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Malaria is a Plasmodium parasitic disease transmitted by infected female Anopheles mosquitoes. Climatic factors, such as
temperature, humidity, rainfall, and wind, have significant effects on the incidence of most vector-borne diseases, including
malaria. 'e mosquito behavior, life cycle, and overall fitness are affected by these climatic factors. 'is paper presents the results
obtained from investigating the optimal control strategies for malaria in the presence of temperature variation using a tem-
perature-dependent malaria model. 'e study further identified the temperature ranges in four different geographical regions of
sub-Saharan Africa, suitable for mosquitoes.'e optimal control strategies in the temperature suitable ranges suggest, on average,
a high usage of both larvicides and adulticides followed by a moderate usage of personal protection such as bednet. 'e average
optimal bednet usage mimics the solution profile of the mosquitoes as the mosquitoes respond to changes in temperature.
Following the results from the optimal control, this study also investigates using a temperature-dependent model with insecticide-
sensitive and insecticide-resistant mosquitoes the impact of insecticide-resistant mosquitoes on disease burden when temperature
varies. 'e results obtained indicate that optimal bednet usage on average is higher when insecticide-resistant mosquitoes are
present. Besides, the average bednet usage increases as temperature increases to the optimal temperature suitable for mosquitoes,
and it decreases after that, a pattern similar to earlier results involving insecticide-sensitive mosquitoes.'us, personal protection,
particularly the use of bednets, should be encouraged not only at low temperatures but particularly at high temperatures when
individuals avoid the use of bednets. Furthermore, control and reduction of malaria may be possible even when mosquitoes
develop resistance to insecticides.

1. Introduction

Malaria is a Plasmodium parasitic infectious disease trans-
mitted by infected female anopheles mosquitoes. Sub-
Saharan Africa and many tropical and subtropical regions of
the world experience a large number of malaria-related
mortality and morbidity with most of the disease burden in
sub-Saharan Africa [1]. Climatic factors, such as tempera-
ture, humidity, rainfall, wind, duration of daylight, and
vapor pressure, significantly affect the incidence of many
vector-borne diseases, including malaria [2, 3]. 'ese cli-
matic factors affect the host, vector, and parasite behavior.
'ey also affect the duration of the vector and parasite/
pathogen life cycles [4–7].

'e average global surface temperatures since the late
19th century have increased by about 0.5°C-0.6°C [3, 8];
unfortunately, due to tropical warming, this trend is ex-
pected to continue [8]. Although there is significant spatial
heterogeneity in the anticipated changes in the global av-
erage, the greater temperature increase is expected in sub-
Saharan Africa [8].

Variability in weather and climate determines the geo-
graphical distribution, seasonality, yearly variability, and
longer-term trends of malaria transmission [9, 10]. 'e
distribution and duration of the disease are modified by
periods of unusually high rainfall, altered humidity, or
warmer temperatures leading to increased transmission [11].
Similarly, periods of long-term drought can reduce malaria
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transmission [9–11]. Variability in the El Ni􏽥no cycle and
other long-term meteorological cycles can increase the
disease burden and periodic upsurges in cases resulting in
malaria epidemics [9, 11].

'e greatest impact due to climate change is likely to be
observed in temperature ranges 14°C–18°C and 35°C–40°C.
'ese temperature ranges have a significant impact on the
transmission of many vector-borne diseases [12]. Places at
the lower end of the temperature range (14°C–18°C) will see
an increase or extension in the transmission periods [13].
For malaria transmission, many temperature-related effects
have been documented and established. For example, the
female adult anopheles mosquitoes tend to feed more fre-
quently as temperature increases because blood is digested
more quickly. However, the juvenile mosquitoes maturate
more quickly in warmer waters as a result of the shortened
incubation period (leading to a faster growth rate of the
vector larvae) [12, 14]. 'e average lifespan of an adult
female mosquito is about 21 days, and this is also affected by
temperature; the mosquito survival rapidly decreases when
temperature rises beyond [30°C, 32°C] [15]. Furthermore,
temperature equally affects the malaria parasites inside the
vector; at 22°C, it takes 19 days for these parasites to mature
within the mosquito, but the maturation period decreases to
eight days at 30°C [15, 16].

Temperatures greater than 34°C (extreme temperature)
negatively affect the survival of malaria vectors, parasites,
and, invariably, the transmission rate [17]. A shift in the
distribution of vectors into nonendemic areas is expected as
global temperature increases so that an increase in malaria
incidence is expected in malaria-endemic areas with lower
temperatures, while a decline in incidence is expected in
regions at temperatures beyond the transmission peak
(provided all other factors remain constant and do not
change) [18, 19].

Furthermore, malaria transmission is enhanced by
rainfall, which generally increases the availability and pro-
ductivity (conditional on ambient temperatures) of mos-
quito breeding sites [20, 21]. On the contrary, excess rainfall
can lead to the flushing out of Anopheles breeding sites [22]
and a decrease in the mosquito population.

Agusto et al. in [2] assessed the role of temperature
variations on malaria transmission and identified mean
monthly temperature ranges where malaria-associated
burden increases in West African cities as
[22.61°C, 28.58°C], in Central African cities as
[16.68°C, 27.92°C], in East African cities as
[19.04°C, 26.75°C], and in KwaZulu-Natal, South Africa, as
[16°C, 25°C]. 'e study carried out uncertainty and sensi-
tivity analysis using Latin hypercube sampling (LHS) and
partial rank correlation coefficients (PRCC) to identify
parameters with the most impact on the total number of
infectious individuals as output function; the parameters
with the most impact on the output are mosquito carrying
capacity (KV), the mosquito biting rate (bV), the trans-
mission probability per contact for susceptible mosquitoes
(βV) and susceptible humans (βH), the maturity rate from
larvae stage to adult mosquito (θV), and the human re-
cruitment rate (ΠH).

'e study also carried out uncertainty and sensitivity
analysis by incrementing temperature by 2°C; they found
that the larvae maturation rate (θV) has a minimum PRCC
value at T � 24°C and a maximum value at T � 30°C.
Furthermore, the study showed that the mosquito biting rate
(bV) has a maximum PRCC value at T � 26°C and a
minimum PRCC value occurs at T � 24°C. 'e implication
of this result on control policy is that when the mean
monthly temperatures are in the range [16.7, 25]°C, indi-
viduals in the community should use both mosquito-re-
duction strategy and personal protection against mosquito
bites; however, for higher meanmonthly temperatures in the
range [26, 34]°C, mosquito-reduction strategy should be
emphasized in the community (or household) ahead of
personal protection.

'is study aims to determine if this should be the control
protocol. In particular, should individuals use bednets when
temperatures are low? Or should they desist from using
bednets when temperatures are high? To address these
questions, we apply optimal control theory using the results
from the sensitivity analysis carried out in [2] to identify the
time-dependent control variables to be implemented in our
study.

'e paper is organized as follows: the model formulation
is given in Section 2, alongside details of the temperature-
dependent parametrization adopted. 'e optimal control
problem is given in Section 3. 'e section further includes
the optimal control analysis and the characterization of the
control variables. In Section 4, we give results of the nu-
merical simulation of the control problem. In Section 5, we
introduce a mathematical model with insecticide-resistant
mosquitoes; this is due to the results obtained from applying
the optimal controls in Section 4.1 involving insecticide-
sensitive mosquitoes. 'e optimal control analysis and
numerical simulation for insecticide-resistant mosquitoes
are implemented in Section 5.1. Finally, the discussion and
conclusions are stated in Sections 6 and 7, respectively.

2. Methods

2.1. Model Formulation. In this paper, we consider the
simple malaria model used in the study of Agusto et al. [2]
since the model with the property of gradual boosting of
immunity against malaria due to repeated exposure has
marginal (or no) effect on predictions of disease burden.'e
human population, of size NH(t), is split into mutually
exclusive subpopulations of individuals who are susceptible
(SH(t)), exposed (EH(t)), infectious (IH(t)), and recovered
from the infection (RH(t)) so that

NH(t) � SH(t) + EH(t) + IH(t) + RH(t). (1)

Similarly, the total mosquito population size at time t,
denoted by NV(t), is subdivided into immature mosquitoes
(eggs, larvae, and pupae) (LV(t)), susceptible mosquitoes
(SV(t)), exposed mosquitoes (EV(t)), and infectious mos-
quitoes (IV(t)).

