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Abstract

The LFP Framework is an extension of the Harper-Honsell-Plotkin’s Edinburgh Logical Frame-
work LF with predicates. This is accomplished by defining lock type constructors, which are a sort
of ⇧-modality constructors, releasing their argument under the condition that a predicate, possibly
external to the system, is satisfied on an appropriate typed judgement. Lock types are defined using
the standard pattern of constructive type theory, i.e. via introduction, elimination, and equality rules.
Using LFP , one can factor out the complexity of encoding specific features of logical systems which
would otherwise be awkwardly encoded in LF, e.g. side-conditions in the application of rules in Modal
Logics, and sub-structural rules, as in non-commutative Linear Logic. The idea of LFP is that these
conditions need only to be specified, while their verification can be delegated to an external proof
engine, in the style of the Poincaré Principle or Deduction Modulo. Indeed such paradigms can be
adequately formalized in LFP . We investigate and characterize the meta-theoretical properties of
the calculus underpinning LFP : strong normalization, confluence, and subject reduction. This latter
property holds under the assumption that the predicates are well-behaved, i.e. closed under weaken-

ing, permutation, substitution, and reduction in the arguments. Moreover, we provide a canonical

presentation of LFP , based on a suitable extension of the notion of �⌘-long normal form, allowing
for smooth formulations of adequacy statements.

1 Introduction

The Edinburgh Logical Framework LF, presented in [15], is a first-order1 constructive type theory. It
was first introduced as a general meta-language for logics, as well as a specification language for generic
proof-checking/ proof-development environments. In this paper, we consider an extension of LF with
external predicates, and in this sense our framework is an open Logical Framework. This is accomplished
by defining lock type constructors, which are a sort of ⇧-modality constructors for constructing types of
the shape LP

N,�[⇢], where P is an external predicate on typed judgements.
Following the standard specification paradigm in Constructive Type Theory, we define locked types

using introduction, elimination, and equality rules. Namely, we introduce a lock constructor for building
objects LP

N,�[M ] of type LP
N,�[⇢], via the introduction rule (O·Lock) , presented below. Correspondingly,

we introduce an unlock destructor, UP
N,�[M ], and an elimination rule (O·Unlock) which allows for the

elimination of the lock type constructor, under the condition that a specific predicate P is verified,
possibly externally, on an appropriate correct, i.e. derivable, judgement.

⇤This work was supported by the Serbian Ministry of Education, Science, and Technological Development (projects
ON174026 and III044006).

1In contrast to the systems on the top and back sides of the Barendregt’s �-cube, which are either second- or higher-order.
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� `⌃ M : ⇢ � `⌃ N : �

� `⌃ LP
N,�[M ] : LP

N,�[⇢]
(O·Lock)

� `⌃ M : LP
N,�[⇢] � `⌃ N : � P(� `⌃ N : �)

� `⌃ UP
N,�[M ] : ⇢

(O·Unlock)

The equality rule for lock types amounts to a new form of reduction we name lock reduction (L-
reduction), UP

N,�[LP
N,�[M ]] !L M , which allows for the elimination of a lock, in the presence of an

unlock. The L-reduction combines with standard �-reduction into �L-reduction.
So as to allow the reader an introductory insight into the application and potential benefits of lock

types, we present here a fragment of one of the case studies proposed later in the paper (see Section 6.3.1).
The problem of suitably encoding systems with “rules of proof” (as opposed to “rules of derivation”)2

like, e.g., classical Modal Logics K, KT , K4, KT4 (S4), KT45 (S5) in Hilbert style is well-known in the
literature. In this specific case, the aforementioned systems all feature necessitation as a rule of proof.
We can encode such a rule in LFP by locking the type True(⇤�) in the conclusion of NEC as follows:

o : Type

⇤ : o -> o

True : o -> Type

NEC : ⇧� : o. ⇧m : True(�). LClosed

m

[True(⇤�)]
where o denotes the type of propositions, ⇤ is the operator commonly used to denote necessitation,
and True is the classical truth judgment. The gist of this encoding approach is to use the predicate
Closed (� `⌃ m:True (�)) in order to correctly capture the notion of “rules of proof”. This predicate
holds i↵ “all free variables occurring in m have type o”. The more detailed meaning of this predicate is
further discussed in Section 6.3.1, where it is shown that it precisely captures the side-condition on the
application of necessitation. The conciseness and elegance of the proposed representation in LFP can be
contrasted with the burden of the extra-judgments and structures needed in other more “traditional”
approaches in the literature [1, 2, 12].

LFP is parametric over a potentially unlimited set of (well-behaved) predicates P, which are defined
on derivable typing judgements of the form � `⌃ N : �. The syntax of LFP predicates is not specified,
with the main idea being that their truth is to be verified via a call to an external validation tool ; one
can view this externalization as an oracle call. Thus, LFP allows for the invocation of external “modules”
which, in principle, can be executed elsewhere, and whose successful verification can be acknowledged
in the system via L-reduction. Pragmatically, lock types allow for the factoring out of the complexity
of derivations by delegating the {checking, verification, computation} of such predicates to an external
proof engine or tool. The proof terms themselves do not contain explicit evidence for external predicates,
but just record that a verification {has to be (lock), has been successfully (unlock)} carried out. In this
manner, we combine the reliability of formal proof systems based on constructive type theory with the
e�ciency of other computer tools, in the style of the Poincaré Principle [5].

In this paper, we develop the meta-theory of LFP . Strong normalization and confluence are proven
without any additional assumptions on predicates. For subject reduction, we require the predicates to be
well-behaved, i.e. closed under weakening, permutation, substitution, and �L-reduction in the arguments.
LFP is decidable, if the external predicates are decidable. We also provide a canonical presentation of
LFP , in the style of [36, 16], based on a suitable extension of the notion of �⌘-long normal form. This
allows for simple proofs of adequacy of the encodings.

In particular, we encode in LFP the call-by-value �-calculus and discuss a possible extension which
supports the design-by-contract paradigm. We provide smooth encodings of side conditions in the rules
of Modal Logics, both in Hilbert and Natural Deduction styles, cf. [2, 12]. We also encode sub-structural
logics, i.e. non-commutative Linear Logic, cf. [31, 12]. We also illustrate how LFP can naturally support
program correctness systems and Hoare-like logics. In our encodings, we utilize a library of external
predicates, the pseudo-code of which appears in [18].

2The former apply only to premises which do not depend on any assumption, such as necessitation, while the latter are
the usual rules which apply to all premises, such as modus ponens.
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As far as expressiveness is concerned, LFP is a stepping stone towards a general theory of shallow vs
deep encodings, with our encodings being shallow by definition. Clearly, by Church’s thesis, all external
decidable predicates in LFP can be encoded, possibly with very deep encodings, in standard LF. It
would be interesting to state in a precise categorical setting the relationship between such deep internal
encodings and the encodings in LFP .

LFP can also be viewed as a neat methodology for separating the logical-deductive contents from, on
one hand, the verification of structural and syntactical properties, which are often needlessly cumbersome
but ultimately computable, or, on the other hand, from more general means of validation.

Synopsis. In Section 2, we present the syntax of LFP , the typing system, and the �L-reduction. In
Section 3, we prove the main meta-theoretical properties of the system. In Section 4, the expressive power
of LFP is discussed. In Section 5, we present a canonical version of LFP , and we discuss the correspondence
with the full framework. In Section 6, we show how to encode the call-by-value �-calculus, a minimal
functional language following the design by contract paradigm, Modal Logics, non-commutative Linear
Logic and Hoare Logic. In Section 7, we provide one final look back on LFP , while conclusions and future
work appear in Section 8.

1.1 A Philosophical Prelude

Since Euclid first introduced the concept of rigorous proof and the axiomatic/deductive method, philoso-
phers have been questioning the nature of mathematics: is it, essentially, analytic or synthetic? We shall
not address these issues here, because we do not wish to dare to comment on the reflections of giants
such as Leibniz, Kant and Schopenhauer. However, we humbly believe that the topics in this paper
should be cast against that background, and we will, therefore, o↵er some comments in that direction.

Possible, but clearly partial, modern readings of the synthetic vs analytic opposition are, in our view,
those of deduction from axioms vs. computation according to rules, proof checking vs. verification, and
proving inhabitability of judgements vs. definitional equality of types.

The machinery of locking/unlocking types, which we are introducing in LFP , allows for the opening
up of the Logical Framework to alternate means of providing evidence for judgements. In standard LF,
there are only two ways of providing evidence, namely discovering types to be inhabited or postulating
that types are inhabited by introducing appropriate constants. The lock/unlock types of LFP allow for an
intermediate level, one provided by external means, such as computation engines or automated theorem
proving tools. However, among these, we could also think of graphical tools based on neural networks, or
even intuitive visual arguments, as were used in ancient times for giving the first demonstrations of the
Pythagoras’ theorem, for instance. In a sense, LFP , in allowing to formally accommodate any alternative
proof method to pure axiomatic deduction, vindicates all of the “proof cultures” which have been utilized
pragmatically in the history of mathematics, and not only in the Western tradition.

A natural objection which can be raised against LFP is: “Alternative proof methods are not rigorous
enough! We need to go through the pains of rigorous formalized proof checking in order to achieve the
highest reliability of our certifications!”. This is, of course, true, but a few points need to be made.

First of all, absolute certainty is a myth, as it cannot be achieved. The De Bruijn Principle [5, 13]
is usually invoked in this respect. It amounts to the request that the core of the proof checker be small
and verifiable by hand. Alternate proof techniques certainly do not satisfy it in a strict sense. But
alternate proof techniques, if properly recorded, are not useless and come, somewhat at an intermediate
level between rigorous encoding and blatant axioms. They can expedite verifications, as in the case of
the Poincaré’s Principle [5], or Deduction Modulo [14], or make the proof more perspicuous and provide
some intuition, as Schopenhauer advocated [33]. On a lighter note, just recall the story of the famous
mathematician lecturing at the seminar, who, halfway through the proof, said: “And this trivially holds!”
Just to say a few seconds later: “But is it really trivial here? Hmm. . .”. And after about ten minutes
of silence triumphantly exclaiming: “Yes, it is indeed trivial!”. How should we encode such evidence?
Should we just rule it out?

However, there is a far deeper reason why a fundamentalist approach to certainty cannot be main-
tained that easily, and this has to do with the issue of adequacy. Contrast, for a moment, the process
of proving a computation correct w.r.t. carrying out its verification by directly executing it. Consider,
for example, that 11 ⇤ 22 ⇤ 33 = 108. In the latter case, one would need to do some simple arithmetics,
while in the former case, one would need to reify the rules for computing exponentials and products.
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Of course, using the autarkic approach explained in [5] or reasoning by reflection as in [9], one could
internalize the needed arithmetics checking procedures (proving their correctness once and for all), while
still preserving the de Bruijn principle and keeping proof terms small. However, our approach is more
“schematic”, in the sense that it creates room for “plugging-in” any verifier, without the need to specify
which one and without the need to prove internally its soundness.

But what can guarantee that this formalization is adequate, i.e. that it corresponds to our intended
understanding of arithmetic? The issue of proving that formal statements, such as specifications, en-
codings, and proof obligations, do indeed correspond to the intended meanings and pragmatic usages
cannot ever be done completely internally to any system. Ultimately, we have to resort to some informal
argument outside any possible De Bruijn Principle. And any such argument can, at best, increase our
confidence in the correctness of our proof of the arithmetical computation. If one looks for a definitive
proof of adequacy, one is led into an infinite regress. The moral here is that only fully internalized
arguments can rely on the De Bruijn Principle, but even the simplest application takes us outside the
system. Ultimately, we have to “just do it” as in Munchhausen trilemma, or as in the story by Lewis
Carroll on the dialogue between “A-kill-ease” and the “Taught-us” [8].

One final comment on lock/unlock types vs. Deduction Modulo or the Poincare’s Principle, which
will be slightly expanded in Section 7. The latter are always extensions of the type Equality Rule to new
definitional equalities. LFP on the other hand, permits a reflection into the proof objects themselves.

One concluding comment. The traditional LF answer to the question “What is a Logic?” was: “A
signature in LF”. In LFP , we can give the homologue answer, namely “A signature in LFP”, since external
predicates can be read o↵ the types occurring in the signatures themselves. But we can also use this
very definition to answer a far more intriguing question: “What is a Proof culture?”.

1.2 Comparison with Related Work

The present paper extends [21], and continues the research line of [17, 19], which present extensions of
the original LF, where a notion of �-reduction modulo a predicate P is considered. These are based on
the idea of stuck-reductions in objects and types in the setting of higher-order term rewriting systems,
by Cirstea-Kirchner-Liquori [10], later generalized to a framework of Pure Type Systems with Patterns
[6]. This typing protocol was essential for the preservation of strong normalization of typable terms, as
proven in [17]. In [17, 19] the dependent function type is conditioned by a predicate, and we have a
corresponding conditioned �-reduction, which fires when the predicate holds on a {term, judgement}.
In LFP , predicates are external to the system and the verification of the validity of the predicate is
part of the typing system. Standard �-reduction is recovered and combined with an unconditioned lock
reduction. The move of having predicates as new type constructors rather than parameters of ⇧’s and
�’s allows LFP to be a mere language extension of standard LF. This simplifies the meta-theory, and
provides a more modular approach.

Our approach generalizes and subsumes, in an abstract way, other approaches in the literature which
combine internal and external derivations. In many cases, it can express and incorporate these ap-
proaches. The relationship with the systems of [10, 6, 17, 19], which combine derivation and compu-
tation, has been discussed above. Systems supporting the Poincaré Principle [5], or Deduction Modulo
[14], where derivation is separated from verification, can be directly incorporated in LFP . Similarly, we
can abstractly subsume the system presented in [7], which addresses a specific instance of our problem:
how to outsource the computation of a decision procedure in Type Theory in a sound and principled
way via an abstract conversion rule. Another system which has a very similar goal w.r.t. LFP is pre-
sented in [11], where a framework named �⇧-calculus modulo is introduced, extending the original LF
with computation rules. The latter are realized by means of rewrite rules empowering the “traditional”
conversion rule of LF (i.e., the congruence relation ⌘� is replaced by ⌘�R, where R denotes the set of
rewrite rules introduced into the system). The authors then successfully encode all functional Pure Type
Systems (PTS) into the �⇧-calculus modulo, proving the conservativity of their embedding under the
termination hypothesis. The main di↵erence between �⇧-calculus modulo and LFP amounts to the fact
that the latter features a simpler metatheory, because the reduction is closer to the standard �-reduction
(at least in principle) and the external predicates are handled in a more controlled way by means of the
lock/unlock mechanism. The direct consequence of this approach, from a practical point of view (when
considering a possible implementation), is that we do not need to change the kernel of the original LF,
but only extend it.
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In [35], an extension of the Edinburgh LF with an equational theory is proposed, opening the door
to new ways of conversions among types within the framework. As a consequence, strong normalization
and confluence properties remain valid only in a weaker form (namely, modulo the equivalence induced
by the equational theory on types). In the second part of the work, Higher-order Term Rewriting
Systems (HTRS) with dependent types are introduced and used to generate equational theories, much
like those analyzed in the first part. Of course, the rewriting rules of such an HTRS must adhere to
some constraints, in order to guarantee the fundamental properties of the extended LF. For instance, it
is forbidden to use a rewrite rule to rewrite the type of another rule, i.e., rewriting must preserve well-
typedness of expressions. According to the author, the benefit of the new system, w.r.t. the original LF,
is to overcome the inadequacies emerging when dealing with the encoding of object languages embodying
notions of computations via equational rules. This work has served as a stepping stone to constraint-
based extensions of the proof assistant Twelf, which are called constraint domains [26]. These extensions
provide a way for users to work easily with objects (such as rational numbers), the explicit formalization
of which in Twelf would otherwise be quite lengthy or ine�cient, but are still considered to be highly
experimental. As future work, it would be interesting to study the possibility of “embedding” the HTRSs,
as in [35], as well as the constraint domains of Twelf in LFP , as external predicates, since the constraints
imposed on the rewriting rules seem closely related to our well-behavedness properties (see Definition 1).
Indeed, just as in [35], we have also used Newman’s Lemma (see Section 3) to prove confluence of
our system, and the issue of preserving well-typedness of expressions has also been our main concern
throughout the development of the meta-theory of LFP .

