
Rank and Simulation: the well-founded case

Raffaella Gentilini1, Carla Piazza2, and Alberto Policriti2

1 Dip. di Matematica e Informatica, Università degli Studi di Perugia,
Via Vanvitelli 1, Perugia (IT)

2 Dip. di Matematica e Informatica, Università degli Studi di Udine,
Via Le Scienze 206, Udine (IT).

{raffaella.gentilini}@dmi.unipg.it, {piazza|policriti}@dimi.uniud.it

Abstract. We consider the algorithmic problem of computing the maximal sim-
ulation preorder (and quotient) on acyclic labelled graphs. The acyclicity allows
to exploit an inner structure on the set of nodes, that can be processed in stages
according to a set-theoretic notion of rank. This idea, previously used for bisim-
ulation computation, on the one hand improves on the performances of the en-
suing procedure and, on the other hand, gives to the solution an orderly iterative
flavour making the algorithmic idea more explicit. The computational complex-
ity achieved is good as we obtain the best performing algorithm for simulation
computation on acyclic graphs, in both time and space.

This is a pre-copyedited, author-produced PDF of an article accepted for publication
in Journal of Logic and Computation following peer review. The version of record –
Raffaella Gentilini, Alberto Policriti, and Carla Piazza Rank and simulation: the well-
founded case Journal of Logic and Computation(2015) 25(6):1331-1349, first published
on line December 3 2013– is available online at:
http://m.logcom.oxfordjournals.org/content/25/6/1331.

1 Introduction

The simulation preorder [29] is a behavioural refinement relation on labelled graphs,
suitable to characterize situations in which some form of collapse among states is pos-
sible without a significant loss in expressive power. For this reason simulation is widely
used as a formal tool supporting the design and the automated reasoning on complex
systems. In particular, simulations play a role in two tasks that are often crucial to guar-
antee the success of a formal method in system design or in computer aided verification:
system refinement and system abstraction [25]. In this context, the behaviour of a sys-
tem or a set of programs implementing a collection of cooperating units, is naturally
modelled as a (labelled) graph, whose nodes describe the possible states and arrows
represent actions. Given one such specification of a system as a labelled graph G1, the
simulation preorder provides a formal tool for checking whether G1 is correctly im-
plemented (or refined) by the concrete system G2. Moreover, the equivalence relation
induced by simulation can be used as an abstraction tool to cope with the intricacies
buried in the modelling activity and to control the sheer size of the obtained struc-
tures. In particular, space requirements underlay the notorious state-explosion problem

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/53354447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in model checking [11], a fully automatic (and quite efficient in time) formal method
for verifying finite-state systems1 with respect to temporal logics specifications. In this
context, the tool of abstraction/refinement is also crucial to verify by means of model
checking infinite state systems, such as e.g. hybrid automata [25, 22, 4].

Simulation and Logic Abstraction methods for model checking are required to be
preservative with respect to the logic language used for specifying the properties of the
system. An abstraction method is said to be weakly preservative for a temporal logic L
if whenever a property p of L is true in the abstract structure, p holds also in the con-
crete model. An abstraction method is said to be strongly preservative for a temporal
logic L if both true and false L-properties are preserved from the abstract structure to
the concrete model. Grumberg et al. [31] proved that the simulation preorder is weakly
preservative for ACTL∗ and ACTL, the universal fragments of the branching temporal
logics CTL and CTL∗ [10], as well as for the universal fragment of the µ-calculus. In
[28], it was shown that the simulation equivalence strongly preserves both the universal
and the existential fragment of the µ-calculus. As a consequence, it strongly preserves
its sublogics ACTL∗, ECTL∗, ECTL and ACTL, widely used for model checking. The
latter preservation results combined with the existence of a number of polynomial algo-
rithms for computing (the maximal) simulation on a labelled graph [25, 6, 20, 36], ex-
plains the appealing of simulation-based abstraction methods in model checking, also
w.r.t. other popular behavioural refinement relations such as language equivalence and
bisimulation [34]. In fact, language equivalence provides strong preservation of lin-
ear temporal properties and large reductions, however its complexity is exponential,
whereas the complexity of bisimulation and simulation is polynomial [32, 15, 16]. On
the one hand, bisimulation has the advantage (w.r.t. simulation and language equiva-
lence) of preserving more expressive logics. On the other hand, this can also be seen
as a disadvantage, since the abstract structure is required to be so close to the original
model that the reductions allowed are far less powerful.

Our Contribution In this paper we consider the problem of simulation preorder com-
putation and its relationship with a notion of rank. The notion of rank we use is defined
on the nodes of the underlying graph, a graph that we assume to be acyclic. Directed
acyclic graphs (DAGs) are commonly used to model data in a wide variety of applica-
tions, ranging from business process modelling [13, 5], biological and biomedical on-
tologies [17], semantic WEB-schemas and XML documents [1]. Abstraction methods
based on the notions of bisimulation and simulation have been naturally considered in
these contexts to support the automated reasoning on the corresponding massive data-
sets. For example, grouping together bisimilar/similar nodes in a XML data-set is the
first step in many approaches to the construction of indexing data structures for efficient
XPath query evaluation [35, 27, 24].

As far as the complexities are concerned, we propose a simulation algorithm that
has optimal performances with respect to both time and space on acyclic graphs, out-
performing [36, 37, 21]. More specifically, our algorithm uses O(|E||V≡S

|) time and
1 The labelled graphs used to model the system under verification are called Kripke structures

in the context of Model Checking

O(|V≡S
|2 + |V | log(|V≡S

|)) bits to compute a simulation preorder on a given acyclic
graph G with |V | nodes and |E| edges, where |V≡S

| denotes the size of the maxi-
mum simulation (equivalence) on G. The time/space improvement with respect to [36,
37, 21] is a direct consequence of a computing strategy proceeding by ranks. At any
(refinement-)step only arcs actually contributing to reach stability are traversed and, as
a consequence, only a minimal amount of space is allocated. Possible approaches to ex-
tend our results to the general cyclic case are trughly discussed, although a satisfactory
extension is left as an open problem.

State of the Art Among the algorithms for computing the simulation preorder, the most
well known ones are by Henzinger, Henzinger and Kopke [25], Bustan and Grumberg
[6], Tan and Cleaveland [12], Gentilini, Piazza, and Policriti [21, 39], and Ranzato and
Tapparo [36, 37]. Given a (labelled) graphG with |V | nodes and |E| edges, let |V≡S

| be
the size of the maximum simulation (equivalence) on G. The algorithm by Ranzato and
Tapparo [36] runs in O(|E||V≡S

|) time and O(|E||V ||V≡S
|) space. It is the best up-to-

date simulation procedure as far as time complexity is concerned. On the other hand,
the algorithm in [21] (that originally had a minor flow, subsequently corrected in [39])
has the best up-to-date space complexity—O(|V≡S

|2 + |V | log(|V≡S
))—and runs in

O(|E||V≡S
|2) time. In [37], Ranzato and Tapparo proposed a new simulation algorithm

featuring an improvement w.r.t. the space-complexity of their previous procedure, while
slightly worsening the time-performance (of a cubic factor w.r.t. |V≡S

|).

