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Abstract

We study the second order nonlinear differential equation u′′+a(t)g(u) = 0, where
g is a continuously differentiable function of constant sign defined on an open in-
terval I ⊆ R and a(t) is a sign-changing weight function. We look for solutions
u(t) of the differential equation such that u(t) ∈ I, satisfying the Neumann bound-
ary conditions. Special examples, considered in our model, are the equations with
singularity, for I = R+0 and g(u) ∼ −u−σ, as well as the case of exponential non-
linearities, for I = R and g(u) ∼ exp(u). The proofs are obtained by passing to an
equivalent equation of the form x′′ = f (x)(x′)2 + a(t).
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1 Introduction

This article is devoted to the study of boundary value problems associated to the
second order nonlinear differential equation

u′′ + a(t)g(u) = 0. (1.1)

Throughout the paper we assume that g : I → R is a continuously differentiable
function defined on an open interval I ⊆ R and such that g(s) , 0, for every
s ∈ I. The coefficient (weight function) a(t) is supposed to be a Lebesgue integrable
function (not identically zero!) defined on a compact interval [0,T ] and solutions
are meant in the Carathéodory sense [20].

Equation (1.1), in spite of its simple looking structure, covers a broad number
of different situations. A typical example that will be discussed below is when
I = R+0 := ]0,+∞). In this case, a natural choice for g is given by

g(s) = sα, α , 0.

When α > 0, although the nonlinearity can be continuously extended to the whole
real line, the study of solutions of (1.1) with range in I leads to the search of pos-
itive solutions, a topic which has been widely investigated for its relevance in the
applications. On the other hand, when α < 0, we are led to study an equation with
a singularity at the origin. Less standard examples, which will be also discussed
later, are for I = R. In this setting, one can study, for instance, an equation like
u′′ + a(t) exp(u) = 0.

Our main interest will be the search of solutions u : [0, T ]→ I of (1.1) satisfy-
ing the Neumann boundary conditions

u′(0) = u′(T ) = 0. (1.2)

The case of periodic boundary conditions could be considered, as well. It is a
known fact that there are strong similarities and connections between the periodic
and the Neumann boundary value problems for equation (1.1) (besides the obvious
fact that, in both cases, λ0 = 0 is the principal eigenvalue for the operator −u′′,
with the corresponding eigenspace made up by the constant functions). For in-
stance, if we extend a(t) to the whole real line as a 2T -periodic even function, then
any solution of (1.1)–(1.2) can be extended to an even 2T -periodic solution of the
same equation. Moreover, as we shall see below, usual necessary and/or sufficient
conditions on a(t) for the existence of solutions to the Neumann or to the periodic
problem turn out to be the same.

A first and very elementary observation is that any solutions of (1.1) satisfying
the Neumann (as well as the periodic) boundary conditions is such that

∫ T
0 u′′(t) dt =
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0 and, therefore, ∫ T

0
a(t)g(u(t))dt = 0.

Since g(s) is of constant sign on I,we immediately obtain a first necessary condition
on the weight function, namely

(A0) a+(t) . 0 and a−(t) . 0,

that is, a(t) is sign-indefinite (see the end of this Introduction for some clarifica-
tions). A second necessary condition can be obtained under the additional assump-
tion that g′(s) never vanishes on the interval I. Indeed, writing

− u′′(t)
g(u(t))

= a(t),

integrating by parts on [0,T ] and using the boundary conditions, we get∫ T

0
a(t)dt = −

[
u′(t)

g(u(t))

]T

0
−

∫ T

0

u′(t)2

g(u(t))2 g′(u(t))dt = −
∫ T

0

u′(t)2

g(u(t))2 g′(u(t))dt.

Since u(t) cannot be constant (otherwise a(t) ≡ 0), we obtain that∫ T

0
a(t)dt , 0 and sgn

(∫ T

0
a(t) dt

)
= − (

sgn g′|I
)
. (1.3)

Notice that, if we assume that g′(s) has constant sign on I, then it is not restrictive
to suppose that

g′(s) > 0, ∀ s ∈ I.

In this case, the necessary condition (1.3) becomes

(A1)
∫ T

0
a(t)dt < 0.

In the past fifty years a great deal of research has been devoted to the study
of nonlinear equations with a sign-indefinite weight (see, for instance, [9, Intro-
duction] for a brief survey on this subject). The investigation of the case in which
the nonlinear term g(s) has superlinear growth at infinity (namely, g(s) ∼ |s|p−1s,
with p > 1) led to multiplicity results of oscillatory solutions for various bound-
ary value problems associated to (1.1) (see [13, 25, 29] and the references therein).
The search of positive solutions has been addressed both to the case of ODEs and
to nonlinear elliptic PDEs of the form

∆u − λu + a(x)g(u) = 0, x ∈ Ω ⊂ RN , (1.4)
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under different conditions for u|∂Ω (see [1, 2, 3, 4, 5, 6] for some classical results in
this direction). In particular, multiplicity results for (1.4), with Dirichlet boundary
conditions on a bounded domain Ω, have been obtained in [7, 16, 17, 19, 23] in
the superlinear case g(s) ∼ sp, with p > 1. For (1.4) with λ = 0, a large number
of positive solutions for the Dirichlet problem have been found in [7, 16, 17, 18]
when a(x) has a certain number of large negative humps. However, concerning the
Neumann/periodic problem for (1.1) or the Neumann problem for

∆u + a(x)g(u) = 0, x ∈ Ω ⊂ RN , (1.5)

less results seem to be available (see, for instance [3, 4, 6, 8, 9, 10, 27]). In [4],
Bandle, Pozio and Tesei studied the Neumann problem for equation (1.5) for a non-
linearity g(s) which behaves like sp with 0 < p < 1 and proved that the condition

a+(x) . 0, a−(x) . 0 and
∫
Ω

a(x)dx < 0 (1.6)

is necessary and sufficient for the existence of a positive solution. A uniqueness
result was also provided for g(s) concave. In [6], Berestycki, Capuzzo-Dolcetta
and Nirenberg considered equation (1.5) for g(s) = sp with p > 1 and proved that
(1.6) is again necessary and sufficient for the existence of a positive solution to the
Neumann problem.

As observed before, the search of positive solutions, although quite relevant
from the point of view of the applications, does not represent the only possible
situation in our setting. The case I = R+0 allows to treat differential equations with
singularities at the origin, like in [12, 15]. In [12], Bravo and Torres studied the
equation with singularity

u′′ − a(t)
u3 = 0,

for a(t) a T -periodic piecewise constant function of the form a(t) = a+ > 0 for
0 ≤ t < τ and a(t) = −a− < 0 for τ ≤ t < T. Again, condition (A1) was shown to
be necessary and sufficient for the existence of a (positive) periodic solution (and
a uniqueness result was also obtained). A recent extension of this existence result,
to the equation u′′ − a(t)

uσ = 0 for the case of a piecewise constant periodic weight
function with an arbitrary number of humps (and negative mean value) and σ > 1,
has been achieved by Ureña [30].

As a final example we consider the case in which I = R and g(s) = exp(s). In
[22], Le and Schmitt proved the existence of solutions for the Neumann problem as-
sociated to (1.5) as well as for the periodic problem associated to u′′+a(t) exp(u) =
0. Again condition (1.6) (respectively (A0)-(A1) ) turns out to be necessary and
sufficient for the solvability of the problem.
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The above discussion suggests a couple of natural questions toward which ad-
dress a possible research, namely:

• whether it is possible to provide a unified setting for the study of the different
situations just described, namely, the case of positive solutions, equations
with singularities, nonlinearities of constant sign defined on the whole real
line;

• to what extent an average condition of the form (A1) is sufficient for the
existence of solutions, possibly also in cases in which g(s) is not monotone
(and hence (A1) is not necessary).

The main purpose of the present paper is to provide partial answers to both the
questions. Although we believe that some results can be extended to the periodic
setting, we prefer to focus our attention to the Neumann problem for (1.1), which
looks easier to deal with. Moreover, for simplicity, we shall restrict ourselves to the
case in which the weight function a(t) has only one positive hump and one negative
hump. In this framework, by changing, if necessary, t with T − t we can always
enter in the setting of the following condition (A2):

(A2) a(t) ≥ 0, for a.e. t ∈ [0, τ] and a(t) ≤ 0, for a.e. t ∈ [τ,T ],

for some τ ∈ ]0,T [ . Such an assumption on the weight function is, in some sense,
a natural one within the approach that we follow to prove our existence results.
More details about the argument of our proof will be provided at the end of Section
3. We point out, however, that even if the shape of a(t) is rather simple, on the
other hand we do not require any further special condition (like the simplicity of
its zeros). In particular a(t) may vanish on subsets of [0, T ] with positive measure,
like subintervals.

