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Abstract

Localization and location aware systems are expected to be counted as one of the main ser-

vices of 5G millimeter wave (mmWave) communication systems. mmWave communication

systems are offering a large bandwidth from 30-300 GHz frequency band along with low

latency communications. Although, they use massive number of antennas at their trans-

mitters and receivers, their transceivers occupy a very small area, in order of centimeters.

These features make 5G mmWave communication systems an exceptional candidate for

the localization services. However, mmWave suffers from some limitations such as high

vulnerability to the environment and hardware deficiency.

The hardware used in mmWave system’s transceivers including power amplifiers and

analog/digital converters, cannot be manufactured perfectly as of high costs. Therefore, it

is highly probabilistic to see a non-linear behavior coming out of the mmWave transceivers,

known as hardware impairments (HWIs). HWIs is generally caused as a result of non-

linearity of transmitter power amplifier and receiver low noise amplifier (LNA) as well as

analog to digital (ADC) and digital to analog converters (DAC). Moreover, HWIs is the

general form of phase noise and In/Quadrature phase (I/Q) imbalance. Because of the

mmWave’s nature, even a slight shortcoming can cause severe effects on its performance.

This thesis investigates the possible effects of HWIs on the user localization error bounds.

Towards that and focusing on line-of-sight (LOS) path, we derive the Cramèr-Rao Lower

Bound (CRLB) for the user equipment (UE)’s location and orientation by starting with

a conventional two dimension (2D) scenario and then, we extend it to the realistic three

dimensional (3D) scenario. Afterwards, by adding another deficiency, we examine the effect

of HWIs on user localization under asynchronous conditions. In order to eliminate the time

bias between the transmitter and the receiver, we pursued our goal for four other scenarios,

categorized as one-way (OWL) and two-way localization methods (TWL). Each of these

v



two, follow different approaches for cancelling the bias; the first one uses a second base

station (BS) and the second one utilizes the both forward and backward transmissions. Two

algorithms round trip (RLP) and collaborative localization protocols (CLP) are studied in

TWL. Finally, in an effort to alleviate the enormous effects of HWIs on user localization,

we explore the advantages of reconfigurable intelligent surfaces (RISs).

Our results show that HWIs have a strong effect on UE’s localization. For each men-

tioned scenario, position (PEB) and orientation error bounds (OEB) of the UE stand at

their minimum level, when there are no HWIs. Moreover, comparing different scenarios

reveal that CLP has the finest performance facing HWIs. Through our findings, we con-

fess that establishing few optimum spaced RISs give a lot of benefits to the localization

performance.
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Chapter 1

Introduction

1.1 Millimeter wave communication and its limita-

tions

It’s been always a challenge to provide communication services to the rapidly growing

number of users; as per Cisco annual internet report in March 2020, the number of internet

users will reach to 5.3 billion users in 2023 [2]. Moreover, some studies revealed that the

data traffic is expected to need 5000 times more capacity [3, 4], in which the current

radio technologies are not capable to offer this capacity; this increasing demands strongly

depends on spectral efficiency and bandwidth [5]. Therefore, a wide-range spectrum band is

required, such as millimeter wave (mmWave) bands (30 GHz- 300 GHz). Communication

at mmWave frequencies has opened a new stage in wireless communication system. Large-

scale spectrum in this band leads to having larger bandwidth channel and consequently,

higher data rate [6]. Moreover, mmWave supports establishing massive number of small

antennas at the transceiver, resulting in more sophisticated multiple-input multiple-output
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(MIMO) communication systems. Large antenna arrays’ deployment creates narrow beams

which highly interact with atmospheric constituents like Oxygen (O2). In brief, some of

the benefits and drawbacks of mmWave communication system are following.

• Large bandwidth in mmWave channels secures 1 Gbps data rate.

• mmWave provides low latency communication [7].

• It has low scattering nature which results in sparse channel with few paths [8, 9].

This means mmWave is rather influenced by line-of-sight (LoS) than non line-of-

sight (NLOS) path.

• mmWave channels are sensitive to the blockage.

• Manufacturing small antennas requires more precision and cost [3,10,11]. Practically,

these productions lead to some minor imperfections.

• Due to atmosphere absorption, mmWave transceivers cover a small range in order of

few Kilometers [12,13].

The energy and bandwidth efficiency of mmWave communication makes it an exceptional

candidate for the fifth generation (5G). On the other hand, localization (i.e. finding the

position and orientation of the user equipment (UE)) is one the main services of 5G, owing

to deploying large number of antennas and the large bandwidth; these two key factors

facilitate the location estimation process and consequently lead to [14]

1. Accurate localization using a single anchor [15–17]

2. Exploiting of enormous location aware applications such as vehicular communication

[18,19], smart health systems and target based applications [20].
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3. Boosting network performance and beamforming schemes if the signal is directed to

the user location [21–23].

1.2 Localization Evolution

Finding the location was one of the main concerns in the history of civilization. Early

men used marked landscapes, such as mountains and shores. Later, sun and stars’ obser-

vation using appropriate instruments became the most important sources for the location

information.

Human’s vast effort in order to discovering their location, pushed them towards to

today’s localization, which is using more complicated measurements to achieve the accurate

position. In 1906, the Stone Radio and Telegraph Company accomplished the first attempt

by installing the first navigation prototype on an American naval ship [24]. Later on, in

1962, USA made the first satellite navigation system, which could localize the user with

the accuracy of almost 25 meters [25]. Subsequently, Global Positioning System (GPS)

was the result of USA’s effort in 1985 [26].

It has been few decades that localization is used in indoor and outdoor applications such

as localization in emergency calls [27, 28], travel, asset management, shopping, workforce

management and billing. Nowadays, localization is known as one of the main services of 5G

mmWave communication systems and this fact is taking an anourmous attention [29–31]

and a lot of companies such as Huawei [32], Nokia [33] and Ericsson [34] have launched

their 5G networks. In the following section the techniques used in order to accomplish

localization are explained in details.
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1.3 Localization techniques

As it’s mentioned before, localization is one of the main services of 5G mmWave commu-

nication systems. The goal in localization is to determine the position and orientation of

an agent using single or multiple anchors. In this thesis, agent represent the UE with an

unknown position and anchor is the device with a known location, attempting to locate

the UE, i.e. base station (BS). The localization procedure can be done with variety of tech-

niques through the earned data from beamforming [35], pilot assignment [36] and resource

allocation [37].

Localization techniques can be categorized in different points of view as below [14,38,39].

1. Localization methods: The position of an agent can be estimated through some

metrics. These metrics can be dependent to the distance parameter; in this case

the localization is called range-based. For those techniques that the localization

procedure does not rely on the distance, the method is called range-free. In the

following, different range-based and range-free localization techniques are described.

• Range-free localization techniques: There are two main categories in this

type of localization:

(a) Fingerprinting: This method is based on a prior entries in a database and

mostly used in indoor circumstances. Some location based parameters such

as the received power, are measured and collected from all the available

agents during the training step. In the second step, positioning phases, the

location of the agent is recognized by comparing, matching and mapping of

the current metrics with the available database. This method suffers from

some drawbacks including the time is needed for the matching process as

4



Figure 1.1: Range based localization using RSS or ToA.

well as changing the database due to the training phase changes.

(b) Hop count: Using a routing protocol, instead of other metrics, the number

of hops from the anchors is counted by the agent. Consequently, the closest

anchor is considered as a reference for the positioning. More details on hop

count is available in [40].

• Range-based localization techniques: In this type of localization some

distance related measurements is obtained. There are three main categories

in range-based localization, including received signal strength (RSS), direction

based localization and time based localization. These metrics’ measurements

are explained below.

(a) RSS is one of the common localization methods in which the range of the

agent is determined based on the received power. Moreover, a minimum

of three anchors are needed in order to estimate the agent’s position (see

Fig. 1.1). Some of the applications which use this method are including

mobile handover, resource allocation and RFID.

(b) Direction based localization: Angle of arrival (AoA) estimation is one
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(a) Angle of arrival localiza-
tion

(b) Angle of departure local-
ization

Figure 1.2: Direction based localization technique.

of the localization methods in which the direction of the received signal at

the receiver is measured. This technique, requires two or more antennas in

the anchor or at least two single antenna anchors. As in Fig. 1.2a, the AoA

and the possible UE’s position is then determined through the intersection

of lines of bearing (LoB) (Lines from multiple antennas/anchors to the

receiver).

Angle of departure (AoD) is another direction based localization in which

the direction of the departed signal from the transmitter is estimated (see

Fig. 1.2b).

(c) Time based localization: Time of arrival (ToA) and time difference of

arrival (TDoA) are two localization methods based on time. Both of these

methods require synchronization between all the anchors, however the syn-

chronization between the agent and the anchors is not required in TDoA.

In ToA, three anchors derive the agent’s range di, based on the signal de-

lay τi; consequently, similar to the RSS in Fig. 1.1, the agent’s location is

estimated. In case of asynchronized transceivers, TDoA is preferred. In

6



Figure 1.3: Time difference of arrival localization technique.

TDoA, after selecting one anchor as a reference point, the difference be-

tween the reference anchor’s ToA and other anchors’ ToA, is calculated,

i. e, ∆τi = (τi − B) − (τReference − B); in which B, the clock bias, will be

disappeared. The intersection of three hyperbolas out of TDoA, locates the

agent (Fig. 1.3).

(d) Hybrid localization technique: combination of the direction and time

based localization called hybrid localization. In this technique, the range

of the target is determined by time based localization such as ToA. ToA

obtains a sphere/circle range for the target in 2 dimension (2D)/3D sce-

narios. Then, by estimating an angle using the same anchor and through

direction based technique, the agent’s location is found. In the other words,

the position is the intersection of the line earned out of the angle estimation

and the sphere/circle obtained by the range estimation (see Fig. 1.4).

2. Agent cooperation: In localization procedure agents can have passive or active

roles. When the agent is acting passive role, it does not participate in the localization

procedure, however in active mode, the agent is determining some measurements to
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Figure 1.4: Hybrid localization technique using combination of direction and time based
localization.

assist the position estimation. In the other words, there are signal exchanging in

active mode which can be done uplink or downlink. In uplink, the anchor and in

downlink, the agent performs the estimation calculations.

3. Processing assumptions: In the estimation procedure, sometimes, the probabil-

ity density function (PDF) information is not employed and some methods such as

least squares performs the estimation. In contrary, in some approaches, PDF of the

received noise is deterministic and is considered as a prior knowledge profiting the

positioning.

4. User environment: There are two environments in which the localization is pro-

cessed: indoor and outdoor. In indoor positioning, in most of the cases, LOS path

is blocked and the active localization is required. Instead, in outdoor scenarios, LOS

plays a dominant role in positioning.

5. Agent’s gesture: In the localization scenario the agent can be immobilized or

mobilized. Localization in case of a mobile agent is known as tracking.

A summary of these classifications is presented in Fig. 1.5.
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Figure 1.5: Classification of localization in different point of views. Thickened borders
boxes are the ones considered in this thesis.
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1.3.1 Localization challenges

From the previous sections, it is obvious that the accurate estimation of the agent’s location

is tremendously dependent on the channel specifications measurement such as AoA, AoD

and ToA. However, some deficiencies such as any kind of impairments in the transceivers

deteriorate the accurate channel estimation and consequently the location of the agent. In

the following section, we discuss about different types of impairments that the localization

system may face.

1.4 Classification of transceiver impairments

As we have explained so far, although mmWave communication systems offer higher data

rate and larger spectrum, practical implementation of its hardware encounter enormous

challenges and limitations in comparison with the sub-6 GHz communication systems; this

is due to operating at higher frequency in mmWave than radio frequency (RF)-based sys-

tems. For instance, larger multiplication factors induced by higher frequencies escalate the

phase noise and then path loss. Another example can be related to the high directionality

of the mmWave beams causing higher penetration loss [41]. These constraints can lower

the signal-to-noise ratio (SNR) and cause inefficiencies in the system’s performance such

as localization. In the following, we present an overview of these transceiver impairments.

• Phase noise

Clock signals at the transmitter and receiver is generated by one of the important

components of wireless communication systems, oscillators [42]. In mmWave or-

thogonal frequency division multiplexing (OFDM) communication systems, thermal

noise can cause imperfections in the employed oscillators [43]. This can cause a
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time-varying drift and then frequency deviations which is referred to as phase noise

(PN) [44]. PN is often seen in higher frequencies oscillators, like mmWave (30-300

GHz), as it is much harder to stabilize the oscillator. Moreover, PN results in phase

rotation from one signal to another in the constellation. The effects of PN on OFDM

communication systems are deeply studied in [45–52].

• Nonlinear power amplifiers

Power amplifiers (PAs) are in charge of boosting power level of the transmitted signal

in order to overcome the possible path loss. If we consider a PA as a filter, ideally

more input power generates more output power and there is a linear relationship

between the input and output power. However, this is not practical. In practice,

in low level of input power, PA acts as a linear filter; as the input power increases

and reaches to the threshold point, PA saturates; this causes non-linearity in the

PA and distortions in amplitude and phase of the output signal. Nonlinear PAs’

deterioration can be classified in two categories: amplitude modulation/amplitude

modulation (AM/AM) and amplitude modulation/phase modulation (AM/PM) [42].

The first one discusses the input and output signal’s amplitude relationship and the

latter describes the input signal’s amplitude and output signal’s phase relationship.

• I/Q imbalance

Quadrature amplitude modulation (QAM) is widely used in modern communication

systems, particularly mmWave systems. In this modulation, in-phase (I) and quadra-

ture (Q) components should be perfectly matched; this means, the phase difference

between two I and Q branches should be 90◦ and also the signal’s amplitude out of

two branches should be consistent. However, due to limited accuracy in practical

systems, a perfect match is rarely possible. This is known as I/Q imbalance and
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leads to performance degradation, including positioning. I/Q imbalance is usually

modelled based on two types: frequency-independent model which examines quasi-

linear impairments of the input signal and frequency-selective model which evaluates

the analog components’ behavior more precisely [42]. The effect of I/Q imbalance

(IQI) on positioning was studied previously in several papers. For example, [53] uses

time reversal for positioning based on channel impulse response (CIR) or channel

frequency response (CFR). In this method, a database of fingerprints information is

built and based on the correlation between results of CIR (or CFR) and the ones in

the database, location is estimated.

• Antenna array calibrations

Positioning using angular determination as AoA and AoD localization methods, re-

quires antenna arrays. Ideally, for accurate positioning, the electrical and geometrical

characteristics of the antennas in the array must be known. In practice, however,

these features may alter over the time and it is not feasible to maintain each factor

as designed. This necessitates a process called antenna calibration [54]. This process

can be done by transmitting the known pilots from known locations [55].

• Doppler effect

This impairment is applied in scenarios in which the agent is moving and is not

stationary. The agent’s motion with respect to the anchor makes a distortion called

Doppler effect, which in turn causes fast time-varying multi path fading channel and

issues in frequency synchronization. It worth mentioning that the Doppler effect in

vehicular applications is much more worse than cellular scenarios [56]. A lot of articles

such as [57–59] use different tracking methods to alleviate the distortion caused by

Doppler effect.
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• Timing synchronisation

In most of the localization methods, the transmitter and the receiver is assumed to be

synchronized. However, there is often a time offset between the transceivers, affecting

the estimation procedure. Estimating the signal’s delay is intensively dependent on

the present clock offset. Although, this issue is mostly neglected in the literature,

some papers such as [60, 61] proposed different methods for eliminating the effect of

time asynchronism.

All of the mentioned deficiencies can cause either multiplicative or additive distortions at

the received signal and can be generalized as Hardware impairments (HWIs). This thesis

considers the general HWIs as the main distortion.

1.5 Thesis scope and overview

Although the effect of HWIs on different aspects of mmWave communication systems have

been actively studied over the past decades, its effect on localization in different scenarios

has not been discovered yet. Focusing on outdoor localization with an immobilized UE in

5G mmWave communication systems, this thesis examines and discuses the effect of HWIs

on UE localization in different scenarios. In the other words, in each scenario the error

bounds for UE location estimation with respect to the hardware deterioration is found.

Moreover, this study provides a deep understanding of the factors which can alleviate the

worsening effects of HWIs in order to be exploited for betterment and improvement of 5G

communication systems design and even more, 6th generation constitution.

The main contribution of this thesis is to show the disturbing consequences of having a

minor malfunction in the hardware used in the transceivers. By examining this, our goal is

13



to provide the algorithms and elements that need to be considered and reviewed to attain

the high accuracy in UE positioning such as utilising reconfigurable intelligent surfaces

(RISs). The considered localization scenario in this thesis, is based on the thickened boxes

in Fig. 1.5. In brief, the calculations in this thesis is achieved for the active immobilized

UE in an outdoor localization scenario using deterministic hybrid localization.

Research contributions

The research provided in this thesis is pursuing the following contributions:

1. Exploring the effect of HWIs on UE position and orientation error bounds in uplink

two dimensional (2D) scenario.

2. Analyzing the effect of HWIs on UE localization in one way uplink localization using

one anchor under perfect synchronization in 3D scenario.

3. Analyzing the effect of HWIs on UE localization in one way uplink localization using

two anchors under imperfect synchronization in 3D scenario. The second anchor is

used to eliminate the clock offset.

4. Analyzing the effect of HWIs on UE localization in two way localization (uplink and

downlink transmissions) using round-trip localization protocol (RLP) under imper-

fect synchronization in 3D scenario. RLP is a protocol in which UE is contributing

in its localization by estimating the ToA.

5. Analyzing the effect of HWIs on UE localization in two way localization using collab-

orative localization protocol (CLP) under imperfect synchronization in 3D scenario.

CLP is a protocol in which UE is contributing in its localization by estimating the

AoA, AoD and ToA.
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6. Analyzing the alleviation of HWIs effect on UE uplink localization using RISs in 2D

and 3D scenarios.

7. Analyzing the effect of number of passive elements in each RIS on improving the

localization accuracy affected by HWIs.

8. Analyzing the effect of RIS inter-element space on improving the localization accuracy

affected by HWIs.

Thesis Overview

The remainder of the thesis is structured as follows:

• Chapter 2 obtains the necessary background in order to help clarifying some con-

cepts used in the thesis. These concepts consist of a brief overview on array signal

processing such as array manifold vector calculation in different types of antenna

array, beamforming concepts including different phased array configuration and ana-

log beamforming, general derivation of received signal model in MIMO systems, a

brief revision on HWIs mathematical model and estimation in signal processing using

Cramèr-Rao Lower Bound (CRLB). CRLB is a metric commonly used in judging the

estimation algorithm. Also, this chapter provides an overview of RISs concept and

functionality.

