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First-principles calculations of hyperfine interaction, binding
energy, and quadrupole coupling for shallow donors in silicon

Michael W. Swift®'2, Hartwin Peelaers@>* Sai Mu

3, John J. L. Morton® and Chris G. Van de Walle @3

Spin qubits based on shallow donors in silicon are a promising quantum information technology with enormous potential
scalability due to the existence of robust silicon-processing infrastructure. However, the most accurate theories of donor electronic
structure lack predictive power because of their reliance on empirical fitting parameters, while predictive ab initio methods have so
far been lacking in accuracy due to size of the donor wavefunction compared to typical simulation cells. We show that density
functional theory with hybrid and traditional functionals working in tandem can bridge this gap. Our first-principles approach
allows remarkable accuracy in binding energies (67 meV for bismuth and 54 meV for arsenic) without the use of empirical fitting.
We also obtain reasonable hyperfine parameters (1263 MHz for Bi and 133 MHz for As) and superhyperfine parameters. We
demonstrate the importance of a predictive model by showing that hydrostatic strain has much larger effect on the hyperfine
structure than predicted by effective mass theory, and by elucidating the underlying mechanisms through symmetry analysis of the

shallow donor charge density.

npj Computational Materials (2020)6:181 ; https://doi.org/10.1038/s41524-020-00448-7

INTRODUCTION

The advent of quantum computers capable of completing tasks
beyond the capabilities of the most powerful classical super-
computers represents a new era in computation’. In the emerging
field of quantum information technology, researchers are explor-
ing a vast array of qubit platforms in a race to build scalable, fault-
tolerant quantum computers' . Spin-based qubits leveraging
atomic clock transitions of shallow donors in silicon are one such
promising technology, exhibiting long coherence times, single-
qubit control, and high fidelity’™"". Though it still faces many
obstacles, an important advantage of this qubit platform is its use
of doped silicon, allowing the potential for enormous scalability
using existing infrastructure, that has been built up by the
semiconductor industry over decades.

Silicon in modern electronics is doped using the same kinds of
shallow impurities that make up proposed silicon-based qubits. In
the case of n-type doping, shallow donors contribute electrons to
the conduction-band minimum (CBM), while in p-type doping
holes are contributed to the valence-band maximum (VBM). In
conventional electronic device theory, it is often sufficient to treat
the introduced electrons or holes as free carriers in the
unperturbed band structure of the host. However, spin-based
qubits rely on the detailed electronic structure of the donor state.
According to “effective-mass theory”'? a donor modifies the band
occupied by the donated electron much like a point charge
modifies the vacuum states. This creates “hydrogenic” states in
which the electron is loosely bound to the donor, analogous to the
bonding of an electron to a proton in a free hydrogen atom.
Originally studied by Kohn and Luttinger in the 1950s'37', this
model has been extended and improved, but still faces limitations
due to its intrinsic approximations. Within hydrogenic effective
mass theory, screening of the impurity potential is approximated
by using the macroscopic dielectric constant, but actual screening
by the valence electrons proceeds in complex material-dependent

and impurity-dependent ways. These are known as “central-cell”
effects. Further complications arise from the fact that the
conduction-band minimum of silicon is a set of six degenerate
valleys'?. These six valleys are not independent, but mix and split
through a process known as “valley-orbit coupling”. Group
theoretic arguments show that the CBM splits into states
corresponding to irreducible representations of the T4 symmetry
group: singlet A; (the ground state), doublet E, and triplet T5,'""'%,

Developments in the treatment of shallow impurities have
largely focused on corrections for these effects and attempts to
include them in models'’2'. Within effective mass theory, this
effort has met with success largely through the use of empirical
fitting parameters. We take a different tack, seeking greater
predictive power by calculating properties of shallow impurities
from first principles.

The ability to accurately model shallow dopants has taken on
particular relevance in the context of quantum information
science, as exemplified by the recent experiments of Pla et al.?.
They used electron spin resonance (ESR) to measure transitions
between total-spin states of the coupled electron-nucleus spin
degree of freedom of shallow bismuth donors in silicon, a system
with applications in atomic clock transitions for silicon-based spin
qubits*>2*, They observed a split Hahn echo peak corresponding
to the |4,—4) < |5,—5) transition. Orientation-dependent mea-
surements suggest that this results from strain caused by the
thermal contraction of an aluminum resonator patterned on the
surface of the sample. This result raises the question: how does
strain cause such a dramatic splitting in the ESR line? Traditional
approaches, such as the “valley repopulation model”?*, fail to
provide an explanation. Another model invokes the coupling of
the quadrupole moment of the donor nucleus with the electric
field gradient (EFG) induced by the electron wavefunction, but
accurate information about the strength of this interaction is
lacking. Ab initio calculations have already been shown to
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successfully determine EFGs at nuclei®®. An accurate calculation of
the donor wavefunction will thus allow the determination of the
EFG at the nucleus and the strength of the quadrupole coupling.
Additional motivation was provided by subsequent experiments’
that identified an unexpectedly large dependency of the isotropic
hyperfine parameter A on the hydrostatic component of strain. We
will therefore also explicitly explore the strain dependence of A.

