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Abstract: Control and stabilization of irregular and unstable behavior of dynamic systems
(including chaotic processes) are interdisciplinary problems of interest to a variety of scientific
fields and applications. Using the control methods allows improvements in forecasting the
dynamics of unstable economic processes and offers opportunities for governments, central
banks, and other policy makers to modify the behaviour of the economic system to achieve
its best performance. One effective method for control of chaos and computation of unstable
periodic orbits (UPOs) is the unstable delay feedback control (UDFC) approach, suggested by
K. Pyragas. This paper proposes the application of the Pyragas’ method within framework of
economic models. We consider this method through the example of the Shapovalov model, by
describing the dynamics of a mid-size firm. The results demonstrate that suppressing chaos is
capable in the Shapovalov model, using the UDFC method.
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1. INTRODUCTION

Analysis and forecasting of dynamics is one of the main
tasks in studies of financial and economic processes. In
the framework of this task, a crucial research question
is posed to determine the qualitative properties of dy-
namics (revealing stable and unstable regimes, including
chaos). Chaotic behaviour in an economic system is usually
an undesirable phenomenon that hinders the accuracy
of predictions over long time periods. Many researchers
have striven to explain the central features of economic
data: irregular and erratic microeconomic and macroeco-
nomic fluctuations, irregular economic growth, structural
changes, and overlapping waves of economic development
from the point of view of chaos theory, and to demonstrate
the complexity and unpredictable behaviour of economic
processes via nonlinear dynamic models (Day, 1983; Ben-
habib and Day, 1981; Hommes, 1995; Brock and Hommes,
1997, 1998; Hommes, 2006; Barnett and Serletis, 2000;
Barnett and Chen, 1988a,b). However, the main goal of
economic policy is forecasting the behaviour of economic
systems both at macro (country, regions) and micro levels
(companies, households). As John von Neumann correctly
noted: “All stable processes, we shall predict. All unstable
processes, we shall control” circa 1950 (Fang et al., 2017).

Controlling at least some economic processes is one of
the most challenging tasks facing the economists and
politicians responsible for economic policy (Faggini, 2008;
Orlando, 2006). Decision-makers often face the difficult
task of dealing with an economic system that behaves in
unpredictable ways. In particular, chaotic dynamics can
be generated by endogenous nonlinear dynamics without
any external influence of the relevant interacting variables
(Holyst et al., 1996). However, if an economic system
possesses deterministic characteristics, chaotic behaviour
can be controlled with reliable control methods (see, e.g.
(Chen, 2008)).

Chaos control has been demonstrated in a wide variety of
areas, including mechanics, electronics, biology, chemistry
and medicine (Rosser, 2000; Fradkov and Evans, 2005;
Thomas et al., 2019; Wieland and Westerhoff, 2005). A
number of applications of chaos control methods exist in
economic contexts (Mendes and Mendes, 2005; Neck, 2009;
Amrit and Angeli, 2011; Yu et al., 2012; Naimzada and
Pireddu, 2015; Cavalli and Pecora, 2017; Kellett et al.,
2019).

One of the key problems arising within the frameworks
of chaos and control theories is the problem of how to
suppress or stabilize chaotic behavior in applied systems.
These problems were first posed by well-known physicists
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E. Ott, S. Greboggi and J. York (Ott et al., 1990) in the
1990s, and remain of great interest. Next, the Pyragas’
time-delay feedback control method (Pyragas, 1992) have
appeared. The primary mechanism applied to suppress
chaos is localization with the help of small perturbations
in the system, or introduction of UPO controls embedded
in a chaotic attractor.

Holyst et al. (Holyst et al., 1996; Holyst and Urbanowicz,
2000; Holyst et al., 2001) showed that applying the Pyra-
gas time-delayed feedback control to the microeconomic
Behrens-Feichtinger model can facilitate an easy switch
from a chaotic trajectory to a regular periodic orbit and
simultaneously improve the system’s economic properties.
Kopel (Kopel, 1997), using a model of evolutionary market
dynamics, demonstrated how chaotic behaviour can be
controlled by making small changes in a parameter that is
accessible to the decision makers. Bala et al. (Bala et al.,
1998) proposed to control chaos arising in the context of
a “trial-and-error” process of exchange economies. Kaas
(Kaas, 1998) proved that within a macroeconomic dise-
quilibrium model, stationary and simple adaptive policies
are not capable of stabilizing efficient steady states and
lead to periodic or irregular fluctuations for large sets of
policy parameters. Xu et al. (Xu et al., 2002) introduced
an approach to detect the unstable periodic orbits (UPOs)
pattern from chaotic time series in the Kaldor business
cycle model. Salarieh and Alasty (Salarieh and Alasty,
2009) applied the minimum entropy algorithm of chaos
control to the Cournot duopoly with different constant
marginal costs.

