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Abstract. Extreme climatic events (ECEs) are becoming more frequent and more intense due to climate
change. Furthermore, there is reason to believe ECEs may modify "tail associations" between distinct popu-
lation vital rates, or between values of an environmental variable measured in different locations. "Tail
associations" between two variables are associations that occur between values in the left or right tails of
the distributions of the variables. Two positively associated variables can be principally "left-tail associated"
(i.e., more correlated when they take low values than when they take high values) or "right-tail associated"
(more correlated when they take high than low values), even with the same overall correlation coefficient
in both cases. We tested, in the context of non-spatial stage-structured matrix models, whether tail associa-
tions between stage-specific vital rates may influence extinction risk. We also tested whether the nature of
spatial tail associations of environmental variables can influence metapopulation extinction risk. For
instance, if low values of an environmental variable reduce the growth rates of local populations, one may
expect that left-tail associations increase metapopulation extinction risks because then environmental
"catastrophes" are spatially synchronized, presumably reducing the potential for rescue effects. For the
non-spatial, stage-structured models we considered, left-tail associations between vital rates did accentuate
extinction risk compared to right-tail associations, but the effect was small. In contrast, we showed that
density dependence interacts with tail associations to influence metapopulation extinction risk substan-
tially: For population models showing undercompensatory density dependence, left-tail associations in
environmental variables often strongly accentuated and right-tail associations mitigated extinction risk,
whereas the reverse was usually true for models showing overcompensatory density dependence. Tail
associations and their asymmetries are taken into account in assessing risks in finance and other fields, but
to our knowledge, our study is one of the first to consider how tail associations influence population
extinction risk. Our modeling results provide an initial demonstration of a new mechanism influencing
extinction risks and, in our view, should help motivate more comprehensive study of the mechanism and
its importance for real populations in future work.

Key words: copula; density-dependent model; extinction risk; extreme events; mathematical ecology; Special Feature:
Empirical Perspectives from Mathematical Ecology; tail association.

Received 11 November 2019; revised 31 January 2020; accepted 9 March 2020. Corresponding Editor: Simon M. Stump.
Copyright: © 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
� E-mail: reuman@ku.edu

 ❖ www.esajournals.org 1 May 2020 ❖ Volume 11(5) ❖ Article e03132

https://orcid.org/0000-0002-5137-9933
https://orcid.org/0000-0002-5137-9933
https://orcid.org/0000-0002-5137-9933
https://orcid.org/0000-0002-9032-2059
https://orcid.org/0000-0002-9032-2059
https://orcid.org/0000-0002-9032-2059
https://orcid.org/0000-0002-1407-8947
https://orcid.org/0000-0002-1407-8947
https://orcid.org/0000-0002-1407-8947
info:doi/10.1002/ecs2.3132
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecs2.3132&domain=pdf&date_stamp=2020-05-13


INTRODUCTION

Over the past few decades, extreme climatic
events (ECEs) such as temperature or precipita-
tion extremes, heat waves, and extreme wildfires
have become more common or more extreme
due to anthropogenic climate change (Ummen-
hofer and Meehl 2017). Extreme climatic events
are well known to produce severe impacts at the
population, community, and ecosystem levels
(Gutschick and BassiriRad 2003, Bragazza 2008,
McKechnie and Wolf 2009, Jiguet et al. 2011, Fel-
ton and Smith 2017), and thus, the goal of
improving our understanding of the variety of
ecological impacts of ECEs is an important
applied goal for modern ecology (Katz et al.
2005, Smith 2011, Diez et al. 2012, Moritz and
Agudo 2013, Bailey and van de Pol 2016). Fre-
quent extreme events can help alter the mean
temperature or precipitation of an area, can be
associated with changes through time in the
overall variance of climate signals, and can
directly contribute to changes in the symmetry or
the skewness of distributions of climate signals
through time (Hansen et al. 2012). All such
changes have the potential to influence popula-
tions, including through risks of species extinc-
tion or extirpation from an area (Garcia-Carreras
and Reuman 2013, Vasseur et al. 2014). For
instance, Frederiksen et al. (2008) used 43 yr of
ring-recovery data to examine the demographic
impact of ECEs on European shags via their
effects on temporal variability in juvenile, imma-
ture and adult survival rates. Long et al. (2017)
investigated the sensitivity of 41 UK butterfly
species to four different types of ECEs. At the
community level, research has shown that ECEs
can reorder the dominance hierarchy of species
in an area, sometimes leading to selective local
extinctions, and can also produce effects that cas-
cade across trophic levels (Thomas et al. 2004,
Edgar et al. 2010, Moreno and Møller 2011,
Hoover et al. 2014). For example, Chiu et al.
(2013) showed that extreme floods affected the
annual survival of a prey community, in turn
influencing predators in aquatic as well as adja-
cent riparian habitats. Dreesen et al. (2014), in an
experimental study, showed that ECEs can
reduce the ability of plant communities to with-
stand subsequent ECEs that occur after a short
time interval.