The paper is organized as follows. In Section 2 we introduce a second order
auxiliary equation of the form x′′ = f (x)(x′)2 + a(t) which allows us to treat in a
unified setting different cases of equation (1.1) (including the problems described
above). Such an approach seems new for this kind of problems. Analogous con-
siderations have been recently developed in a different direction, by transforming
autonomous equations like x′′ + f (x)(x′)2 + ϕ(x) = 0 to second order conservative
equations u′′+ψ(u) = 0. In Section 3 we state our main theorems (Theorem 3.1 and
related results) and show some immediate applications. Section 4 is devoted to the
proof of some technical lemmas and estimates from which the proof of Theorem
3.1 follows. Finally, in Section 5 we give some final remarks.

Throughout the paper, the following notation is used. For the weight function
a(t), we define a± : I → R as

a+(t) := max{a(t), 0}, a−(t) := max{−a(t)(x), 0},
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so that
a(t) = a+(t) − a−(t), |a(t)| = a+(t) − a−(t), ∀ t ∈ I.

Since a ∈ L1(0, T ), equalities/inequalities are understood up to sets of zero mea-
sure. For instance, a ≡ 0 on an interval [t0, t1] means that a(t) = 0 for a.e. t ∈ [t0, t1],
namely

∫ t1
t0
|a(t)| dt = 0. Accordingly, a . 0 on [t0, t1] if and only if

∫ t1
t0
|a(t)| dt , 0.

Finally, the symbols | · |1 and | · |∞ stand, respectively, for the L1-norm and the
L∞-norm (the domain being clear from the context or explicitly indicated).

2 An equivalent formulation of the problem

Let I ⊆ R be an open interval and g : I → R be a continuously differentiable
function such that g(s) , 0, for every s ∈ I.We deal with the second order nonlinear
ODE

u′′ + a(t)g(u) = 0, (2.1)

where a ∈ L1(0, T ). Associated to (2.1) the Neumann problem

u′(0) = u′(T ) = 0 (2.2)

is considered. By a solution of (2.1) we mean a function u : dom(u)→ I satisfying
(2.1) in the generalized (Carathéodory) sense.

Setting

h(s) := − 1
g(s)

,

equation (2.1) is obviously equivalent to

u′′ =
a(t)
h(u)

. (2.3)

Let H : I → J := H(I) be a primitive of h. Observe that H is a diffeomorphism
of the interval I onto the open interval J. Then, by simple manipulations one can
check that equation (2.3) is equivalent to the forced equation

x′′ = f (x)(x′)2 + a(t), (2.4)

where f : J → R is defined as

f (x) := g′(H−1(x)), ∀ x ∈ J

and
x(t) := H(u(t)).
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Moreover, it is straightforward to see that u : [0, T ]→ I is a solution of (2.1)–(2.2)
if and only if x : [0,T ]→ J is a solution of (2.4) satisfying the Neumann boundary
conditions

x′(0) = x′(T ) = 0 (2.5)

(a similar equivalence holds true if one looks for T -periodic solutions).
Equation (2.4) appears as a perturbation (by means of the forcing therm a(t))

of the conservative equation

x′′ − f (x)(x′)2 = 0 (2.6)

which is considered in some classical textbooks like [21, Vol. 1, Ex. 6.51, p. 554].
It is an obvious fact that all the constant functions x(t) ≡ c ∈ J are solutions of
(2.6). For this reason, in order to avoid trivialities, when dealing with problem
(2.4)–(2.5) we will always suppose that a(t) . 0.

Notice that from equation (2.4) one can easily recover the average condition on
a(t) in order to have solutions satisfying the Neumann (or the periodic) conditions.
Indeed, g′(s) never vanishes on the interval I if and only if f (x) has constant sign
on J. Therefore, just integrating both sides of (2.4) we get again (1.3) (that is, in the
case f > 0, (A1)). More formally, this is expressed by the following result which
refers directly to equation (2.4).

Lemma 2.1 Let J ⊆ R be an open interval and let f : J → R be a continuous
function such that f (x) , 0, for all x ∈ J. Let a(t) . 0. Then (2.4)–(2.5) has a
solution only if∫ T

0
a(t)dt , 0 and sgn

(∫ T

0
a(t) dt

)
= − (

sgn f |J
)
. (2.7)

Proof. Let x : [0, T ] → J be a solution of (2.4)–(2.5). Integrating the equa-
tion on [0,T ] we obtain −

∫ T
0 f (x(t))x′(t)2 dt =

∫ T
0 a(t) dt, hence

∫ T
0 a(t) dt ≤ 0 or∫ T

0 a(t) dt ≥ 0 according to the fact that f > 0 or f < 0 on J. On the other hand,∫ T
0 a(t) dt , 0. In fact, on the contrary, we would have that x′(t) ≡ 0, that is x(t) is

a constant solutions, but this is prevented by the fact that a(t) . 0. Hence the thesis
follows. �

The reason why the condition (A0) is necessary also for the the solvability of
problem (2.4)–(2.5) is perhaps less evident. However, it follows by the following
result.

Lemma 2.2 Let J ⊆ R be an open interval and let f : J → R be a continuous
function. Let a(t) . 0. Then (2.4)–(2.5) has a solution only if (A0) holds.
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The proof of Lemma 2.2 is an immediate consequence of the next two results
which will be also applied in Section 4. In Lemma 2.3 and Lemma 2.4 below we
do not need to assume that the solutions of the initial problems associated to (2.4)
are globally defined the whole interval where a(t) is defined.

Lemma 2.3 Let f : J(⊆ R) → R be a continuous function and let a(·) ∈ L1(t0, t1)
be such that a(t) ≥ 0 for a.e. t ∈ [t0, t1]. Suppose that x(t) is a solution of (2.4) such
that x′(t0) = 0. Let s ∈ ]t0, t1] be such that x(s) is defined and

∫ s
t0

a(ξ) dξ > 0. Then
x′(t) > 0 for all t ∈ [s, t1] where x(·) is defined.

Lemma 2.4 Let f : J(⊆ R) → R be a continuous function and let a(·) ∈ L1(t0, t1)
be such that a(t) ≤ 0 for a.e. t ∈ [t0, t1]. Suppose that x(t) is a solution of (2.4) such
that x′(t0) = 0. Let s ∈ ]t0, t1] be such that x(s) is defined and

∫ s
t0

a(ξ) dξ < 0. Then
x′(t) < 0 for all t ∈ [s, t1] where x(·) is defined.

Proof. Due to the symmetry of the two statements, we prove only Lemma 2.3. We
define At0(t) :=

∫ t
t0

a(ξ) dξ and σ0 := max{t ≥ t0 : At0(t) = 0}. If there exists
s ∈ ]t0, t1] such that At0(s) > 0, then σ0 < t1 and At0(t) > 0 for all t ∈ ]σ0, t1].
Hence, proving Lemma 2.3 is the same like proving that x′(t) > 0 for every t > σ0
(where x(·) is defined).

First of all, we observe that x′(t) ≥ 0, ∀ t ∈ [t0, t1] ∩ dom(x). Indeed, if, by
contradiction, x′(t) < 0 for some t ∈ ]t0, t1[ , then we can find a maximal interval
]s0, s1[⊆ ]t0, t1[ such that x′(t) < 0 for all t ∈ ]s0, s1[ and with x′(s0) = 0. We take
now t, t∗ with s0 < t < t∗ < s1 and integrate

x′′(s)
x′(s)

= f (x(s))x′(s) +
a(s)
x′(s)

≤ f (x(s))x′(s)

on [t, t∗], so that we get

log |x′(t∗)| − log |x′(t)| ≤
∫ x(t∗)

x(t)
f (ξ) dξ = −Fr(x(t)),

where we have set Fr(x) :=
∫ x

r f (ξ) dξ, for r := x(t∗). Then we have

− log |x′(t)| ≤ K := − log |x′(t∗)| +max
x∈J′
|Fr(x)|, ∀ t ∈ ]s0, t∗],

where J′ is the compact interval J′ := {x(ξ) : ξ ∈ [s0, t∗]} ⊆ J. From the last
inequality, a contradiction is immediately achieved, by taking the limit as t → s+0 .
Now that we have proved that x′(t) ≥ 0, ∀ t ∈ [t0, t1] ∩ dom(x), we can proceed
further.
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Suppose, by contradiction that there is s1 ∈ ]σ0, t1] such that x(·) is defined on
[t0, s1] and x′(s1) = 0. We integrate (2.4) on [s1 − t, s1] and obtain