In this work, we show the results of our application of
the time-delay feedback control to stabilization and chaos
suppression in the Shapovalov mid-size firm model.

2. PROBLEM STATEMENT

In the framework of economic models, occurrences of
chaotic processes is extremely undesirable. Therefore, the
development of effective methods for suppressing chaos
and bringing the dynamics of a model to a stable regime
by using a small number of corrective operations is an
important task.

Two points turn out to be important for insights into
economic policies. Firstly, moving from unstable orbits
to other types (for instance, to periodic orbits) on the
attractor means choosing different behaviour of the eco-
nomic system. Secondly, small parameter changes and the
presence of many aperiodic orbits can signal resource sav-
ing and choosing among different trade-offs of economic
policies (Boccaletti et al., 2000). Further, application of
control methods to chaotic dynamic systems shows that a
government can, in principle, stabilize an unstable equilib-
rium in a short time by varying income tax rates or gov-
ernment expenditures. Therefore, using control methods,
decision-makers can improve efficiency and induce consid-
erable improvements in the system’s economic properties
in terms of profits and welfare (Day, 1994).

The application of chaos control methods can be consid-
ered both as a way to improve the effectiveness of central
bank interventions and as a source of extra monetary
policy tools. Inflation targeting frameworks give a central
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role to transparency and communication of the central
bank’s views on the economy, its operating procedures, and
its expectations. All of that is easier to communicate with
highly regular interest rate dynamics. When deviations
from target value are decreased, agents’ expectations will
be better aligned with what the central bank is trying
to anchor them on. If agents do not fully believe the
central bank, more precise forecasts can help build and
maintain credibility, making it easier to control expecta-
tions. As managing expectations is crucially important for
controlling inflation, a central bank’s job becomes easier.
Moreover, firms can improve their performance measures
using the time-delay feedback control method.

2.1 Shapovalov Mid-Size Firm Model

Consider the model of V.I. Shapovalov proposed in
(Shapovalov et al., 2004; Shapovalov and Kazakov, 2015)
which describes the dynamics of a mid-size firm

&= —ox+ dy,
Y = px + py — Prz, (1)
z = —vz+ axy.

Here a, (8, o, 0, u, 7y are positive parameters. We

define this model in terms of the differences between actual
levels of the variables X, Y, and Z, denoted the growth of
three main factors of production: the loan amount X, fixed
capital Y and the number of employees Z (as an increase
in human capital), and its potential (natural) levels z,, yp,
and 2, respectively '. Thus, we consider the gap between
the actual and potential levels of factors of production:
r=X—2p,y=Y —yp, and z = Z — z,. An increase in
the loan amount is proportional to the amount of capital
and the size of the loan taken. The coefficient with the
variable y is positive according to the premise that, with
an increase in capital, the company is more likely to give
loans in the lending market; the coeflicient for the variable
x is negative and indicates the losses that the company
incurs when taking a new loan, which is associated with
the requirement to pay interest, as well as the fact that
the company is less willing to give credit when it has
many loan obligations. The capital gain is proportional
to the income from the investment of available capital and
the loan taken, as well as expenses on labor remuneration
and loan repayment. The coefficients for the sum of the
variables = and y are positive, since they show a positive
effect of investing in the development of production; the
coefficient for the product of the variables z and z is
negative, since it indicates the costs of the company. The
increase in the number of employees is proportional to
the capital, the loan taken and the current number of
employees. The coefficient for the product of the variables
x and y is positive, based on the assumption that the
company may spend part of the amount of capital and the
loan taken on attracting additional employees. A negative
coefficient for the variable z indicates that the outflow of
employees due either to dismissal or on their own initiative
should be taken into account.

1 We assume that the potential (natural) levels of factors of produc-
tion correspond to the production possibilities of a mid-size firm
as a whole, reflecting its natural, technological, and institutional
constraints.
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Coefficients at variables are control parameters: « reflects
a combination of factors that contribute to creating a
company image that will be attractive to new employees;
B summarizes factors that influence cost allocation; p
describes the effectiveness of capital investments (the
effects of various taxes should be taken into account);
summarizes factors related to difficulties in obtaining a

loan; for example, a high interest rate, etc.
System (1) can be reduced to a Lorenz-like system
T = —C(l‘ + y)a
. )
y=rrxr+y—xz, wherec=—,r=—,b=
o

(2

7
I

=19

z=—bz+ xy,

using the following coordinate transformation

1% uo no t
(x,y,z)%(mx, 5\/075% 562),t—>'u. (3)
System (2) differs from the classical Lorenz system
(Lorenz, 1963) in the sign of the coefficient at y in the
second equation, which is 1 here, while in the Lorenz
system this coeflicient is -1.