'e simple model is given by the following deterministic,
nonautonomous, system of nonlinear differential equations,
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where dot notation denotes the derivative with respect to
time t and T and 􏽢T � +δT denote air and water temperature:

SH

·

(t) � ΠH + ωHRH(t) − λH T, IV, NH( 􏼁SH(t) − μHSH(t),

EH

·

(t) � λH T, IV, NH( 􏼁SH(t) − σH + μH( 􏼁EH(t),

IH

·

(t) � σHEH(t) − cH + μH + δH( 􏼁IH(t),

RH

·

(t) � cHIH(t) − ωH + μH( 􏼁RH(t),

LV

·

(t) � ϕV(T) 1 −
LV(t)

KV

􏼢 􏼣 SV(t) + EV(t) + IV(t)􏼂 􏼃 − θV(􏽢T) + μL(􏽢T)􏽨 􏽩LV(t),

SV

·

(t) � θV(􏽢T)LV(t) − λV T, NH( 􏼁SV(t) − μV(T)SV(t),

EV

·

(t) � λV T, NH( 􏼁SV(t) − σV(T) + μV(T)􏼂 􏼃EV(t),

IV

·

(t) � σV(T)EV(t) − μV(T)IV(t).

(2)

'e flow diagram of malaria model (2) is shown in
Figure 1; Table 1 describes the state variables and
parameters.

'e parameter ΠH in the system (2) is the human re-
cruitment rate, λH(T, IV(t), NH(t)) is the temperature-
dependent force of infection of healthy susceptible humans
(after contact with infectious mosquitoes), and μH is the
natural death rate of humans. 'e infection rate,
λH(T, IV(t), NH(t)), is defined as

λH T, IV(t), NH(t)( 􏼁 �
βHbV(T)IV(t)

NH(t)
, (3)

where βH is the susceptible human transmission probability
of malaria infection per bite from an infectious mosquito
and bV(T) is the mosquito temperature-dependent per
capita biting rate; the conservation law of mosquito bites was
used to derive the temperature-dependent force of infection
λH(T, IV(t), NH(t)) [23–25]. 'e parameter, σH, represents
exposed humans progression rate into the infectious class
(IH). Also, the parameter cH represents the rate at which
individual in the IH class recovers (and moves to the re-
covered RH class). 'e parameter ωH represents the rate at
which the recovered individuals in RH loose their infection-
acquired immunity and move to the SH class. 'e parameter
δH is the rate at which individuals in the infectious human
class (IH) suffer malaria-induced mortality.

After successfully obtaining blood meals from human
hosts, the female mosquitoes will rest for a few days allowing
the blood to digest and their eggs to develop. 'e process of
mosquito egg laying is sensitive and dependent on tem-
perature [26]; the laid eggs typically hatches within 2-3 days
and may take up to 2-3 weeks in colder temperate climates
[26, 27]. 'e temperature-dependent egg deposition rate is

denoted by ϕV(T). We assume that the immature mosquito
population (comprising of the larvae and pupae) is limited
by the carrying capacity KV; this parameter is related to the
amount of available nutrients and space [28–30]. 'us,
ϕV(T)[1 − LV(t)/KV][SV(t) + EV(t) + IV(t)] represents the
logistic growth rate for the immature mosquitoes. 'e pa-
rameter θV(􏽢T) denotes the temperature-dependent meta-
morphosis rate (i.e., maturation rate) of immature
mosquitoes [31–34], and the temperature-dependent mor-
tality rate of immature mosquitoes is give by the parameter
μL(􏽢T) (it is worth noting that, in this study, the dynamics of
the three aquatic stages of the mosquito is modeled using the
single compartment, LV(t), for mathematical convenience
(see also [25, 29, 30])). Susceptible adult female mosquitoes
become infected, following effective contact with an infec-
tious human (from an infectious blood meal); this force of
infection is also temperature-dependent, and it is given by

λV T, IH(t), NH(t)( 􏼁 �
βVbV(T)IH(t)

NH(t)
, (4)

where βV is the probability that a bite from a susceptible
mosquito to a human with infectious gametocytes leads to
the infection of the mosquito. 'e parameter σV(T) is the
temperature-dependent progression rate of exposed mos-
quitoes [35, 36]. 'e parameter μV(T) represents the
temperature-dependent death rate of adult mosquitoes;
this parameter is dependent both on temperature and
humidity and the ability of the mosquito to successfully
obtain blood meals while avoiding host defenses [26]. We
assume there is no disease-related death for the
mosquitoes.

Following Agusto et al. [2], the temperature-dependent
parameters of the model (2) are defined as follows: using the
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quadratic functions used in [37], the mosquito biting rate,
bV(T), and egg deposition rate, ϕV(T), are given by

bV(T) � − 0.00014T
2

+ 0.027T − 0.322,

ϕV(T) � − 0.153T
2

+ 8.61T − 97.7.
(5)

Similarly, the temperature-dependent parameters
σV(T), θV(􏽢T), and μV(T) are defined in [37] as follows:

σV(T) � − 0.00083T
2

+ 0.044T − 0.487, (6)

θV(􏽢T) �
B(T)pEA(􏽢T)

τEA(􏽢T)
, (7)

μV(T) � − ln − 0.000828T
2

+ 0.0367T + 0.522􏼐 􏼑. (8)

'e temperature-dependent function B(T) represents
the lifetime number of eggs laid by the female mosquito, the
probability that the egg laid survives to become an adult
mosquito is represented by pEA(􏽢T), and the development
time from egg to adult mosquito is represented by τEA(􏽢T)

[37]. 'e temperature-dependent function, B(T), is defined
as

B(T) �
EFD(T)

μV(T)
, (9)

where EFD(T) is the number of eggs laid per female per day.
Hence, B(T), the total number of eggs laid by a mosquito (in
a lifetime), is equal to the number of eggs laid per day
multiplied by the average adult lifespan (1/μV(T)) [37].
'ese temperature-dependent parameters are expressed as
[37]

EFD(T) � − 0.153T
2

+ 8.61T − 97.7, (10)

pEA(􏽢T) � − 0.00924􏽢T
2

+ 0.453􏽢T − 4.77, (11)

τEA(􏽢T) �
1

− 0.00094􏽢T
2

+ 0.049􏽢T − 0.552􏼒 􏼓

.
(12)

Hence, substituting the temperature-dependent function
(9)–(12) into (7), we have

θV(􏽢T) � − 0.153T
2

+ 8.61T − 97.7)(− 0.00924􏽢T
2

+ 0.453􏽢T − 4.77􏼒 􏼓

× − 0.00094􏽢T
2

+ 0.049􏽢T − 0.552􏼔 􏼕
1

− ln − 0.000828T
2

+ 0.0367T + 0.522􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦.

(13)

Lastly, the parameter μL(􏽢T) [38] is defined as

μL(􏽢T) �
1

8.560 + 20.654 1 +(􏽢T/19.759)
6.827

􏽨 􏽩
− 1. (14)

Numerical simulations of the model are carried out
using the mean monthly temperatures from 2011 to 2013 for
ten cities in sub-Saharan Africa (three cities each in West,
Central, and East Africa and KwaZulu-Natal, South Africa)
as were implemented in [2]. 'e cities in West Africa are
NZerekore, Guinea; Bamako, Mali; and Niamey, Niger. 'e
cities in Central Africa are Lubumbashi, DRC; Tchibanga,

Gabon; and Ati Chad, while the cities in East Africa are
Kigali, Rwanda; Gulu, Uganda; and Lodwar, Kenya.

'e temperature within the three cities of West, Central,
and East Africa is chosen to represent the minimum, mean,
and maximum mean monthly temperature, respectively, in
the given region. As in [2], we used the temperature profile
of KwaZulu-Natal as a representative sample of cities in
southern Africa, since most cities in southern Africa have
similar mean monthly temperatures [39].

'e next section investigates the control strategies for
curtailing malaria following the results obtained from
sensitivity analysis in [2].