−x′(s1 − t) =
∫ s1

s1−t
f (x(ξ))(x′(ξ))2 dξ +

∫ s1

s1−t
a(ξ) dξ,

that is, for v(t) := x′(s1 − t),

0 ≤ v(t) =
∫ t

0
− f (x(s1 − θ))v(θ)2 dθ −

∫ s1

s1−t
a(ξ) dξ ≤ M

∫ t

0
v(θ) dθ,

for M > 0 a suitable constant which bounds | f (x(t))x′(t)| on [t0, s1]. Gronwall’s
inequality implies that v(t) ≡ 0 on [t0, s1], that is x(t) is constant. This is a contra-
diction to the fact that a . 0 on [t0, s1]. �

A more straightforward manner to prove Lemma 2.2 can be provided too, once
we observe that equation (2.4) is equivalent to

d
dt

(
x′ exp(−F(x))

)
= a(t) exp(−F(x)), (2.8)

where F : J → R is a primitive of f (x) on J. In this situation, it is clear that
any solution of (2.8) satisfying the Neumann boundary condition (as well as any
T -periodic solution) is such that

∫ T
0 a(t) exp(−F(x(t))) dt = 0. Hence (A0) must be

satisfied.
The equivalence between (2.4) and (2.8) allows us to provide an immediate

proof of the fact that any Cauchy problem associated to (2.4) has a unique (non-
continuable) solution. Indeed, it is sufficient to observe that (2.8) is equivalent to
the first order planar system {

x′ = y exp(F(x))
y′ = a(t) exp(−F(x))

which is of the form z′ = X(t, z), with X(t, ·) defined on the open domain J ×
R ⊆ R2, locally Lipschitz continuous in z = (x, y) and satisfying the Caratheodory
conditions [20].

As a final remark, we also notice that via equation (2.8) one can cast (2.4) back
into the form of (2.1). In fact, if we denote by F (x) a primitive of exp(−F(x))
on the (open) interval J, we see that F is a strictly increasing diffeomorphism of
J onto an open interval I′ := F (J). Then x(t) is a solution to (2.4) if and only if
w(t) := F (x(t)) is a solution of

w′′ + a(t) g(w) = 0, (2.9)
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where g : I′ → R is a continuously differentiable function of constant sign, defined
as

g(s) := − exp(−F(F−1(s))).

Remark 2.1 The transformation from (2.4) to (2.9) works for more general equa-
tions too. For instance, if we start from equation

x′′ = f (x)(x′)2 + ϕ(t, x), (2.10)

then the same change of variables leads to

w′′ + ψ(t,w) = 0, (2.11)

with ψ(t, s) := −ϕ(t,F−1(s)) exp(−F(F−1(s))). Analogous considerations have
been developed in order to transform the second order autonomous equation

x′′ + f (x)(x′)2 + ϕ(x) = 0 (2.12)

to an equation of the form w′′ + ψ(w) = 0 (see [28]). Besides the non autonomous
nature of (2.4) (or (2.10)), compared to (2.12), the main feature of our research is
that for the equivalent equation (2.9) (or (2.11)), the nonlinear term has constant
sign in w (and the sign change is in the t-variable), whence in [28], as well as in
related papers studying the period map of planar centers, the nonlinear terms ϕ and
ψ change their sign. In this connection we also recall a classical work of Chicone
[14], where the Neumann problem for a class of equations included in (2.12) is
considered. ▹

At this point we reconsider the most classical examples of equation (2.1) dis-
cussed in the Introduction and we look for their equivalent formulation in the ver-
sion of (2.4). Namely, we obtain:

• Let g(s) = sp, with 0 < p < 1, for I = R+0 . Then f (x) = p
(p−1)x , for

J = R−0 := (−∞, 0[ . The function H : I → J, with H(s) = − 1
1−p s1−p, is

strictly decreasing with H(0+) = 0− and H(+∞) = −∞;

• Let g(s) = sp, with p > 1, for I = R+0 . Then f (x) = p
(p−1)x , for J = R+0 .

The function H : I → J, with H(s) = 1
(p−1)sp−1 , is strictly decreasing with

H(0+) = +∞ and H(+∞) = 0+;
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• Let g(s) = −s−σ, with σ > 0, for I = R+0 . Then f (x) = σ
(σ+1)x , for J = R+0 .

The function H : I → J, with H(s) = 1
(σ+1) sσ+1 , is strictly increasing with

H(0+) = 0+ and H(+∞) = +∞;

• Let g(s) = exp s, for I = R. Then f (x) = 1
x , for J = R+0 . The function

H : I → J, with H(s) = exp(−s) is strictly decreasing with H(−∞) = +∞
and H(+∞) = 0+.

It is easy to show that coming back from the form (2.4) to the equation (2.9) we
obtain a similar structure as the initial one. For instance, from the equation u′′ +
a(t) exp(u) = 0 of the form (2.1) we pass to the equivalent equation x′′ = 1

x (x′)2 +

a(t) of the form (2.4) and then to the equation w′′ − a(t) exp(−w) = 0 of the form
(2.9), which is precisely the starting equation with the substitution w = −u.

3 The main results

In this section we state the main results of the paper.
We first recall, for the reader’s convenience, the assumptions on the weight

function a ∈ L1(0,T ), namely:

(A0) a+(t) . 0 and a−(t) . 0,

(A1)
∫ T

0
a(t)dt < 0,

(A2) a(t) ≥ 0, for a.e. t ∈ [0, τ] and a(t) ≤ 0, for a.e. t ∈ [τ,T ],

for some τ ∈ ]0,T [ .
As for the conditions on f , they are suggested by the last three examples at the

end of Section 3. Accordingly, henceforth we deal with f : R+0 → R a continuous
function and we also define

F(x) :=
∫ x

1
f (ξ) dξ.

Concerning the behavior of f at infinity, we introduce the following conditions:

( f∞) f (+∞) := lim
x→+∞

f (x) = 0,

(F∞) lim inf
x→+∞

F(x) > −∞.
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Clearly, (F∞) is always satisfied when f (x) ≥ 0 for x large. Concerning the be-
havior of f and F at x = 0+, the situation is more involved (and also related to
the existence of solutions presenting a blow-up). In the statements of our results,
possible conditions are the following:

( f0) f (0+) := lim
x→0+

f (x) ∈ ]0,+∞],

(F0) lim sup
x→0+

F(x) < +∞.

Observe that (F0) is always satisfied when f (x) ≥ 0 for x small. Hence, in partic-
ular, ( f0) implies (F0). A third hypothesis (see (AF) below) relates the behavior of
F(x) as x→ 0+ with the infinitesimal order of

A(t) :=
∫ t

0
a(ξ)dξ,

as t → 0+. In such a case, we also suppose that A(t) > 0 for t ∈ ]0, τ]; such an
assumption is not restrictive (otherwise, if a ≡ 0 on [0, σ0] it will be sufficient to
consider the Neumann boundary conditions on [σ0, T ] and then extend the solution
to [0, T ] by taking constant values on [0, σ0]). Namely, we have:

there exists θ > 0 such that

(AF) lim
t→0+

exp[F((1 + θ)tA(t))]
A(t)

= 0+ .

Observe that (AF) implies that F(0+) = −∞ and hence (F0).

We are now in position to state our main results for the Neumann problem{
x′′ = f (x)(x′)2 + a(t)
x′(0) = x′(T ) = 0.

(3.1)

Theorem 3.1 Let a(·) ∈ L1(0, T ) satisfy (A0), (A1) and (A2). Let f : R+0 → R be a
continuous function satisfying ( f∞), (F∞), ( f0) and (AF). Then problem (3.1) has
at least one (increasing) solution.

The technical condition (AF) can be simplified when we have some information
on the infinitesimal order of A(t) as t → 0+ . For instance, if we suppose that a(t) is
continuous and positive in a suitable interval ]0, δ[ with δ < τ, and assume that

∃ c > 0, α > 0 : A(t) ∼ ctα as t → 0+ (3.2)

12



then (AF) holds if and only if

lim
x→0+

(
F(x) − α

α + 1
log(x)

)
= −∞

(notice that the θ-parameter as well as the constant c are inessential, due to the
properties of the logarithm).

A variant of Theorem 3.1 can be obtained if we have further information about
the existence of solutions exhibiting blow-up. Namely, we have the following.

Theorem 3.2 Let a(·) ∈ L1(0, T ) satisfy (A0), (A1) and (A2). Let f : R+0 → R be a
continuous function satisfying ( f∞), (F∞) and (F0). Suppose, moreover, that there
exists r > 0 such that the solution of the differential equation, satisfying the initial
condition x(0) = r, x′(0) = 0, is not defined on [0, τ]. Then problem (3.1) has at
least one (increasing) solution.

We show now how the results obtained for (3.1) can be applied to the problem{
u′′ + a(t)g(u) = 0
u′(0) = u′(T ) = 0.