Ab initio approaches to donors have met with some success in
the past. Density functional theory (DFT) has been shown to
correctly predict hyperfine parameters for highly localized defect
states (“deep” impurities)®’?®, but explicit calculation of the
relatively delocalized shallow states within the supercell
approach?® is extremely challenging due to the large spatial
extent of the wavefunction. Real-space pseudopotential methods
have been successful in nanostructures®>>'. Calculations based on
an impurity Green's function approach are in principle more
suited, and have been successfully used to study the isotropic
hyperfine parameter of shallow donors®’, to explore their
evolution for phosphorus donors at very high strain®?, and to
calculate superhyperfine parameters®®. However, the Green’s
function technique is far less intuitive than the supercell approach,
and is difficult to generalize.

Calculations of shallow dopant binding energies have also been
attempted through the supercell approach. Wang® used a
potential patching method to calculate supercells up to 64,000
atoms, achieving modest success in the calculation of binding
energies of some acceptors, and Zhang et al.>® improved on this
method by incorporating GW corrections based on 64-atom cells,
accurately predicting binding energies of various acceptors in Si,
GaAs, and GaP. Yamamoto et al.>” modeled an As donor in Si by
performing DFT calculations using the generalized gradient
approximation (GGA) for supercells up to 10,648 atoms. They
calculated binding energies based on wavefunctions extracted
from the supercells and found a good description of the Bohr
radius and the binding energy, but their use of an empirical model
for the screened impurity potential sacrifices predictive power.
More recently, Smith et al.>® used a similar approach for P in Si.
These studies show that, while it is extremely difficult to capture
the exponential tail of shallow impurity wavefunctions with first-
principles methods, DFT may be able to describe the wavefunc-
tion correctly in the vicinity of the impurity. This is encouraging
because the isotropic hyperfine coupling and quadrupole
coupling both depend on the properties of the wavefunction at
the donor nucleus. This also suggests that it may be possible to
introduce a systematic correction for errors induced by the
overlap of the exponential tail of the wavefunction into
neighboring supercells.

Even if systematic corrections are applied, the required super-
cell sizes can only be tackled within DFT by using traditional
functionals such as GGA. However, such functionals underestimate
electron localization, thus limiting the accuracy of the wavefunc-
tion amplitudes in the vicinity of the donor. In this work, we
overcome these obstacles by using a tandem approach, judi-
ciously combining GGA results for very large supercells with
results obtained with a hybrid functional. which provides a correct
description of localization. We are thus able to extrapolate the
hybrid functional results to the dilute limit. This technique retains
predictive power because it does not use empirical fitting
parameters. We will demonstrate the approach using the example
of arsenic and bismuth shallow donors in Si, obtaining results that
are in excellent agreement with experiment. We also show that
the experimentally observed variation of the isotropic hyperfine
parameter as a function of strain can be captured in feasible
supercell calculations, with central-cell and valley-orbit effects
automatically included in the ab initio method.

The present work is on silicon, but the same techniques should
work for donors in other multivalley semiconductors such as
germanium. Donors in single-valley semiconductors such as
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gallium arsenide are simpler due to the lack of multivalley effects,
and are much better described by effective mass theory'”. We also
expect that our techniques can be generalized to shallow
acceptors, including the treatment of the degeneracy at the
valence-band maximum.

RESULTS

Binding energies

The binding energy of a shallow donor may be obtained from the
Kohn-Sham eigenvalues:

Ep = € — e+ env, M

where erd°“°’ is the Kohn-Sham eigenvalue of the occupied donor
state (evaluated at I, as discussed in the “Methods” section) and
€f® is the Kohn-Sham eigenvalue of the CB in a bulk calculation of
a supercell of the same size, also evaluated at I for consistency.
Because the Kohn-Sham eigenvalues are referenced to the
average electrostatic potential, we must adjust for any shifts in
the potential due to the presence of the impurity in order to
meaningfully compare eigenvalues between bulk and impurity
cells. This is accomplished by introducing the correction term
AV = (VPulk _ ydonony \where (- ) indicates a macroscopic average
over a bulk-like region of the cell far from the donor. This term
(identical to the potential alignment term used for defect
formation energies in the Freysoldt method®***%) aligns the
Kohn-Sham levels between the bulk and donor cells, allowing
for meaningful comparison.