Extreme climatic events also have impacts in
ecological contexts for which spatial dynamics
are important. In the metapopulation context,
spatial synchrony of population dynamics,
which can be caused by spatial synchrony of
climatic fluctuations (Liebhold et al. 2004), is
linked to metapopulation extinction risk (Han-
ski 1998, Earn et al. 2000). If ECEs are also
spatially more extensive than moderate events,
as seems likely for some types of events,
extreme events may accentuate population syn-
chrony and thereby increase extinction risk. For
instance, a 21-yr-long study of Tack et al.
(2015) on the Glanville fritillary butterfly
demonstrated that frequency of drought during
early larval instars increased the strength and
extent of spatial synchrony over a metapopula-
tion network of 4000 dry meadows, and could
thereby influence the long-term viability of the
species in the area of study.
Though earlier literature considered the influ-

ence of spatial synchrony in environmental vari-
ables on metapopulation extinction risk, to our
knowledge the distinct influence of "asymmetric
tail associations" between environmental time
series in different locations has hardly been con-
sidered. "Tail associations" are associations
between two random quantities in their extreme
values. For instance, if two positively associated
variables are more closely associated in their
smaller values than in their larger values, they
are said to have stronger "left-tail" or "lower-tail"
association (Fig. 1A, B). If two positively associ-
ated variables are more associated in their larger
values than in their smaller values, they are said
to have stronger "right-tail" or "upper-tail" associ-
ation (Fig. 1C, D). A precise definition of a mea-
sure of tail association is given in Methods. Fig. 1
shows that two variables can have a wide range
of patterns of tail association, from extreme left-
to extreme right-tail association, with the same
overall correlation. So tail association is a distinct
concept from correlation itself and may have dis-
tinct ecological ramifications (Ghosh et al. 2020).
Asymmetric tail associations have been docu-
mented between environmental variables, and
between the same environmental variable mea-
sured in different places (Serinaldi 2008, Li et al.
2013, Goswami et al. 2018, She and Xia 2018).
Asymmetric tail associations have also been doc-
umented between numerous ecological variables
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and between environmental and ecological vari-
ables (Ghosh et al. 2020).

Extinction risk is very commonly estimated for
age-structured models such as stochastic matrix
models (Caswell 2000, Morris and Doak 2002)
and integral projection models (Merow et al.
2014). For such models, extinction risk depends,
in part, on the long-term population growth rate,
a population parameter which in turn depends
on the means, variances, and covariances of pop-
ulation vital rates such as the survival and fecun-
dity rates of age classes. Extinction risks may, a
priori, also depend on possible asymmetries of
tail association between population vital rates.
For instance, it seems reasonable to imagine a
case in which both adult fecundity and juvenile
survival rates in a population depend on an envi-
ronmental variable such as spring rainfall in sim-
ilar ways, but only when that variable takes low
values. When rainfall takes typical or high val-
ues, fecundity and survival may be limited
instead by different, unrelated factors. This could
produce left-tail dependence between these vital
rates, possibly resulting in different extinction
risk for the model compared to a case in which
vital rates are symmetrically associated in their
tails or right-tail associated but otherwise statisti-
cally similar (Fig. 2).

There are reasons to hypothesize that ECEs
may produce asymmetric tail associations
between climatic variables measured in different
locations. The idea, here, is based on the reason-
able assumption that ECEs are both more intense
and spatially more extensive than non-extreme

climatic events. For clarity, we explain the idea
using the example case of extreme rain events.
Suppose a single extreme rain event is associated
with spatially widespread large precipitation val-
ues; that is, not only does it rain a lot in each
locale, but it does so for many locales across a
large area. Also suppose that smaller local pre-
cipitation measurements are associated, instead,
with local, non-extreme weather which can differ
from location to location, rather than with a sin-
gle extreme rain event. The result could be stron-
ger right-tail association, through time, between
measurements of precipitation made in different
locations: Large precipitation measurements are
coherent across space, since they are all attributa-
ble to a single event, whereas small values are
less spatially correlated because they come from
a multiplicity of distinct local events.
There are also reasons to hypothesize that

asymmetry of tail association in environmental
variables may influence extinction risks for
metapopulations. For instance, assuming for the
sake of a simple example that low values of an
environmental variable are "bad" for popula-
tions of a given species and high values are
"good", greater left-tail associations between
measurements of the variable in different habi-
tat patches may cause higher metapopulation
extinction risk because then very bad years for
component populations would occur at the
same time in many patches, reducing the
potential for rescue effects. Greater right-tail
associations would probably not have the same
effect, even if overall correlations between
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Fig. 1. Two stochastic quantities can have the same Spearman correlation, but different degrees of tail associa-
tion: (A) extreme left-tail association, (B) moderate left-tail association, (C) moderate right-tail association, and
(D) extreme right-tail association. In all cases, Spearman’s q was the same, q = 0.875, up to sampling variance
(the sample correlation for each dataset is displayed on its panel). The extreme left-tail- (respectively, right-tail-)
dependent case is perfectly correlated below (respectively, above) the threshold of 1/2. See Methods for information
on how bivariate noise was generated with asymmetric tail associations.
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locations were the same, because in that case, it
would be very good years for the component
populations that would occur at the same time
in many patches. Ghosh et al. (2020) substanti-
ated this intuition by showing that it held true
for a modeling setup using a spatial version of
a very simple non-density-dependent popula-
tion growth model (the Lewontin-Cohen
model). In essence, if environmental "catastro-
phes" (i.e., extremely bad years for a popula-
tion) are widely spatially synchronized it
should create much greater metapopulation
extinction risk than if "bonanzas" (i.e., extre-
mely good years) are widely synchronized,
even if overall (non-tail-specific) levels of envi-
ronmental synchrony are the same in both
these scenarios (Fig. 3). The present study
extends tests of this idea to metapopulation
models incorporating density dependence.