2 Simulation as Coarsest Partition Pair Problem

We start by introducing basic notations and definitions. In particular, we recall the for-
mal definition of maximum simulation problem and its encoding as a partitioning prob-
lem.

Preliminary to that, we introduce the notion of preorder, which is “almost” a partial
order, as it is not required to be neither symmetric nor anti-symmetric.

Definition 1 (Preorder). Let V be a set and Q ⊆ V × V a binary relation over V . Q
is said to be a preorder over V if and only if Q is reflexive and transitive.

The simplest structures over which it is reasonable to use preorders are labelled graphs,
i.e., directed graphs whose nodes are equipped with labels, to be interpreted and repre-
sented as equivalence classes.

Definition 2 (Labelled Graph). A triple G = 〈V,E,Σ〉 is said to be a (finite) labelled
graph if and only if G− = 〈V,E〉 is a (finite) graph and Σ is a partition over V . We say
that two nodes v1, v2 ∈ V have the same label if they belong to the same Σ-class.

An equivalent way to define labelled graphs is to use a labelling function ` : V → L,
where L is a finite set of labels (inducing of a partition ΣL of V). Given a node v ∈ V
we will use [v]Σ (or [v], if Σ is clear from the context) to denote the Σ- class to which
v belongs.

Example 1. A Kripke Structure is a labelled graph and, vice-versa, each connected la-
belled graph can be seen as a Kripke Structure in which two worlds satisfy the same set
of atomic propositions if and only if their labels are equal.

Definition 3 (Simulation). Let G = 〈V,E,Σ〉 be a labelled graph. A relation ≤⊆
V × V is said to be a simulation over G if and only if:

1. v ≤ u→ [v]Σ = [u]Σ;
2. (v ≤ u ∧ vEv1)→ ∃u1(uEu1 ∧ v1 ≤ u1).

In this case we also say that u simulates v.
We say that u and v are sim-equivalent (u ≡s v) if there exist two simulations ≤1 and
≤2, such that u ≤1 v and u ≤2 v.

Notice that a simulation might be neither reflexive nor transitive: e.g. the empty relation
is always a simulation. However the reader can easily verify that given an arbitrary
simulation its reflexive and transitive closure is always a simulation. A simulation �S
over G is said to be maximal if for all the simulations ≤ over G it holds ≤⊆�S . Given
a labelled graph G = 〈V,E,Σ〉 there always exists a unique maximal simulation �S
over G. Moreover �S is a preorder [29].

Example 2. Consider the labelled graph G = 〈V,E,Σ〉 depicted in Figure 1, where
V = {x, y, z}, E = {(x, y), (x, z), (y, z)}, and Σ = {α = {x, y}, β = {z}}. The
maximum simulation preorder on G is given by I ∪ {(y, x)}, where I denotes the
identity relation over V .

α
y

z

x

β

s

y

z

x

β

αα

Fig. 1. A labelled graph G (left) and the maximum simulation on G (right).

In order to illustrate our general strategy, we recall here that a bisimulation relation
is a (sort of) symmetric simulation. As for simulation, there always exists a unique
maximum bisimulation relation over a graph, denoted by ≡B , which is an equivalence
relation. One of the key ingredients at the basis of efficient algorithms for finding the
maximum bisimulation over a graph consists in redescribing such problem as a coarsest
partitioning problem (see, e.g., [32, 16]).

Given a labelled graph G, the simulation problem consists in determining the maxi-
mum simulation preorder onG, and can be elegantly encoded in terms of a Generalized
Coarsest Partition Problem (GCPP) [21]. Such a formulation is the key step suggest-
ing the space efficient procedure presented in [21, 39] and relies on the fundamental
notions of partition pair (PP), PP refinement and PP stability. In this paper we will use
a notion of partition pair which slightly generalizes the one introduced in [21]. More-
over, we will consider a different definition of stability and exploit it to introduce the
Coarsest Partition Pair Problem (CPPP) (cfr. Remark 1). We will show that also in this
formulation our partitioning problem is equivalent to the maximum simulation one.

A partition pair consists of a partition of a set V together with a reflexive relation
over the classes of such partition. Intuitively, in the case of simulation, the partition rep-
resents the simulation equivalence relation, while the reflexive relation is the simulation
preorder.

Definition 4 (Partition Pairs). Let V be a set. A partition pair on V is a pair 〈∆,D〉,
where ∆ is a partition of V and D is a reflexive relation on ∆.

Example 3. Consider the set V = {1, 2, 3, 4}. A partition pair on V is, for instance,
〈∆,D〉 = 〈{{1, 2}, {3}, {4}}, I ∪ {({3}, {4}), ({4}, {3})}〉, where I is the identity
relation over ∆.

Given a set V , each preorder relation �P on V induces a corresponding partition pair
〈V≡P

, P 〉, where ≡P is the equivalence relation ≡P= {(u, v) | u �P v ∧ v �P u},
and P = {(α, β) ∈ V≡P

| ∃u ∈ α,∃v ∈ β.(u �P v)}. In particular, given a labelled
graph G = 〈V,E,Σ〉, we denote by 〈V≡S

, S〉 the partition pair on V corresponding to
the maximum simulation preorder �S of G.

The notion of refinement establishes a partial order on partition pairs. A partition
pair 〈Π,P 〉 is said to be finer than 〈∆,D〉 if Π splits the blocks of ∆ (i.e. Π is finer
than∆ as classically said among partitions), while P is obtained by removing just some
of the relationships induced by D on finer blocks. More formally:

Definition 5 (Refinement). Let 〈∆,D〉, 〈Π,P 〉 be two partition pairs on V :

〈Π,P 〉 v 〈∆,D〉 ⇔ Π is finer than ∆ and P ⊆ D(Π)

where D(Π) denotes the relation on Π induced by D ⊆ ∆×∆, i.e.:

∀α, β ∈ Π((α, β) ∈ D(Π)⇔ ∃α′, β′((α′, β′) ∈ D ∧ α ⊆ α′ ∧ β ⊆ β′))

Given two sets of nodes A,B ⊆ V we write A →∃ B to denote the fact that there
exists a node a ∈ A “reaching” a node b ∈ B, i.e. such that (a, b) ∈ E. Similarly,
A→∀ B denotes the fact that all nodes in A reach some node in B. Moreover, given a
binary relation D we use the notation D(α) for the set {β | (α, β) ∈ D}.

Provided the above notation, Definition 6 introduces the crucial concept of stability.

Definition 6 (Stability). Let G = 〈V,E,Σ〉 be a (labelled) graph, let 〈∆,D〉 be a
partition pair on V . 〈∆,D〉 is said stable w.r.t. the transition relation of the graph E
iff:

∀α, β ∈ ∆(α→∃ β ⇒
⋃
{δ | δ ∈ D(α)} →∀

⋃
{δ | δ ∈ D(β)} (1)

D(α) α

D(β) β

∃ ∃ ∃ ∃ ∃∀∀

1

Fig. 2. Pictorial representation of the notion of stability.

