLP) & (CLP > CD4) &
(CLP < CD8) & (CLP > B cell)

B cell � (HSC < MPP1) & (MPP1 < MPP2) & (MPP2 < CLP) &
(CLP > CD4) & (CLP > CD8) & (CLP < B cell)

Eryth � (HSC <MPP1) & (MPP1 <MPP2) & (MPP2 < CMP) &
(CMP > GMP) & (CMP < MEP) & (MEP < Eryth) & (GMP >
Granu) & (GMP > Mono)Granu � (HSC < MPP1) & (MPP1 <
MPP2) & (MPP2 < CMP) & (CMP < GMP) & (CMP > MEP) &
(MEP > Eryth) & (GMP < Granu) & (GMP > Mono)Mono �
(HSC <MPP1) & (MPP1 <MPP2) & (MPP2 < CMP) & (CMP <
GMP) & (CMP > MEP) & (MEP > Eryth) & (GMP > Granu) &
(GMP < Mono)
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