Accordingly, the inverse transformation

(2,y,2) = (@w%@yTZ> b=t (4)

reduces system (2) to system (1) with coefficients ¢ =
cp, 6 = rep,y = bp.

As part of the study of system (1), (Shapovalov et al., 2004;
Gurina and Dorofeev, 2010; Shapovalov and Kazakov,
2015) formulated the task of nonlinear analysis of the
system and its limit dynamics in order to forecast and
control behaviour in the Shapovalov model (1). Revealing
unstable periodic orbits and chaos suppression in the
Shapovalov model are challenging tasks.

2.2 Stabilization of Periodic Orbits in the Shapovalov
Model via Time-Delay Feedback Control

One effective method among others for the stabilization of
UPOs is the delay feedback control (DFC) approach, sug-
gested by Pyragas (Pyragas, 1992) (see discussions of its
advantages, limitations and modifications in (Kuznetsov
et al., 2015; Chen and Yu, 1999; Lehnert et al., 2011;
Hooton and Amann, 2012)). This approach allows Pyragas
and his progeny to stabilize and study UPOs in various
chaotic dynamic systems. Below, a modification of the clas-
sical DFC technique, termed the unstable delayed feedback
control (UDFC) (Pyragas, 2001), is used.

We rewrite system (2) in a general form

U= f(u). ()
Let u™P°(t, ug"°") be its UPO with period 7 > 0, u"P°(t —
7, up?) = u"PO(t,uy"°"), and initial condition ugP”' =

uP°(0, ug"*"). To compute the UPO, we add the UDFC
in the following form:
u(t) = f(u(t)) + KB [Fn(t) + w(t)],
w(t) = Aw(t) + (A = AZ)Fn (t),
N (6)
Fy(t) = C*u(t) — (1-R) Y _ R¥'C*u(t — kT),
k=1
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where 0 < R < 1 is an extended DFC parameter, N =
1,2,...,00 defines the number of previous states involved
in delayed feedback function Fx(t), A0 > 0, and A\° < 0
are additional unstable degree of freedom parameters, B, C'
are vectors and K > 0 is a feedback gain. For the initial
0P and T = 7 we have

condition

Fn(t) =0, w(t) =0,
and, thus, the solution of system (6) coincides with the
periodic solution of the initial system (5).

For system (2), for example, with ”Lorenz-like” parame-
ters r = 28, ¢ = 10, b = 8/3 using (6) with B* = (0,1,0),
C* = (0,1,0), R = 0.4, N = 100, K = 0.5, \? = 0.01,
A% = —0.5, one can stabilize a period-1 UPO u"P°1 (¢, ug)
with period 71 = 1.28701 from the initial point uy =
(1,-1,1), wop = 0 on the time interval [0, 200] (see Fig. 1
and Fig. 2).

The existence of the UPO obtained can be verified by
various other numerical (see, e.g. (Viswanath, 2001; Bu-
danov, 2018; Pchelintsev , 2020)) and computer-assisted
(see, e.g. (Galias and Tucker, 2008; Barrio et al., 2015))
approaches. However, the Pyragas procedure, in gen-
eral, is more convenient for numerical stabilization and
visualization of UPOs. For the initial point u,*”' =
(—13.3549, —19.1419,29.1187) on the UPO u"°i(f) =
u(t,ug”®") we numerically compute the trajectory of sys-
tem (6) without the stabilization (i.e. with K = 0) on
the time interval [0,7 = 100] (see Fig. 3). We denote it
by u(t,ug"") to distinguish this pseudo-trajectory from
the periodic orbit wu(t,u””"). On the initial small time
interval [0, T} = 10], even without the control, the obtained
trajectory u(t,uy"") approximately traces the ”true” tra-
jectory (periodic orbit) u(t, ug®®"). But for ¢ > T, without
a control, the pseudo-trajectory a(t, uy"°") diverges from

u(t,u”?") and visualize a local chaotic attractor A.

Concerning time required for integration, while the time
series obtained from a physical experiment are assumed to
be reliable on the overall time interval considered, time se-
ries produced using the integration mathematical dynamic
model can be reliable on a limited time interval only due to
computational errors (caused by finite precision arithmetic
and numerical integration of ODE). Thus, in general, the
closeness of the real trajectory u(t, up) and the correspond-
ing pseudo-trajectory (¢, ug) calculated numerically can
be guaranteed on a limited short time interval only.