In Figure 2 we provide a pictorial representation of our notion of stability, which is
further exemplified wihin Example 4.

Example 4. Consider G = 〈V,E,Σ〉, where V = {1, 2, 3, 4}, E = {(1, 3), (2, 4)},
and Σ = {{1, 2, 3, 4}} and let 〈∆,D〉 be, for instance, the partition pair on V defined
by∆ = {{1, 2}, {3, 4}} andD = I∪{({3, 4}, {1, 2})}. 〈Σ, I〉 is not sable with respect
to Condition (1), while 〈∆,D〉 is stable with respect to Condition (1).

We are now ready to use our notion of stability to code the simulation problem into
a coarsest partition pair problem. Lemma 1 finally proves that such a coding is correct.

Definition 7 (Coarsest Partition Pair Problem (CPPP)). Let G = 〈V,E,Σ〉 be a
labelled graph and consider the identity relation I on Σ. The Coarsest Partition Pair
Problem asks to determine the coarsest partition pair 〈Π,P 〉 v 〈Σ, I〉 stable with
respect to E.

Lemma 1 (CPPP as Simulation Problem). Let G = 〈V,E,Σ〉 be a labelled graph.
The coarsest partition pair problem is well defined and admits as unique solution the
partition pair 〈V≡S

, S〉, corresponding to the maximum simulation preorder on G.

Proof. We show that the unique solution to the CPPP is the partition pair 〈V≡S
, S〉 v

〈Σ, I〉 corresponding to the maximum simulation preorder �S on G = 〈V,E,Σ〉.
We start by proving that 〈V≡S

, S〉 is stable w.r.t. E. Let α, β ∈ V≡S
and assume that

α →∃ β. Then, there exist two nodes s ∈ α, s′ ∈ β such that s → s′. Consider an

arbitrary node p ∈ ⋃{δ | δ ∈ S(α)}. Since s �S p and s → s′, there exists a node p′

such that p → p′ and s′ �S p′. Hence, p′ ∈ ⋃{δ | δ ∈ S(β)}. Our arbitrary choice
of p ∈ ⋃{δ | δ ∈ S(α)} guarantees that

⋃{δ | δ ∈ S(α)} →∀ ⋃{δ | δ ∈ S(β)}, i.e.,
〈V≡S

, S〉 is stable w.r.t E.
To conclude our thesis assume, by contradiction, that there exists a partition pair

〈Π,P 〉 v 〈Σ, I〉 stable w.r.t.E and such that 〈Π,P 〉 6v 〈V≡S
, S〉. Consider the relation

≤〈Π,P 〉⊆ V × V , where ≤〈Π,P 〉= {(s, s′) | ([s]Π , [s′]Π) ∈ P}. By our assumption
stating that 〈Π,P 〉 6v 〈V≡S

, S〉, we have that ≤〈Π,P 〉*�S . Hence, a contradiction
follows if we can prove that ≤〈Π,P 〉 is a simulation on G = 〈V,E,Σ〉. In fact, in that
case the relation ≤〈Π,P 〉 ∪ �S would be a simulation relation strictly including the
maximum simulation preorder �S .

To prove that ≤〈Π,P 〉 is a simulation on G = 〈V,E,Σ〉, let (s, s′) ∈≤〈Π,P 〉. By
〈Π,P 〉 v 〈Σ, I〉, we have that [s]Σ = [s′]Σ . Consider p such that s → p. Then
[s]Π →∃ [p]Π . Since 〈Π,P 〉 is stable w.r.t.E we have that s′ ∈ ⋃{δ |δ ∈ P ([s]Π)} has
an edge to a node p′ ∈ ⋃{δ | δ ∈ P ([p]Π)}, i.e. to a node p′ such that (p, p′) ∈≤〈Π,P 〉.

ut

Remark 1. Notice that the definition of stability used in this paper is different from the
one used in [21], that is:

∀α, β, α′ ∈ ∆(α→∃ β ∧ α′ ∈ D(α)⇒ ∃β′(β′ ∈ D(β) ∧ α′ →∀ β′)). (2)

It is easy to see that in the general case these two notions of stability are not equivalent.
As a matter of fact, the notion introduced by Definition 6 can be satisfied also without
having a class α′ ∈ D(α) and a class β′ ∈ D(β) such that α′ →∀ β′, as shown in
Example 5.

Example 5. Consider for instance the graph G = 〈V,E,Σ〉, where V = {1, 2, 3, 4},
E = {(1, 3), (2, 4)}, andΣ = {{1, 2, 3, 4}}, and the partition pair 〈∆,D〉 on V defined
in Example 3. 〈∆,D〉 is stable with respect to Condition (1), while it is not stable with
respect to Condition (2).

Regardless of the above considerations, it is true that if 〈∆,D〉 is such thatD is acyclic,
then Conditions (1) and (2) are equivalent. Notice also that, differently from [21], here
we do not impose acyclicity onD. However, since we will start working with an acyclic
relation (i.e. a combination of rank/label-induced partitions), at each step of our com-
putation we will still have to deal with acyclic relations only.

3 The Set-Theoretic Notion of Rank

In the context of Set Theory the notion of rank has a long history and can be found
in many early works (see, e.g., [30, 40]). In particular Mirimanoff, while working on
Russell’s and Burali-Forti’s paradoxes, introduced a distinction between ordinary (well-
founded) and extraordinary (non-well-founded) sets: a set X is ordinary if every mem-
bership descending chain in X is finite; it is extraordinary, otherwise. He defined the
notion of rank of a ordinary set as the least ordinal above the ranks of its members.

A collection of ordinary sets can be considered a set if and only if it has a rank. As a
consequence the collection WF of all ordinary sets is not a set.

We believe we can say that the real impact of the notion of rank, however, is revealed
by the work of von Neumann, who introduced the cumulative hierarchy of hereditary
well-founded sets, i.e., well-founded sets built using only well-founded sets. In such a
hierarchy, Vα denotes the set of all sets having ranks less than α. Hence, if we denote
by ω the smallest infinite ordinal, Vω is the set of hereditary finite well-founded sets. In
[2] Ackermann went further in this direction proposing an encoding of Vω into natural
numbers. Both von Neumann’s and Ackermann’s constructions are at the basis of the
development of algorithms for decidability in Set Theory2.