(3.3)

To this aim, we consider three different examples which mimic the cases of positive
solutions for superlinear equations, equations with a singularity and exponential
type nonlinearities. For all the next examples, we suppose that a(t) satisfies (A0),
(A1) and (A2).

Example 3.1 Let g : R+ → R+ := [0,+∞) be a C1-function with g(0) = 0,
g(s) > 0 for s > 0. If we suppose that∫ 1

0

1
g
= +∞,

∫ +∞

1

1
g
< ∞, (3.4)

we can take a primitive H of −1/g such that H(R+0 ) = R+0 . Note that H(s) is a
strictly decreasing function with H(0+) = +∞ and H(+∞) = 0+, that is a strictly
decreasing diffeomorphism of R+0 onto itself. Accordingly, ( f∞) and ( f0) hold if
and only if

g′(0) = 0 and g′(+∞) ∈ ]0,+∞]. (3.5)

As a next step, we consider the primitive F(x) =
∫ x

1 f (ξ) dξ for f (x) = g′(H−1(x)).
An easy computation yields

F(x) =
∫ x

1
g′(H−1(ξ)) dξ =

∫ H−1(x)

c
g′(u)h(u) du = −

∫ H−1(x)

c

g′(u)
g(u)

du

= K − log(g(H−1(x))),

13



for c := H−1(1) and K := log g(c). As a consequence,

F(+∞) = K − log(g(0+)) = +∞,

and thus (F∞) holds. Moreover,

F(0+) = K − log(g(+∞)).

Hence (F0) is satisfied provided that g(+∞) > 0 (an assumption which holds with
g(+∞) = +∞ when the second condition in (3.5) is satisfied).

We plan to apply Theorem 3.2. To this aim, we observe that a blow-up solutions
as required in Theorem 3.2 corresponds to a solution of u′′+a(t)g(u) = 0 satisfying
the initial condition u(0) = u0 > 0 and u′(0) = 0 and such that u(t) ≤ 0 for some
t ≤ τ. Solutions of this form always exist when lim infx→+∞ g(x)/x is large enough
(by a Sturm comparison argument with the linear equation u′′ + λa(t)u = 0).

In conclusion, we can state the following consequence of Theorem 3.2.

Corollary 3.1 (Positive solutions for the superlinear case) Let g : R+ → R+ :=
[0,+∞) be a C1-function with g(0) = 0, g(s) > 0 for s > 0 and such that

g′(0) = 0, g′(+∞) = +∞ and
∫ +∞

1

1
g
< ∞.

Then problem (3.3) has at least one positive and decreasing solution.

Proof. It is obvious that under the assumptions of the corollary, both conditions
(3.4) and (3.5) are satisfied. Moreover, the hypothesis of superlinear growth at in-
finity given by g′(+∞) = +∞ implies the existence of sign-changing solutions. �

Notice that even if we implicitly suppose that g(s) is strictly increasing for large
s > 0, we do not assume global monotonicity. ▹

Example 3.2 We refer here to the equivalent equation (2.3). Let h : R+ → R+ be
a continuous function, of class C1 on R+0 , with h(0) = 0 and h(s) > 0 for s > 0. If
we suppose that ∫ +∞

0
h = +∞, (3.6)

we have that the primitive H(s) =
∫ s

0 h(ξ) dξ is such that H(R+0 ) = R+0 , with H(s)
strictly increasing. Recalling that g′(s) = h′(s)/h(s)2, we conclude that ( f∞) and
( f0) hold if and only if

lim
s→+∞

h′(s)
h(s)2 = 0 and lim

s→0+

h′(s)
h(s)2 ∈ ]0,+∞]. (3.7)

14



As a next step, we consider the primitive F(x) =
∫ x

1 f (ξ) dξ for f (x) = g′(H−1(x)).
The same computation as in Example 3.1 yields to

F(x) =
∫ x

1
g′(H−1(ξ)) dξ =

∫ H−1(x)

c
g′(u)h(u) du =

∫ H−1(x)

c

h′(u)
h(u)

du

= log(h(H−1(x))) − K,

for c := H−1(1) and K := log h(c). As a consequence,

F(+∞) = log(h(+∞)) − K

and thus (F∞) holds if and only if

lim inf
s→+∞

h(s) > 0. (3.8)

We plan to apply Theorem 3.1 and therefore we look for an equivalent formu-
lation of (AF) in the above setting. Actually one can easily check that (AF) holds
if and only if there exists θ > 0 such that

lim
t→0+

h(H−1((1 + θ)tA(t)))
A(t)

= 0+.

To produce our corollary, we also consider the simplifying assumption (3.2). In
such a situation, (AF) is satisfied if and only if

lim
s→0+

h(s)α+1

H(s)α
= 0+. (3.9)

In conclusion, we can state the following consequence of Theorem 3.1.

Corollary 3.2 (Positive solutions for the singular case) Let h : R+0 → R+0 be a
C1-function with h(0+) = 0. Assume (3.6), (3.7), (3.8) and (3.9). If we further
suppose that a(t) satisfies (3.2), then the equation

u′′ =
a(t)
h(u)

has at least one (positive) increasing solution satisfying the Neumann boundary
conditions.

An easy case for the validity of Corollary 3.2 is when h(s) = sσ for σ > α.

Note that if limt→0+ a(t) = c > 0, we have α = 1 and we obtain the strong force
condition σ > 1. ▹
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Example 3.3 Let g : R→ R+0 be a C1-function. If we suppose that∫ 0

−∞

1
g
= +∞,

∫ +∞

0

1
g
< +∞, (3.10)

we can take a primitive H of −1/g such that H(R) = R+0 . Note that H(s) is a
strictly decreasing function with H(−∞) = +∞ and H(+∞) = 0+, that is, a strictly
decreasing diffeomorphism of R onto R+0 . Accordingly ( f∞) and ( f0) hold if and
only if

g′(−∞) = 0 and g′(+∞) ∈ ]0,+∞]. (3.11)

As a next step, we consider the primitive F(x) =
∫ x

1 f (ξ) dξ for f (x) = g′(H−1(x)).
The same computation as in Example 3.1 yields

F(x) = K − log(g(H−1(x))),

for c := H−1(1) and K := log g(c). As a consequence

F(+∞) = − log(g(−∞))

and thus (F∞) holds if and only if

lim sup
s→−∞

g(s) < +∞. (3.12)

We plan to apply Theorem 3.1 and therefore we discuss now assumption (AF).
Similarly as in Example 3.2, it is easy to check that (AF) holds if and only if there
exists θ > 0 such that

lim
t→0+

g(H−1((1 + θ)tA(t)))A(t) = +∞.

Moreover, if we assume that a(t) satisfies (3.2), then (AF) is fulfilled if and only if

lim
s→+∞

g(s)α+1H(s)α = +∞. (3.13)

In conclusion, we can state the following consequence of Theorem 3.1.

Corollary 3.3 (Exponential type nonlinearities) Let g : R→ R+0 be a C1-function
such that (3.10), (3.11), (3.12) and (3.13) hold true. If we further suppose that a(t)
satisfies (3.2), then problem (3.3) has at least one decreasing solution.

An easy case for Corollary 3.3 is for g(s) = exp(s). ▹
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We conclude this section with a description of the argument which is used in the
proof of our main result concerning the Neumann boundary value problem (3.1).
For the next discussion, we recall that the weight function a(t) is assumed to satisfy
conditions (A0), (A1) and (A2).

First of all, we consider the equivalent first order planar system in the open
domainD := R+0 × R, {

x′ = y
y′ = f (x)y2 + a(t),

(3.14)

that we also write in a compact form as

z′ = Z(t, z), z = (x, y) ∈ D.

For each z0 ∈ D and s ∈ [0, T ], we denote by ζ(·; s, z0) the solution of (3.14) with
ζ(s) = z0 and, for every σ ∈ [0,T ] such that ζ(σ; s, z0) is defined, we denote by

Φσs : z0 7→ ζ(σ; s, z0)

the Poincaré map which maps any initial point z0 to the point reached by the solu-
tion at the time σ.

We consider at first a maximal open interval ]r0,+∞), with r0 ≥ 0, such that for
every point P = (r, 0), with r > r0 , the solution ζ(t; 0, P) is defined for all t ∈ [0, τ].
From the assumption a(t) ≥ 0 for t ∈ [0, τ], it follows that the set

D+ := {(x, y) ∈ D : y ≥ 0}

is positively invariant for the solutions of (3.14) along the time-interval [0, τ] (see,
for instance, [11, Section 5.2]). From Lemma 2.3 and

∫ τ

0 a(t) dt > 0, it follows also
that, for each r > r0 ,

Φτ0(r, 0) ∈ D+0 := {(x, y) ∈ D : y > 0}.