The work presented here also has a bearing on proof irrelevance. In [25], two terms inhabiting the
same proof irrelevant type are set to be equal. However, when dealing with proof irrelevance in this way,
a great amount of internal work is required, all of the relevant rules have to be explicitly specified in the
signature, and the irrelevant terms need to be derived in the system anyway. With our approach, we move
one step further, and do away completely with irrelevant terms in the system by simply delegating the
task of building them to the external proof verifier. In LFP , we limit ourselves to the recording, through
a lock type, that one such evidence, possibly established elsewhere, needs to be provided, making our
approach more modular.

In the present work, predicates are defined on derivable judgements, and hence may, in particular,
inspect the signature and the context, which normal LF cannot. The ability to inspect the signature
and the context is reminiscent of [27, 28], although in that approach the inspection was layered upon
LF, whereas in LFP it is integrated in the system. This integration is closer to the approach of [22], but
additional work is required in order to be able to compare their expressive powers precisely.

Another interesting framework, which adds a layer on top of LF is the Delphin system [32], providing
a functional programming language allowing the user to encode, manipulate, and reason over dependent
higher-order datatypes. However, in this case as well, the focus is placed on the computational level
inside the framework, rather than on the capability of delegating the verification of predicates to an
external oracle.

LF with Side Conditions (LFSC), presented in [34], is more reminiscent of our approach as “it extends
LF to allow side conditions to be expressed using a simple first-order functional programming language”.
Indeed, the author aims at factoring the verifications of (complicated) side-conditions out of the main
proof. Such a task is delegated to the type checker, which runs the code associated with the side-
condition, verifying that it yields the expected output. The proposed machinery is focused on providing
improvements for solvers related to Satisfiability Modulo Theories (SMT).

2 The LFP System

The pseudo-syntax of the LFP system is presented in Figure 1. We have five syntactic categories:
signatures, contexts, kinds, families or types, and objects. This pseudo-syntax is, essentially, that of
LF(cf. , for instance [15]), with the removal of abstraction in families, and the addition of a lock constructor
(LP

N,�[�]) on families and objects, and a corresponding lock destructor (UP
N,�[�]) on objects Both the

lock and unlock constructors are parametrized over a unary logical predicate P, which is defined on
derivable type judgements of the form � `⌃ N : �. The entire LFP system is parameterized over a finite
set of such predicates and as these predicates are external by nature, they are not formalized explicitly.
More comments are provided in Section 4. In [18], we provide pseudo-code for a number of predicates
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⌃ 2 S ⌃ ::= ; | ⌃, a:K | ⌃, c:� Signatures

� 2 C � ::= ; | �, x:� Contexts

K 2 K K ::= Type | ⇧x:�.K Kinds

�, ⌧, ⇢ 2 F � ::= a | ⇧x:�.⌧ | �N | LP
N,�[⇢] Families (Types)

M,N 2 O M ::= c | x | �x:�.M | M N | LP
N,�[M ] | UP

N,�[M ] Objects

Figure 1: The pseudo-syntax of LFP

which we have found to be useful, both in general, and for the encodings which we present. However,
these predicates are required to satisfy certain well-behavedness conditions, which will be presented in
Section 3, in order to ensure subject reduction of the system, while strong normalization and confluence
always hold. For the sake of notational completeness, the list of external predicates should also appear
in the signature, but we have chosen to omit it in order to increase readability.

Notational conventions and auxiliary definitions. Throughout the paper, we will be using the
following notation: M,N, . . . 2 O denote objects, f, g, . . . denote object constants, x, y, z, . . . denote
object variables, �, ⌧, ⇢, . . . 2 F denote types, a, b, . . . denote constant types, K 2 K denotes kinds, � 2 C
denotes contexts, ⌃ 2 S denotes signatures, and P denotes predicates. We refer to L as the lock symbol,
and to U as the unlock symbol. We will be using T to denote any term of the calculus (kind, family,
or object), where, in some cases, the syntactic category to which T can belong will be clear from the
context. We suppose that, in the context �, x:�, the variable x does not occur free in � or in �. We
will be working modulo ↵-conversion and Barendregt’s variable convention. We define the notions of the
domain of a signature, the domain of a context, free and bound variables of a term, as well as substitution
in the Appendix. Finally, we will be using ⌘ to denote syntactic identity on terms. All of the symbols
can appear indexed.

2.1 The LFP Type System

The type system for LFP , presented in Figure 2, proves judgements of the shape:

⌃ sig ⌃ is a valid signature
`⌃ � � is a valid context in ⌃

� `⌃ K K is a kind in � and ⌃
� `⌃ � : K � has kind K in � and ⌃
� `⌃ M : � M has type � in � and ⌃

In LFP , we consider only the terms obtained after a finite number of application of the typing rules
of the system. In such terms, each symbol (such as a constant, a variable, a lock, or an unlock) can
appear only a finite number of times. Also, we denote by � `⌃ ↵ any typing judgement � `⌃ T : T 0 or
� `⌃ T . In the two latter judgements, T will be referred to as the subject of that judgement.

2.2 �L-reduction and Definitional Equality in LFP

In LFP , we have two types of reduction. The first is the standard �-reduction, while the second is a
novel form of reduction, which we call L-reduction. L-reduction, essentially, serves as a lock-releasing
mechanism, erasing the U -L pair in a term of the form UP

N,�[LP
N,�[M ]], thus e↵ectively releasing M .

Together, these two reductions combine into �L-reduction, denoted by !�L, and this combined reduction
is the one which we take into account when considering the properties of LFP . The main one-step �L-
reduction rules are presented in Figure 3. There, we have the new rule (L·O·Main), which is the
reduction rule illustrating the desired behavior of the lock and unlock combined - the e↵ective release of
a lock by an unlock, i.e. the unlock destructor canceling out the lock constructor. This reduction rule,
together with the (O·Unlock) and (O·Lock) typing rules, provides an elegant mechanism for locking and
unlocking objects. A similar reduction rule at the level of types is not required, because applying the
unlock destructor to a term automatically unlocks its type, as ensured by the (O·Unlock) rule.
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Signature rules

; sig
(S·Empty)

⌃ sig `⌃ K a 62 Dom(⌃)

⌃, a:K sig
(S·Kind)

⌃ sig `⌃ �:Type c 62 Dom(⌃)

⌃, c:� sig
(S·Type)

Context rules

⌃ sig

`⌃ ; (C·Empty)

`⌃ � � `⌃ �:Type x 62 Dom(�)

`⌃ �, x:�
(C·Type)

Kind rules

`⌃ �
� `⌃ Type

(K·Type)

�, x:� `⌃ K

� `⌃ ⇧x:�.K
(K·Pi)

Family rules

`⌃ � a:K 2 ⌃
� `⌃ a : K

(F ·Const)

�, x:� `⌃ ⌧ : Type

� `⌃ ⇧x:�.⌧ : Type
(F ·Pi)

� `⌃ � : ⇧x:⌧.K � `⌃ N : ⌧

� `⌃ �N : K[N/x]
(F ·App)

� `⌃ ⇢ : Type � `⌃ N : �

� `⌃ LP
N,�[⇢] : Type

(F ·Lock)

� `⌃ � : K � `⌃ K 0 K=�LK 0

� `⌃ � : K 0 (F ·Conv)

Object rules

`⌃ � c:� 2 ⌃
� `⌃ c : �

(O·Const)

`⌃ � x:� 2 �
� `⌃ x : �

(O·Var)

�, x:� `⌃ M : ⌧

� `⌃ �x:�.M : ⇧x:�.⌧
(O·Abs)

� `⌃ M : ⇧x:�.⌧ � `⌃ N : �

� `⌃ M N : ⌧ [N/x]
(O·App)

� `⌃ M : ⇢ � `⌃ N : �

� `⌃ LP
N,�[M ] : LP

N,�[⇢]
(O·Lock)

� `⌃ M : LP
N,�[⇢] � `⌃ N : � P(� `⌃ N : �)

� `⌃ UP
N,�[M ] : ⇢

(O·Unlock)

� `⌃ M : � � `⌃ ⌧ : Type �=�L⌧

� `⌃ M : ⌧
(O·Conv)

Figure 2: The LFP Type System

(�x:�.M)N !�L M [N/x] (�·O·Main)

UP
N,�[LP

N,�[M ]] !�L M (L·O·Main)

Figure 3: Main one-step-�L-reduction rules in LFP

� !�L �0

⇧x:�.⌧ !�L ⇧x:�0.⌧
(F ·⇧1·�L) ⌧ !�L ⌧ 0

⇧x:�.⌧ !�L ⇧x:�.⌧ 0
(F ·⇧2·�L)

� !�L �0

�N !�L �0 N
(F ·A1·�L) N !�L N 0

�N !�L �N 0
(F ·A2·�L)

N !�L N 0

LP
N,�[⇢] !�L LP

N 0,�[⇢]
(F ·L1·�L) � !�L �0

LP
N,�[⇢] !�L LP

N,�0 [⇢]
(F ·L2·�L)

⇢!�L ⇢0

LP
N,�[⇢] !�L LP

N,�[⇢
0]

(F ·L3·�L)

Figure 4: �L-closure-under-context for families of LFP
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The rules for one-step closure under context for families are presented in Figure 4, while those for
kinds and objects are presented in the Appendix (Figure 15 and Figure 16). Furthermore, we denote the
reflexive and transitive closure of !�L by !!�L.

We also introduce �L-definitional equality in the standard way, as the reflexive, symmetric, and tran-
sitive closure of �L-reduction on kinds, families, and objects, as illustrated in the Appendix (Figure 17).

3 Properties of LFP
In this section, we present the main properties of LFP . Without any additional assumptions on predicates,
the type system is strongly normalizing and confluent. The former follows from strong normalization of
LF (see [15]), while the latter follows from strong normalization and local confluence, using Newman’s
Lemma. The proof of Subject Reduction, however, requires certain conditions to be placed on the
predicates, and these conditions are summarized in the following definition of well-behaved predicates :

Definition 1 (Well-behaved predicates). A finite set of predicates {Pi}i2I is well-behaved if each P in
the set satisfies the following conditions:

Closure under signature and context weakening and permutation:

1. If ⌃ and ⌦ are valid signatures such that ⌃ ✓ ⌦, and P(� `⌃ ↵) holds, then P(� `⌦ ↵) also holds.

2. If � and � are valid contexts such that � ✓ �, and P(� `⌃ ↵) holds, then P(� `⌃ ↵) also holds.

Closure under substitution:

If P(�, x:�0,�0 `⌃ N : �) holds, and � `⌃ N 0 : �0, then P(�,�0[N 0/x] `⌃ N [N 0/x] : �[N 0/x]) also holds.

Closure under reduction:

1. If P(� `⌃ N : �) holds, and N !�L N 0 holds, then P(� `⌃ N 0 : �) also holds.

2. If P(� `⌃ N : �) holds, and � !�L �0 holds, then P(� `⌃ N : �0) also holds.

3.1 Strong Normalization

In this section, we prove that LFP is strongly normalizing w.r.t. �L-reduction. For this, we rely on
the strong normalization of LF, as proven in [15]. First, we introduce the function �UL : LFP ! LF,
which maps LFP terms into LF terms by deleting the L and U symbols. The proof then proceeds by
contradiction. We assume that there exists a term T with an infinite �L-reduction sequence. Next, we
prove that only a finite number of �-reductions can be performed within any given LFP term T . From
this, we deduce that, in order for T to have an infinite �L-reduction sequence, it must have an infinite
L-sequence, which we show to be impossible, obtaining the desired contradiction. Therefore, we begin
with the definition of the function �UL : LFP ! LF:

1. Type�UL = Type; a�UL = a; c�UL = c; x�UL = x;

2. (⇧x:�.T )�UL = ⇧x:��UL.T�UL;

3. (�x:�.T )�UL = �x:��UL.T�UL;

4. (T M)�UL = T�UL M�UL;

5. (LP
N,�[T ])

�UL = (�xf :��UL.T�UL)N�UL;

6. (UP
N,�[T ])

�UL = (�xf :��UL.T�UL)N�UL

8



where xf is a variable which does not have free occurrences in T . Its purpose is to preserve the N and �
that appear in the subscript of the L and U symbols, while still being able to �-reduce to T in one step,
which is in line with the main purpose of �UL, i.e. the deletion of locks and unlocks from an LFP term.
We naturally extend �UL to signatures and contexts of LFP , obtaining signatures and contexts of LF:

(;)�UL = ;,
(⌃, a:K)�UL = ⌃�UL, a�UL:K�UL,

(⌃, c:�)�UL = ⌃�UL, c�UL:��UL,

(;)�UL = ;,
(�, x:�)�UL = ��UL, x�UL:��UL.

and then to judgements of LFP , obtaining judgements of LF:

(⌃ sig)�UL = ⌃�UL sig

(`⌃ �)�UL = `⌃�UL ��UL,

(� `⌃ K)�UL = ��UL `⌃�UL K�UL,

(� `⌃ � : K)�UL = ��UL `⌃�UL �
�UL : K�UL,

(� `⌃ M : �)�UL = ��UL `⌃�UL M�UL : ��UL.

With �UL defined in this way, we have the following claim:

Proposition 1 (Connecting !�L in LFP , !!� in LF, and �UL).

1. If K !�L K 0 in LFP , then K�UL !!� K 0�UL in LF.

2. If � !�L �0 in LFP , then ��UL !!� �0�UL in LF.

3. If M !�L M 0 in LFP , then M�UL !!� M 0�UL in LF.

A direct consequence of this is:

Proposition 2 (Connecting =�L in LFP , =� in LF, and �UL).

1. If K=�LK 0 in LFP , then K�UL=�K 0�UL in LF.

2. If �=�L�0 in LFP , then ��UL=��0�UL in LF.

3. If M=�LM 0 in LFP , then M�UL=�M 0�UL in LF.

Furthermore, the following holds:

Proposition 3. The function �UL maps derivable judgements of LFP into derivable judgements of LF.

Proof. All three of these propositions are proven simultaneously, by induction on the structure of the
derivation of the reduction, the structure of the derivation of the equivalence, and the structure of the
derivation of the judgement. Here, we will present the relevant cases, while the remaining ones are
handled similarly.

• For Proposition 1, let LP
N,�[⇢] !�L LP

N 0,�[⇢] from N !�L N 0, using the rule (F ·L1·�L). From

the induction hypothesis (IH), we have that N�UL !!� N 0�UL, while the goal we are looking for is
(�xf :��UL.⇢�UL)N�UL !!�(�xf :��UL.⇢�UL)N 0�UL, which follows immediately from the IH, and
the rules for closure under context for �-reduction in LF.

• For Proposition 1, let (�x:�.M)N !�L M [N/x], using the rule (�·O·Main). Here, we have that
the goal is (�x:��UL.M�UL)N�UL !!�L M�UL[N�UL/x], which is, in fact, an instance of the main
one-step �-reduction in LF.
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• For Proposition 1, let UP
N,�[LP

N,�[M ]] !�L M , using the rule (L·O·Main). Here, we have that the

goal is (�xf :��UL.(�yf :��UL.M)N)N !!� M�UL, which we obtain by applying the main one-step
�-reduction rule of LF, bearing in mind the nature of the choice of xf and yf .

• For Proposition 2, let us have that K=�LK 0, from K !�L K 0, using the rule (�L·Eq·Main). From
the IH for Proposition 1, we have that K�UL !!� K 0�UL in LF, from which we trivially obtain that
K�UL=�K 0�UL in LF.