When dealing with the combinatorics of Sets, (directed) graphs emerge as a natural
representation. For example, hereditary finite sets can be conveniently represented by
finite graphs as follows: each node v of the graph represents a (finite) set whose ele-
ments are the nodes reachable from v through an edge. Hence, directed acyclic graphs
model well-founded hereditary finite sets, while cyclic graphs are necessary for the
non-well-founded case. An important feature (drawback?) of such a representation is
the fact that, in general, it is redundant: two different graphs can represent the same
set. Consider G1 = 〈{u, v}, {(u, v)}〉 and G2 = 〈{a, b, c}, {(a, b), (a, c)}〉 both v, b, c
represent ∅, while both u and a represent {∅}. Introducing (and computing) an equiva-
lence relation on the nodes of a graph representing a set, is a natural way to eliminate
such redundancy. Two interesting aspects of such an approach deserve some comment:
on the one hand, an efficient computation of such an equivalence relation would be
welcome and, on the other hand, we should consider whether this approach would be
viable even in the case of non-well-founded sets. If we consider well-founded sets only,
the most efficient quotient-computation procedure passes through the introduction of a
notion of rank. If we consider a non-well-founded set theory which includes the Anti-
Foundation Axiom (AFA), two graphs represent the same set if and only if they are
bisimilar and the minimal representation for a set is exactly the one found quotienting
w.r.t. the maximum bisimulation relation. Such a strong connection between the notion
of bisimulation (which applies to the well-founded case as well) and set equality, makes
natural to consider the use of a notion of rank to drive the maximum bisimulation com-
putation. In particular, rewriting the notion of rank on directed acyclic graphs we obtain
the following definition.

Definition 8 (Rank). Let G = 〈V,E〉 be an acyclic graph, let v ∈ V . The rank of the
node v is defined as:

rank (v) =
{
0 if E(v) = ∅;
max{1 + rank (v′) | (v, v′) ∈ E} otherwise.

In other words, the above notion of rank is the maximum length of path conducing
to a sink.

2 The interested reader can refer to, e.g., [40, 23, 7, 8], for a complete treatment of both funda-
mental results on Set Theory as well as for an extensive discussion of their relationships with
computational issues.

Rank 2

z

x

β

y

α

Rank 0

Rank 1

Fig. 3. The rank on the labelled graph G.

Example 6. Consider the labelled graph in Figure 1, described in Example 2. In such
a graph, node x has rank 2, node y has rank 1 and node z has rank 0, as illustrated in
Figure 3.

Given an acyclic graph, the ranks of its nodes can be computed in linear time with
respect to the size of the graph both in the explicit [16] and in the symbolic case [14].

There are two fundamental properties of the notion of rank with respect to bisimula-
tion which are at the basis of the linear time bisimulation subroutine for acyclic graphs
described in [16, 14].

Lemma 2 ([16]). Let G = 〈V,E,Σ〉 be an acylic labelled graph, ≡B be the maximum
bisimulation relation over G, and u, v ∈ V :

u ≡B v ⇒ rank (u) = rank (v) (3)
u ≡B v ⇔ [u]Σ = [v]Σ and {[u′]≡B

| (u, u′) ∈ E} = {[v′]≡B
| (v, v′) ∈ E} (4)

The above result ultimately guarantees that we can proceed computing≡B (inductively)
by ranks and we can keep complexity under control as, basically, each edge needs to be
processed only once.

Unfortunately the notion of simulation does not have an immediate set theoretic
counter-part as in the case of bisimulation. The relation �S is somehow close to set-
theoretic notion of inclusion ⊆, but in order to obtain such a correspondence it is nec-
essary to enrich each set with all the elements that its original elements can simulate.

Lemma 3 (Rank and Simulation). Let G = 〈V,E,Σ〉 be an acylic labelled graph,
�S be the maximum simulation preorder overG,≡S be the maximum simulation equiv-
alence over G, and u, v ∈ V :

u �S v ⇒ rank (u) ≤ rank (v) (5)

u �S v ⇔ [u]Σ = [v]Σ and {[u′′]≡S
| ∃u′ ∈ V ((u, u′) ∈ E ∧ u′′ �S u′)} ⊆
{[v′′]≡S

| ∃v′ ∈ V ((v, v′) ∈ E ∧ v′′ �S v′)}
(6)

Proof. As far as Condition (5) is concerned, assume by contradiction that there exist
two nodes s ∈ V , s′ ∈ V such that s �S s′ and rank (s) > rank (s′). Let r =
rank (s) > rank (s′). Since rank (s) = r, we can determine a sequence of r nodes
s1, . . . , sr such that s → s1 ∧ (

∧
1≤i<r si → si+1). By definition of simulation, there

exists a corresponding sequence of r nodes s′1, . . . , s
′
r such that

s′ → s′1 ∧ s1 �S s′1 ∧

 ∧
1≤i<r

si → si+1 ∧ si+1 �S s′i+1

Such a sequence of nodes witnesses the fact that rank (s′) ≥ r, which contradicts our
hypothesis.

We now prove Condition (6). We start by proving direction (⇒). By definition of
simulation, we have that u �S v implies [u]Σ = [v]Σ . Let [u′′]≡S

be such that there
exists u′ with (u, u′) ∈ E and u′′ �S u′. Since u �S v there exists v′ such that
(v, v′) ∈ E and u′ �S v′. Since �S is transitive we get that u′′ �S v′, i.e., the thesis.
As far as direction (⇐) is concerned, if (u, u′) ∈ E, then since u′ �S u′ we have that
[u′]≡S

∈ {[u′′]≡S
| ∃u′ ∈ V ((u, u′) ∈ E ∧ u′′ �S u′)}. So, from our hypothesis it

follows that [u′]≡S
∈ {[v′′]≡S

| ∃v′ ∈ V ((v, v′) ∈ E ∧ v′′ �S v′)}. This means that
there exist u and v′ such that u′ ≡S u , (v, v′) ∈ E, and u �S v′. Since�S is transitive,
we get (v, v′) ∈ E and u′ �S v′. Our hypothesis guarantees that [u]Σ = [v]Σ , so we
can conclude u �S v. ut

Notice that, while in the case of bisimulation the initial labels on the nodes can be
omitted introducing new nodes and egdes (see [16]), the same cannot be done in the
case of simulation (see [21]).

The above properties will be the starting point for our rank-based simulation algo-
rithm. In fact, to obtain an efficient algorithm we, basically, need to:

– process the edge (u, u′) when we are considering the nodes at rank rank (u′);
– avoid to explicitly computing the sets {[u′′]≡S

|∃u′ ∈ V ((u, u′) ∈ E∧u′′ �S u′)}
and, instead, exploit both ≡S and �S to implicitly evaluate set inclusions.

4 An Optimal Simulation Algorithm on Acyclic Graphs

In this section, we introduce our optimal (w.r.t. both time and space) simulation algo-
rithm on acyclic graphs. Such a procedure relies on solving the coarsest partition pair
problem (i.e. computing the maximum simulation preorder) proceeding by ranks. As a
consequence of Lemma 3, the notion of rank, introduced in Definition 8, allows one to
perform a preliminary partition in the given labelled graph and to drive the successive
computation. Condition (5) of Lemma 3 in terms of partition pairs can be restated as
follows.

Lemma 4. Let G = 〈V,E,Σ〉 be an acyclic labelled graph. Then:

〈V≡S
, S〉 v 〈V≡R

, R〉

where 〈V≡S
, S〉 is the partition pair on V encoding the maximum simulation on G,

and 〈V≡R
, R〉 is the partition pair on V corresponding to the rank-labelling preorder

�R= {(u, v) | rank (u) ≤ rank (v)}.

Proof. This is an immediate consequence of Lemma 3. ut

As a consequence of the above circle of ideas, we get the algorithm presented in
Table 1, to be used on acyclic graphs.

