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Abstract 

Rolling element bearings are commonly used in rotating machinery to support shafts, 

reduce friction, and increase power transmission efficiency. For a machinery system, bearing 

fault could be the most possible cause of mechanical failures. If bearing defect can be 

detected at its early stage, mechanical performance degradation and even economic losses 

can be avoided. Although many signal processing techniques have been proposed in the 

literature for bearing fault detection, reliable bearing fault diagnosis is still a challenging task 

in this R&D field, especially in industrial applications. The objective of this work is to 

develop a smart condition monitoring system and a signal processing technique for bearing 

fault detection. Firstly, a Field Programmable Gate Arrays (FPGA) based sinusoidal generator 

is developed to generate controllable sinusoidal waveforms and explore FPGA’s potential 

applications in a data acquisition system to collect vibration signals. Secondly, an adaptive 

variational mode decomposition (AVMD) technique is proposed for bearing fault detection. 

The AVMD includes several steps in processing: 1) Signal characteristics are analyzed to 

determine the signal center frequency and the related parameters. 2) The ensemble-kurtosis 

index is suggested to select the optimal intrinsic mode function (IMF) to decompose the 

target signal. 3) The envelope spectrum analysis is performed using the selected IMF to 

identify the representative features for bearing fault detection. The effectiveness of the 

proposed AVMD technique is examined by simulation and experimental tests under different 

bearing conditions, with the comparison of other related bearing fault techniques.  
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Chapter 1  

Introduction 

1.1 Background 

Rotating machines are commonly used in almost every aspect of people's daily lives such 

as vehicles, motors, turbines, and robots. Failures of a rotating machine may result in reduced 

production quality, degraded safety, increased costs in repairs and maintenance, or even 

potential risk of loss of life [1]. Rolling element bearings, which are referred to as bearings 

thereafter, are essential components in rotating machinery to support rotating shafts and 

reduce frictions. Based on investigation [2], up to 75% of imperfections in small- and 

medium-size rotating machines, and 50% of imperfections in large-size machines, are related 

to bearing faults. Therefore, a reliable and effective bearing fault detection technology is 

critically needed in industries to identify a bearing defect at its earliest stage so as to improve 

machinery performance, increase productivity, and reduce maintenance costs. 

Before introducing the bearing fault, it is important to understand bearing structure. 

Depending on the shape of the rolling element, rolling element bearings can be classified as 

ball, tapered, cylinder, and needle bearings. Figure 1.1 shows a typical ball bearing structure, 

which consists of an outer ring, an inner ring, a set of rolling elements (balls), a bearing cage, 

and a bearing seal. 

 
Figure 1.1: Rolling element bearing structure: (1) outer ring, (2) inner ring, (3) cage, (4) rolling element, and (5) 
bearing seal [3]. 

Typically, bearing defects can be classified as "distributed" and "localized" defects [4]. 

Distributed defects are usually caused by excessive misalignment errors, improper mounting, 



2 
 

and abrasive wear, which can result in bearing surface roughness, waviness, misaligned 

raceways, etc. [5]. Localized bearing faults usually are associated with fatigue damage caused 

by the dynamic stress during operation [4]. This work will focus on localized bearing fault 

detection, which is more important from maintenance perspective. 

Bearing fault detection can be performed by analyzing different types of information 

carriers, such as acoustics, electric current, lubricant, thermal, strain, and vibration [6]. 

Vibration signals have a relatively high signal-to-noise ratio and are easy to measure [7], 

which are most commonly used for bearing health monitoring. This research will also be 

based on the analysis of vibration signals.  

To collect these vibration signals, a high-speed and high-resolution data acquisition (DAQ) 

system is indispensable. The role of the DAQ system is to convert the vibration analog 

signals to digital signals and then transfer to a computing device (usually a PC) for 

processing. The terminal software in the computer will use the relevant signal processing 

techniques to extract representative information to diagnose the fault of the bearing of 

interest. 

1.2 Data Acquisition (DAQ) Systems 

A DAQ system measures a physical phenomenon (e.g., vibration, current, temperature, 

pressure, or sound) [8], preprocesses the data, and transmits the signals to a computer for 

analysis. In addition, a modern DAQ system should provide real-time and post-recording 

functions for data visualization and primary analysis [9]. A smart DAQ system mainly 

consists of four essential units that form the entire measurement chain of physics phenomena: 

a sensing unit, signal conditioning, analog-to-digital converter (ADC), and a microcontroller 

unit (MCU) to control the processes. Figure 1.2 illustrates the functional units of a typical 

smart DAQ system. 

 
Figure 1.2: A block diagram of a smart DAQ system. 

The sensing unit measures a physical quantity (e.g., mechanical, chemical, radiant, and 

thermal) and transforms it to an electrical signal [10]. In this case, the physical signal is 
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related to mechanical vibration. The measurable analog electrical quantities could be in terms 

of voltage, current or charge for further display or processing [8]. 

Signal conditioning in a DAQ system is to provide the essential functions for accurate 

measurements, including electrical isolation, amplification, signal filtering, offset adjustment, 

compliance with sensor requirements, etc. [11]. Electrical isolation is the separation of the 

circuit from other sources of electromotive force. In general, the signal magnitude from the 

sensing unit is relatively weak, which should be amplified in magnitude. Adding electrical 

isolation can avoid the previous situation and reduce noise generated by electrical potential. 

Signal amplification is a process of amplifying signals for processing or visualization. There 

are different types of amplifiers used for different purposes in signal conditioning. Signal 

amplification can be done by increasing the resolution/amplitude of the input signal or by 

increasing the signal-to-noise ratio. In short, the signal amplification is incorporated in the 

signal conditioning circuit, which can better capture the valid information from the measured 

signal.  

Filtering is a processing function in which some signal frequency components are filtered 

out on request. There are several types of filters, such as low-pass, high-pass, band-pass, and 

band-stop filters. Filters can also be made from passive or active components and in analog 

and digital forms. For example, passive filters are composed of passive components such as 

resistors, capacitors, and inductors. There are no amplifying elements (transistors, operational 

amplifiers, etc.), so there is no signal gain, and their output level is always smaller than the 

input. In contrast, active filters use active components, such as operational amplifiers, in 

addition to resistors and capacitors, but do not use inductors. Active filters are capable of 

handling very low frequencies (close to 0 Hz), and they can provide voltage gain to the 

output signal. Unlike passive and active analog filters, a digital filter is a software system that 

performs mathematical operations on a sampled discrete-time signal to reduce or enhance 

some aspect of that signal [12]. Therefore, selecting the appropriate filtering method is very 

important for the signal quality of DAQ. 

An analog-to-digital converter (ADC) can be a crucial part of a DAQ system to convert 

the measured analog signal to a digital (discrete) counterpart for advanced processing. 

Successive approximation register (SAR) and Delta-Sigma are common types of ADC 

structures in modern DAQ applications. SAR ADC can provide up to 18-bit resolution and 

sampling rates up to 1 MHz. Although SAR does not have inherent anti-aliasing protection, it 

is still commonly used in ADCs due to its balanced performance and low cost. Compared to 
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SAR, Delta-Sigma ADCs are more expensive but have higher dynamic performance and 

inherent anti-aliasing protection, which has a resolution of up to 32 bits and a maximum 

sampling rate of 1 MHz [13]. 

DAQ software offers the necessary visualization, analysis, and control functions within a 

DAQ system. The data storage strategy depends on the application requirements. In the DAQ 

system, signals are periodically acquired with a required sample size, and then the data is 

transferred to a computing device or the cloud [14, 15]. Nowadays, flexible DAQ systems 

allow users to visualize and examine data in real-time during measurement procedures and 

configure the display using built-in graphical components with standard signal processing 

techniques, such as the Fourier Transfer (FT), signal average, and spectrum analysis.  

The traditional wired DAQ systems have been commonly used in industrial applications 

[16]. A wired DAQ system has the characteristics of stability and accuracy. Usually, it uses a 

cable to connect the DAQ to the computer or the portable tablet. Figure 1.3 shows an 

example of a wired based DAQ system from National Instrument. This wired connection 

mode can provide the feasibility of high-speed data transfer from the microcontroller unit 

(MCU). However, in actual use, the installation and maintenance costs of wired DAQ 

systems are usually high and the signal resolutions are limited due to performance of MCU. 

 
Figure 1.3: A typical wired DAQ system from National Instrument [17]. 

A wireless DAQ system contains the main body of the wired DAQ system, but the 

difference is to transmit the acquired digital signal wirelessly to the computing device. The 

common wireless communication protocols include RF, ZigBee, and Wi-Fi, among others. 

Considering the previous work in our research group, Sengoz proposed a 6.5 kHz sampling 
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rate, RF-based wireless DAQ system [18]. Due to the limitation of the ADC chip operating 

frequency, its sampling rate is not fast enough to qualify different bearing conditions. Cheng 

proposed a 24-bit resolution, ZigBee wireless DAQ system [19]. In real applications, the 

signal could be lost sometimes due to obstacle blockage. Based on Cheng's work, Toky 

designed a Wi-Fi wireless DAQ system [20]. However, its high-speed ADC sampling rate 

leads to data buildup thus disguising the ADC transmission rate. As a result, the wireless 

DAQ systems also exist some drawbacks and problems. Therefore, combining the advantages 

of wired DAQ and wireless DAQ will be the guideline to design a new DAQ system in this 

work. In addition, to explore new DAQ design ideas using the FPGA is worth to be 

considered. Furthermore, other challenges of the new DAQ system will also be related to the 

high-speed sampling rate and robust transmission approach.  

1.3 Bearing Fault Detection 

Figure 1.4 illustrates a typical example of a rolling element bearing with a rotating inner 

race and a fixed outer race. A localized fatigue defect is in the outer race of the bearing. In the 

bearing structure, the load on the shaft is transferred through the load zone to the inner ring, 

the rolling element, and then the outer ring. In operation, the rolling elements will pass 

through the load zone in sequence based on a certain period. This repetitive loading generates 

high pressure on the raceway surfaces of the inner race and outer ring in contact with the 

rolling surface of the rolling elements. Consequently, material fatigue pitting can occur as 

shown in Figure 1.4 on the surface of a bearing component (the outer race in this example) 

due to fatigue caused by repeated contact stress. 