• For Proposition 3, let us have that � `⌃ LP
N,�[⇢] : Type, from � `⌃ ⇢ : Type and � `⌃ N : �, using

the rule (F ·Lock). From the IH, we have that ��UL `⌃�UL ⇢�UL : Type, and ��UL `⌃�UL N�UL :
��UL, while the goal is ��UL `⌃�UL (�xf :��UL.⇢�UL)N�UL : Type. From the Subderivation
property of LF, we have that ��UL `⌃�UL ��UL : Type, and, given that we can, without loss
of generality, assume that xf /2 Dom(��UL), we obtain, using the Weakening property of LF,
that ��UL, xf : ��UL `⌃�UL ⇢�UL : Type, and, from there, that ��UL `⌃�UL �xf :��UL.⇢�UL :
⇧xf :��UL.Type. Now, by using the application formation rule of LF, we obtain that ��UL `⌃�UL

(�xf :��UL.⇢�UL)N�UL : Type[N�UL/xf ]. However, this is our claim, as, since no substitutions
can occur in Type, we have that Type[N�UL/xf ] ⌘ Type.

• For Proposition 3, let us have that � `⌃ � : K 0, from � `⌃ � : K, � `⌃ K, and K=�LK 0, using the
rule (F ·Conv). From the IHs, we have that ��UL `⌃�UL ��UL : K�UL, ��UL `⌃�UL K 0�UL, and
K=�K 0, from which we obtain our goal, ��UL `⌃�UL ��UL : K 0�UL, by using the LF conversion
rule for families.

• For Proposition 3, let us have that � `⌃ LP
N,�[M ] : LP

N,�[⇢], from � `⌃ M : ⇢ and � `⌃ N : �,

using the rule (O·Lock). From the IH, we have that ��UL `⌃�UL M�UL : ⇢�UL and ��UL `⌃�UL

N�UL : ��UL, while the goal is ��UL `⌃�UL (�xf :��UL.M�UL)N�UL : (�yf :��UL.⇢�UL)N�UL.
First, as earlier, we can obtain that ��UL `⌃�UL �xf :��UL.M�UL : ⇧xf :��UL.⇢�UL. Now, by
using the application formation rule of LF, we obtain that ��UL `⌃�UL (�xf :��UL.M�UL)N�UL :
⇢�UL[N�UL/xf ]. However, what we actually have is that ��UL `⌃�UL (�xf :��UL.M�UL)N�UL :
⇢�UL, as, by the choice of xf , we have that ⇢�UL[N/xf ] ⌘ ⇢�UL. Also, in a similar manner as
before, we can obtain that ��UL `⌃�UL (�yf :��UL.⇢�UL)N�UL : Type. Now, as, by the choice of
yf , we have that ⇢�UL=�(�yf :��UL.⇢�UL)N�UL, we can use the LF conversion rule for objects to
obtain our claim.

• For Proposition 3, let us have that � `⌃ UP
N,�[M ] : ⇢, from � `⌃ M : LP

N,�[⇢], � `⌃ N : �, and

P(� `⌃ N : �), using the rule (O·Unlock). From the IH, we have that ��UL `⌃�UL M�UL :
(�xf :��UL.⇢�UL)N�UL and ��UL `⌃�UL N�UL : ��UL, while the goal which we would like to
prove is ��UL `⌃�UL (�yf :��UL.M�UL)N�UL : ⇢�UL. Similarly to the previous item, we have
that ��UL `⌃�UL ⇢�UL : Type and that (�xf :��UL.⇢�UL)N�UL=�⇢�UL, and we can use the LF
conversion rule for objects to obtain that ��UL `⌃�UL M�UL : ⇢�UL. Finally, as we have that
M�UL=�(�yf :��UL.M�UL)N�UL, we obtain the desired claim by using the Subject Reduction
property of LF.

As a consequence of Proposition 3, we have that the function �UL maps well-typed terms of LFP
into well-typed terms of LF. Next, we will denote the maximum number of �-reductions which can be
executed in a given (either LF- or LFP -) term T as max�(T ). Now, we can notice that L-reductions
cannot create entirely new �-redexes, but can only “unlock” potential �-redexes, i.e. expressions of the
form UP

N,�[LP
N,�[�x:⌧.M ]]T , arriving at �x:⌧.M T , which is a �-redex. Also, this resulting �-redex will

be present in (UP
N,�[LP

N,�[�x:⌧.M ]]T )�UL. Therefore, we have that, for any LFP -term T , it holds that

max�(T )  max�(T�UL). As LF is strongly normalizing, we have that max�(T�UL) is finite, therefore
forcing max�(T ) into being finite, leading to the following proposition:

Proposition 4. Only finitely many �-reductions can occur within the maximal reduction sequence of
any LFP -term. There is no LFP -term T with an infinite number of �-reductions in its maximal reduction
sequence.
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Next, we notice that any LFP -term has only finitely many L-redexes before any reductions take place,
and that this number can only be increased through �-reductions, and only by a finite amount per �-
reduction. However, if we were to have an LFP -term T which has an infinite reduction sequence, then
within this sequence, there would need to be infinitely many L-reductions, since, due to Proposition 4,
the number of �-reductions in this sequence has to be finite. On the other hand, with the number of
�-reductions in the sequence being finite, it would not be possible to reach infinitely many L-reductions,
and such a term T cannot exist in LFP . Therefore, we have the Strong Normalization theorem:

Theorem 1 (Strong normalization of LFP).

1. If � `⌃ K, then K is �L-strongly normalizing.

2. if � `⌃ � : K, then � is �L-strongly normalizing.

3. if � `⌃ M : �, then M is �L-strongly normalizing.

3.2 Confluence

Since �L-reduction is strongly normalizing, in order to prove the confluence of the system, by Newman’s
Lemma ([3], Chapter 3), it is su�cient to show that the reduction on “raw terms” is locally confluent.
First, we need a substitution lemma, the proof of which is routine:

Lemma 1 (Substitution lemma for local confluence).

1. If N !�L N 0, then M [N/x]!!�L M [N 0/x].

2. If M !�L M 0, then M [N/x]!!�L M 0[N/x].

Next, we proceed to prove local confluence:

Lemma 2 (Local confluence of LFP). �L-reduction is locally confluent, i.e.:

1. If K !�L K 0 and K !�L K 00, then there exists a K 000 such that K 0 !!�L K 000 and K 00 !!�L K 00.

2. If � !�L �0 and � !�L �00, then there exists a �000 such that �0 !!�L �000 and �00 !!�L �000.

3. If M !�L M 0 and M !�L M 00, then there exists an M 000 such that M 0 !!�L M 000 and M 00 !!�L M 000.

Proof. By simultaneous induction on the two derivations T !�L T 0 and T !�L T 00. All the cases for
T kind or family, as well as most of the cases for T object are proven trivially, using the induction
hypotheses. Here we will show only the cases involving base reduction rules:

1. Let us have, by the base reduction rule (�·Main), that (�x:�.M)N !�L M [N/x]. Let us also
have that (�x:�.M)N !�L (�x:�0.M)N , from � !�L �0, by the reduction rules (O·�1·�L) and
(O·App1·�L). In this case, we will show that the required conditions are met forM 000 ⌘ M [N/x]. In-
deed, by the definition of !!�L, we have that M [N/x]!!�L M [N/x], and also, by the reduction rule
(�·Main), we have that (�x:�0.M)N !�L M [N/x], e↵ectively having (�x:�0.M)N !!�L M [N/x].

2. Let us have, by the base reduction rule (�·Main), that (�x:�.M)N !�L M [N/x]. Let us also
have that (�x:�.M)N !�L (�x:�.M 0)N , from M !�L M 0, by the reduction rules (O·�2·�L) and
(O·App1·�L). In this case, we will show that the required conditions are met for M 000 ⌘ M 0[N/x].
By the reduction rule (�·Main), we have that (�x:�.M 0)N !�L M 0[N/x], from which we obtain
(�x:�.M 0)N !!�L M 0[N/x], while we obtain that M [N/x]!!�L M 0[N/x] from part 2 of Lemma 1.

3. Let us have, by the base reduction rule (�·Main), that (�x:�.M)N !�L M [N/x]. Let us also
have that (�x:�.M)N !�L (�x:�.M)N 0, from N !�L N 0, by the reduction rule (O·App2·�L).
In this case, we will show that the required conditions are met for M 000 ⌘ M [N 0/x]. By the
reduction rule (�·Main), we have that (�x:�.M)N 0 !�L M [N 0/x], from which we obtain that
(�x:�.M)N 0 !!�L M 0[N/x], while we obtain that M [N/x]!!�L M [N 0/x] from part 1 of Lemma 1.
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4. Let us have, by the base reduction rule (L·Main), that UP
N,�[LP

N,�[M ]] !�L M , and let us

also have that UP
N,�[LP

N,�[M ]] !�L UP
N 0,�[LP

N,�[M ]], from N !�L N 0, by the reduction rule
(O·Unlock1·�L). In this case, we will show that the required conditions are met for M 000 ⌘ M .
By the definition of !!�L, we have that M !!�L M , which leaves us with needing to show that
UP
N 0,�[LP

N,�[M ]]!!�L M . This we obtain by the following sequence of reductions: from N !�L N 0,
which we have as an induction hypothesis, using the reduction rule (O·Lock1·�L), we obtain that
LP
N,�[M ] !�L LP

N 0,�[M ], and from this, using the reduction rule (O·Unlock3·�L), we obtain that

UP
N 0,�[LP

N,�[M ]] !�L UP
N 0,�[LP

N 0,�[M ]], from which we finally obtain that UP
N 0,�[LP

N 0,�[M ]] !�L M ,

by the reduction rule (L·Main), e↵ectively showing that UP
N 0,�[LP

N,�[M ]]!!�L M . The remaining
subcases are handled very similarly.

Having proven local confluence, finally, from Theorem 1, Lemma 2 and Newman’s Lemma, we obtain
the confluence theorem for LFP :

Theorem 2 (Confluence of LFP). �L-reduction is confluent, i.e.:

1. If K!!�L K 0 and K!!�L K 00, then there exists a K 000 such that K 0 !!�L K 000 and K 00 !!�L K 000.

2. If �!!�L �0 and �!!�L �00, then there exists a �000 such that �0 !!�L �000 and �00 !!�L �000.

3. If M !!�L M 0 and M !!�L M 00, then there exists an M 000 such that M 0 !!�L M 000 and M 00 !!�L M 000.

3.3 Subject Reduction

We begin by proving several auxiliary lemmas and propositions:

Lemma 3 (Inversion properties).

1. If ⇧x:�.T=�LT 00, then T 00 ⌘ ⇧x:�.0T 0, for some �0, T 0, such that �0=�L�, and T 0=�LT .

2. If LP
N,�[⇢]=�L✓, then ✓ ⌘ LP

N 0,�0 [⇢0], for some N 0, �0, and ⇢0, such that N 0=�LN , �0=�L�, and
⇢0=�L⇢.

3. If � `⌃ LP
N,�[M ] : LP

N,�[⇢], then � `⌃ M : ⇢.

4. If � `⌃ �x:�.M : ⇧x:�.⌧ , then �, x:� `⌃ M : ⌧ .

Proof. The first two items are proven directly, by inspection of the rules for �L-closure-under-context
for kinds and types, while the third item is proven by using the rule (F ·Lock), and the second item. The
fourth property follows directly from the typing and conversion rules, as well as the first item.

By induction on the structure of the derivation, independently of the previous Proposition, we have:

Proposition 5 (Subderivation, part 1).

1. A derivation of `⌃ ; has a subderivation of ⌃ sig.

2. A derivation of ⌃, a:K sig has subderivations of ⌃ sig and `⌃ K.

3. A derivation of ⌃, f :� sig has subderivations of ⌃ sig and `⌃ �:Type.

4. A derivation of `⌃ �, x:� has subderivations of ⌃ sig, `⌃ �, and � `⌃ �:Type.

5. A derivation of � `⌃ ↵ has subderivations of ⌃ sig and `⌃ �.

6. Given a derivation D of the judgement � `⌃ ↵, and a subterm occurring in the subject of this
judgement, there exists a derivation of a judgement having this subterm as a subject.

From this point on, we will assume that the first requirement for the well-behavedness of predicates,
namely the closure under signature and context weakening and permutation, holds. With this in place,
we prove the following propositions by induction on the structure of the derivation:
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Proposition 6 (Weakening and permutation). If predicates are closed under signature/context weaken-
ing and permutation, then:

1. If ⌃ and ⌦ are valid signatures, and every declaration occurring in ⌃ also occurs in ⌦, then � `⌃ ↵
implies � `⌦ ↵.

2. If � and � are valid contexts w.r.t. the signature ⌃, and every declaration occurring in � also
occurs in �, then � `⌃ ↵ implies � `⌃ ↵.

Proposition 7 (Subderivation, part 2). If predicates are closed under signature/context weakening and
permutation, then:

1. If � `⌃ � : K, then � `⌃ K.

2. If � `⌃ M : �, then � `⌃ � : Type.

From this point on, we will assume that the second requirement for the well-behavedness of predicates,
the closure under cut, holds as well. We prove the following propositions by induction on the structure
of the derivation:

Proposition 8 (Transitivity). If predicates are closed under signature/context weakening and permuta-
tion and under substitution, then: if �, x:�,�0 `⌃ ↵, and � `⌃ N : �, then �,�0[N/x] `⌃ ↵[N/x].

Notice that, contrary to what happens in traditional type systems, the following closure under ex-
pansion does not hold: � `⌃ M [N/x] : ⌧ =) � `⌃ (�x:�.M)N : ⌧ , for � `⌃ N : �.

Proposition 9 (Unicity of types and kinds). If predicates are closed under signature/context weakening
and permutation and under substitution, then:

1. If � `⌃ � : K1 and � `⌃ � : K2, then � `⌃ K1=�LK2.

2. If � `⌃ M : �1 and � `⌃ M : �2, then � `⌃ �1=�L�2.

Finally, for Subject Reduction, we require that the third requirements for the well-behavedness of
predicates, namely the closure under definitional equality, also holds:

Theorem 3 (Subject reduction of LFP). If predicates are well-behaved, then:

1. If � `⌃ K, and K !�L K 0, then � `⌃ K 0.

2. If � `⌃ � : K, and � !�L �0, then � `⌃ �0 : K.

3. If � `⌃ M : �, and M !�L M 0, then � `⌃ M 0 : �.

Proof. Here, we prove Subject Reduction of a slightly extended type system. We consider the type system
in which the rules (F ·Lock), (O·Lock), and (O·Unlock) all have an additional premise � `⌃ � : Type,
while the rule (O·Unlock) also has another additional premise � `⌃ LP

N,�[⇢] : Type, as shown in Figure 5.
The proof proceeds by simultaneous induction on the derivation of � `⌃ M and M !�L M 0. Here we

will show only the case in which the base reduction rule (�·Main) is used, and one of the cases for which
the well-behavedness of predicates is a requirement, while the other cases are handled either similarly or
trivially, mostly by using the induction hypotheses.

1. We have that � `⌃ �x:�.M N : ⌧ [N/x], by the rule (O·App), from � `⌃ �x:�.M : ⇧x:�.⌧ , and
� `⌃ N : �, and that (�x:�.M)N !�L M [N/x] by the rule (�·Main). From Proposition 3, we get
that �, x:� `⌃ M : ⌧ , and from this and � `⌃ N : �, we obtain the required � `⌃ M [N/x] : ⌧ [N/x],
by an application of Proposition 8.