Use of the Kohn-Sham eigenvalues rather than DFT total
energies is standard for ab initio calculations of donor binding
energies®> 38, Methods based on comparing total energies
significantly underestimate £,

The quantities used to calculate the binding energy (Eq. (1)) for
bismuth and arsenic shallow donors in silicon are given in Table 1,
and the resulting binding energies are plotted in Fig. 1. For
sufficiently large supercells, the error in the calculated binding
energy comes from the exponential tail of the donor wavefunc-
tion, which extends into neighboring supercells. This error scales
inversely with the volume of the supercell (see the “Methods”
section), and therefore we plot our results as a function of 1/N
where N is the number of atoms in the supercell. Our results for
bismuth donor supercells with n=4 (N =512) show a clear linear
trend with 1/N, allowing extrapolation to the N — oo limit.
Extrapolating results obtained with the GGA of Perdew, Burke, and
Ernzerhof*' (PBE) gives a value of 28.3 meV for bismuth donors,
significantly underestimating the experimental result of 70.9
meV'’. For the arsenic donors, the PBE extrapolated value is
22.5 meV, compared to an experimental value of 53.8 meV'’.

This underestimation of the binding energy can be attributed to
the excess delocalization of the wavefunctions inherent in PBE,
which results in a lower spin density close to the impurity site and
thus a lower Coulomb attraction between the electron and the
donor nucleus. This effect has been found in previous work on
shallow impurities using DFT>*73% A better description of
localization can be achieved with more sophisticated functionals,
such as the hybrid functional of Heyd, Scuseria, and Ernzerhof
(HSE)****. Due to the vastly greater computational cost of HSE, we
had to restrict ourselves to calculations up to n =5 (N = 1000). We
also note that computational limitations based on the size of the
supercell prevented the calculation of the AV term for n = 7, so
PBE data is only reported up to n = 6.

As we can see from the PBE results, results obtained with the
N = 1000 (n = 5) supercells are not quite converged; however, the
PBE results also show that N> 512 (n > 4) is within the regime in
which the value of the hyperfine parameter A scales as 1/N. We
find that the PBE slope, suitably modified to take into account
the PBE underestimation of the exchange splitting (as discussed in
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Table 1. Calculated parameters of shallow donors.

n 8 egener eAV 5%/2 Ey

Bi, PBE

2 6.415 6.082 0.109 0.0779 0.442
3 6.392 6.206 0.052 0.0306 0.238
4 6.283 6.206 0.029 0.0135 0.106
5 6.251 6.202 0.019 0.0073 0.068
6 6.243 6.206 0.014 0.0050 0.051
Bi, HSE

2 6.825 6.266 0.081 0.2021 0.640
3 6.781 6.503 0.027 0.0813 0.304
4 6.669 6.544 0.021 0.0388 0.145
5 6.650 6.557 0.023 0.0210 0.116
As, PBE

2 6.415 6.023 0.009 0.0720 0.402
3 6.392 6.205 0.007 0.0266 0.193
4 6.283 6.212 0.013 0.0102 0.084
5 6.251 6.210 0.014 0.0051 0.055
6 6.243 6.214 0.011 0.0032 0.040
As, HSE

3 6.781 6.512 0.013 0.0750 0.282
4 6.669 6.560 0.010 0.0311 0.119
5 6.650 6.570 0.016 0.0156 0.096
Quantities (in eV) used to calculate the shallow donor binding energy (Eq.
(1)), including half the exchange splitting 6%, which converges differently
as a function of supercell size in PBE and HSE (see Supplementary Fig. 1).

the Supplementary Methods and shown in Supplementary Fig. 1),
can be used to extrapolate the HSE data to the limit N — e,
Extrapolating the n = 5 HSE data based on this slope gives the
final prediction. This procedure gives 66.7 meV for Bi donors and
539 meV for As donors, in excellent agreement with the
experimental values (70.9 meV for Bi and 53.8 meV for As)".
These results show that HSE is able to correct the PBE
underestimation of shallow donor binding energies in silicon,
while the limitation of HSE supercell size may be corrected by the
PBE scaling, achieving remarkable agreement with experiment.