In this paper, we will explore the potential
for asymmetric tail associations to influence
extinction risk in populations and metapopula-
tions. Specifically, we will address the follow-
ing sets of questions. (Q1) Can the nature of
tail associations between vital rates in an age-
structured population model influence extinc-
tion risk for the model, and to what extent?
(Q2) Does the nature of tail associations
between measurements of an environmental
variable made in different locations influence
the extinction risk of a density-dependent
metapopulation model that depends on the
environmental variable? How does the nature
of the density dependence mediate this influ-
ence? Will density dependence reverse or
reproduce the earlier result (Ghosh et al. 2020),
using non-density-dependent models, that left-
tail dependence in environmental variables

(B) Very high adult fecundity (fa) and egg survival (se) are more likely
to happen simultaneously under right-tail association

Inflation in
population size - so
lower extinction risk
is expected

Reduction in
population size - so
higher extinction risk
is expected
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Year 2
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E EA
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(A) Very low adult fecundity (fa) and egg survival (se) are more likely
to happen simultaneously under left-tail association

Year 1

Year 2Year 1

Fig. 2. Left-tail association between vital rates makes it more likely that low values of fecundity and survival
will happen simultaneously (A), causing both life stages to crash simultaneously. This seems likely to increase
extinction risk. In contrast, right-tail association between vital rates instead makes it more likely that high values
of fecundity and survival will happen simultaneously (B).
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accentuates and right-tail dependence mitigates
extinction risks? For Q1, we simulate a simple
2-stage model. We hypothesize that left-tail
dependence between juvenile survival and
adult fecundity rates increases extinction risk
relative to right-tail dependence, even when
the overall correlation is kept fixed. For Q2,
we simulate spatial extensions of several sim-
ple and commonly used population models.
We intentionally use a simulation approach
and simple models for both Q1 and Q2 instead
of attempting mathematical analysis and/or
using models that are more realistic and com-
plex, because our intention here is to provide
an initial exploration only of the potential
mechanisms outlined above. By so doing, we
hope to open these potentially practically
important questions to wider examination by
other researchers, using a variety of models
and perspectives. Though tail associations are
used to assess risks in fields such as finance
and hydrology (Alexander 2008, Chen et al.
2011, Li et al. 2013, Goswami et al. 2018), to
our knowledge asymmetric tail associations
have rarely been assessed for their importance
for extinction risks of populations and species
(but see Ghosh et al. 2020). Our essential goal
is to advance the idea that tail associations
may also be important in this context. Our

questions are also an important step for under-
standing the potential influence of ECEs on
extinction risks if ECEs are related to tail asso-
ciations in environmental variables.

METHODS

To investigate Q1 from the Introduction, we
considered a simple stochastic age-structured
model with two age classes,

Eðtþ 1Þ
Aðtþ 1Þ

� �
¼ 0 faðtÞ

seðtÞ 0

� �
EðtÞ
AðtÞ

� �
; (1)

where E(t) and A(t) are the numbers or popula-
tion densities of eggs and adults, respectively, at
time t. We chose a very simple model because our
goal was to carry out an initial evaluation, only,
of the realism of a potential mechanism. The sto-
chastic vital rates se(t) and fa(t) in Eq. 1 were
selected, independently across times, as follows.
The egg survival rate se(t) was drawn from a beta
distribution with parameters a = 3 and b = 2.
Adult fecundity was faðtÞ ¼ ~faðtÞ exp ð�AðtÞ=XÞ,
where ~faðtÞ was drawn from a gamma distribu-
tion with shape and scale parameters k = 2 and
h = 1, respectively, and Ω is a density depen-
dence parameter. Allowing Ω to tend to ∞, exp
(�A(t)/Ω) ? 1, so that, in that limit, the model
did not include density dependence (it was then

Fig. 3. Under extreme left-tail association of environments between two locations, catastrophes happen simul-
taneously in both locations (A), whereas under extreme right-tail association, catastrophes do not happen simul-
taneously, even when overall environmental association is the same in both scenarios (B).
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a standard stochastic matrix model). Finite, posi-
tive values of Ω made the model nonlinear, with
density dependence in the adult fecundity rate.
Stochastic matrix models are very commonly
used in evolutionary ecology and quantitative
conservation biology, so our model is an example
of a very widely used category of models. See, for
instance, the classic books of Caswell (2000) and
Morris and Doak (2002).

The stochastic quantities se(t) and ~faðtÞ were
generated to have the same overall association
(Spearman’s q equal to 0.875, up to sampling
variance), but different degrees and types of
asymmetry of tail association in different simu-
lations, as follows. For a simulation of length T,
we used methods that can generate T indepen-
dent pairs (u(t), v(t)) for t = 1, . . ., T with
q = 0.875 (up to sampling variance), but with
either extreme left-, moderate left-, moderate
right-, or extreme right-tail association (Fig. 1).
The methods we used generated (u(t), v(t)) such
that u(t) was uniformly distributed on (0, 1),
and likewise for v(t). We then applied a mono-
tonic transformation to the u(t) so that the
resulting numbers were distributed according
to a beta distribution with parameters a = 3
and b = 2, and we used those values for the
se(t). We also applied a (different) monotonic
transformation to the v(t) so that the resulting
numbers were distributed according to a
gamma distribution with parameters k = 2 and
h = 1, and we used those values for the ~faðtÞ.
Because the u(t) and v(t) were uniformly dis-
tributed, the inverse cumulative distribution
functions of the desired beta and gamma distri-
butions were the transformations. Because these
were monotonic transformations, the Spearman
correlation of se(t) and ~faðtÞ was the same as
that of u(t) and v(t). The quantities (u(t), v(t))
for t = 1, . . ., T were generated as described in
Appendix S1: Section 1.