2. We have that � `⌃ UP
N,�[LP

N,�[M ]] : ⇢, by the rule (O·Unlock), from � `⌃ LP
N,�[M ] : LP

N,�[⇢],

� `⌃ N : �, � `⌃ � : Type, and P(� `⌃ N : �), and that UP
N,�[LP

N,�[M ]] !�L M by the rule
(L·Main). Here, we obtain the required � `⌃ M : ⇢ directly, using the last two items of Lemma 3.
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� `⌃ ⇢ : Type � `⌃ N : � � `⌃ � : Type

� `⌃ LP
N,�[⇢] : Type

(F ·Lock)

� `⌃ M : ⇢ � `⌃ N : � � `⌃ � : Type

� `⌃ LP
N,�[M ] : LP

N,�[⇢]
(O·Lock)

� `⌃ N : �

� `⌃ � : Type

� `⌃ M : LP
N,�[⇢]

� `⌃ LP
N,�[⇢] : Type P(� `⌃ N : �)

� `⌃ UP
N,�[M ] : ⇢

(O·Unlock)

Figure 5: An extension of LFP typing rules for Subject Reduction

3. We have that � `⌃ UP
N,�[M ] : ⇢, by the rule (O·Unlock), from � `⌃ M : LP

N,�[⇢], � `⌃ LP
N,�[⇢] :

Type, � `⌃ N : �, � `⌃ � : Type, and P(� `⌃ N : �), and that UP
N,�[M ] !�L UP

N,�0 [M ], by the
reduction rules for closure under context, from � !�L �0. First, from the induction hypothesis we
have that � `⌃ �0 : Type, and we also have, from � !� : �0, that �=�L�0. From this, using � `⌃

N : �, and the rule (O·Conv), we obtain that � `⌃ N : �0. Next, since � `⌃ LP
N,�[⇢] : Type could

only have been obtained by the type system rule (F ·Lock), from � `⌃ ⇢ : Type and � `⌃ N : �,
and since we have � `⌃ N : �0, we obtain that � `⌃ LP

N,�0 [⇢] : Type. From this, given �=�L�0,

we obtain that LP
N,�0 [⇢] !�L LP

N,�0 [⇢], and since we already have that � `⌃ M : LP
N,�[⇢], we can

use the type system rule (O·Conv) to obtain � `⌃ M : LP
N,�0 [⇢]. Finally, by the well-behavedness

requirements for the predicates, we have that P(� `⌃ N : �0) holds, and we can now use the type
system rule (O·Unlock) to obtain the required � `⌃ UP

N,�0 [M ] : ⇢. Here, we can notice that there

are steps in this proof (in which we obtain � `⌃ �0 : Type, and � `⌃ LP
N,�[⇢] : Type), which could

not have been made had the original system not been extended for this theorem.

Now, we can prove straightforwardly that � `⌃ ↵ in the extended system i↵ � `⌃ ↵ in the original
LFP system (i.e. that the judgements that these two systems derive are the same), by induction on the
length of the derivation, With this, given that we have proven Subject Reduction of the extended system,
we have that Subject Reduction also holds in the original LFP system.

4 The Expressive Power of LFP
Various natural questions arise as to the expressive power of LFP , and we will here outline the answers
to some of them:

• LFP is decidable, if the predicates are decidable; this can be proven as usual.

• If a predicate is definable in LF, i.e. if it can be encoded via the inhabitability of a suitable LF
dependent type, then it is well-behaved in the sense of Definition 1.

• All well-behaved recursively enumerable predicates are LF-definable by Church’s Thesis. Of course,
the issue is then on how “deep” the encoding is. To give a more precise answer, we would need a
more accurate definition of “deep” and “shallow” encodings, which we still lack. This paper can be
seen as a stepping stone towards such a theory, with our approach being “shallow” by definition,
and the encodings via Church’s Thesis being potentially very deep. As an illustration, we can
consider, for example, the well-behaved predicate “M,N are two di↵erent closed normal forms”,
which can be immediately expressed in LFP .

• One may ask what relation is there between the LF encodings of, say, Modal Logics, discussed
in [2, 12], and the encodings which appear in this paper (see Section 6.3 below). The former
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↵ 2 A ↵ ::= a | ↵N Atomic Families

�, ⌧, ⇢ 2 F � ::= ↵ | ⇧x:�.⌧ | LP
N,�[⇢] Canonical Families

A 2 Ao A ::= c | x | AM | UP
N,�[A] Atomic Objects

M,N 2 O M ::= A | �x:�.M | LP
N,�[M ] Canonical Objects

Figure 6: CLFP Syntax

essentially correspond to the internal encoding of the predicates that are utilized in Section 6.3. In
fact, one could express the mapping between the two signatures as a forgetful functor going from
LFP judgements to LF judgements.

• Finally, we can say that, as far as decidable predicates, LFP is morally a conservative extension of
LF. Of course, pragmatically, it is very di↵erent, in that it allows for the neat factoring-out of the
true logical contents of derivations from the mere e↵ective verification of other, e.g. syntactical or
structural properties. A feature of our approach is that of making such a separation explicit.

• The main advantage of having externally verified predicates amounts to a smoother encoding (the
signature is not cluttered by auxiliary notions and mechanisms needed to implement the predicate).
This allows performance optimization, if the external system used to verify the predicate is an
optimized tool specifically designed for the issue at hand (e.g. analytic tableaux methods for
propositional formulæ).

5 The Canonical LFP Framework

In this section, we present a canonical version of LFP , i.e. CLFP , in the style of [36, 16]. This amounts to
an extension of the standard ⌘-rule with the clause LP

N,�[UP
N,�[M ]] !⌘ M , corresponding to the lock type

constructor. The syntax of CLFP defines the normal forms of LFP , and the typing system captures all
of the judgements in ⌘-long normal form which are derivable in LFP . CLFP will be the basis for proving
the adequacy of the encodings which are presented in Section 6. As will be seen, contrary to standard
LF, not all of the judgements derivable in LFP admit a corresponding ⌘-long normal form. In fact, this is
not the case when the predicates appearing in the LFP judgement are not satisfied in the given context.
Nevertheless, although CLFP is not closed under full ⌘-expansion, it is still powerful enough for one to
be able to obtain all relevant adequacy results.

5.1 Syntax and Type System for CLFP

The pseudo-syntax of CLFP is presented in Figure 6, while the type system for CLFP is shown in Figure 7,
with the note that the formation rules and judgements related to signatures, contexts, and kinds are
the same as in LFP , and have been omitted. The type system for CLFP , together with the first three
judgements of LFP (see Section 2.1), proves judgements of the shape:

� `⌃ � Type � is a canonical family in � and ⌃
� `⌃ ↵) K K is the kind of the atomic family ↵ in � and ⌃
� `⌃ M ( � M is a canonical term of type � in � and ⌃
� `⌃ A ) � � is the type of the atomic term A in � and ⌃

The predicates P in CLFP are defined on judgements � `⌃ M ( �. The type system makes use,
in the rules (A·App) and (F ·App), of the notion of hereditary substitution, which computes the normal
form resulting from the substitution of one normal form into another. The general form of the hereditary
substitution judgement is T [M/x]m⇢ = T 0, where M is the term being substituted, x is the variable being
substituted for, T is the term being substituted into, T 0 is the result of the substitution, ⇢ is the simple
type of M , and m is the syntactic category being involved in the judgement (i.e. kinds, atomic/canonical
families, atomic/canonical objects, contexts). The simple type ⇢ ofM is obtained via the erasure function
(presented in Fig. 8), which maps dependent into simple types. The rules for the hereditary substitution
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Atomic Family rules

`⌃ � a:K 2 ⌃
� `⌃ a ) K

(A·Const)

� `⌃ ↵) ⇧x:�.K1

� `⌃ M ( �
K1[M/x]K� = K

� `⌃ ↵M ) K
(A·App)

Canonical Family rules

� `⌃ ↵) Type

� `⌃ ↵ Type
(F ·Atom)

�, x:� `⌃ ⌧ Type

� `⌃ ⇧x:�.⌧ Type
(F ·Pi)

� `⌃ ⇢ Type � `⌃ N ( �

� `⌃ LP
N,�[⇢] Type

(F ·Lock)

Atomic Object rules

`⌃ � c:� 2 ⌃
� `⌃ c ) �

(O·Const)

`⌃ � x:� 2 �
� `⌃ x ) �

(O·V ar)

� `⌃ A ) ⇧x:�.⌧1
� `⌃ M ( � ⌧1[M/x]F� = ⌧

� `⌃ AM ) ⌧
(O·App)

� `⌃ A ) LP
N,�[⇢]

� `⌃ N ( � P(� `⌃ N ( �)

� `⌃ UP
N,�[A] ) ⇢

(O·Unlock)

Canonical Object rules

� `⌃ A ) ↵
� `⌃ A ( ↵

(O·Atom)

�, x:� `⌃ M ( ⌧

� `⌃ �x:�.M ( ⇧x:�.⌧
(O·Abs)

� `⌃ M ( ⇢ � `⌃ N ( �

� `⌃ LP
N,�[M ] ( LP

N,�[⇢]
(O·Lock)

Figure 7: The CLFP Type System

(a)� = a

(↵)� = ⇢

(↵M)� = ⇢

(�2)� = ⇢2 (�)� = ⇢

(⇧x:�2.�)� = ⇢2 ! ⇢

(�0)� = ⇢0

(LP
N,�[�

0])� = LP
N,�[⇢

0]

Figure 8: Erasure to simple types

judgement appear in Figure 9 and Figure 10. At this point, we remind the reader that we are still abiding
by Barendregt’s hygiene condition.

Notice that, in the rule (O·Atom) of the type system (see Fig. 7), the syntactic restriction of the
classifier to ↵ atomic ensures that canonical forms are ⌘-long normal forms for a suitable notion of
⌘-long normal form, which extends the standard one for lock-types. For one, the judgement x:⇧z:a.a `⌃

x ( ⇧z:a.a is not derivable, as ⇧z:a.a is not atomic, hence `⌃ �x:(⇧z:a.a).x ( ⇧x:(⇧z:a.a).⇧z:a.a is
not derivable. But `⌃ �x:(⇧z:a.a).�y:a.xy ( ⇧x:(⇧z:a.a).⇧z:a.a, where a is a family constant of kind
Type, is derivable. Analogously, for lock-types, the judgement x:LP

N,�[⇢] `⌃ x ( LP
N,�[⇢] is not derivable,

since LP
N,�[⇢] is not atomic. As a consequence, `⌃ �x:LP

N,�[⇢].x ( ⇧x:LP
N,�[⇢].LP

N,�[⇢] is not derivable.

However, x:LP
N,�[⇢] `⌃ LP

N,�[UP
N,�[x]] ( LP

N,�[⇢] is derivable, if ⇢ is atomic and the predicate P holds

on � `⌃ N ( �. Hence `⌃ �x:LP
N,�[⇢].LP

N,�[UP
N,�[x]] ( ⇧x:LP

N,�[⇢].LP
N,�[⇢] is derivable. In Definition 3

below, we formalize the notion of ⌘-expansion of a judgement, together with correspondence theorems
between LFP and CLFP .

5.2 Properties of CLFP

We start by studying basic properties of hereditary substitution and the type system.

Lemma 4 (Decidability of hereditary substitution).

1. For any T in {K,A,F ,O, C}, and any M , x, and ⇢, either there exists a T 0 such that T [M/x]m⇢ = T 0

or there is no such T 0.
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Substitution in Kinds

Type[M0/x0]K⇢0
= Type

(S·K·Type)
�[M0/x0]F⇢0

= �0 K[M0/x0]K⇢0
= K 0

(⇧x:�.K)[M0/x0]K⇢0
= ⇧x:�.0K 0 (S·K·Pi)

Substitution in Atomic Families

a[M0/x0]f⇢0
= a

(S·F ·Const)
↵[M0/x0]f⇢0

= ↵0 M [M0/x0]O⇢0
= M 0

(↵M)[M0/x0]f⇢0
= ↵0M 0 (S·F ·App)

Substitution in Canonical Families

↵[M0/x0]f⇢0
= ↵0

↵[M0/x0]F⇢0
= ↵0 (S·F ·Atom)

�1[M0/x0]F⇢0
= �0

1 �2[M0/x0]F⇢0
= �0

2

(⇧x:�1.�2)[M0/x0]F⇢0
= ⇧x:�0

1.�
0
2

(S·F ·Pi)

�1[M0/x0]F⇢0
= �0

1 M1[M0/x0]O⇢0
= M 0

1 �2[M0/x0]F⇢0
= �0

2

LP
M1,�1

[�2][M0/x0]F⇢0
= LP

M 0
1,�

0
1
[�0

2]
(S·F ·Lock)

Figure 9: Hereditary substitution, kinds and families

Substitution in Atomic Objects

c[M0/x0]o⇢0
= c

(S·O·Const)

x0[M0/x0]o⇢0
= M0 : ⇢0

(S·O·V ar·H)
x 6= x0

x[M0/x0]o⇢0
= x

(S·O·V ar)

A1[M0/x0]o⇢0
= �x:⇢2.M 0

1 : ⇢2 ! ⇢ M2[M0/x0]O⇢0
= M 0

2 M 0
1[M

0
2/x]

O
⇢2

= M 0

(A1M2)[M0/x0]o⇢0
= M 0 : ⇢

(S·O·App·H)

A1[M0/x0]o⇢0
= A0

1 M2[M0/x0]O⇢0
= M 0

2

(A1M2)[M0/x0]o⇢0
= A0

1M
0
2

(S·O·App)

�[M0/x0]F⇢0
= �0 M [M0/x0]O⇢0

= M 0 A[M0/x0]o⇢0
= LP

M 0,�0 [M1] : LP
M 0,�0 [⇢]

UP
M,�[A][M0/x0]o⇢0

= M1 : ⇢
(S·O·Unlock·H)

�[M0/x0]F⇢0
= �0 M [M0/x0]O⇢0

= M 0 A[M0/x0]O⇢0
= A0

UP
M,�[A][M0/x0]o⇢0

= UP
M 0,�0 [A0]

(S·O·Unlock)

Substitution in Canonical Objects

A[M0/x0]o⇢0
= A0

A[M0/x0]O⇢0
= A0 (S·O·R)

A[M0/x0]o⇢0
= M 0 : ⇢

A[M0/x0]O⇢0
= M 0 (S·O·R·H)

M [M0/x0]O⇢0
= M 0

�x:�.M [M0/x0]O⇢0
= �x:�.M 0 (S·O·Abs)

�1[M0/x0]F⇢0
= �0

1 M1[M0/x0]O⇢0
= M 0

1 M2[M0/x0]O⇢0
= M 0

2

LP
M1,�1

[M2][M0/x0]O⇢0
= LP

M 0
1,�

0
1
[M 0

2]
(S·O·Lock)

Substitution in Contexts

·[M0/x0]C⇢0
= · (S·Ctxt·Empty)

x0 6= x x 62 Fv(M0) �[M0/x0]C⇢0
= �0 �[M0/x0]F⇢0

= �0

�, x:�[M0/x0]C⇢0
= �0, x:�0 (S·Ctxt·Term)

Figure 10: Hereditary substitution, objects and contexts
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2. For any M , x, ⇢, and A, either there exists A0 such that A[M/x]o⇢ = A0, or there exist M 0 and ⇢0,
such that A[M/x]o⇢ = M 0 : ⇢0, or there are no such A0 or M 0.

Lemma 5 (Head substitution size). If A[M0/x0]o⇢0
= M :⇢, then ⇢ is a subexpression of ⇢0.

Proof. This Lemma is proven directly, by induction on the derivation of A[M0/x0]⇢0 = M : ⇢.

Lemma 6 (Uniqueness of substitution and synthesis).

1. It is not possible that A[M0/x0]o⇢0
= A0 and A[M0/x0]o⇢0

= M :⇢.

2. For any T , if T [M0/x0]m⇢0
= T 0, and T [M0/x0]m⇢0

= T 00, then T 0 = T 00.

3. If � `⌃ ↵) K, and � `⌃ ↵) K 0, then K = K 0.

4. If � `⌃ A ) �, and � `⌃ A ) �0, then � = �0.

Proof. The proof of this Lemma is trivial. It follows directly from the definition of hereditary substitution
and the CLFP type system.

Lemma 7 (Composition of hereditary substitution). Let us assume that x 6= x0,M0. Then:

1. If M2[M0/x0]O⇢0
= M 0

2, T1[M2/x]m⇢2
= T 0

1, and T1[M0/x0]m⇢0
= T 00

1 , then there exists a T , such that
T 0
1[M0/x0]m⇢0

= T , and T 00
1 [M2/x]m⇢2

= M 0 : ⇢.

