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Abstract – We study the efficiency of a wide class of stochastic non-Markovian search strategies
for spatially correlated target distributions. For an uninformed searcher that performs a non-
composite random search, a ballistically moving search is optimal for destructible targets, even
when the targets are correlated. For an informed searcher that can measure the time elapsed
since the last target encounter and performs a composite search consisting of alternating extensive
ballistic trajectories and intensive non-Markovian search trajectories, the efficiency can be more
than three times higher compared to a ballistic searcher. We optimize the memory function
that describes the intensive non-Markovian search motion and find a single-exponential memory
function to be optimal. In our extended search model the intensive search mode is activated when
the distance between two consecutively found targets in the extensive search mode is smaller than
a threshold length called the memory distance dm. We find that a finite value of dm quite generally
leads to optimal search efficiency for correlated target distributions.
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Introduction. – Search problems are omnipresent in
everyday life: immune cells search for viruses or bacte-
ria [1], people search for natural resources [2] and animals
forage for food [3–6], just to name a few examples. Ac-
cording to optimal foraging theory, the understanding of
search processes reveals the driving forces behind the often
complex search behavior of various organisms [7,8], but
it can also inspire the optimization of search algorithms
that might be useful in technology and computer science
applications [9,10]. Thus, there have been many studies
aiming to find the most efficient search strategy for differ-
ent scenarios [11–16]. Without prior information on the
spatial distribution of targets [17,18], the optimal search
strategy typically includes random features [19]. To effi-
ciently deal with target correlations, composite [20,21] and
intermittent search algorithms were proposed [22]. A com-
posite search, also known as an area-concentrated or area-
restricted search, is comprised of alternating intervals of
intensive and extensive search modes. In fact, many ani-
mals use composite search strategies [6,23,24]. In a popu-
lar class of models, the intensive search mode is typically
activated after every target encounter and maintained for
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the duration of the so-called giving-up time (GUT) [25].
Obviously, in order to perform a GUT-based composite
search, the searcher needs the ability to detect target en-
counters and to measure time. A searcher that has these
two abilities we call an informed searcher. There are also
more complex search algorithms, where the searcher learns
when to activate intensive search intervals [26], for exam-
ple by spatial mapping of the found targets [27]. Clearly,
such more sophisticated algorithms require more abilities
of the searcher and are not considered by us.

In this paper we introduce a general non-Markovian
composite search model that extends the GUT-composite
model without requiring additional abilities of the searcher
beyond measuring the time elapsed after the last target
encounter. In our model, a single searcher performs a
composite search and looks for immobile targets in con-
tinuous space and only detects direct encounters with tar-
gets within a given encounter radius, but has no ability of
long-ranged target perception. The intensive search mode
is described by the generalized Langevin equation that
characterizes non-Markovian random motion by a memory
function [28,29], while the extensive search mode consists
of straight paths. As a generalization of the GUT model,
the intensive search mode is turned on only if the spatial
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Fig. 1: (a) Schematics of the composite search model. Targets are denoted by circles with radius a, filled targets have been
found already. The blue curved part of the lower trajectory represents the intensive search mode, which is activated since the
distance between two consecutively found targets during extensive search is smaller than the memory distance dm. In the upper
trajectory the intensive search mode is not activated and the searcher keeps moving straight. (b) Example trajectories for the
different memory kernels with fixed persistence time τm = 0.1τD. (b1) represents Markovian motion (eq. (6)), (b2) the single
exponential kernel (eq. (7)) with τΓ = 100τD, (b3) the negative exponential (eq. (7)) with b = −0.1τ−2

D and τΓ = 100τD and
(b4) the positive exponential kernel (eq. (7)) with b = 0.09τ−2

D and τΓ = 100τD. All trajectories have a simulation time of
100τD with a time step of 0.001τD and the initial velocity is drawn from a Boltzmann distribution. (c) Corresponding analytical
mean squared displacement Δx2 of the different random walks displayed in (b) except for the NE kernel where more illustrative
parameters of τm = 0.1τD, b = −14τ−2

D and τΓ = 7τD are chosen. The dashed black lines represent the initial ballistic and the
long time diffusive regimes, respectively. (d) Efficiency of non-composite random walks for uncorrelated targets depending on
the persistence time τm. Other random walk parameters are the same as in (b).

distance covered in extensive search mode between two
found targets is smaller than a threshold value, the mem-
ory distance. Clearly, in the limit of very large memory
distance our model reduces to the standard GUT model,
for which the optimal GUT was assessed before [25,30].
For different correlated target distributions we optimize
our model with respect to the parameters that charac-
terize the memory function. We find that for correlated
targets a memory function that is given by a single expo-
nential shows the highest search efficiency.