• Chapter 3 examines the effect of HWIs on UE’s position and orientation estimation

accuracy. Considering 2D scenario and focusing on LOS path, the signal model

affected by HWIs is obtained and after noise covariance calculation, the CRLB for

the unknown parameters are achieved. Finally, the degradation for both position and

orientation estimation is compared for the oriented and non-oriented UE.
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• Chapter 4 focuses on synchronized and asynchronized scenarios. In this chapter,

the effect of HWIs on UE’s localization error bounds in 3D scenario considering 5

different cases, has been studied. The first case explores the effect of HWIs on UE

localization using a single anchor which is timely synchronized with the UE. While,

the second and third cases evaluate the localization accuracy affected by HWIs using

two anchors which are not synchronized with the UE. Finally, the fourth and the

fifth cases, resolve the synchronization problem by two different algorithms RLP and

CLP and study the effect of HWIs on localization performance. At the end, all of

the 5 cases are compared to conclude the best resistant algorithm facing HWIs.

• Chapter 5 studies the improvement of 5G/6G localization accuracy using RISs.

Assuming 2D and 3D scenarios and using a single anchor and a Line or a wall of

RISs (in 2D and 3D scenarios, respectively), the error bounds of UE localization

under HWIs conditions are derived. Then, the effect of number of RISs elements and

their distance towards the betterment of localization accuracy, have been examined.

• Chapter 6 summarizes the important obtained results of the thesis and opens hori-

zon on some future research directions.
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Chapter 2

Background Concepts

Overview: The concepts of array signal processing, hardware impairments (HWIs), clas-

sical estimation theory and reconfigurable intelligent surfaces (RIS) are used frequently

in this thesis. Accordingly, it is worthwhile to cover these concepts in this chapter. The

chapter is commenced by providing an overview on the field of array signal processing,

in which the concept of antenna array and its array manifold vector is introduced. Next,

analog beamforming and the received signal model is provided. Afterwards, the practical

non-linearity in hardware and its signal model is explained under hardware impairments

(HWIs) section. Finally, calculation of a parameter’s lower bound and parameters’ trans-

formation are explicated. At the end, an overview of the reconfigurable intelligent surfaces

(RISs), a new technology for controlling the scattered and reflected radio waves, is given

in the last section.
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2.1 Background on array signal processing

One field of signal processing concentrates on array processing. An array consists of a

group of sensors acting independently in a specific spatial configuration with the purpose

of exploiting their signals. In the context of this thesis, the sensors that we will study are

antennas. In array signal processing, there are four issues that need to be addressed [62].

The first issue concerns array configuration consisting of two parts: antenna pattern and

array geometry. The second and third issues concern signal and interference structures,

respectively and the fourth one is the noise structure (Gaussian for the purposes of this

thesis).

There is a myriad of applications for applying these arrays including radars, communi-

cations, medical diagnosis, etc. In this section we simply investigate array signal processing

in communication with purpose of localization.

2.1.1 Array Manifold Vector

In array design two aspects will be involved: firstly the array geometry, relating to how

we place antennas beside each other and, secondly the complex weighting of each antenna.

For the first aspect, we need to define the standard coordinate system. From Fig. 2.1, for

0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, and ρ ≥ 0, we can write

x = ρ sin θ cosϕ, (2.1a)

y = ρ sin θ sinϕ, (2.1b)

z = ρ cos θ. (2.1c)

Based on (2.1), we can define a unit vector pointing towards (x, y, z) as below
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Figure 2.1: Spherical coordinate system

u ≜ [sin θ cosϕ, sin θ sinϕ, cos θ]T ,

Assuming having N antennas in an array, vector ∆ defines the location of each antenna

in the coordinate system as

∆ = [u1,u2, ...,uN] ∈ R3×N , (2.2)

in which uN, represents the N
th antenna’s unit vector.

Finally for an array consisting of isotropic antennas, the array manifold vector can be

written as below [17,62,63]

a(θ, ϕ) ≜


e−ju

T
1 k

...

e−ju
T
Nk

 = exp
(
−j∆Tk(θ, ϕ)

)
∈ CN×1, (2.3)

19



where k is the wave number and is defined as below

k(θ, ϕ) ≜
2π

λ
u =

2π

λ
[sin θ cosϕ, sin θ sinϕ, cos θ]T. (2.4)

in which λ is the wavelength. In order to normalize array manifold vector for having

aT(θ, ϕ)a(θ, ϕ) = 1, we can write [17]

a(θ, ϕ) =
1√
N

exp
(
−j∆Tk(θ, ϕ)

)
. (2.5)

The array manifold vector gives all the information about an array including geometry and

wave direction [63]. Moreover, the defined array manifold vector will be used for the both

transmitter and receiver.

In the following, we demonstrate how to obtain the array manifold vector for example

geometries.

• Planar or Two-Dimensional (2D) Array:

In the case of full azimuthal field of view (FOV), that is, θ ∈ [0◦, 360◦), a planar array

will be applied. Two popular planar arrays are uniform rectangular array (URA),

which is shown in Fig. 2.2 (right) and uniform circular array (UCA) [63].

The FOV space of a planar array is shown to be

Ω = {(θ, ϕ) : θ ∈ [0◦, 360◦), ϕ ∈ [0◦, 90◦)}

In order to find the array manifold vector of the URA shown in Fig. 2.2 with N =

NxNz antennas, we first need to define the location of each antenna. Nx and Nz are
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Figure 2.2: Left: ULA with 9 antennas and dx inter-element spacing. When dx = λ/2 it
is called SLA. Right: URA with 45 antennas, consisting of 9 ULAs, each with 5 antennas
and dx inter-element spacing. Spacing between adjacent arrays is dz.

the number of antennas in the x and z axis, respectively.

∆T = [dxx, 0N , dzz], (2.6)

where

x = 1Nz ⊗ x̃, (2.7a)

z = z̃ ⊗ 1Nx , (2.7b)

x̃ =

[
−Nx − 1

2
,−Nx − 1

2
+ 1, ...,

Nx − 1

2

]T
, (2.7c)

z̃ =

[
−Nz − 1

2
,−Nz − 1

2
+ 1, ...,

Nz − 1

2

]T
, (2.7d)

and ⊗ denotes the Kronecker product. Finally, we obtain
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a(θ, ϕ) =
1√
N

exp

(
−j 2π

λ
(dx sin θ cosϕx+ dz cos θz)

)
. (2.8)

Note that when dx = dz = λ/2, and Nx = Nz, the array is referred as a standard

square array (SSA).

• Linear or One-Dimensional Array:

The uniform linear array (ULA) is a group of antennas located in one line (see Fig. 2.2

(left)).

For the ULA in Fig. 2.2, using (2.6) and (2.7) with Nz = 1 and N = Nx, we can

write

x = x̃, z = 0N , θ =
π

2
(2.9)

Therefore, the array response vector is given by

a(ϕ) ≜
1√
N

exp

(
−j 2πdx

λ
cosϕx

)
. (2.10)

Note that when dx = λ/2, the ULA is called standard linear array.

2.1.2 Beamforming

The advantages of array signal processing benefit us to be able to focus the transmission

or reception of a signal on some distinct areas by directing the beams electronically rather

than mechanically, used in traditional radars. This process called beamforming, in which

the signal’s amplitude and phase are changed at each antenna using complex weight, in

such a way that the antenna gain is increased in the desired area.
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To steer the main beam of the phased array antenna in mm-wave communication, there

are different configurations for placing analog beam-formers. These configurations which

are shown in Fig. 2.3 are known as radio frequency (RF) phase-shifting, intermediate fre-

quency (IF) phase-shifting, local oscillator (LO) phase-shifting, and digital beam forming

phased arrays [CMOS Phased Array Transceiver] [1]. In this research, we use the first

model (RF phase shifting) in which modulation comes after analog beam-forming in the

receiver side. RF phase shifting model is commonly used in the literature for studying the

behavior of the mmWave communication systems; however other phase shifting models can

be studied as a future research.

Analog Beamforming

In MIMO systems, a large number of antennas will be used to achieve more gain in a

specific direction; however, as mentioned before, this specific direction will not be gained

except by beamforming. In traditional antenna arrays, in order to steer the main beam

towards the specific direction, the whole array have being rotated mechanically. Nowadays,

by changing the phase of beams in antenna array, we can steer it electronically [64].

Under the simplest form of beamforming, by weighing gain to each antenna uniformly,

the radiation pattern of the URA shown in Fig. 2.2, points towards θ = ϕ = 90◦. Similarly,

in the case of ULA along the x-axis, it points towards the broadside direction, ϕ = 90◦ [62].

There are two methods for beamforming; directional beamforming and random beam-

forming; the former directs the beams uniformly towards the covered area, however the

latter spans the covered area randomly. In this thesis, we only consider directional beam-

forming with constant magnitude however with varying phase.

Generally, in order to steer the beam towards a direction (ϕ0, θ0), we can design the
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Figure 2.3: Different phased array configurations (a) RF phase-shifting, (b) LO phase-
shifting (c) IF phase-shifting, and (d) digital beamforming array [1]

beamforming vector f as below [17]

f(ϕ0, θ0) = a(ϕ0, θ0), (2.11)

so that, the beam gain in the direction (ϕ0, θ0) is given [62]

G(θ0, ϕ0) = 20 log10

(
∥fHa(ϕ0, θ0)∥

∥f∥

)
, (2.12)
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Figure 2.4: Radiation pattern of a 12-antenna ULA, steered to 60◦, 90◦ and 120◦

Using (2.12), the polar form of array factor of the 12-antenna ULA is shown in Fig. 2.4; in

this figure, the beams are steered towards the directions 60◦, 90◦, and 120◦.

2.1.3 Received signal Model in MIMO system

Considering RF-phase shifting configuration, the end-to-end MIMO channel model is shown

in Fig. 2.5. In this subsection, we are going to present the channel model for the line of sight

(LOS) path which is used in the rest of the thesis. Based on this model, signal s(t) is going

to be transferred via NB beams, through NT antennas at the transmitter. Considering each

beam directed towards horizontal and elevation angle (ϕf,b, θf,b), the transmit beamforming

can be written as below

F = [f(ϕf,1, θf,1),f(ϕf,2, θf,2), ...,f(ϕf,NB
, θf,NB

)], ∈ CNT×NB (2.13)

in which f(ϕf,b, θf,b) is the transmit beamforming vector for the bth beam. Finally, the
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Figure 2.5: RF-phase shifting transceiver model.

signal x(t) is the result of the steered signal at the input of the transmitter antenna.

x(t) = Fs(t), ∈ CNT (2.14)

Consequently, after passing signal x(t) through the transmitter antenna, we earn

x̃(t) = aH
T(ϕT, θT)Fs(t), (2.15)

The arrived signal at the receiver antenna is affected by the propagation delay τ , path gain

β and the receiver noise n(t) ∈ CNR . After passing through NR receiver antennas at the
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direction (ϕR, θR), we have

ro(t) = βaR(ϕR, θR)a
H
T(ϕT, θT)Fs(t− τ) + n(t), ∈ CNR (2.16)

Finally, the processed signal in direction (ϕR, θR) by the receiver beamformer is

y(t) = βW HaR(ϕR, θR)a
H
T(ϕT, θT)Fs(t− τ) +W Hn(t), ∈ CNB (2.17)

where W ∈ CNR×NB is the receiver beamforming matrix and similar to (2.13), it can be

written as below

W = [w(ϕw,1, θw,1),w(ϕw,2, θw,2), ...,w(ϕw,NB
, θw,NB

)]. (2.18)

2.2 Hardware Impairments

In the last section, the received signal has been derived assuming ideal hardware transceiver.

In this section, first, we explain the existing hardware non-idealities in practical transceivers,

which is known as hardware impairments (HWIs). Secondly, we introduce a model which

is reflecting HWIs into the described MIMO system in (2.17). Ideally, the pass-band sig-

nal is accurately generated from the base-band signal at the transmitter and the receiver

demodulate it precisely. Also, the power amplifier (PA) at the transceiver acts as a linear

amplifier; however, in practice, these cannot be fulfilled. The modulator and demodulator

at the transmitter and receiver can be asynchronized in time and frequency. plus, the PA

amplifies the more strength signals less than the attenuated signals. Moreover, having more

ideal hardware leads to consuming more power and expense. These characteristics make

the hardware used in the transceiver non-ideal. The HWIs which is considered in this thesis
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Figure 2.6: Transceiver HWIs model in SISO system.

(see Fig.2.6), is a general model for all the other impairments such as in-phase/quadrature

phase (I/Q) imbalance.

2.2.1 Basic modeling for Hardware Impairments

In order to introduce the HWIs model, considering (single-input single-output) SISO sys-

tem, we assume the input information x ∼ NC(0, E) is entered to a non-ideal filter (e.g.

PA at the antenna) under a non-linear function g(.) [65]. Then, the output y is consisting

of the correlation of the output and the input [66] and can be written as below.

y =
E{yx∗}
E

x+ ηs, (2.19)

note that ηs is the HWIs’ distortion noise and is not the channel noise; the Gaussian noise

will be added later at the receiver side. Also, it can be proven that the distortion ηs is

uncorrelated with x, however it is not independent of the input x. Assuming that using

some compensation algorithms, the power of the input and the output are kept the same
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E{|y|2} = E{|x|2} = E, then the HWIs in Fig.2.6 can be modeled as below [65],

y =
√
κsx+ ηs, (2.20)

where ηs ∼ NC(0, (1− κs)E is the additive distortion noise at the transmitter. The depen-

dence of distortion noise power to the signal power E makes ηs different from the receiver

noise. Moreover, we take κ ∈ (0, 1]; When κs = 1, then y = x which is an ideal case for the

hardware. Note that the HWIs κs represents the non-linearity of the PA causing amplitude

variation.

Following (2.20), the input signal at the receiver antenna before adding the receiver

noise is,

yo = β(
√
κsx+ ηs), (2.21)

where β is the channel gain. Now, for the receiver side, we need to apply (2.20) once

more. So that, we substitute yo into ro =
√
κryo + ηr; in which κr ∈ (0, 1] and ηr ∼ (0, (1−

κr)E|β|2) are the HWIs factor and the distortion noise at the receiver side, respectively. It’s

remarkable that, again, the distortion noise power in proportional to the power received at

the antenna (i.e. E|β|2). Finally, after adding the receiver Guassian noise n, the received

signal will be

r =
√
κsκrβx+

√
κrβηs + ηr + n. (2.22)

Equation (2.22) can be simply extended for the MIMO systems.
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Figure 2.7: Transmitted signal to the aircraft and reflected signal from the aircraft

2.3 Estimation in signal processing

In estimation theory, we try to estimate a group of unknown parameters through some spe-

cial methods. There are many applications for estimation including radar, image analysis,

and sonar; one of the first systems in which estimation was applied. In radar, the aircraft’s

position is the main desire. To determine the position of the aircraft, radar will send a

signal towards the goal and based on the measured delay of reflected signal, the range of

the aircraft will be estimated. Fig. 2.7 shows the transmitted and reflected signals. As we

can see, the delay can be obtained by the amplitude change in the reflected signal. In the

following, we will introduce one of the tools for parameter estimation that works based on

probability density function (PDF) of the observation. [67].
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2.3.1 Cramèr-Rao Lower Bound (CRLB)

In the context of parameter estimation, a helpful technique for evaluating an estimator is

CRLB. Besides, being able to find the lower bound for variance of a parameter (i.e. CRLB)

can be used in exploring different system parameters’ impact on the overall fulfillment of

an estimator. In the next section, we are going to calculate the general CRLB in which

the PDF of the parameter depends on the noise PDF. Later on, in the rest of this thesis,

CRLB is being used to investigate the effect of HWIs on the performance of the estimators.

Derivation of General Gaussian CRLB

We assume a single sample x

x = θ + w,

in which w ∼ N (0, σ2) is the white Gaussian noise. It is desired to estimate an unknown

and deterministic parameter θ based on the known observation parameter x. Indeed, the

better estimator, the lesser σ2. CRLB is an estimator that gives the least variance for the

unknown parameter θ. The CRLB for a scalar parameter is given by [67]

var(θ̂) ≥ 1

−E[∂2Lnp(x;θ)
∂θ2

]
,

where θ̂ is an unbiased estimator and p(x; θ) is the PDF of the observation x. PDF of x is

dependent on the noise PDF and is given by

p(x; θ) =
1√
2πσ2

exp[− 1

2σ2
(x− θ)2],
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Furthermore, the unbiased estimator may be found through

∂ln p(x; θ)

∂θ
= I(θ)(g(x)− θ),

where θ̂ = g(x) is the estimator and the minimum variance is 1
I(θ)

; in which, I(θ) is the

fisher information matrix (FIM), so

I(θ) = −E[∂
2 ln p(x; θ)

∂θ2
],

For a vector sample x, we assume x ∼ N (µ(θ),C(θ)), where µ(θ) is the N × 1 mean

vector and C(θ) is the N ×N co-variance matrix. Then, the PDF of the observation x is

p(x;θ) =
1

(2π)
N
2 det

1
2 (C(θ))

exp[−1

2
(x− µ(θ))TC−1(θ)(x− µ(θ))],

in which unknown and deterministic vector θ =

θk
θl

 is going to be estimated. In this

case, the FIM is earned as below

[I(θ)]kl = E[
∂Lnp(x;θ)

∂θk

∂Lnp(x;θ)

∂θl
], (2.23)

After evaluating (2.23), we will have

[I(θ)]kl =
∂µT

∂θk
C−1(θ)

∂µ

∂θl
+

1

2
tr

(
C−1(θ)

∂C

∂θk

)
tr

(
C−1(θ)

∂C

∂θl

)
. (2.24)

In chapters 3-5 we will use the obtained result to find the position and orientation bounds.
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2.3.2 Transformation of Parameters

In this thesis, in order to derive the lower bounds for the unknown channel parameters,

the CRLB is used; however, the interesting parameters are the location elements which are

a function of the channel parameters. In consequence, the transformation of parameters is

explained in this subsection.