2. If M2[M0/x0]O⇢0
= M 0

2, A1[M2/x]o⇢2
= M : ⇢, and A1[M0/x0]o⇢0

= A, then there exists an M 0, such
that M [M0/x0]O⇢0

= M 0, and A[M2/x]o⇢2
= M 0 : ⇢.

3. If M2[M0/x0]O⇢0
= M 0

2, A1[M2/x]o⇢2
= A, and A1[M0/x0]o⇢0

= M : ⇢, then there exists an M 0, such
that A[M0/x0]o⇢0

= M 0 : ⇢, and M [M2/x]O⇢2
= M 0.

By induction on derivations, similar to one in [16] p.14–15, we prove:

Theorem 4 (Transitivity). Let ⌃ sig, `⌃ �L, x0:⇢0,�R and �L `⌃ M0 ( ⇢0, and assume that all
predicates are well-behaved. Then

1. There exists �0
R such that [M0/x0]C⇢0

= �0
R and `⌃ �L,�0

R.

2. If �L, x0:⇢0,�R `⌃ K then there exists K 0 such that [M0/x0]K⇢0
K = K 0 and �L,�0

R `⌃ K 0.

3. If �L, x0:⇢0,�R `⌃ � Type, then there exists �0 such that [M0/x0]F⇢0
� = �0 and �L,�0

R `⌃ �0 Type.

4. If �L, x0:⇢0,�R `⌃ � Type and �L, x0:⇢0,�R `⌃ M ( �, then there exist �0 and M 0 such that
[M0/x0]F⇢0

� = �0 and [M0/x0]O⇢0
M = M 0 and �L,�0

R `⌃ M 0 ( �0.

Theorem 5 (Decidability of typing). If predicates in CLFP are decidable, then all of the judgements of
the system are decidable.

Proof. By induction on the complexity of judgements.

Now we are in the position of making precise the relationships between CLFP and the original LFP
system.

Theorem 6 (Soundness). For any predicate P of CLFP , we define a corresponding predicate in LFP
with: P(� `⌃ M : �) holds if and only if � `⌃ M : � is derivable in LFP and P(� `⌃ M ( �) holds in
CLFP . Then, we have:

1. If ⌃ sig is derivable in CLFP , then ⌃ sig is derivable in LFP .

2. If `⌃ � is derivable in CLFP , then `⌃ � is derivable in LFP .

3. If � `⌃ K is derivable in CLFP , then � `⌃ K is derivable in LFP .

4. If � `⌃ ↵) K is derivable in CLFP , then � `⌃ ↵ : K is derivable in LFP .
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5. If � `⌃ � Type is derivable in CLFP , then � `⌃ � : Type is derivable in LFP .

6. If � `⌃ A ) � is derivable in CLFP , then � `⌃ A : � is derivable in LFP .

7. If � `⌃ M ( � is derivable in CLFP , then � `⌃ M : � is derivable in LFP .

Vice versa, all LFP judgements in ⌘-long normal form (⌘-lnf) are derivable in CLFP . The definition
of a judgement in ⌘-lnf is based on the following extension of the standard ⌘-rule to the lock constructor:

�x:�.Mx !⌘ M LP
N,�[UP

N,�[M ]] !⌘ M

Definition 2. An occurrence ⇠ of a constant or a variable in a term of a LFP judgement is fully applied
and unlocked with respect to its type or kind ⇧ #»x 1:

#»� 1.
#»L1[. . .⇧

#»xn:
#»� n.

#»Ln[↵] . . .], where
#»L1, . . . ,

#»Ln are
vectors of locks, if ⇠ appears in contexts of the form

#»U n[(. . . (
#»U 1[⇠

# »
M1]) . . .)

# »
Mn], where

# »
M1, . . . ,

# »
Mn,

#»U 1, . . . ,
#»U n have the same arities of the corresponding vectors of ⇧’s and locks.

Definition 3 (Judgements in ⌘-long normal form).

1. A term T in a judgement is in ⌘-lnf if T is in normal form and every constant and variable
occurrence in T is fully applied and unlocked w.r.t. its classifier in the judgement.

2. A judgement is in ⌘-lnf if all terms appearing in it are in ⌘-lnf.

Definition 4 (Well-behaved CLFP -predicates). A finite set of predicates {Pi}i2I is well-behaved in CLFP
if each P is closed under signature, context weakening, permutation, and hereditary substitution.

Theorem 7 (Correspondence). Assume that all predicates in LFP are well-behaved. For any predicate
P in LFP , we define a corresponding predicate in CLFP with: P(� `⌃ M ( �) holds if � `⌃ M ( � is
derivable in CLFP and P(� `⌃ M : �) holds in LFP . Then, we have:

1. If ⌃ sig is in ⌘-lnf and is LFP -derivable, then ⌃ sig is CLFP -derivable.

2. If `⌃ � is in ⌘-lnf and is LFP -derivable, then `⌃ � is CLFP -derivable.

3. If � `⌃ K is in ⌘-lnf, and is LFP -derivable, then � `⌃ K is CLFP -derivable.

4. If � `⌃ ↵ : K is in ⌘-lnf and is LFP -derivable, then � `⌃ ↵) K is CLFP -derivable.

5. If � `⌃ �:Type is in ⌘-lnf and is LFP -derivable, then � `⌃ � Type is CLFP -derivable.

6. If � `⌃ A : ↵ is in ⌘-lnf and is LFP -derivable, then � `⌃ A ) ↵ is CLFP -derivable.

7. If � `⌃ M : � is in ⌘-lnf and is LFP -derivable, then � `⌃ M ( � is CLFP -derivable.

Proof. We prove all items by mutual induction on the complexity of the judgement, where the complexity
of a judgement is given by the sum of symbols appearing in it, provided that the complexity of the symbols
Type and ; is 1, the complexity of a constant/variable is 2, the complexity of the symbol U is greater than
the complexity of L, and the complexity of the subject of the judgement is the sum of the complexities
of its symbols plus the complexity of the normal form of the type of each subterm of the subject, derived
in the given context and signature.

1. Directly, using the induction hypothesis.

2. Directly, using the induction hypothesis.

3. Directly, using the induction hypothesis.

4. If � `⌃ ↵ : K is in ⌘-lnf, we have that ↵ = aN1 . . . Nn, K ⌘ Type, and also that:

(a) a : ⇧x1:�1 . . . xn:�n.Type 2 ⌃, with ⇧x1:�1 . . . xn:�n.Type in ⌘-lnf. This means that, for all
1  i  n, we have that �i is in ⌘-lnf.

(b) � `⌃ Ni : �0
i is derivable in LFP , for 1  i  n, where �0

i is in ⌘-lnf, and �0
i =�L

�i[N1/x1, . . . , Ni�1/xi�1].
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Now, from (a), we obtain that � `⌃ a ) ⇧x1:�1 . . . xn:�n.Type is derivable in CLFP . Next, by
applying the induction hypothesis to (b), we obtain that � `⌃ Ni ( �0

i is derivable in CLF for all
i. From this, by repeatedly applying the rule (A·App), we get that � `⌃ aN1 . . . Nn ) Type.

5. The cases when � is an atomic family have already been covered above, while the remaining cases
are proven directly, using the induction hypothesis.

6. (a) If � `⌃ c : ↵, this could have been obtained only through the rule (O·Const) of LFP , from
`⌃ � and c : � 2 �. By the induction hypothesis, we get that `⌃ � in CLFP , and that
c : � 2 �, from which, using the rule (O·Const) of CLFP , we obtain the desired � `⌃ c ) �.

(b) If � `⌃ x : �, this could have been obtained only through the rule (O·V ar) of LFP , from `⌃ �
and x : � 2 �. By the induction hypothesis, we get that `⌃ � in CLFP , and that x : � 2 �,
from which, using the rule (O·V ar) of CLFP , we obtain the desired � `⌃ x ) �.

(c) Let � `⌃ AM : ↵ be derivable in LFP , and be in ⌘-lnf. A, as an atomic object, is then of the
form:

UP1
N1,�1

[. . . [UP
k

N
k

,�
k

[c|x{M1 . . .Mn}] #   »
Mk]

#         »
Mk�1 . . .]

#   »
M1.

Here, we have that c (or x) is fully applied and unlocked with respect to its classifier, and we
also have that all Ni, �i, Mi,

#  »
Mi, as well as M and ↵, are in ⌘-lnf. Also, we have that the

types of Mi,
#  »
Mi, and M are in ⌘-lnf, as they are recorded in the type of c (or x), which is

part of the signature (or context), which is also in ⌘-lnf. We will denote the type of M by �,
and the type of A by ⇧z:�.⌧ . Then, by the induction hypothesis, we have that � `⌃ M ( �,
and that � `⌃ A ( ⇧z:�.⌧ . From the latter, as it only could have been obtained through the
rule (O·Atom), we have that � `⌃ A ) ⇧z:�.⌧ . Now, we have two cases to consider:

i. ↵ ⌘ a, a constant atomic type, which is the trivial case, as a is immune to both hereditary
and standard substitution. We immediately get that ⌧ ⌘ a, with which we can use the
rule (O·App) of CLFP to obtain the desired � `⌃ AM ) ↵.

ii. ↵ ⌘ aM1 . . .Mn, a fully applied constant atomic type of arity n. Then, we have that
⌧ ⌘ aM 0

1 . . .M
0
n. Due to the fact that M , and all Mi, M 0

i are in normal form (as they
are in ⌘-lnf), we have that ⌧ [M/z] ⌘ a[M/z]M 0

1[M/z] . . .M 0
n[M/z] ⌘ aM1 . . .Mn ⌘ ↵.

However, due to the normal forms, the ordinary and hereditary substitution here coincide,
yielding ⌧ [M/z]F� = ↵. With this, using the rule (O·App), we obtain the desired � `⌃

AM ) ↵.

(d) Let us consider the case when � `⌃ UP
N,�[A] : ↵0. By inspection of the typing rules of

LFP , we have that the original introduction rule for our initial judgement had to have been
� `⌃ UP

N,�[A] : ↵, derived from � `⌃ A : LP
N,�[↵], � `⌃ N : �, and P(� `⌃ N : �), where

↵=�L↵0. By the induction hypothesis, we have � `⌃ N ( �. Using the rule (O·Conv) of LFP ,
we can now get � `⌃ A : LP

N,�[↵
0] and from this, by the induction hypothesis, we get that

� `⌃ A ( LP
N,�[↵

0]. Since that would only be possible through the rule (O·Atom), we have

that � `⌃ A ) LP
N,�[↵

0] also holds. Finally, given the properties of the predicate induced in
CLFP by the predicate P in LFP , as stated in the formulation of the theorem, we can use the
rule (O·Unlock) of CLFP to obtain the desired � `⌃ UP

N,�[M ] ) ↵0.

7. (a) The cases when M is an atomic object have already been covered above.

(b) Let us consider the case when � `⌃ �x:�.M : ✓. By inspection of the typing rules of LFP ,
we have that ✓ ⌘ ⇧x:�0.⌧ 0, where the original introduction rule for our initial judgement
had to have been � `⌃ �x:�.M : ⇧x:�.⌧ , derived from �, x:� `⌃ M : ⌧ , where �=�L�0, and
⌧=�L⌧ 0. However, since �, M , �0 and ⌧ 0 are in ⌘-lnf, they must also be in normal form,
meaning that � ⌘ �0, leaving us with � `⌃ �x:�.M : ⇧x:�.⌧ 0. Using the rule (O·Conv) of
LFP , we can now get �, x:� `⌃ M : ⌧ 0, and from this, by the induction hypothesis, we get
that �, x:� `⌃ M ( ⌧ 0, from which, using the rule (O·Abs) of CLFP , we obtain the desired
� `⌃ �x:�.M ( ⇧x:�.⌧ 0.

(c) Let us consider the case when � `⌃ LP
N,�[M ] : ✓. By inspection of the typing rules of LFP , we

have that ✓ ⌘ LP
N 0,�0 [⇢0], where the original introduction rule for our initial judgement had to

have been � `⌃ LP
N,�[M ] : LP

N,�[⇢], derived from � `⌃ M : ⇢ and � `⌃ N : �, where N=�LN 0,
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�=�L�0, and ⇢=�L⇢0. However, since M , N , �, N 0, �0, and ⇢0 are in ⌘-lnf, they must also be
in normal form, meaning that N ⌘ N 0 and � ⌘ �0, leaving us with � `⌃ LP

N,�[M ] : LP
N,�[⇢]

0.
By the induction hypothesis, we have � `⌃ N ( �. Using the rule (O·Conv) of LFP , we can
now get � `⌃ M : ⇢0 and from this, by the induction hypothesis, we get that � `⌃ M ( ⇢0.
Finally, we can use the rule (O·Lock) of CLFP to obtain the desired � `⌃ LP

N,�[M ] ( LP
N,�[⇢

0].

Notice that, by the Correspondence Theorem above, any well-behaved predicate P in LFP induces a
well-behaved predicate in CLFP . Finally, notice that not all LFP judgements have a corresponding ⌘-lnf.
Namely, the judgement x:LP

N,�[⇢] `⌃ x : LP
N,�[⇢] does not admit an ⌘-expanded normal form when the

predicate P does not hold on N , as the rule (O·Unlock) can be applied only when the predicate holds.

6 Pragmatics and Case Studies

In this section, we illustrate the pragmatics of using LFP as a metalanguage by encoding some crucial
case studies. We focus on formal systems where derivation rules are subject to side conditions which are
either rather di�cult or impossible to encode naively, in a type theory-based LF, due to limitations of
the latter or to the fact that they need to access the derivation context, or the structure of the derivation
itself, or other structures and mechanisms which are not available at the object level. This is the case
for substructural and program logics [1, 2, 12].

We have isolated a library of predicates on proof terms, whose patterns frequently occur in the
examples. The main archetype is: “given constants or variables only occur with some modality D in
subterms satisfying the decidable property C”. Modalities can be anyone of such phrases: “at least once”,
“only once”, “as the rightmost”, “does not occur”, etc. C can refer to the syntactic form of the subterm or
to that of its type, the latter being the main reason for allowing predicates in LFP to access the context.
As a side remark, we have noticed that often the constraints on the type of a subterm can be expressed
as constraints on the subterm itself by simply introducing suitable type coercion constants. In [18], we
present a basic library of auxiliary functions, which can be used to introduce external predicates of the
above archetypes.

We start by giving, yet another, encoding of the well known case of untyped �-calculus, with a call-
by-value evaluation strategy. This allows us to illustrate yet another paradigm for dealing with free and
bound variables appropriate for LFP . Then, we add on top of such �-calculus an extension, in order to
model a sort of design by contract functional language. Next, we discuss Modal Logics, both in Hilbert
and Natural Deduction style, and we give a sketch of how to encode the non-commutative linear logic
introduced in [31]. Another example, on program logics à la Hoare, appears in Section 6.4. We state
adequacy theorems, and, due to lack of space, here provide proofs for only some of them. For the sake of
simplicity, in the following examples, we use the notation � ! ⌧ for ⇧x:�.⌧ if x /2 Fv(⌧). Moreover, we
will omit the type � in LP

N,�[M ], when � is clear from the context. As far as comparisons with alternate
encodings in LF, we refer the reader to the general comments which have been made in Section 4.

Finally, in the Adequacy Theorems, we will be using the notion of judgement in ⌘-long normal form
(⌘-lnf), which has been introduced in Definition 3.

6.1 The Untyped �-calculus

6.1.1 Free and bound variables.

Consider the well-known untyped �-calculus:

M,N, . . . ::= x | M N | �x.M

with variables, application and abstraction. We model free variables of the object language as constants
in LFP . Bindable and bound variables are modeled with variables of the metalanguage, thus retaining the
full Higher-Order-Abstract-Syntax (HOAS) approach, by delegating ↵-conversion and capture-avoiding
substitution to the metalanguage. Such an approach allows us to abide by the “closure under substitu-
tion” condition for external predicates, still retaining the ability to handle “open” terms explicitly.
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The abovementioned “bindable” variables must neither be confused with bound, nor with free vari-
ables. For instance, the �-term x (in which the variable is free) will be encoded by means of the term
`⌃(free n):term for a suitable (encoding of a) natural number n (see Definition 5 below). On the other
hand, the �-term �x.x (in which the variable is obviously bound) will be encoded by `⌃ (lam �x:term.x).
However, when we “open” the abstraction �x.M , considering the body M , we will encode the latter as
x:term `⌃ ✏{x}(M), where ✏{x} is the encoding function defined later in this section. In this case, x is a
bindable variable.