 
Figure 1.4: A rolling element bearing load zone distribution with an outer race fatigue pit [21]. 
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In addition, as the rolling elements pass through the load zone in sequence based on a 

certain period, the specific vibration frequencies and noise will be generated by the dynamic 

changes as the bearing rotates. Vibration is also generated even if the bearing is healthy. 

When a bearing element is damaged, impulses are generated whenever defects on the bearing 

interact with the bearing element. These impulses will excite the natural frequencies of the 

bearing system and housing structure, increasing the vibration energy of the bearing elements 

at specific frequencies [6]. Fault detection is to recognize these fault-related representative 

features to predict bearing defects [22]. 

Based on the bearing dynamics analysis, the characteristic frequency of bearing faults can 

be calculated [23]. Consider a ball bearing shown in Figure 1.5, which has pure rolling 

contact, sound installation, and stable operating conditions. The related parameters of this 

ball bearing include the ball diameter d , the pitch diameter D , the contact angle  , and 

the total number of rolling elements .Z  If the speed of the rotating inner ring is n  rpm, or 

/ 60rf n=
 
Hz, different characteristic frequencies of bearing faults can be calculated in 

following procedures:  

The characteristic frequency for the bearing outer race defect is 

 1 cos( )
2


 

= − 
 

r
od

Zf df
D

 (Hz)       (1.1)  

The characteristic frequency for the bearing inner race defect is 

 1 cos( )
2


 

= + 
 

r
id

Zf df
D

 (Hz)       (1.2)  

The characteristic frequency for the bearing rolling element defect is 

2
2

21 cos ( )
2


 

= − 
 

r
ed

Df df
D

 (Hz)                  (1.3) 
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Figure 1.5: kinematics structure of a ball bearing [18]. 

1.4 Signal Processing Techniques for Bearing Fault Detection 

After the vibration signals are collected by using a DAQ system, bearing representative 

features can be extracted by using appropriate signal processing techniques. There are many 

signal processing techniques in literature for bearing fault detection, which can be classified 

as analysis in the time domain, frequency domain, and time-frequency domain. In time 

domain analysis, the main principle of bearing fault detection is based on analyzing the 

statistical parameters of the signal, such as peak value, peak-to-peak value, root-mean-square 

(RMS), crest factor [24], skewness, kurtosis [25], spectral kurtosis [26], impulse factor, shape 

factor, and clearance factor [27]. In general, signals can be roughly divided into stationary 

and non-stationary. The advantages of time domain analysis for stationary signals are its 

simplicity in computation and fast processing speed. However, most fault-related features are 

non-stationary, and then time-domain analysis lacks the accuracy and sensitivity for bearing 

fault detection. Therefore, it is necessary to introduce the frequency domain and 

time-frequency domain analysis for bearing fault detection. 

Frequency domain analysis is to transform the time signal to the frequency domain 

representation for analysis by using different forms of the FT [28, 29]. Each bearing 

component has a specific characteristic frequency calculated using Eq. (1.1)-(1.3). Bearing 

fault detection is undertaken to examine the resulting spectral maps with respect to these 

theoretical fault characteristics. However, in actual fault analysis, the signal is often mixed 

with noise and some defect-related features are time varying (e.g., rolling element defect), 

which makes it difficult to identify the fault frequency components on spectral maps. The 
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methods, including power spectrum [30], cestrum spectrum, and Hilbert demodulation [31], 

are proposed to reduce the noise and improve the signal-to-noise ratio. Nevertheless, the 

generality of these methods is limited, and the accuracy still depends on the defect location, 

bearing dynamics, and rotation speed. 

Time-frequency analysis has been widely used to analyze non-stationary signals. 

Time-frequency analysis can compose the complex structure of signals that contain multiple 

components and provide direct information about the frequency components occurring at any 

given time [30]. Common time-frequency analysis methods include the short-time FT [31], 

Wigner-Ville distribution (WVD) [32], wavelet transform (WT) [33], wavelet packet analysis, 

Hilbert-Huang transform (HHT) [34], etc. However, each method has its own advantages and 

limitations in the practical processing applications. For example, the short-time FT may not 

be able to provide valid information including simultaneous time and frequency localization 

at the same time. Besides, applying WVD and other bilinear time-frequency distributions in 

bearing fault detection is limited due to the potential cross-interference items [35]. Moreover, 

the WT is inefficient for processing signals whose energy is not well concentrated in the 

frequency domain [36]. On the other hand, in HHT analysis, empirical mode decomposition 

(EMD) is a self-adaptive method for non-stationary signal analysis [37]. However, it has 

limitations in mode mixing, over envelope, or less envelope, which will affect the processing 

accuracy [38]. Therefore, it is still remaining a challenging task to extract robust 

representative features from non-stationary vibration signals for bearing fault detection, 

especially when defect occurs on the rotating ring and rolling elements. This work aims to 

provide a new signal processing technique to improve the reliability for bearing fault 

diagnosis. 

1.5 Research Objectives 

The overall research objective of this work is to continue the previous development 

projects in our research group and develop an online monitoring system for real-time bearing 

fault detection. It consists of two topics:  

The first objective is to develop a high-speed sampling and high-resolution DAQ system 

to collect vibration signals.  

The second objective is to propose an adaptive Variational Mode Decomposition (AVMD) 

technique for non-stationary signal analysis and bearing fault detection. The effectiveness of 
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the proposed AVMD technique is examined by experimental tests corresponding to different 

bearing conditions. Its robustness in bearing fault detection is examined using the data sets 

from a different experimental setup. 

1.6 Thesis Outline 

The remaining chapters in the thesis are organized as follows: 

Chapter 2 discusses the development of an FPGA sinusoidal waveform generator and 

explores its potential application in DAQ systems. 

Chapter 3 describes the development of the DAQ system. 

Chapter 4 discusses the proposed AVMD technique for bearing fault detection. 

Chapter 5 describes the simulation and experimental tests to examine the effectiveness of 

the proposed AVMD technique under different bearing testing conditions. 

Chapter 6 summarizes concluding remarks from the research activity in this work and 

identifies further research to advance the technical knowledge in this field. 
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Chapter 2 

Development of A FPGA Sinusoidal Waveform Generator 

In modern electronic systems, a sinusoidal waveform can be a comparator, a tracker, or a 

simulation source, which can be used in interstellar communication, satellite communication, 

5G mobile communication, system control, digital signal processing, etc. [39, 40]. Several 

embedded platforms such as the field programmable gate array (FPGA), microcontroller unit 

(MCU) and application-specified integrated circuitry can help implement trigonometric 

functions in electronic systems [41]. The lookup table (LUT) [41], polynomial approximation 

[42], and coordinate rotation digital computer (CORDIC) [43-46] are the main algorithms for 

implementing the trigonometric functions in these embedded platforms. 

This chapter aims to develop a new sinusoidal waveform generator in the FPGA and 

explore its possible applications for high speed DAQ applications.  

2.1 Principle of Recursive Trigonometric (RT) Algorithm 

The proposed RT technique is based on the trigonometric identities to conduct 

trigonometric function calculation. The cosine functions can be calculated easily using other 

trigonometric functions (e.g., sine, tangent, and cotangent) and be transferred by the 

trigonometric identities. Once the value of cosine is calculated, the sine value can be easily 

obtained by phase transformation. Eq. (2.1) and Eq. (2.2) are the basic cosine and sine 

functions and expansions: 

( ) )sin()sin()cos()cos()1(cos θθnθnθθn −=+      (2.1)  

1sin( ) sin( ) [cos( ) cos( )]
2

n n n     = − − +      (2.2)  

Based on the trigonometric identities in Eq. (2.1)-(2.2), the following representation can 

be obtained:  

( )
1cos ( 1) cos( )cos( ) [cos( ) cos( )]
2

n n n n      + = − − − +
   

 (2.3) 

Eq. (2.3) can be simplified as: 
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( ) ( )cos ( 1) 2cos( )cos( ) cos ( 1)n n n   + = − −     (2.4) 

The RT technique will be derived from the trigonometric identities transform in Eq. 

(2.4), specifically: 

If 1=n , 

cos(2 ) 2cos( )cos( ) cos(0)  = −       (2.5) 

If 2=n , 

cos(3 ) 2cos(2 )cos( ) cos( )   = −      (2.6) 

…… 

If =n k , 

( ) ( )cos( ) 2cos ( 1) cos( ) cos ( 2)k k k   = − − −     (2.7) 

From Eq. (2.5) to Eq. (2.7), it can be seen that given an initial angle  , we can calculate 

the values of cos( )  and cos(2 )  using Eq. (2.5). This process can be repeated recursively 

to compute cosine values of cos( )k , where k  is an integer. Therefore, once the initial   is 

selected, all cosine values of cos( )k can be computed, where [0, 2 ] k . 

2.2 FPGA 

The hardware of the sinusoidal waveform generator consists of two main parts. The first 

part is FPGA, which is the core of the system and is responsible for running the algorithms 

and generating the digital signals, which will be discussed in this section. The second part is 

the digital-to-analog converter (DAC), which will be discussed in section 2.3. 

2.2.1 FPGA Overview 

FPGA is defined as a matrix of configurable logic blocks (CLBs) (combined and/or 

sequential) with user-programmable interconnects, tailored to operate for specific 

applications [47]. Unlike conventional processors, FPGA executes operations in a parallel 

mode, as shown in Figure 2.1, so that different processing operations do not have to compete 
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for the same resources. For CPU operation structure shown in Figure 2.1, it is structured to 

run in a top-down sequence, which means the software comments need to transfer through 

drive application programming interface (API) to the operating system and then to the 

hardware. This operation structure of the CPU will take longer response times and slower 

program operation. In contrast, for FPGA, each independent processing task is assigned to a 

dedicated part of the chip and can run autonomously, without any influence from other logic 

blocks. Therefore, when adding more instructions to execute, the performance of one part of 

the application will not be affected. 

 

Figure 2.1: FPGA processing structure [48]. 

Figure 2.2 shows the FPGA generic architecture; it is composed of a matrix of CLBs, 

surrounded by a system of programmable interconnects, which routes signals between CLBs. 

Input/output (I/O) blocks interface the FPGA with external devices.  