Thus, setting
Γ0 := {Φτ0(r, 0) : r > r0},

we have that Γ0 is a curve contained inD+0 .
In a symmetrical manner we consider a maximal open interval ]r1,+∞), with

r1 ≥ 0, such that for every point P = (r, 0), with r > r1 , the solution ζ(t; T, P) is
defined for all t ∈ [τ, T ]. In other words, we look for solutions which go backward
in time in the interval [τ,T ]. From the assumption a(t) ≤ 0 for t ∈ [τ,T ], it follows
that the set D+ is negatively invariant for the solutions of (3.14) along the time-
interval [τ,T ]. From Lemma 2.4 and

∫ T
τ

a(t) dt < 0, it follows also that, for each
r > r1 ,

ΦτT (r, 0) ∈ D+0 .
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Thus, setting
Γ1 := {ΦτT (r, 0) : r > r1},

we have that Γ1 is a curve contained inD+0 .
Suppose now that there exists an intersection point

Q ∈ Γ0 ∩ Γ1 .

If this happens, it means that there exists a point P = (r̄, 0) with r̄ > r0 such
that the solution ζ(·; 0, P) is defined on [0, τ] with ζ(τ; 0, P) = Q and, moreover,
ζ(T ; τ,Q) =

(
ΦτT

)−1(Q) = (r̂, 0) for some r̂ > r1 . In conclusion the solution
ζ(·; 0, P) is defined on [0, T ] with x(0) = r̄, x(T ) = r̂ and x′(0) = x′(T ) = 0.
Moreover, we have x′ = y ≥ 0, that is x(t) is an increasing solution of (3.1). Ac-
tually, from Lemma 2.2 one could prove that, unless a(t) is identically zero in a
neighborhood of t = 0 or t = T, it holds that x(t) is strictly increasing.

If instead of condition (A2) we assume the symmetric condition

(A′2) a(t) ≤ 0, for a.e. t ∈ [0, τ] and a(t) ≥ 0, for a.e. t ∈ [τ,T ],

via the same argument we can provide the existence of a decreasing solution to the
problem (3.1).

The proof that the curves Γ0 and Γ1 actually intersect will be performed by
means of three technical lemmas which are proved in the next section. The first one
(see Lemma 4.1) asserts that if f (+∞) = 0, then for r > 0 and sufficiently large,
the y-component of Φt1

t0(r, 0) is near to
∫ t1

t0
a(t) dt. As a consequence, the hypothesis

(A1) implies that for r > 0 large enough, the points of the curve Γ0 are between
the x-axis and the points of Γ1 . On the other hand, under suitable assumptions on
the growth of f (x) as x → 0+ we can prove that Γ1 is bounded in the y-component
and accumulates at zero in the x-component as r → r+1 (see Lemma 4.3), while Γ0
becomes unbounded in the y-component as r → r+0 (see Lemma 4.2). A possible
behavior of the curves Γ0 and Γ1 is illustrated in Figure 1.

If the integral condition (A1) is not satisfied, we know that there are no solutions
to (3.1) when f > 0. In the framework of our approach, this means that the curves
Γ0 and Γ1 will not intersect (see Figure 2 for a graphical representation of this
situation).
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Figure 1: The present figure illustrates a typical behavior of the curves Γ0 and Γ1 . We
have marked the resulting intersection point. For this example we have taken f (x) = 1/x
on R+0 and as a(t) a stepwise function with a(t) = 0.5 on [0, τ] = [0, 1.2] and a(t) = −0.8

on [τ,T ] = [1.2, 2.2]. The resulting integral
∫ T

0 a(t) dt is negative. One can also see that at
the right-hand side of the graph the curve Γ0 is close to the line y = 0.6, while Γ1 is close
to the line y = 0.8, consistently with Lemma 4.1.

Figure 2: The present figure illustrates a possible behavior of the curves Γ0 and Γ1 when
f > 0 and the integral condition (A1) is not satisfied. For this example we have taken
f (x) = 1/x on R+0 and as a(t) a stepwise function with a(t) = 0.7 on [0, τ] = [0, 1.2] and

a(t) = −0.8 on [τ,T ] = [1.2, 2.2]. The resulting integral
∫ T

0 a(t) dt is positive. One can also
see that at the right-hand side of the graph the curve Γ0 is close to the line y = 0.84, while
Γ1 is close to the line y = 0.8, consistently with Lemma 4.1.
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4 Technical results and proof of Theorem 3.1

This section is devoted to the proof of the main results. Let us consider the differ-
ential equation

x′′ = f (x)(x′)2 + a(t), (4.1)

where f : R+0 → R is a continuous function and a ∈ L1(0, T ). Equation (4.1) is
equivalent to the planar system in the open domainD := R+0 × R,{

x′ = y
y′ = f (x)y2 + a(t),

(4.2)

that we also write in a compact form as

z′ = Z(t, z), z = (x, y) ∈ D.

As remarked in Section 2, we know that the uniqueness of the solutions to the
Cauchy problems associated to (4.2) is guaranteed.

Lemma 4.1 Let [t0, t1] ⊆ [0, T ]. Assume

( f∞) f (+∞) := lim
x→+∞

f (x) = 0.

Then, there exists R > 0 such that, for each r ≥ R, the solution (x(t), y(t)) of (4.2)
satisfying the initial condition (x(t0), y(t0)) = (r, 0) is defined on [t0, t1]. Moreover,
for each ε > 0 there exists Rε ≥ R such that, if r ≥ Rε, it holds that∣∣∣∣∣∣y(t1) −

∫ t1

t0
a(t) dt

∣∣∣∣∣∣ ≤ ε (4.3)

and
|x(t1) − r| ≤ N, (4.4)

where N is a fixed positive constant depending only on a(t).

Proof. Let us define

At0(t) :=
∫ t

t0
a(ξ) dξ, A(t) :=

∫ t

t0
At0(ξ) dξ.

Suppose At0(t) . 0 (otherwise the result is trivial) and set M := |At0 |∞ > 0.
We choose a constant ε′ > 0 such that

2M2ε′(t1 − t0) ≤ π

4
. (4.5)

20



In virtue of condition ( f∞), take a constant Kε′ > 0 such that | f (x)| ≤ ε′, ∀ x ≥ Kε′

and define
Hε′ := Kε′ + 4M2ε′(t1 − t0)2 + |A|∞ + 1.

Suppose that x(t0) = r ≥ Hε′ and define β ∈ ]t0, t1] as the maximal value such
that (x(t), y(t)) is defined and x(t) > Kε′ for all t ∈ [t0, β[ . The position

x(t) = u(t) +A(t),

transforms equation (4.1) into the equivalent equation

u′′ = f (u +A(t))(u + At0(t))2,

which can be written as the first order system{
u′ = v
v′ = f (u +A(t))(v + At0(t))2,

(4.6)

in the (u, v)-plane. From the second equation in system (4.6), we get

|v′(t)| ≤ 2| f (u(t) +A(t))| (v(t)2 + M2) ≤ 2ε′(v(t)2 + M2), ∀ t ∈ [t0, β[ ,

that is, ∣∣∣∣∣ v′(t)
v(t)2 + M2

∣∣∣∣∣ ≤ 2ε′, ∀ t ∈ [t0, β[ .

An integration gives

|v(t)| ≤ M tan
(
2Mε′(t1 − t0)

) ≤ 4M2ε′(t1 − t0), (4.7)

for all t ∈ [t0, β[ (here we use the fact that | tan(x)| ≤ 2|x| for |x| ≤ π/4 and recall
(4.5)). From the bound (4.7), we immediately find that that

|u(t) − r| = |u(t) − u(t0)| ≤ 4M2ε′(t1 − t0)2 (4.8)

holds for all t ∈ [t0, β[ . As a consequence

x(t) = u(t) − r + r +A(t) ≥ −4M2ε′(t1 − t0)2 + Hε′ − |A|∞ = Kε′ + 1,

for every t ∈ [t0, β[ . Then, the maximality of β implies that β = t1 and the bounds
(4.7)-(4.8) on [t0, β[= [t0, t1[ imply that (x(t), y(t)) is defined for t = t1 and (4.7)-
(4.8) are satisfied for all t ∈ [t0, t1]. The first part of the Lemma is thus proved with
the choice R = Hε′ .
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For the second part of the Lemma, we just observe that v(t) = y(t) −
∫ t

t0
a(ξ) dξ

and, in view of (4.8),

|x(t1) − r| ≤ |u(t1) − r| + |A|∞ ≤ 4M2ε′(t1 − t0)2 + |A|∞. (4.9)

Hence, (4.3) and (4.4) follow from (4.7) and (4.9), with the choice Rε = Hε′ and
ε′ > 0 so small that the inequalities

4M2ε′(t1 − t0) ≤ ϵ, 4M2ε′(t1 − t0)2 ≤ 1

are satisfied. For the constant N (which must depend only on a(t)) we can take
N := |A|∞ + 1. �

In the sequel, the hypotheses (A0) & (A2) on the coefficient a(t) will be sum-
marized into the following condition that includes (and is equivalent to) both of
them:

(A3) a(t) ≥ 0, a(t) . 0 on [0, τ] and a(t) ≤ 0, a(t) . 0 on [τ,T ].