Humans

Mosquitoes

SH EH IH RH

LV SV IVEV

∏H μH μH μH

σH

μH

γH

ωH

δH

λH (T, IV, NH)

λV (T, IH, NH)

ϕV (T)

σv (T)

μV (T)μV (T)μV (T)μL (T)̂

θV (T)
^

Figure 1: 'e malaria model (2) flow diagram.
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3. Optimal Control Problems

Following the results obtained from the sensitivity analysis
in [2], we introduce into the transmission model (2) two

time-dependent controls, namely, personal protection
against mosquito bite and mosquito-reduction strategies.
'e mosquito-reduction strategy is further divided into two
(larvicides and adulticides) according to the life stages of the
mosquitoes. For simplicity, we assume that the use of
bednets reduces the contact between mosquitoes and
humans and that the mosquito population is reduced by the
mosquito-reduction strategies (larvicides and adulticides),
which we assume in this case chemical-based insecticides.
However, there are other environmental friendly larvaciding
methods that can be used to target the larvae stage of the
mosquitoes, such as larvivorous fish which prey on the larvae
[40–44] and bacterial larvicide which causes the mosquitoes
to starve to death once they ingest the spores of the bacterial
larvicide [45–48]. In a future study, we will incorporate the
insecticide capacity of the bednets [49] and the actions and
kinetics of these larvacide methods. 'us, the three time-
dependent control variables are uH(t), uL(t), and uV(t),
representing personal protection, larvaciding, and adulti-
ciding. 'us, model (2) becomes:

dSH(t)

dt
� ΠH + ωHRH(t) − λH T, 1 − uH(t)IV, NH􏼂 􏼃( 􏼁SH(t) − μHSH(t),

dEH(t)

dt
� λH T, 1 − uH(t)( 􏼁IV, NH􏼂 􏼃SH(t) − σH + μH( 􏼁EH(t),

dIH(t)

dt
� σHEH(t) − cH + μH + δH( 􏼁IH(t),

dRH(t)

dt
� cHIH(t) − ωH + μH( 􏼁RH(t),

dLV(t)

dt
� ϕV(T) 1 −

LV(t)

KV

􏼢 􏼣 SV(t) + EV(t) + IV(t)􏼂 􏼃

− θV(􏽢T) + μL(􏽢T)􏽨 􏽩LV(t) − uL(t)LV(t),

dSV(t)

dt
� θV(􏽢T)LV(t) − λV T, 1 − uH(t)( 􏼁NH􏼂 􏼃SV(t) − μV(T)SV(t) − uV(t)SV(t),

dEV(t)

dt
� λV T, 1 − uH(t)( 􏼁NH􏼂 􏼃SV(t) − σV(T) + μV(T)􏼂 􏼃EV(t) − uV(t)EV(t),

dIV(t)

dt
� σV(T)EV(t) − μV(T)IV(t) − uV(t)IV(t),

(15)

where

Table 1: Description of the variables and parameters of the malaria
model (2).

Variable Description
SH(t) Number of susceptible humans
EH(t) Number of exposed humans
IH(t) Number of infectious humans
RH(t) Number of recovered humans

LV(t)
Number of immature (eggs, larva, and pupa stages)

vectors
SV(t) Number of susceptible vectors
EV(t) Number of exposed vectors
IV(t) Number of infectious vectors
Parameter Description
ΠH Humans recruitment rate

βH

Transmission probability for susceptible humans per
contact

βV

Transmission probability for susceptible vectors per
contact

σH Progression rate of infectious humans
μH Humans natural mortality rate
δH Humans disease-induced mortality rate
cH Recovery rate
ωH Loss of immunity rate
KV Carrying capacity of immature mosquitoes
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λH T, 1 − uH(t)( 􏼁IV(t), NH(t)􏼂 􏼃 �
βH 1 − uH(t)( 􏼁bV(T)IV(t)

NH(t)
,

λV T, 1 − uH(t)( 􏼁NH􏼂 􏼃 �
βV 1 − uH(t)( 􏼁bV(T)IH(t)

NH(t)
.

(16)

'e factor (1 − uH(t)) reduces the force of infection
associated with humans and mosquitoes, respectively
[50–52].

'is study aims to minimize the objective function
defined as

J(u) � 􏽚
tf

0
A1IH + B1LV + B2SV + B3EV + B4IV + C1uH􏼂

+ εC2u
2
H + C3uL + εC4u

2
L + C5uV + εC6u

2
V􏽩dt,

(17)

subject to the differential equations (15), where tf is the final
time. 'is performance specification involves minimizing
the number of infected humans and the mosquito pop-
ulation, along with the cost of applying the controls
(uH(t), uL(t), uV(t)). Often the cost of implementing a
control would be nonlinear, and as such, a simple nonlinear
quadratic objective functional is taken here. 'e costs can
include funds needed for control implementation, cost of
hospitalization, and the cost of manpower lost due to
hospitalization. 'is assumption is based on the fact that
there are no linear relationships between the effects of the
intervention and the cost of the intervention on the infected
populations; such quadratic costs have been frequently used
[50–54]. 'e coefficients and balancing cost factors are
A1Bj, j � 1, . . . , 4, Ck, k � 1, . . . , 6.

We seek to find the optimal controls u∗H, u∗L, and u∗V such
that

J u
∗
H, u
∗
L, u
∗
V( 􏼁 � minU J uH, uL, uV( 􏼁􏼈 􏼉. (18)

'e optimal control solution is given as

u
∗
H �

1
2εC2

− C1N
∗
H + S
∗
VbV(T)βV λ∗EV

− λ∗SV
􏼐 􏼑I

∗
H􏼐

+ I
∗
VbV(T)βH λ∗EH

− λ∗SH
􏼐 􏼑S

∗
H − λ∗RH

R
∗
H􏽨 􏽩􏼑,

u
∗
L �

λ∗LV
L
∗
V − C3

2εC4
,

u
∗
V �

λ∗EV
EV + λ∗IV

I
∗
V + λ∗SV

S
∗
V − C5

2εC6
.

(19)

'e control characterization is given in Appendix A.
In the next section, the results of the numerical solutions

of the optimality system, the corresponding optimal control,
and the interpretations of the various cases are considered.

4. Numerical Illustration

'e forward-backward sweep algorithm, along with the
fourth-order Runge–Kutta method, was used to obtain the

numerical solutions of the optimal controls and state
values. 'e algorithm requires that initial estimates for the
control variables be made. 'en using these estimates, the
state variables are then solved forward in time using the
dynamics (15). 'e results obtained for the state variables
are used in computing the solution for the adjoint equa-
tions (A.4) together with given final conditions (A.7).'ese
are solved backward in time, using the backward fourth-
order Runge–Kutta method. Both the solution of the state
and adjoint values are then used to update the control, and
the process is repeated until there is sufficient convergence
between the current state, adjoint, and control values [55].
'e algorithm is implemented using MATLAB R2016A
[56].

'us, to implement the optimal control algorithm, the
following initial condition values are used SH(0) � 9384291,

EH(0) � 8200, IH(0) � 1200, RH(0) � 1000, LV(0) �

11277924, SV(0) � 44300, EV(0) � 1452, and IV(0) � 2800.
'e weight factors are chosen as A1 � Bi � Cj � 1.00,

i � 1, . . . , 4, j � 1, . . . , 6. It should be pointed out that the
values chosen for the initial conditions and weights used in
the optimal control simulations are only of theoretical sense
to demonstrate the control strategies proposed in this paper.

First, we consider the optimal control simulation for the
maximum mean temperature of 25.32°C in KwaZulu-Natal,
South Africa. 'is is the highest mean monthly temperature
in the Province, and it occurs in November. 'e simulation
is done for a period of 30 days representing the number of
days in the month. In the next section, we consider the
control using the meanmonthly temperature over the twelve
months in a year. 'e results of the optimal control sim-
ulations of model (15) are depicted in Figure 2. With optimal
control, there are fewer infected humans in the community
compared to the case with no control (Figure 2(a)). On the
thirtieth day, there were a total of 3.3330 × 104 infected
humans in the absence of control compared to approxi-
mately 8.7797 × 103 with the application of control. Simi-
larly, for the infected mosquitoes, there are more infected
mosquitoes in the absence of control, unlike when control is
applied where the mosquitoes are significantly reduced
(Figure (2(b)). In particular, there were 2.4505 × 104 infected
mosquitoes in the absence of control on the thirtieth day
compared to approximately 120 with the application of
control.

'e corresponding time-dependent controls
(uL(t), uV(t), and uH(t)) are depicted in Figure 3. 'e time-
dependent controls uL(t) start at the upper bound of unity for
the most part of the simulation period before reducing to the
lower bound. Control uV(t) starts to be low at 0.165 but
quickly rises to the upper bound for most of the simulation
period. 'e control uH(t) starts at the upper bound for about
eight days before gradually reducing to the lower bound.

