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Abstract
Objective
To evaluate the performance of a UK based prediction 
model for estimating fat-free mass (and indirectly fat 
mass) in children and adolescents in non-UK settings.
Design
Individual participant data meta-analysis.
Setting
19 countries.
Participants
5693 children and adolescents (49.7% boys) aged 
4 to 15 years with complete data on the predictors 
included in the UK based model (weight, height, 
age, sex, and ethnicity) and on the independently 
assessed outcome measure (fat-free mass determined 
by deuterium dilution assessment).
Main outcome measures
The outcome of the UK based prediction model 
was natural log transformed fat-free mass (lnFFM). 
Predictive performance statistics of R2, calibration 
slope, calibration-in-the-large, and root mean square 

error were assessed in each of the 19 countries and 
then pooled through random effects meta-analysis. 
Calibration plots were also derived for each country, 
including flexible calibration curves.
Results
The model showed good predictive ability in non-UK 
populations of children and adolescents, providing 
R2 values of >75% in all countries and >90% in 11 
of the 19 countries, and with good calibration (ie, 
agreement) of observed and predicted values. Root 
mean square error values (on fat-free mass scale) 
were <4 kg in 17 of the 19 settings. Pooled values 
(95% confidence intervals) of R2, calibration slope, 
and calibration-in-the-large were 88.7% (85.9% to 
91.4%), 0.98 (0.97 to 1.00), and 0.01 (−0.02 to 0.04), 
respectively. Heterogeneity was evident in the R2 and 
calibration-in-the-large values across settings, but not 
in the calibration slope. Model performance did not 
vary markedly between boys and girls, age, ethnicity, 
and national income groups. To further improve the 
accuracy of the predictions, the model equation was 
recalibrated for the intercept in each setting so that 
country specific equations are available for future use.
Conclusion
The UK based prediction model, which is based on 
readily available measures, provides predictions 
of childhood fat-free mass, and hence fat mass, 
in a range of non-UK settings that explain a large 
proportion of the variability in observed fat-free mass, 
and exhibit good calibration performance, especially 
after recalibration of the intercept for each population. 
The model demonstrates good generalisability in both 
low-middle income and high income populations of 
healthy children and adolescents aged 4-15 years.

Introduction
The high global prevalence of obesity in childhood 
poses a major global public health challenge. The 
World Health Organization recently estimated that 
about 18% of children and adolescents aged 5-19 
years worldwide (>340 million individuals) are affected 
by overweight or obesity.1 However, the most widely 
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What is already known on this topic
Improvements to the assessment of body fatness in children, currently based on 
body mass index (BMI), are required
Assessment of childhood fat mass, which is more strongly related with risk of 
type 2 diabetes in adulthood than weight (on which BMI is based), could provide 
improvements
A prediction model that accurately estimates fat mass levels in healthy children 
and adolescents has been developed and validated for the UK population, but its 
performance in other populations is unknown

What this study adds
This external validation study found strong predictive performance of the UK 
based model at estimating fat-free mass in a wide range of non-UK settings
The equation, which is based on readily available markers of height, weight, age, 
sex, and ethnic group, performed consistently well in both low-middle and high 
income settings, showing its wider generalisability
The recalibrated model equations for each of the 19 countries further improve 
the accuracy of fat-free mass predictions and are recommended for future use
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used marker of high childhood adiposity, body mass 
index (BMI), has serious limitations.2-4 BMI is poorly 
correlated with fat mass in childhood and, crucially, as 
a weight-for-height index, BMI is unable to discriminate 
between fat mass and fat-free mass, which can both 
vary markedly in individuals with a given BMI.3 This 
is important, as fat mass in children has been shown 
to be more strongly associated with long term risk of 
type 2 diabetes than markers of body fatness based on 
overall weight (of which BMI is such a marker).5 The 
availability of simple, accurate methods for assessment 
of fat mass could represent an important advance in 
the assessment of adiposity over the use of BMI.4 6 In 
vivo techniques for the assessment of fat mass do exist, 
such as bioelectrical impedance analysis, dual energy 
x ray absorptiometry, and magnetic resonance imaging 
(MRI), but may lack accuracy,4 7 8 and, in the case of dual 
energy x ray absorptiometry and MRI are inappropriate 
for general use. An alternative accurate method for 
assessment of fat mass, which has been developed and 
validated within the UK population of children and 
adolescents,6 9 is based on the prediction of fat-free 
mass (and indirectly fat mass, as fat mass=weight−fat-
free mass) using simple assessments of height, weight, 
sex, age, and ethnicity. Ethnicity was also included 
as a predictor within the developed model to allow 
for established differences in body fatness in children 
between ethnicities.10-12 To maximise the accuracy of 
the predictions obtained from this approach, the model 
was developed using data on fat mass in children 
obtained from the deuterium dilution approach, a 
reference standard method of adiposity assessment, 
which provides accurate, safe, and minimally invasive 
measurements of total body water (and fat-free mass) 
with an error of less than 1%.13 14 The developed 
model was also shown to predict fat mass levels as 
accurately as dual energy x ray absorptiometry and 
bioelectrical impedance analysis in UK children.9 
However, the predictive performance of the model has 
not so far been examined in children and adolescents 
outside the UK.15 We therefore performed an external 
validation of the UK based fat mass prediction model 
to assess its predictive performance in a wide range of 
non-UK populations of children and adolescents aged 
4-15 years with comparable fat mass assessment from 
the reference standard deuterium dilution method.