Considering a problem in which the interesting unknown parameters ψ ≜ [ψ1, ..., ψNS
]T

are a function of the unknown parameters φ ≜ [φ1, ..., φNP
]T. Also, we assume that, finding

the FIM of the parameters φ is easier. Then, the FIM of the interesting parameters, Jψ,

can be earned through the gained FIM of φ, Jφ, using the following equation [67,68]

Jψ = ΛJφΛ
T, (2.25)

in which, Λ is the transformation matrix and can be found as below

Λ ≜
∂φT

∂ψ
=



∂φ1

∂ψ1

∂φ2

∂ψ1
· · · ∂φNP

∂ψ1

∂φ1

∂ψ2

. . . · · · ∂φNP

∂ψ2

...
...

. . .
...

∂φ1

∂ψNS

· · · · · · ∂φNP

∂ψNS

 ∈ RNS×NP . (2.26)

2.4 Reconfigurable Intelligent Surfaces (RISs)

The use of mobile communication systems is enormously grown in such a way that deploy-

ing more mmWave BSs is becoming challenging and energy consuming. One of the new

promising technology is reconfigurable intelligent surfaces (RISs) that can boost the prop-

agation environment by electronically controlled electromagnetic (EM) elements [69,70].
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Figure 2.8: RIS architecture.

RISs are manufactured surfaces consisting of immense number of EM elements. These

surfaces can be built in different shapes, depending on the application and location of

the RIS. Fig.2.8 is showing the RIS architecture in which each element has one embeded

diode and by altering its biasing voltage , the phase of the reflected signal is changed.

Besides, one resistor is used in each element, so it can tune the amplitude of the reflected

signal; however, in this thesis, the speed of propagated wave is assumed to be the same

for all the frequencies. In addition, each element can independently change the amplitude

and phase of the incident signal (i.e. yn = βne
jϕn); where yn is the reflected signal from

the nth element of RIS, xn is the corresponding incident signal, βn ∈ [0, 1] and ϕn ∈

[0, 2π) indicate the amplitude attenuation and phase change factor, respectively. Wised

altering of the reflecting parameters, can improve the received signal by the UE. Despite

the current propagation environment, in which, different paths reflected from the obstacles,

having destructive effects and worsening the communication efficiency, RISs can control

the reflected or scattered radio waves and coherently combine them [71]. As a result, it’s

been shown in [70] that the received power in an environment without RIS is decreased
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with the fourth power of the user distance (i.e. Pr ∝ 1
d4
); however, with RIS, the received

power is boosted and is proportional to the second power of the user distance’s reciprocal

(i.e. Pr ∝ 1
d2
). In general, some of the identifiable features of RISs include [70]:

• The RIS elements are passive and do not need any source of power. They can be fed

by reflected or scattered radio signals.

• They are able to be programmed via a software.

• As they do not use any analog to digital (ADC) and digital to analog (DAC) con-

verters, receiver noise does not affect them.

• They can respond to full-band frequency waves.

• They can be easily established.

These characteristics of RISs, make it practical and satisfying for the following indoor and

outdoor applications [69]:

• If the line-of-sight (LOS) path is blocked between BS and UE, RIS is applicable for

intelligent reflection of the signal.

• RISs can cancel the BS’s signal to an inlegitimate user by non- RIS reflected signal;

So, it can enhance the physical layer security.

• RISs are able to boost the signal strength for the UE located at the cell edge.

• In internet-of-things (IoT), RISs are useful to enhance the low power device to device

signals.

In chapter 5, we will examine the effect of HWIs on the performance of RISs.
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2.5 Summary

In this chapter, background on array signal processing and derivation of array manifold

vector has been covered. As in this thesis, MIMO mmWave communication systems is used,

the concept of analog beamforming in MIMO systems is introduced and consequently,

the received signal has been modeled. HWIs has been introduced and mathematically

presented. Afterwards, a tool for assessing the performance of an estimator, CRLB and

FIM have been provided; these tools are going to be used in the rest of this thesis. At the

end, a new-brand technology, RIS and its characteristics have been introduced. In brief,

this chapter has provided a background information of all the concepts used in this thesis.
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Chapter 3

Hardware Impairments Effects on 2D

Mobile Localization under LOS

Condition

Overview: Location-awareness is expected to be one of the main services in 5G millimeter-

wave (mmWave) communication systems. In mm-Wave, multiple-input multiple-output

(MIMO) systems will be used, leading to the deployment of antenna arrays in both trans-

mitter and receiver. Hardware components being used in transceiver are commonly mod-

eled as linear filters; but practically, this linearity is not fully satisfied. Power amplifiers

and filters applied in antennas mostly show nonlinear behavior, causing loss in spectral

efficiency (SE) and signal quality. This non-linearity is referred to hardware impairments

(HWIs). Under HWIs model at both the transmitter and receiver, 2D localization perfor-

mance is examined. Towards that, we derive position and orientation error bounds and

study the effect of HWIs on the derived bounds. The numerical results reveal that HWIs
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have a significant effect on localization and it causes more than 100% degradation in both

the transmitter and receiver. Also, the rate of degradation stays the same for both position

and orientation error bounds except for the oriented UE.

3.1 Introduction

Evolution in modern communication technology has been accelerated as mmWave com-

munication systems emerged. MmWave communication systems can provide higher data

rates along with lower delays and constant connectivity for the next generation communi-

cation systems [72]. Moreover, mmWave attracted enormous researchers to investigate its

capabilities, as offering more available spectrum from 30 GHz to 300 GHz [73].

In parallel, localization, the most game-changing development in wireless systems, is

counted as one of the main services of 5G mmWave communication systems; this serves in

variety of applications like vehicular communications and street macro applications [74].

For example, [75] estimated the position of a moving vehicle by mapping the 5G mmWave

radio environment. It was shown that the error in positioning has the order of centimeters

[76].

By employing large number of antennas in mmWave communication systems’ transceiver

and consequently estimation of the angle of arrival (AoA), angle of departure (AoD) [77]

and time of arrival (ToA) [78] for positioning, location-aware communication will be possi-

ble. Single-anchor localization is frequently used in literature and it is a common strategy

for 5G. For example, in [15], Cramér-Rao bound (CRB) for position and orientation from

a single transmitter, have been derived and the possibility of estimating user’s position

has been demonstrated. Also, [16] and [17], with the same methodology of finding CRB

but different approaches (the first for comparing multiple-input multiple-output (MIMO)
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and beamforming and the latter for the uplink and downlink performance), obtained the

position error bound (PEB) and orientation error bound (OEB) for 3D localization in 5G

mmWave systems.

The power amplifiers used in the wireless communication transceiver are widely assumed

as a linear filter. This ideal condition is hardly satisfied and in practice, manufacturing ideal

hardware is more challenging [65]; this leads to the performance degradation, including po-

sitioning. The effect of hardware impairments (HWIs) on different aspects of performance

were studied before; for example, [79] investigated the effect of HWIs on spectral efficiency

in a hybrid precoding system and [80] proposed an algorithm for compensating deterio-

rated bit error rate (BER) caused by HWIs. It is noted in [81] that these impairments

cause non-negligible degradation. Plus, [82] reformulated the estimation of the channel pa-

rameters affected by HWIs from a Bayesian perspective to recover the sparsity of angular

domain channel in multi-path communication.

To the best of our knowledge, the effect of HWIs, on mmWave systems, such as an

asynchronous transceiver and I/Q imbalance have been studied before in [60] and [83],

respectively, but its effect on localization using combination of AoA, AoD and ToA, has

not been investigated yet. This implies that exploring localization under HWIs is pivotal

in 5G context. In this chapter, we consider a 2D scenario with uplink transmission and

study the effect of HWIs on user equipment (UE) positioning.

The rest of the chapter is organized as follows: The received signal is obtained and

the localization problem is determined in Section 3.2. After calculating the received noise

variance, Fisher information matrix (FIM) of channel parameters is derived in Section 3.3.

Subsequently, Section 3.4 presents the transformed channel to the location parameters’

equivalent FIM (EFIM). The resulting PEB and OEB degradation is discussed in Section

3.5. Finally, Section 3.6 concludes the chapter.
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Figure 3.1: Considered scenario including UE as a transmitter and BS as a receiver
equipped with linear array with NT and NR antennas respectively.

3.2 Problem Formulation

We consider an uplink transmission scenario consisting of a base station (BS) with NR

antennas and a UE with NT antennas. Both are arranged as a uniform linear array (ULA)

lying on the x-axis. The BS is placed at origin and UE’s position p = [px, py]
T is unknown

with unknown orientation ϕ0 measured from the positive x-axis. Also, we assume one line

of sight (LOS) path 1 between the BS and the UE.
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Figure 3.2: 5G mmWave transceiver structure under hardware impairments.

3.2.1 System and Signal Models

The transceiver structure under HWIs is shown in Fig. 3.2. Based on [65], the transmitted

signal x(t) ≜ [x1(t), · · · , xNT
(t)]T at the output of the impaired transmitter hardware

component, can be written as

x(t) =
√
κsFs(t) + ηs, (3.1)

where s(t) ≜ [s1(t), · · · , sNB
(t)]T is the transmitted complex baseband signal with power

E{|s|2} = EINB
and NB is the number of transmitted beams. Also, ηs ∼ CN (0, (1 −

κs)EINT
) and κs represent the complex additive distortion noise and the HWIs factor at the

transmitter, respectively [65]; in which INT
serves as identity matrix withNT×NT elements.

1This is a strong assumption, as for studying the effect of HWIs on localization, LOS is quite more
informative than non-LoS (NLoS) paths.
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Analog directional beamforming (DBF) in transmitter with NB beams are identified by

F = [f 1, · · · ,fNB
] ∈ CNT×NB . Note that for making unit transmitted power, we set

Tr(F HF ) = 1 in which Tr(.) stands for the matrix trace. It is noticeable that, in the ideal

case, κs = 1 and ηs = 0 resulting in x(t) = Fs(t).

Similar to common used model (e.g., [73], [83], [17]) by denoting the AoD, AoA and

propagation delay as θT, θR and τ , respectively, the recieved signal y(t) ∈ CNB can be

expressed as

y(t) =
√
κsκrβW

HaR(θR)aT
H(θT)Fs(t− τ)︸ ︷︷ ︸

Desired signal

+
√
κrβW

HaR(θR)aT
H(θT)ηs︸ ︷︷ ︸

Transmitter distortion noise

+ W Hηr︸ ︷︷ ︸
Receiver distortion noise

+W Hn(t)︸ ︷︷ ︸
Noise

, (3.2)

such that β = βR + jβI is the complex path gain. Also, transmit array vector aT(θT) is

given below

aT(θT) =
1√
NT

e−j
2πd
λ

cos(θT)xT , (3.3)

where d is the inter-element spacing, and xT ≜
[
−NT−1

2
,−NT−1

2
+ 1, ..., NT−1

2

]
is the vector

indicating the antenna location at the transmitter. aR(θR) can be similarly defined as

well. In addition, similar to the transmitter side, analog receive beamforming with NB

beams is noted by W = [w1, · · · ,wNB
] ∈ CNR×NB . Moreover, the elements of n(t) ≜

[n1(t), n2(t), ..., nNR
(t)]T ∈ CNR are identified as proper zero-mean additive white Gaussian

noise with spectral density σ2
n.

For simplicity of exposition and due to the sparse transmission in 5G mmWave channels

[73], we assume orthogonal beams for the receiver, such thatW HW = INB
and unit power
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for array response vectors aR(θR) and aT(θT). Consequently, the covariance matrix of the

reciever complex additive distortion noise can be written as

Σηr = (1− κr)|β|2EINR
.

3.2.2 2D localization problem

Finding the bounds of the position and orientation errors at the UE is our desire. Towards

that, we find the received noise variance first and then we calculate Fisher information of

observed parameters φC ≜ {θR, θT, τ, βR, βI, κ}. Next step will be transformation of the

observed Fisher information parameters into the position and orientation domain.

3.3 FIM of Channel Parameters

The noise covariance matrix can be calculated as follows. Defining κ =
√
κrκs, the received

signal y(t) in (3.2) can be divided into two parts; the mean function µ(t) and the aggregated

noise z(t). They can be expressed as below

µ(t) = κβW HaR(θR)aT
H(θT)Fs(t− τ), (3.4)

and

z(t) =
√
κrβW

HaR(θR)aT
H(θT)ηs +W

Hηr +W
Hn(t), (3.5)
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With the same mentioned assumption for the orthogonality of the received beams, the

covariance matrix of z(t) can be computed as below

Σz =
(
E(β2

R + β2
I )(1− κ2) + σ2

n

)︸ ︷︷ ︸
≜σ2

z

INB
. (3.6)

Note that κ can only take values between zero and one. From (3.6), it can be seen that as

κ gets closer to zero, the noise covariance at the receiver worsens.

According to the introduced observed parameters φC, the corresponding FIM matrix can

be built as

JC =


JθRθR JθRθT · · · JθRκ

JθTθR
. . . · · · JθTκ

...
...

. . .
...

JκθR · · · · · · Jκκ

 ∈ R6×6. (3.7)

There are two groups of elements in (3.7) in which their values depend on whether the noise

covariance in (3.6) is a function of their corresponding parameters or not. From (3.6), it is

obvious that Σz is a function of parameters {βR, βI, κ}. Therefore, for x, y ∈ {βR, βI, κ} [84],

Jx,y =
T0N

2
B

(σ2
z )

2

(
∂

∂x
σ2
z

)(
∂

∂y
σ2
z

)
+

1

σ2
z

∫ T0

0

[(
∂

∂x
µ(t)

)H(
∂

∂y
µ(t)

)
+

(
∂

∂y
µ(t)

)H (
∂

∂x
µ(t)

)]
dt, (3.8)

While for the remaining parameters x′, y′ ∈ {θR, θT, τ} [84],

Jx′,y′ =
1

σ2
z

∫ T0

0

[(
∂

∂x′
µ(t)

)H(
∂

∂y′
µ(t)

)
+

(
∂

∂y′
µ(t)

)H(
∂

∂x′
µ(t)

)]
dt, (3.9)
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where T0 ≈ NsTs is the observation time in which Ns and Ts are the number of pilot symbols

and the symbol period, respectively. The elements of (3.7) is given in Appendix.

The FIM matrix in (3.7), contains the interaction between all the parameters; but we

need to focus on those parameters which give us information regarding positioning. Using

the concept of equivalent FIM [17] and by dividing the parameters in φC into two groups,

we can exclude the information corresponding to the non-interested parameters. In this

chapter, we call the parameters of our interest as geometrical parameters.

Similar to [83], by defining geometrical parameters as φG ≜ {θR, θT, τ} and nuisance

parameters as φN ≜ {βR, βI, κ}, we can write (3.7) in block form as

JC =

 JG JGN

JT
GN JN

 ∈ R6×6, (3.10)

in which JG,JN ∈ R3×3 are geometrical and nuisance parameters’ FIM, respectively; while

JGN ∈ R3×3 is the mutual information of φG and φN. Hence, using Schur complement [85],

the EFIM of φG can be derived as below

J e
G = JG − JGNJ

−1
N J

T
GN. (3.11)

3.4 FIM of Location Parameters

In this section, we are going to perform the last step for deriving final PEB and OEB.

Towards that and using the transformation matrix Λ, we need to transform the EFIM of

our desired channel parameters AoA, AoD and ToA in (3.11) into the EFIM of location
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parameters φL. Namely, define

φL ≜ [px, py, ϕ0]
T, (3.12)

Then, the corresponding EFIM can be obtained as [67]

J e
L ≜ ΛJ e

GΛ
T, (3.13)

where,

Λ =
∂φT

G

∂φL

=


∂θR
∂px

∂θT
∂px

∂τ
∂px

∂θR
∂py

∂ϕT
∂py

∂τ
∂py

∂θR
∂ϕ0

∂θT
∂ϕ0

∂τ
∂ϕ0

 ∈ R3×3. (3.14)

The elements of transformation matrix Λ can be found through the relationship between

channel and location parameters [83]. Based on Fig. 3.1,

θR = tan−1

(
py
px

)
, (3.15a)

θT = tan−1

(
py
px

)
+ π − ϕ0, (3.15b)

τ =
∥p∥
c
, (3.15c)

where c is the propagation speed. In consequence, the PEB and OEB can be obtained as

PEB =
√

[C]1,1 + [C]2,2, (3.16a)

OEB =
√

[C]3,3, (3.16b)
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where [C]i,j is the (i, j)th element of C = (J e
L)

−1.

3.5 Numerical results

3.5.1 Simulation setup

In this work, we consider a mmWave scenario including a BS with NR = 64 antennas

located at the origin, and a UE, operating at f = 38 GHz, with NT = 32 antennas located

in a square area (10 m×10 m), defined by (px, py) ∈ {(x, y) : y ≥ |x| ∩ y ≤ 10
√
2 − |x|}.

In this investigation, UE is tilted by an orientation angle of 0 or 10 in azimuth. We use

directional beamforming for both transmitter and receiver with NB = 18 beams, steering

the transmission beams towards the azimuth angles ϕT,l, 1 ≤ l ≤ NB as

f l ≜
1√
NB

aT(ϕT,l),

where aT(ϕT,l) is the array response vector towards angle ϕT,l. Receive beamforming wl

can be found in the same way. The propagated beams span the square area where UE is

being moved (Fig.3.3). Moreover, the transmitted signal is assumed to be passed through

a unit energy ideal sinc pulse shaping filter with bandwidth W = 125 MHz and Ns = 16,

and the noise variance σ2
n = −79 dBm. The noise variance value has been experimentally

chosen in order to gain an appropriate SNR. Furthermore, the practical range for HWIs

factor κ is chosen based on error vector magnitude (EVM) metric on the transceivers. It

is shown in [65] that for 4- phased shift keying (PSK) transceiver, EVM must be less than

0.0175. Consequently, κ = 1− EVM2 ≥ 0.97.

The simulations are performed in Matlab and averaged on 120 UE locations in order
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Figure 3.3: The spanned propagated beams on the UE locations.

to calculate the PEB and OEB degradation due to HWIs as in the following equations

PEBdeg =

(
PEBHWIs

PEBideal

− 1

)
× 100%, (3.17)

OEBdeg =

(
OEBHWIs

OEBideal

− 1

)
× 100%, (3.18)

where PEBideal and OEBideal are obtained using (3.16) after dropping off HWIs factor κ

from φN and setting it to one.