Algorithm RANKSIM consists, mainly, of two phases: A preprocessing stage real-
ized through lines 1–11 and a main loop consisting of lines 12–28.

The preprocessing performs the rank-partitioning of the given labelled graph. Such
an initial partition is then explored, in turn, proceeding from the lowest to the highest
rank, corresponding to successive executions of the main loop at line 12. At each iter-
ation i of the main loop (corresponding to rank i − 1) the transitions targeting nodes
having rank i − 1 are employed to refine the current partition pair, in order to get us
closer to the validity of the stability property. In particular, a class α at rank at least i is
split using a class β at rank i− 1 when there are both elements of α reaching elements
of β and elements of α not reaching any class which simulates β. Similarly, a class γ
simulating α can be split if it contains elements reaching classes simulating β as well
as elements which do not.

Notice that even if in our definition of partition pair we do not require to have
an acyclic relation, all the partition pairs generated in our algorithm are acyclic. As a
matter of fact, a cyclic partition pair would represent a wrong split and would require a
subsequent union to converge to the correct output.

The following subsection further illustrates the execution of our rank-based simula-
tion algorithm on some concrete example.

4.1 The Algorithm at Work on Some Examples

In this subsection we consider two concrete labelled graphs, and we show how the
algorithm RANKSIM of Table 1 computes the maximum simulation on them.

We start by employing as input for our rank-based simulation algorithm the labelled
graph G = 〈V,E,Σ〉 depicted in Figure 1 and illustrated within Example 2. In this
simple case, the algorithm RANKSIM terminates upon the execution of the first loop
at line 3, that uses the information given by the rank to refine the initial partition pair
〈Σ, I〉, whereΣ = {α = {x, y}, β{z}}, to the partition pair 〈Π,P 〉, whereΠ = {α =
{x}, α1 = {y}, β = {z}} and P = I∪{(α1, α)}. In fact, in this case the preprocessing
provided by the loop at line 3 is sufficient to solve the simulation problem.

As a more involved example, consider the labelled graph depicted in Figure 4,
where the three labelling letters α, β, δ induce the initial partition pair 〈Σ, I〉, with
Σ = {α = {m,n}, β = {o, p}, δ = {q, r}}. The rank labelling performed by the loop
at line 3 refines the partition pair 〈Σ, I〉 to the partition pair 〈Π,P 〉, where Π = {α =
{m,n}, β = {o, p}, δ = {q}, δ1 = {r}} and P = I ∪ {(δ1, δ)}. The new class δ1 gen-
erated by such a preprocessing loop is then used within the second iteration of the main
loop at line 12 (corresponding to the analysis of the classes at rank 1) to split the higher
ranked class α. In particular, such a split refines the partition pair 〈Π,P 〉 to the partition

Algorithm 1: RANKSIM

input : G = 〈V,E,Σ〉,I := {(α, α) | α ∈ Σ}
output: 〈V≡S , S〉: partition pair encoding the maximum simulation preorder �S on G.
begin1

/* Initial refinement & rank-ordering of the classes. */
notRanked := V ; rankMax := −1; sim := I;2
repeat3

forall α ∈ Σ | α ⊆ notRanked ∧ α * pre(notRanked) do4
if α 6= α \ pre(notRanked) then5

α1 := α\pre(notRanked);α := α\α1; rank(α1) := rankMax+1;6
Σ := Σ ∪ {α1}; sim := sim ∪ {(γ, α1) | (γ, α) ∈ sim} ∪ {(α1, α)}

else7
rank(α) := rankMax+ 18

9

notRanked := pre(notRanked); rankMax := rankMax+ 110

until pre(notRanked) = ∅11
/* Process Σ by rank & refine 〈Σ, sim〉 to establish the

stability prop. ∀(α, β).(α→∃ β ⇒ sim(α)→∀ sim(β)). */
for rk = 1 to rankMax do12

foreach β ∈ Σ | rank(β) = rk − 1 do13
foreach α | pre(β) ∩ α 6= ∅ do14

if α * pre(sim(β)) then15
α1 := α \ pre(sim(β)); rank(α1) := rank(α);α := α \ α1;16
Σ := Σ ∪ α1

sim := sim ∪ {(α1, δ) | (α, δ) ∈ sim}17
∪{(δ, α1) | (δ 6= α, α) ∈ sim}18

foreach γ | γ * pre(sim(β)) ∧ γ ∈ sim(α) do19
γ1 := γ \ pre(sim(β))20
if γ1 6= γ then21

γ := γ \ γ1; rank(γ1) := rank(γ); Σ := Σ ∪ γ1 sim :=22
sim ∪ {(γ1, δ) | (γ, δ) ∈ sim} ∪ {(δ, γ1) | (δ 6= γ, γ) ∈ sim}

sim := sim \ {(α, γ1)}23

24

25

26

27

end28

r

α

β

δ

m n

o p

q

Fig. 4. A labelled graph G1.

Rank 0

α

β

m n

o p

q

rδ

δ

Rank 3

Rank 2

Rank 1

α

β

m n

o p

q

rδ

δ

Rank 3

Rank 2

Rank 1

Rank 0

α

Fig. 5. Rank-Based Simulation at work on the labelled graph G1

pair 〈Π ′, P ′〉, where Π ′ = {α = {m}, α1 = {n}, β = {o, p}, δ = {q}, δ1 = {r}} and
P = I ∪ {(δ1, δ), (α, α1)}.

5 Correctness and Complexity Results

In this section, we prove the correctness of our simulation algorithm on acyclic graphs
and we establish its complexity.

5.1 Correctness

Lemma 5, below, shows that the preprocessing step correctly computes the partition
pair induced by the rank labelling of the graph.

Lemma 5. The loop at line 3 in the algorithm RANKSIM(〈V,E,Σ〉, I) terminates
computing the partition pair 〈Π,P 〉 and the variable rankMax, where:

• rankMax= max{rank (v) | v ∈ V },
• Π v Σ is the coarsest partition finer than the rank-labelling partition V≡R

,
• P = {(α, β) | rank (α) ≤ rank (β) ∧ ∃γ ∈ Σ(α ⊆ γ ∧ β ⊆ γ)}

Proof. This can be easily proved by induction on the number of loop iterations. ut

Lemma 6 and Theorem 1 define crucial invariants and prove their validity throughout
the execution of the main loop at line 12. Such invariants imply the correctness of our
simulation algorithm.

Lemma 6. Consider the overall execution of the for-loop at line 12 guarded by the
variable 1 ≤ rk ≤ rankMax. Whenever a class γ is involved either in a split or in a
refinement of its simulator set

⋃{β | (γ, β) ∈ sim}, the following statement holds:

rank (γ) ≥ rk

Proof. Denote by 〈Σi, simi〉 the partition pair in input to the i-th iteration of the for-
loop at line 12. Moreover, if γ is a class processed within the i-th execution of the
for-loop at lines 12, let γi denote the unique class γi ∈ Σi such that γi ⊇ γ.