To calculate extinction risk for a given Ω and
choice of tail dependence, we simulated the
model for 25 time steps, 10,000 times, each simu-
lation starting from E(t) = 5 and A(t) = 10. The
population for a simulation was considered to
have gone extinct if the total population E(t) + A(t)
ever went below an extinction threshold (we used
2) within the 25-time-step time horizon. Extinction
risk was the fraction of 10,000 simulations that
went extinct. Confidence intervals (95%) of

extinction risk were also computed based on a
binomial distribution.
The variables u(t) and v(t) are visibly asymmet-

rically tail associated (Fig. 1), but we have
instead used the transformed variables se(t) and
~faðtÞ in our model. In what sense are se(t) and
~faðtÞ asymmetrically tail associated? Given two
boundary quantities lb and ub such that
0 ≤ lb < ub ≤ 1, and letting x(t) be the rank of u(t)
in the set {u(t)|t = 1, . . ., T}, divided by T + 1, and
letting y(t) be the rank of v(t) in the set {v(t)|t = 1,
. . ., T}, divided by T + 1 (smallest elements are
here defined to have rank 1), consider the por-
tions of the lines x + y = 2lb and x + y = 2ub,
which lie within the unit square (Fig. 4). We can
then define the partial Spearman correlation,

corlb;ubðu;vÞ¼
PðxðtÞ�meanðxÞÞðyðtÞ�meanðyÞÞ

ðT�1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞvarðyÞp ;

(2)

where sample means and variances in this equa-
tion are computed using all the data, but the sum
is computed only over the t such that x(t) + y
(t) > 2lb and x(t) + y(t) < 2ub. The variance, var,
here and throughout, is the sample variance,
with Bessel’s correction (denominator T � 1).
The partial Spearman correlation is the compo-
nent of the Spearman correlation u and v which
can be attributed to the points for which the nor-
malized ranks, x and y, lie between the boundary
lines we defined in the unit square (Fig. 4). The
quantity cor0,0.5(u, v) – cor0.5,1(u, v) is a way to
measure asymmetry of tail associations between
u and v. And this quantity is the same as
cor0;0:5ðse;~faÞ � cor0:5;1ðse;~faÞ, because the partial
Spearman correlation, like the Spearman correla-
tion itself, is based on ranks. Ranks are the same
for u(t) and for se(t) because these quantities are
related by an increasing monotonic transforma-
tion; and likewise for v(t) and ~faðtÞ. Thus, in the
sense captured by the statistic cor0,0.5 – cor0.5,1,
se(t) and ~faðtÞ have the same asymmetry of tail
association as the values u(t) and v(t) from which
they were constructed. Rank-based approaches
to understanding the nature of association
between variables have been recommended, as
such approaches are not influenced by the mar-
ginal distributions of the quantities (Genest and
Favre 2007). Marginal distributions contain no
information about association between variables,
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as each marginal pertains to only one of the
variables. These ideas are revisited in the Discus-
sion.

To investigate Q2 from the Introduction, we
considered spatialized, stochastic versions of six
density-dependent population models, the
Ricker, Hassell, Maynard Smith, Pennycuick,
Verhulst, and Austin-Brewer models. These
models were all described by Cohen (1995). The
models are also listed in Table 1 and are ana-
lyzed in detail in Appendix S1: Section 2, where
original references for the models are also pro-
vided. All models took the general form
P~ðtþ 1Þ ¼ DkðtÞP~ðtÞ, where P~ðtÞ is a vector of
population densities, the ith component Pi(t) rep-
resenting the population density in the ith habi-
tat patch (i = 1, 2, . . ., n) at time t. The n 9 n
matrix k(t) was diagonal with ith diagonal entry
ki(t) depending on the model used (Table 1). The
matrix Dwas an n 9 n dispersal matrix. For sim-
plicity, we assumed the n habitat patches were
arranged, evenly spaced, in a line. We considered
both "local" and "global" dispersal among
patches in different simulations. For local disper-
sal, a fraction d of each population dispersed dur-
ing each time step, equally distributed to the two
or one nearest neighbors. For global dispersal the
same fraction d dispersed equally to the other
n � 1 patches. When d was 0, dispersal did not
occur and rescue effects were not possible.

We obtained our list of classic population
models (which we then spatialized and made

stochastic, as above) from Cohen (1995). Model
parameters were selected so that varying the
growth parameter, r, across a range, while keep-
ing the other parameters fixed at selected values,
caused the deterministic, one-patch versions of
the models to transition from dynamics showing
an undercompensatory (i.e., monotonic)
approach to an equilibrium, to dynamics show-
ing an overcompensatory (i.e., oscillatory)
approach to an equilibrium. The transition value
of r was denoted rc. Appendix S1: Section 2 sum-
marizes stability analyses of the models.
Whereas Cohen (1995) was interested in study-
ing chaotic model behavior and therefore chose
parameters for which the models exhibited chao-
tic dynamics, we were interested in non-chaotic
behaviors, which seem likely to be more com-
mon in real populations. Two models that Cohen
(1995) used were excluded from our analyses
because their functional forms complicated the
analyses we wished to perform. First, the equilib-
rium of the Malthus-Condorcet-Mill model
(Cohen 1995) could not be determined analyti-
cally, making downstream analyses difficult for
that model. Second, for the Varley model and for
the portions of parameter space we explored,
varying r produced no transition from under- to
overcompensatory dynamics.
We simulated our metapopulation models