3.5.2 Performance Analysis

Fig. 3.4 and Fig. 3.5 present the PEB and its percentage degradation (calculated in (3.16a)

and (3.17), respectively) with respect to HWIs factor κ for the considered scenario. For this

simulation, the HWIs factor κ is changed uniformly between 0.9 to 1, for two different values

of orientation angle ϕ0. It can be seen that the minimum error bound and its degradation
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Figure 3.4: PEB with respect to κ at different orientation angles.

occurs at κ = 1, where there is ideal hardware. Plus, the both PEB and its degradation

increase rapidly as the HWIs factor deteriorates by diverging from the ideal point. Also,

as it is expected, the PEB worsens by increasing the UE orientation angle. This is the

result of the reduced area covered by the transmitted beams and consequently missing

the BS. Moreover, more impairment causes more degradation for ϕ0 = 10◦ compared with

ϕ0 = 0◦. For instance, 0.2 × 100% degradation difference between the two curves can

be noticed when κ = 0.95 compared with 0.3 × 100% when κ = 0.9; the same concept

applies for the PEB. Also, from the simulation, it worth mentioning that in the case of

ideal hardware, the PEB for ϕ0 = 0◦ and ϕ0 = 10◦ is 9.6 cm and 10.4 cm, while when

κ = 0.9 these amounts are 100 cm and 112 cm, respectively. Fig. 3.6 and Fig. 3.7 show

the OEB and its percentage degradation (calculated in (3.16b) and (3.18), respectively)

with respect to the impairment factor κ. Except for the tilted UE, both PEB and OEB

indicate the same behavior to non-ideal hardware, with 9.5×100% degradation at κ = 0.9.

The two curves in these figures widen more in comparison with the ones in Fig. 3.4 and

Fig. 3.5; meaning that, by tilting UE, the orientation estimation becomes more sensitive to
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Figure 3.5: PEB degradation with respect to κ at different orientation angles.

Figure 3.6: OEB with respect to κ at different orientation angles.

the HWIs than the position estimation. For instance, 0.61× 100% degradation difference

in the orientation estimation can be noticed when κ = 0.9 compared with 0.3 × 100%

difference in position estimation. Also, from the simulation, in case of ideal hardware, for

two different orientations 0◦ and 10◦, the value of OEB is 0.35◦ and 0.44◦, while in the

case of κ = 0.9, these values change to 3.82◦ and 5.04◦, respectively. SNR with respect to

impairment factor κ is plotted in Fig. 3.8. As it is expected, maximum SNR occurs at the
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Figure 3.7: OEB degradation with respect to κ at different orientation angles.

Figure 3.8: SNR with respect to κ when ϕ0 = 0 and NB = 18.

ideal point κ = 1 with amount 30.12 dB. As shown in this figure, there is 27.34 dB drop

in SNR when κ = 0.9. In addition, PEB, OEB and SNR degradation in Fig. 3.5, Fig. 3.7

and Fig. 3.8 show the same behavior indicating that the value of κ corresponding to the

maximum SNR matches with the one for the minimum value of PEB and OEB.
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3.6 Conclusion

In this chapter the effect of HWIs on the localization error bounds for 2D 5G mmWave has

been presented. Considering uplink transmission, our results show that with no orientation,

PEB and OEB worsen by HWIs with the same amount of 9.5×100%. However tilting UE,

causes more effect on OEB than PEB. Moreover, the minimum degradation occurs at the

ideal point for all of the cases. For the future work, we will consider uniform rectangular

array (URA) antenna for both UE and BS in the 3D scenario and two way transmission.
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Chapter 4

Hardware Impairments Effects on 3D

Mobile Localization Considering

Perfect and Imperfect Clock

Synchronization

Overview: Localization demands high-accuracy positioning, and this rings especially

true in the context of 5G millimeter-wave (mmWave) systems. However, it is easier said

than done. mmWave systems require a large number of antennas to be deployed at the

transceiver, so having ideal hardware components at each antenna is unrealistic. Degrada-

tion in the received signal, caused by hardware impairments (HWIs), affects the spectral

efficiency (SE), which in turn influences user positioning. Moreover, a high level of clock

synchronization between the base station (BS) and the user equipment (UE) is rarely

achieved. In this chapter, we investigate the effect of HWIs on UE localization under syn-
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chronous and asynchronous conditions. In order to minimize imperfect synchronization,

two anchors or two-way localization protocols, a round-trip (RLP) as well as a collabora-

tive localization protocol (CLP) are used. Conducting the localization process using the

BS, we find the position and orientation bounds. We then study the effect of HWIs on the

error bounds under the mentioned scenarios. Our numerical results show that HWIs have

a significant impact on localization in all conditions, localization using two anchors and the

CLP being more robust, however, against HWIs. Based on our outcome, compensating for

imperfect synchronization using RLP does not increase the resilience of the system against

HWIs.

4.1 Introduction

Millimeter-wave (mmWave) communication systems have triggered a fast-tracked evolu-

tion in modern communication systems. The spectrum available for mmWave (30 GHz-300

GHz), which is unrivaled compared to the other wireless networks, satisfies the high demand

for media consumption by offering high data rates and lower latency [72]. This spectrum

could then cater to the demand for high-area spectral efficiency (SE) and throughput for

each user equipment (UE) [86]. Furthermore, mmWave communications have garnered

considerable attraction from researchers because of their ability to operate at high fre-

quencies. [73].

Localization is one of the main services of mmWave communication systems. Fifth

generation (5G) networks will be the first to profit from location information. However,

crucial challenges to signal processing must be overcome to allow for its accurate prediction

[87]. This location data can be determined, for instance, through beamforming [35], pilot

assignment [36] and resource allocation [37].
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Because mmWave multiple-input multiple-output (MIMO) communication systems de-

ploy a large number of antennas at the transceiver, estimations for the angles of departure

(AoD) and arrival (AoA) are achievable using a single base station (BS) [77]. Furthermore,

mmWave systems boast of large bandwidths, so we can very accurately estimate the time

of arrival (ToA) [88–91]. Therefore, single-anchor localization of the UE is applicable by

merging angular and temporal data. For example, position estimation and Cramér-Rao

bounds (CRB) for both position (PEB) and orientation error bounds (OEB), using single-

anchor and a combination of AoD, AoA and ToA, were found by [15]. Even more, [17]

and [16] used the same method to find the PEB and OEB.

Ideally, modulated passband signals are reliably generated from the baseband samples

at the transmitter side and are then demodulated at the receiver side [65]. The reality,

however, is that manufacturing the transceiver’s hardware inevitably results in some minor

deficiencies that cause major degradation to the system’s performance. These impairments

can be denoted in terms of multiplicative and additive distortions, where the former shifts

the signal’s phase and the latter is added to the signal as a distortion noise [86]. Conse-

quently, the assumption of linearity in the power amplifier deployed in the transceiver’s

antennas is hardly ever satisfied [65].

One localization requirement that is often overlooked in the literature is synchronization

between the BS and the UE. In other words, most papers assume that the BS and UE

are perfectly synchronized; for example, [15], [17] and [92], presume that the clock offset

between the transmitter and receiver is zero. However, in this chapter, we do not neglect

this important consequence of hardware impairments (HWIs). Considering localization

using a combination of ToA, AoD and AoA, the effects of hardware disorders such as I/Q

imbalance and asynchronous transceivers were studied in [61] and [83], respectively. The

effects of HWIs on various components of the system were also studied in the literature; for
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instance, [82] and [93] estimated the channel under HWIs. The first article used Bayesian

compressive sensing and least square estimation methods, and the latter reformulated the

estimation algorithm to compensate for the sparsity of the channel spatial domain.

Even more, [80] compensated for the degraded signal-to-noise ratio (SNR) caused by

HWIs, and they did this by optimizing the beamforming in intelligent reflecting surfaces

(IRS). [86] studied the effect of transceiver HWIs on the SE and energy efficiency (EE),

also in the presence of IRS. Furthermore, the impact of HWIs on the hybrid beamforming

performance was studied in [94] and [79]. Moreover, [95] examined the effects of HWIs on

the coverage probability of a multi-tier multi-user geometry. In addition, [81] ascertained

that HWIs cause a non-negligible deterioration in the system performance.

To the best of our knowledge, the effect of HWIs on positioning under asynchronous

conditions has not yet been evaluated. In this chapter, we present a scenario in which both

HWIs and the lack of synchronization are taken into consideration. Surveying localization

at the BS, and considering line of sight (LOS) communication, the main contributions of

this work can be enumerated as follows

• Evaluating the effect of HWIs on one-way localization (OWL) in a three-dimensional

scenario under perfect synchronization.

• Evaluating the effect of HWIs on OWL using two anchors in a three-dimensional

scenario under imperfect synchronization. In this method, the second anchor is used

to eliminate the clock offset between the transceivers. This evaluation is studied for

two different cases.

• Evaluating the effect of HWIs on two-way localization (TWL) using a round-trip lo-

calization protocol (RLP) under imperfect synchronization. In the RLP, localization
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is done using forward and backward temporal estimation as well as backward angular

estimation.

• Evaluating the effect of HWIs on TWL using a collaborative localization protocol

(CLP) under imperfect synchronization. In the CLP, localization is carried out using

forward and backward temporal and angular estimation.

The rest of the chapter is structured as follows: The localization problem is outlined,

and the forward and backward channel specifications along with the general formula for

the received signals at the both transmissions is obtained, in Section 4.2. The channel

parameters’ Fisher information matrices (FIM) for the studied cases (i.e. OWL cases 1-3,

RLP and CLP) are presented in Section 4.3. Section 4.4 presents the transformation of the

channel to the location parameters’ equivalent FIM (EFIM). The resulting PEB, OEB and

their degradation are analyzed in Section 4.5. Finally, Section 4.6 concludes the chapter.

4.2 System Model and Problem Formulation

Let us consider the LOS two-way transmission scenario depicted in Fig. 4.1. There are

the two devices: D1 acts as an initiator with N1 = N1,x ×N1,z antennas, and D2 acts as a

responder with N2 = N2,x × N2,z antennas. The initiator is located at the origin and the

responder at an unknown position p ≜ [px, py, pz]
T and orientation o ≜ [ϕ0, θ0]

T. Our goal

is to investigate the effect of HWIs on the error bounds for position p and orientation o.

We do so using 1) ToA, AoA and AoD under the OWL with a synchronous transceiver

and 2) the two anchors or the RLP and CLP under TWL with imperfect synchronization

between the communicating devices.
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Figure 4.1: Considered scenario including the both devices D1 and D2 in the forward
transmission.

To that effect, we assume that the employed power amplifiers in both D1 and D2 for

the two transmissions are impaired by factors κ1 and κ2, as well as by the initiate complex

additive distortion noises ηf
1 and ηb

2, respectively. The superscripts ”f” and ”b” stand for

the forward and backward transmission, and the subscripts ”1” and ”2” denote devices

D1 and D2, respectively. The received signals in the forward and backward channel are

mathematically formulated.

4.2.1 System and signal model in forward transmission

In this subsection, the general formulas for the forward received signal in the two-way

transmission are presented. Then, in order to determine the error bounds, the covariance

matrix of the received noise is calculated. Note that this is not applicable in the one way
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transmission model; the signal model for this transmission is given in the next subsection.

As can be seen from Fig. 4.2, in all of the studied scenarios, localization is performed

at device D1. Figs. 4.2b and 4.2c illustrate the TWL protocols in which D1 transmits the

impaired signal x1(t) = κ1F
fs1(t) + η

f
1 at t = 0, which is then received by D2 as y2(t)

at t = τ f [65]. Here, s1(t) ≜ [s1,1(t), · · · , s1,NB
(t)]T is the transmitted complex baseband

signal with power E{|s1|2} = EINB
(E is the expectation operator) and NB is the number

of transmitted beams. The covariance matrix of the forward additive distortion noise ηf1 is

calculated as Σηf
1
= (1−κ21)EIN1 . F

f is the forward transmit beamforming matrix, which

is defined as F f ≜ [f f
1, · · · ,f f

NB
] ∈ CN1×NB . Here, f f

b, 1 ≤ b ≤ NB is the bth beam of D1.

Moreover, τ f = τ +B is the local ToA in the forward channel at D2, and B is an unknown

clock offset between D1 and D2.

The impaired received signal y2(t) can hence be written as [65]

y2(t) = βκ1κ2W
fHa2(υ

f
2)a

H
1 (υ

f
1)F

fs1(t− τ f)

+ βκ2W
fHa2(υ

f
2)a

H
1 (υ

f
1)η

f
1 +W

fHηf
2 +W

fHn2(t), (4.1)

whereW f ∈ CN2×NB represents the receive analog beamforming matrix of a forward chan-

nel containing NB beams. n2(t) is the proper additive white Gaussian noise (AWGN)

vector with a zero mean and covariance matrix N0IN2 . β is the channel gain with real and

imaginary parts βR and βI, respectively. Furthermore, a1(υ
f
1) ∈ CN1 is the array manifold

vector of D1. It is also a function of the vector υf
1 ≜ {ϕ1, θ1}, consisting of the horizontal

and elevation angles of AoD in the forward transmission. This can be calculated for the

uniform rectangular array (URA) lying on the xz-plane, as

a1(υ
f
1) =

1√
N1

e−j
2π
λ
(dx sin(θ1) cos(ϕ1)x1+dz cos(θ1)z1), (4.2)
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where dx = dz = λ/2 is the inter-element spacing, and x1 and z1 are the antenna elements’

locations on the x and z-axis, as defined below [14]

x1 = 1N1,z ⊗ x̃1,

z1 = z̃1 ⊗ 1N1,x ,

where ⊗ denotes the Kronecker products,

x̃1 ≜

[
−N1,x − 1

2
,−N1,x − 1

2
+ 1, · · · , N1,x − 1

2

]T
, (4.3)

and

z̃1 ≜

[
−N1,z − 1

2
,−N1,z − 1

2
+ 1, · · · , N1,z − 1

2

]T
. (4.4)

Similarly, the responder’s array manifold vector a2(υ
f
2) ∈ CN2 is a function of the vector

υf
2 ≜ {ϕ2, θ2}, consisting of the horizontal and elevation angles of AoA in the forward

transmission and can be calculated as a1(υ
f
1) in (4.2). Note that based on our definition

in (4.2), a1
Ha1 = a2

Ha2 = 1.

Using Σηf
1
, the covariance matrix of the forward noise distortion at device D2 is given

as

Σηf
2
= (1− κ22)|β|2EIN2 . (4.5)

Therefore, the signal and noise components of the received signal in (4.1) can be separated
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as

µ2(t) = βκ1κ2W
fHa2(υ

f
2)a

H
1 (υ

f
1)F

fs1(t− τ f), (4.6)

z2(t) = βκ2W
fHa2(υ

f
2)a

H
1 (υ

f
1)η

f
1 +W

fHηf
2 +W

fHn2(t). (4.7)

Using the covariance matrix of ηf1 and ηf2, the covariance of the forwarded noise can be

given as

Σz2(t) =
(
E(β2

R + β2
I )(1− κ21κ

2
2) +N0

)︸ ︷︷ ︸
≜σ2

z

W fHW f . (4.8)

4.2.2 System and signal model in backward transmission

In the backward transmission (the only transmission in the OWL), device D2 transmits

the impaired signal x2(t) = κ2F
bs2(t) + η

b
2 at t = tb which is going to be received by

D1 as y1(t) at t = τb. Note that x2(t), s2(t) and the covariance matrix of ηb
2 can be

defined in the same way that was seen in the forward transmission. For the OWL, tb = 0,

while for the TWL, based on two-way protocols, tb can either depend on a predetermined

delay after receiving the forward signal, or it can be entirely independent from the forward

transmission.

Based on this, the obtained signal through the backward transmission can be written

as

y1(t) =βκ1κ2W
bHa1(υ

b
1)a

H
2 (υ

b
2)F

bs2(t− τb) + βκ1W
bHa1(υ

b
1)a

H
2 (υ

b
2)η

b
2

+W bHηb
1 +W

bHn1(t), (4.9)
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where F b ∈ CN2×NB andW b ∈ CN1×NB are the transmit and receive beamforming matrices

in the backward transmission, respectively. n1(t) has the same specifications as AWGN

noise n2(t) in (4.1). In addition, υb
1 ≜ {ϕ1, θ1} and υb

2 ≜ {ϕ2, θ2} are the AoA and AoD in

the backward transmission, respectively. As for the forward transmission, the signal and

noise parts can be set apart as

µ1(t) =βκ1κ2W
bHa1(υ

b
1)a

H
2 (υ

b
2)F

bs2(t− τb), (4.10)

z1(t) =βκ1W
bHa1(υ

b
1)a

H
2 (υ

b
2)η

b
2 +W

bHηb
1 +W

bHn1(t). (4.11)

As in (4.8), the covariance matrix of z1(t) can be given as

Σz1(t) = σ2
zW

bHW b. (4.12)

Note that the received noise z1(t), including the additive distortion noise ηb
1, η

b
2 and

the additive white Gaussian noise n1(t), is unknown. However, to assess deviations for

the FIM, only the covariance matrix Σz1(t) is needed. The same applies to the forward

transmission.

4.3 Clock synchronization and FIM of channel param-

eters

Using OWL or one of the two protocols (RLP or CLP) in Fig. 4.2, different timing scenarios

change the procedure of the localization and consequently the error bounds. In other words,

the FIM elements of the channel and temporal parameters depend on the synchronization

protocol. Since the contents of the forwarded and received signals do not rely on any timing
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(a) One-way localization (b) Round-trip localization protocol

(c) Collaborative localization protocol (d) One-way localization with two anchors

Figure 4.2: Timing diagrams for the one-way and two-way localization protocols RLP and
CLP.

protocols, for all of the following derivations, we assume that the temporal parameters are

independent from the spatial ones.

4.3.1 One-Way Localization (OWL)- case 1

Considering one transmission in the OWL, the UE and BS are assumed to be synchronized.

This can be used as a benchmark when assessing other techniques. Focusing only on the
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backward transmission (Fig. 4.2a), D2 initiates communication by sending a signal s2(t)

at t = 0. After τ = τb seconds, the signal y1(t) is received by D1. At this point, the

estimation procedure for the spatial parameters φS−OWL ≜ {υb,β, κ} and the temporal

parameter τ is performed by D1, where υ
b ≜ {υ1

b,υ2
b}, β ≜ {βR, βI} and κ ≜ κ1κ2.