Given the above notations, consider the i-th execution of the for-loop at lines 12 (for
which rk = i) and let γ be a class in a partition pair processed within such an iteration.
Assume that either γ ⊂ γi, or

⋃{β | (γ, β) ∈ sim} 6= ⋃{βi | (γi, βi) ∈ simi}. Then,
there exists a pair of classes {α, β} ⊆ Σi such that rank (β) = i − 1, α →∃ β and
γi ∈ simi(α). rank (β) = i− 1∧ α→∃ β implies rank (α) ≥ i. Lemma 5 allows then
to conclude that rank (γ) = rank (γi) ≥ i. ut

Theorem 1. The following invariants hold at the beginning of each iteration of the
for-loop at line 12, within the algorithm RANKSIM(〈V,E,Σ〉, I).

1. For each node v ∈ V such that rank (v) < rk:

[v]≡S
= α ∈ Σ ∧

⋃
{u | v �S u} =

⋃
{β | (α, β) ∈ sim}

2. For each node v ∈ V such that rank (v) ≥ rk:

[v]≡S
⊆ α ∈ Σ ∧

⋃
{u | v �S u} ⊆

⋃
{β | (α, β) ∈ sim}

3. For each pair of classes α, β ∈ Σ:

(α→∃ β∧ rank (β) < rk−1)⇒
⋃
{γ | (α, γ) ∈ sim} →∀

⋃
{γ | (β, γ) ∈ sim}

Proof. By induction on the number of iterations of the for-loop at line 11.
Base (rk = 1). The first two items in our statement follow directly from Lemma 4 and
Lemma 5, while the third item holds trivially since no class β ∈ Σ has a rank strictly
lower than rk − 1 = 0.
Inductive Step (1 < rk). Given i ≥ 1, denote by 〈Σi, simi〉 the partition pair in input
to the i-th execution of the for-loop at line 12. Given γ ∈ Σi>1, denote by γi−1 the only
class in Σi−1 such that γi−1 ⊇ γ.

1. In order to prove our inductive step for item (3), consider 〈Σi=rk>1, simi=rk>1〉
and let α ∈ Σi such that α → β ∧ rank (β) < i − 1. By rank (β) < i − 1 and
Lemma 6 we have βi−1 = β and

⋃{δ | (β, δ) ∈ simi} =
⋃{δ | (βi−1, δ) ∈

simi−1} = simβ. Hence, if rank (β) < (i − 1) − 1 we can conclude our thesis
exploiting the inductive hypothesis for which

⋃{δ | (αi−1, δ) ∈ simi−1} →∀
simβ. Otherwise, assume rank (β) = i − 1 and suppose by contradiction that
(
⋃{δ | (α, δ) ∈ simi} 6→∀ simβ). Let α∗ ⊃ α be the superclass of α at the

moment in which β gets selected at line 13 with rk = i − 1. Within the execution
of the most internal foreach-loop at line 14, if α∗ contains some state that does
not reach simβ, then α∗ gets split into the two subclasses: α∗1 := α∗ \ simβ and
α∗ := α∗ \ α1. By α →∃ β ⊆ simβ, we have that the statement α ⊆ α∗ is true
both before and after such a split. Moreover, the loop at line 19 processes each class
γ ∈ sim∗i−1(α∗ ⊇ α). If γ contains some state that does not reach simβ, then γ
gets split into the two subclasses γ1 := γ\simβ and γ := γ\α1, and γ1 is removed
from the simulators of α∗ ⊇ α (line 23). Hence, once β have been considered at
line 13 within the i − 1-th execution of the for-loop at line 12, we have that each
node belonging to a class simulating α∗ has a successor in simβ. Each subsequent
refinement of α∗ or its set of simulators will maintain this property, and thus we get
to the contradiction of our assumption (

⋃{δ | (α, δ) ∈ simi} 6→∀ simβ
2. We now proceed proving the inductive step for item (1). Let i = rk > 1 and

consider the 〈Σi, simi〉. Let v ∈ V such that rank (v) < rk − 1. Then, item (1)
holds by Lemma 6 and by inductive hypothesis. Let v such that rank (v) = rk− 1.
Then, by inductive hypothesis on item (2) we have:

[v]≡S
⊆ α ∈ Σ ∧

⋃
{u | v �S u} ⊆

⋃
{β | (α, β) ∈ sim} (7)

Moreover, the inductive step already proved on item (3) ensures that:

(α→∃ β∧ rank (β) < rk−1)⇒
⋃
{γ | (α, γ) ∈ sim} →∀

⋃
{γ | (β, γ) ∈ sim}

(8)
Since rank (α) = rk−1, any class reached by α has rank strictly lower than rk−1.
Hence, Conditions (7) and (8) guarantee that:

[v]≡S
= α ∈ Σ ∧

⋃
{u | v �S u} =

⋃
{β | (α, β) ∈ sim}

completing our inductive step for item (1).
3. Let i = rk > 1 and consider v such that rank(v) ≥ rk. If rank(v) > rk, then

[v]Σi
= [v]Σi+1

⊆ α by inductive hypothesis. If rank(v) = rk, there are two
cases to consider. In the first case, [v]Σi

= [v]Σi+1
(i.e., the class of v gets not

split within the i-th iteration of the loop at line 13) and we are done. In the second
case, [v]Σi gets split into α, α1 within the i-th execution of the loop at line 13. By
contradiction, assume there exist two states u ∈ α, u′ ∈ α1 such that u ≡S u′.
By definition of α, α1, u has a successor into a class β of rank r < rk, and u′ has
no successor in any class β′ ∈ sim(β). By inductive hypothesis, this implies that
there exists z such that (u, z) ∈ E and u′ has no successor z′ such that z ≤S z′,
contradicting our hypothesis u ≡S u′.

ut

5.2 Complexity

We finally establish the complexity of our simulation algorithm on acyclic graphs. In
particular, Theorem 2 shows that our procedure uses O(|E||V≡S

|) time and requires
O(|V≡S

|2 + |V | log(|V≡S
|)) bits to compute a simulation preorder on a given acyclic

labelled graph G = 〈V,E,Σ〉. Therefore, it has optimal performances w.r.t. both time
and space on acyclic graphs, outperforming [36, 37, 21].

Theorem 2. The algorithm RANKSIM(G = 〈V,E,Σ〉, I) performsO(|V≡S
||E|) steps

and uses O(|V≡S
|2 + |V | log(|V≡S

|)) bits to compute the solution to the coarsest par-
tition pair problem 〈V≡S

, S〉.

Proof. Let r = max{rank (v) | v ∈ V }. The cost of the while-loop at line 3 is O(r ∗
|E|) = O(|V≡S

||E|).
The cost of the loop at line 12, excluded the execution of the innermost if-statement

at line 21, is:

O(Σr
1=1Σβ∈V≡S

,rank (β)=i−1(|pre(β)| ∗ |Σi+1|+ |pre(
⋃
{δ | (β, δ) ∈ sim}|) =

= O(|V≡S
||E|)

In fact, consider a class β such that rank (β) = i − 1. It is possible to distinguish
with marks the classes that reach (resp. do not reach/reach with all their nodes) the set⋃{δ | (β, δ) ∈ sim} at the cost O(pre(

⋃{δ | (β, δ) ∈ sim}). Moreover, the same cost
allows one to appropriately mark each node in pre(

⋃{δ | (β, δ) ∈ sim}. Then, fixed
β, rank (β) = i−1, the cost of executing lines 14–24 without considering the innermost
if-statement, is O(|pre(⋃{δ | (β, δ) ∈ sim}|+Σα∈pre(β)|sim(α)|).