Definition 5 (LFP signature ⌃� for untyped �-calculus).

term : Type nat : Type O : nat

S : nat -> nat free : nat -> term

app : term -> term -> term lam : (term -> term) -> term

We use natural numbers as standard abbreviations for repeated applications of S to 0. Given an enu-
meration {xi}i2N\{0} of the variables in the untyped �-calculus, we put:

✏X (xi) =

⇢
xi, if xi 2 X
(free i), if xi 62 X ,

✏X (MN) = (app ✏X (M) ✏X (N)),

✏X (�x.M) = (lam �x:term.✏X[{x}(M)),

where, in the latter clause, x 62 X .

Theorem 8 (Adequacy of syntax). Let {xi}i2N\{0} be an enumeration of the variables in the �-calculus.
Then, the encoding function ✏X is a bijection between the �-calculus terms with bindable variables in X
and the terms M derivable in judgements � `⌃

�

M : term in ⌘-lnf, where � = {x : term | x 2 X}.
Moreover, the encoding is compositional, i.e. for a term M , with bindable variables in X = {x1, . . . , xk},
and N1, . . . , Nk, with bindable variables in Y, the following holds:

✏X (M [N1, . . . , Nk/x1, . . . , xk]) = ✏X (M)[✏Y(N1), . . . , ✏Y(Nk)/x1, . . . , xk].

Proof. The injectivity of ✏X follows by a straightforward inspection of its definition, while the surjectivity
follows by defining the “decoding” function �X on terms in ⌘-lnf:

�X ((free i)) = xi (where xi 62 X )

�X (xi) = xi (where xi 2 X )

�X ((app M N)) = �X (M) �X (N)

�X (lam �x:term.M) = �x.�X[{x}(M)

Given the characterization of ⌘-lnfs, and the types of the constructors introduced in ⌃�, it is easy
to see that �X is total and well-defined. It is not possible to derive a ⌘-long normal form of type term

containing a U -term, since no constructors in ⌃� use L-types. Finally, by induction on the structure of
M , it is possible to check that �X (✏X (M)) = M and that ✏X is compositional.

Definition 6 (The call-by-value reduction strategy). The call-by-value (CBV) evaluation strategy can
be specified by:

`CBV M = M
(refl)

`CBV N = M
`CBV M = N

(symm)

`CBV M = N `CBV N = P
`CBV M = P

(trans)
`CBV M = N `CBV M 0 = N 0

`CBV MM 0 = NN 0 (app)

v is a value
`CBV (�x.M)v = M [v/x]

(�v)
`CBV M = N

`CBV �x.M = �x.N
(⇠v)

where values are either variables (constants in our encoding) or functions.
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Definition 7 (LFP signature ⌃CBV for �-calculus CBV reduction). We extend the signature of Definition
5 as follows:

triple : Type

<_, _, _> : term -> (term -> term) -> (term -> term) -> triple

eq : term -> term -> Type

refl : ⇧M:term.(eq M M)

symm : ⇧M:term.⇧N:term.(eq N M) -> (eq M N)

trans : ⇧M,N,P:term.(eq M N) -> (eq N P) -> (eq M P)

eq_app : ⇧M,N,M’,N’:term.(eq M N) -> (eq M’ N’) -> (eq (app M M’) (app N N’))

betav : ⇧M:(term -> term).⇧N:term.LVal

N

[eq (app (lam M) N) (M N)]
csiv : ⇧M,N:(term -> term).⇧x:term.L⇠

hx,M,Ni[(eq (M x)(N x))->(eq (lam M)(lam N))]

where triple is the type of triples of terms with types term, term -> term and term -> term, and the
predicates Val and ⇠ are defined as follows:

• Val (� `⌃ N : term) holds i↵ either N is an abstraction or a constant (i.e. a term of the shape
(free i));

• ⇠(� `⌃ <x,M,N> : triple) holds i↵ x is a constant (i.e. a term of the shape (free i)), M and N

are closed and x does not occur in M and N.

Theorem 9 (Adequacy of CBV reduction). Given an enumeration {xi}i2N\{0} of the variables in the
�-calculus, there is a bijection between derivations of the judgment `CBV M = N on terms with no
bindable variables in the CBV �-calculus and proof terms h, such that `⌃

CBV

h : (eq ✏;(M) ✏;(N)) is in
⌘-lnf.

Proof. We define an encoding function ✏=; by induction on derivations of the form `CBV M = N (on
terms with no bindable variables) as follows:

• If D is the derivation
`CBV M = M

then ✏=; (D) = (refl ✏;(M)):(eq ✏;(M) ✏;(M)).

• If D is the derivation with (symm) as last applied rule, then, by the induction hypothesis (IH),
there is a term h such that `⌃

CBV

h : (eq ✏;(N) ✏;(M)). Hence, we will have that ✏=; (D) =
(symm ✏;(M) ✏;(N) h):(eq ✏;(M) ✏;(N)).

• If D is the derivation with (trans) as last applied rule, then, by the IH, we have that there exist
terms h and h’ such that `⌃

CBV

h : (eq ✏;(M) ✏;(N)), and also `⌃
CBV

h0 : (eq ✏;(N) ✏;(P )).
Hence, we will have that ✏=; (D) = (trans ✏;(M) ✏;(N) ✏;(P ) h h0):(eq ✏;(M) ✏;(P )).

• If D is the derivation with (eq app) as last applied rule, then, by the induction hypothesis,
we have that there exist terms h and h’ such that `⌃

CBV

h : (eq ✏;(M) ✏;(N)) and `⌃
CBV

h0 : (eq ✏;(M
0) ✏;(N

0)). Hence, we will have that ✏=; (D) = (eq app ✏;(M) ✏;(N) ✏;(M
0) ✏;(N

0) h h0):
(eq (app ✏;(M) ✏;(M

0)) (app ✏;(N) ✏;(N
0))).

• If D is the derivation
v is a value

`CBV (�x.M)v = M [v/x]

then ✏=; (D) = UVal

✏;(v)
[(betav (�x : term.✏{x}(M)) ✏;(v)): (eq (app (lam �x : term.✏{x}(M)) ✏;(v))

((�x : term.✏{x} (M))(✏;(v))))]
3.

3Notice the presence of the unlock operator in front of the LFP encoding: this is possible thanks to the fact that we
know, by hypothesis (e.g., the premise of the applied derivation rule), that v is a value. Indeed, since values in the object
language are either variables or abstractions and we are deriving things from the empty context, in this case v must be
an abstraction �y.N (otherwise it would be a free variable and the derivation context could not be empty). Thus, it will
be encoded into a term of the form (lam �y:term..✏{y}(N)) and the predicate Val is defined to hold on such terms, see
Definition 7, whence the predicate Val holds on `CBV ✏;(v) : term).
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• If D is the derivation with (⇠v) as the last applied rule, then, by the IH, there exists a term h

for which it holds that `⌃
CBV

h : (eq ✏;(M) ✏;(N))4. With this in place, we have the following:
✏=; (D) = (U⇠

T,triple[(csiv �x:term.✏{x}(M) �x:term.✏{x}(N) ✏;(x))] h) : (eq (lam�x:term.✏{x}(M))
(lam �x:term.✏{x}(N))), where T is the triple h✏;(x), (�x:term.✏{x}(M)), (�x:term.✏{x}(N))i.

The injectivity of ✏=; follows by a straightforward inspection of its definition, while the surjectivity follows
by defining the “decoding” function �; by induction on the derivations of the shape `⌃

CBV

h:(eq M N)
in ⌘-long normal form. Since all the cases are rather straightforward, we analyze only the definition
concerning the main rule (�v), since it involves an external predicate. So, if we derive from ⌃CBV a
proof term h in ⌘-long normal form such as UVal

N,term[betav M N] whose type is (eq (app (lam M) N) (M

N)) (where M ⌘ �x:term.M0, with M0 in ⌘-lnf), then the predicate Val (`⌃
CBV

N : term) must hold, and N

is encoding the value �;(N). Hence, the decoding of h is the following derivation:

�;(N) is a value

`CBV �;(lam (�x:term.M0))�;(N) = �;((�x:term.M
0) N)

and since we have that �;((lam (�x:term.M0))) = �x.�{x}(M
0) (see proof of Th. 8), that �x.�{x}(M

0)�;(N) =
�{x}(M

0)[�;(N)/x] (�-reduction in CBV �-calculus), that �;((�x:term.M
0) N) = �;(M

0[N/x]) (�-reduction
in LFP) and that �{x}(M

0)[�;(N)/x] = �;(M
0[N/x]) (by induction on the structure of M0), we are done.

Therefore, it is easy to verify by induction on ⌘-long normal forms that �=; is well-defined and total.
Similarly, we can prove that �=; is the inverse of ✏=; , making ✏=; a bijection.

We conclude this section illustrating the expressive power of LFP by encoding a restricted ⌘-rule,
which generalizes the one originally suggested by Plotkin ([29]), i.e., �x.xx = �x.x(�y.xy)

eta : ⇧M:(term -> term).L⌘
M

[(eq (lam M) (lam (�x:term.(M (lam �y:term.(app x y)))))))]

where the predicate ⌘(� `⌃ M : (term->term)) holds if and only if the outermost abstracted variable
of M occurs in functional position among the head variables.

6.2 Design by Contract in Functional Style

In this section, we extend the untyped call-by-value �-calculus of the previous example to accommodate a
minimal functional language supporting the design by contract paradigm (see, e.g., [23]). More precisely,
we will enrich the �-calculus with the conditional expression cond(C,M), whose intended semantics is that
of checking that the constraint C applied toM (denoted by C(M)) holds. As we will see, such expressions
can be used to validate the entry input and the exit value on a function application. (The syntax of
conditions C is omitted, a typical example is given by predicates on natural number (in)equalities, as in
the Hoare Logic example in Section 6.4. Informally, C must be “something” which can be evaluated to
true or false, when applied to its argument.) The syntax of expressions is defined as follows:

M,N, . . . ::= x | M N | �x.M | cond(C,M),

The call-by-value (CBV) evaluation strategy can be then extended by adding to the rules of Definition 6
the following one:

C(v) holds and v is a value

`CBV cond(C, v) = v
(cond)

Notice that conditional expressions are first-class values, i.e. they can be passed as arguments of a
function. So far, we can encode pre- and post-conditions in our language as follows:

cond(Q, (M (cond(P, N))))

Indeed, the key idea is that the above expression will reduce only if the argument N were to “pass”
the pre-condition P (i.e., the input contract) and if the application result MN were to “pass” the
post-condition Q (i.e., the output contract).

4Notice that the object variable x occurring in M and N is represented by a constant ((free k), for a natural k, such
that x ⌘ xk) here, since the encoding function takes the empty set as the set of bindable variables. Instead, in the next
line, the encoding function will take {x} as the set of bindable variables, yielding an encoding of x through a metavariable
x of the metalanguage of LFP .
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We build upon the previous case study, encoding free variables by means of constants (e.g., natural
numbers) embedded into terms, while bindable and bound variables will be represented by metavariables
of the metalanguage. In the next definition, we provide an LFP signature for our language, extending
Definition 5 (bool will represent the type of boolean values true and false, i.e., the result of evaluating
conditions C on their arguments M).

Definition 8 (LFP signature ⌃ for design by contract �-calculus).

nat : Type term : Type bool : Type

O : nat S : nat -> nat free : nat -> term

cond : (term -> bool) -> term -> term app : term -> term -> term

lam : (term -> term) -> term

In order to make clear the role played by the types and constructors so far introduced, we fully specify
the encoding function ✏X , mapping terms of the source language into the corresponding terms of LFP ,
where X denotes a set of bindable variables. Given an enumeration {xi}i2N\{0} of the variables in the
source language, we have the following:

✏X (xi) =

⇢
xi if xi 2 X
(free i) if xi 62 X

✏X (�x.M) = (lam �x:term.✏X[{x}(M))

✏X (cond(C,M)) = (cond ✏X (C) ✏X (M)),

✏X (MN) = (app ✏X (M) ✏X (N))

We now present the encoding of the CBV reduction of our source language encoded in LFP . Obviously,
all the rules stated in the previous case study (about untyped �-calculus) remain unchanged. There is
only the need to account for the new reduction rule involving the new constructor cond.

Definition 9 (LFP signature ⌃ for design by contract �-calculus CBV reduction).
We extend the signature of Definition 7 by adding the following constant:

condv : ⇧C:(term -> bool).⇧M:term.LEval

(C M),bool[(eq (cond C M) M)]

where the external predicate Eval is defined as follows:

• Eval (� `⌃(C M):bool) holds i↵ M is a value (i.e., an abstraction or a constant), C and M are closed
and the evaluation of the condition C on the term M holds.

The expressive power of external predicates is fully exploited in the above example. Of course, we
require that the external logical conditions C (corresponding to object-level expressions C) allow the Eval
predicate to satisfy the requirements of Definition 1, i.e., that they induce a well-behaved �L-reduction.
We conclude by illustrating how the expressivity of predicates and locks allows for a straightforward
encoding of the design-by-contract predecessor function as follows (taking nat as the type of terms):

(lam �x:nat.(cond (�z:nat.z� 0) ((cond (�y:nat.y>0) x) - 1)))

6.3 Substructural Logics

In many formal systems, rules are subject to side conditions and structural constraints on the shape
of assumptions or premises. Typical examples are the necessitation rule or the ⇤-introduction rules in
Modal logics (see, e.g., [1, 2, 12]). For the sake of readability, in the following we will often use an infix
notation for encoding binary logic operators.
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6.3.1 Modal Logics in Hilbert style.

In this example, we show how LFP permits smooth encodings of logical systems with “rules of proof” as
well as “rules of derivation”. The former apply only to premises which do not depend on any assumption,
such as necessitation, while the latter are the usual rules which apply to all premises, such as modus
ponens. The idea is to use locked types in rules of proof and standard types in the rules of derivation.

By way of example, we give the signature (see Figure 12) for the classical Modal Logics K, KT , K4,
KT4 (S4), KT45 (S5) in Hilbert style (see Figure 11); all feature necessitation (rule NEC in Figure 11)
as a rule of proof. We make use of the predicate Closed (� `⌃ m:True (�)), which holds i↵ “all free
variables occurring in m have type o”. This is precisely what is needed to correctly encode the notion of
rule of proof, if o is the type of propositions. Indeed, if all the free variables of a proof term satisfy such a
condition, it is clear, by inspection of the ⌘-lnfs, that there cannot be free variables of type True (. . . ) in
the proof term, i.e. the encoded modal formula does not depend on any assumption (see [18] for a formal
specification of the predicate). This example requires that predicates inspect the environment and be
defined on typed judgements, as indeed is the case in LFP . The above predicate is well-behaved. Hence,
we ensure a sound derivation in LFP of a proof of ⇤�, by locking the type True(⇤�) in the conclusion
of NEC (see Figure 12).

A1 : �! ( ! �)

A2 : (�! ( ! ⇠)) ! (�!  ) ! (�! ⇠)

A3 : (¬�! ¬ ) ! ((¬�!  ) ! �)

K : ⇤(�!  ) ! (⇤�! ⇤ )
> : ⇤�! �

4 : ⇤�! ⇤⇤�
5 : ⌃�! ⇤⌃�

MP :
� �!  