using environmental noises ei(t) (Table 1), inde-
pendent through time, that were generated to
have the same overall associations between all
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Fig. 4. The partial Spearman correlation, corlb;ubðu; vÞ, within a band can be computed for any band to describe

how the strength of association between u and v varies from one part of the two distributions to another. Diagonal
lines show two bands, the data in the right/upper band showing stronger association than those in the left/lower
band. Each band is bounded by the lines x + y = 2lb and x + y = 2ub described in Methods (for values of lb and ub
that depend on the band to be used). This figure was reproduced largely following Fig. 7 of Ghosh et al. (2020).
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patches and in all simulations (Spearman’s q
again 0.875, up to sampling variance), but with
different degrees and types of asymmetry of tail
associations between patches in different simula-
tions, as follows. For a simulation of length T, we
used methods that can generate T independent
n-tuples (u1(t), . . ., un(t)) for t = 1, . . ., T with
q = 0.875 between ui(t) and uj(t) for all i 6¼ j (up
to sampling variance), but with either extreme
left-, moderate left-, moderate right-, or extreme
right-tail association between all pairs of loca-
tions (as in Fig. 1). Pairs ui(t) and uj(t) looked like
Fig. 1 and were structured, statistically, in the
same way as the stochastic quantities u(t) and
v(t) used for the non-spatial simulations
described above. For any i, ui(t) was again uni-
formly distributed on the interval (0, 1). To
obtain the values ei(t), the ui(t) were transformed
so that the resulting numbers were normally dis-
tributed with mean 0 and standard deviation r
(Table 1), for all i. This was accomplished with
the inverse cumulative distribution function of
the normal distribution with mean 0 and stan-
dard deviation r. Because this was a monotonic
transformation, the Spearman correlation
between ei(t) and ej(t) was the same as that
between ui(t) and uj(t); likewise partial Spearman
correlations were the same. The quantities (u1(t),
. . ., un(t)) for t = 1, . . ., T were generated as
described in Appendix S1: Section 1.

To calculate extinction risk for a given
metapopulation model, given parameters, and a

given choice of tail association, we simulated the
model for 25 time steps, 10,000 times, using
n = 5 habitat patches. The equilibrium value of
the one-patch, deterministic version of the
model, Pe (Table 1) was used as the initial condi-
tion in all patches and simulations. After each
time step, if Pi(t) was less than Pe/10, then it was
set to 0. The whole metapopulation was consid-
ered to have gone extinct if all patches were 0 at
time step 25. Extinction risk was the fraction of
10,000 metapopulations that went extinct. Esti-
mates of extinction risk were plotted together
with 95% confidence intervals based on a bino-
mial distribution. Though these confidence inter-
vals have limited utility because they can be
made arbitrarily narrow by increasing the num-
ber of simulations, they are nonetheless pre-
sented to illustrate the confidence achieved with
the number of simulations we performed.
To answer (Q2) of the Introduction, we esti-

mated extinction risk for each metapopulation
model, using each form of tail association for the
environmental noise, using values of r that
included under- and overcompensatory dynam-
ics, as indicated above. We chose values of r
within a range, the range specified as follows.
The second part of Q2 (about how density
dependence mediates the influence of asymmet-
ric tail associations on extinction risk) was
addressed by comparing results for under- and
overcompensatory model regimes. Defining rmin

as the minimum value of r for which Pe was non-

Table 1. Summary of the six density-dependent stochastic metapopulation models we used.

Models ki(t) Parameters used Pe rmin rc rbf

Ricker exp(ei(t)) exp[r(1 – Pi(t)/K)] K = 50, r = 1 K 0 1.00 2.00
Hassell exp(ei(t))r/(1 + aPi(t))

b a = 0.5, b = 100, r = 1 (r1/b � 1)/a 1 2.73 7.54
Maynard
Smith

exp(ei(t))r/[1 + (aPi(t))
b] a = 0.5, b = 4, r = 0.8 [(r – 1)1/b]/a 1 1.33 2.00

Pennycuick exp(ei(t))r/[1 + exp{�a(1 – Pi(t)/b)}] a = 0.1, b = 0.1, r = 1 [b{a + ln(r � 1)}]/a 1.90 4.32 9.47
Verhulst exp(ei(t)) [1 + r(1 – Pi(t)/K)] K = 1, r = 0.6 K 0 1.00 2.00
Austin-Brewer exp(ei(t)) [1 + r(K – Pi(t)) {1 –