The innermost if-statement at lines 21–23 is executed only upon the creation of a
new class γ1 and cost globally O(|V≡S

||E|). In fact, each execution of lines 21–23 for
the creation of the new classes γ1, γ \ γ1 from γ, requires only to scan the nodes in γ
and the classes in sim(γ), sim−1(γ).

As far as space complexity is concerned we refer to bit complexity without consid-
ering the space required by the graph G, since it is never modified (see, e.g., [33, 6]). In
particular, Σ is stored through an array of length |V | associating to each node its class.
Hence, it requires O(|V | log(|V≡S

|)) bits. notRanked is a |V | array of bits, labeling
with 1 the nodes which do not have a rank. rank is stored in a |V | array of lists, where
the ith list keeps the classes at rank i. Hence it requiresO(|V |+ |V≡S

| log(|V≡S
|)) bits.

Finally, the relation sim is stored in a bit matrix whose size grows up to O(|V≡S
|2)

bits. ut

6 Back To The Notion of Rank

In order to generalize our algorithm to the cyclic case we could follow two opposite
approaches. On the one hand, we could extend the notion of rank ensuring that:

u �S v ⇒ rank (u) ≤ rank (v) (9)
(u, u′) ∈ E ⇒ rank (u) ≥ rank (u′) (10)

These would allow us to both start from the rank partition and to compute the simulation
equivalence at rank i using only the information computed at rank at most i. On the
other hand, we could decide to drop Condition (9) in order to use a notion of rank as
fine as possible with respect to Condition (10). In this case we would need to both split
and merge classes, but we could consider at each step relatively small sets of nodes.

In more detail, the first policy imposes us to put all the nodes which reach a cycle
at the same rank.

Example 7. Consider the labelled graph G = 〈V,E,Σ〉 such that V = {a, b, c}, E =
{(a, a), (c, b), (c, c)}, and Σ = {V }. We have that a ≡S c.
More in general, cycles allow to simulate acyclic chains of arbitrary length and for
this reason we cannot discriminate a priori among nodes which reach cycles. Hence,
the only possible extension of the notion of rank which satisfies both (9) and (10) and
which does not exploit node labelling is the following:

rank ∗(v) =

0 if E(v) = ∅,
max{1 + rank ∗(v′) | (v, v′) ∈ E} if v does not reach cycles,
+∞ otherwise.

In this case we would “only” have to extend our algorithm to deal with rank +∞.
Unfortunately, this is the most complex case and it could include a large set of nodes.

The second policy allows us to use a notion of rank considering each strongly con-
nected component separately. In particular, given a graph G let Gscc be the acyclic
graph of its strongly connected components and consider:

rank ∗(v) = rank (scc(v))

where scc(v) is the strongly connected component of v. In this case the difficulty in
developing a competitive simulation algorithm lies in the merging operations. In the
graph of Example 7 nodes a and c are simulation equivalent, but they are at different
rank ∗.

We conclude this section briefly mentioning other cases of problems over graphs in
which the set theoretic notion of rank and its extensions to the cyclic case have been
used to find algorithmic solutions.

In Section 3 we already discussed the use of the classical notion of rank for bisim-
ulation computation over acyclic graphs. In [16, 14] an extension of the notion of rank
based on strongly connected components (different from rank ∗) has been exploited for
efficiently computing bisimulation in the general case. The computation proceed by
ranks and at each steps only the nodes at a given rank are considered. However, when
cycles are involved a single step can require a number of iterations which is more than
linear with respect to its dimension.

In [26] a more abstract notion of rank is used for evaluating and comparing web
structures. A set of web pages can be seen as a graph whose nodes are the pages, while
the edges encode the links among pages. In their analysis the authors exploit a notion
of rank which is slightly different from our. In particular, they introduce a hierarchy
of ranks. At the lower level of such hierarchy rank 0 is the length of the shortest path

from a node to a leaf (a node without outgoing edges). At the next level rank 1(v) is the
set {rank0(v′) | (v, v′) ∈ E}, and so on. The authors observe that for each graph G
there exists k such that two nodes have the same rank k if and only if they are bisimilar.
Unfortunately, in the case of simulation this notion of rank is not useful. Consider for
instance the graph G = 〈V,E,Σ〉 such that V = {a, b, c}, E = {(a, a), (b, b), (b, c)},
and Σ = {V }. It holds that a ≡S b, but for each k rank k(a) 6= rank k(b). In particular,
for k > 0 we have rank k(a) = {∞}k, while rank k(b) has two elements which are
both different from {∞}k−1.

In [19] the authors consider Relational and XML Databases proposing translations
from the first to the second ones. Two problems over graphs emerged from this analysis.
The maximum density problem requires to extract a forest with maximum number of
edges (or equivalently minimum number of roots) from a given graph. It can be solved in
linear time using rank ∗. The maximum depth problem asks for a forest with maximum
depth, where the depth of a forest is the sum of the depths of its nodes. In the acyclic
case also this problem can be solved in linear time using the notion of rank. In the
general case this second problem is NP-complete. However, again rank ∗ can be used to
compute in linear time an approximated solution. The approximation degree depends
on the structure of the graph.

7 Conclusions and Future Work

The algorithm presented in this paper is strongly based on a characterization and state-
ment of the maximum simulation quotient and preorder computation, as a coarsest par-
tition pair problem. Such a view was proved useful and exploited also in the context of
maximum bisimulation computation (see [15, 16]) and, ultimately, links this problem
with set theory. Not surprisingly, the notion of rank is a standard tool in well-founded
set theory, used to give “structure” to the universe of sets (see, e.g., [38]). As a matter
of fact, for example, the algorithm for bisimulation computation presented in [15, 16]
has a linear time complexity in the acyclic case, while in the general case it allows one
to focus the computation on subgraphs of the given graph.

The rank-based simulation algorithm we presented here has very good space/time
performances on acyclic graphs. However, its generalization to the (possibly) cyclic
case is still an open problem. One reason for such difficulties lies in the fact that, when
moving from acyclic to cyclic graphs the notion of simulation does not work “compo-
sitionally”: loops allow to simulate paths of arbitrary length.

Further direction for future work are given by the open problem concerning the
possibility of developing a linear time simulation algorithm for the acyclic case. Again,
there seems to be an intrinsic higher complexity in the notion of simulation with respect
to bisimulation which prevents one to easily achieve the linear time complexity. In
particular, even though with Lemma 3 we were able to give a set-theoretic “flavour”
to the notion of simulation, the induced characterization is just reminiscent of a sort of
recursive inclusion. This is in contrast with the notion of bisimulation on acyclic graphs
that corresponds exactly to equality on well-founded sets.