In the next section, we consider the control using the
mean monthly temperature over the twelve months in a year
and determine the temperature range suitable for mosqui-
toes. 'e total number of infected humans and mosquitoes
per mean monthly temperature is used as metric for mean
optimal controls uL(t), uV(t), and uH(t). We take only a
single value for the total number of infected humans and
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mosquitoes and the mean optimal control level for each
control uL(t), uV(t), and uH(t) since plotting the complete
solution profiles will involve 36 solution trajectories
resulting in a lot of figures to read and interpret. 'erefore,
using the total infected and the mean level of control, we can
see clearly from the figures and draw interpretation quickly
from the figures.

4.1. Optimal Control with Mean Monthly Temperatures

4.1.1. Mean Monthly Temperature: South Africa Profiles.
'e results of the optimal control simulations of the malaria
model (2) in KwaZulu-Natal are depicted in Figures 4(a) and
4(b). First, the uncontrol and control cases for the mean
monthly air temperatures in KwaZulu-Natal are super-
imposed with the total number of cases in each month
generated using the model (2) with the baseline parameter

values in Table 2. As previously obtained in [2], this figure
show that, in general, malaria burden increases with in-
creasing mean air temperature in the range [16.7°C, 25.3°C].
Figure 4(a) shows that there are fewer infected individuals
with the application of the control measures.

Furthermore, the results of the optimal control simu-
lations of the malaria model (2) measured in terms of the
average control efforts are depicted in Figure 4(c). 'is
shows that the time-dependent controls uL(t) and uV(t) on
average are close to the upper bound throughout the year for
all temperature values, while the time-dependent control
uH(t) starts relatively low for low temperature and is rel-
atively high for high temperature. It should be noted that the
solution profile for uH(t) mimics the trajectory of the in-
fected mosquitoes as the mosquitoes respond to variations in
temperature (Figures 4(b) and 4(c)).

4.1.2. Mean Monthly Temperature: Other Cities Infected
Human Profiles. Similar behavior is observed in the nine
cities, used in [2], and three cities each were chosen from
West, Central, and East African regions (Table 3). In par-
ticular, Figure 5 depicts the mean monthly air temperatures
in the three cities in West Africa superimposed on the mean
total number of new cases generated each month using
model (2). 'e figures for Central and East African cities are
depicted in Figures 6 and 7.

Figures 5(a)–5(e) show that in West Africa, malaria
burden increases for temperatures in the range
[22.61°C, 28.58°C], while in Central Africa (see the infected
humans in Figure 6), malaria burden increases for tem-
peratures in the range [16.68°C, 27.92°C]. Lastly, the range
in East Africa is [19.04°C, 26.75°C] (Figure 7 for the infected
humans). 'ese simulations clearly show the variability in
the suitable temperature ranges for malaria transmission in
the various regions of sub-Saharan Africa, as previously
obtained in [2]. 'e solution profile for infected mosquitoes
is given Figures 8–10. It also shows that the solution profile
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Figure 2: Simulation results of model (15) with and without controls using the maximummean temperature of 25.32°C in KwaZulu-Natal,
South Africa. (a) Infectious individuals. (b) Infectious mosquitoes.
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Figure 3: Simulation results of the control profile of model (15)
using the maximum mean temperature of 25.32°C in KwaZulu-
Natal, South Africa.
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for control uH(t) mimics the trajectory of the infected
mosquitoes as the mosquitoes respond to variations in
temperature (Figures 8–10).

Specifically, in West Africa, Figures 5(a), 5(c), and 5(e)
show that there are fewer infected individuals with the
application of the control measures. 'e average time-
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Figure 4: Simulations of the model (2) as a function of time plotting the monthly total number of infected humans and mosquitoes in
KwaZulu-Natal, South Africa. (a) Total number of infected humans. (b) Total number of infected mosquitoes. (c) Optimal controls
uH(t), uL(t), and uV(t). 'e mean monthly temperature is plotted in blue lines and is superimposed onto each figure.

Table 2: Values and ranges of the temperature-independent parameters of the model (2).

Parameter Baseline value Range Reference
ΠH 400/day 10 − 800/day Variable
βH 0.24/day 0.072 − 0.64/day [25, 57]
μH 0.00004/day (1/((80 × 365)) − (1/(70 × 365)))/day [25, 57]
δH 0.0003454/day 1.0 × 10− 15 − 4.1 × 10− 4/day [25, 57]
σH (12/365) × 3.04/day 0.067 − 0.20/day [25, 57, 58]
cH 0.0023 ± 0.0005/day 0.0014 − 0.017/day [25, 57]
ωH 1.7 × 10− 5/day 5.5 × 10− 5 − 1.1 × 10− 2/day [25, 57]
KV 40000 5.0 × 101 − 3.3 × 106 [29, 30]

Table 3: Cities in West, Central, and East African regions.

West African cities Central African cities East African cities
NZerekore, Guinea Lubumbashi, DRC Kigali, Rwanda
Bamako, Mali Tchibanga, Gabon Gulu, Uganda
Niamey, Niger Ati, Chad Lodwar, Kenya
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Figure 5: Simulations of the model (2) as a function of time: (a, c, e) the monthly total number of infected humans without and with control
and (b, d, f ) optimal controls uH(t), uL(t), and uV(t), in NZerekore, Guinea; Bamako, Mali; and Niamey, Niger; in West Africa. 'e mean
monthly temperature is plotted in blue lines and is superimposed onto each figure.
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Figure 6: Simulations of the model (2) as a function of time: (a, c, e) the monthly total number of infected humans without and with controls
and (b, d, f ) optimal controls uH(t), uL(t), and uV(t), in Lubumbashi, DRC; Tchibanga, Gabon; and Ati, Chad; all Central Africa. 'e mean
monthly temperature is plotted in blue lines and is superimposed onto each figure.
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Figure 7: Simulations of the model (2) as a function of time: (a, c, e) the monthly total number of infected humans without and with controls
and (b, d, f ) optimal controls uH(t), uL(t), and uV(t), in Kigali, Rwanda; Gulu, Uganda; and Lodwar, Kenya; in East Africa. 'e mean
monthly temperature is plotted in blue lines and is superimposed onto each figure.
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Figure 8: Simulations of the model (2) as a function of time: (a, c, e) the monthly total number of infected mosquitoes without and with
control and (b, d, f ) optimal controls uH(t), uL(t), and uV(t), in NZerekore, Guinea; Bamako, Mali; and Niamey, Niger; in West Africa.'e
mean monthly temperature is plotted in blue lines and is superimposed onto each figure.
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Figure 9: Simulations of the model (2) as a function of time: (a, c, e) the monthly total number of infected mosquitoes without and with
control and (b, d, f ) optimal controls uH(t), uL(t), and uV(t), in Lubumbashi, DRC; Tchibanga, Gabon; and Ati, Chad; in Central Africa.'e
mean monthly temperature is plotted in blue lines and is superimposed onto each figure.
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Figure 10: Simulations of the model (2) as a function of time: (a, c, e) the monthly total number of infected mosquitoes without and with
control and (b, d, f ) optimal controls uH(t), uL(t), and uV(t), in Kigali, Rwanda; Gulu, Uganda; and Lodwar, Kenya; in East Africa. 'e
mean monthly temperature is plotted in blue lines and is superimposed onto each figure.
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dependent controls uL(t) and uV(t) are close to the upper
bound for all temperature values in the three cities of West
Africa (Figures 5(b), 5(d), and 5(f )). 'e time-dependent
control uH(t) starts relatively low for low temperatures and
is relatively high for high temperatures. It should be noted
that the solution profile for uH(t) varies from about 0.25 to
0.7 as the temperature gradient varies across West Africa.
'e control uH(t) is low at about 0.25 for low temperatures
and about 0.7 for high temperatures.

In Central Africa, the application of the control measures
leads to fewer infected individuals (see the infected humans
in Figure 6). 'e average time-dependent controls uL(t) and
uV(t) are all close to the upper bound for all temperature
values in the three cities of Central Africa, see Figures 6(b),
6(d), and 6(f). 'e time-dependent control uH(t) varies
from about 0.3 to 0.8 as the temperature gradient varies
across Central Africa. Similar to what was observed in West
Africa, the control uH(t) is low at 0.3 for low temperatures
and is relatively high at 0.8 for high temperatures.