exp(�sPi(t))}]
s = 0.2, K = 50,

r = 0.6
K 0 0.02 0.04

Notes: The population growth rate in habitat patch i at time t, ki(t) (second column), is Pi(t + 1)/Pi(t), and defines how the
model works within each patch. Here, Pi(t) is the population in patch i at time t. The growth rate depends on model parameters,
Pi(t), and the environment ei(t) in patch i at time t. ei(t) was normally distributed with mean 0 and standard deviation r, and
values were generated independently across times. Pe is the equilibrium of the deterministic, one-patch version of the model.
rmin is the smallest r, given fixed values of the other parameters, for which Pe was non-negative. rc is the value of r for which a
transition occurs from under- to overcompensatory dynamics (see main text). rbf is the value of r for which a transition occurs
from a stable to an unstable equilibrium (a bifurcation; see main text). For extinction-risk simulations, we used r such that
rmin < r < rbf. Dispersal between patches was also implemented (see main text). Formulas are given for Pe, but specific values
which pertain for the listed parameters are given for rmin, rc, and rbf. See Appendix S1: Section 2 for the formulas that gave these
values.
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negative, and defining rbf as the value of r at
which a bifurcation occurs, the range of r used
spanned 95% of the interval (rmin, rbf). For
details, see Appendix S1: Section 2. The range of
r encompassed rc, so included a transition from
under- to overcompensatory dynamics. For each
value of r used within the range, we calculated
extinction risk as indicated above. Dispersal
parameter values d = 0, 0.1, . . ., 0.5 were also
used in different simulations. We plotted extinc-
tion risk as a function of d for several fixed values
of r, some producing under- and some overcom-
pensatory dynamics. For d = 0, we also plotted
extinction risk as a function of r. All code for this
project is available at https://github.com/
sghosh89/ERC.

RESULTS

For our age-structured, non-spatial model,
extinction risks were higher when associations
between the vital rates se and fa were principally
for low values of these vital rates (left-tail associ-
ation), and were lower when associations were
principally for higher values, but the effect was
minor for this model (Fig. 5). Though extinction
risks were overall higher for the density-depen-
dent version of our model compared to the den-
sity-independent version, extinction-risk
differences across tail association scenarios were
similar for the two versions. Because the same
Spearman correlation (up to sampling variance)
was used in all simulations, the differences
between lines in the panels of Fig. 5 are attributa-
ble solely to the changes we made in the asym-
metry of tail associations, and answer Q1.
Differences were small, corresponding only to a
few percentage points of additional extinction
risk after 25 yr. A potential reason for this out-
come is elaborated in the Discussion.

For our metapopulation simulations, for low
values of r (close to rmin), left-tail associations of
environmental noises accentuated extinction
risks, and right-tail associations mitigated them;
but the reverse was true for high values of r
(close to rbf). Thus, density-dependent models
can either produce similar results, regarding the
influence of tail associations on extinction risk, as
the density-independent models of Ghosh et al.
(2020), or opposite results, depending on the nat-
ure of density dependence. For each model of

Table 1, using a value of r on the low end of the
range (rmin, rbf), extinction risk was highest for
extreme left-tail-associated noise, was lowest for
extreme right-tail-associated noise, and was
intermediate for the moderate tail association
scenarios, for both local (Fig. 6, left panels) and
global (Appendix S1: Fig. S1, left panels) disper-
sal, and for essentially all the dispersal rates, d,
that we considered. However, using a value of r
on the high end of the range (rmin, rbf), extinction
risks were ordered oppositely (right panels of
Fig. 6 and Appendix S1: Fig. S1). These results
help address Q2 from the Introduction. Intermedi-
ate values of r are shown in Appendix S1:
Figs. S2–S7 for local dispersal and Figs. S8–S13
for global dispersal among habitat patches.
Because the deterministic, one-patch versions of

our models showed undercompensatory dynamics
for r < rc (and therefore for r on the left end of the
range [rmin, rbf]), and showed overcompensatory
dynamics for r > rc, Fig. 6 and Appendix S1: Fig. S1
suggest the hypothesis that the opposite effects of tail
association on extinction risk correspond to the
domains in which models exhibit under- vs. over-
compensatory dynamics. This was approximately,
but not exactly, true. Careful inspection of
Appendix S1: Figs. S6, S7 and S12, S13 and the rc val-
ues of Table 1 reveals that for the Verhulst and Aus-
tin-Brewer models, the switch occurs at a value of r
less than rc. For the example case of d = 0, plots of
extinction risk vs. r (Fig. 7) seem to indicate that for
the Ricker, Hassell, and Pennycuick models, left-tail
association accentuates and right-tail association mit-
igates extinction risk for undercompensatory
dynamics (r < rc), whereas the reverse occurs for
overcompensatory dynamics (r > rc). Fig. 7 reveals a
similar reversal for the Maynard Smith, Verhulst,
and Austin-Brewer models, but it occurs at a value
of r close to but distinguishable from rc. Inspection
of Appendix S1: Figs. S2–S13 shows that a qualita-
tively similar conclusion holds for nonzero d, for
both local and global dispersal.

DISCUSSION

Our results suggest that asymmetry of tail
associations between vital rates in a stage-struc-
tured, non-spatial stochastic model may be of
limited importance for extinction risk. In our
stage-structured, non-spatial model, extinction
risk was only weakly influenced by asymmetry

 ❖ www.esajournals.org 9 May 2020 ❖ Volume 11(5) ❖ Article e03132

SPECIAL FEATURE: EMPIRICAL PERSPECTIVES FROM MATHEMATICAL ECOLOGY GHOSH ETAL.

https://github.com/sghosh89/ERC
https://github.com/sghosh89/ERC


of tail associations between vital rates. Our
results provide suggestive, rather than definitive
evidence, here, because we considered only one
model (but see below). In contrast, our metapop-
ulation results show that asymmetries in tail
associations between environmental variables in
different locations can have a substantial influ-
ence on metapopulation extinction risk, for den-
sity-dependent as well as density-independent
models. These results extend the result of Ghosh
et al. (2020), which was for a density-

independent model. For a density-independent
model, Ghosh et al. (2020) corroborated the intu-
ition that when "harmful" environmental events
(i.e., events which reduce the growth rates of
local populations) are correlated across space,
extinction risk of metapopulations will be accen-
tuated compared to when "beneficial" events
(i.e., events which increase the growth of local
populations) are spatially correlated, even if
overall correlation is the same in both scenarios.
This was presumably because the first of these