 

Figure 2.2: Generic architecture of an FPGA [48]. 
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The CLBs are the basic logic unit of an FPGA. Depending on the manufacturer, the CLB 

may also be referred to as a logic block, a logic element, or a logic cell [48]. The CLB 

consists of two basic components: a flip-flop and a LUT [49], as illustrated in Figure 2.3. The 

flip-flops are binary shift registers used to synchronize the logic and keep the logic state 

between clock cycles of the FPGA circuit. At each clock edge, a flip-flop latches a value of 1 

or 0 (i.e., true or false) on its input and holds that value until the next clock edge. For the LUT, 

most of the logic in the CLB is implemented as a LUT with a very small amount of 

random-access memory (RAM). All combinational logic (AND, OR, NAND, XOR, etc.) is 

implemented in LUT memory in the form of truth tables. The truth table is a predefined list of 

outputs for each input combination [47]. 

 
Figure 2.3: A structure of configurable logic blocks [48]. 

There are many FPGA options from different manufacturers such as Xilinx, Inc., Intel 

Corporation, Microchip Technology Inc., Lattice Semiconductor Corporation, and 

QuickLogic Corporation [50]. The FPGA selected for this development work is from Cyclone 

IV E family FPGA (EP4CE15F23C8 from Intel) with low power consumption, relatively 

high performance, and available development tools. As shown in Figure 2.4, EP4CE15F23C8 

is an FPGA with 15000 CLBs, 4 I/O Phase-Locked Loops (PLLs), and 504 Kb Embedded 

Memory. 
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Figure 2.4: FPGA of EP4CE15F23C8 [51]. 

2.2.2 FPGA Architectures of the RT Technique 

In the proposed RT technique, the trigonometric calculation will cover each cosine value 

between 0 to 2𝜋. If the initial angle is 0 rad, when 𝑛 = 1 , the initial input will be   

cos((1 − 1)𝜃) = cos(0). In addition, the iteration step size of the angle should be 

appropriately selected so that the following input will be the cosine value of this step size 

angle.  

The iteration step can be an integer angle, a fractional angle, in radian or degree; but the 

angle should be an integer multiple of 2𝜋 or 360 degrees. Figure 2.5 shows the digital 

architecture to keep those two cosine values in the RAM. The shifter will shift the step size 

angle to the left or multiply by 2. The result becomes 2 cos(𝜃), which will be multiplied by 

cos(𝑛𝜃)  according to Eq. (2.5). Then, 2 cos(𝜃) cos(𝑛𝜃)  will be subtracted by    

 cos((𝑛 − 1)𝜃) in the accumulator, which results in 2cos(𝜃) and is stored in the RAM for 

the following calculations. The RT technique contains only one clock cycle multiplication, 

addition, and subtraction; its accuracy depends on the initial value of cos(𝜃), which can be 

controlled by certain bits of devices or systems. 
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Figure 2.5: The architecture of the RT algorithm. 

2.3 Digital to Analog Converter (DAC) 

The DAC, as the second part of the sinusoidal waveform generator, has the main function 

of converting the digital signal generated by the FPGA into an analog signal. In this 

development, AD9709 chip (from Analog Device Inc.) is selected as the DAC component, 

which has the following features [52]: 

1) 175 million of samples per second (MSPS) update rate; 

2) Low power dissipation (12mW at 80 MSPS, 50mW at 175 MSPS); 

3) Two channels with 8 bits resolution output; 

4) Wide supply voltage: 1.7 V to 3.6 V; 

5) Self-calibration. 

Both channels of the AD9709 support voltage outputs from 0.48 to 2.2 V. The relationship 

between the output voltage and the input data can be expressed by: 

_1.72 ( / 255) 2.2= −  +out AC DAV D                   (2.8) 

where factor “-1.72” is the constant based on the datasheet [52]; DAC_DA is the register value 
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from algorithm calculation results; “255” is a resolution divider due to the 8-bits resolution of 

the AD9707; “2.2” is a reference voltage supplied by FPGA.  

It should be noted that the output voltage in the specific range from 0.48V to 2.2V is 

related to the developed circuit only, which may be different in other circuits.  

2.4 Simulation Testing 

Some simulations will be undertaken in this section to use the proposed RT technique to 

generate some cosine waveforms. The RT technique will be implemented in MATLAB. The 

RT effectiveness will be examined by comparing its performance with the related methods 

under the same frequency and bandwidth. In addition, for the convenience of comparison 

with other related algorithms, all computed results are in cosine values. 

Figure 2.6 shows simulated cosine waveforms in MATLAB, using the RT technique. The 

step angle is 0.063 rad used for both RT and CORDIC method, where CORDIC uses the 

same setting as in paper [53]; the scale factor K = 0.607 is used for radix-2 CORDIC with 16 

iterations. The scale factor K is a variable for radix-4 CORDIC, with 8 iterations [54]. For the 

RT technique, the initial value is the cosine value of step angle and cos(0) = 1 is used to 

complete the first recursive calculation. The step angle and cos(0) are used to compute the 

following cosine values recursively using Eq. (2.5). The result precision will be kept in 16 

bits, which will be used for computation of each algorithm. 

 
Figure 2.6: The RT cosine waveform simulation by MATLAB. 

The MATLAB function “cos” will be used to calculate the reference value to compare the 

accuracy of the RT, Radix-2, and Radix-4 CORDIC. The 16-bits comparison of these three 
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methods with reference value is shown in Figure 2.7. 

 
Figure 2.7: 16-bits accuracy comparison between different methods: (a) Radix-2, (b) Radix-4, (c) RT. 

As demonstrated in Figure 2.7, the maximum CORDIC difference error occurs around π/2. 

For the Radix-2, the maximum error is 1.590×10-5; for the Radix-4, the maximum error is 

1.109×10-10. For the proposed RT technique, the maximum error is 1.983×10-12. For RT 

technique, the processing errors mainly come from two aspects: 1) the pre-define cosine 

value; 2) the accumulated truncation errors in the recursive calculation. The former error can 

be reduced by using more accurate input cosine value such as 24 bits or 32 bits in binary 

format. The latter error can be tackled by using quadrant transformation. The angle domain is 

[0, π/2] and the angle over π/2 can be transformed to [0, π/2]. For example, the value of 

cos(3π/2)  can be transformed to cos(π/2). As shown the in Figure 2.7(c), the errors are 

reduced between π/2 and π by the quadrant transformation. For the CORDIC method, 

because the CORDIC has angles only over [-1.74, +1.74] rad or [-99.99, +99.99] deg, based 

on tan (𝜃), it can calculate two quadrant angles only, and the angle out of this interval will 

be converted into [-1.74, +1.74] rad or [-99.99, +99.99] deg. As a result, the computational 
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error increases as the number of iterations increases. In addition, the scale factor K affects the 

accuracy of CORDIC. The Radix-2 CORDIC is an approximate calculation algorithm, and its 

final cosine value needs to be multiplied by a scale factor of approximately 0.6073 as the 

number of iterations reaches infinity. For the Radix-4 CORDIC, the scale factor K is not a 

constant [54] but is calculated by 

𝐾 = ∏ (1 + 𝜎𝑖
2 × 4−2𝑖)

1

2𝑖             
(2.9) 

where 𝜎𝑖  belongs to a digit set {−𝑎, … ,0, … , +𝑎}, 𝑎 ∈ [2 ,3].  𝑖 is the number of iterations, 

when 𝑖 achieves 𝑛 bits its precision is 𝑛/2. 𝜎𝑖 can be determined by an angle interval. 

Different angles in each iteration will result in a different 𝜎𝑖  value. Although Radix-4 

CORDIC can decrease the iteration operation times, its scale factor calculation is more 

complex compared with Radix-2 using Eq. (2.9). 

 To further examine the effectiveness of the proposed RT technique in calculation 

accuracy, some comparison tests are undertaken in terms of the root mean square error 

(RMSE). Table 2.1 summarizes results of different algorithms to generate cosine waveforms 

and relative RMSE under 16-bits and 32-bits, respectively. CORDIC II [55] is the improved 

CORDIC algorithm that reduces the number of iterations by classifying the iteration angles. 

Hybrid CORDIC [53] is a CORIDC that adds a double iteration based on the Radix-4 

CORDI. However, the CORDIC or its extended methods such as Hybrid CORDIC and 

CORDIC II are approximation algorithms; their cosine values depend on not only the 

iterations but also the accuracy of the scale factor K. On the other hand, it is seen from Figure 

2.7 and Table 2.1 that the proposed RT technique outperforms the other related algorithms in 

precision. Different to CORDIC, the RT algorithm calculates the input mathematically based 

on Eq. (2.4). The result is an exact value from the input, and its accuracy will not be lost in 

the calculation process.  
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Table 2.1: Comparison of different algorithms to generate cosine waveforms. 

Algorithm 16-bit cosine 

EMSE 

32-bit cosine 

EMSE 

Radix-2 1.39×10-4 1.69×10-6 

Radix-4 6.85×10-5 1.07×10-6 

CORDIC II 8.70×10-3 N/A 

Hybrid 1.70×10-5 N/A 

RT 2.82×10-9 1.02×10-12 

 

2.5 FPGA Implementation of the Sinusoidal Waveform 

To further verify the effectiveness of the proposed RT technique, more tests are 

undertaken using the experimental setup as shown in Figure 2.8. The RT technique is coded 

in Verilog [56], synthesized using Quartus software [57], and implemented on the Cyclone IV 

E FPGA (EP4CE15F23C8 from Intel). The digital output is converted to an analog signal by 

a DAC unit (AD9707 from Analog Device Inc). The input is 32-bits binary format. The 

outputs from the DAC are scaled such that the first and second bits are used for the 

plus/minus sign bit and decimal point bit, respectively. Figure 2.9 shows the sinusoidal 

waveform using the RT technique. 

 

Figure 2.8: Experiment Setting of FPGA implementation of the cosine waveform: (1) Oscilloscope; (2) FPGA 
USB blaster; (3) DAC output; (4) Cyclone IV E FPGA; (5) PC. 
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Figure 2.9: Cosine waveform generated by Cyclone IV FPGA using the RT technique. 

The initial angle is 0.086 rad so a complete sinusoidal cycle requires the generation of 73 

sine values. Considering that the input clock of the FPGA I/O pins is 50 MHz, which is 

equivalent to a period of 20ns, the cycle frequency of the final DAC output is calculated by 

9

1 684931
73 20 10−

= =
 

OUTf  (Hz)                   (2.10) 

which has a similar result shown in the Figure 2.9. The actual experimental results are fully 

consistent with the theoretical calculations and verify the effectiveness of the RT technique. 