Also, in East Africa, there are fewer infected individuals
with the application of the control measures (see the infected
humans in Figure 7). 'e average time-dependent control
uH(t) varies from about 0.3 to 0.7, while the controls uL(t)

and uV(t) are close to the upper bound as the temperature
gradient varies across the three cities of East Africa, see
Figures 7(b), 7(d), and 7(f ). 'e time-dependent control
uH(t) starts relatively low at 0.3 for low temperature and is
relatively high at 0.7 for high temperature.

4.2. Control in Temperature Ranges Suitable for Mosquitoes

4.2.1. Suitable Temperature Ranges: Infected Human Profiles.
Next, we explore closely the optimal control strategies in the
temperature range suitable for mosquitoes identified in the
Mean Monthly Temperature: Other Cities Infected Human
Profiles section [2]. In West Africa, the temperature range is
[22.61°C, 28.58°C], and in Central Africa, the temperature is
[16.68°C, 27.92°C]. 'e temperature range in East Africa is
[19.04°C, 26.75°C], and in South Africa, the range is
[16.7°C, 25.3°C].

We observed, in Figure 11(a) in the absence of control,
an increase in the total number of infected humans in West
Africa until the midtemperature of 25.59°C before de-
creasing at a higher temperature. However, in Central, East,
and South Africa, the total number of infected humans
increases with increasing temperature (Figures 11(c), 11(e),
and 11(g)). 'e application of the control strategies reduced
the number of infected humans. Similar dynamics are ob-
served for mosquitoes, and the plots are given in Figure 12.

We observed in Figures 11(b), 11(d), 11(f ), and 11(h)
that the average time-dependent controls uL(t) and uV(t)

are close to the upper bound for all temperature values in all
the four regions. In West Africa, the average control uH(t)

increases until the midtemperature of 25.59°C before de-
creasing at a higher temperature, while in East, Central, and
South Africa, the time-dependent control uH(t) increases
with increasing temperatures.

'e optimal control strategies with temperature suggest
that very high levels of larvicides and adulticides should be
used. 'ese high levels of insecticide, particularly from the
scale-up use of insecticide-treated bednets, and indoor
spraying have been observed to lead to the development of
resistance mosquito [59, 60]. 'is widespread use of in-
secticide-treated bednets and indoor spraying has been
largely successful in reducing the incidence of malaria across
sub-Sharan Africa [61]. However, the widespread use of
these has increased the pressure on mosquitoes to evolve
resistance to these commonly used pyrethroid insecticides
[59, 62].

Using sequencing techniques and genetic analyses,
Barnes et al. [59] carried out a continent-wide population
structure study of Anopheles funestus, a major African
malaria mosquito. 'ey located a gene region that has
allowedmosquitoes to evolutionarily adapt to insecticides by
enabling them to break down insecticides [59]. 'is resis-
tance form of this gene has now swept through mosquito
populations in southern Africa to become almost universal
[60].

Coupling our result from the optimal control of insec-
ticide mosquitoes and the findings of Barnes et al. [59], we
develop a model to study the control of malaria in the
presence of temperature variation and insecticide-resistant
mosquitoes.

5. Malaria Model with Insecticide-
Resistant Mosquitoes

Following the results obtained in the Optimal Control with
Mean Monthly Temperatures section involving the high
levels of adulticides and larvacides controls, we extend the
simple malaria model used in Agusto et al. [2] to include
both insecticide-sensitive and insecticide-resistant mos-
quitoes. 'e human population, of size NH(t), is split into
mutually exclusive subpopulations of individuals who are
susceptible (SH(t)), exposed (EH(t)), infectious (IH(t)),
and recovered from the infection (RH(t)) so that

NH(t) � SH(t) + EH(t) + IH(t) + RH(t). (20)

Similarly, the total mosquito population size at time t,
denoted by NV(t), is subdivided into immature mosquitoes
(eggs, larvae, and pupae) (LV(t)), susceptible insecticide-
sensitive and insecticide-resistant mosquitoes
(SVS

(t), SVR
(t)), exposed insecticide-sensitive and insecti-

cide-resistant mosquitoes (EVS
(t), EVR

(t)), and infectious
insecticide-sensitive and insecticide-resistant mosquitoes
(IVS

(t), IVR
(t)). We assume for simplicity that the mos-

quitoes differentiate into insecticide-sensitive and insecti-
cide-resistant mosquitoes only at the adult stage.

'us, the simple model is given by the following
deterministic, nonautonomous, system of nonlinear dif-
ferential equations (where the dot notation, as previously
stated, denotes differentiation with respect to time t and T

and 􏽢T � T + δT denote air and water temperature,
respectively):
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SH

·

(t) � ΠH + ω1RH(t) − λHS
T, IVS

, NH􏼐 􏼑SH(t) − λHR
T, IVR

, NH􏼐 􏼑SH(t) − μHSH(t),

EH

·

(t) � λHS
T, IVS

, NH􏼐 􏼑SH(t) + λHR
T, IVR

, NH􏼐 􏼑SH(t) − σH + μH( 􏼁EH(t),

IH

·

(t) � σHEH(t) − cH + μH + δH( 􏼁IH(t),

RH

·

(t) � cHIH(t) − ωH + μH( 􏼁RH(t),

LV

·

(t) � ϕV(T) 1 −
LV(t)

KV

􏼢 􏼣 SVS
(t) + EVS

(t) + IVS
(t) + SVR

(t) + EVR
(t) + IVR

(t)􏽨 􏽩

− θV(􏽢T) + μL(􏽢T)􏽨 􏽩LV(t),

SVS

·

(t) � fθV(􏽢T)LV(t) − λVS
T, NH( 􏼁SVS

(t) − μVS
(T)SVS

(t),

EVS

·

(t) � λVS
T, NH( 􏼁SVS

(t) − σVS
(T) + μVS

(T)􏽨 􏽩EVS
(t),

IVS

·

(t) � σVS
(T)EVS

(t) − μVS
(T)IVS

(t),

SVR

·

(t) � (1 − f)θV(􏽢T)LV(t) − λVR
T, NH( 􏼁SVR

(t) − μVR
(T)SVR

(t),

EVR

·

(t) � λVR
T, NH( 􏼁SVR

(t) − σVR
(T) + μVR

(T)􏽨 􏽩EVR
(t),

IVR

·

(t) � σVR
(T)EVR

(t) − μVR
(T)IVR

(t),

(21)

where

λHS
T, IVS

(t), NH(t)􏼐 􏼑 �
βHbV(T)IVS

(t)

NH(t)
,

λHR
T, IVR

(t), NH(t)􏼐 􏼑 �
ηHR

βHbV(T)IVR
(t)

NH(t)
,

λVS
T, NH( 􏼁 �

βVbV(T)IH(t)

NH(t)
,

λVR
T, NH( 􏼁 �

ηVR
βVbV(T)IH(t)

NH(t)
.

(22)

Furthermore, we assume that σVR
(T) � ηR1

σVS
(T) and

μVR
(T) � ηR2

μVS
(T). 'e parameters ηHR

, ηVR
, ηR1

, and ηR2
are modification parameters indicating the difference be-
tween the insecticide-sensitive and insecticide-resistant-re-
lated functions. We have assumed that ηHR

� ηVR
� ηR1

� 1;
indicating that the mosquitoes’ insecticide-resistant gene has
no impact on mosquito biting rate and transmission

probability, nor does it affect the parasite developmental rate.
However, there are indications on the contrary [63–65]. We
make these assumptions for simplicity, and without loss of
generality, we believe that there will be no wide deviation from
the conclusions of this study if we had incorporated these
features. Furthermore, we suppose the resistance mosquitoes
are twice likely to live longer than the sensitive mosquitoes;
hence, we set ηR2

� 0.5. However, infected insecticide-resistant
mosquitoes are more susceptible to insecticide [64, 66]. Note,
σVS

(T) and μVS
(T) are given by the same functions as those in

equations (6) and (8), respectively.
'e flow diagram of the model is depicted in Figure 13,

the associated state variables are described in Table 4, and
parameters are described in Table 1.