 

NEC :
�
⇤�

C A1 +A2 +A3 +MP
K C +K +NEC
KT K + T
K4 K + 4
KT4 KT + 4
KT45 KT4 + 5

Figure 11: Hilbert style rules for Modal Logics

o : Type ! : o -> o -> o ¬ : o -> o ⇤ : o -> o ⌃ : o -> o

True : o -> Type

A1 : ⇧�, :o.True(�!( !�))
A2 : ⇧�, ,⇠:o.True(�!( !⇠))!(�!  )!(�! ⇠))
A3 : ⇧�, :o.True((¬�! ¬ )!((¬�!  )! �))
K : ⇧�, :o.True(⇤(�! )!(⇤�!⇤ ))
T : ⇧�:o.True(⇤�!�)
4 : ⇧�:o.True(⇤�!⇤⇤�)
5 : ⇧�:o.True(⌃�!⇤⌃�)
MP : ⇧�, :o.True(�) -> True(�! ) -> True( )
NEC : ⇧�:o.⇧m:True(�).LClosed

m

[True(⇤�)]

Figure 12: The signature ⌃ for the Modal Logics in Hilbert style

Adequacy theorems are rather trivial to state and prove; as usual we define an encoding function ✏X on
formulæ with free variables in X as follows, representing atomic formulæ by means of LFP metavariables:
✏X (x) = x, where x 2 X ;
✏X (¬�) = ¬✏X (�);
✏X (�!  ) = ✏X (�) ! ✏X ( );
✏X (⇤�) = ⇤✏X (�).
✏X (⌃�) = ⌃✏X (�).

Then, we can prove, by structural induction on formulæ, the following theorem:
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Theorem 10 (Adequacy of modal formulæ syntax). The encoding function ✏X is a bijection between
the Modal Logic formulæ with free variables in X and the terms � derivable in judgements � `⌃⇤ � : o
in ⌘-lnf, where � = {x : o | x 2 X}. Moreover, the encoding is compositional, i.e. for a formula �,
with free variables in X = {x1, . . . , xk}, and  1, . . . , k, with free variables in Y, the following holds:
✏X (�[ 1, . . . , k/x1, . . . , xk]) = ✏X (�)[✏Y( 1), . . . , ✏Y( k)/x1, . . . , xk].

If we denote by �1, . . . ,�n ` � the derivation of the truth of a formula �, depending on the assumptions
�1, . . . ,�n, in Hilbert-style Modal Logics, the adequacy of our encoding can be stated by the following
theorem:

Theorem 11 (Adequacy of the truth system in Hilbert-style). There is a bijection between derivations
�1, . . . ,�k ` � in Hilbert-style Modal Logic and proof terms h such that � `⌃ h : (True ✏X (�1 ! . . . !
�k ! �)) in ⌘-long normal form, where X = {x1, . . . , xn} is the set of propositional variables occurring
in �1, . . . ,�k,� and � = {x1 : o, . . . , xn : o}.

6.3.2 Modal Logics in Natural Deduction Style.

In LFP , one can also accommodate other Modal Logics, such as classical Modal Logics S4 and S5 in
Natural Deduction style. In particular there are several alternative formulations for S4 and S5, e.g.
as defined by Prawitz, which have rules with rather elaborate restrictions on the shape of subformulae
where assumptions occur. Figure 13 shows all the rules allowing to specify Modal Logics S4 and S5 (à
la Prawitz), NK, NKT, NK4, NKT4, NKT45. In order to illustrate the flexibility of the system, the rule
for ⇤ introduction in S4 ((⇤-I·S4)) is given in the form which allows cut-elimination. Figure 14 shows
their encoding in LFP . Again, the crucial role is played by three predicates, namely Closed , BoxedS4
and BoxedS5 . As in the Hilbert-style encoding, Closed (� `⌃ m:True (�)) holds i↵ “all free variables
occurring in m have type o”. This is precisely what is needed to correctly encode rule (⇤0-I), where the
truth of the formula � must not depend on any assumptions.

In the case of the Modal Logic S4, the intended meaning of BoxedS4 (� `⌃ m: True(�)) is that all
the occurrences of free variables of m occur in subterms whose type has the shape True(⇤ ) or is o. In
the case of S5 the predicate BoxedS5 (� `⌃ m: True(�)) holds i↵ the variables of m have type True(⇤ ),
True(¬⇤ ) or o. It is easy to check that these predicates are well behaved. Again, the “trick” to ensure
a sound derivation in LFP of a proof of ⇤� is to lock appropriately the type True(⇤�) in the conclusion
of the introduction rule BoxI (see Figure 14).

The problem of representing, in a sound way, Modal Logics in logical frameworks based on type
theory is well-known in the literature [1, 2, 12]. In our approach, we avoid the explicit introduction in
the encodings of extra-judgments and structures, as in [1, 2, 12], by delegating such machinery to an
external oracle via locks.

As for the adequacy of our encoding, we can state Theorems 12 and 13 below. As in the previous
case, we first define an encoding function ✏X on formulæ with free variables in X as follows, representing
atomic formulæ by means of LFP metavariables:

• ✏X (x) = x, where x 2 X ;

• ✏X (ff) = ff;

• ✏X (¬�) = ¬✏X (�);

• ✏X (�!  ) = ✏X (�) ! ✏X ( );

• ✏X (⇤�) = ⇤✏X (�);

• ✏X (⌃�) = ⌃✏X (�);

Then, we can prove, by structural induction on formulæ, the following theorem:

Theorem 12 (Adequacy of modal formulæ syntax). The encoding function ✏X is a bijection between
the Modal Logic formulæ with free variables in X and the terms � derivable in judgements � `⌃ � : o
in ⌘-lnf, where � = {x : o | x 2 X}. Moreover, the encoding is compositional, i.e. for a formula �,
with free variables in X = {x1, . . . , xk}, and  1, . . . , k, with free variables in Y, the following holds:
✏X (�[ 1, . . . , k/x1, . . . , xk]) = ✏X (�)[✏Y( 1), . . . , ✏Y( k)/x1, . . . , xk].
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�,� ` � (start)
�,� `  

� ` �!  
(! �I)

� ` �!  � ` �
� `  (! �E)

�,¬� ` ff

� ` � (ff � I)
� ` ff

� ` � (ff � E)

� ` ⇤� ⇤� ` �
� ` ⇤� (⇤� I · S4) ⇤�0,¬⇤�1 ` �

⇤�0,¬⇤�1 ` ⇤� (⇤� I · S5) � ` ⇤�
� ` � (⇤� E)

� ` ⇤(�!  ) � ` ⇤�
� ` ⇤ (!⇤ �E)

; ` �
; ` ⇤� (⇤0 � I)

� ` ⇤�
� ` ⇤⇤� (⇤⇤ � I)

� ` ⌃�
� ` ⇤⌃� (⇤⌃ � I)

NC start+ (! �I) + (! �E) + (RAA) + (ff�I) + (ff�E)
S4 NC + (⇤� I · S4) + (⇤� E)
S5 NC + (⇤� I · S5) + (⇤� E)
NK NC + (!⇤ �E) + (⇤0 � I)
NKT NK + (⇤� E)
NK4 NK + (⇤⇤ � I)
NKT4 NKT + (⇤⇤ � I)
NKT45 NKT4 + (⇤⌃ � I)

Figure 13: Modal Logic rules in Natural Deduction style

o : Type ff : o ¬ : o -> o ! : o -> o -> o ⇤ : o -> o ⌃ : o -> o

True : o -> Type

impI : ⇧�, :o.(True(�) -> True( )) -> True(�!  )
impE : ⇧�, :o.True(�!  ) -> True(�) -> True( )
ffI : ⇧�:o.(True(¬�) -> True(ff)) -> True(�)
ffE : ⇧�:o.True(ff) -> True(�)

BoxIS4 : ⇧�:o.⇧m:True(�).LBoxedS4

m

[True(⇤�)]
BoxIS5 : ⇧�:o.⇧m:True(�).LBoxedS5

m

[True(⇤�)]
BoxE : ⇧�:o.True(⇤�) -> True(�)

impBoxE : ⇧�, :o.True(⇤(�!  )) -> True(⇤�) -> True(⇤ )
BoxI’ : ⇧�:o. ⇧m:True(�).LClosed

m

[True(⇤�)]
BoxBoxI : ⇧�:o.True(⇤�) -> True(⇤⇤�)

BoxDiamondI : ⇧�:o.True(⌃�) -> True(⇤⌃�)

Figure 14: The signature ⌃S for classic S4 Modal Logic in LFP

The adequacy of the truth system of Modal Logics in natural deduction style can be proved by structural
induction on derivations of the judgment � ` �:
Theorem 13 (Adequacy of Modal Logics in natural deduction style). Let X = {x1, . . . , xn} be a set of
propositional variables occurring in formulæ �1, . . . ,�k,�. There exists a bijection between derivations
of the judgement {�1, . . . ,�k} ` � in Modal Logics in natural deduction style, and proof terms h such
that � `⌃ h : (True ✏X (�)) in ⌘-lnf, where � = {x1 : o, . . . , xn : o, h1 : (True ✏X (�1)), . . . , hk : (True ✏X
(�k))}.
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6.3.3 Non-commutative linear logic (NCLL)

In this section, we outline an encoding in LFP of a substructural logic like the one presented in [31].
Take, for instance, the rules for the ordered variables and the !! introduction/elimination rules5:

�; ·; z:A ` z:A
(ovar)

�;�; (⌦, z:A) ` M :B

�;�;⌦ ` �>z:A.M :A!!B
(!! I)

�;�1;⌦1 ` M :A!!B �;�2;⌦2 ` N :A

�; (�1 on �2); (⌦1,⌦2) ` M>N :B
(!!E)

where the on symbol denotes the context merge operator.
In this system “ordered assumptions occur exactly once and in the order they were made”. In or-

der to encode the condition on the occurrence of z as the last variable in the ordered context in the
introduction rule, it is su�cient to make the observation that, in an LF-based logical framework, this
information is fully recorded in the proof term. The last assumption made is the rightmost variable,
the first is the leftmost. Therefore, we can, in LFP , introduce suitable predicates in order to enforce
such constraints, without resorting to complicated encodings. In the following, we present an encoding
of this ordered fragment of NCLL into LFP . In order to give a shallow encoding, we do not represent
explicitly the proof terms of the original system (see, e.g., [31]). The encodings of rules!! I and!!E are:

impRightIntro : ⇧A,B:o.⇧M:(True A)->(True B).LRightmost

M,(True A)�>(True B)[(True (impRight A B))],
impRightElim : ⇧A,B:o.(True (impRight A B)) -> (True A) -> (True B),

where True:o->Type is the truth judgment on formulæ (represented by type o) and impRight : o ->

o -> o represents the !! constructor of right ordered implications. Finally, Rightmost (� `⌃ M:(True
A)->(True B)) is the predicate checking that:

1. M is an abstraction (i.e., M⌘ �z : (True A).M’);

2. all free variables in M occur in subterms whose type is either o or (True A) for some A:o;

3. the bound variable z occurs only once and neither to the right of a variable bound by an abstraction
which is the third argument of impRightIntro, nor to the left of a variable bound by an abstraction
which is the third argument of impLeftIntro, in the normal form of M’;

4. the bound variable z does not occur in the normal form of M’, in the fourth argument of the
impElim and impLinearElim constructors.

As far as the ⇢ introduction/elimination rules, the encoding strategy is similar; indeed, the rules are
the following:

�;�; (z:A,⌦) ` M :B

�;�;⌦ ` �<z:A.M :A ⇢ B
(⇢ I)

�;�2;⌦2 ` M :A ⇢ B �;�1;⌦1 ` N :A

�; (�1 on �2); (⌦1,⌦2) ` M<N :B
(⇢ E)

Thus, our encoding exploits the predicate Leftmost in the encoding of the introduction rule of ⇢6:

impLeftIntro : ⇧A,B:o.⇧M:(True A)->(True B).LLeftmost

M,(True A)�>(True B)[(True (impLeft A B))],
impLeftElim : ⇧A,B:o.(True A) -> (True (impLeft A B)) -> (True B),

where impLeft : o -> o -> o represents the ⇢ constructor of left ordered implications. Finally,
Leftmost (� `⌃ M:(True A)->(True B)) checks the same constraints of the Rightmost predicate.

5Notice that in this logic the derivation context is split into three distinct parts, namely, the intuitionistic context �,
the linear context � and the ordered context ⌦.

6Notice that we switch the arguments of left ordered application in impLeftElim, in order to simplify the ordering
constraints of the Rightmost and Leftmost predicates.

29



The fragment of linear implications is, again, treated in a similar way, with a suitable predicate
“ensuring” the correct introduction of the ( constructor. The rules for the linear fragment of NCLL
are the following:

�; y:A; · ` y:A
(lvar)

�; (�, y:A);⌦ ` M :B

�;�;⌦ ` �̂y:A.M :A ( B
(( I)

�;�1;⌦ ` M :A ( B �;�2; · ` N :A

�; (�1 on �2);⌦ ` M ˆN :B
(( E)

Hence, the encodings of the rules ( I and ( E are as follows:

impLinearIntro :⇧A,B:o.⇧M:(True A)->(True B).LLinear

M,(True A)�>(True B)[(True (impLinear A B))],
impLinearElim : ⇧A,B:o.(True (impLinear A B)) -> (True A) -> (True B),

where impLinear : o -> o -> o represents the ( constructor of linear implications. Finally, we have
Linear (� `⌃ M:(True A)->(True B)) as the predicate checking that

1. M is an abstraction (i.e., M ⌘ �z:(True A).M’);

2. all free variables in M occur in subterms whose type is either o or (True A) for some A:o;

3. the bound variable z occurs only once in the normal form of M’;

4. the bound variable z does not occur in the NF of M’ in a subterm which is the fourth argument of
the impElim constructor.

Finally, the encoding of the intuitionistic fragment of NCLL is straightforward, since in this part
there are no restrictions about the intuitionistic variables:

(�1, x:A,�2); ·; · ` x:A
(ivar)

(�, x:A);�;⌦ ` M :B

�;�;⌦ ` �x:A.M :A ! B
(! I)

�;�;⌦ ` M :A ! B �; ·; · ` N :A

�;�;⌦ ` MN :B
(! E)

The encodings of the introduction/elimination rules for the intuitionistic implication are trivial:

impIntro : ⇧A,B:o.⇧M:(True A)->(True B). (True (imp A B)),
impElim : ⇧A,B:o.(True (imp A B)) -> (True A) -> (True B)

Notice that in the encodings of rules !!E , ⇢ E and ( E we have not enforced any conditions on the
free variables occurring in the terms, in order to avoid infringing the closure under substitution condition.
Indeed, the obvious requirements surface in the adequacy theorem:

Theorem 14 (Adequacy for Non-Commutative Linear Logic). Let X = {P1, . . . , Pn} be a set of atomic
formulæ occurring in formulæ A1, . . . , Ak, A. Then, there exists a bijection between derivations of the
judgment (A1, . . . , Ai�1); (Ai, . . . , Aj�1); (Aj , . . . , Ak) ` A in non-commutative linear logic, and proof
terms h such that �X , h

1

:(True ✏X (A1)), . . . , hk:(True ✏X (Ak)) ` h : (True ✏X (A)) in ⌘-long normal
form, where the variables h

i

, . . . , h
j�1

occur in h only once (but never in the fourth argument of impElim),
h
j

, . . . , h
k

occur in h only once and, precisely, in this order (but never in the fourth argument of impElim
or impLinearElim), and �X is the context P1:o,...,Pn:o representing the object-language propositional
formulæ P1, . . . , Pn.