Hyperfine and superhyperfine parameters
The isotropic hyperfine parameter (in Sl units) is given by:

2
A= %%NBQWN / r(r — R)o(r) dr, )
where g, is the electron g-factor, g, is the g-factor of the nucleus in
question, ug is the Bohr magneton, py is the nuclear magneton, R
is the position of the nucleus, and o(r) is the spin density. In the
non-relativistic case discussed in ref. %, 1 is a Dirac delta function,
but here a more extended function is used to take relativistic
effects into account®®*,

Results for the hyperfine parameter of bismuth and arsenic
shallow donors are shown in Fig. 2. The error is expected to scale
inversely with the volume of the supercell much as in the case of
binding energies, so we again plot our results as a function of 1/N.
The linear trend in hyperfine parameter for PBE calculations starts
at even lower cell size of n =3 (N = 216) than the binding energies,
allowing extrapolation to the N — o limit. Extrapolating PBE
results gives a value of 891 MHz for bismuth donors, significantly
underestimating the experimental result of 1475 MHz*%. For the
arsenic donors, the extrapolated value is 93.6 MHz, compared to
an experimental value of 198.3 MHz'”.
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Fig. 1 Binding energies for donors in silicon as a function of
supercell size. Binding energy is defined by Eq. (1). PBE results are in
blue circles and HSE results are in orange triangles. The horizontal
axis is 1/N, where N is the number of atoms in the supercell.
a Bismuth donor. The blue line is a linear fit to the PBE data for n > 4,
N=512: E, = 0.0283 + 39.6/N. The HSE slope is calculated by
correcting for the difference in PBE and HSE exchange splitting (see
Supplementary Methods and Supplementary Fig. 1). This slope is
then applied to the HSE data with n = 5, £, = 0.0667 + 49.7/N. The
HSE extrapolated value of 66.7 meV is in very good agreement with
the experimental binding energy of 70.9 meV, shown as a black
dashed line. b Arsenic donor. Blue PBE line fit to data for n>4, N>
512 is E, = 0.0225 + 31.6/N, and the HSE line is £, = 0.0539 + 42.1/
N. This HSE extrapolated value of 53.9 meV is in extremely good
agreement with the experimental binding energy of 53.8 meV.

This underestimation of the hyperfine parameter is again due to
a lack of localization in the PBE wavefunction, and can be
improved using HSE in a similar way as for the binding energies.
HSE results show linear scaling in the same regime as PBE and
with the same slope, supporting our assertion that PBE scaling
extends to HSE results for binding energies. This procedure gives
1262 MHz for Bi donors and 132.5 MHz for As donors (compared
with experimental values of 1475 MHz for Bi*? and 198.3 MHz for
As'), providing a vast improvement over PBE.

In addition to the Fermi contact interaction with the donor
nucleus, the spin density induced by the donor also leads to so-
called “superhyperfine” (shf) interactions with any 2°Si nuclei in
the host®>*33, We calculate shf parameters for various shells of Si
atoms using a similar procedure as for the hyperfine parameter A
[Eq. (2); see Supplementary Notes and Supplementary Fig. 2]. The
results are displayed in Fig. 3. Because the spin density does not
decrease monotonically with distance from the donor
(“Kohn-Luttinger oscillations”'*33), the shf parameter peaks at
the 4th-nearest-neighbor [A(004)] shell. This is reflected in our
calculations (Fig. 3), which are in reasonable agreement with
experiment and have comparable accuracy to earlier work using
the Green’s function method>2. This provides further evidence
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Fig. 2 Isotropic hyperfine parameter for donors in silicon as a
function of supercell size. PBE results are in blue and HSE results are
in orange. a Bismuth donor. The blue line shows a linear fit to PBE
data forn >3, N>216: A = 887 + 4.39 x 10°/N. The orange line has a
slope fixed to the PBE value and intercept fit to the HSE data for n >
3, N>216: A = 1263 +4.39x 10°/N. The dashed black line is the
experimental value, A = 1475 MHz. b Arsenic donor, with the same
color coding as a. PBE fit: A = 95.2 + 1.08 x 10°/N. Line with slope
fixed by the PBE fit and intercept fit to HSE data for n>3: A =
132.5 4 1.08 x 10°/N. The experimental value is A = 198.3 MHz.

that our approach is able to accurately describe the shallow-donor
spin density.

Electric field gradients and quadrupole couplings

Our ability to model shallow donors using first-principles methods
allows us to address unexpected strain-induced spin resonance
splittings first observed in the experiments by Pla et al.?
described in the Introduction. We want to identify the mechanism
by which strain causes a dramatic splitting in the ESR lines for Bi
donors in Si. Traditionally, strain effects have been explained
through the “valley repopulation model”®®, which describes
changes in the valley-orbit ground state caused by shifts of the
conduction-band valleys. This model provides no explanation for
the observed ESR splittings.