5.1. Optimal Control Problem with Resistance Mosquitoes.
'e goal in this section is to minimize the objective function
defined as

JR uH(t), uL(t), uV(t)( 􏼁 � 􏽚
tf

0
A1IH + B1LV + B2 SVS

+ SVR
􏼐 􏼑 + B3 EVS

+ EVR
􏼐 􏼑􏽨

+ B4 IVS
+ IVR

􏼐 􏼑 + C1uH + εC2u
2
H + C3uL + εC4u

2
L + C5uV + εC6u

2
V􏽩dt,

(23)

that is, we seek to find the optimal controls u∗H, u∗L, and u∗V,
such that

JR u
∗
H, u
∗
L, u
∗
V( 􏼁 � minU JR uH, uL, uV( 􏼁􏼈 􏼉. (24)

'e optimal control solutions (uH(t), uL(t), uV(t)) can
be characterized by following the approach in the Optimal
Control Problems section.
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Figure 11: Continued.
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Figure 11: Simulations of the malaria model (2) as a function of time in temperature ranges suitable for mosquitoes: (a, c, e, g) the monthly
total number of infected humans with control and (b, d, f, h) optimal controls uH(t), uL(t), and uV(t), in West, Central, East, and South
Africa.
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Figure 12: Continued.
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Figure 12: Simulations of the malaria model (2) as a function of time in the suitable temperature ranges. (a, c, e) 'e monthly total number
of infected mosquitoes with control, and (b, d, f ) optimal controls uH(t), uL(t), and uV(t), inWest, Central, East, Central, and South Africa.
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Figure 13: Flow diagram of the malaria-resistant model (21).

Table 4: Description of the variables of model (21).

Variable Description
SH(t) Number of susceptible humans
EH(t) Number of exposed humans
IH(t) Number of infectious humans
RH(t) Number of recovered humans

LV(t)
Number of immature (eggs, larva, and pupa stages)

vectors
SVS

(t) Number of susceptible sensitive vectors
EVS

(t) Number of exposed sensitive vectors
IVS

(t) Number of infectious-sensitive vectors
SVR

(t) Number of susceptible resistance vectors
EVR

(t) Number of exposed resistance vectors
IVR

(t) Number of infectious-resistant vectors
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Our aim in this section is to apply optimal control theory
to minimize the number of infected humans and mosquitoes
(insecticide-sensitive and insecticide-resistant) in the tem-
perature range suitable for mosquitoes in West, Central, East,
and South Africa. As in the Control in Temperature Ranges
Suitable for Mosquitoes section, we will use the mean total
number of infected humans and mosquitoes to measure the
impact of the mean level of controls (uH(t), uL(t), uV(t)) in
these regions of sub-Sahara Africa.Wewill also investigate the
impact of monocontrol strategies where the time-dependent
controls (uH(t), uL(t), uV(t)) are applied one at a time.

5.2. Resistance Mosquitoes: Temperature Ranges Suitable for
Mosquitoes

5.2.1. Control in Suitable Temperature Ranges: Infected
Human Profiles. Next, we also explore the optimal control
strategies in the temperature range suitable for mosquitoes
identified in the Mean Monthly Temperature: Other Cities
Infected Human Profiles section. In West Africa, the tem-
perature range is [22.16°C, 28.58°C], and in Central Africa,
the temperature is [16.68°C, 27.92°C]. 'e temperature
range in East Africa is [19.04°C, 26.75°C], and in South
Africa, the range is [16.7°C, 25.3°C].

In Central, East, and SouthAfrica, themean total number of
infected humans increases with increasing temperature
(Figures 14(c), 14(e), and 14(g)). 'e application of the control
strategies, depicted, in Figures 14(d), 14(f), and 14(h), reduced
the mean number of infected humans, with the average level of
the controls uL(t) and uV(t) close to the upper bound and the
average control uH increases with the mean monthly tem-
perature. Similar dynamics are observed in the mosquito
population, and the plots are given in Figure 15.

5.3.Monocontrol Strategies. Next, we investigate the effect of
monocontrol strategies on malaria transmission in sub-
Saharan Africa using malaria insecticide-sensitive model (2)
and insecticide-resistant model (21).

We considered the following two monocontrol
strategies:

(i) Strategy A: controls uL(t) and uV(t)—only while
setting uH(t) � 0

(ii) Strategy B: control uH(t)—only while setting
uL(t) � uV(t) � 0

We compare the solution profiles obtained from these
strategies to the profile obtained from the control strategy
when all the controls uL(t), uV(t), and uH(t) are used
(Figure 11).

5.3.1. Monocontrol Strategies for Sensitive Mosquitoes: In-
fected Human Profiles. Comparing the mean total number
of infected humans in Figures 11 and 16, we observed a
higher number of infected humans in the absence of control
(Figure 11) and lower number with the application of the

controls regardless of the control strategies (Figure 16). As in
the previous sections, we calculated the average level for all
the controls uL(t), uV(t), and uH(t). We observed that
Strategy B was relatively better than Strategy A in reducing
the number of infected humans when we have insecticide-
sensitive mosquitoes only.

We observed in Figure 11(a) increase in the mean total
number of infected humans in West Africa in the absence of
control until the midtemperature of 25.59°C before de-
creasing at the highest temperature of 28.58°C. 'e mean
total number of infected humans was considerably reduced
in the presence of control. Furthermore, in Figure 11(b), we
observed that the average level for the time-dependent
controls uL(t) and uV(t) is close to the upper bound for all
temperature values in West Africa. 'e profile for control
uH(t) is low at low temperatures and is high at high
temperatures.

'is is not the case with infected mosquitoes. Strategy A
led to fewer infected mosquitoes compare to Strategy B (see
the profile for infected mosquitoes in Figure 17). 'ese
strategies perform relatively poorer than when the controls
uL(t), uV(t), and uH(t) are all used.

'us, personal protection against mosquito bite reduces
malaria burden in humans better than mosquito-reduction
strategies. Mosquito-reduction strategies, on the contrary,
led to fewer infected mosquitoes.

5.3.2. Monocontrol Strategies for Resistance Mosquitoes:
Infected Human Profiles. We compare control Strategies A
and B when insecticide-resistant mosquitoes are present. As
with the insecticide-sensitive case, the application of the
controls, regardless of the strategy, can greatly reduce the
total number of infected humans which is high in the ab-
sence of controls (Figures 14 and 18). 'e average level of all
the controls uL(t), uV(t), and uH(t) was used as in the
previous sections. Strategy B which involves using only
control uH(t) while setting controls uL(t) � uV(t) � 0
performs better in reducing the number of infected human
than Strategy A (which involves using controls
uL(t) and uV(t), while setting uH(t) � 0).

'e profile for infected mosquitoes is given in Figure 19,
and it shows that Strategy A performs better at reducing
infected mosquitoes in the presence of insecticide-resistant
mosquitoes.

'us, personal protection against mosquito bite only
as control strategy reduced malaria burden in humans
better than mosquito-reduction strategies. However,
mosquito-reduction strategies only led to fewer infected
mosquitoes when mosquitoes have evolved resistance
against insecticide.

6. Discussion

Since the 1950s, global temperature has been on the increase
with great consequence for vector-borne diseases. It is ex-
pected that this warming leads to an expansion in the
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Figure 14: Continued.
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Figure 14: Simulations of the malaria-resistant model (21) as a function of time: (a, c, e, g) the monthly total number of infected humans
with control and (b, d, f, h) optimal controls uH(t), uL(t), and uV(t), in West, Central, East, and South Africa.
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Figure 15: Continued.
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distribution of vectors into new regions. Several naive
populations such as those in cities in the Americas and the
Caribbeans have witnessed in recent times increase in
emergence and re-emergence of vector-borne diseases such
as Chikungunya, Dengue, Yellow Fever, and Zika. Results
from Agusto et al. [2] indicate that malaria burden will
decrease as temperature goes beyond the range suitable for
mosquitoes. According to the World Health Organization
(WHO), the global burden of malaria has been on the de-
cline in the last ten years largely due to the use of insecticide-
treated bednets [61].

'e global cases of malaria increased from 237 million
cases in 2010 to 216 million cases in 2016, an 18% global re-
duction in incidence rate [61]. 'is progress has, however,
stalled; between 2014 and 2016, there was a substantial increase
in malaria incidence cases in the Americas. For instance, in
2015, 211million cases were reported.'is increase in reported
cases may be perhaps due to mosquitoes developing resistance

to the insecticide used in the bednets [61], particularly pyre-
throid [67].