It would be stated that although the RT algorithm has demonstrated its superior 

performance in the Cyclone IV E FPGA, it would not be used as the processor unit for the 

DAQ system in this study. The selected ADC requires an SPI interface for data transfer; 

however the Cyclone IV E FPGA does not have this interface in the peripheral. In addition, 

the related supplementary chips could not be purchased due to the breakout of supply chains. 

However, when the related chips are available later, the FPGA processing technology would 

be used in the future generation of the wireless DAQ system used in the Bare Point Water 

Treatment Plant in Thunder Bay, Ontario. 

2.6 Summary 

In this chapter, a new RT technique has been proposed for FPGA implementation of the 

sinusoidal waveform. The model of RT technique is constructed based on the trigonometric 

identities. The accuracy of the RT technique is verified by comparing it with other related 

methods by simulation tests. The feasibility of the RT technique is verified in FPGA 
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experiment, which is important to improve FPGA functionality and performance, as well as 

the subsequent design of the FPGA-based DAQ system. 
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Chapter 3 

Development of a DAQ System Prototype 

In this chapter, a DAQ prototype will be developed to meet specific requirements for 

bearing fault detection, which include integrated electronics piezo-electric (IEPE) support, 

high-speed, high resolution, and reliable data transmission. The detail of design will be 

introduced in following section and the system verification will be demonstrated on this 

chapter as well. It should be stated that due to the supply chain breakdown caused by the 

COVID pandemic, several designed electronic chips could not be available in the market. 

Correspondingly, a wired DAQ system prototype is develop in this work without using the 

FPGA and wireless communication.  

3.1 Sensing Unit 

As discussed in Chapter 1, in this work, vibration signals will be used for analysis and 

predict bearing health conditions. The characteristic frequencies of the vibration signal will 

be used as the basis for fault diagnosis. The IEPE vibration sensors will be selected as the 

sensing units in this research. 

The IEPE vibration sensor chose for this research is 603C01 (from IMI Sensors). It is a 

shear-design sensor, as shown in Figure 3.1. The merits of shear-design sensors are inherent 

in sensitivity to adverse environmental influences, such as case or base strain and thermal 

transients [58]. In addition, its internal case isolation and shielding are essential in avoiding 

erroneous signals resulting from ground loops and pick-up of electromagnetic and radio 

frequency interference. Its other unique properties include non-magnetic stainless-steel 

housing, hermetic sealing, and industrial-military connectors. 

The output parameters and usage requirements of the 603C01 [58] are listed in Table 3.1. 

The details of the power supply designed according to the application requirements will be 

discussed in the next subsection. 
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Table 3.1: 603C01 Sensor performance and characteristics [58]. 

Parameter Specification 

Sensitivity 100mV/g 

Measurement range ±50g 

Frequency measurement range 0.5 Hz to 10kHz 

Temperature range -54 to +121°C 

Sensor excitation voltage 18-28V 

Sensor excitation current 2-20mA 

Output bias voltage 8-12V 

 

  (a)                             (b) 
Figure 3.1: (a) Illustration of a typical shear mode accelerometer [59] (b) A 603C01 sensor [58]. 

3.2 Sensor Power System 

Based on the power requirements of the sensing unit as discussed in the previous section, 

an appropriate power circuit will be designed in this section. The design of the power supply 

circuit will be divided into two parts: the voltage design and the constant current source 

design. The specific design processes are discussed next. 

3.2.1 Excitation Voltage Circuit Design 

Since 603C01 is an active IEPE accelerometer, it requires an external excitation voltage 

source ranging from 18V to 28V; 24V is selected in this project, which is chosen by the 
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available laboratory equipment and practical experience. Due to limitations in application 

environment, a 9V battery (from Duracell) [60] will be used as the primary power source in 

this project. A boost converter circuit will be designed to reach the required excitation 

voltage of 24V. To obtain 24V voltage, MC34063a (from Texas Instrument) is used to 

construct the boost converter circuit as shown in Figure 3.2. 

 
Figure 3.2: The structure of the boost converter circuit [61]. 

The output of the circuit depends on the value of R1 and R2 will be [61]: 

2

1

1.25 1
 

= + 
 

OUT
RV
R           

(3.1) 

In this case, the output voltage is VOUT = 24V. Therefore, the ratio of R1 and R2 can be 

determined by: 

 2

1

241 1 18.2
1.25 1.25

= − = − =OUTVR
R        

(3.2) 

If R1 is selected as 3kΩ, the value of R2 will be selected as: 
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2 1 18.2 3 18.2 54.6=  =  =R R  (kΩ)                 (3.3) 

Since there is no 54.6kΩ resistor available in our lab, we use a 51kΩ and a 4.7kΩ resistor 

to make a series connection, which results in R2 = 55.7kΩ. Then the updated theoretical 

output value VOUT will be:  

2
( )

1

55.71.25 1 1.25 1 24.46
3

   
= + = + =   

  
OUT updated

RV
R  

(V)
 
        (3.4) 

3.2.2 Excitation Current Design 

As listed in Table 3.1, the selected accelerometer requires an excitation current ranging 

from 2mA to 20mA. Thus, a constant current circuit will be designed to meet this 

requirement. Here, we choose 4mA as the magnitude of excitation current, is determined 

based on the available laboratory equipment and by practical application experience. This 

value is a reference quantity only and is not an expected value for the 603C01 sensor. By 

investigation, LM334 (from Texas Instrument) is selected as the core chip to design the 

constant current circuit. Figure 3.3 shows the primary circuit structure of the constant current 

circuit. 

 
Figure 3.3: The structure of the constant current circuit [61]. 
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The output of the circuit [62] depends on the values of R1 and R2 from the following 

equation: 

1 2SET BIASI I I I= + +       

1 2

R R DV V V
R R

+
= +

1 2

67.7mV 67.7mV 0.6V
R R

+
 +    (3.5) 

In this case, the value for ISET is 4mA. RV  is a constant voltage depending on the 

temperature [62], which is approximately 64mV under 24.85°C. Besides, RV  needs to 

consider 5.9% for the BIASI  so that the finally voltage cross resistor R1 is 67.7mV, or 64mV + 

5.9% to account for BIASI . In addition, based on Eq. (3.5), we need to presuppose a resistance 

value for R1. Then, the resistance of resistor R2 can be calculated by Eq. (3.5). If R1 = 20Ω, 

from Eq. (3.5), the value of R2 can be determined by 

1 2

67.7mV 67.7mV 0.6V
SETI

R R
+

 +

  
 

2

67.7 67.7 0.64
20

+
 +

R   
 

2
67.7 0.6 1085.6967.74

20

+
= =

−

R

 

(Ω)

         

(3.6) 

With the calculated value of R2= 1085.69Ω, which can be approximated as 1kΩ, the 

current can be updated using Eq. (3.5) or 

67.7mV 67.7mV 0.6V
20 1000SETI +

 + 3.385 0.6677 4.05 +   (A)  (3.7) 

3.3 Signal Conditioning 

The collected vibration signal from the sensing unit needs to be preprocessed before 

digitization. The processing procedures mainly include amplification and filtering of the 

signal. In this section, the detailed design of amplifier circuit and filter circuit will be 

discussed. 



27 
 

3.3.1 Signal Amplification 

The used vibration sensor 603C01 has a sensitivity of 100mV/g [58]. This means that the 

vibration signal collected by the sensor will have a very voltage in amplitude. To better 

analyze and extract useful information from the collected signals, the signal should be 

amplified through a signal conditioning circuit in this DAQ system. The primary operational 

amplifier (Op-Amp) (OP07 from Analog Device) will be used to construct signal 

conditioning circuit. Table 3.2 summarizes the related parameters of OP07 Op-Amp [63]. 

Table 3.2: Op-Amp OP07 performance characteristics [63]. 

Parameter Specification 

Supply Voltage ±22V 

Differential Input Voltage ±30V 

Slew Rate 0.3V/μs 

Close-Loop Bandwidth 0.6MHz 

Input Offset Voltage 85μV 

Common-Mode Rejection Ratio 120dB 

Temperature Range -40 to +85°C 

 

Input 
Signal

OP07-1
OP07-2

Output 
Signal

C1 R1

R2

 

Figure 3.4: The structure of the amplifier circuit. 

Figure 3.4 shows the designed amplifier circuit. The first Op-Amp (OP07-1) is a 

non-inverting AC amplifier to enhance the original signal. The circuit gain can be calculated 

by: 
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2

1

1= +V
RA
R

                           (3.8) 

In this design, the gain is selected as AV = 11, thus the values of R1 = 15kΩ and R2 = 

150kΩ are selected to meet the gain requirement. In addition, the signal input is made up of 

two parts: the first part is a 12V static DC bias; the second part is the dynamic AC vibration 

signal. Since the input is an AC signal, capacitor C1 is used as a coupling capacitor to 

pass-through AC signal only, which can help isolate the DC bias settings from the sensor. 

Moreover, the second Op-Amp (OP07-2) is a voltage follower to isolate the first Op-Amp 

circuit and the following ADC circuit in the DAQ system. 

3.3.2 Signal Filter 

In real measurement, there is usually a large amount of noise and interference coupled 

into the circuit, which will degrade the DAQ accuracy. To reduce distortion, a filter is 

designed and implemented to remove the noise before ADC operation. In this project, we are 

using a second order Butterworth low-pass filter and a high-pass filter to preprocess the 

signal. The design filter circuit is shown in Figure 3.5. 

Amplified
 Signal

OP07-2
Output
 Signal

C2

R3 R4

C3 R5

C4

Figure 3.5: The structure of the filter circuit. 

In Figure 3.5, R3, R4, C2, and C3 form the second order Butterworth low-pass filter. Since 

the sensor bandwidth is between 0.5 Hz and 10 kHz [58], based on bearing fault detection 

purpose, the cut-off frequency for the low-pass filter is selected as 10 kHz. Based on analysis, 

the selected components parameters are R3 = 1kΩ, R4 = 2kΩ, C2 = 10nF, and C3 = 10nF. The 

implemented cut-off frequency of the low-pass filter will be 
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3 4 2 31/ (2 )cf R R C C= 11260  (Hz)              (3.9) 

which is closed to the expected cut-off frequency 10 kHz.  