Pla et al.?? therefore explored other potential mechanisms for
the strain dependence of the ESR splittings. One of these
mechanisms is based on a term in the ESR Hamiltonian, which
couples the quadrupole moment of the donor nucleus with the
electric field gradient (EFG) induced by the electron wavefunction.
This model includes a parameter y, which enters as a scaling term
in the quadrupole Hamiltonian. The main contribution to this term
should be the Sternheimer antishielding factor, a measure of how
the core electrons amplify an externally applied EFG (in this case
coming from the shallow donor wavefunction). Pla et al.?? found
that y = —900 would be required in this model to fit their data,
close to the value for isolated Bi™ ions (y = —925.6). However, it is
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Fig. 3 Superhyperfine (shf) parameters as a function of distance
to the donor center. Shf parameters for 2°Si in various shells
surrounding the Bi donor are shown in blue squares, and shells
surrounding the As donor are plotted as orange circles. We plot the
negative of the shf parameter because the 2°Si g factor is negative.
The predicted values are extrapolated to the N — oo limit in a similar
way to the hyperfine parameter, though larger supercells are
required to see 1/N scaling (see Supplementary Fig. 2). Top axis
ticks identify the neighbor shells, including the alphabetic labels
from refs. *>°7. Shown for comparison are experimental values from
ref. >’ (red triangles for the E, A, and F shells; the other shells were
not identified) and theoretical values from the Green’s Function (GF)
method of ref. 32 (green stars). Dotted lines connecting the theory
results are a guide to the eye.

not clear whether this value of y is realistic for a Bi donor in Si.
Other observations, such as the variation in strain splittings seen
for different ESR transitions, are also not well explained by the
quadrupole mechanism?.

Being able to calculate the EFG from first principles would
clearly shed light on this issue. Ab initio calculations using the
projector-augmented-wave method have successfully determined
EFGs at nuclei without using empirical corrections such as the
Sternheimer antishielding factor?®. An accurate calculation of the
donor wavefunction will thus allow the determination of the EFG
at the nucleus and the strength of the quadrupole coupling.

We have calculated the EFG at the nucleus of the Bi shallow
donor in unstrained silicon and find it to be zero to within the
accuracy of our calculations. We estimate this error bar to be
approximately 1 V/A?, corresponding to a quadrupole interaction
strength of approximately 1 MHz. For the unstrained case, the zero
value is as expected, since symmetry arguments show that the
EFG should vanish?2. However, the calculated EFGs remain zero
(within the error bar) when strain is applied. This runs counter to
the quadrupole mechanism considered, amongst others, in Pla
et al.??, as this required a quadrupole interaction on the order of
100 MHz. This result would appear to rule out the quadrupole
splitting as one of the potential mechanisms for the strain-induced
splittings observed in ESR.

These results highlight the need for a different mechanism to
explain the observed splitting. In the next section, we will explore
the shift of the isotropic hyperfine parameter with the hydrostatic
component of strain.

Strain

We now address how the splittings of the ESR lines observed in
the refs. 7?2 can be explained by the strain dependence of the
isotropic hyperfine parameter A. Symmetry restricts the form of
the strain dependence of the isotropic hyperfine parameter’.
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Expanded to second order in strain, this dependence is given by
A/Ay = 1+ g(exx + €y + €2)

(3)
+%[(€yy - 622)2 + (€yy — 522)2 + (eyy — €zz)2 ;

where A is the value in the absence of strain. Shear terms can be
shown to be negligible’ and are not discussed here. The
parameters K and L can be obtained by fitting to experimental
results”*2. To pinpoint the underlying mechanisms of the ESR line
splittings, the K and L values calculated for these mechanisms
need to agree with experiment.

The common assumption is that the variation in A would be
attributed to the non-hydrostatic component of strain; this is
referred to as the “valley repopulation model”® and requires an
assessment of the parameter L. L can be estimated as
L = —222/(9A%), where =, = 8.6€V is the uniaxial deformation
potential of the CBM and A is the splitting between the A, and the
E valley-orbit states’>. This estimate results in L = —9720, in good
agreement with L = —9800 + 2100 fit to experimental data and
L = —9064 extracted from tight-binding theory”?%,

However, the quadratic dependence of A on nonhydrostatic
strain implies that it is only ever reduced from the unstrained
value, while the experimental results require both positive and
negative contributions; i.e., the hydrostatic component, propor-
tional to the parameter K, is playing an important role. Since
hydrostatic strain acts on all the valleys equally, it does not lead to
a repopulation effect. However, the magnitude of the wavefunc-
tion at the donor nucleus—which determines A—will be affected
by hydrostatic strain, leading to a nonzero value of K.