As far as we know, this is the first example (see the discussion in, e.g., [12]) of an encoding of non-
commutative linear logic in an LF-like framework. Notice the peculiarity of this adequacy result, which
is inevitable given the substructural nature of NCLL, but which is, nonetheless, perfectly compositional.
The gist is the following: as far as theorems, i.e. proofs with no assumptions, everything is standard;
when assumptions, i.e. truly free, not bindable variables are involved, an external requirement has to be
externally checked. An alternate adequacy could be stated representing, as in the �-calculus case, truly
free variables by constants. Obviously, carrying out a deep embedding of the system, one could enforce
the conditions on the variables occurring in the linear and ordered contexts by means of suitable locks
at the level of the proof terms (see, e.g., [18]).
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6.4 Imp with Hoare Logic

In this subsection, we give an encoding of an imperative language, called Imp together with its Hoare
Logic. The syntax of programs in Imp is:

p ::= skip | x := expr | null | assignment
if cond then p else p | p; p | cond | sequence
while cond {p} while

Other primitive notions of our object language are variables, both integer and identifier, and expressions.
Identifiers denote locations. For the sake of simplicity, we assume only integers (represented by type int)
as possible values for identifiers. In this section, we follow as closely as possible the HOAS encoding,
originally proposed in [1], in order to illustrate the features and possible advantages of using LFP w.r.t.
LF. The main di↵erence with that approach is that here we encode concrete identifiers by constants
of type var, an int-like type, of course di↵erent from int itself, so as to avoid confusion with possible
values of locations.

The syntax of variables and expressions is defined as follows:

Definition 10 (LFP signature ⌃ for Imp).

int : Type bool : Type var : Type

bang : var -> int 0,1,-1 : int + : int -> int -> int

= : int -> int -> bool and, imp : bool -> bool -> bool

not : bool -> bool forall: (int -> bool) -> bool

Since variables of type int may be bound in expressions (by means of the forall constructor), we
define explicitly the encoding function ✏expX mapping expressions with bindable variables of type int in
X of the source language Imp into the corresponding terms of LFP :

✏expX (0) = 0, ✏expX (1) = 1, ✏expX (�1) = -1

✏expX (x) =

⇢
x if x 2 X
(bang x) if x 62 X

✏expX (n+m) = (+ ✏expX (n) ✏expX (m)), ✏expX (n = m) = (= ✏expX (n) ✏expX (m))

✏expX (¬e) = (not ✏expX (e)), ✏expX (e ^ e0) = (and ✏expX (e) ✏expX (e0))

✏expX (e ◆ e0) = (imp ✏expX (e) ✏expX (e0)), ✏expX (8x.�) = (forall �x:int.✏expX[{x}(�))

where x in (bang x) denotes the encoding of the concrete memory location (i.e., a constant of type
var) representing the (free) source language identifier x; the other case represents the bindable variable
x rendered as a LFP metavariable x of type int in HOAS style. The syntax of imperative programs is
defined as follows:

Definition 11 (LFP signature ⌃ for Imp with command).
We extend the signature of Definition 10 as follows:

prog : Type Iskip : prog Iseq : prog -> prog -> prog

Iset : var -> int -> prog Iif : ⇧e:bool.prog -> prog -> LQF

e, bool

[prog]

Iwhile : ⇧e:bool.prog -> LQF

e, bool

[prog]

where the predicate QF (� `⌃ e:bool) holds i↵ the formula e is closed and quantifier free, i.e., it does
not contain the forall constructor. We can look at QF as a “good formation” predicate, ruling out bad
programs with invalid boolean expressions by means of stuck terms.

The encoding function ✏progX mapping programs with free variables in X of the source language Imp
into the corresponding terms of LFP is defined as follows:

✏progX (skip) =Iskip
✏progX (x := e) =(Iset x ✏expX (e))
✏progX (p; p0) =(Iseq ✏progX (p) ✏progX (p0))
✏progX (if e then p else p0) = UQF

✏exp

X (e),bool[(Iif ✏expX (e) ✏progX (p) ✏progX (p0))] (*)

✏progX (while e {p}) = UQF

✏exp

X (e),bool[(Iwhile ✏expX (e) ✏progX (p))] (*)
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(*) if e is a quantifier-free formula (we are assuming to encode legal programs).
Now, given the predicate true: bool -> Type such that (true e) holds i↵ e is true7, we can define
a judgment hoare as follows:

Definition 12 (LFP signature ⌃ for Hoare).

args : Type

<_ , _> : var -> (int -> bool) -> args

hoare : bool -> prog -> bool -> Type

hoare_Iskip : ⇧e:bool.(hoare e Iskip e)

hoare_Iset : ⇧t:int.⇧x:var.⇧e:int -> bool.

LP

set

hx,ei, args

[(hoare (e t) (Iset x t) (e (bang x))]

hoare_Iseq : ⇧e,e’,e’’:bool.⇧p,p’: prog.(hoare e p e’) -> (hoare e’ p’ e’’) ->

(hoare e (Iseq p p’) e’’)

hoare_Iif : ⇧e,e’,b:bool.⇧p,p’:prog.(hoare (b and e) p e’) ->

(hoare ((not b) and e) p’ e’) -> (hoare e UQF

b,bool[(Iif b p p0)] e’)

hoare_Iwhile : ⇧e,b:bool.⇧p:prog.(hoare (e and b) p e) ->

(hoare e UQF

b,bool[(Iwhile b p)] ((not b) and e))

hoare_Icons : ⇧e,e’,f,f’:bool.⇧p:prog.(true (imp e’ e)) -> (hoare e p f) ->

(true (imp f f’)) -> (hoare e’ p f’),

where P set(� `⌃ hx,ei:args) holds i↵ e is closed8 and the location (i.e., constant) x does not occur in e.
Such requirements amount to formalizing that no assignment made to the location denoted by x a↵ects
the meaning or value of e (non-interference property).

The intuitive idea here is that if e=✏expX (E), p=✏progX (P ) and e’=✏expX (E0), then (hoare e p e’) holds
i↵ the Hoare’s triple {E}P{E0} holds. The advantage w.r.t. previous encodings (see, e.g., [1]), is that
in LFP we can delegate to the external predicates QF and P

set all the complicated and tedious checks
concerning non-interference of variables and good formation clauses for guards in the conditional and
looping statements. Thus, the use of lock types, which are subject to the verification of such conditions,
allows to legally derive � `⌃ m:(hoare e p e’) only according to the Hoare semantics.

7 A Philosophical Coda

One may still wonder whether it is worth to develop all the meta-theory we presented in this work.
Why would one like to delegate part of the formalization and verification of an object system to an
external tool? Indeed, one could adopt a “monolithic” approach, encoding and checking everything into
his favourite proof assistant. However, such strategy will soon reveal many drawbacks.

We start by giving another practical application of Poincaré’s Principle. Suppose we are in the setting
of the ⇡-calculus formalization (see, e.g., [20]) and we want to prove rigorously that if a certain property
P holds on a process P , then the same property will also hold on the process (⌫x)P , provided that
x 62 fn(P ). With pencil and paper it is easy to conclude this, since we know that P ⌘ (⌫x)P under
the aforementioned freshness assumption. However, proof assistants force the user to spell out in full
details even trivial proofs like P ⌘ (⌫x)P . Hence, if we want to formally prove the previous structural
congruence statement, we have to proceed applying basic axioms:

P |0 ⌘ P 0 is the identity w.r.t. parallel composition
P |(⌫x)0 ⌘ P (⌫x)0 ⌘ 0
(⌫x)(P |0) ⌘ P (⌫x)(P |Q) ⌘ P |(⌫x)Q if x 62 fn(P )
(⌫x)P ⌘ P 0 is the identity w.r.t. parallel composition

Here, we showed only the main steps of the proof, using implicitly structural rules, transitivity and
symmetry. Surely, this is rather boring and does not require any particular skill to carry it out: it is
a trivial verification like checking, e.g., that 2 + 2 = 4 ([5, 30]). Of course, one will do the proof once

7The definition is omitted due to lack of space.
8Otherwise, the predicate P would not be well-behaved, see Definition 1.
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and then save it for future reuse; however, at the level of the machinery behind the proof assistant, this
would imply larger proof terms, more memory consumption and, in general, a slowdown in the overall
performance9. Thus, being able to delegate such straightforward and trivial verifications to an external
(and optimized) tool would be very helpful during complicated formal proof developments. Indeed, the
user of the proof assistant would be free to concentrate only on the “creative” part of the whole proof
and the framework itself would be free to avoid an explicit treatment of uninteresting parts of the proof.
This is precisely an important aspect of the spirit behind the design of LFP : allowing the user to factorize
apart consolidated proof knowledge, freeing himself and the framework to record in full details “useless”
and trivial verifications.

For instance, in the case of the ⇡-calculus, the reduction rule taking into account structural congru-
ences between processes, namely

P ⌘ P 0 P 0 �! Q0 Q0 ⌘ Q
P �! Q

can be encoded in LFP using locks as follows:

LStruct

hP,P0,Q0,Qi[(red P Q)]

where the red symbol serves to encode the reduction relation �!, and the external predicate Struct

holds if and only if P ⌘ P 0 and Q0 ⌘ Q.
In LFP , one can easily incorporate other systems combining derivation and computation. E.g. the

rule

C A ! B A ⌘ C
B

in Deduction Modulo can be represented as:

◆⌘ : ⇧A,B,C : o.⇧x : True(A ! B). ⇧y : True(C).L⌘
hA,Ci[True(B)].

But the mechanism of lock/unlock types in LFP is more general than the one provided by Deduction
Modulo or Poincare’s principle. The latter can be viewed as extensions of the type Equality Rule to new
definitional equalities. LFP on the other hand, allows to reflect these mechanisms into the proof objects
themselves, as has been extensively shown in the examples.

8 Conclusions and Future Work

In this paper, we have presented an extension of the Edinburgh LF, which allows to internalize external
validation tools and oracles in the form of a ⇧-modal type constructor. Using LFP , we have illustrated
how we can factor out the complexity of encoding logical systems which are awkward in LF, e.g. Modal
Logics and substructural logics, including non-commutative Linear Logic. More examples appear in [18],
and others can be easily carried out, e.g. LFP within LFP .

We believe that LFP provides a Modular Platform that can streamline the encoding of logics with
arbitrary structural side-conditions in rules, e.g. involving, say, the number of applications of specific
rules. We simply need to extend the library of predicates [18].

In LFP we could address formally the issue of reflection. We can already grasp the gist of this
philosophy through the following principle:

Reflection : ⇧x:o. LisTrue
x,o [(True x)]

We believe that our framework could also be very helpful in modeling dynamic and reactive systems:
for example bio-inspired systems, where reactions of chemical processes take place only if some extra
structural or temporal conditions hold, or process algebras. Often, in the latter systems, no assumptions
can be made about messages exchanged through the communication channels. Indeed, it could be the
case that a redex, depending on the result of a communication, can remain stuck until a “good” message

9As we already pointed out in the introduction, proof terms can be kept small, adopting a reflection approach (see, e.g.,
[9]), but at the price of proving internally the correctness of the decision procedures.

33



arrives from a given channel, firing in that case an appropriate reduction (this is a common situation in
many protocols, where “bad” requests are ignored and “good ones” are served). Such dynamic (run-time)
behavior could hardly be captured by a rigid type discipline, where bad terms and hypotheses are ruled
out a priori ([24]).

The machinery of lock derivations is akin to �-rules à la Mitschke, see [3], when we take lock rules,
at object level, as �-rules releasing their argument when the condition is satisfied. This connection
can be pursued further. For instance, we can use the untyped object language of LFP to support the
design-by-contract” programming paradigm.

It should be noted that the system we have presented here is a purely first-order predicative type
theory, corresponding to the vertex (1,0,0) of Barendregt’s cube [4]. A reasonable and worthwhile step
further would be to extend it to the full impredicative higher-order Calculus of Constructions.

Alternative presentations of LFP could be given, featuring say typed reductions, or doing away with
unlock destructors. In certain cases, we might even want to keep track of the external calls which
have been made during the derivation. One way to accomplish this would be to employ a variant of
LFP in which L-reductions do not fire, thus preserving the U -L pairs within the term. More practical
experimenting with LFP will provide more insights on these issues.

The prototype of LFP under development is about to be completed. This experiment will help pick,
among the many implementations of type theory in the literature, the best one with regard to proving
the well-behavedness of predicates.

Lastly, we believe that LFP can shed light on various concepts in need of better formal understand-
ing, such as shallow vs. deep encodings, proposition-as-types for modal operators, and combinations of
di↵erent validation tools.
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Appendix

Definitions and extensions of several standard notions

• the domain of a signature Dom(⌃):

Dom(;) = ;
Dom(⌃, a:K) = Dom(⌃) [ {a}
Dom(⌃, c:�) = Dom(⌃) [ {c}

• the domain of a context Dom(�):

Dom(;) = ;
Dom(�, x:�) = Dom(�) [ {x}

• the free variables of a term Fv(T ):

Fv(Type) = Fv(a) = Fv(c) = ;,
Fv(x) = {x}

Fv(⇧x:�.T ) = (Fv(�) [ Fv(T ))\{x}
Fv(�x:�.T ) = (Fv(�) [ Fv(T ))\{x}

Fv(T N) = Fv(T ) [ Fv(N)

Fv(LP
N,�[T ]) = Fv(N) [ Fv(�) [ Fv(T )

Fv(UP
N,�[T ]) = Fv(N) [ Fv(�) [ Fv(T )

• the bound variables of a term Bv(T ):

Bv(Type) = Bv(a) = Bv(c) = Bv(x) = ;
Bv(⇧x:�.T ) = Bv(�) [ Bv(T ) [ {x}
Bv(�x:�.T ) = Bv(�) [ Bv(T ) [ {x}

Bv(T N) = Bv(T ) [ Bv(N)

Bv(LP
N,�[T ]) = Bv(N) [ Bv(�) [ Bv(T )

Bv(UP
N,�[T ]) = Bv(N) [ Bv(�) [ Bv(T )

• substitution T [M/x] of an object M for the variable x in a term T (here, we assume that x 6= y,
and that we are working modulo Barendregt’s hygiene condition):

Type[M/x] = Type

a[M/x] = a,

c[M/x] = c,

x[M/x] = M,

(⇧y:�.T )[M/x] = ⇧y:�[M/x].T [M/x]

(�y:�.T )[M/x] = �y:�[M/x].T [M/x]

(T N)[M/x] = T [M/x]N [M/x]

(LP
N,�[T ])[M/x] = LP

N [M/x],�[M/x][T [M/x]]

(UP
N,�[T ])[M/x] = UP

N [M/x],�[M/x][T [M/x]]

• substitution T [M/x] of an object M for the variable x in a context �:

(;)[M/x]=;
(�, y:�)[M/x]=�[M/x], y:(�[M/x]), where x 6= y,Fv(M) ✓ Dom(�).
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�L-closure under context for kinds

� !�L �0

⇧x:�.K !�L ⇧x:�0.K
(K·⇧1·�L) K !�L K 0

⇧x:�.K !�L ⇧x:�.K 0
(K·⇧2·�L)

Figure 15: �L-closure-under-context for kinds

�L-closure under context for objects

� !�L �0

�x:�.M !�L �x:�0.M
(O·�1·�L) M !�L M 0

�x:�.M !�L �x:�.M 0
(O·�2·�L)

M !�L M 0

M N !�L M 0 N
(O·A1·�L) N !�L N 0

M N !�L M N 0
(O·A2·�L)

N !�L N 0

LP
N,�[M ] !�L LP

N 0,�[M ]
(O·L1·�L) � !�L �0

LP
N,�[M ] !�L LP

N,�0 [M ]
(O·L2·�L)

M !�L M 0

LP
N,�[M ] !�L LP

N,�[M
0]
(O·L3·�L) N !�L N 0

UP
N,�[M ] !�L UP

N 0,�[M ]
(O·U1·�L)

� !�L �0

UP
N,�[M ] !�L UP

N,�0 [M ]
(O·U1·�L) M !�L M 0

UP
N,�[M ] !�L UP

N,�[M
0]

(O·U1·�L)

Figure 16: �L-closure-under-context for objects of LFP

�L-definitional equality in LFP

T !�L T 0

T=�LT 0
(�L·Eq·Main) T=�LT (�L·Eq·Refl)

T=�LT 0

T 0=�LT
(�L·Eq·Sym) T=�LT 0 T 0=�LT 00

T=�LT 00
(�L·Eq·Trans)

Figure 17: �L-definitional equality in LFP
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