'e results from Agusto et al. [2] show that when the mean
monthly temperatures are in the range [16.7, 25]°C, individuals
in the community should use both mosquito-reduction strategy
and personal protection against mosquito bites; however, when
temperatures lie within the range [26, 34]°C,mosquito-reduction
strategy should be used in the community (or household) over
personal protection against mosquito bites. In this study, we
applied optimal control theory to investigate the optimal control
strategy necessary to control the disease in these temperature
ranges. We found that in both temperature ranges, the use of
mosquito-reduction strategy such as larvicides and adulticides on
average should bemaintained at relatively high levels which could
lead invariably to the development of insecticide-resistant mos-
quitoes [59, 62].

'is result is in line with Barnes et al.’s [59] findings which
identified a gene region within Anopheles funestus that allows
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Figure 15: Simulations of themalaria-resistant model (21) as a function of time in the suitable temperature ranges. (a, c, e)'emonthly total
number of infectedmosquitoes with control and (b, d, f ) optimal controls uH(t), uL(t), and uV(t), inWest, Central, East, Central, and South
Africa.
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the mosquitoes to break down insecticides, thereby resulting in
the development of insecticide-resistant mosquitoes. Barnes
et al.’s study was a continent-wide population structure of
Anopheles funestusmosquitoes. 'is resistance gene has swept
through the entire mosquito populations in southern Africa
[60]. According to the WHO, between 2010 and 2016, the
frequency of pyrethroid resistance in malaria vectors increased
globally [62]. However, the actual impact of insecticide resis-
tance on the effectiveness of insecticidal vector control is not
fully known; the development of insecticide resistance high-
lights a potential challenge to control and elimination of
malaria, particularly in Africa where the burden of malaria
remains highest [62]. It can undercut the over two decade gain
made from malaria control leading to increase in malaria
incidence and mortality [68].

'e result of this study further shows that control
measure aimed at only controlling mosquito population
(mosquito-reduction strategies) in the temperature regions
suitable for mosquitoes will lead to fewer infected

mosquitoes. To effectively control the disease burden, the
control measure should prevent or reduce the number of
bites humans receive from mosquitoes since personal
protection against mosquito bite is better at reducing
malaria burden in humans than mosquito-reduction
strategies.

When mosquitoes have evolved resistance against insecti-
cide, personal protection against mosquito is equally better than
mosquito-reduction strategies (larvacides and adulticides) in
reducing malaria burden in humans. However, mosquito-re-
duction strategies only led to fewer infected mosquitoes. To
effectively control the mosquito population, given the added
pressure of insecticide resistance, a higher level of larvicides and
adulticides is needed. 'is level is higher than the level used
whenmosquitoes are sensitive to insecticides.We also observed
(not shown here) that as the ratio (f) of sensitive to resistance
mosquitoes increases in the resistance direction, the level of
optimal control of larvacides and adulticides remained constant
and close to 100 %.
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Figure 16: Simulations of the malaria model (2) as a function of time plotting the average control levels for controls uL, uV, and uH inWest,
Central, East, and Central Africa.
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As observed in this study of insecticide-resistant mos-
quitoes, control and elimination of malaria in the presence
of resistance mosquitoes are possible only with the use of
high level of insecticide use. 'is then leads to a vital
question: “will the evolutionary adaptation to insecticides
then lead to supermosquitoes developing resistance to all
insecticide as observed with bacteria with antimicrobial
resistance?”

'erefore, to prevent such catastrophic development, efforts
should be geared towards exploring other efficient ways and
strategies to control malaria and prevent the development of
insecticide-resistant mosquitoes by targeting either the mos-
quito larvae or adult stages.

Efforts aimed at malaria control can help reduce the
development of insecticide mosquitoes; for instance,
active participation of the community and government
through community-based interventions is essential for
community wide disease elimination and control using
strategies that interrupt disease transmission such as
backyard draining of standing water [69], improve
drainage, and community education regarding

introducing a novel vector control strategy like the ge-
netically engineered insects [70–73].

Other useful strategies that can reduce the development
of insecticide-resistant mosquitoes target the larvae stage
through the use of larvicides such as larviciding with lar-
vivorous fish and bacterial larvicide [40–43, 45–48].

Larvivorous fish have been employed as biological
control of mosquito larvae since 1937 [74–79]. 'ey target
mosquito larvae and are safe for humans since they are
devoid of insecticide [44]. Larvivorous fish are well suited for
urban areas where the density of humans needing protection
is higher than mosquito breeding sites [76] and places with
seasonal transmission [44].

Bacterial larvicides is another mosquito larvae targeting
the control method using Bacillus thuringiensis var. israel-
ensis (Bti) and Bacillus sphaericus (Bs) [45–48]. 'ese mi-
crobial larvacides selectively kills the mosquito larvae when
they ingest the bacterial spores leaving unharmed other
cohabiting organisms [80].

'us, implementing these larvae control strategies in
addition to the use of bednets and adult control will not only

West Africa
22.61°C 25.59°C 28.58°C

0

1

2

3

4

5

6

7

In
fe

ct
ed

 m
os

qu
ito

es

104

UL ≠ 0, UV ≠ 0, UH ≠ 0 
UL ≠ 0, UV ≠ 0, UH = 0 
UL = 0, UV = 0, UH ≠ 0 

(a)

Central Africa
16.68°C 22.30°C 27.92°C

0

1

2

3

4

5

6

7

In
fe

ct
ed

 m
os

qu
ito

es

104

UL ≠ 0, UV ≠ 0, UH ≠ 0 
UL ≠ 0, UV ≠ 0, UH = 0 
UL = 0, UV = 0, UH ≠ 0 

(b)

East Africa
19.04°C 22.89°C 26.75°C

0

1

2

3

4

5

6

7

In
fe

ct
ed

 m
os

qu
ito

es

104

UL ≠ 0, UV ≠ 0, UH ≠ 0 
UL ≠ 0, UV ≠ 0, UH = 0 
UL = 0, UV = 0, UH ≠ 0 

(c)

South Africa
16.66°C 20.99°C 25.32°C

0

1

2

3

4

5

6

7

In
fe

ct
ed

 m
os

qu
ito

es

104

UL ≠ 0, UV ≠ 0, UH ≠ 0 
UL ≠ 0, UV ≠ 0, UH = 0 
UL = 0, UV = 0, UH ≠ 0 

(d)

Figure 17: Simulations of the malaria model (2) as a function of time plotting the average control levels for controls uL, uV, and uH inWest,
Central, East, and Central Africa.
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Figure 18: Simulations of the malaria-resistant model (21) as a function of time plotting the average control levels for controls uL, uV, and
uH in West, Central, East, Central, and South Africa.
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Figure 19: Continued.
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reduce the chance of developing insecticide-resistant mos-
quitoes, it will ultimately lead to control and elimination of
malaria in a community.

7. Conclusions

In this study, we applied optimal control theory to the model
developed in Agusto et al. [2] in order to determine if in-
dividuals in the community should use both mosquito-re-
duction strategy and personal protection against mosquito
bites for mean monthly temperatures are in the range
[16.7, 25]°C or they should emphasize mosquito-reduction
strategy in the community (or household) ahead of personal
protection for higher mean monthly temperatures in the
range [26, 34]°C.

Using the simple model and results in [2], we sum-
marized below some of the findings of this study. Detailed
theoretical and epidemiological findings of the model are
given in [2]:

(i) Numerical simulations of the model (2) show that
the total number of new cases of infection (malaria-
associated burden) increases with increasing mean
monthly temperature in the following ranges:

(a) [22.61°C, 28.58°C] in the three West African
cities.

(b) [16.68°C, 27.92°C] in the three Central African
cities.

(c) [19.04°C, 26.75°C] in the three East African
cities.

(d) [16°C, 25°C] in KwaZulu-Natal, South Africa.

(ii) Malaria burden in the presence of temperature
variations can be decreased via the application of
time-dependent controls.

(iii) 'e solution profile of the personal protection
control mimics the response of infected mosquitoes
to temperature in the absence of control.

(iv) Malaria burden can be decreased in the presences of
insecticide-resistant and temperature variations.

(v) With monocontrol strategies, personal protection
against mosquito bite is better at reducing malaria
burden in humans than mosquito-reduction strat-
egies, and mosquito-reduction strategies led to
fewer infected mosquitoes.