The traditional assessment of this dependence on hydrostatic
strain is based on effective mass theory, in which the dependence
occurs through variations in the dielectric constant € and effective
mass m*. The donor Bohr radius ap is proportional to &/m*'%
Literature shows that, for small strains, these properties vary
linearly as a function of hydrostatic pressure. According to ref. *°,
Ag/e = — 2.8 x 107> for P = 1 GPa, and according to ref. 6, Am*/
m* = —1.4 x 1072 for P = 1800 kg/cm?. Using the bulk modulus of
silicon (97.88 GPa)", these results give the dependence of € and
m* on hydrostatic strain e,x = €,y = €, = €:

8¢ _ 0.819¢and 2
& m*

The donor Bohr radius is therefore given by

1 + 0.819%¢

—_ 5
900 23226 ©

The effective-mass-theory wavefunction is proportional to 063/ 2
and the hyperfine parameter is proportional to the square of the
wavefunction at the nucleus (Eq. (2))'%. Therefore the hyperfine
parameter is

3
Ale) = Aow =Ao[1 + 4.524¢ + O(?)]. ©®
(1 + 0.819)

In the notation of Eq. (3), this corresponds to K = 4.524. The
experimentally observed value is K = 19.1%2. Based on effective
mass theory, we would thus conclude that impact of hydrostatic
strain on the hyperfine parameter is much too small to explain the
experimental splittings. But is effective mass theory sufficiently
accurate? We have already seen that central cell effects are key to
the accuracy of our approach. The issue became particularly
relevant in light of subsequent experiments’, that confirmed the
unexpectedly large dependence of the isotropic hyperfine
parameter A on the hydrostatic component of strain. A very
informative treatment of the shortcomings of effective mass
theory and how they can be overcome in _first-principles
calculations was provided by Huebl et al. in ref. 33, They showed
that, for P donors in strained silicon, valley repopulation theory is
not adequate to describe the change in hyperfine parameter. They

= 2.322¢. (4)

CID(S) =
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Fig. 4 Hyperfine parameter versus strain. A/A, — 1 is plotted versus
strain for a bismuth donor in silicon in the n = 6, N = 1728-atom
supercell using PBE. a Hydrostatic strain. A linear fit (orange line)
produces K = 17.5 (Eq. (3)). b Uniaxial strain. Taking K = 17.5 fixed
based on the hydrostatic case, a fit to the data up to ¢ = 10> using
Eg. (3) is shown (orange line), which gives L = —11,700.

were able to achieve good agreement with experiment by
performing ab initio calculations within the Green’s function
method.

We will therefore use our first-principles approach to explicitly
explore the strain dependence for Bi donors. The calculated
dependence of the isotropic hyperfine parameter is shown in Fig.
4 for a n = 6 (N = 1728) supercell using PBE; the behavior as a
function of supercell size and functional will be discussed below.
Figure 4a shows the data for hydrostatic strain. In each case the
atomic structure was fully relaxed. The bismuth-silicon bond
lengths in the unstrained case are 2.651 A, compared t0 2.367 A in
bulk silicon. When hydrostatic strain is applied, all Bi-Si and Si-Si
bond lengths simply scale with the hydrostatic strain to within
better than 0.001 A. The values of A/A, — 1 in Fig. 4 are well
described by a linear fit up to the highest strains tested (2 x 1073,
with a coefficient that corresponds to K = 17.5 (Eq. (3)). This value
is in good agreement with the experimental value K = 19.17.

Figure 4b shows the results for uniaxial strain. We varied ¢,, up
to 2 x 1073, keeping €, = €yy = 0. The calculated points are fitted
to Eq. (3) using the K value obtained from the hydrostatic strain
calculations. Deviations from the quadratic behavior are observed
for higher strains, consistent with the higher-order repopulation
effects. The fit results in L = —11,700, in reasonable agreement
with the values L = —9720 predicted by the valley repopulation
model and L = —9064 calculated from tight-binding theory”?%.
The reason for the decrease in L with uniaxial strain will be
discussed in the subsection on “Irreducible representations”.

We now discuss the sensitivity of the strain results to supercell
size and choice of functional. The calculation of the hyperfine
parameter as a function of hydrostatic strain [Fig. 4a forn =6, N =
1728] was repeated at different supercell sizes and subjected to
similar scaling analysis as binding energies (Fig. 1) and hyperfine
parameters (Fig. 2). The results of this analysis are shown in Fig. 5. K
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5 10 15
1000/N

Fig. 5 Calculated K coefficient as a function of supercell size. K is
defined by Eq. (3). Data is for bismuth donors, with PBE in blue
circles and HSE in orange squares. A fit to PBE data for N>512 is
shown: K=20.2-5290/N. The dashed line shows the
experimental value.

also shows linear scaling with 1/N, but it begins at a higher N value
(corresponding to n = 4) than observed for the hyperfine parameter
itself. Extrapolation to the dilute limit gives a coefficient of K = 20.2,
in good agreement with the experimental value K = 19.17.

As to the influence of the functional, as shown in Fig. 5 the HSE
values for n = 2, 3, and 4 are very close to the PBE results. We
therefore feel that the PBE results can be considered accurate to
within an error bar of +£1. We thus find that, while the A parameter
itself requires a calculation using an advanced functional such as
HSE, its variation with strain (which presumably is determined by a
redistribution of the wavefunction as a function of volume) is
adequately described with PBE.