Finally, the corresponding FIM of the OWL parameters φOWL ≜ {φS−OWL, τ} is given

below

JφOWL
=


Jυbυb Jυbβ jυbκ 0

Jβυb Jββ jβκ 0

jκυb jκβ Jκκ 0

0 0 0 Jττ

 ∈ R8×8. (4.13)

Note that J , j and J represent matrix, vector and scalar, respectively. The scalar elements

inside JφOWL are found using µ1(t) in (4.10) and through the following formula [84]

Jx,y =
T0N

2
B

(σ2
z )

2

(
∂

∂x
σ2
z

)(
∂

∂y
σ2
z

)
+

1

σ2
z

∫ T0

0

[(
∂

∂x
µ1(t)

)H

(W bHW b)−1

(
∂

∂y
µ1(t)

)

+

(
∂

∂y
µ1(t)

)H

(W bHW b)−1

(
∂

∂x
µ1(t)

)]
dt, (4.14)

where T0 ≈ NsTs is the observation time with a number of symbols Ns and a symbol period

Ts. Note that the output of (4.14) is a real scalar element. The full derivation of FIM

entries is given in Appendix B.1.

Having noted the independence of the temporal parameter τ from the spatial parameters

φS−OWL, and in order to focus on the channel parameter υb, we remove the interaction

of the nuisance parameters φN ≜ {β, κ} from our desired channel parameters using the

64



concept of equivalent FIM (EFIM) [17]. As a result, we write JφS−OWL
in block form as

JφS−OWL
=

Jυbυb JυbN

JT
υbN JN

 , ∈ R7×7, (4.15)

where Jυbυb ∈ R4×4 is the desired channel parameter matrix, JN ∈ R3×3 is the nuisance

parameter matrix, and JυbN ∈ R4×3 is the mutual information of the channel and nuisance

parameters’ matrix. Consequently, using the Schur complement [90], the EFIM of Jυbυb

is obtained as

J e
υbυb = Jυbυb − JυbNJ

−1
N J

T
υbN ∈ R4×4. (4.16)

4.3.2 One-Way Localization (OWL) using two anchors- case 2

In order to take into consideration the asynchronous OWL condition, and to compensate

for the clock bias, two anchors with the same HWIs’ factors, D1 1 and D1 2, can be used.

To ensure a fair comparison with the other protocols, the second anchor is assumed to be

located at the known position p2 in the closest neighboring cell to the D2 of the current

cell (see Fig. 4.3).

Similar to what was seen in case 1, D2 initiates communication by sending a signal

s2(t) to both anchors separately. Afterwards, signals y1 1(t) and y1 2(t) are received by

anchors D1 1 and D1 2 after τ
b
1 = τ1−B and τb2 = τ2−B seconds, respectively. In this case,

we assume that only the temporal information of the second anchor is used. Therefore,

the second anchor D1 2 estimates ToA as τ̂b2 and forwards it to the first anchor D1 1 using
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Figure 4.3: Considered scenario for the OWL including two anchors on two neighborhood
cells.

an error-free link.

At this stage, D1 1 localizes D2 using the temporal parameter of D1 2 as well as its own

temporal and angular parameters, τb1 and φS−OWL, respectively. The FIM of the OWL

parameters, JφS−OWL
, and the EFIM of its angular parameters are the same ones seen in

(4.15) and (4.16). In terms of the temporal component, based on Fig. 4.2d and using the

time difference of arrival (TDoA)1 technique, the clock offset can be eliminated as

τ ′ ≜ τ̂b1 − (τ̂b2 ) = τ1 − τ2 + e, (4.17)

where e is the estimation error. Both temporal parameters τ1 and τ2 are used in the

localization procedure. Since they are gained through two independent paths, they are

also transformed independently, as will be shown in the next section.

1In the TDoA technique, three anchors are needed to localize the user; however, in our scenario, TDoA
is used to only estimate the temporal parameter, which is possible with just two anchors. We use the
TDoA notation to explain the procedure.
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4.3.3 One-Way Localization (OWL) using two anchors- case 3

Similar to case 2, two anchors are used here. The localization procedure in this case

is identical to that of the second case; however, the angular information of the second

anchor is used in addition to the other information gained in the last subsection. The

FIM of the spatial parameters for anchor 1, JA1
φS−OWL

, is the same as the one in (4.15) (i.e,

JA1
φS−OWL

= JφS−OWL
) and therefore, J e

υbυb
A1 = J e

υbυb . However, the FIM of the spatial

parameters for anchor 2 is different from that of anchor 1 since the AoA, AoD and the

channel gain will be different.

JA2
φS−OWL

=


JA2
υbυb JA2

υbN

JA2
υbN

T
JA2

N

 , ∈ R7×7. (4.18)

Consequently, the EFIM of the angles becomes

J e
υbυb

A2 = JA2
υbυb − JA2

υbNJ
A2−1

N J
A2T

υbN. (4.19)

The temporal parameter FIM is similar to that of case 2. Afterwards, the obtained EFIM

of the second anchor’s angular and temporal parameters are added to the ones gained

through the first anchor, as will be shown in the next section.

4.3.4 Round-Trip Localization Protocol (RLP)

According to Fig. 4.2b, the steps for D2 positioning using the RLP can be summarized as

follows [61]

• At t = 0 signal s1(t) is sent by D1.
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• After τ f = τ +B seconds, the signal y2(t) arrives at D2.

• At this point, D2 estimates ToA as τ̂ f and after a pre-agreed delay τD, signal s2(t)

is sent at tb = τ̂ f + τD.

• τ −B seconds later, the signal y1(t) is received by D1 at τb = tb + τ −B.

• Finally, the spatial parameters φS−RLP = φS−OWL and the temporal parameter τb

are estimated by D1.

Note that since the offset parameter B vanishes from y1(t) after one round trip, there

is no longer a need to estimate it. Hence, we can present the corresponding FIM of the

RLP parameters φRLP ≜ {φS−RLP, τ}, to be the same as the one in (4.13). Similar to

the OWL, the elements of the spatial parameters JφS−RLP are calculated through (4.14).

Unlike OWL, the temporal FIM Jττ is derived after some mathematical treatment from

the forward and backward ToAs

Jττ = 4
(
J−1
τ fτ f

+ J−1
τbτb

)−1
, (4.20)

where Jτ fτ f and Jτbτb are the forward and backward temporal FIM, respectively. The first

one is found using µ2(t), while the latter is found through µ1(t). Note that by setting

Jττ = Jτbτb , temporal FIM for the OWL is achieved.

Similar to what was seen in the OWL cases, we need to extract the channel information

from the spatial parameter FIM. To that end, as in (4.16), J e
υbυb for RLP is derived.
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4.3.5 Collaborative Localization Protocol (CLP)

As can be inferred from the name of this protocol, localization of D2 is done at D1 through

the cooperation of both the forward and backward transmissions, in which the received

signal at D2 is assumed to be fed back to D1 via an error-free link. Unlike the RLP

protocol, tb is a pre-agreed time at D2 where s2(t) is sent on a non-overlapping interval

with the forward transmission.

Now, since tb is selected independently of the forward transmission, the FIM of the

spatial parameters in both transmissions can be added to give us more information about

the location of D2. Furthermore, in this protocol, because the localization is performed at

both transmissions, the offset B needs to be estimated and is part of the following forward

and backward CLP parameters:

φf
CLP ≜ {φf

S−CLP, τ
f , B},

φb
CLP ≜ {φb

S−CLP, τ
b, B},

where

φf
S−CLP ≜ {υf ,β, κ},

φb
S−CLP ≜ {υb,β, κ},

and υf ≜ {υ1
f ,υ2

f}.
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The FIM of the CLP parameters for the forward transmission can be given as

J f
φCLP

=



Jυfυf Jυfβ jυfκ 0 0

Jβυf Jββ jβκ 0 0

jκυf jκβ Jκκ 0 0

0 0 0 Jτ fτ f Jτ fB

0 0 0 Jτ fB JBB


,∈ R9×9 (4.21)

where we define the rightmost bottom of the matrix in (4.21) as J f
TT ≜

Jτ fτ f Jτ fB

Jτ fB JBB

.
The backward temporal FIM Jb

TT can be similarly defined. By transforming J f
TT and Jb

TT

into the temporal parameters {τ, B} and then adding them, the formula for the EFIM of

Jττ , is found to be same as the one in (4.20). Moreover, the corresponding EFIM matrix

for the forward and backward channel parameters, Jυfυf
e and Jυbυb

e, are similar to (4.16).

4.4 FIM of the location parameters

In order to compute the position and orientation error bounds, we need to transfer the

EFIM derived in the last section to the location domain. To that effect, we define the

forward and backward channel parameters as φf
CH ≜ {υf , τ} and φb

CH ≜ {υb, τ}. We

also define the location parameters as φL ≜ {p,o}. The EFIM of location parameters

J e
L−OWL1, J

e
L−OWL2, J

e
L−OWL3, J

e
L−RLP and J e

L−CLP, for the cases studied (i.e., OWL cases

1-3, RLP and CLP protocols) are found through the following transformation matrix Λf\b,
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respectively.

Λf\b ≜
∂φ

f\b
CH

∂φL

=

 ∂υf\b

∂p
∂τ
∂p

︸︷︷︸
Λ

f\b
S

∂υf\b

∂o ︸︷︷︸
Λτ

∂τ
∂o

 , ∈ R5×5, (4.22)

where the spatial and temporal transformation matrices are denoted by Λ
f\b
S ∈ R5×4 and

Λτ ∈ R5×1, respectively. Note2 that the backward spatial transformation matrix Λb
S is

different from the forward one Λf
S.

Furthermore, in (4.22), for the second anchor in the OWL cases 2 and 3, τ = τb2 is

different from the one in case 1, where τ = τb1 (τb2 = ∥p−p2∥/c for the second anchor and

τb1 = ∥p∥/c for the first anchor. The same idea is applied to the spatial transformation

matrix Λb
S, where Λb

S = Λb
S1

for the first anchor and Λb
S = Λb

S2
for the second one. Then,

as discussed in the last section, we conclude that

J e
L−OWL1 ≜ Λb

SJ
e
υbυbΛ

b
S

T
+ JτbτbΛτΛ

T
τ , (4.23a)

J e
L−OWL2 ≜ Λb

S1
J e
υbυb

A1Λb
S1

T
+ Jτb1 τb1 ΛτΛ

T
τ + Jτb2 τb2 ΛτΛ

T
τ , (4.23b)

J e
L−OWL3 ≜ Λb

S1
J e
υbυb

A1Λb
S1

T
+Λb

S2
J e
υbυb

A2Λb
S2

T

+ Jτb1 τb1 ΛτΛ
T
τ + Jτb2 τb2 ΛτΛ

T
τ , (4.23c)

J e
L−RLP ≜ Λb

SJ
e
υbυbΛ

b
S

T
+ JττΛτΛ

T
τ , (4.23d)

J e
L−CLP ≜ Λf

SJ
e
υfυfΛf

S

T
+Λb

SJ
e
υbυbΛb

S

T
+ JττΛτΛ

T
τ . (4.23e)

The temporal components of (4.23b) and (4.23c) are explained in detail in appendix B.2.

2The AoA and AoD angles are exchanged in the forward and backward transmissions.
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Finally, the PEB and OEB of D2 can be derived as

PEB =
√

[C]1,1 + [C]2,2 + [C]3,3 , (4.24a)

OEB =
√
[C]4,4 + [C]5,5 , (4.24b)

where [C]i,j is the (i, j)th element of the obtained J e
L. As can be seen from (4.23), the

RLP gives more information about the temporal parameter in comparison with OWL-case

1, and this occurs because it has one more transmission. However, the information that

we earn using the CLP and OWL-case 3 is almost twice that from the RLP. Consequently,

the CLP, at the cost of greater complexity, and OWL cases 2 and 3, at the cost of a second

anchor, cause less error in localization than the RLP. In the next section, we examine

whether or not this extra information compensates for the localization error due to HWIs.

4.5 Discussions and Numerical results

4.5.1 Simulation setup

In this simulation, we consider a scenario where the initiation of transmission in TWL

occurs at the BS. There, we have D1 lying on the xz-plane with N1 = 12 × 12 URA

antennas located at the origin, each with height hBS = 10 m. The UE is considered to be

D2, operating at frequency f = 38 GHz, with N2 = 12 × 12 URA antennas and located

anywhere in a sector of hexagon cells on the plane z = −hBS = −10 m with a radius of 50

meters. However, in the OWL case, the UE initiates communication by what is known as

uplink transmission. In the OWL with two anchors, the first and second BS act as D1 1
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and D1 2, respectively. The UE is also tilted by an orientation angle of 0 or 10 degrees in

both azimuth and elevation. We use directional beamforming for all devices with NB = 25

beams. In the forward transmission Fig. 4.4a, the BS steers the beams towards the sector

containing the UE with azimuth and elevation angles ϕf
1,l and θ

f
1,l, 1 ≤ l ≤ NB as

f f
l ≜

1√
NB

a1(ϕ1,l, θ1,l),

where a1(ϕ1,l, θ1,l) is the array response vector towards the angles ϕ1,l and θ1,l. We nor-

malize the beamforming matrix f f
l to obtain trace(F fHF f) = 1. On the other hand, in the

backward transmission Fig. 4.4b, the UE replies to the BS by steering the transmission

beams towards the virtual sector, containing the BS with azimuth and elevation angles ϕb
2,l

and θb2,l, 1 ≤ l ≤ NB.

The receive beamforming wf
l ,w

b
l and the backward transmit beamforming fb

l can be

found in the same way.

The propagated beams are fixed and equispaced on the sectors containing the BS and

UE. Moreover, as in [83], the transmitted signal is assumed to be passed through a unit

energy ideal sinc pulse-shaping filter with bandwidth W = 125 MHz and Ns = 16. We

also set the noise variance to N0 = −110 dBm. In our simulation environment, we assume

that the UE is moving among the 25 different locations in one sector of a cell. Finally,

we average the simulations over 25 UE locations to obtain the PEB and OEB affected by

initiator and responder HWIs. In this case, PEB and OEB degradation can be calculated
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(a) Steered beams towards 25 different UE’s lo-
cation in forward transmission.

(b) Virtual sector containing 25 beams directed
towards BS in backward transmission.

Figure 4.4: Forward and backward beam propagation.
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as

PEBdeg =

(
PEBHWIs

PEBideal

− 1

)
× 100%, (4.25)

OEBdeg =

(
OEBHWIs

OEBideal

− 1

)
× 100%. (4.26)

where PEBideal and OEBideal are obtained using (4.24)

4.5.2 Performance Analysis

Fig. 4.5 illustrates the PEB with respect to the HWIs factor κ for the OWL cases and

the two discussed protocols RLP and CLP. Based on the error vector magnitude (EVM)

metrics on the data sheets of the RF transceivers, κ should be in the practical range

[0.9,1] [65]. For this simulation, κ changes consistently within this interval. As can be seen

from this figure, CLP outperforms RLP due to the additional spatial term. The CLP has

better localization performance under different HWIs factors than the OWL cases as well.

This is due to 1) the extra information in comparison with OWL cases 1 and 2, and 2) the

closer distance between the BS and UE when compared to that between second BS and

UE in OWL-case 3.

Moreover, RLP and OWL-case 1 follow the same curve with a minor increase, on the

order of mm, in the performance of the RLP over that of the OWL-case 1. This is due to

the fact that the temporal parameters are estimated twice. However, RLP mitigates the

effect of imperfect synchronization between the transceivers. It is important to note that

the HWIs have a severe impact on the system performance for all the mentioned protocols

and, as expected, the PEB is at a minimum when κ = 1 (i.e., where there are no hardware

imperfections at the transceivers).
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Figure 4.5: PEB w. r. t. κ considering two orientation angles [0◦; 0◦] and [10◦; 10◦] under
the OWL, RLP and CLP.

Fig. 4.6 presents the PEB degradation level with respect to κ. As illustrated in the

figure, when κ strays from 1, the PEB deteriorates less dramatically in OWL cases 1 and

2 as well as that in the CLP, than that in the RLP. The robustness of the CLP is even

more evident for the oriented UE than the disoriented one; this indicates the strength of

the CLP against misorientation.

Hence, two anchors can render mmWave localization more robust against HWIs. More-

over, the total loss caused by decreasing κ from 1 to 0.9 is the same for OWL case 1 and

RLP. With no orientation, the worst total degradation is seen in the RLP and OWL case
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Figure 4.6: PEB degradation w. r. t. κ considering two orientation angles [0◦; 0◦] and
[10◦; 10◦] under the OWL, RLP and CLP.

1, at 94.83 × 100%. The smallest degradation, at 70.93 × 100%, occurs when using two

anchors in OWL-case 3. Needless to say, the degradation is quite enormous. Greater im-

pairment causes more degradation for the RLP than for OWL-case 3; for instance, in the

case of o = [0; 0], a 17.91× 100% degradation difference can be noticed when κ = 0.94, as

compared to 23.9× 100% when κ = 0.9.

Fig. 4.7 presents the PEB percentage loss using the CLP with respect to both impair-

ment factors κ1 and κ2. It is clear that the impact of the impaired BS and UE on the

localization is the same and that the PEB is worsened by 89.7× 100% at κ1 = κ2 =
√
0.94
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Figure 4.7: PEB degradation w. r. t. κ1 and κ2 with orientation angle [0◦; 0◦] under the
CLP.

(κ = 0.9). The same trend can be observed for the PEB and OEB loss in all the other

cases.

Figs. 4.8 and 4.9 provide the OEB and its degradation, with respect to κ, when using

all the studied cases and protocols at two different orientations. From Fig. 4.8, we can

see that the OEB is at a minimum when κ = 1. Furthermore, the OEB for OWL case 3

worsens less sharply than in the other cases because κ approaches 0.9. It can also be noted

that the smallest OEB is produced by the CLP protocol. However, the deterioration for

both OWL case 1 and RLP is the same. Taking a closer look at the rate of change with

respect to κ leads us to Fig. 4.9, where, in the case of no orientation, the OEB degradation
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Figure 4.8: OEB w. r. t. κ considering two orientation angles [0◦; 0◦] and [10◦; 10◦] under
the OWL, RLP and CLP.

exhibits the same behavior as that of PEB.