A high-pass filter is designed to remove some low frequency components and the DC 

bias to prevent the output signal exceeding the conversion scale of the ADC chip. The 

selected cut-off frequency for the high-pass filter is 0.5 Hz based on the Table 3.1. It is 

composed of C4 and R5. By trial and error, we have selected R5 = 670kΩ and C4 = 22nF. The 

implemented high pass filter cut-off frequency will be: 

( ) 5 41/ (2 )=c updatedf R C 1.312  (Hz)            (3.10) 

3.4 ADC Unit 

The primary purpose of ADC within a DAQ system is to convert the analog signals into a 

digital counterpart for display, storage, transmission and analysis. Normally, a DAQ system 

uses the internal ADC built in the MCU. For example, in the Sengoz’s RF-based DAQ design 

[18], it uses a 10-bits internal ADC from ATmega328p. In the procedures of the signal from 

analog to digital, ADC module should ensure converted signal accuracy and integrity. If 

ADC resolution is only 10 bits, then it will be 5mV per bit under 2.5V reference voltages. If 

the sensor sensitivity is 100mV/g based on the datasheet of 603C01 [58], then the signal 

cannot be converted accurately if the vibration magnitude is under 0.05g. Hence, it is 

essential to increase the resolution of the ADC to convert a wider range of signal components. 

In addition, most of MCU built-in ADCs do not include differential inputs, which can cause 

environmental noise to interfere with the circuit and the input signal, thus affecting the 

quality of DAQ output. Therefore, to ensure the accuracy and integrity of the frequency 

characteristics of the bearing fault signal, selecting an external ADC for the designed DAQ 

system design is necessary. 

In this research, we will use an external ADC chip ADS131a04 (from Texas Instruments). 

It has four-channel differential inputs, with 24-bit Delta-Sigma ADC. Its speed can reach up 

to 128 kilo samples per second (ksps). ADS131A04 has a flexible analog power supply 

option and can be powered by a unipolar supply between 3.3 V and 5.5 V. In this project, the 
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ADC power will be provided by the MCU directly. In design, we will use synchronous 

master mode in the ADS131A0x device as the master and use the MCU as the slave to read 

the data after each conversion. Devices in synchronous master mode and asynchronous 

interrupt mode can be used to synchronize the conversions for slave devices in synchronous 

slave mode [64]. Figure 3.6 illustrates the connection approach and the circuit design. 

 
Figure 3.6: Synchronous master mode connection [64]. 

In general, the ADS131a04 device operation is controlled and configured through a series 

of commands as listed in the datasheet [64]. The command will be transmitted through SPI 

with MCU or other host devices. The commands are stand-alone, 16-bit words and reside in 

the first device word of the data frame. We can write zeroes to the remaining LSBs when 

operating in 24-bit or 32-bit word sizes because each command has 16-bits in length. The 

commands are decoded following the completion of a data frame. Each recognized command 

is acknowledged immediately with a status output in the first device word of the following 

data frame. ADC initialization is an important procedure in this DAQ system. During the 

initialization programming, it should enter UNLOCK command 0x0655 and the WAKEUP 

command 0x0033. By receiving the feedback command 0x0655 from the ADC, the 

connection status between the host device and the ADC can be determined.  

3.5 MCU 

The MCU is a transit station in the DAQ system, which is responsible to control 

operations of different preprocessing units and transmission of data from the ADC to the 

computing device. As discussed in Section 3.4, the ADC can reach 100ksps with 24-bits 
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resolution, which means the MCU must have sufficient capability and high operation speed to 

transmit such massive amount of data. Therefore, it is imperative to choose an appropriate 

MCU compatible with the ADC. The selected MCU is the ESP32-S2 (from ESPRESSIF Inc.) 

[65]. It has integrated Wi-Fi connectivity based on ESP8266 that can be used in Internet of 

Things (IoT) applications. The specific features of ESP32-S2 are listed in Table 3.3. 

Table 3.3: ESP32-S2 performance and characteristics [65]. 

Parameter Specification 

CPU Xtensa® single-core 32-bit LX7 

SRAM 320 KB 

ROM 128 KB 

GPIOs 43 

Operation Speed 240 MHz 

USB One Full Speed USB OTG 

SPI 4 

The selected EPS32-S2 has a 240MHz operation speed and a USB interface, which can 

match the performance of the high-speed ADC (ADS131a04). Figure 3.7 displays the 

connection approach for the MCU and ADC for wired data transmission with a PC. 

ADS131a04 ESP32S2 PCUSBSPI

5V Power supply
 

Figure 3.7: ADC-MCU connection module. 

In addition, C++ language is used for programming. The development environment is the 

Arduino IDE, which has some extra benefits such as available libraries for SPI and serial 

communication. The SPI setup is initialized through SPI libraries. The ADC initialization 

commands mentioned in Section 3.4 are converted to C++ code and added to the SPI 

libraries.  
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3.6 Digital Switch Unit 

Since the accelerometer is a battery powered IEPE sensor, energy saving modes should be 

considered in the circuit design. To save power, when the MCU is not collecting data, the 

power circuit should automatically be turned off. We will use one of the GPIOs of ESP32-s2 

to operate a MOSFET as a switch to control the power supply circuit of the IEPE sensor. 

Figure 3.8 shows the basic structure of digital switch circuit. 

GND +24 V

SIG From 
MCU

GND

IRF520

Load

 
Figure 3.8: Basic structure of digital switch circuit. 

IRF520 (from Vishay Siliconix) is selected as the MOSFET component, whose primary 

parameters are listed in Table 3.8. Since the required voltage of the sensor is 24V and the 

current is 4mA, the power consumption of the sensor is 0.096W, which is low in power 

consumption. Therefore, the power provided by the battery can still meet the power 

requirements of the sensor, while the dissipation on the MOSFETs can be negligible. 

Table 3.4: IRF520 typical parameters [66]. 

Parameter Specification 

RDS (VDS=10V) 0.25 

VDS 100V 

QG.max 16nC 

Qgs 4.4nC 

Qgd 7.7nC 
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In circuit design, the digital switch is controlled by using a Wi-Fi function. The MCU 

can generate a local web server that can be accessed by any PC or mobile phone. The only 

limitation to access this local web server is that the user device needs to be connected to the 

same wireless network or Wi-Fi with the MCU. Figure 3.9 shows the related web control 

interface. 

 

Figure 3.9: Digital switch web control interface 

3.7 Verification of the Developed DAQ System  

To examine the effectiveness of the developed wired DAQ system, some experimental 

tests are undertaken using the experimental setup as shown in Figure 3.10. The experiment 

setup consists of an excitation shaker connected to the power amplifier. The frequency 

generator controls the shaking frequency. An IEPE vibration sensor (ICP-603C01) is 

mounted on the platform of the excitation shaker to measure the vibration signals along the 

vertical axis.  

 
Figure 3.10: Experimental Setup: (1) tested DAQ system; (2) Power amplifier; (3) Frequency generator; (4) ICP 
vibration sensor; (5) Excitation shaker. 
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Four different frequencies of 30 Hz, 3 kHz, 6 kHz, and 9 kHz are used in this test. The 

sampling rate is set at 10ksps. In testing, firstly, the shaker generates the required vibration 

signal, and the sensor collects and transmits the analog signal to the DAQ system, which is 

then transmitted to the PC via serial communication. For testing, these data are analyzed 

using MATLAB.  

Figure 3.11 shows some processing results using the FFT corresponding to excitation 

frequencies of (a) 28.5 Hz; (b) 2.88 kHz; (c) 5.85 kHz; (d) 8.67 kHz, respectively. It is clear 

that these excitation frequencies can be recognized accurately. Some minor errors in reading 

are because when using the knob of the signal generator to set the excitation frequency, the 

panel reading may not be very accurate. 

 
Figure 3.11: The processing result of DAQ system under different test frequencies: (a) 28.5 Hz; (b) 2.88 kHz; (c) 

5.85 kHz; (d) 8.67 kHz. 
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3.8 User Interface 

To facilitate DAQ system control and data communication, a user interface is developed 

using LabVIEW, as shown in Figure 3.12. The serial port driver included in the LabVIEW 

library can help connect to the MCU to get data. In the interface, the serial port parameters 

van be reconfigurable. In Figure 3.12, the represented serial communication parameters 

include port number, baud rate, parity, and stop bit and those parameters need to be setup by 

user in advance. 

 
Figure 3.12: DAQ user interface. 

In addition, after setting the save path, the image data can be saved directly to an Excel 

file. Figure 3.13 lists part of the saved data sets from the DAQ interface platform. 
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Figure 3.13: Part of the saved data in Excel by using the DAQ interface. 

In addition, based on the features of the LabVIEW environment, it can generate an 

installation software for the DAQ interface. This installation software can install the DAQ 

control package on the PC without installing LabVIEW. 

3.9 Summary 

In this chapter, the MCU-based DAQ system with a high speed and high resolution design 

has been designed and analyzed. The DAQ system consists of the sensor unit, the power 

supply module, the signal conditioning module, ADC, and MCU. The vibration sensing unit 

is selected in this research. A boost converter module and a constant current source module 

are designed to meet the sensor voltage and current requriements. A signal conditioning 

module is designed for signal amplification and filtering. An external ADC unit is designed to 

meet the requirements of the high sampling rate and high resolution. Some primary tests have 

been undertaken to verify the accuracy of the developed DAQ system.  
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Chapter 4 

Adaptive Variational Mode Decomposition (AVMD) for Bearing 

Fault Detection 

The proposed AVMD technique in this chapter is for modulation of irregular frequency 

components in signals and for bearing fault detection. It aims to provide more efficient 

bearing health monitoring. The details will be discussed in this chapter. 

4.1 Principle of Variational Mode Decomposition Theory  

Variational mode decomposition (VMD) is a non-recursive analysis technique for signal 

decomposition [67]. In this study, VMD is applied to extract the bearing fault characteristic 

features from the vibration signal. 

In the VMD technique, it is assumed that the original signal can be decomposed into 

several modes, and each mode is a signal with a narrow-band and located around a center 

frequency [67]. The instinct mode function (IMF) ( )ku t  represents an amplitude-modulated 

and frequency-modulated signal, which can be expressed as: 

( ) ( ) cos( ( ))=  kk ku t A t t                       (4.1) 

where k represents the k-th IMF, ( )kA t denotes the instantaneous amplitude, and ( )k t  

denotes the phase. 