Our results clearly show that the isotropic hyperfine parameter
depends linearly on the hydrostatic component of strain with a
coefficient that significantly differs from that predicted by
effective mass theory, highlighting the importance of valley-
orbit coupling and central-cell corrections.

Irreducible representations

The symmetry and group-theoretic properties of the ground-state
wavefunction are key to all of our results. As discussed in the
“Introduction” section, the 6-fold degenerate CBM splits into states
corresponding to irreducible representations (irreps) of the Ty
symmetry group: singlet A;, doublet E, and triplet 7,'”'®, The A,
wavefunction (the fully symmetric state) has a peak at the center
while the others have nodes. This allows the A; state to maximize
the Coulomb binding energy, making it the ground state, with an
energy that is significantly lowered compared to effective mass
theory. This also means that the hyperfine parameter is directly
related to the amount of A; character in the ground state; as more
of the other irreps are mixed in, the hyperfine parameter
decreases. In the case of uniaxial strain (Fig. 4b), the symmetry
is lowered, at the expense of the weight of the fully symmetric A,
state, and A decreases for both compressive and expansive
uniaxial strain.

To demonstrate that our calculations correctly capture these
symmetry effects, we project out the portions of the donor
wavefunctions which transform according to the various irreps of
T4. We use the projection operator

A'_Q T
P=h 2 x(RIR o)

where j indexes the various irreps, [; is the dimension of the irrep, h
is the order of the T4 group, R is summed over all the symmetry
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Fig. 6 Changes in symmetry with strain. Fraction of the bismuth
donor spin density which transforms according to the A, irreducible
representation (Eq. (8)), plotted as a function of applied uniaxial
strain. At zero strain, p transforms under the A; representation. As
uniaxial strain is applied, the fraction of p which transforms under A,
decreases.

operations in the group, and x(RY is the character of the operation
in the jth representation®. With cell volume 0, we define the
fraction of the spin density p which transforms under the jth irrep

1 Pp
| = d*r . 8)
% Q/ o]

The xa; values for bismuth donors as a function of strain ¢,, with
exx = €yy = 0 are shown in Fig. 6. At zero strain, p transforms
almost entirely under the A, representation, and as uniaxial strain
is applied, the fraction of p which transforms under A; decreases,
following a trend similar to the hyperfine parameter (Fig. 4b).

Visualizations of the projected spin density are shown in Fig. 7.
The “Kohn-Luttinger oscillations” evident in the shf parameters
(Fig. 3) may also be seen in the shape of the visualized spin
density, which differs significantly from the effective-mass-theory
prediction.

DISCUSSION

The study of shallow impurity wavefunctions has a long history,
beginning with Kohn-Luttinger effective mass theory in the 1950s.
We have overcome some of the challenges to modeling these
wavefunctions from first principles, allowing us to employ DFT
calculations which fully include central-cell and valley—orbit
effects. This allows us to study the evolution of the hyperfine
parameter and quadrupole coupling of shallow donors as a
function of strain without the use of empirical fitting parameters.

We have calculated accurate hyperfine parameters, super-
hyperfine parameters, and binding energies of bismuth and
arsenic shallow donors by using PBE, identifying a 1/N scaling with
supercell size and extrapolating to the N — oo limit, and correcting
the results for PBE self-interaction error using the HSE hybrid
functional. This represents a significant step forward in the ab
initio simulation of shallow donors in silicon, and we expect it to
be generalizable to other shallow impurities in silicon and other
materials.

The predictive nature of our model allows us to explore other
properties based on the calculated electron density. We find that
the electric field gradients at the site of the nucleus are negligibly
low, even when strain is applied. This suggests that the splittings
observed by Pla et al.>? in ESR experiments on Bi donors in Si do
not in fact arise from quadrupole interactions. Instead, our
calculations lend strong support to the alternative mechanism
explored in the ref. ’, which suggests a large linear dependence of
the isotropic hyperfine parameter A on the hydrostatic component
of strain. Our calculations find just such a dependence, with a
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Fig. 7 Visualization of symmetry in the electron density. Results of projecting p onto the A, representation for a bismuth donor calculation
with e = 1073 uniaxial strain, in a N = 1728 (n = 6) supercell. a The portion of p which transforms as A;. Isosurface value 2.7 x 10 %e/A3. b The

remainder after projection. Isosurface value 5.4 x 10 >e/A3,

coefficient K = 20.2 that is in good agreement with the
experimental value K = 19.1. The linear dependence on
hydrostatic strain is significantly larger than the dependence
predicted by effective mass theory.

This accurate, predictive, and generalizable model represents an
important step in improving the ab initio description of shallow
donors and their hyperfine structure. These theoretical tools go
hand-in-hand with experiments, and can be instrumental in the
ongoing effort to develop silicon-based spin qubits.