Since we are interested in the search of solutions to (4.1) satisfying the Neumann
boundary conditions

x′(0) = x′(T ) = 0,

it is not restrictive if we suppose that a(t) . 0 on a right neighborhood of t = 0 and
on a left neighborhood of t = T (otherwise, if a ≡ 0 on [0, σ0] and on [σ1, T ], it will
be sufficient to consider the Neumann boundary conditions on [σ0, σ1] and then
extend the solution to [0, T ] by taking constant values on [0, σ0] and on [σ1, T ]).

We now follow the strategy described at the end of Section 2 to which we refer
for the notation used in the following. We also recall the positions

F(x) :=
∫ x

1
f (ξ)dξ, A(t) :=

∫ t

0
a(ξ)dξ.

Applying Lemma 4.1 on the interval [0, τ],we know that, as a consequence of ( f∞),
there exists a minimal r0 ≥ 0 such that for all r > r0 , the solution ζ(t; 0, (r, 0)) of
system (4.2) with ζ(0) = (r, 0) is defined on [0, τ]. Moreover, assuming (without
loss of generality) that in any right neighborhood of t = 0 there exists some t such
that a(t) > 0, we find that ζ(t) ∈ D+0 for all t ∈ ]0, τ].

Lemma 4.2 Assume (besides ( f∞)) that

( f0) f (0+) := lim
x→0+

f (x) ∈ ]0,+∞]
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and

(F∞) lim inf
x→+∞

F(x) > −∞.

Moreover, let us suppose that there exists θ > 0 such that

(AF) lim
t→0+

exp[F((1 + θ)tA(t))]
A(t)

= 0+ .

Then the curve Γ0 is unbounded in its y-component as r → r+0 .

Proof. Recall that we work in the interval [0, τ] where a(t) ≥ 0 for a.e. t and,
moreover, A(t) > 0 for all t ∈ ]0, τ]. In order to simplify the notation, along the proof
we denote by (xr(t), yr(t)) the solution ζ(t; 0, (r, 0)) . Accordingly, the Poincaré map
on [0, τ] is expressed as Φτ0(r, 0) = (xr(τ), yr(τ)). We want to prove that

lim
r→r+0

yr(τ) = +∞. (4.10)

This implies that the curve Γ0 is unbounded in the y-component. We distinguish
two cases: r0 > 0 and r0 = 0.

Suppose that r0 > 0. Assume, by contradiction that there exists a sequence
rn → r+0 (as n → ∞) and a constant M > 0 such that yrn(τ) ∈ [0,M]. Since
x′ = y ≥ 0, we have that

r0 ≤ rn ≤ xrn(t) ≤ xrn(τ).

According to (F∞), let L > 0 be such that F(x) ≥ −L, for all x ≥ r0 . From

d
dt

(
y(t) exp(−F(x(t)))

)
= a(t) exp(−F(x(t))) ≥ 0, for a.e. t ∈ [0, τ]

(compare with (2.8)), we find that the map y(t) exp(−F(x(t))) is nondecreasing on
[0, τ] and therefore

0 ≤ yrn(t) = x′rn
(t) ≤ yrn(τ) exp(F(xrn(t)) − F(xrn(τ)))

≤ M exp(L) exp(F(xrn(t))).
(4.11)

Hence,
F (xrn(t)) −F (rn) ≤ τM exp(L), ∀ t ∈ [0, τ],

for F (x) a primitive of exp(−F(x)). From this we easily obtain a uniform bound
for xrn of the form

r0 ≤ xrn(t) ≤ xrn(τ) ≤ N, ∀ t ∈ [0, τ],
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where N > 0 is a suitable constant independent on n. By the bound on xrn and (4.11)
we also get a uniform bound for yrn . A standard use of the Ascoli-Arzelà theorem
(via equation (4.2)) gives a subsequence of (xrn(t), yrn(t)) converging uniformly on
[0, τ] to a solution (actually the solution) of (4.2) with (x(0), y(0)) = (r0, 0) and, of
course, such a solution is defined on [0, τ]. This is a contradiction to r0 > 0. Indeed,
by the minimality of r0 we know that ζ(t; 0, (r0, 0)) is not defined on [0, τ].

Henceforth, we suppose that r0 = 0. This means that for every r > 0 the so-
lution ζ(t; 0, (r, 0)) = (xr(t), yr(t)) is defined for all t ∈ [0, τ]. Sometimes, when no
confusion can occur, the subscript r will be omitted. A common feature of all these
solutions is that r < x(t) and y(t) > 0 for all t > 0 and, moreover, x(t) is strictly
increasing. In order to prove (4.10), without loss of generality we can suppose
that 0 < r < ε0 , where ]0, ε0] is a suitably chosen interval where we suppose that
f (x) ≥ 0. Without loss of generality (by taking a smaller ε0 if necessary), we can
also assume that

ε0 < d0 :=
∫ τ

0

(∫ t

0
a(ξ) dξ

)
dt.

As a preliminary observation, we notice that for every choice of r > 0 it holds
that x(τ) > ε0 . Indeed, the result is obvious if x(0) = r ≥ ε0 . On the other hand,
if, by contradiction, we suppose that x(t) ≤ ε0 for all t ∈ [0, τ], then x′′(t) =
f (x(t))(x′(t))2 + a(t) ≥ a(t) for a.e. t ∈ [0, τ] and hence

ε0 ≥ x(τ) = r +
∫ τ

0
x′(t) dt ≥ d0

(a contradiction).
Thanks to this observation, if we define

−K := inf{F(x) : x ≥ ε0},

from (F∞), we know that −K > −∞ and

F(x(τ)) ≥ −K, (4.12)

for each solution x(·) = xr(·) (with r > 0.).
Let r > 0 small. Since the map s 7→ θsA(s) (with θ > 0 the constant appearing

in (AF)) is strictly increasing on a right neighborhood of s = 0, we have r = θsA(s)
for a unique s > 0 small. Henceforth, we assume that sA(s) < ε0/(1+ θ). We claim
that there exists t ∈ ]0, s] such that y(t) ≥ A(s). Indeed, if y(t) < A(s) for every
t ∈ [0, s], then

x(t) = r +
∫ t

0
y(ξ) dξ ≤ r + tA(s) ≤ r + sA(s) = (1 + θ)sA(s) < ε0, ∀ t ∈ [0, s].
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Hence y′(t) = f (x(t))y(t)2+a(t) ≥ a(t) for a.e. t ∈ [0, s], which implies y(s) ≥ A(s),
a contradiction. We can now define σ ≤ s as the first instant such that y(σ) = A(s).
Then y(t) < A(s) for every t ∈ [0, σ[ so that

θsA(s) = r ≤ x(σ) ≤ r + σA(s) ≤ r + sA(s) = (1 + θ)sA(s).

On the other hand, for a.e. t > 0, we have

y′(t)
y(t)
= f (x(t))x′(t) +

a(t)
y(t)
≥ f (x(t))x′(t).

Hence integrating on [σ, τ] and using (4.12) we obtain

log(y(τ)) ≥ log(y(σ)) + F(x(τ)) − F(x(σ)) ≥ log(A(s)) − K − F(ξ),

where ξ := x(σ) ∈ [r, r + sA(s)] = [θsA(s), (1 + θ)sA(s)]. The function F is non-
decreasing on the interval [θsA(s), (1 + θ)sA(s)] ⊆ ]0, ε0[ and therefore, from the
above inequality, we obtain

y(τ) ≥ exp(−K)
A(s)

exp[F((1 + θ)sA(s))]
.

Hence, by assumption (AF) we conclude that y(τ) = yr(τ)→ +∞ as r = θsA(s)→
0+ and thus (4.10) holds. �

Remark 4.1 A careful reading of the proof of Lemma 4.2 shows that ( f0) could be
replaced by the weaker hypothesis that f (x) ≥ 0 for an interval of the form ]0, ε0].
Note also that we do not need to assume neither ( f0) nor (AF) if we know that
r0 > 0, which means that there exists a solution ζ(t; 0, (r.0)) which is not globally
defined on [0, τ]. In fact, ( f0) and (AF) were used only in the second part of the
proof where r0 = 0. ▹

Applying now Lemma 4.1 on the interval [τ,T ] (and reversing time) we find
(as a consequence of ( f∞)) a minimal r1 ≥ 0 such that for all r > r1 , the solution
ζ(t; T, (r, 0)) of system (4.2) with ζ(T ) = (r, 0) is defined on [τ,T ]. Moreover, as-
suming (without loss of generality) that in any left neighborhood of t = T there
exists some t such that a(t) < 0, we find that ζ(t) ∈ D+0 for all t ∈ [τ,T [ .