Model and methods. –

System setup. In our model a single searcher moves
in a 2D box with periodic boundary conditions. There
are N fixed targets inside the box and the searcher has
a search radius a, as illustrated in fig. 1(a). The search
radius can be interpreted as the range of vision, smelling,
etc., or as the target size. The targets are immobile and
their spatial correlation is determined by a preset radial
distribution function (RDF). After a target is found it dis-
appears but reappears after a recovery time of 8000τD in
the case of correlated targets, which is the minimal time a
composite searcher needs to traverse the periodically repli-
cated simulation box size, where τD is the diffusion time
defined below. The finite recovery time prevents repeated
finding of the same target, which would define a different
search problem, but at the same time keeps the average
target density constant [21]. In the case of uniformly ran-
domly distributed targets, the found target recovers in-
stantaneously at a new random position [31]. Therefore,
for both correlated and uncorrelated scenarios, the tar-
gets are effectively destructible and cannot be repeatedly
found. In order to compare different search strategies, the
search efficiency η is defined as the number of found tar-
gets divided by the travelled distance, i.e., the contour

length of the search trajectory. The target density ρ is
determined by the number of targets N and the box edge
length L as

ρ =
N

L2
, (1)

from which the mean free path length (MFPL) of the
searcher follows as

λ =
1

σρ
. (2)

Here σ is the search cross-section which depends on the
spatial dimensionality and in 2D is given by σ = 2a.
Throughout the paper we use N = 1000 targets and a
fixed target density a2ρ = 1/200, giving rise to a MFPL
of λ/a = 100. In our optimization we use the dimension-
less efficiency λη, which gives the number of found targets
per MFPL: a searcher moving ballistically has an efficiency
of one target per MFPL and thus λη = 1, a value λη > 1
signals a search strategy that is more efficient than moving
on a straight line.

Random motion. The random motion in the inten-
sive search mode is described by the generalized Langevin
equation (GLE), first derived by Mori and Zwanzig [32,33],
which for a free particle with a memory kernel Γ(t) for each
spatial direction reads

mẍ(t) = −
∫ t

−∞
Γ(t− t′)ẋ(t′)dt′ + FR(t), (3)

where m is the mass of the particle, ẍ(t) is the acceleration
and ẋ(t) the velocity at time t, FR(t) is a Gaussian random
force and γ =

∫ ∞
0

Γ(t)dt is the friction coefficient. Note
that in our linear model, the two spatial directions do not
couple to each other. Rescaling time and space by τD and
a according to t̃ = t/τD and x̃(t̃) = x(t)/a, we obtain the
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dimensionless version of the GLE in terms of the minimal
number of rescaled variables

˜̈x(t̃) = −
∫ t̃

−∞
Γ̃(t̃− t̃′)˜̇x(t̃′)dt̃′ + F̃R(t̃), (4)

where τm = m/γ is the persistence time and
τD = γa2/(kBT ) is the diffusion time and using
F̃R(t̃) = aτDFR(t)/(τmkBT ), Γ̃(t̃) = τ2DΓ(t)/(τmγ).
Without restricting the generality of the two-point corre-
lation function that characterizes the random motion [34],
we can assume the fluctuation dissipation theorem to
hold and obtain

〈FR(t)FR(0)〉 = kBTΓ(t). (5)

For the special case

Γ(t) = 2γδ(t), (6)

the GLE simplifies to the Markovian Langevin equation
with instantaneous friction and describes a persistent ran-
dom walk. When additionally the persistence time τm
goes to zero, overdamped Brownian diffusion is obtained.
When the memory function Γ(t) differs from a delta peak,
the GLE is via Markovian embedding mapped onto a
multidimensional Markovian Langevin equation with ad-
ditional degrees of freedom [35] and numerically solved by
an Euler integrator to create trajectories [36]. We compare
three different memory functions that are characterized by
a finite memory time τΓ

Γ(t)

m
= 2αδ(t) + b exp(−t/τΓ), (7)

with α = 1/τm − bτΓ. For b = 1/(τΓτm) the single-
exponential (SE) model [36] is obtained, characterized by
α = 0, whereas for α �= 0 the positive-exponential (PE)
model [37] for b > 0 and the negative-exponential (NE)
model [34] for b < 0 are obtained, respectively, which addi-
tionally include a delta contribution at zero time. The ex-
pression for α is a consequence of the properties of the
velocity autocorrelation function [38] and assures that the
integral over the kernel remains positive for α ≥ 0 [34].
For b = 0 one recovers the Markovian limit of eq. (6).