In the case of a tilted UE, using the CLP and OWL case 2, HWIs are more damaging to

orientation estimation than to position estimation. The opposite effect is seen when using

the RLP and OWL cases 1 and 3. For instance, in the comparison between two different

orientations in the CLP, a 5.85 × 100% degradation difference in orientation estimation

can be noticed when κ = 0.9, and this can be compared with a 3.33×100% degradation in

position estimation. In general, by comparing figures 4.6 and 4.9, the OWL case 3 can be

said to have the best resilience against HWIs while CLP maintains the best error bounds.
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Figure 4.9: OEB degradation w. r. t. κ considering two orientation angles [0◦; 0◦] and
[10◦; 10◦] under the OWL, RLP and CLP.

The reason for this is that CLP has only one anchor, which is close to the possible UE

locations while two anchors are used in OWL-case 3, one of which is far from the UE

location. As a result, more information is obtained using CLP than in OWL case 3 with

two anchors spaced by distance d. The effect of this distance is investigated in Fig. 4.10.

Fig. 4.10 presents the PEB with respect to the distance between the two anchors in

OWL case 3 at two different values for the HWIs factor: κ = 1 and κ = 0.99. In order

to compare the change of PEB in both cases, the red line is inserted showing the PEB

for the CLP with the corresponding HWIs values. As can be seen in the case of κ = 1

(Fig. 4.10a), when the second anchor is 40-47 m away from the first anchor, OWL case 3
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(a) κ=1, (b) κ=0.99,

Figure 4.10: PEB w. r. t. distance between two anchors considering no orientation under
the OWL- case 3 and CLP with κ = 1 and κ = 0.99.

outperforms CLP. This occurs because the second anchor is much closer to the UE location

(see Fig. 4.3). This applies to the OEB as well. In the case of κ = 0.99, due to the effects

of HWI, there is no superiority of OWL case 3 over the CLP.

4.6 Conclusion

The effect of hardware impairments (HWIs) on localization with synchronous and asyn-

chronous transceivers in 5G mmWave systems was studied in this chapter. We focus on

one-way localization (OWL) under synchronized transceivers, as well as on two-anchor,

two-way round-trip localization (RLP) and collaborative localization protocols (CLP) in

order to eliminate the time bias between the asynchronized UE and BS. The position and

orientation bounds for the UE were derived.

In line with the literature, our results demonstrate the superior performance of CLP over
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RLP, not only in tackling disorientation but also under the stress of HWIs. On the other

hand, almost no advantage is seen of the RLP over the OWL, except for the elimination of

clock bias. Based on our investigation, error bounds for all cases are at a minimum at the

ideal point and deteriorate by at least 70.93× 100% as hardware imperfection worsens to

0.9. Position degradation is completely symmetrical for both the UE and BS’s hardware

imperfections.

Generally, the OWL with two anchors located at the center of two neighborhood cells

has the best resilience against HWIs, while the CLP protocol demonstrates the best error

bounds. Future works based on this chapter can include designing estimators to efficiently

track the UE under the joint effects of HWIs and imperfect synchronization. There can

also be an examination of the effect of Non-line of sight (NLOS) paths in the established

scenario.

4.7 Publications Resulted from This Chapter

• F. Ghaseminajm, M. Alsmadi, S. S. Ikki, ”Error Bounds for Localization in mmWave

MIMO Systems: Effects of Hardware Impairments Considering Perfect and Imperfect

Clock Synchronization,” to be published in IEEE systems journal.
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Chapter 5

RIS-aided Mobile Localization Error

Bounds Under Hardware

Impairments (2D and 3D scenarios)

Overview: Reconfigurable intelligent surface (RIS) is the latest game-changing technology

which helps improving the millileter wave (mmWave) communication systems’ performance

such as localization. The vulnerability of mmWave systems to the environment such as

blockage can be mitigated using RIS by adjusting the incoming signals’ phase. On the other

hand, manufacturing an ideal hardware deployed at the transceivers is not feasible and

practical. This non-linearity in hardware known as hardware impairments (HWIs), causes

signal degradation and consequently more localization error. In this chapter, the effect of

HWIs on RIS-assited localization for the both two dimension and three dimension scenarios

is examined. Our numerical results show that active RISs alleviate the deteriorating effect

of HWIs on the user’s position error bounds (PEB). Based on our outcome, increasing the
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inter-RISs space by creating resolvable paths, leads to localization improvement.

5.1 Introduction

Based on Cisco annual internet report in March 2020, internet users will be increased by

15% in 2023 in comparison with the ones in 2018. Moreover, the global mobile devices is

expected to be almost 5 billion more, from 2018 [2]. According to this growing connec-

tivity, fifth generation (5G) wireless network has been deployed in some developed and

developing countries; however, there is a need for a technology supporting all 5G applica-

tion requirements, including escalated mobile broadband, ultra low latency communication

and massive communication [69]. Plus, the complexity, cost and energy consumption of

multiple-input multiple-output (MIMO) millimeter wave (mmWave) communication sys-

tems are pivotal concern [70]. For this reason, nowadays, researchers are more focused on

a brand-new technology with low cost and energy consumption solution: reconfigurable

intelligent surfaces (RISs).

RISs consist of a large number of passive elements in which they are capable of control-

ling the phase of incoming signals independently [70, 96]. Furthermore, the receiver noise

do not affect the RIS, so the analog to digital (ADC) and the digital to analog (DAC)

converters are not needed [69]. This intelligent reflecting and low cost surface can boost

the wireless communication performance, such as positioning. Localization is one of the

main features of 5G mmWave communication systems. In this chapter, large number of

elements in RISs along with multiple paths (e.g. line of sight (LOS) and the reflected paths

from the RIS) make the estimation of angle of departure (AoD), angle of arrival (AoA)

and time of arrival (ToA) achievable [15,77]. For example, [97] as well as [98] and [99], us-

ing combination of AoD, AoA and ToA found the Cramér-Rao lower bounds (CRLB) and
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consequently, the position (PEB) and orientation error bounds (OEB) of a user equipment

(UE).

On the other hand, often localization is affected by the hardware impairments (HWIs)

at the transceivers. Ideally, baseband samples at the transmitter generate the accurate

passband signals; then, at the receiver side, the signal is demodulated, reliably [65]. How-

ever, this is not accomplishable and manufacturing of transceivers often comes with some

minor deficiency and non-linearity, known as HWIs. This deficiency is presented in two

forms: additive and multiplicative [86]. It is shown in [100] that HWIs cause major degra-

dation in UE’s localization. In this chapter, we examine the effect of this imperfection

on the RIS aided single-input single-output (SISO) communication system to see how RIS

compensates the degradation originated from HWIs. Although, [86] studied the effect of

HWIs on RIS assisted wireless communication, its effect on the UE’s localization has not

been studied yet.

Even more, [101] proved that RIS has significant effect on localization under asyn-

chronous condition. Moreover, [102] noted that RIS makes joint localization and synchro-

nization possible using only downlink multiple-input single-output (MISO) transmission.

In addition, near-field positioning is done using a proper RIS phase design and another

two algorithms by [103] and [104], respectively. [105] performed multi targets’ localization

and [106] optimized RISs’ phase shifters using hierarchical code book (HCB) algorithm.

Moreover, [107] proposed a novel method in a RIS-aided communication system in which

using the sparse nature of mmWave communication system, UE is estimated. RIS is prof-

itable for Indoor localization as well, in which the blockage can be compensated; [108]

combined RIS and ultra wide band (UWB) signals for this purpose.

To the best of our knowledge, the effect of HWIs on RIS-aided localization has not been

studied yet. In this chapter, we present a scenario in which RIS is assisting the localization
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process affected by HWIs. Focusing on the uplink transmission and considering the both

LOS and non-line of sight (NLOS) paths (reflected from the RISs) in two dimension (2D)

and 3D scenarios, our main contribution is to examine the following concerns

• How much the localization can benefit from the RISs in order to overcoming the

degradation caused by HWIs?

• How much increasing the number of passive elements in each RIS and increasing the

number of RISs can help reducing the localization bounds?

• Does increasing the inter-RIS space help improving the positioning performance?

The rest of the chapter is organized as follows. Section 5.2, provides the signal and channel

model affected by HWIs in 2D and 3D scenarios. The Fisher information matrix (FIM)

of the unknown parameters and channel parameters is earned in section 5.3, followed by

the transformation to the location parameters’ FIM. Also, in order to optimizing the RISs’

control matrix, the RIS resource allocation is presented in the subsection 5.3.3. Section

5.4 provides the simulation setup and the numerical results for both 2D and 3D scenarios.

Finally, section 5.5 concludes the chapter.

5.2 Problem formulation

First, we assume a 2D scenario, shown in Fig. 5.1, including a single antenna base station

(BS) and UE. Considering uplink transmission, we establish a line of G- RISs. Each RIS

is located at location (xg, L) and equipped with M-element uniform linear array (ULA) on

the x-axis, spacing λ
2
. On the other hand, we assume a 3D scenario as shown in Fig. 5.2

and considering uplink transmission, it is consisting of a BS and UE with a single antenna.
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Figure 5.1: RIS-aided localization 2D scenario consisting of UE as a transmitter and BS
as a receiver and a line of G RISs.

This time, we consider a wall consisting of series of G-RISs, each with M-element uniform

rectangular array (URA) on xy-plane; in which M = MxMy with Mx and My elements

located on the x and y axis, respectively and spacing λ
2
. The inter-RIS spacing for the both

2D and 3D scenarios is D. We assume BS and UE are affected by HWIs with factor κs

and κr in the transmitter and receiver, respectively. In the 3D scenario, the wall is located

at the cell’s edge; in which each RIS is placed at xg. Also, the BS and UE are located at

origin and x, respectively.
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Figure 5.2: RIS-aided localization 3D scenario consisting of UE as a transmitter and BS
as a receiver and a wall of G RISs.

5.2.1 Signal and channel model

Taking mm-Wave communication into account, the UE transmits signal f(t) as below

f(t) =
√
κss(t) + ηs, (5.1)

in which κs is the HWIs factor at the transmitter (UE) antenna, ηs is the source additive

distortion noise with mean zero and variance σ2
ηs = E(1 − κs); where E is the power of

the transmitted signal s(t). The received signal at the BS consisting of LOS and reflected

signals from RISs, can be written as

r(t) =
G∑
g=0

√
κrβghg

TΩgggf(t− τg) + ηr + n(t), (5.2)
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where f(t) is the signal affected by HWIs, ηr is the responder’s (BS) additive distortion

noise with mean zero and variance σ2
ηr = E(1 − κr)

∑G
g=0 |βg|2, n(t) is the proper white

Gaussian noise with power spectral density (PSD) N0. Also, κr is the BS’s HWIs factor.

βg for the LOS path and the reflected paths can be driven as below

βg =


e−j2πfcτ0

λ

4π∥x∥
, g = 0 (5.3)

e−j2πfcτg
Γλ

4π (∥xg∥+ ∥x− xg∥)
, g ̸= 0

where x and xg represent UE and gth RIS locations. Moreover, fc is the carrier frequency.

τ0 = ∥x∥/c is the LOS path delay while τg = ∥xg∥/c + ∥xg − x∥/c are the reflected path

delays and c is the propagation speed. Also, λ = c/fc is the signal wavelength. Plus, Γ is

the reflection coefficient in case of inactivity of the corresponding RIS.

Furthermore, hg and gg in (5.2) are calculated only for the reflected paths and where

as [109] and [98], for the uplink transmission are the M × 1 UE-to-RIS and RIS-to-BS

response vector, respectively. For the 2D scenario,

hg,m =
1√
M

exp
(
−j∆Tk(ϕazg)

)
, (5.4)

gg,m =
1√
M

exp
(
−j∆Tk(θazg)

)
, (5.5)

and for the 3D scenario,

hg,m =
1√
M

exp
(
−j∆Tk(ϕazg , ϕelg)

)
, (5.6)

gg,m =
1√
M

exp
(
−j∆Tk(θazg , θelg)

)
, (5.7)

where, m ∈ {0, · · · ,M − 1}, k(ϕazg) and k(ϕazg , ϕelg) is the wave number vector in the
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azimuth direction ϕazg for 2D and in azimuth direction ϕazg and elevation direction θazg for

the 3D scenario, respectively and for the 2D can be calculated as,

k(ϕazg) =
2π

λ
[ cos(ϕazg); sin(ϕazg); 0],

while for the 3D, it is earned by,

k(ϕazg , ϕelg) =
2π

λ
[ cos(ϕazg) sin(ϕelg); sin(ϕazg) sin(ϕelg); cos(ϕelg)],

Moreover, ∆ is the antenna location matrix and in our scenario, assuming starting point

(x0, L) in the 2D scenario, for the mth element of the gth RIS, can be written as below,

∆(m, g) = [(m− 1)
λ

2
+ (g − 1)D + x0;L], (5.8)

where, ∆(m, g) ∈ R2×M , g > 1, m ∈ {1, ...,M}. Also, in 3D, assuming starting point

(0; y0; z0) for the (mx,my)
th element of the gth RIS, ∆ can be calculated as

∆(mx,my, g) = [(mx − 1)
λ

2
+ (g − 1)D; y0 + (my − 1)

λ

2
; z0], (5.9)

where, ∆(mx,my, g) ∈ R3×M , g > 1, mx ∈ {1, ...,Mx} and my ∈ {1, ...,My}. Con-

sidering sg = x − xg, ϕazg = tan−1(sg(2)
sg(1)

) and ϕelg = cos−1(sg(3)∥sg∥ ) are the azimuth and

elevation AoA of the received signal in gth RIS from UE and θazg and θelg are the azimuth

and elevation AoD of the transmitted signal from the gth RIS to the BS. Note that, ϕelg

and θelg are not applicable in the 2D scenario.

It worth mentioning that we assume all the paths are resolvable; this can be reached

by choosing RIS distance greater than c
W
, so the paths can arrive in different timing [97];
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where, W is the signal bandwidth.

For the best UE localization performance, we need to optimize diagonal M ×M con-

trolling matrix Ωg; in other words, matrix Ωg will control the phase of departed signal from

RIS. Note that, hg
TΩggg = 1, when g = 0 in the LOS path. The optimization procedure

will be explained in detail in subsection 5.3.3.

By substituting (5.1) into (5.2), we have

r(t) = κ
G∑
g=0

βghg
TΩgggs(t− τg) +

√
κr

G∑
g=0

βghg
TΩgggηs + ηr + n(t), (5.10)

in which κ =
√
κsκr. In order to deriving the error bounds, the variance of the received

noise needs to be calculated. Towards that, first, we separate the signal and noise parts of

the received signal in (5.10), as µ(t) and w(t), respectively.

µ(t) = κ
G∑
g=0

βghg
TΩgggs(t− τg), (5.11)

w(t) =
√
κr

G∑
g=0

βghg
TΩgggηs + ηr + n(t), (5.12)

according to (5.12) and based on the calculated variance of distortion noises, the received

noise variance, σ2
w, can be written as

σ2
w = E(1− κ2)

G∑
g=0

|βg|2 +N0. (5.13)

After signal acquisition and conversion of the signal part, in (5.11), to the frequency domain

91



by discrete Fourier transform (DFT), the observation at the n-th point becomes

µ[n] = κ
G∑
g=0

βghg
TΩggge

−jτgF [n]s[n], (5.14)

in which F [n] = 2πnW
N+1

, where N is the total number of the points.

5.3 Localization problem

Our goal is to obtain the UE PEB using the received signal r(t) with optimized diag-

onal matrix Ωg. To achieve this, we need to accomplish three steps: first, we derive

Fisher information of unknown parameters φ ≜ {τ ,ϕaz,βR,βI , κ} for 2D and φ ≜

{τ ,ϕaz,ϕel,βR,βI , κ} for the 3D scenario. Then, we calculate the EFIM for the channel

parameters φCH ≜ {τ ,ϕaz} for 2D and φCH ≜ {τ ,ϕaz,ϕel} for the 3D scenario. Finally,

we transform the channel parameters φCH to the location parameters φL ≜ {x}.

5.3.1 Fisher Information Analysis

We now derive the Fisher Information Matrix (FIM) of the vector φ, containing 4G + 4

and 5G+4 unknown parameters for the 2D and 3D scenarios, respectively. Namely, define

φ ≜ [τ ,ϕaz,βR,βI , κ] in 2D, (5.15)

φ ≜ [τ ,ϕaz,ϕel,βR,βI , κ] in 3D, (5.16)
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where,

τ ≜ [τ0, τ1, ..., τG] ,

ϕaz ≜ [ϕaz1 , ..., ϕazG ] ,

ϕel ≜ [ϕel1 , ..., ϕelG ] ,

βR ≜ [βR0 , βR1 , ..., βRG
] ,

βI ≜ [βI0 , βI1 , ..., βIG ] ,

Also, βRg and βIg are the real and imaginary parts of the gth path channel gain βg. Then,

the corresponding FIM is denoted by

Jφ =

 JφCH
JφCN

JφCN

T JφN

 ∈ R(4G+4)×(4G+4)for 2D and ∈ R(5G+4)×(5G+4)for 3D, (5.17)

in which JφCH
and JφN

are the channel and nuisance parameters’ FIM, respectively and

JφCN
is the mutual information of the channel and nuisance parameters. The matrices in

(5.17), can be written for the 2D scenario as follows.

JφCH
=

 Jττ Jτϕaz

Jϕazτ Jϕazϕaz

 ∈ R(2G+1)×(2G+1), (5.18)

JφCN
=

 JτβR
JτβI

jτκ

JϕazβR
JϕazβI

jϕazκ

 ∈ R(2G+1)×(2G+3), (5.19)
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and for the 3D scenario,

JφCH
=


Jττ Jτϕaz Jτϕel

Jϕazτ Jϕazϕaz Jϕazϕel

Jϕelτ Jϕelϕel
Jϕelϕel

 ∈ R(3G+1)×(3G+1), (5.20)

JφCN
=


JτβR

JτβI
jτκ

JϕazβR
JϕazβI

jϕazκ

JϕelβR
JϕelβI

jϕelκ

 ∈ R(3G+1)×(2G+3), (5.21)

and for the both 2D and 3D scenarios,

JφN
=


JβRβR

JβRβI
jβRκ

JβIβR
JβIβI

jβIκ

jκβR
jκβI

Jκκ

 ∈ R(2G+3)×(2G+3), (5.22)

Note that

Jφiφj
∈ R(number of elements in φi)×(number of elements in φj).