Lemma 4.3 Assume (besides ( f∞)) that

(F0) lim sup
x→0+

F(x) < +∞.

Then the curve Γ1 is bounded in its y-component and accumulates at 0 in its x-
component, as r → r+1 .
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Proof. Recall that we work in the interval [τ,T ] where a(t) ≤ 0 for a.e. t and,
moreover,

∫ T
t a(ξ) dξ < 0 for all t ∈ [τ,T [ . Again, in order to simplify the notation,

along the proof we denote by (xr(t), yr(t)) the solution ζ(t; T, (r, 0)) . Accordingly,
the backward Poincaré map on [τ,T ] is expressed asΦτT (r, 0) = (xr(τ), yr(τ)) (some-
times, when no confusion can occur, the subscript r will be omitted). We want to
prove that

lim
r→r+1

xr(τ) = 0+, lim sup
r→r+1

yr(τ) < +∞. (4.13)

We recall that all such solutions satisfy x(t) < r and y(t) > 0 for all t < T and,
moreover, x(t) is strictly increasing.

We first prove that lim supr→r+1
yr(τ) < +∞. According to (F0), take M > 0

such that F(x) ≤ M for x ∈ ]0, r1 + 1] and define

K := |a|1 + M + |F(r1 + 1)| +
∫ r1+2

r1+1
| f (ξ)| dξ, L := exp(K) + 1.

We show that y(τ) ≤ L for every r ∈ ]r1, r1 + 2]. Assume by contradiction that there
is t ∈ [τ,T [ such that y(t) > L. Then we can find a maximal interval [t0, t1] ⊂ [τ,T ]
such that y(t0) = L, y(t1) = 1 and 1 < y(t) < L for t ∈ ]t0, t1[ . Since

y′(t)
y(t)
= f (x(t))x′(t) +

a(t)
y(t)
≥ f (x(t))x′(t) − |a(t)|, for a.e. t ∈ ]t0, t1[ ,

an integration on [t0, t1] gives

log(L) = log(y(t0)) ≤ −
∫ x(t1)

x(t0)
f (ξ) dξ + |a|1.

If x(t0) ≥ r1+1, we have −
∫ x(t1)

x(t0) f (ξ) dξ ≤
∫ r1+2

r1+1 | f (ξ)| dξ; if x(t0) < r1+1, we have

−
∫ x(t1)

x(t0)
f (ξ) dξ ≤ M − F(r1 + 1) +

∫ r1+2

r1+1
| f (ξ)| dξ.

In any case log(L) ≤ K, from which L ≤ exp(K), a contradiction.
We now prove that limr→r+1

xr(τ) = 0+. If r1 = 0, the thesis immediately
follows, since xr(τ) < r. Hence, we have to consider the case r1 > 0. Assume
by contradiction that there exists a sequence rn → r+1 (as n → ∞) and a constant
ε > 0 such that xrn(τ) ≥ ε. Since xrn is strictly increasing, we have the uniform
bound

ε ≤ xrn(t) ≤ rn ≤ r1 + 1.

Arguing similarly as in the proof of Lemma 4.2 (compare with (4.11)) and since
yrn(τ) is bounded (as shown in the first part of this Lemma), we immediately obtain
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a uniform bound for yrn . We conclude again as in the proof of Lemma 4.2 (using
Ascoli-Arzelà theorem) contradicting the minimality of r1 > 0. �

After these technical lemmas we are ready to conclude with the proof of our
main results. The proof just casts in a formal style the informal argument described
at the end of Section 3 (see also Figure 1).

Proof of Theorem 3.1. Along the proof, we denote by Πx : (x, y) 7→ x and Πy :
(x, y) 7→ y the projections of R2 onto its factors. We also set

d− :=
∫ T

τ
|a(t)| dt, d+ :=

∫ τ

0
a(t) dt, d0 :=

d− + d+

2
.

By (A0) and (A1) we have that 0 < d+ < d−.
Consider in D+0 the curves Γ0 := Φτ0(]r0,+∞) × {0}) and Γ1 := ΦτT (]r1,+∞) ×

{0}), for r0, r1 ≥ 0 defined before.
Let M1 > d− + 1 be such that (according to Lemma 4.3)

0 < Πy(x, y) < M1, ∀ (x, y) ∈ Γ1 ,

that is
0 < Πy(ΦτT (r, 0)) < M1, ∀ r > r1 .

We also take 0 < ε1 < min{d+, 1} such that

ε1 <
d− − d+

4

and, according to Lemma 4.1, we can find a (common) constant R∗ such that
Φτ0(r, 0) and ΦτT (r, 0) are defined for every r ≥ R∗ and, moreover

0 < d+ − ε1 ≤ Πy(Φτ0(r, 0)) ≤ d+ + ε1 < d0 − ε1 <

< d0 + ε1 < d− − ε1 ≤ Πy(ΦτT (r, 0)) ≤ d− + ε1 < M1 .

For the second part of Lemma 4.1 we also know that, for s suitable choice of the
constant N (which must be well chosen both for the intervals [0, τ] and [τ,T ]), we
also have

r − N ≤ Πx(Φτ0(r, 0)) ≤ r + N, r − N ≤ Πx(ΦτT (r, 0)) ≤ r + N. (4.14)

For instance, a suitable choice for N can be given by N := T |a|L1(0,T ) + 1. Once we
have fixed the constants M1, ε1,R∗ and N, we proceed as follows.
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By Lemma 4.2 (see (4.10)) we know that Πy(Φτ0(r, 0)) → +∞ as r → r+0 . On
the other hand, Πy(Φτ0(r, 0)) < M1 for every r ≥ R∗. Hence (by continuity), we find
α0 ∈ ]r0,R∗[ such that

Πy(Φτ0(α0, 0)) = M1 and Πy(Φτ0(r, 0)) < M1 , ∀ r > α0 .

Next, we fix a constant η+ such that

η+ > δmax := max{Πx(Φτ0(r, 0)) : α0 ≤ r ≤ R∗ + N}

(note that R∗ ≤ δmax). By the first estimate in (4.14) we know thatΠx(Φτ0(r, 0)) > η+

for each r > η+ + N. On the other hand, Πx(Φτ0(r, 0)) < η+, for all r ∈ [α0,R∗ + N].
Hence (by continuity), we find β0 ∈ ]R∗ + N, η+ + N[ such that

Πx(Φτ0(β0, 0)) = η+ and Πx(Φτ0(r, 0)) < η+ , ∀ r ∈ [α0, β0].

Now we can fix a constant η− such that

0 < η− < δmin := min{Πx(Φτ0(r, 0)) : α0 ≤ r ≤ β0}.

With these settings, we can summarize the behavior of the curve Γ0 across the
rectangle R := [η−, η+] × [0,M1] as follows:

η− < Πx(Φτ0(r, 0)) < η+, ∀ r ∈ [α0, β0[ and Πx(Φτ0(β0, 0)) = η+

Πy(Φτ0(r, 0)) < M1, ∀ r ∈ ]α0, β0] and Πy(Φτ0(α0, 0)) = M1 .

We pass now to consider the behavior of the curve Γ1 across the rectangle R.
From Lemma 4.3 (see (4.13)) we know that Πx(ΦτT (r, 0)) → 0+ as r → r+1 . On the
other hand, the second estimate in (4.14) implies that Πx(ΦτT (r, 0)) > η+ for each
r > η+ + N. Hence (by continuity), we can find α1 < β1 in ]r1,+∞) such that

η− < Πx(ΦτT (r, 0)) < η+, ∀ r ∈ ]α1, β1[

and
Πx(ΦτT (α1, 0)) = η−, Πx(ΦτT (β1, 0)) = η+.

Moreover, by Lemma 4.3 and the choice of M1 we also have

Πy(ΦτT (r, 0)) < M1, ∀ r ∈ [α1, β1].

In order to conclude, consider the four points Pi = (x̂i, ŷ1) (i = 1, 2, 3, 4) on the
boundary of R

P1 := ΦτT (α1, 0), P2 := Φτ0(β0, 0), P3 := ΦτT (β1, 0), P4 := Φτ0(α0, 0),
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for which we have

x̂1 = η
− , x̂2 = x̂3 = η

+ , η− < x̂4 < η
+

and
0 < ŷ1 < M1 , 0 < ŷ2 < d0 < ŷ3 < M1 , ŷ4 = M1 .