Methods
Data sources and study population
We carried out a Medline literature search through 
PubMed to identify all published studies that used 
the deuterium dilution method13 14 to assess fat-free 
mass and fat mass in at least 100 healthy children or 
adolescents aged between 4 and 15 years and also 
included measurements of weight and height and 
basic personal information on age and sex (search 
dates: May 2020, search terms: “deuterium dilution”, 
“study”, “children” or “adolescents”). Twenty four 
relevant studies were identified; study authors were 
contacted and invited to contribute data to this 
investigation. Fourteen agreed to participate, four 

were unable to participate owing to data sharing 
restrictions, and the remaining six did not respond. 
Study collaborators provided data from a further 
four studies (of which, one contained unpublished 
deuterium dilution data16 and two were small17 18). 
Further information is available in the Preferred 
Reporting Items for Systematic Reviews and Meta-
analyses individual participant data (PRISMA-IPD) 
flow diagram (see supplementary file). Each of the 
18 studies provided data on weight, height, age, sex, 
ethnicity, and deuterium dilution assessed total body 
water, fat mass, and fat-free mass. The earliest study 
was conducted in 1981-8219 and the latest in 2017-
1920; most studies (83%) were carried out from 2000 
(see supplementary table 1). In total, 5715 generally 
healthy children and adolescents aged 4-15 years 
were included from 18 studies spanning 19 countries: 
Australia,17 Austria,19 Bangladesh,21 Brazil,22 China,23 
Mexico,24 25 Namibia,20 Nepal,26 the Netherlands,27 
New Zealand,10 the Philippines,23 Peru,18 Poland,16 
Russia,23 South Africa,20 23 Spain,28 Sri Lanka,29 
Tunisia,30 and the US31 32 (see supplementary table 
1). Although five of these countries (Peru n=56, 
Spain n=92, China n=95, Philippines n=80, and 
Australia n=42) had smaller participant numbers than 
anticipated,17 18 23 28 the data were included to avoid 
data wastage.

Outcome and predictor assessment
The outcome was natural log transformed fat-free 
mass (lnFFM), ascertained using the deuterium 
dilution reference method,13 14 which was also used 
as the outcome for the previously developed UK based 
prediction model.6 Five individuals with missing 
information on the outcome (lnFFM), one individual 
with an implausible weight value, and 16 individuals 
with implausible fat-free mass values (ie, fat-free mass 
greater than weight) were excluded. No other data were 
missing on the predictors of weight, height, age, sex, 
or ethnicity (classified as either white, black, South 
Asian, other Asian, or other). After these exclusions, 
5693 children and adolescents aged 4-15 years were 
included in analyses.

Statistical analysis
All statistical analyses were conducted in Stata 
(version 17). We followed the Transparent Reporting 
of a multivariable model for Individual Prognosis Or 
Diagnosis (TRIPOD) guideline for the reporting of 
studies validating a multivariable prediction model.15

Evaluation of overall performance of UK based 
prediction model equation
We applied the UK based model equation6 (fig 1) 
to all children and adolescents within this external 
validation dataset to obtain a prediction of lnFFM from 
weight, height, age, sex, and ethnicity.