In general, each scalar FIM element in (5.17) can be defined as [110]

Jφiφj
=

N/2∑
n=−N/2

ℜ
{
tr

[
(σ2

w)
−1

(
∂σ2

w

∂φi

)
(σ2

w)
−1

(
∂σ2

w

∂φj

)]
+ 2

[
∂µ

∂φi

]H
(σ2

w)
−1

[
∂µ

∂φj

] }
, (5.23)

The full derivation of the elements of (5.17) is provided in appendix C.1.

The FIM JφCH
contains important information about the UE’s location. In order to

eliminate the effect of nuisance parameters φN from the channel parameters φCH , schure
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complement can be used as below [90],

J e
φCH

= JφCH
− JφCN

J−1
φN
JT
φCN

∈ R(2G+1)×(2G+1)for 2D and ∈ R(3G+1)×(3G+1)for 3D,

(5.24)

where J e
φCH

is the equivalent FIM (EFIM) of the channel parameters.

5.3.2 FIM of the location parameters

With a focus on presenting the position error bound, the derived EFIM in (5.24) needs

to be transferred to the location parameter φL ≜ [x]. Towards that, the transformation

matrix γ is defined for the 2D scenario as below

γ ≜
∂φCH
∂φL

=
[
∂τ
∂x

∂ϕaz

∂x

]
∈ R2×(2G+1), (5.25)

and for the 3D scenario,

γ ≜
∂φCH
∂φL

=
[
∂τ
∂x

∂ϕaz

∂x
∂ϕel

∂x

]
∈ R3×(3G+1), (5.26)

Full derivation of the transfom matrix γ is provided in appendix C.2. Thus, the EFIM of

the location parameter, J e
φL

, can be computed as,

J e
φL

= γJ e
φCH

γT,∈ R2×2for 2D and ∈ R3×3for 3D (5.27)
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the diagonal elements of inverse matrix of J e
φL

contains the position error bounds. Finally,

the PEB for 2D and 3D scenario is derived as,

PEB =
√

[C]1,1 + [C]2,2, (5.28)

and

PEB =
√
[C]1,1 + [C]2,2 + [C]3,3, (5.29)

respectively. where C = J e
φL

−1.

5.3.3 RIS Resource Allocation

Similar to [97], we consider two variables allocating the RIS resources. Vector a =

[a1, a2, ..., ag] and controller matrix Ωg = diag (ejωg,0 , ..., ejωg,M−1) where ωg = [ωT
1 , ..., ω

T
G]

T.

The first variable (i.e. a) represents the inactive RIS as ag = 0 and active RIS as ag = 1.

For the inactive case, RIS will act as an omnidirectional reflector, so that Ωg = IM).

On the other hand if the RIS is active, Ωg needs to be optimized in order to minimize

the error bounds. Achieving maximum signal to noise ratio (SNR) minimizes the PEB.

Based on the signal model in (5.14) and the received noise variance in (5.13), the SNR is

calculated as below

SNR =
κ2

1− κ2 + N0

E
∑G

g=0 |βg|2|h
T
g Ωggg|2

, (5.30)
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which is maximized if the term |hT
gΩggg|2 is maximized [97]. So that,

|hT
gΩggg|2 =

∣∣∣∣∣
M−1∑
m=0

ejωg,me−j∆
Tk(ϕg−az,ϕg−el)e−j∆

Tk(θg−az,θg−el)

∣∣∣∣∣
2

, (5.31)

then,

ωg,m = ∆T (k(ϕg−az) + k(θg−az)) For 2D,

ωg,m = ∆T (k(ϕg−az, ϕg−el) + k(θg−az, θg−el)) For 3D. (5.32)

5.4 Discussions and Numerical results

5.4.1 Simulation setup

In this simulation, we consider uplink transmission, in which, the receiver (BS) is located

at the origin, 10 m above the transmitter (UE), in 3D scenario. The UE is assumed to

be located at anywhere in a 10 m × 10 m square in 2D scenario and in one sector of a

50 m radius cell, in the xz- plane, in 3D scenario. Both the UE and BS are equipped

with a single antenna and operating at frequency f = 38 GHz. In order to assist the UE

localization, 3 RISs, each equipped with 100 elements, are located on the line xg(3) = 10m

on one edge of the square (2D) and on edge of the cell (3D) in the plane xg(3) = 25
√
3m.

In 3D scenario, the elements of the RIS are forming a 10 × 10 URA. Similar to [83], we

pass the transmitted signal through a unit energy ideal sinc pulse shape filter; so that,

the signal has the bandwidth W = 125 MHz. Also, in order to the frequency conversion

through DFT, we chose 129 points. Moreover, the noise variance N0 is set to -89 dBm for

the 2D and -100 dBm for the 3D scenario. Assuming that the UE is moving in different
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(a) 2D scenario, (b) 3D scenario,

Figure 5.3: UE locations in 2D and 3D scenarios.

locations on the square (2D- Fig. 5.3a) and on one sector of a cell (3D- Fig. 5.3b), we

average the earned PEB, affected by the transceivers’ HWIs, over these discrete locations.

5.4.2 Performance Analysis

Fig. 5.4 and Fig. 5.5 illustrate the PEB with respect to the HWIs factor κ assuming

different number of active RISs, in 2D and 3D scenarios, respectively. Considering the

practical range for κ ∈ [0.9, 1] [65], the average PEB over different UE locations is earned.

As it can be seen from Fig. 5.5, with no active RIS, PEB rises sharply from 42.73 to 1289

meters, which are enormous amounts; however, activating 1 RIS, while other RISs acting as

a reflector, improve the localization performance by 26.44 meters, when κ = 1; this is due

to the phase correction using the active RIS, which maximizes the SNR. It is evident that,

in 3D scenario, 2 active RISs has the best performance among the other cases, while more

RISs in 2D scenario provides mildly better performance; in the other words, activating
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Figure 5.4: PEB w. r. t. the HWIs factors κ using different number of active RISs each
with 100 elements in 2D scenario.

more RISs in a practical 3D scenario, does not boost the localization performance; this is

because of better performance of spaced 2 RISs rather than 3 RISs. Moreover, in both

scenarios, by activating 2 or more RISs, PEB stays more steady than one or no active RIS,

as κ strays away from 1. In order to see how the behavior of the PEB is similar to the

SNR, Fig. 5.6 is provided for the 3D scenario. As it can be seen from Fig. 5.6, activating

more RISs escalate the SNR value; although this betterment is more explicit between no

active RIS and 1 active RIS, than between 2 and 3 active RISs. Also, SNR deteriorates

by HWIs with the same slope for all the cases. In general, the SNR improves by 2 dB by

activating 3 RISs and this is due to the maximizing SNR in (5.30) by activating each RIS.

Furthermore, Fig. 5.6 is in logarithmic unit and that is why in comparison with the PEB,

SNR worsens less aggressively with HWIs.

In Fig. 5.7 and Fig. 5.8, we examined that in the both scenarios which factors between
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Figure 5.5: PEB w. r. t. the HWIs factors κ using different number of active RISs each
with 100 elements in 3D scenario.

Figure 5.6: SNR w. r. t. the HWIs factors κ using different number of active RISs each
with 100 elements in 3D scenario.

number of elements in each RIS and the number of RISs, are more useful to boost the

localization system affected by HWIs. Hence, we considered the following cases,
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Figure 5.7: PEB w. r. t. the HWIs factors κ in two different cases (2D scenario): 1)RIS
allocation vector a = [1, 1, 0] each with 100 elements, 2)RIS allocation vector a = [1, 0, 0]
each with 196 elements.

• 1 active RIS with almost 2m elements,

• 2 active RISs each with m elements,

From the both Fig. 5.7 and Fig. 5.8, it is evident that activating more RISs in 2D and 3D

has superior performance than using more elements in each RIS; This is again due to the

space between the elements. In the other words, each elements in the RIS are spaced by

λ/2, however, each RISs are located 2-3 meters away from each other; i. e, more distance,

better performance. This fact is apparent in Fig. 5.9 for the 2D scenario and Fig. 5.10 for

the 3D scenario.

Fig. 5.9 shows how PEB changes with the inter RIS space in 2D scenario for three

different HWIs factor κ = 1, κ = 0.94 and κ = 0.9 and Fig. 5.10 presents the PEB alteration

with respect to the inter RIS space in 3D scenario, for two different values of HWIs factor.

101



Figure 5.8: PEB w. r. t. the HWIs factors κ in two different cases (3D scenario): 1)RIS
allocation vector a = [1, 1, 0] each with 100 elements, 2)RIS allocation vector a = [1, 0, 0]
each with 196 elements.

In the both scenarios with different amount of HWIs, PEB drops as the distance between

RISs increases. Although, this distance is more effective in non-ideal transceivers. As the

distance between the RISs increases, the incoming signals from different RISs are more

resolveable, leading to more accurate estimation; this fact decreases the amount of PEB.

Finally, Fig. 5.11 presents the PEB corresponding to the UE location in the sector

considering ideal HWIs and 2 active RISs in 3D scenario. When the UE is close to the

either the BS or the RISs, its localization is more accurate than other points. This is due

to the receiving stronger signal which increases the SNR.
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Figure 5.9: PEB w. r. t. the inter RIS space considering two active RISs with RIS
allocation vector a = [1, 1, 1] and two different HWIs factors κ in 2D scenario.

Figure 5.10: PEB w. r. t. the inter RIS space considering two active RISs with RIS
allocation vector a = [1, 1, 0] and two different HWIs factors κ in 3D scenario.
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Figure 5.11: PEB w. r. t. the UE location in a diamond shape sector considering ideal
HWIs and RIS allocation vector a = [1, 1, 0].

5.5 Conclusion

In this chapter, the effects of hardware impairments (HWIs) on the UE localization with the

assistance of the reflecting intelligence surfaces (RISs), for two (2D) and three dimensional

(3D) scenarios, is presented. As expected, due to the incoming signal’s phase optimization

by RISs, more active RISs leads to the less localization error; however, results reveal that

there is a threshold for the number of the activated RISs in 3D scenario and after activating

limited number of RISs, more RISs do not improve the localization process. Even, this fact

can be seen in the 2D scenario, as the betterment of the localization performance decreases

by activating more than two RISs. On the other hand, in 3D scenario, signal to noise ratio

(SNR) rises with more active RISs and as HWIs factor gets closer to 1. Plus, the slope of

SNR drop with respect to the HWIs factor κ, is the same for different active RISs.

Furthermore, based on our results, activating more RISs with less elements is more
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helpful in the localization process than installing more elements in each active RIS. In

addition, more inter RIS space, reduces the user position error bound (PEB).

Future works based on this chapter can include considering multiple antennas at the

transceivers. Also, the effect of asynchronous transceivers in RIS aided localization along

with HWIs can be examined.

5.6 Publications Resulted from This Chapter

• F. Ghaseminajm, M. Alsmadi, S. S. Ikki, ”RIS-aided Mobile Localization Error

Bounds Under Hardware Impairments,” to be submitted in IEEE systems journal.
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Chapter 6

Conclusions and Future research

This thesis presented a research on the user equipment (UE)’s localization error bounds

under hardware impairments (HWIs) conditions while concentrating on different scenarios

in 5G mmWave communication systems. This chapter provides the final conclusions based

on the contributions mentioned in section 1.5.

6.1 Conclusions

• Examining the effect of HWIs on UE’s localization in 2D scenario is provided in

chapter 3. Focusing on the line of sight (LOS) path in uplink transmission, the

received signal model and the received noise covariance is derived. After deriving the

Fisher information matrix (FIM) of the unknown parameters, we then transformed

them to the location parameters’ FIM. Finally, we accomplished the error analysis and

earned the numerically calculated Cramèr-Rao lower bounds (CRLB) for the position

and orientation of the UE. By comparing the numerical results, we show that both the
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position (PEB) and orientation error bounds (OEB) deteriorate intensively as HWIs

worsen and they are at minimum in perfect circumstances. Although, the amount

of PEB and OEB degradation for non-tilted UE are the same, OEB degradation

becomes more than PEB deterioration for the tilted UE.

• The first part of chapter 4 extended the effect of HWIs on UE localization error

bounds discussed in chapter 3, to the 3D scenario. In this scenario, which is intro-

duced as one way localization (OWL)- case 1, the UE and the base station (BS) are

assumed to be timely synchronized. On the other hand, considering asynchronous

transceivers and in order to eliminate the clock bias, we examined the effect of HWIs

on UE’s PEB and OEB in two other OWL cases, as well. In OWL- case 2 and 3, the

localization information earned by the neighboring BS is also utilized. OWL- case 2

profits from the second BS to cancel the clock bias and OWL- case 3 takes advan-

tages of the both spatial and temporal information obtained through the redundant

BS. Besides these three cases, we investigated two other scenarios based on the two

way localization (TWL): round-trop (RLP) and collaborative localization protocols

(CLP). The former, involves UE for estimating the forward transmission delay and

the latter is based on the complete collaboration between the BS and the UE. After

obtaining the signal model and received noise covariance for the both forward and

backward transmissions, which is the same for all of the scenarios, the FIM of un-

known parameters and consequently the location parameters’ FIM are derived per

scenario. Finally, we compared the behavior of the error bounds as HWIs worsen.

Comparing the numerical results reveals that CLP has the superior performance over

other cases; However, OWL- case 3 shows the least degradation percentage with re-

spect to the HWIs factor. Moreover, except the clock bias elimination, there is no

supremacy of RLP over OWL.

107



• In chapter 5, in order to overcoming the intense deteriorated localization caused

by HWIs, we exploited the installed reconfigurable intelligent surfaces (RISs) on

the edge of the square in 2D scenario and on the edge of the cell in 3D scenario.

As expected, the results indicate that installing RISs in collaboration with even a

single anchor, is extremely beneficial in facing HWIs conditions. Furthermore, we

understood through 3D scenario, adding more RISs does not necessarily improve

the localization performance under HWIs. However, more distance between RISs is

immensely helpful in declining position error bounds; this fact is more evident when

hardware is more malfunctioned. Moreover, in the scenario of RIS-aided localization,

PEB declines more in comparison with the SNR, in presence of HWIs.

The major outcome of this thesis is to understand this fact that the hardware imple-

mented in the transceivers comes with some minor deficiencies; this can extremely affect

the localization performance in 5G localization systems, as we saw through the numerical

performance bounds. Based on our results, we know which algorithms and methods are the

best in tackling HWIs. This thesis introduces a solid mathematical framework for the study

of different types of localization systems under realistic scenarios; however it comes with

some assumptions that can be considered as the limitations of the presented research. Our

research could also motivate other researchers to explore further investigations. To that

end, this thesis can be considered as a benchmark.

6.2 Limitations of the presented work

Throughout the derivations and calculations of the UE error bounds in different scenarios,

some assumptions are considered. These assumptions are made in order to simplifying the
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complications of the mathematical derivations and can be considered as limitations of the

presented work as follows.

• In chapter 2, section 2.2, in order to model the HWIs, we assume that the input and

the output signal power are the same. In reality, some compensation algorithms need

to be used which increases the complexity of the system.

• In chapter 2, section 2.3.1, we assume that the estimator is unbiased in which E[θ̂] =

θ. Considering a biased estimator, would add a bias to each FIM element.

• In chapter 2, section 2.4, we considered that the electromagnetic elements used in

RISs are not lossy; however, RIS elements can be lossy and subsequently change the

amplitude of the reflected signal.

• In chapter 3, section 3.2.1, we assume that the receiver beams are orthogonal as of

sparse transmission in 5G mmWave communication systems; so that W HW = INB
.

However, this may not be exactly equal to the identity and this will change the noise

covariance.

• In chapters 3 and 4, we assume that all the antennas at the transmitter are imperfect

with the same factor κs. This is not correct in reality. However, considering inde-

pendent imperfection would add NT unknown parameters; which would complicate

our derivations.

6.3 Future Research Directions

Limitations of mmWave communication systems and its challenges are still is one of the

attractive topics among researchers. Based on our findings, general HWIs have severe
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effects on the 5G mmWave localization systems; however, there are still so many open

research topics that can be enumerated as follow.

• Spacial cases for HWIs: Generally, HWIs can include phase noise, nonlinear power

amplifier and I/Q imbalance. The received signal model for each special case of HWIs

is different and so that the performance analysis might be different. Our research

can be used as a benchmark for all the other mentioned special cases.

• Estimators: We have addressed the minimum error bounds of any estimators for the

UE localization in each scenario. Applying and designing estimation algorithms, such

as Maximum likelihood estimation (MLE) algorithm, on the mentioned scenarios can

be considered as a next step to practically show the localization performance under

HWIs circumstances. Bench-marking those techniques with the derived PEB and

OEB, approves the functionality of the estimators.

• Phased array configurations: We derived the UE localization error bounds based

on the radio frequency (RF) phase-shifting configuration. In this configuration, after

mounting the signal on the desired frequency, its phase for beamforming is shifted.

There are three other beamforming configurations including: local oscillator (LO)

phase shifting, intermediate frequency (IF) phase shifting and digital beamforming.

Comparing all these four configurations will give a comprehensive view of the local-

ization performance under HWIs.

• Realistic scenarios: The considered scenario in this thesis does not include non

line-of-sight (NLOS) paths, mobilized user and indoor localization. As it is explained

earlier, mmWave contains few paths and therefore LoS path contains most of the in-

formation; for this reason, we expect, considering NLOS paths might make a negligi-

ble change on our results; however, they can be exploited in indoor scenarios as may
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the LoS path is blocked. Also, finding the localization bounds for the moving user

will open another topic for tracking the UE using estimators in practical applications

such as vehicular communication systems.