The fundamental equation of VMD can be expressed by solving the constrained 

variational problem in Eq. (4.2): 
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where K  is the IMF number; ku
 and k

 denotes the k-th IMF and its corresponding 
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center frequency; t  denotes the partial derivative of time; ( )t  denotes the Dirac delta 

distribution; ( )f t  is the original input signal; j  is the complex number; *  is the 

convolution operator. 

 To solving the constrained variation problem of Eq. (4.2), the augmented Lagrangian 

method [68] can be used to covert Eq. (4.2) into an unconstrained optimization problem, 

which can be rewritten as: 
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(4.3) 

where   is the quadratic penalty factor, ( )t  is Lagrangian multiplier coefficient, and

( )f t is the original input signal. 

In order to obtain an optimal solution of the unconstrained problem in Eq. (4.3), an 

alternated direction method of multipliers proposed in [68] can be used for analysis. The 

unconstrained problem in Eq. (4.3) can be transferred into two equivalent minimization 

problems based on alternated direction method of multipliers. Thus, modes ku  and their 

corresponding center frequency k  can be updated as: 
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 Based on Eq. (4.4), the problem can be rewritten as the following equivalent 

minimization problem: 
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Using Parseval/Plancherel Fourier isometry under the L2 norm and the Hermitian 

symmetry of the Fourier transform (FT) of the real signal, Eq. (4.6) can be solved in the 

spectrum domain, such that: 
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After the first variation in the positive frequency vanishes, the solution of this quadratic 

optimization problem becomes:  
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which can be considered as a Wiener filter to process current residual [66], with a signal prior 

( )
21/  − k .  

 In addition, for Eq. (4.5), the reconstruction term of center frequencies k  is: 
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Similarly, the optimization of the center frequency can also be performed in the Fourier 

domain, by optimization the following function: 
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This quadratic optimization problem can be solved as: 
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Moreover, the Lagrangian multiplier ( )t can be updated by: 
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where  is the iteration step size.  

The iteration will be completed until the accuracy meets the following convergence 

criterion: 
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where  is the convergence threshold used to control the reconstruction of each mode.  

In processing, the steps of the VMD algorithm are summarized as follows: 

Step 1: Initialize  1ˆku ,  1
k , 1̂ , and 1n =  

Step 2: Calculate ˆku and k based on Eq. (4.8) and Eq. (4.11), respectively, k = 1, 2, …. K.  

Step 3: Update ̂ in Eq. (4.12). 

Step 4: Repeat Steps 2-3 until the iteration meets the criterion in Eq. (4.13). 

Step 5: Compute the K  mode components ku . 

The parameters K , , , and  need to be selected based on applications through error 

and trial procedures [69]. Specifically, K  and   have a direct influence on the calculation 

results in the VMD algorithm.  = 0, =
6

1 10
−

  are selected in this case. Advanced research 

will be undertaken in the future to select these values analytically.  

4.2 Cross-Correlation 

Before using VMD for decomposition, the parameter K  (i.e., IMF number) needs to be 

selected in advance. Usually, the magnitude of the K value is set by experience or speculation. 

If K  is too small, extra signal components may appear in one mode, whereas some 

components become unpredictable. Conversely, if K  is too large, some components will 

appear in more than one mode and the frequencies of the modal centers will overlap [70]. 

Therefore, setting a suitable K  value is important in the VMD algorithm, which should be 

selected properly to further improve the accuracy of the final decomposed modes.  
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In proposed AVMD, the magnitude of K will be determined by the correlation between 

signals and decomposed modes. In signal processing, cross-correlation is a measure of 

similarity between two or more time series data sets. Accordingly, the correlation between the 

original input signal and sum of the decomposed modes can be calculation by 


 

=
xy

xy
x y

C

            
(4.14) 

where x  is the sum of the modes; y  is the original signal; xyC  is the cross-covariance 

function;  x  and  y  are the standard deviations of x  and ,y respectively. The 

cross-correlation xy  represents the correlation between the integration of the decomposed 

modes and the original signal; the larger xy , the higher the correlation between two signals 

[71]. 

 For illustration, a simple example will be used for cross-correlation simulation. The 

modulated signals are defined as follow: 

1( ) sin(2 200 )= y t t
       

(4.15) 

2 ( ) sin(2 300 )= y t t                         (4.16) 

3( ) sin(2 400 )= y t t
                 

(4.17) 

1 2 3( ) ( ) ( ) ( )= + +y t y t y t y t
              

(4.18) 

Based on Eq. (4.14), a simulation result of cross-correlation corresponding to different K is 

shown in Figure 4.1. 
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Figure 4.1: The cross-correlation between the original signal and different K values. 

 Since the modulated signal is composed of three parts, the modes decomposed by the 

VMD should also have three modes theoretically. As shown in Figure 4.1, when 2=K  and 

3, the correlation coefficients are 96.85% and 99.23%, respectively. Therefore, the signal is 

under decomposition for 2=K . When 4=K  and 5, the correlation coefficients are 99.76% 

and 99.89%, respectively. Although these correlation coefficients are higher than that in 3=K , 

the results of 3=K  are still selected as the final result to avoid possible overlapping, which 

may degrade the accuracy of mode decomposition. Figures 4.2 and 4.3 show two example 

spectra of the modulated signal when 2=K  and 3, which can help to analyze the overlap 

situation. 



43 
 

 
Figure 4.2: Frequency spectrum when K = 3 and center frequency for each mode: (a) fIMF1 = 300 Hz; (b) fIMF2 = 
400 Hz; (c) fIMF3 = 200 Hz. 
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Figure 4.3: Frequency spectrum when K = 4 and center frequency for each mode: (a) fIMF1 = 300 Hz; (b) fIMF2 = 
400 Hz; (c) fIMF3=200 Hz; (d) fIMF4 = 458 Hz. 

Compared Figure 4.2 with Figure 4.3, it is clear that when K value is over the number of 

original signal components, additional frequency components will generated due to 

overlapping effect as shown in Figure 4.3 (d). The presence of these additional frequency 

components will reduce IMF2 magnitude, which will affect the accuracy of the IMF2. 

Therefore, based on this simulation results, it is concluded that the correlation of 99% will be 

set as a threshold as a basis for selecting the K value to avoid overlapping occurrence in the 

propose AVMD technique. 

4.3 Determination of the Penalty Factor 

Based on the discussion in Section 4.1 and literature [67], the function of the penalty 
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factor   can be used to determine the bandwidth of mode component. In general, a constant 

penalty factor can be selected and used in following VMD mode calculations. Generally, a 

larger penalty factor will generate the narrower bandwidth of the mode component; otherwise, 

a smaller penalty factor will result in a wider the bandwidth of the mode component. 

According to the characteristics of the spectrum distribution of a vibration signal, most 

bearing fault characteristic frequencies and their harmonics are located over the low and 

medium frequency region [72]. Therefore, the characteristics of the signal‘s center frequency 

can be used to determine the penalty factor corresponding to each mode used for VMD signal 

decomposition and achieve the adaptive selection for the penalty factor in proposed AVMD 

technique. The detail of how to adaptively select penalty factors will be introduced below. 

When the center frequency of the decomposed mode is low, the mode components are 

mainly harmonics in the low and medium frequency bandwidths; then a larger penalty factor 

can be chosen, and vice versa. Eq. (4.19) is an empirical formula to approximately determine 

the penalty factor [73]: 
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where  k  is the penalty factor and kcf  is the center frequency corresponding to k-th mode 

component, respectively; sf  is the sampling frequency. kcf  can be calculated by 
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where N  is the length of the original signal, and kU is the discrete FT of k-th mode 

component ku .  

By using Eq. (4.19), the penalty factor  k  can be adaptively adjusted according to the 

frequency characteristics of each decomposed mode. 
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4.4 Ensemble Kurtosis 

In proposed AVMD, once completing the VMD, the next step is to select proper IMFs for 

signal analysis. In bearing fault detection, fault characteristic frequencies, harmonics, 

impulses, and noise have different probability densities and statistical properties [74]. 

Kurtosis is a measure of the tails of the probability distribution function [75]. In practice, 

kurtosis-based methods tend to focus on the frequency band of individual pulses rather than 

on the defect impulses, because they only emphasize the impulsivity but ignore the cyclicity. 

Envelope spectral kurtosis can measure and evaluate the cyclicity [68], which will be adopted 

in bearing fault diagnosis in this work such that: 
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where EK is the ensemble kurtosis, EKS is envelope spectrum kurtosis, and K  is the kurtosis. 

SE is the envelope spectrum of signal and P  is the sampling number of envelope spectrum.  

Figure 4.4 shows a comparison of the related indicators [69]. KCI is the weighted kurtosis 

index. It is seen that EK index is sensitive to impulses, which will be used in this work for the 

selection of IMFs for signal analysis and bearing fault detection. 

 
Figure 4.4: The comparison of four indexes when they process different components in the machinery signal 
[69]. 
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4.5 Envelop Spectrum Analysis 

From the AVMD analysis, the selected IMF will be used to extract the fault-related 

features for envelope analysis and bearing fault detection [76]. The specific signal processing 

procedures will be discussed as following. Firstly, the analytic signal ( )xa t
 
will be 

formulated from the signal by using the Hilbert transform, which can be expressed as: 

( ) ( )2 2( ) ( ) ( ) ( ) ( ) ( ) 


= + = +  =x xj t j t
x xa t x t j x t x t j x t e A t e         (4.23) 

where ( )x t is the real part of the amplitude modulated signal; ( )


x t is the Hilbert transform of 

( )x t ; ( )x t is the instantaneous phase; and ( )xA t is the instantaneous amplitude.  

Secondly, the absolute value of ax(t) 
will be used to determine the envelope signature. 

Thirdly, the envelope spectrum is obtained by taking the FT of the envelope signal. Finally, 

bearing fault detection is undertaken by examining characteristic frequencies on the envelope 

spectrum. 

 When a bearing fault occurs, the fault spots will excite periodic shock impulses in 

bearing operation, which will modulate bearing signal. Compared to the analysis of the 

frequency spectrum, the envelope spectrum analysis can demodulate and extract these low 

frequency impulse signatures. This property will be demonstrated by using the following 

simulation [77]. The shaft speed is 25 Hz, and characteristic frequency is fod = 83.33 Hz. 