The predictive performance of the model equation 
was assessed within each country by comparing the 
deuterium dilution assessed lnFFM value with the 
predicted lnFFM value obtained from the UK based 
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model. Model performance was assessed by examining 
established predictive performance measures of:
•	 �R2—the percentage of variance in deuterium 

dilution observed lnFFM explained by predicted 
lnFFM estimated by the UK based prediction model.

•	 �Root mean square error—the average difference 
between predicted lnFFM from the UK based model 
and the deuterium dilution observed lnFFM. Root 
mean square error indicates the absolute fit of 
the model to the data (ie, how close the model’s 
predicted values of lnFFM are to the deuterium 
dilution observed values of lnFFM).

•	 �Model calibration—assessed collectively by means 
of three measures: slope, calibration-in-the-large, 
and calibration plot.
°° �Slope—obtained from the model regressing 

deuterium dilution observed values of lnFFM on 
model predicted values of lnFFM. The calibration 
slope reports on the accuracy of the predictions 
across the range of lnFFM values by evaluating 
the spread of the predicted values, and the slope 
has a target value of 1. A slope <1 suggests that 
predicted values are too high for children and 
adolescents with low observed values and too 
low for those with high observed values. A slope 
>1 suggests the opposite.

°° �Calibration-in-the-large—intercept term obtained 
from a linear regression model of deuterium 
dilution observed values of lnFFM on model 
predicted values of lnFFM, where the slope is 
constrained to be the ideal of 1 (with a calibration-
in-the-large of 0 being ideal). Calibration-in-the-
large measures the overall agreement between 
average model predicted values of lnFFM and 
average deuterium dilution observed values of 

lnFFM (ie, it tells you about the systematic bias of 
predicted lnFFM obtained from the model when 
compared with the deuterium dilution observed 
values of lnFFM).

°° �Calibration plot—graph of deuterium dilution 
observed lnFFM plotted against model predicted 
values of lnFFM with a local regression (loess) 
smoother fitted across all individuals to produce 
a flexible calibration curve (created using 
pmcalplot on Stata).

To summarise results across all countries, we 
pooled the country specific performance measures 
of R2, calibration slope, and calibration-in-the-large 
through a random effects meta-analysis to obtain an 
estimate of average performance and between country 
heterogeneity. The random effects meta-analysis model 
was fitted using the restricted maximum likelihood 
method33 using the Hartung-Knapp34 approach to 
adjust the standard error of the pooled performance 
measures. Heterogeneity was summarised for each of 
the performance measures of R2, calibration slope, and 
calibration-in-the-large using the estimate of between 
study variance (τ2) and a 95% prediction interval, 
which provides a range of values that the performance 
measure would be expected to fall within for a new 
individual setting.35 For the random effects meta-
analysis, the variance and confidence interval for R2 
was estimated using the Wald-type method outlined 
elsewhere,36 and 95% prediction intervals were 
capped at the maximum values of 100%. The model 
performance was also assessed within subgroups of 
sex, three year age groups (4-6, 7-9, 10-12, and 13-
15 years), and ethnic origin. Additionally, the model 
performance was assessed separately in low-middle 
income and high income populations of children and 
adolescents, categorised using the World Bank income 
classification.37 The country specific classifications 
were obtained for the year of study commencement 
such that Australia, Austria, the Netherlands, New 
Zealand, Spain, the US, and Poland were classified 
as high income and the remaining 12 countries were 
classified as low-middle income.

Although the primary results focus on the model 
performance measures assessed comparing deuterium 
dilution observed values of lnFFM with model predicted 
lnFFM, as the UK based model was developed to 
predict fat-free mass on the log scale, root mean square 
error and calibration plots are also presented on the 
fat-free mass scale to improve the interpretability of 
the results.