'us, we conclude that personal protection, particularly the
use of bednets, should be encouraged not only at low tem-
peratures but particularly at high temperatures when indi-
viduals are driven not to use the nets. Furthermore, control and
elimination of malaria are possible even with mosquitoes
developing resistance to the insecticide. In future work, we will
incorporate the kinetics of insecticide-treated bednets, larva-
cides (with either larvivorous fish or bacterial larvicide), and
adulticides (which will decay in some functional form).Wewill
also incorporate rainfall and seasonality to address the possi-
bility of control and resistance prevention using optimal
control in areas with seasonal malaria.

Appendix

A. Characterization of Optimal Controls

We seek to find the optimal controls u∗H, u∗L, and u∗V such
that

J u
∗
H, u
∗
L, u
∗
V( 􏼁 � minU J uH, uL, uV( 􏼁􏼈 􏼉, (A.1)

where the control set

U � uH, uL, uV( 􏼁: 0, tf􏽨 􏽩⟶ [0, 1], is Lebesguemeasurable􏽮 􏽯.

(A.2)

'e controls (uH(t), uL(t), uV(t)) are bounded Leb-
esgue integrable functions [50–54].

'e optimal control triple (uH(t), uL(t), and uV(t))
satisfy necessary conditions from Pontryagin’s maximum
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Figure 19: Simulations of the malaria-resistant model (21) as a function of time plotting the average control levels for controls uL, uV, and
uH in West, Central, East, Central, and South Africa.
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principle [81]. 'is principle converts (15) and (16) into a
problem of minimizing pointwise a Hamiltonian H, with
respect to the controls (uH(t), uL(t), and uV(t)). 'e

optimality conditions are obtained using the Hamiltonian
formulated from the cost functional (16) and the governing
dynamics (15). 'us, Hamiltonian (H) is given as

H � A1IH + B1LV + B2SV + B3EV + B4IV

+ C1uH + εC2u
2
H + C3uL + εC4u

2
L + C5uV + εC6u

2
V

+ λSH
ΠH + ω1RH(t) − λH T, 1 − uH(t)( 􏼁IV, NH􏼂 􏼃SH(t) − μHSH(t)􏼂 􏼃

+ λEH
λH T, 1 − uH(t)( 􏼁IV, NH􏼂 􏼃SH(t) − σH + μH( 􏼁EH(t)􏼈 􏼉

+ λIH
σ1EH(t) − c1 + μH + δH( 􏼁IH(t)􏼈 􏼉

+ λRH
c1IH(t) − ω1 + μH( 􏼁RH(t)􏼂 􏼃

+ λLV
ϕV(T) 1 −

LV(t)

KV

􏼠 􏼡 SV(t) + EV(t) + IV(t)􏼂 􏼃 − θV(􏽢T) + μL(􏽢T)􏽨 􏽩LV(t) − uL(t)LV(t)􏼢 􏼣

+ λSV
θV(􏽢T)LV(t) − λV T, 1 − uH(t)( 􏼁NH􏼂 􏼃SV(t) − μV(T)SV(t) − uV(t)SV(t)􏽨 􏽩

+ λEV
λV T, 1 − uH(t)( 􏼁NH􏼂 􏼃SV(t) − σV(T) + μV(T)􏼂 􏼃EV(t) − uV(t)EV(t)􏼂 􏼃

+ λIV
σV(T)EV(t) − μV(T)IV(t) − uV(t)IV(t)􏼂 􏼃,

(A.3)

where λSH
, λEH

, λIH
, λRH

, λLV
, λSV

, λEV
, and λIV

are the associ-
ated adjoints for the state variables
SH, EH, IH, RH, LV, SV, EV, and IV. 'e adjoint equation
system is determined from the partial derivatives of the
Hamiltonian (A.3) with respect to the state and control
variables.

Theorem 1. Given the optimal controls (u∗H, u∗L, u∗V) and the
solutions of the corresponding state system (15)
(S∗H, E∗H, I∗H, R∗H, L∗V, S∗V, E∗V, I∗V) which minimizes the objec-
tive functional J(u∗H, u∗L, u∗V) overU. Ben, there exist adjoint
variables λSH

, λEH
, λIH

, λRH
, λLV

, λSV
, λEV

, λIV
, satisfying the

system

−
dλi

dt
�

zH

zi
, (A.4)

and with transversality conditions

λi tf􏼐 􏼑 � 0, where i � SH, EH, IH, RH, LV, SV, EV, IV.

(A.5)

Be optimality conditions is given as

zH

zuj

� 0, j � H, L, V. (A.6)

Furthermore, the control (u∗H, u∗L, u∗V) is given as

u
∗
H � min 1, max 0,

1
2εC2N

∗
H

− C1N
∗
H + S
∗
VbV(T)( βV λ∗EV

− λ∗SV
􏼐 􏼑I

∗
H + I
∗
VbV(T)βH λ∗EH

− λ∗SH
􏼐 􏼑S

∗
H􏽨 􏽩􏼑􏼢 􏼣􏼨 􏼩,

u
∗
L � min 1, max 0,

λ∗LV
L
∗
V − C3

2εC4
􏼢 􏼣􏼨 􏼩,

u
∗
V � min 1, max 0,

λ∗EV
EV + λ∗IV

I
∗
V + λ∗SV

S
∗
V − C5

2εC6
􏼢 􏼣􏼨 􏼩.

(A.7)

Proof. Using the result by Fleming and Rishel [82], the
existance of the optimal control can be shown.
'us, taking the partial derivative of the Hamiltonian

function (H) with respect to the state variables leads to
the system of adjoint equations. 'us, the adjoint system
is given as
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−
dλSH

dt
�

zH

zSH

, λSH
tf􏼐 􏼑 � 0,

· · ·

−
dλIH

dt
�

zH

zIH

, λIH
tf􏼐 􏼑 � 0,

−
dλRH

dt
�

zH

zRH

, λRH
tf􏼐 􏼑 � 0,

−
dλLV

dt
�

zH

zLV

, λLV
tf􏼐 􏼑 � 0,

· · ·

−
dλIV

dt
�

zH

zIV

, λIV
tf􏼐 􏼑 � 0,

(A.8)

evaluating the adjoint system at the optimal controls and
corresponding state variables, the stated adjoint systems
(A.4) and (A.5) are given. In addition, the controls
(u∗H, u∗L, u∗V) are obtained by taking the partial derivative of
the Hamiltonian function, H, with respect to the control
variables in the interior of the control set and then solving
for controls (u∗H, u∗L, u∗V); hence, we have the result for the
optimality conditions given as

zH

zuH

� 2εC2u
∗
H − − C1N

∗
H + S
∗
VbV(T)βV λ∗EV

− λ∗SV
􏼐 􏼑I

∗
H􏽨

+ I
∗
VbV(T)βH λ∗EH

− λ∗SH
􏼐 􏼑S

∗
H􏽨 􏽩􏽩 � 0,

zH

zuL

� 2εC4u
∗
L − λ∗LV

L
∗
V − C3􏽨 􏽩 � 0,

zH

zuV

� 2εC6u
∗
V − λ∗EV

EV + λ∗IV
I
∗
V + λ∗SV

S
∗
V − C5􏽨 􏽩 � 0.

(A.9)

Solving for u∗H, u∗V, and u∗M, we have

u
∗
H �

1
2εC2

− C1N
∗
H + S
∗
VbV(T)βV λ∗EV

− λ∗SV
􏼐 􏼑I

∗
H􏼐

+ I
∗
VbV(T)βH λ∗EH

− λ∗SH
􏼐 􏼑S

∗
H − λ∗RH

R
∗
H􏽨 􏽩􏼑,

u
∗
L �

λ∗LV
L
∗
V − C3

2εC4
,

u
∗
V �

λ∗EV
EV + λ∗IV

I
∗
V + λ∗SV

S
∗
V − C5

2εC6
.

(A.10)

'e characterization (A.7) can be derived by using the
bounds on the controls. □

Remark 1. 'e uniqueness of the optimal control for a small
time (tf) can be shown using the a priori boundedness of the
state and adjoint functions along with the resulting Lipschitz
structure of the ODE’s. 'erefore, the uniqueness of the

optimal control follows from the uniqueness of the opti-
mality system, which consists of (15) and (A.4), (A.5) with
characterization (A.7). 'e restriction on the length of the
time to a small interval is to guarantee the uniqueness of the
optimality system. 'e small length of time is due to the
opposite time orientations of (15), (A.4), and (A.5); the state
problem has initial values, and the adjoint problem has final
values. 'is restriction is very common in optimal control
problems [51, 53, 54].
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