 Figure 4.5 shows a simulated signal from a bearing with an outer race damage. Its 

frequency spectrum and envelop spectrum analysis of this bearing outer race fault signal are 

shown in Figure 4.6. In Figure 4.6(a), the frequency spectrum can only recognize the shaft 

frequency 25 Hz and its harmonics, but it cannot identify information about the bearing fault 

characteristic frequency. However, in Figure 4.6(b), the bearing outer race fault frequency fod 

= 83.33 Hz and its harmonics can be recognized clearly. Thus envelope analysis could 

provide a better solution for extracting fault features on the decomposed mode using the 

VMD technique. 
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Figure 4.5: Simulated signal from a bearing with outer race fault. 

 
Figure 4.6: Comparison of different spectrum: (a) Frequency spectrum with shaft frequency fr  = 25Hz and its 
harmonics; (b) Envelop spectrum with outer race fault frequency fod = 83.33 Hz and its harmonics. 

4.6 The Proposed Adaptive Variational Mode Decomposition (AVMD) 

An AVMD technique will be proposed in this section to extract the impulsive features for 

bearing fault detection. AVMD will integrate the related approaches as discussed in Section 

4.5. Its processing flowchart is presented in Figure 4.7. The main steps of the AVMD are 

summarized as follows: 
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Step 1: Initialize system parameters: 1K =  and 100 = . 

Step 2: Run the VMD and compute the correlation using Eq. (4.41).  If the correlation is 

over 99%, proceed to Step 3. Otherwise, let 1K K= + and repeat Step 2. 

Step 3: Compute the penalty factor using Eq. (4.14) for each mode. 

Step 4: Re-run VMD with the optimal K  and  , and compute KE  using Eq. (4.21) for 

each mode. 

Step 5: Analyze the largest KE mode by the envelope analysis and do bearing fault detection.  

 
Figure 4.7: The flowchart of AVMD. 

4.7 Simulation Test and Analysis 

To further verify the effectiveness of the AVMD technique, a simulation test will be 

illustrated. The simulated signals are defined as follows [78]: 

1( ) 1.5 sin(2 500 )=  y t t    
            

(4.24) 
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( ) ( )0.1 2 2000 2
2 5 sin 2 2000 1 0.1 −  =     −ty t e t

    
(4.25) 

( ) ( )0.1 2 1200 2
3 10 sin 2 1200 1 0.1 −  =     −ty t e t

    
(4.26) 

( ) ( ) ( ) ( ) ( )1 2 3= + + +y t y t y t y t n t
              

(4.27) 

where 1y  are the harmonic components, 2y  are the periodic impulses, 3y  are the 

aperiodic impulses, y  is the modulated signal, and n  is the Gaussian noise.  

The frequency of a fault impulse is set at 25 Hz. The sampling frequency is 10 kHz, and 

the signal length is 10 k. The density of Gaussian noise is 0.4. The simulation results of Eq. 

(4.25)-(4.27) and Gaussian noise are shown in Figure 4.8(a)-4.8(d), separately. The frequency 

spectrums of corresponding signals are shown in Figure 4.8(e)-4.8(h), respectively. 
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Figure 4.8: Components of the simulation signal: (a) the harmonics; (b) the periodic impulses; (c) the aperiodic 
impulses; (d) the Gaussian noise. (e) Spectrum of the harmonics; (f) Spectrum of the periodic impulses; (g) 
Spectrum of the aperiodic impulses; (h) Spectrum of the Gaussian noise. 

The proposed AVMD technique is applied to process the simulated signal above, and 

Figure 4.9 shows the processing results. Figure 4.9(a)- Figure 4.9(c) show the processing 

results using the AVMD technique, corresponding to IMF1, IMF2 and IMF3, respectively. 

The corresponding indicator values are 1.91, 10.38, and 3.01. Then IMF2 has the highest EK 

index, and will be chosen for envelope analysis. Figure 4.9(d)-4.9(f) depict the resulting 

envelope spectrums of IMF1, IMF2 and IMF3. It is seen that IMF2 envelope spectrum in 
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Figure 4.9(e) can clearly recognize the impulse characteristic frequency of 25 Hz and its 

harmonics. In contrast, the envelope spectra of the other IMFs do not contain sufficient 

characteristic information. Thus, the simulation results can verify the effectiveness of the 

AVMD technique to recognize representative features.  

 
Figure 4.9: The results of AVMD for the simulated signal: (a) IMF1 (Ek = 1.91); (b) IMF2 (Ek = 10.38); (c) IMF3 
(Ek = 3.01). (d) Envelop spectrum of IMF1; (e) Envelop spectrum of IMF2; (f) Envelop spectrum of IMF3. 

To examine the processing efficiency of the proposed AVMD technique, more simulation 

tests will be undertaken to compare the number of VMD modes, the iterations and processing 

time.  The related techniques include: Teager operator method [79], particle swarm 

optimization algorithm [80], and gray wolf algorithm [81]. Table 4.1 summarizes the 

comparison results of these VMD methods. It can be seen that the AVMD technique has K = 

3, which is the same as the results of the particle swarm optimization method and the gray 

wolf algorithm. However, the AVMD technique takes the lowest number of iterations (114 
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runs) or the shortest computation time (3.2 sec) to reach convergence, compared with other 

three related methods, which is a significant advantage in real-time machinery condition 

monitoring. 

Table 4.1: Comparison of the mode number of different VMD methods using the modulated signal. 

VMD Method Number of K Number of 

iterations 

Calculation 

time (sec) 

Teager operator 4 249 5.3 

Particle swarm optimization 3 706 13.1 

Gray wolf  3 354 7.2 

Proposed AVMD technique 3 114 3.2 

Experimental tests will be undertaken in Chapter 5 to further examine the effectiveness 

of proposed AVMD technique for nonlinear feature analysis and bearing fault detection. 

4.8 Summary 

A new AVMD technique has been proposed in this chapter for nonlinear signal property 

analysis. Firstly, the main VMD parameters are adaptively selected using the correlation 

analysis. Secondly, the VMD operation is optimized to get the decomposed signal. Thirdly, 

the ensemble kurtosis is used to decompose the signal. Finally, an envelope spectrum analysis 

is applied to examine the fault characteristic features for bearing fault diagnosis. The 

effectiveness of AVMD has been verified by simulation tests. Experimental tests will be 

undertaken in Chapter 5 to further examine the effectiveness of proposed AVMD technique 

for nonlinear feature analysis and bearing fault detection. 
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Chapter 5 

Experimental Tests and Results 

This chapter will verify the effectiveness of the proposed AVMD technique, firstly by 

simulation test, and then by experiment tests. Its robustness will be examined by using data 

sets from another experimental setup.  

5.1 Experimental Verification 

Figure 5.1 shows the experimental setup used in this test. It is driven by a 3 HP induction 

motor with a speed range of 100 - 4200 rpm, controlled by a frequency converter 

(VFD022B21A). An elastic coupler is applied to eliminate high frequency vibrations 

generated by the motor. An optical sensor is used to provide a signal of one pulse per 

revolution to measure shaft speed. The accelerometer (ICP-603C01) in the smart DAQ 

system is mounted on top of the bearing to measure the vibration signal along the vertical 

axis. The tested bearing (MBER-10K) located on the left side of the housing is used for the 

test. The static bearing load is provided by two heavy mass discs and dynamic load is 

provided by a break system through a belt-drive.   

 
Figure 5.1: Experimental setup: (1) speed control; (2) encoder display; (3) drive motor; (4) optical encoder; (5) 
ICP accelerometer; (6) misalignment adjustor; (7) adjustable rig; (8) variable load system; (9) belt drive.  
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A series of data sets are collected under different speed and load conditions. A set of 

processing results from tests with 1800 rpm motor speed (or fr = 30 Hz) and medium load 

level are used for illustration. The sampling frequency is 32,000 Hz, and the length of the 

signal is 100 k. 

In this experiment, four bearing health conditions are considered for testing: a healthy 

bearing, a bearing with outer race fault, a bearing with inner race fault, and a bearing with 

rolling element defect. The tested bearings have the following parameters: 

Rolling elements Z = 8, 

Rolling element diameter d = 7.938 mm, 

Pitch diameter D = 33.503 mm, 

Contact angle θ = 0 degrees. 

Table 5.1 summarizes the characteristic frequencies in terms of shaft speed fr  Hz based 

on Eq.(1.1)-(1.3).  

Table 5.1: Bearing fault frequencies in terms of shaft speed fr  Hz 

Bearing Health Condition Characteristic Frequency Hz 

Healthy bearing fH = fr 

Outer race fault  fod = 3.0522 × fr 

Inner race fault  fid = 4.9477 × fr 

Rolling element fault fed = 3.9837 × fr
 

For comparison, the test results of proposed AVMD method will compare with the 

following related techniques:  

1) the Hilbert-Huang transform (HHT) [82] and  

2) the Teager-Huang transform (THT) [83].  

All the techniques are implemented in MATLAB 2022a. 

5.1.1 Healthy Bearing Analysis 

Figure 5.2 shows processing results using the related techniques, for the health bearing 



56 
 

with characteristic frequency 30=Hf Hz. The AVMD is applied with K= 4 and penalty factor 

α = 1216 calculated using Eq. (4.19) as discussed in Chapter 4. 

In this case, although all the related techniques can recognize the healthy bearing 

characteristic frequency and its few harmonics, the AVMD technique provide the most 

noticeable diagnostic results with highest magnitude compared with other two techniques. 

 
Figure 5.2: Processing results for a healthy bearing using the related techniques: (a) HHT, (b) THT, (c) AVMD. 
fH = 30 Hz. Arrows specify characteristic frequency and its harmonics. 

5.1.2 Outer-race Bearing Fault Detection 

Figure 5.3 shows the processing results for a bearing with outer-race damage with a 

characteristic frequency fod = 90.9 Hz. In this case, the AVMD technique uses K = 5 and 
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penalty factor α = 1216. 

In this case, all the related techniques can recognize the outer race bearing fault 

characteristic frequency fod = 90.9 Hz and its first few harmonics. This is because when the 

outer race is damaged, the generated impulses and features are time-invariant, which are easy 

to determine using general fault detection techniques. In this case, however, the fundamental 

characteristic frequency (fod = 90.9 Hz) using the HHT in Figure 5.3(a) and the THT in Figure 

5.3(b) is lower than an adjacent component in magnitude, which may generate false 

diagnostic result especially in automatic bearing health monitoring. On the other hand, the 

proposed AVMD technique can effectively suppress noise and predict the occurrence of outer 

race defect as demonstrated in Figure 5.3(c). 