Country specific recalibration of UK based 
prediction model equation
When systematic error in the UK based model’s 
prediction of lnFFM was observed across countries, 
we recalibrated the intercept term of the UK based 
equation to provide updated country specific 
equations. Within each country, we first estimated the 
linear predictor portion of the UK based model for all 
individuals before fitting a linear regression model 
with deuterium dilution observed values of lnFFM 

Score 1 if child is of black (BA), South Asian (SA), other Asian (AO), or other 
ethnic origins and score 0 if not
If child is of unknown ethnic group, treat as of white ethnic origins
Height is measured in metres, weight in kilograms, and age in years

Fat mass = weight - exponential (0.3073 x height2 - 10.0155 x weight-1 + 
0.004571 x weight + 0.01408 x BA - 0.06509 x SA - 0.02624 x AO - 0.01745 x 
other - 0.9180 x In (age) + 0.6488 x age0.5 + 0.04723 x male + country - 
specific constant term)

Country

North America
  Mexico
  US
South America
  Brazil
  Peru
Europe
  Austria
  Netherlands
  Poland
  Russia
  Spain
  UK

2.8529
2.8216
� 
2.8537
2.8447
� 
2.8630
2.7787
2.8450
2.6897
2.8394
2.8055

Constant
term

Country

North Africa
  Tunisia
Sub-Saharan Africa
  Namibia
  South Africa
South Asia
  Bangladesh
  Nepal
  Sri Lanka
East Asia
  China
  Philippines
Australasia
  Australia
  New Zealand

2.7858
� 
2.7495
2.7578
� 
2.9009
2.8627
2.7480
� 
2.8867
2.7572
� 
2.8339
2.8345

Constant
term

Fig 1 | Recalibrated country specific model equations for prediction of natural log 
transformed fat-free mass in children and adolescents. Country specific constant term 
for UK obtained from equation provided in Hudda et al6
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as the dependent variable and the linear predictor 
as the independent variable. The slope of this model 
was constrained to be 1, and the constant term from 
the model was used as the updated intercept term 
for that country. We re-examined the performance of 
the country specific recalibrated equations to assess 
the predictive performance of the updated model 
equations.

Patient and public involvement
For this external validation study based on secondary 
data analysis, no patients were directly involved in 
setting the research question, outcome measures, study 
design, or implementation. However, previous focus 
groups including members of the public had indicated 
the need to develop and validate new methods for body 
fatness assessment in children, which informed the 
development of this work. No patients were involved in 
the interpretation or writing up of results.

Results
Table 1 summarises the key characteristics of the 5693 
children and adolescents included in the analysis, 
by country. The median age was 10.8 years—slightly 
higher than in the development population6 (median 
age 9.6 years). All studies included both boys and girls, 
except for one study that included only boys.19 Average 
levels of deuterium dilution assessed fat mass and fat-
free mass were, as expected, higher in studies of older 
children, who were also generally taller and heavier 
than younger children (table 1). Median fat mass in 
this validation dataset (8.5 kg) was similar to that of 
the development population6 (8.4 kg), although fat-
free mass was higher in this external validation dataset 
(27.8 kg) than in the development population (24.8 
kg).6 The representation of different ethnic groups 
varied across the settings, with 15 countries including 
data from a single ethnic group (table 1).

Assessment of UK based model performance in non-
UK settings
The UK based model equation, when applied to the 
external validation data, produced high R2 values 
>75% in all countries and >90% in 11 of the 19 
countries (table 2). When the country specific R2 
values were pooled through random effects meta-
analysis, the overall pooled R2 value was 88.66% 
(95% confidence interval 85.91% to 91.41%) 
(fig 2). The R2 values showed some evidence of 
between country heterogeneity (τ2=28.62), and 
the 95% prediction interval for the R2 value (ie, the 
expected range of R2 values that would be expected 
from applying the model to a previously unstudied 
population of children and adolescents) was 77.04% 
to 100.00%. Root mean square error values were 
generally low (≤0.11 in all countries except for Russia 
and Sri Lanka; table 2). The model demonstrated high 
levels of calibration in terms of the slope in each of the 
countries. The observed calibration slope estimates 
ranged between 0.91 in Spain and 1.05 in Australia 
and South Africa (table 2), with the country specific Ta
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95% confidence intervals around the respective slope 
term containing the ideal value of 1 in 15 of the 19 
countries (table 2). The pooled calibration slope was 
0.98 (95% confidence interval 0.97 to 1.00; fig 2), 
with no evidence of between country heterogeneity 
in the calibration slopes (τ2=0), and a 95% prediction 
interval of 0.92 to 1.05 for the calibration slope 
expected to be observed in a new country. Although 
the country specific calibration-in-the-large values 
were close to the ideal value of 0 for most countries, 
ranging from −0.12 in Russia to 0.10 in Bangladesh, 
the associated 95% confidence intervals failed to 
contain the ideal value of 0 in any of the settings 
(table 2). When pooled through random effects meta-
analysis, the overall pooled calibration-in-the-large 
value was almost equal to the ideal value of 0 (0.01, 
95% confidence interval −0.02 to 0.04; fig 2). Some 
heterogeneity was evident in the calibration-in-the-
large values (τ2=0.0031), with a 95% prediction 
interval of −0.11 to 0.13 that would likely be observed 
in a new country. Graphically, the calibration plots also 
demonstrated the good levels of calibration across the 
range of lnFFM values within each of the countries (fig 
3 and fig 4), including at the lower and upper ends of 
the distribution of lnFFM, with the flexible calibration 
curve close to the ideal 45 degree line of perfect 
calibration. However, the graphs further showed 
evidence of some systematic error in the prediction of 
lnFFM across settings (fig 3 and fig 4).