Finally, we could consider the algorithmic analysis of the quantitative extension of
the notion of simulation recently introduced in [3] to deal with the containment problem

on quantitative languages [9, 18], ultimately applying to the verification of quantitative
properties on complex systems.

References

1. E. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from relations to semistructured
data and XML. Morgan Kaufmann, 2000.

2. W. Ackermann. Die widerspruchsfreiheit der allgemeinen mengenlehre. Mathematische
Annalen, 114:305–315, 1937.

3. Guy Avni and Orna Kupferman. Making weighted containment feasible: a heuristic based
on simulation and abstraction. In Proceedings of the 23rd international conference on Con-
currency Theory, CONCUR’12, pages 84–99. Springer-Verlag, 2012.

4. K. Bauer, R. Gentilini, and K. Schneider. A uniform approach to three-valued semantics for
-calculus on abstractions of hybrid automata. International Journal on Software Tools for
Technology Transfer, 13(3):273–287, 2012.

5. M. Ben-Ari, T. Milo, and E. Verbin. Querying dag-shaped execution traces through views.
In WebDB: 12th International Workshop on the Web and Databases, 2009.

6. D. Bustan and O. Grumberg. Simulation-based minimization. ACM Trans. Comput. Logic,
4(2):181–206, April 2003.

7. D. Cantone, A. Ferro, and E. Omodeo. Computable set theory, Volume 1. Clarendon Press,
1990.

8. D. Cantone, E. Omodeo, and A. Policriti. Set Theory for Computing. Springer, 2001.
9. Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.

ACM Trans. Comput. Logic, 11(4):23:1–23:38, 2010.
10. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using

branching-time temporal logics. Logic of Programs, pages 52–71, 1981.
11. E. Clarke, O. Grumberg, and D. Peled. Model Checking. Elsevier/MIT press, 2001.
12. R. Cleaveland and L. Tan. Simulation revisited. In T. Margaria and W. Yi, editors, Proc.

7th Int’l Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’01), volume 2031 of LNCS, pages 480–495. Springer, 2001.

13. D. Deutch and T. Milo. A quest for beauty and wealth (or, business processes for database
researchers). In Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, PODS ’11, pages 1–12. ACM, 2011.

14. A. Dovier, R. Gentilini, C. Piazza, and A. Policriti. Rank-based symbolic bisimulation: (and
model checking). Electronic Notes in Theoretical Computer Science, 67:166–183, 2002.

15. A. Dovier, C. Piazza, and A. Policriti. A fast bisimulation algorithm. In G. Berry, H. Comon,
and A. Finkel, editors, Proceedings of Computer Aided Verification (CAV’01), volume 2102
of LNCS, pages 79–90. Springer, 2001.

16. A. Dovier, C. Piazza, and A. Policriti. An efficient algorithm for computing bisimulation
equivalence. theoretical computer science. Theor. Comput. Sci, 311:221–256, 2004.

17. B. Smith et al. The obo foundry: coordinated evolution of ontologies to support biomedical
data integration. Nature Biotechnology, pages 1251–1255, 2004.

18. Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. Quantitative languages de-
fined by functional automata. In Proceedings of the 23rd international conference on Con-
currency Theory, CONCUR’12, pages 132–146. Springer-Verlag, 2012.

19. M. Franceschet, D. Gubiani, A. Montanari, and C. Piazza. From entity relationship to xml
schema: A graph-theoretic approach. In Proceedings of the 6th International XML Database
Symposium on Database and XML Technologies, pages 165–179. Springer-Verlag, 2009.

20. R. Gentilini, C. Piazza, and A. Policriti. Simulation as coarsest partition problem. In Pro-
ceedings of the 8th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS ’02, pages 415–430. Springer-Verlag, 2002.

21. R. Gentilini, C. Piazza, and A. Policriti. From bisimulation to simulation: Coarsest partition
problems. J. Autom. Reasoning, 31(1):73–103, 2003.

22. R. Gentilini, K. Schneider, and B. Mishra. Successive abstractions of hybrid automata for
monotonic ctl model checking. In Proceedings of the international symposium on Logical
Foundations of Computer Science, LFCS ’07, pages 224–240. Springer-Verlag, 2007.

23. J. Van Heijenoort. From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931.
Harvard University Press, 1977.

24. J. Hellings, G. Fletcher, and H. Haverkort. Efficient external-memory bisimulation on dags.
In Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’12, pages 553–564. ACM, 2012.

25. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on finite and
infinite graphs. In 36th Annual Symposium on Foundations of Computer Science (FOCS’95),
pages 453–462. IEEE Computer Society Press, 1995.

26. I. Horie, K. Yamaguchi, and K. Kashiwabara. Higher-order rank analysis for web structure.
In Proceedings of the sixteenth ACM conference on Hypertext and hypermedia, pages 98–
106. ACM, 2005.

27. K. Kaneko and J. Zhu. Xsim: The first method for generating the simulation quotient of xml
documents in a relational database. In Proceedings of the 2012 International Conference on
Future Information Technology and Management Science, FITMSE ’12, pages 53–61, 2012.

28. K. Laiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Preserving abstractions for
the verification of concurrent systems. Formal Methods in System Design, 6(1):11–44, 1995.

29. R. Milner. A calculus of communicating systems. In G. Goos and J. Hartmanis, editors,
Lecture Notes on Computer Science, volume 92. Springer, 1980.

30. D. Mirimanoff. Les antinomies de russell et de burali-forti et le problme fondamental de la
thorie des ensembles. Enseign. math., 19:37–52, 1917.

31. O. Grumberg and D.E. Long. Model checking and modular verification. ACM Transactions
on Programming Languages and systems, 16(3):843–871, May 1994.

32. R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal on Comput-
ing, 16(6):973–989, 1987.

33. C. H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Company,
Inc., 1994.

34. D. Park. Concurrency on automata and infinite sequences. Theoretical Computer Science,
pages 167–183, 1981.

35. P. Ramanan. Covering indexes for xml queries: bisimulation - simulation = negation. In
Proceedings of the 29th international conference on Very large data bases - Volume 29,
VLDB ’03, pages 165–176, 2003.

36. F. Ranzato and F. Topparo. A new efficient simulation equivalence algorithm. In Proceedings
of Logics in Computer Science (LICS’07), pages 171–180, 2007.

37. F. Ranzato and F. Topparo. Saving space in a time efficient simulation algorithm. In Proceed-
ings of Int. Conference on Application of Concurrency to System design (ACSD’09), pages
60–69, 2009.

38. J. E. Rubin. Set Theory for the Mathematician. New York: Holden-Day, 1967.
39. R. van Glabbeek and B. Ploeger. Correcting a space-efficien simulation algorithm. In Pro-

ceedings of Int. Conference on Computer Aided Verification (CAV’08), pages 517–529, 2008.
40. J. von Neuman. DCollected Works. Volume I: Logic, Theory of Sets and Quantum Mechanics.

Pergamon Press, 1961.