 
Figure 5.3: Processing results for an outer race damaged bearing using the related techniques: (a) HHT, (b) THT, 
(c) AVMD. fod = 90.9 Hz. Arrows specify characteristic frequency and its harmonics.  



58 
 

5.1.3 Inner-race Bearing Fault Detection 

Figure 5.4 shows the processing results using the related techniques for a bearing with 

inner race defect, with the characteristic frequency 147.9=idf Hz. In this case, the AVMD 

uses K = 5 and penalty factor α = 1304.  

In comparison of the HHT in Figure 5.4(a), the THT technique in Figure 5.4(b) provides 

better performance with clear fault detection with the domain fault characteristic frequency 

( 147.9=idf Hz) due to the advantage of Teager operator in signal demodulation. On the other 

hand, the proposed AVMD technique in Figure 5.4(c) outperforms even the THT with higher 

resolution, and can provide better fault diagnostic accuracy due to its efficient frequency 

suppression. 
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Figure 5.4: Processing results for an inner race damaged bearing using the related techniques: (a) HHT, (b) THT, 
(c) AVMD. fid = 147.9 Hz. Arrows specify characteristic frequency and its harmonics. 

5.1.4 Rolling-element Bearing Fault Detection 

Figure 5.5 depicts the processing results for a bearing with the rolling element damage. 

The theoretical characteristic frequency is 91.57=bdf Hz. The AVMD has parameters of K = 

5 and penalty factor α = 284. 

In this case, none of these three techniques can provide clear fault detection results. In 

general, fault detection in rolling element is a challenging task as the representative features 

could be time-varying. Both the HHT (Figure 5.5(a)) and THT (Figure 5.5(b)) have failed to 

identify the characteristic fault frequency ( 91.57=bdf Hz). The AVMD is the only technique 
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that can recognize the fundamental fault characteristic frequency in Figure 5.5(c), even 

though it is not the dominant frequency component in the spectral map. 

 
Figure 5.5: Processing results for a rolling element damaged bearing using the related techniques: (a) HHT, (b) 
THT, (c) AVMD. fbd = 91.57 Hz. Arrows specify characteristic frequency and its harmonics.  

5.2 Robustness Verification 

The robustness of the proposed AVMD technique will examined in this section by using 

data sets from online database of Case Western Reserve University (CWRU) Bearing Data 

Center [84]. As shown in Figure 5.6, this experimental setup is driven by a 2-HP drive motor. 

The load is provided by the load motor on the right. The tested bearing is in the bearing 

housing between the two motors. The tested bearing model is 6205-2RS JEM SKF (deep 
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groove ball bearing from SKF) [85], which has the following parameters: 

 
Figure 5.6: CWRU bearing test experiment setup [85]: (1) drive motor, (2) tested bearing, (3) load motor. 

Rolling elements Z = 8; 

Rolling element diameter d = 7.94 mm; 

Pitch diameter D = 39.04 mm; 

Contact angle θ = 0 degrees.   

A set of data sets are selected with motor speed of 1750 rpm or 29.17 Hz, and medium 

load level of 2.0 HP for evaluation. The sampling frequency is 48 kHz, and the signal length 

is 100 k.  

Similarly, four bearing health conditions are considered for testing: healthy bearing, 

bearing with outer race fault, bearing with inner race fault, and bearing with rolling element 

defect. Table 5.2 summarizes the characteristic frequencies in terms of shaft speed fr for the 

tested bearing under different health conditions, which are calculated using Eq. (1.1)-(1.3). 

Similarly, the performance of the proposed AVMD technique will be compared with the HHT 

and the THT techniques as well. All the techniques are implemented in MATLAB 2022a.  
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Table 5.2: Bearing fault frequencies for the CWRU data center experiment setup. 

Bearing condition Shaft Speed fr  Hz 

Healthy bearing fH = fr 

Outer-race fault  fod = 3.5848 × fr 

Inner-race fault  fid = 5.4152 × fr 

Rolling-element fault fed = 4.7135 × fr
 

5.2.1 Healthy Bearing Analysis 

Figure 5.7 shows the processing results using the related techniques for a healthy bearing, 

with the characteristic frequency 29.17Hf = Hz. The AVMD uses parameter of K= 4 and 

penalty factor α = 434. 



63 
 

 
Figure 5.7: Processing results for a healthy bearing using the related techniques: (a) HHT, (b) THT, (c) AVMD. 
fH = 29.17 Hz. Arrows specify characteristic frequency.  

In this case, all three techniques can recognize the health condition of the bearing with 

clear characteristic frequency and its harmonics. However, the proposed AVMD technique 

can provide the best performance compared to the other two techniques with the highest 

resolution.  

5.2.2 Outer-race Bearing Fault Detection 

Figure 5.8 shows the processing results for a bearing with an outer race fault, with the 

characteristic frequency 104.56=odf Hz. The AVMD parameters are K = 5 and penalty factor 

α = 1021. 
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Figure 5.8: Processing results for an outer-race damaged bearing using the related techniques: (a) HHT, (b) THT, 
(c) AVMD. fod = 104.56 Hz. Arrows specify characteristic frequency. 

In this case, all the related techniques can recognize the outer race bearing fault with 

clear characteristic frequency and harmonics. The AVMD technique (Figure 5.8(c)), however, 

can provide higher resolution with lower noise than the HHT and THT techniques, due to its 

efficient training and noise suppression. 

5.2.3 Inner-race Bearing Fault Detection 

Figure 5.9 shows comparison of the processing results using the related techniques for a 

bearing with the inner-race damage, with the characteristic frequency 156.14=idf Hz. The 

AVMD is applied with K = 5 and penalty factor α = 1034.  
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Figure 5.9: Processing results for an inner-race damaged bearing using the related techniques: (a) HHT, (b) THT, 
(c) AVMD. fid = 147.9 Hz. Arrows specify characteristic frequency and its harmonics.  

In this case, none of these three techniques can provide clear diagnostic result with a 

dominant characteristic frequency. However, the AVMD technique (Figure 5.9(c)) 

outperforms another two techniques in identifying the fault characteristic frequency with 

higher magnitude (resolution). 

5.3.4 Rolling-element Bearing Fault Detection 

Figure 5.10 shows processing results of these three techniques for a bearing with the 

rolling element damage, with the characteristic frequency 131.32=bdf Hz. The AVMD has 

parameters K = 5 and penalty factor α = 431. 
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Figure 5.10: Processing results for a rolling-element damaged bearing using the related techniques: (a) HHT, (b) 
THT, (c) AVMD. fbd = 131.32 Hz. Arrows specify characteristic frequency.  

In this case, all three techniques cannot provide reliable fault diagnosis without 

recognizing dominant fault characteristic frequency components; it is because the rolling 

element fault related features are time-varying. However, the AVMD technique can still 

provide the best prediction due to its noise suppression especially beyond 100 Hz. 

5.3 Summary 

In this chapter, the effectiveness of proposed AVMD technique has been verified by 

experimental tests. The tested bearing conditions include healthy bearings and bearings with 

outer race fault, inner race defect and rolling element damage. The tests are performed under 
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different load and speed conditions. The effectiveness of the proposed AVMD technique is 

examined with the comparison of other related signal processing techniques. Its robustness is 

verified by using data sets from Case Western Reserve University. From the systematic 

testing, it is shown that the proposed AVMD technique outperforms other related techniques 

under these controlled testing conditions. However, its performance still needs to be 

improved in some time-varying cases such as diagnosis of rolling element fault. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusion 

Rolling element bearings are commonly used in rotating machinery. On the other hand,, 

bearings are also the most easily damaged components. Efficient bearing health condition 

monitoring and diagnosis is an important aspect to optimal equipment management and 

predictive maintenance in modern industry. However reliable bearing fault detection still 

remains a challenging task in research and development, because bearing fault related 

features could vary with bearing dynamics and operating conditions. To tackle these problems, 

the first objective of this research is to develop a high-speed and high-resolution DAQ system 

to collect vibration signals. The second objective is to propose an adaptive Variational Mode 

Decomposition (AVMD) technique for non-stationary signal analysis and bearing fault 

detection. 

Firstly, a recursive trigonometric (RT) technique has been proposed to develop an 

FPGA-based sinusoidal waveform generator. The general capability of Cyclone IV E family 

FPGA has been investigated for the algorithm implementation. In addition, the proposed RT 

technique is used to optimize the trigonometric waveforms generated in hardware. Its 

effectiveness has been examined by both simulation and hardware tests. Test results have 

verified the accuracy of the proposed RT technique over the related techniques. 

Secondly, a MCU-based DAQ system is developed for vibration signal collection. Signal 

conditioning functions, high-resolution ADC functions, high-speed data transfer, control 

software, and user graphical interface are designed and implemented for the DAQ system. 

Thirdly, a new AVMD technique has been proposed for nonlinear signal analysis and 

bearing fault detection. The AVMD takes several procedures in signal processing: 1) The 

VMD method is used to compute the correlation between the original signal and the synthesis 

of the decomposed modes. 2) The penalty factor is determined analytically for each mode 

analytically. 3) Ensemble kurtosis is computed for each mode. 4) The optimal sub-mode is 
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selected, and the corresponding envelope analysis is undertaken for bearing fault detection. 

The effectiveness of the proposed AVMD technique is verified by both simulation and 

experimental tests under different bearing health and operating conditions. Its robustness is 

verified by tests using datasets from a different test apparatus (online data). The test results 

have shown that the proposed AVMD technique can properly denoise the signal and highlight 

the fault-related features for bearing fault detection. It outperforms the related techniques 

under these controlled testing conditions. It has potential to be used for bearing health 

condition monitoring in real industrial applications.  

6.2 Future Work 

The following advanced R&D work will be undertaken in the future: 

 (1) The FPGA-based DAQ system will be design and implemented for high speed and 

more accuracy data collection from water pump stations in the Bare Point Water Treatment 

Plant in Thunder Bay, Ontario. 

(2) The MCU-based DAQ system will be improved for high-speed wireless data 

transmission by using different transmission protocols. The DAQ software will be improved 

to facilitate different control operations, and to enhance robustness under different 

software/hardware environment and conditions. 

(3) New analytical method will be proposed to optimize VMD parameters and improve 

the AVMD algorithm for more reliable remote bearing health monitoring. 
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