The generally high model performance was 
maintained when assessed across subgroups of sex 
(see supplementary figure 1), three year age groups 
(see supplementary figure 2), ethnic groups (see 

supplementary figure 3), and national income level 
(table 3). The model showed low levels of heterogeneity 
in the performance statistics across the three year age 
groups (see supplementary figure 4) and ethnic groups 
(see supplementary figure 5).

On the fat-free mass scale, the country specific root 
mean square error values ranged between 1.32 kg and 
4.83 kg, with a root mean square error value of <4 kg 
in 17 of the 19 countries (see supplementary table 2). 
Calibration plots showed good levels of agreement 
between deuterium dilution observed fat-free mass 
and model predicted fat-free mass within each of 
the countries, including at the lower and upper ends 
of the distribution of fat-free mass, with the flexible 
calibration curve close to the ideal 45 degree line of 
perfect calibration (see supplementary figures 6a and 
6b).

As a result of the observed systematic error in the UK 
based model’s prediction of lnFFM, the equation was 
recalibrated for the intercept term to provide updated 
country specific equations (fig 1) and calibration 
plots (see supplementary figures 7a and 7b). After 
recalibration, the calibration-in-the-large and root 
mean square error values were closer to the ideal values 
of 0 in all settings, with all of the country specific 95% 
confidence intervals for the calibration-in-the-large 
now containing the ideal value (see supplementary 
table 3).

Discussion
Principal findings
We externally validated the predictive performance 
of a recently proposed model using weight, height, 