The obtained values of the largest finite-time Lyapunov
ezponent (FTLE) LE; (¢, u5?*") computed along the stabi-
lized UPO w(t, u,"°") and the trajectory without stabiliza-
tion (¢, uyP") gives us the following results. On the initial
part of the time interval [0, T} & 10], one can indicate the
coincidence of these values with a sufficiently high accu-
racy. After ¢ > Ty ~ 40 the difference in values becomes
significant and the corresponding graphs diverge in such a
way that the graph corresponding to the unstabilized tra-
jectory is lower than the parts of the graphs corresponding
to the UPO and the analytical value largest Lyapunov
exponent: LE;(ug””) = 1.038532560368980, computed
via Floquet multipliers (see Fig. 4). The numerical inte-
gration of trajectories via approximate methods is strongly
influenced by the round-off and truncation errors which in
general accumulate over a large time interval and do not
allow tracking the ”true” trajectory without the significant
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Fig. 1. Chaos suppression in system (2) with parameters
r =28, ¢ =10, b = 8/3 using the UDFC method:
a) time evolution of the measurable variable y(t) =
C*u(t); b) time-delayed feedback control Fy(t); ¢) an
additional unstable degree of freedom w(t).

increase of the precision of the floating-point representa-
tion. These results are in close agreement with rigorous
analyses of the time interval choices for reliable numerical
computation of trajectories for the Lorenz system: the time
interval for reliable computation with 16 significant digits
and error 107* is estimated as [0,36], with error 1078
estimated as [0, 26] (see (Kehlet and Logg, 2013, 2017)),
and reliable computation for a longer time interval, e.g.
[0,10000] in Liao and Wang (Liao and Wang, 2014), is a
challenging task that requires significant increase of the
precision of the floating-point representation and the use
of supercomputers. Analytical aspects of this problem are
related to the shadowing theory.
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Fig. 2. Period-1 UPO u"P°(t) (red, period 73 = 1.28701)
stabilized using the UDFC method in system (2) with
parameters set at r = 28, ¢ = 10, b = 8/3.

u(t, ug?")

Fig. 3. Period-1 UPO u"P°'(¢) (red, period 7 = 1.28701)
stabilized using the UDFC method, and pseudo-
trajectory a(t, uy") (blue, ¢ € [0,100]) in system (2)
with parameters set at r = 28, ¢ =10, b = 8/3.

3. CONCLUSION

Control of chaos remains an area of intensive research.
Reliable forecasting of the dynamics of nonlinear systems
with chaotic behaviour is a challenging task. It can be
solved in several ways. For example, by localizing a chaotic
attractor, while obtaining a rough forecasting, or by intro-
ducing control of UPOs embedded in a chaotic attractor,
thereby making the behavior of the system predictable
for given values of its parameters. Using the example
of a three-dimensional dynamic system, we examine the
application of the Pyragas time-delay feedback control
technique for suppressing chaos in a mid-size firm model.
From the essential economic point of view of the task this
result means that decision-makers can not only control the
behaviour of an economic system, but also choose preferred
periodic solutions; that is, increase the predictability of
the behavior of the economy. A similar procedure can be
performed for other UPOs and model parameters. Using
analytical methods (Leonov et al., 2015; Kuznetsov, 2016;
Kuznetsov et al., 2016; Leonov et al., 2016), two important
cases of predictable dynamics can be distinguished in the
parameter space of the Shapovalov model. First, by con-
structing the Lyapunov function, it is possible to indicate
the region of parameters for which all the trajectories of
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Fig. 4. Period-1 UPO u"P°!(¢) (red, period 7 = 1.28701)
stabilized using the UDFC method, pseudo-trajectory
a(t,up"") (blue), and the analytical value LEq (ug?”")
(green) for ¢t € [0,100] in system (2) with parameters
set at r =28, ¢ =10, b = 8/3.
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Fig. 5. Localization of the chaotic attractor (blue) of
system (2) with parameters » = 28, ¢ = 10, b = 8/3
by the absorbing set B = B[\ 1, where By is the

ellipsoid (gray), 21 is the parabolic cylinder (brown).

the system eventually fall into a limited region of the
phase space (see Fig. 5). Second, by analyzing the matrix
of the first approximation, we can ascertain a range of
parameters for which all trajectories tend to a stationary
set (which consists of all stable and unstable equilibrium
states).
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