Fig. 5. Extinction risk vs. time for our stochastic, age-structured model. Risks were higher when associations
between vital rates were stronger in the left compared to the right tails of the rates, but only slightly so. Results
are for the linear version of the model (Ω ? ∞; A, C) and for the nonlinear model with density dependence in
the fecundity rate (Ω = 100; B, D). Results show cases of moderate (A, B) and extreme (C, D) asymmetry of tail
association. The solid line is the estimated extinction risk, and the area of shading, which is barely visible because
it is very narrow, shows 95% confidence intervals for extinction risk based on the number of simulations done.
Abbreviations are LT, left tail; and RT, right tail.
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Fig. 6. Extinction risk vs. dispersal rate for different scenarios of tail association for our six metapopulation
models (Methods, Table 1). Dispersal was local, see Appendix S1: Fig. S1 for global dispersal. Values of r used are
in the panel headers. Extinction risks are for a 25-yr time horizon. Confidence intervals for extinction risk are not
plotted, to provide a clearer plot. But because 10,000 simulations were done for each extinction-risk estimate, con-
fidence intervals were very narrow, as in Fig. 5. Abbreviations are LT, left tail; and RT, right tail.
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Fig. 7. Extinction risk vs. r, with d = 0, for different scenarios of tail association for our six metapopulation
models (Methods, Table 1). Extinction risks are for a 25-yr time horizon. Vertical lines show rc, the transition from
under- to overcompensatory dynamics of the deterministic, one-patch version of the model. Error bars show 95%
confidence intervals of extinction risk. Abbreviations are LT, left tail; and RT, right tail.
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scenarios reduces the potential for rescue effects.
For the density-dependent metapopulation mod-
els we considered, the same result held, typically,
but not always, for undercompensatory model
dynamics. However, for overcompensatory
dynamics, the opposite result held, again typi-
cally, but not always: When "harmful" events
were correlated across space, extinction risk of
metapopulations was actually mitigated com-
pared to when "beneficial" environmental events
were spatially correlated by the same amount.
This was probably because the correlated benefi-
cial events caused populations to exceed carrying
capacity, and to subsequently crash, across all or
most habitat patches.

Our exploration for stage-structured models sug-
gested limited influence of tail associations
between vital rates on extinction risk, but some
additional lines of inquiry might be worth explor-
ing as part of an effort to understand how general
our results are. First, we considered a model with
positive association between egg and adult vital
rates, corresponding to similar impacts of an envi-
ronmental variable on eggs and adults. Negative
associations between vital rates can occur as well,
and the impacts of tail associations should be con-
sidered in that context as well. Negative associa-
tions relate to life-history trade-offs, for example,
between survival and reproduction (Lande et al.
2003, p. 59). Asymmetric tail associations may
occur in such a context if, for instance, there is a
three-way trade-off among vital rates r1, r2, and r3.
Values of r1 near an upper limit may be strongly
associated with r2, whereas lower values of r1 may
not be strongly associated with r2 because r1 trades
off against both r2 and r3. It is possible that tail
associations in negatively related vital rates pro-
duce different outcomes for extinction risk from
what we observed by studying positively associ-
ated vital rates.

A second topic of research that our work sug-
gests has to do with Tuljapurkar’s well-known
approximation of the long-term stochastic growth
rate (Tuljapurkar 1982, 1990). It may be possible to
obtain a better understanding, using Tuljapurkar’s
approximation, of our result that asymmetries of
tail association may have limited influence on the
extinction risk of stage-structured, non-spatial
models. The long-term stochastic growth rate is an
important quantity in demography (Caswell 2000)
and population viability analysis for conservation

(Morris and Doak 2002), and it factors prominently
into extinction-risk estimates for density-indepen-
dent age- or stage-structured population models
(Lande and Orzack 1988), P~ðtþ 1Þ ¼ MðtÞP~ðtÞ.
Here, P~ðtÞ is the age- or stage-structured popula-
tion, andM is a matrix-valued stationary stochastic
process. The matrix entries of M can correspond,
for instance, to the fluctuating fecundity and sur-
vival rates of the life stages of the population. For
such a model, Tuljapurkar’s approximation
expresses the long-term stochastic growth rate as a
function of the variances and covariances of the
entries of M and of the eigenvalues and eigenvec-
tors of the expected value of M. None of these
quantities depends on tail associations between
matrix entries. Thus, whenever Tuljapurkar’s
approximation is a good approximation, the long-
term stochastic growth rate should not depend
sensitively on tail association. Lande et al. (2003)
provide reasoning supporting a claim that Tul-
japurkar’s approximation is “likely to be accurate
in many cases” (p. 60), though we are unaware of
the extent to which accuracy of the approximation
has been tested for scenarios with asymmetric tail
associations. It seems potentially worth exploring
the accuracy of Tuljapurkar’s approximation under
scenarios of tail association in the vital rates, and
then relating results to the effects of tail associa-
tions on the long-term stochastic growth rate and
extinction risks. We note that the above reasoning
pertains only to density-independent models and
says nothing about our results for the density-de-
pendent version of our stage-structured model.
Extensive evidence now exists that ECEs have