Table 2 | External validation predictive performance statistics based on natural log transformed fat-free mass, by country
Region and country No R2 (%) (95% CI) Calibration slope (95% CI) Calibration-in-the-large (95% CI) RMSE
North America
Mexico 330 92.95 (91.49 to 94.42) 1.01 (0.98 to 1.04) 0.05 (0.04 to 0.05) 0.08
US 1810 93.32 (92.72 to 93.91) 1.00 (0.99 to 1.01) 0.02 (0.01 to 0.02) 0.10
South America
Brazil 450 76.69 (72.92 to 80.46) 0.96 (0.91 to 1.01) 0.05 (0.04 to 0.06) 0.10
Peru 56 92.29 (88.41 to 96.17) 0.94 (0.87 to 1.01) 0.04 (0.02 to 0.06) 0.09
Europe
Austria 107 91.47 (88.37 to 94.56) 0.96 (0.90 to 1.02) 0.06 (0.05 to 0.07) 0.09
Netherlands 716 81.53 (79.09 to 83.97) 1.00 (0.97 to 1.04) −0.03 (−0.03 to −0.02) 0.09
Poland 174 93.28 (91.36 to 95.21) 0.96 (0.92 to 0.99) 0.04 (0.03 to 0.05) 0.07
Russia 197 91.30 (88.98 to 93.62) 0.93 (0.89 to 0.97) −0.12 (−0.13 to −0.10) 0.15
Spain 92 80.85 (73.82 to 87.89) 0.91 (0.82 to 1.00) 0.03 (0.01 to 0.05) 0.10
North Africa
Tunisia 155 80.98 (75.59 to 86.37) 1.02 (0.94 to 1.10) −0.02 (−0.03 to −0.01) 0.08
Sub-Saharan Africa
Namibia 151 90.14 (87.16 to 93.13) 0.93 (0.88 to 0.98) −0.06 (−0.07 to −0.05) 0.09
South Africa 411 91.95 (90.46 to 93.44) 1.05 (1.02 to 1.08) −0.05 (−0.05 to −0.04) 0.08
South Asia
Bangladesh 187 89.50 (86.65 to 92.35) 0.99 (0.94 to 1.04) 0.10 (0.09 to 0.10) 0.11
Nepal 100 91.66 (88.53 to 94.79) 0.99 (0.93 to 1.04) 0.06 (0.05 to 0.07) 0.08
Sri Lanka 288 83.11 (79.56 to 86.67) 0.99 (0.94 to 1.04) −0.06 (−0.07 to −0.04) 0.16
East Asia
China 95 85.10 (79.57 to 90.63) 0.98 (0.90 to 1.07) 0.08 (0.07 to 0.10) 0.11
Philippines 80 81.03 (73.55 to 88.51) 1.04 (0.93 to 1.15) −0.05 (−0.07 to −0.03) 0.09
Australasia
Australia 42 96.64 (94.65 to 98.64) 1.05 (0.98 to 1.11) 0.03 (0.01 to 0.05) 0.07
New Zealand 252 92.96 (91.29 to 94.64) 0.98 (0.94 to 1.01) 0.03 (0.02 to 0.04) 0.10
RMSE=root mean square error.
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Fig 2 | Assessment of R2 values, calibration slope, and calibration-in-the-large based on natural log transformed fat-free mass, by country and 
overall. Overall estimates from random effect restricted maximum likelihood model with Hartung-Knapp standard errors. Purple line around the 
overall diamond indicates the 95% prediction intervals. Upper limit of the prediction interval for R2 capped at 100%
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age, sex, and ethnicity to estimate lnFFM, developed 
and validated within a UK population of children 
and adolescents, in 19 other countries from several 
regions of the world. The developed model equation 
generally showed good predictive ability in these 
new settings, with good calibration of observed and 
predicted values, demonstrating the generalisability of 
the model in populations of children and adolescents 
outside the UK. The model equation produced high 
R2 values >80% in all settings, with root mean square 

error values (expressed in terms of fat-free mass for 
interpretability) <4 kg in most of the settings. The 
root mean square error of 0.1 for lnFFM indicates 
an error of 10% on predicted fat-free mass values, 
which takes into account that the absolute error in 
any individual child or adolescent will depend on the 
magnitude of his or her fat-free mass. Notably, the 
predictive performance was consistently high among 
both low-middle income and high income countries. 
Although the calibration slope statistics were close to 
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Fig 3 | Calibration assessment of the model based on natural log transformed fat-free mass (lnFFM) in the Americas and European countries. Solid 
black line represents line of equality. Dashed line is a loess smoother through the individual data points. Histogram is the distribution of predicted 
ln(FFM). Slope=calibration slope; CITL=calibration-in-the-large
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Fig 4 | Calibration assessment of the model based on natural log transformed fat-free mass (lnFFM) in African, Asian, and Australasian countries. 
Solid black line represents line of equality. Dashed line is a loess smoother through the individual data points. Histogram is the distribution of 
predicted ln(FFM). Slope=calibration slope; CITL=calibration-in-the-large
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the ideal value of 1 for all countries, the calibration-
in-the-large values suggested a small systematic error 
in the prediction of lnFFM across settings. Therefore, 
the model equation was recalibrated for the intercept 
term to provide updated country specific prediction 
equations. After recalibration, the model performance 
showed improvement in the calibration-in-the-large 
and root mean square error values in all settings as 
expected.