• New applications: Addressing the positioning error bounds affected by HWIs in

device-to-device, vehicle-to-vehicle and internet-of-things applications can also be

considered as another new research topic.
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Appendix A

Derivation of FIM elements JC in 2D

scenario

In order to derive the entries of (3.7), we define the following parameters:

pR ≜
∂

∂θR
aR(θR), (A.1a)

pT ≜
∂

∂θT
aT(θT), (A.1b)

ṡ ≜
∂s(t)

∂τ
, (A.1c)

γ0 ≜
2ENs

σ2
z

, (A.1d)

γ1 ≜
4T0E

2N2
B

σ4
z

, (A.1e)
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and by deriving following derivatives

∂µ(t)

∂θR
= κβW HpR(θR)aT

H(θT)Fs(t− τ), (A.2a)

∂µ(t)

∂θT
= κβW HaR(θR)pT

H(θT)Fs(t− τ), (A.2b)

∂µ(t)

∂τ
= κβW HaR(θR)aT

H(θT)F ṡ(t− τ), (A.2c)

∂µ(t)

∂βR
= κW HaR(θR)aT

H(θT)Fs(t− τ), (A.2d)

∂µ(t)

∂βI
= jκW HaR(θR)aT

H(θT)Fs(t− τ), (A.2e)

∂µ(t)

∂κ
= βW HaR(θR)aT

H(θT)Fs(t− τ), (A.2f)

and using the following signal correlation relationship

∫ T0

0

s(t− τ)sH(t− τ)dt = NsINB
, (A.3a)∫ T0

0

∂s(t− τ)

∂τ

∂sH(t− τ)

∂τ
dt = 4π2NsW

2
effINB

, (A.3b)∫ T0

0

∂s(t− τ)

∂τ
sH(t− τ)dt = 0, (A.3c)

114



where W 2
eff ≜

∫W/2
−W/2 f

2|P (f)|2df and W is the bandwidth, the elements of (3.7) can be

calculated as below

JθRθR = γ0κ
2|β|2∥pHRW ∥2∥aHT F ∥2, (A.4a)

JθRθT = γ0κ
2|β|2ℜ

{
(pHT FF

HaT )(p
H
RWWHaR)

}
, (A.4b)

JθRβR = γ0κ
2∥aHT F ∥2ℜ

{
β∗pHRWWHaR

}
, (A.4c)

JθRβI = −γ0κ2∥aHT F ∥2ℑ
{
β∗pHRWWHaR

}
, (A.4d)

JθRκ = γ0κ|β|2∥aHT F ∥2ℜ
{
pHRWWHaR

}
, (A.4e)

JθTθT = γ0κ
2|β|2∥aHRW ∥2∥pHT F ∥2, (A.4f)

JθTβR = γ0κ
2∥aHRW ∥2ℜ

{
β∗aHT FF

HpT
}
, (A.4g)

JθTβI = −γ0κ2∥aHRW ∥2ℑ
{
β∗aHT FF

HpT
}
, (A.4h)

JθTκ = γ0κ|β|2∥aHRW ∥2ℜ
{
aHT FF

HpT
}
, (A.4i)

Jττ = 4γ0π
2W 2

effκ
2|β|2∥aHRW ∥2∥aHT F ∥2, (A.4j)

JβRβR = γ1(1− κ2)2β2
R + γ0κ

2∥aHRW ∥2∥aHT F ∥2, (A.4k)

JβRβI = γ1(1− κ2)2βRβI , (A.4l)

JβRκ = γ0κβR∥aHRW ∥2∥aHT F ∥2 − γ1κ|β|2βR(1− κ2), (A.4m)

JβIβI = γ1(1− κ2)2β2
I + γ0κ

2∥aHRW ∥2∥aHT F ∥2, (A.4n)

JβIκ = −γ1κ|β|2βI(1− κ2) + γ0κβI∥aHRW ∥2∥aHT F ∥2, (A.4o)

Jκκ = γ1κ
2|β|4 + γ0|β|2∥aHRW ∥2∥aHT F ∥2. (A.4p)
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Appendix B

Derivation of FIM elements in 3D

scenario under imperfect

synchronization

B.1 FIM elements for two-way scenario

By defining the following parameters

p1 ≜
∂

∂ϕ1

a1(υ1), h1 ≜
∂

∂θ1
a1(υ1),

p2 ≜
∂

∂ϕ2

a2(υ2), h2 ≜
∂

∂θ2
a2(υ2),

ṡ1 ≜
∂s1(t)

∂τ f
, ṡ2 ≜

∂s2(t)

∂τb
,

γ0 ≜
2ENs

σ2
z

, γ1 ≜
4T0E

2N2
B

σ4
z

,
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the derivatives of the received signal µ1(t) are calculated as below (for the convenience the

AoA and AoD are removed)

∂µ1(t)

∂ϕ1

= κβW bHp1a2
HF bs2(t− τb),

∂µ1(t)

∂ϕ2

= κβW bHa1p2
HF bs2(t− τb),

∂µ1(t)

∂θ1
= κβW bHh1a2

HF bs2(t− τb),

∂µ1(t)

∂θ2
= κβW bHa1h2

HF bs2(t− τb),

∂µ1(t)

∂τb
= κβW bHa1a2

HF bṡ2(t− τb),

∂µ1(t)

∂βR
= κW bHa1a2

HF bs2(t− τb),

∂µ1(t)

∂βI
= jκW bHa1a2

HF bs2(t− τb),

∂µ1(t)

∂κ
= βW bHa1a2

HF bs2(t− τb),

Now, defining the operator OA ≜ A(AHA)−1AH and using (4.14), FIM of the parameters

{υb,β, κ, τ} for the backward transmission is derived as below

Jϕ1ϕ1 = γ0κ
2|β|2||aH2 F b||2ℜ

{
(pH1OW bp1)

}
,

Jϕ1ϕ2 = γ0κ
2|β|2ℜ

{
(pH2 F

bF bHa2)(p
H
1 OW ba1)

}
,

Jϕ1θ1 = γ0κ
2|β|2||aH2 F b||2ℜ

{
pH1OW bh1

}
,

Jϕ1θ2 = γ0κ
2|β|2ℜ

{
(hH2 F

bF bHa2)(p
H
1OW ba1)

}
,

Jϕ1βR = γ0κ
2||aH2 F b||2ℜ

{
β∗pH1 OW ba1

}
,

Jϕ1βI = −γ0κ2||aH2 F b||2ℑ
{
β∗pH1 OW ba1

}
,
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Jϕ1κ = γ0κ|β|2||aH2 F b||2ℜ
{
pH1 OW ba1

}
,

Jϕ2ϕ2 = γ0κ
2|β|2||pH2 F b||2ℜ

{
(aH1 OW ba1)

}
,

Jϕ2θ1 = γ0κ
2|β|2ℜ

{
(aH2 F

bF bHp2)(a
H
1 OW bh1)

}
,

Jϕ2θ2 = γ0κ
2|β|2ℜ

{
(hH2 F

bF bHp2)(a
H
1OW ba1)

}
,

Jϕ2βR = γ0κ
2ℜ

{
β∗(aH2 F

bF bHp2)(a
H
1 OW ba1)

}
,

Jϕ2βI = −γ0κ2ℑ
{
β∗(aH2 F

bF bHp2)(a
H
1 OW ba1)

}
,

Jϕ2κ = γ0κ|β|2ℜ
{
(aH2 F

bF bHp2)(a
H
1 OW ba1)

}
,

Jθ1θ1 = γ0κ
2|β|2||aH2 F b||2ℜ

{
(hH1 OW bh1)

}
,

Jθ1θ2 = γ0κ
2|β|2ℜ

{
(hH2 F

bF bHa2)(h
H
1 OW ba1)

}
,

Jθ1βR = γ0κ
2||aH2 F b||2ℜ

{
β∗(hH1 OW ba1)

}
,

Jθ1βI = −γ0κ2||aH2 F b||2ℑ
{
β∗(hH1 OW ba1)

}
,

Jθ1κ = γ0κ|β|2||aH2 F b||2ℜ
{
hH1 OW ba1

}
,

Jθ2θ2 = γ0κ
2|β|2||hH2 F b||2ℜ

{
(aH1 OW ba1)

}
,

Jθ2βR = γ0κ
2ℜ

{
β∗(aH2 F

bF bHh2)(a
H
1 OW ba1)

}
,

Jθ2βI = −γ0κ2ℑ
{
β∗(aH2 F

bF bHh2)(a
H
1 OW ba1)

}
,

Jθ2κ = γ0κ|β|2ℜ
{
(aH2 F

bF bHh2)(a
H
1 OW ba1)

}
,

Jτbτb = 4γ0π
2W 2

effκ
2|β|2||aH2 F b||2ℜ

{
(aH1 OW ba1)

}
,

JβRβR = γ1(1− κ2)2β2
Rγ0κ

2||aH2 F b||2ℜ
{
(aH1 OW ba1)

}
,

JβRβI = γ1(1− κ2)2βRβI − γ0κ
2||aH2 F b||2ℑ

{
(aH1 OW ba1)

}
,

JβRκ = −γ1κ|β|2βR(1− κ2) + γ0κβR||aH2 F b||2ℜ
{
(aH1 OW ba1)

}
,
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JβIβI = γ1(1− κ2)2β2
I + γ0κ

2||aH2 F b||2ℜ
{
(aH1 OW ba1)

}
,

JβIκ = −γ1κ|β|2βI(1− κ2) + γ0κβI ||aH2 F b||2ℜ
{
(aH1 OW ba1)

}
,

Jκκ = γ1κ
2|β|4 + γ0|β|2||aH2 F b||2ℜ

{
(aH1 OW ba1)

}
.

Note that FIM for the forward transmission is achieved through µ2(t) and it is as same

as the derived FIM elements by exchanging subscripts ”1” and ”2” and also replacing

superscripts ”f” and ”b”. Besides that, for the OWL-cases 2 and 3, the FIM of the second

anchor is derived similarly by transferring the second anchor to the origin. The location

of device D2 will consequently be p− p2.

B.2 Derivation of temporal parts of location FIM for

the OWL- case 2 and 3

We define the FIM of the temporal parameters φT ≜ {τb1 , τb2 } as follows

JT ≜

Jτb1 τb1 0

0 Jτb2 τb2

 , ∈ R2×2. (B.1)

By transforming the temporal parameters φT to location parameters φL using ΛT, the

temporal component of the location parameters’ FIM becomes

JL−OWL2−Temporal = JL−OWL3−Temporal = ΛTJTΛ
T
T, (B.2)
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where

ΛT =
∂φT

∂φL

=

∂τb1
∂p

∂τb2
∂p

∂τb1
∂o

∂τb2
∂o

 ,∈ R5×2. (B.3)

After substituting (B.3) into (B.2), we obtain the following temporal part of JL−OWL2 and

JL−OWL3, which was noted before in (4.23b) and (4.23c):

JL−OWL2−Temporal = JL−OWL3−Temporal

= Jτb1 τb1

∂τb1
∂p

∂τb1
∂o

[
∂τb1
∂p

∂τb1
∂o

]
+ Jτb2 τb2

∂τb2
∂p

∂τb2
∂o

[
∂τb2
∂p

∂τb2
∂o

]
,

= Jτb1 τb1 ΛτΛ
T
τ |τ=τb1 + Jτb2 τb2 ΛτΛ

T
τ |τ=τb2 . (B.4)
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Appendix C

RIS-aided localization FIM elements

and transformation matrix

derivations

C.1 Derivation of FIM elements

In order to find the scalar elements in (5.17) through (5.23), the following derivatives are

calculated.

∂µ

∂τg
= κ(−jF [n])βghT

gΩggge
−jτgF [n]s[n], g ∈ {0, 1, ..., G}

∂µ

∂ϕazg

= κβgh
′
1
T

g
Ωggge

−jτgF [n]s[n], g ∈ {1, ..., G}

∂µ

∂ϕelg

= κβgh
′
2
T

g
Ωggge

−jτgF [n]s[n], g ∈ {1, ..., G}
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∂µ

∂βRg

= κhT
gΩggge

−jτgF [n]s[n], g ∈ {0, 1, ..., G}

∂µ

∂βIg
= jκhT

gΩggge
−jτgF [n]s[n], g ∈ {0, 1, ..., G}

∂µ

∂κ
=

G∑
g=0

βgh
T
gΩggge

−jτgF [n]s[n],

∂σ2
w

∂βRg

= 2E(1− κ2)βRg , g ∈ {0, 1, ..., G}

∂σ2
w

∂βIg
= 2E(1− κ2)βIg , g ∈ {0, 1, ..., G}

∂σ2
w

∂κ
= −2Eκ

G∑
g=0

|βg|2,

where,

h′
1g

=
∂hg

∂ϕazg

,

h′
2g

=
∂hg

∂ϕelg

,

defining

γ0 ≜
2E

σ2
w

,

δ ≜ τg′ − τg,

S∆0(δ) ≜
N/2∑

n=−N/2

e−j(δ)F [n],

S∆1(δ) ≜
N/2∑

n=−N/2

F [n]e−j(δ)F [n],
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S∆2(δ) ≜
N/2∑

n=−N/2

F 2[n]e−j(δ)F [n],

the derived fisher information for the interaction between the g′th and gth paths are given

below,

Jτgτg′ = γ0κ
2ℜ

{
β∗
gβg′S∆2(δ)(h

T
gΩggg)

H(hT
g′Ωg′gg′)

}
,

Jτgϕazg′ = −γ0κ2ℑ
{
β∗
gβg′S∆1(δ)(h

T
gΩggg)

H(h′
1
T

g′
Ωg′gg′)

}
,

Jτgϕelg′
= −γ0κ2ℑ

{
β∗
gβg′S∆1(δ)(h

T
gΩggg)

H(h′
2
T

g′
Ωg′gg′)

}
,

JτgβRg′
= −γ0κ2ℑ

{
β∗
gS∆1(δ)(h

T
gΩggg)

H(hT
g′Ωg′gg′)

}
,

JτgβIg′
= −γ0κ2ℜ

{
β∗
gS∆1(δ)(h

T
gΩggg)

H(hT
g′Ωg′gg′)

}
,

Jτgκ = −γ0κℑ

{
β∗
g(h

T
gΩggg)

H

G∑
g′=0

βg′S∆1(δ)(h
T
g′Ωg′gg′)

}
,

Jϕazgϕazg′ = γ0κ
2ℜ

{
β∗
gβg′S∆0(δ)(h

′
1
T

g
Ωggg)

H(h′
1
T

g′
Ωg′gg′)

}
,

Jϕazgϕelg′
= γ0κ

2ℜ
{
β∗
gβg′S∆0(δ)(h

′
1
T

g
Ωggg)

H(h′
2
T

g′
Ωg′gg′)

}
,

JβRgϕazg′
= γ0κ

2ℜ
{
βg′S∆0(δ)(h

T
gΩggg)

H(h′
1
T

g′
Ωg′gg′)

}
,

JβIgϕazg′ = γ0κ
2ℑ

{
βg′S∆0(δ)(h

T
gΩggg)

H(h′
1
T

g′
Ωg′gg′)

}
,

Jϕazgκ = γ0κℜ

{
β∗
g(h

′
1
T

g
Ωggg)

H

G∑
g′=0

βg′S∆0(δ)(h
T
g′Ωg′gg′)

}
,

Jϕelgϕelg′
= γ0κ

2ℜ
{
β∗
gβg′S∆0(δ)(h

′
2
T

g
Ωggg)

H(h′
2
T

g′
Ωg′gg′)

}
,

JβRgϕelg′
= γ0κ

2ℜ
{
βg′S∆0(δ)(h

T
gΩggg)

H(h′
2
T

g′
Ωg′gg′)

}
,

JβIgϕelg′
= γ0κ

2ℑ
{
βg′S∆0(δ)(h

T
gΩggg)

H(h′
2
T

g′
Ωg′gg′)

}
,
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Jϕelgκ = γ0κℜ

{
β∗
g(h

′
2
T

g
Ωggg)

H

G∑
g′=0

βg′S∆0(δ)(h
T
g′Ωg′gg′)

}
,

JβRgβRg′
= (N + 1)γ20(1− κ2)2βRgβRg′

+ γ0κ
2ℜ

{
S∆0(δ)(h

T
gΩggg)

H(hT
g′Ωg′gg′)

}
,

JβRgβIg′
= (N + 1)γ20(1− κ2)2βRgβIg′ − γ0κ

2ℑ
{
S∆0(δ)(h

T
gΩggg)

H(hT
g′Ωg′gg′)

}
,

JβRgκ
= −(N + 1)γ20κ(1− κ2)βRg

G∑
g′=0

|βg′|2 + γ0κℜ

{
(hT

gΩggg)
H

G∑
g′=0

βg′S∆0(δ)(h
T
g′Ωg′gg′)

}
,

JβIgβIg′
= (N + 1)γ20(1− κ2)2βIgβIg′ + γ0κ

2ℜ
{
S∆0(δ)(h

T
gΩggg)

H(hT
g′Ωg′gg′)

}
,

JβIgκ = −(N + 1)γ20κ(1− κ2)βIg

G∑
g′=0

|βg′|2 + γ0κℑ

{
(hT

gΩggg)
H

G∑
g′=0

βg′S∆0(δ)(h
T
g′Ωg′gg′)

}
,

Jκκ = (N + 1)γ20κ
2(

G∑
g=0

|βg|2)2 + γ0ℜ

{
G∑
g=0

G∑
g′=0

β∗
gβg′S∆0(δ)(h

T
gΩggg)

H(hT
g′Ωg′gg′)

}
.

For 2D scenario, the terms including ϕel is not usable.

C.2 Derivation of transformation matrix

According to the provided formula for τ , ϕaz and ϕel in the subsection 5.2.1, the following

derivatives can be achieved.

∂τg
∂x

=
1

c


x

∥x∥
, g = 0 (C.1)

x− xg

∥x− xg∥
, g ̸= 0
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∂ϕazg

∂x
=



−sg(2)
s2g(1)+s

2
g(2)

sg(1)

s2g(1)+s
2
g(2)

0


, for 2D

∂ϕazg

∂x
=


−sg(2)

s2g(1)+s
2
g(2)

sg(1)

s2g(1)+s
2
g(2)

 , for 3D

∂ϕelg

∂x
=

1

∥sg∥2
√
s2g(1) + s

2
g(2)



sg(1)sg(3)

sg(2)sg(3)

−(s2g(1) + s
2
g(2))


, for 3D

then,

∂τ

∂x
=

[
∂τ0
∂x

∂τ1
∂x

· · · ∂τG
∂x

]
,∈ R2×(G+1)for 2D and ∈ R3×(G+1)for 3D

∂ϕazg
∂x

=
[
∂ϕaz1

∂x
· · · ∂ϕazG

∂x

]
,∈ R2×Gfor 2D and ∈ R3×Gfor 3D

∂ϕelg
∂x

=
[
∂ϕel1

∂x
· · · ∂ϕelG

∂x

]
,∈ R3×Gfor 3D.
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