become more frequent and more intense over the
last several decades, and substantial progress has
recently been made so that some event categories
and even specific events can now be attributed to
human-induced climate change (Ummenhofer
and Meehl 2017). We now provide an explana-
tion of how such changes may modify the asym-
metry of tail association of weather variables
measured in different places. Such modification
may thereby influence metapopulation extinction
risk through the mechanisms explored earlier in
this paper. Let Xi(t) and Xj(t) denote the values of
some weather variable as measured in fixed loca-
tions i and j at time t. Although changes in the
correlation, through time, between Xi(t) and Xj(t)
are increasingly documented, and may also be a
consequence of climate change (Black et al. 2018),
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we are unaware of any studies examining the
extent to which tail associations between Xi(t)
and Xj(t), and asymmetries of tail association,
may be changing. If ECEs are becoming more
spatially extensive, as seems likely given that
they are becoming more intense (Ummenhofer
and Meehl 2017), then the conditional probability
that both of Xi(t) and Xj(t) are influenced by an
ECE, given that one of them is so influenced,
should be increasing. That is, since ECEs are spa-
tially bigger, it is now more likely that a single
weather event influences both locations i and j
given that it influences one of them. This should
contribute to increased association of the two
variables in one of their tails (which tail depends
on the type of ECE and what the variable X is). A
study of changes through time in tail associations
of weather variables would be straightforward
and potentially important given the mechanisms
we have explored.

It is known that the distributions Xi(t) are chang-
ing, in mean, variance, and possibly other ways,
depending on what environmental variable X rep-
resents. Studying associations between Xi(t) and
Xj(t) using standard methods such as Pearson corre-
lation may be complicated by these changes; rank-
based measures of association such as we have
used may be more appropriate for some applica-
tions. If f is a strictly monotonic, increasing transfor-
mation, then the Spearman (or Kendall) correlation
of f(Xi(t)) and f(Xj(t)) is the same as the Spearman
(or Kendall) correlation of Xi(t) and Xj(t). However,
the Pearson correlation of f(Xi(t)) and f(Xj(t)) may
differ substantially from the Pearson correlation of
Xi(t) and Xj(t). Relatedly, if the marginal distribu-
tions of Xi(t) and Xj(t) are changing through time, it
may also cause changes through time in the Pear-
son correlation of these quantities, even while the
values of rank-based correlations such as Spearman
and Kendall may be unchanging. Essentially, in
such a case, associations between Xi(t) and Xj(t)
would be unchanging through time even though
Pearson correlation appears to indicate a change,
which is instead a change in marginal distributions.
Perhaps unfortunately, the Pearson correlation,
which is the most commonly used measure of asso-
ciation of two variables, depends not only on asso-
ciation information, but also on the marginals. For
this reason, it is possible that recently observed
changes in environmental (Black et al. 2018) and
biological (Koenig and Liebhold 2016) synchrony

are, at least in part, just another feature of already-
studied changes in distributional characteristics of
variables, rather than reflecting true changes in
association as would be measured using rank-
based correlation methods.
Rank-based methods are linked to a well-devel-

oped suite of statistical approaches related to the
copula concept of statistics. Copulas and related
ideas can be used to formally separate the informa-
tion in the joint distribution of Xi and Xj into the
information that pertains to the marginal distribu-
tions of these variables, and the information that
pertains solely to their association. Ghosh et al.
(2020) argued generally for the potential of copulas
to improve our understanding of ecology (see also
Valpine et al. 2014, Anderson et al. 2018, Popovic
et al. 2019). Rank-based methods such as the Spear-
man and partial Spearman correlations we used
are closely related to copulas, and Ghosh et al.
(2020), Genest and Favre (2007), and others have
recommended copula and rank approaches when
the goal is to understand associations between
variables. We recognize that the Pearson correla-
tion of Xi(t) and Xj(t), and changes through time in
that correlation, will still be useful for many appli-
cations. But to understand potential changes in the
association of Xi(t) and Xj(t), unconfounded by
changes in their marginal distributions, it is neces-
sary to use rank-based or copula methods (Genest
and Favre 2007, Ghosh et al. 2020).
Finally, our results suggest that combining ideas

about tail association with recently developed
ideas about the geography of synchrony may pro-
vide fertile territory for future research. Our
metapopulation models assumed that habitat
patches were equispaced on a transect or were all
equally mutually accessible through dispersal. Fur-
thermore, associations between environmental
variables in different patches were assumed to be
spatially homogeneous. In real metapopulations,
neither of these assumptions holds. Several recent
studies, reviewed and synthesized by Walter et al.
(2017), have explored geographic variation in the
spatial synchrony of environmental and popula-
tion variables. Walter et al. (2017) coined such vari-
ation the “geography of synchrony” and explored
its mechanisms, consequences, and ecological
importance. For instance, synchrony in several sys-
tems was found to have prominent geographic
variation, which can help provide inferences about
the causes of synchrony and about organism
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ecology. Two among many research questions that
could be explored that blend the geography of syn-
chrony with tail associations include the following:
(1) What is the nature of the geography of tail asso-
ciations of environmental and ecological variables?
and (2) Do asymmetries of tail associations of envi-
ronmental variables interact with geographies of
synchrony to influence metapopulation extinction
risk? Connecting the ideas of tail association that
we have developed with the ideas on the geogra-
phy of synchrony of Walter et al. (2017) seems like
a promising future direction.
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