Comparison with other studies
A small number of previous studies have developed 
models to estimate body fatness in populations 
of children and adolescents outside the UK,38-43 
producing R2 values >80% comparable with those 
observed in the present study. However, direct 
comparisons of the performance of those models with 
the model being validated in this study are difficult 
for several reasons. Firstly, while those models also 
produced high R2 values >80%, their outcomes (fat 
mass percentage) are different from the outcome of the 
current model (absolute fat-free mass values). Although 
fat mass needs to be standardised for height before 
interpretation or comparisons between individuals 
(typically expressed as a fat mass index or as fat mass 
percentage), the use of absolute values (of either fat 
mass or fat-free mass) as the outcome of the prediction 
model produces more accurate and precise predictions 
than estimating fat mass percentage, which is derived 
from fat mass and weight and is more variable than 
the absolute values. Furthermore, as discussed 
previously,6 we chose to estimate absolute fat mass 
values indirectly (by predicting fat-free mass from the 
model and subtracting estimates from weight to obtain 
predicted fat mass) rather than directly (using fat mass 
as the outcome of the model), as the variability in fat-
free mass with height (one of the strongest predictors of 
body composition) was more homogeneous than for fat 
mass and thus the indirect approach resulted in more 
precise fat mass predictions. We believe this modelling 
decision was one of the main reasons for the high 
predictive performance observed. Secondly, neither 
the calibration slopes nor the calibration-in-the-large 
values were assessed for these models. Thirdly, these 
models largely used dual energy x ray absorptiometry 
as the reference method for assessing body fatness (ie, 
as the outcome for model development). Estimation 
of fat mass using dual energy x ray absorptiometry 
is, however, prone to low levels of accuracy,4 7 8 44 45 

which varies considerably by body shape, sex,8 44 and 
different dual energy x ray absorptiometry devices and 
software used. Finally, most models used additional 
measurements, including skinfold thickness, waist 
circumference, or bioelectrical impedance to estimate 
fat mass, rather than being based on readily available 
anthropometric and demographic predictors.39-43 One 
such study, which used the same data on Tunisian 
children used in our present study, also developed a 
prediction model to estimate fat-free mass.30 However, 
the model was not based on readily available predictors 
as it relied on resistance from bioimpedance analysis 
and was not corrected for model optimism, which may 
explain why the model equation produced a R2 value of 
91.8% compared with the value of 81.0% obtained in 
the present study.

Strengths and limitations of this study
The current investigation had several strengths in 
its approach to validating the developed UK based 
prediction model. Crucially, from each of the 19 
countries, body fatness assessments were made 
using the same reference standard deuterium 
dilution method on which the UK based model 
was based,6 which provides accurate, safe, and 
minimally invasive measurements of total body water 
(and fat-free mass) with low error.13 14 Most studies 
included in this external validation were conducted 
recently and were sufficiently large to provide 
accurate estimates of the country specific prediction 
performance statistics. The pooled data used for this 
external validation across the 19 settings spanned 
a wide age range of participants aged 4-15 years, 
allowing us to obtain an accurate picture of the model 
performance across childhood and adolescence in 
the new settings. The maintained high predictive 
performance of the model at both the lower and 
the upper ends of the distribution of fat-free mass 
indicates the model’s potential utility for population 
based obesity surveillance (for example, in the 
English National Child Measurement Programme and 
the WHO Childhood Obesity Surveillance Initiative). 
The populations included about equal numbers of 
both high (56%) and low to middle income countries, 
which allowed for accurate subgroup assessment by 
income classification.

The study also had some limitations. Firstly, global 
representation was limited, with only a small number 
of participants included from East Asia and none 
from the Middle East. Secondly, five countries had 
fewer than 100 participants, which impacted the 
representativeness of the results and the precision 
of estimates obtained from these populations, 
although predictive performance statistics from these 
populations were consistent with those of the larger 
countries. Finally, deuterium dilution assessment 
involves estimating total body water, which is then 
converted into an estimate of fat-free mass using a 
chosen hydration constant.46 The hydration constants 
used across the individual studies were those originally 
applied by individual study authors. The study 

Table 3 | External validation predictive performance statistics based on natural log 
transformed fat-free mass, by World Bank income classifications*

Performance statistics
Low-middle income group† 
(n=2473)

High income group‡ 
(n=3193)

R2 (%) (95% CI) 92.19 (91.60 to 92.78) 93.64 (93.21 to 94.07)
Calibration slope (95% CI) 0.98 (0.97 to 0.99) 0.97 (0.97 to 0.98)
Calibration-in-the-large (95% CI) −0.00 (−0.01 to 0.00) 0.01 (0.01 to 0.01)
Root mean square error 0.11 0.10
*Ascertained for initial calendar year the study began.
†Comprises low, lower middle, and upper middle income groups. Includes Bangladesh, Brazil, China, Mexico, 
Namibia, Nepal, Peru, the Philippines, Russia, South Africa, Sri Lanka, and Tunisia.
‡Includes Australia, Austria, the Netherlands, New Zealand, Spain, US, and Poland.
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results were not, however, materially affected (results 
not presented) when using a consistent hydration 
constant46 for all studies, and therefore the choice of 
hydration constants is unlikely to have affected the 
results appreciably.