Consider also the arcs Γ′0 and Γ′1 in R

Γ′0 := {Φτ0(r, 0) : r ∈ [α0, β0] }, Γ′1 := {ΦτT (r, 0) : r ∈ [α1, β1] }.

By construction, Γ′0 connects in R the point P4 (on the upper side of R) with P2 (on
the right-hand side of R), while Γ′1 connects in R the point P1 (on the left-hand side
of R) with P3 (on the right-hand side of R). Moreover, P2 is below P3 while P4 is
above P1 (see Figure 3).

Figure 3: The present figure illustrates the conclusion of the proof of Theorem 3.1. The
information we have is about the mutual position of the points on ∂R and the fact that the
curves Γ′0 and Γ′1 (which are the restrictions of Γ0 and Γ1 with R) connect pairs of opposite
points. This is sufficient to guarantee the existence of a nonempty intersection for Γ′0 ∩ Γ′1 .

Now, by an elementary argument of plane topology based on the Jordan-Brouwer
separation theorem (see [24] and also [26] for some details) we can easily deduce
that Γ′0 ∩ Γ′1 , ∅. Indeed, the curve J , obtained by the union of the arc Γ′1 with the
segments [P1, (η−, 0)], [(η−, 0), (η+, 0)] and [(η+, 0), P3], is a simple closed curve
(a Jordan curve) which separates the point P4 from the points of Γ′0 near P2 in the
interior of the rectangle. Hence J ∩ (Γ′0 \ {P2}) , ∅ and this nonempty intersection
is exactly Γ′0 ∩ Γ′1 . This concludes the proof. �
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Proof of Theorem 3.2. The proof if precisely the same as that of Theorem 3.1, by
using Lemma 4.2 in the variant proposed in Remark 4.1 when r0 > 0 (i.e., the case
in which there are solutions presenting a blow-up in the interval [0, τ]). �

5 Final remarks

We conclude the paper with a couple of remarks. We always deal with the equation

x′′ = f (x)(x′)2 + a(t), (5.1)

where, as usual, we take f : R+0 → R continuous.

First of all, as already discussed in the Introduction, we recall that our results
for the Neumann problem can be used to produce periodic solutions, if we further
assume that the weight function a(t) satisfies a symmetry condition. For instance,
an explicit corollary of Theorem 3.1 is the following.

Corollary 5.1 Let f (x) satisfy ( f∞), (F∞) and ( f0). Moreover, assume that a ∈
L1

loc(R) is an even T-periodic function (that is, a(t + T ) = a(t) = a(−t) for a.e.
t ∈ R) satisfying, for some τ′ ∈ ]0, T/2[ ,

a(t) ≥ 0, a(t) . 0 on [0, τ′] and a(t) ≤ 0, a(t) . 0 on [τ′,T/2]

and ∫ T

0
a(t) dt < 0.

Finally, we suppose that (AF) holds true. Then, equation (5.1) has at least one even
T-periodic solution, which is decreasing on each interval of the type [kT −T/2, kT ]
and increasing on each interval of the type [kT, kT + T/2], for k ∈ Z.

Proof. Since a(t) is even and T -periodic, one has∫ T/2

0
a(t) dt =

1
2

∫ T

0
a(t) dt < 0.

Hence, it is possible to apply Theorem 3.1 to produce an increasing solution [0,T/2] ∋
t 7→ x(t) to (5.1) satisfying the Neumann boundary conditions x′(0) = x′(T/2) = 0.
Then, t 7→ x(|t| mod T ) is an even T -periodic solution of (5.1). �

The usual care has to be used in considering assumption (AF). Indeed, if A(t) =
0 for t ∈ [0, σ0] with σ0 < τ, one has to solve the Neumann problem on [σ0,T/2]
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to produce a T -periodic solution which is decreasing on [−T/2,−σ0], constant on
[−σ0, σ0] and increasing on [σ0,T/2].

It is worth noticing that, by a time translation, one can enter in the setting of
Corollary 5.1 also when the weight function a(t) is T -periodic, satisfies a(σ + t) =
a(σ − t) for some σ ∈ [0, T [ and a.e. t ∈ R and, for a suitable τ′ ∈ ]0, T/2[ ,

a(t) ≥ 0, a(t) . 0 on [σ,σ + τ′] and a(t) ≤ 0, a(t) . 0 on [σ + τ′, σ + T/2].

In this case, one solves the Neumann boundary value problem on [σ,σ + T/2] in
order to produce T -periodic solutions which are even symmetric with respect to σ.
For instance, a piecewise constant weight function of the form a(t) = a+ > 0 for
t ∈ [0, τ] and a(t) = −a− < 0 for t ∈ [τ,T ] satisfies the previous conditions with
σ = τ′ = τ/2.

Of course, variants of Corollary 5.1 can be given using Theorem 3.2 instead of
Theorem 3.1.

We now briefly touch on the question of the uniqueness/multiplicity of the
solutions to the Neumann boundary value problem associated to (5.1). A pos-
sible uniqueness result is the following, valid for an arbitrary weight function
a ∈ L1(0, T ) (that is, we do not assume any special shape for a(t)).

Proposition 5.1 Assume that f (x) is of class C1 and f ′(x) > 0 for every x > 0.
Then, there exists at most one solution to (5.1) satisfying the Neumann boundary
conditions x′(0) = x′(T ) = 0.

Proof. Assume that x1(t) and x2(t) are distinct solutions and set y(t) = x1(t)− x2(t).
A simple computation shows that

y′′ − w(t)y′ = ( f (x1(t)) − f (x2(t)))x′2(t)2, for a.e. t ∈ [0, T ], (5.2)

with w(t) := f (x1(t))(x′1(t) + x′2(t)). Just to fix the ideas, suppose that y(t∗) > 0 for
some t∗ ∈ [0, T ] (if y(t∗) < 0 the argument is symmetric) and let [t1, t2] ⊂ [0,T ] be
the maximal interval containing t∗ such that y(t) ≥ 0 for every t ∈ [t1, t2]. In view
of the maximality of [t1, t2] and the Neumann boundary conditions on [0, T ], it is
easy to see that

y′(t2) ≤ 0 ≤ y′(t1). (5.3)

Moreover, since f ′(x) > 0, (5.2) implies that

d
dt

(
y′ exp(−W(t))

)
= exp(−W(t))(y′′ − w(t)y′) ≥ 0, for a.e. t ∈ [t1, t2],

where W(t) :=
∫ t

0 w(ξ) dξ. Integrating, we obtain

y′(t2) exp(−W(t2)) ≥ y′(t1) exp(−W(t1)),
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so that, combining with (5.3), y′(t) = 0 for every t ∈ [t1, t2]. Hence y(t) = y(t∗) > 0
for every t ∈ [t1, t2] and [t1, t2] = [0, T ]. From (5.2) we thus obtain

0 = ( f (x2(t) + y(t∗)) − f (x2(t)))x′2(t)2, for every t ∈ [0,T ].

This is impossible, since x′2(t) . 0 (otherwise, a(t) ≡ 0) and f (x) is strictly increas-
ing. �

However, the global condition f ′ > 0 is in strong contrast with the situation
considered in the present paper (compare with ( f0) and ( f∞)) so that Proposition
(5.1) is not of much help in our context. On the other hand, one can easily see that
Proposition 5.1 implies the uniqueness for the positive solution to the Neumann
problem associated to u′′ + a(t)up = 0, with 0 < p < 1, as already shown, also in
the PDEs setting, in [4] (using an argument very similar to the one in Proposition
5.1). It is also worth noticing that if f ′ > 0 on an interval J′ ⊂ R+0 then the same
argument of Proposition (5.1) yields the uniqueness for solutions to the Neumann
problem with range in J′.

We can also observe that the numerical simulation exhibited in Figure 1 seems
to suggest that the uniqueness is possible also in cases in which f ′ is not positive
(notice that in our example we have indeed f ′(x) < 0 for every x > 0). Hence,
no more than one solution can be probably expected in Theorem 3.1 (as well as
in Theorem 3.2). This could be related to the simple shape of the graph of a(t):
we mention, for instance, that in [12] a uniqueness result is given for (the periodic
problem associated to) u′′ − a(t)

u3 = 0 when a(t) is a piecewise constant function
satisfying (A2). On the other hand, when the graph of a(t) has a more complex
shape, multiple solutions can appear. For instance, in [8] it is proved the existence
of three positive solutions to the Neumann problem for u′′+a(t)up = 0, with p > 1,
when a(t) has two positive humps (separated by a negative hump) and large negative
mean value.
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