METHODS

Density functional theory

We use spin-polarized DFT with the projector-augmented wave method*
in the Vienna Ab-initio Simulation Package (VASP)*°. Calculations
employed the Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional*' as well as the hybrid functional of Heyd, Scuseria, and Ernzerhof
(HSE)*>** with the standard parameters. This predicts a band gap of 1.16
eV, in very good agreement with the experimental zero-temperature gap
of 1.17 eV°", suggesting that this functional provides a good description of
the electronic structure of silicon in agreement with previous work®2, The
PBE value is 0.63 eV, The HSE-predicted dielectric constant of 11.1 is in
good agreement with the experimental value 11.7°3, and the predicted
lattice constant 5.433 A is in excellent agreement with the experimental
5431 A%,

Hyperfine parameters were calculated following the methodology
described in the refs. 22443535 The core spin polarization is taken into
account through the frozen valence approximation developed in the ref. >
and validated in the context of HSE in the ref. 2%, We use the VASP standard
PAW pseudopotentials for the PBE functional, with [Xel4f'* in the bismuth
core and [Ne]3523p6 in the arsenic core. Electric field gradients and
quadrupole couplings were calculated using the method of ref. 2°.
Calculations were performed in supercells that are n x n x n multiples of
the conventional 8-atom cubic cell. The largest PBE supercell corresponds
to n =7, containing N=2744 atoms. The largest HSE supercell
corresponds to n = 5, containing N = 1000 atoms. A plane-wave basis
with an energy cutoff of 250 eV was used and the supercells were relaxed
so that all forces were smaller than 1 meV/A. Details on the computational
cost of the hybrid functional calculations may be found in the
Supplementary Discussion. Eigenvalue differences are converged to within
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0.8 meV with respect to the cutoff, and hyperfine parameters are
converged to within 2.5%.

Finite size effects

The Bohr radius of a shallow donor in silicon within effective mass theory is
approximately 23.8 A. This is only slightly smaller than the side lengths of
the largest (n = 7, N = 2744) supercells we use: 38.3 A. The Coulomb
envelope only drops to 1% of its central value 54.7 A from the center.
Therefore, a significant part of this exponential tail necessarily overlaps into
neighboring supercells. We will therefore need to extrapolate to the N —
limit, where N is the number of atoms in the supercell, in order to calculate
physical results. For large enough supercells, the error scales inversely with
the volume of the supercell, or equivalently with 1/N. This involves fitting
lines to the data versus 1/N. All fits are based on the linear least-squares
method.

Occupation of states

Occupancies of the Kohn-Sham states in DFT are typically set through a
“smearing” procedure. This is done to avoid various convergence issues
that can arise when bands are partially occupied, and a scheme for
extrapolating to zero smearing is typically included. This procedure is
benign for most situations, but it leads to severe problems in this particular
case. The energy spacing between valley-orbit split states of the donor
wavefunction is approximately 10 meV, comparable in size to the smallest
smearing parameters typically used; smearing will mix states other than
the ground state into the final charge density. This is a problem because
the A, state has a peak at the nucleus, while the other states have nodes.
We are comparing to experiments performed at low temperature, so the
measured properties are determined entirely by the ground state. Mixing
with excited states of the donor will defeat any chance of calculating the
hyperfine parameter correctly. To overcome this issue, we do not use
smearing in our final calculations, fixing the spin-up occupancy of the
lowest-energy conduction band to one. This requires care to ensure proper
convergence, but has proven feasible through the use of intermediate
calculations which include small amounts of smearing.

Brillouin zone sampling

The A, valley-orbit ground state is made up of a combination of all six
conduction-band valley states. Therefore a correct calculation of the donor
wavefunction must include contributions from each valley. For the
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equilibrium structure, and under hydrostatic strain, the six valleys are
equivalent and equally occupied. Under uniaxial deformation, splitting of
the valleys occurs, and ensuring correct sampling of all of the valleys
(which is necessary to obtain the correct valley-orbit splitting) could be
tricky.

Most of the supercells used in the present study are large enough to
ensure that, in reciprocal space, the conduction-band valleys are folded
back to a point very close to the zone center. Therefore sampling the
Brillouin zone at a single k point automatically allows for all of the proper
interactions and mixing between the valleys in the self-consistent
calculation. Our calculations use the ' point to maintain an unbiased
sampling of the valleys and to reduce the computational demand. A
detailed analysis of Brillouin-zone sampling was included in the ref. *%, and
also reached the conclusion that sampling at the I point provided reliable
results.

We verified that our calculations capture the correct valley-orbit state
through symmetry analysis of the wavefunction.
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The data that support the findings of this study are available in the NOMAD
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