Implications for clinicians and policy makers
Although BMI is widely used because of its simplicity 
and reliance solely on measures of height and weight, 
it has well recognised serious limitations as a marker 
of body fatness in children.2-4 For example, BMI is 
unable to discriminate between fat mass and fat-free 
mass, and it has been shown that even at a given 
BMI among children of the same age and sex, both 
fat mass and fat-free mass can vary substantially,3 
which is particularly concerning in light of evidence 
that, independent of height, fat mass in childhood is 
strongly associated with emerging cardiometabolic 
risk47-56 and is more strongly related with risk of type 
2 diabetes in adulthood than overall weight (on which 
BMI is directly based).5 Furthermore, it has been 
suggested that fat-free mass, independent of fat mass, 
also has implications on adverse health conditions. 
This emphasises the needed for a shift away from proxy 
weight-for-height indices such as BMI, which produce 
inaccurate body fatness assessment in children12 57-59 
and result in a large proportion being misdiagnosed 
with overweight or obesity, and towards more direct 
and accurate assessment of fat mass. The availability 
of the extensively validated prediction model provides 
a major advancement within this area of body fatness 
assessment in children. The accuracy and simplicity 
of the model, relying solely on readily available non-
invasive measurements to assess fat-free mass and 
thus fat mass (fat mass=weight–exponential[predicted 
lnFFM]), has implications for its wider applicability 
both in routine healthcare practice and in population-
wide obesity surveillance, monitoring, and prevention 
initiatives where more complex measurements 
of body fatness (such as waist circumference and 
skinfold thickness) are not so readily available. The 
consistency of the model performance across settings 
also strengthens the conclusions that the model, 
particularly after recalibration at local level, minimises 
the bias in fat-free mass predictions across a wide 
range of settings. However, the UK based model before 
local country specific recalibration of the intercept 
terms was shown to have good predictive ability 
across the settings, both in high and in low-middle 
income populations, and thus can be implemented in 
childhood settings where a recalibrated equation is not 
provided.

Body fatness markers require standardisation for 
height to minimise their correlation with height,60 
to provide a consistent measure across age and sex, 
allowing for efficient monitoring and tracking of body 
fatness in childhood. Two common approaches to 
provide appropriate standardisation of fat mass for 
height are to convert fat mass to fat mass percentage 
(fat mass/weight×100) or to fat mass index (fat 
mass/heightp, where p is the power of height needed 

to obtain maximum height independence in the 
population of interest). Fat mass assessment (using 
either the updated country specific model equation 
provided when available or the original UK based 
model), after height standardisation (either as fat 
mass percentage or as fat mass index), can then be 
used in conjunction with respective established 
reference curves61-63 for improved surveillance, 
management, and prevention of obesity in childhood. 
A MS Excel calculator has been developed (see 
supplementary file) to allow for simple calculation 
of fat-free mass, fat mass, and fat mass percentage 
from the relevant predictor variables. Assessments 
of fat mass can also be made readily available to 
clinicians by embedding the validated equation 
within existing computer software used by general 
practitioners and paediatricians. This approach 
would be consistent with the use of other prediction 
algorithms in clinical practice, such as the QRISK3 or 
Framingham risk score (cardiovascular disease).64 65 
It would also be possible and straightforward to apply 
the algorithms within existing obesity surveillance 
initiatives for children such as the English National 
Child Measurement Programme and the WHO 
Childhood Obesity Surveillance Initiative, to provide 
assessments of fat mass, fat-free mass, and fat mass 
index or fat mass percentage.

Further research
Further external validation of the model in countries 
or regions not included within this study would be 
of value. Additionally, the development of sex and 
age specific fat mass reference values, based on 
prospectively associated risks of diseases associated 
with obesity, could allow individuals to be classified 
into groups based on future disease risk attributable 
to their current fat mass levels, as opposed to current 
centile based approaches to classify fat mass.61
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