Composite and non-composite search. The composite
random search consists of alternating segments of straight
(ballistic) motion and intensive search motion described
by the GLE, eq. (3). In the ballistic segment the searcher
moves straight at constant velocity

√
π/1000 a/τD (the

actual value of the ballistic velocity is only relevant in con-
nection with the recovery time and is not varied). When
finding a target in the ballistic segment, the searcher re-
members this event for a certain travel distance, which
is defined as the memory distance dm. If the searcher
finds a second target before moving more than dm, the
motion switches to intensive search, which is described
by the GLE, eq. (3), and stays active for the duration

of the GUT denoted by τGU ; otherwise the searcher for-
gets the event of finding the target, as illustrated in
fig. 1(a). After intensive search for a duration of τGU ,
the searcher switches back to ballistic motion in a random
direction. Our model becomes equivalent to the standard
GUT searcher model in the limit of infinite memory dis-
tance dm, in the limit of dm = 0 the searcher performs
pure ballistic motion. For comparison we also consider
non-composite non-Markovian search models, where the
motion is always described by eq. (3), which corresponds
to an infinite value of τGU .

Target distributions. The target distribution strongly
influences the most efficient search strategy and is created
such that it obeys a preset RDF as explained below. An
RDF is given by

g(r) =
ρ(r)

ρ0
, (8)

where ρ(r) is the target density at distance r from a central
target, ρ0 is the mean density and an average over all
central targets is taken. Uniformly randomly distributed
targets are characterized by a constant RDF g(r) = 1. The
RDF of a target distribution in a finite area atot fulfills the
normalization condition∫ rmax

0

dr2πrg(r) = atot, (9)

where rmax is the maximal possible distance between two
targets inside the regarded area. We focus on positively
correlated targets that tend to form clusters. We choose
an exponentially decaying RDF

g(r) = N (Ae−r/lc + 1), (10)

where lc is the correlation length, A is the correlation
strength and N is a normalization factor assuring that
eq. (9) holds. Since we use periodic boundary conditions,
the RDF g(r) in eq. (8) is defined for all r, but for the
normalization in eq. (9) we integrate the RDF only up to
rmax. The algorithm used for creating target distributions
starts from a random target distribution. Then one target
is moved to a new random position; if the RDF is closer to
the desired RDF in eq. (10) the new position is accepted,
else other random positions are tried until one move is
accepted. This process is then repeated for every target
several times until the difference between the actual RDF
and eq. (10) is below an error threshold, see fig. 2(e). The
effect of increasing A can be seen in figs. 2(a) to (c).

For comparison, we also use circular-patch target distri-
butions [18], see fig. 2(d). For these patch distributions,
the number of targets per patch n and the patch radius
R are chosen, then the patch centers are distributed on
random positions and n targets are uniformly randomly
distributed inside the patch radius R around each patch
center. In the simulations each set of distribution parame-
ters is used to create 500 different target distributions over
which the search efficiency is averaged. Every simulation
is 105τD long and the searcher always starts in the middle
of the simulation box (see figs. 2(a)–(d)).
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Fig. 2: Trajectories of a composite search where the intensive search mode is described by a single-exponential (SE) walk
(eq. (7), τm = 0.1τD, τΓ = 100τD) with memory distance dm = 40a and giving-up time τGU = 100τD for (a) uniformly random
target distribution with A = 0, (b) correlated targets described by RDF parameters (eq. (10)) A = 10, lc = 10a, (c) RDF
parameters A = 50, lc = 10a, (d) targets that are distributed in ten circular patches with patch radius R = 20a and n = 100
targets each. (e) The measured RDF from the target distribution in (b) (blue histogram) is compared with the preset RDF
(red line) for A = 10, lc = 10a. (f) Comparison of the search efficiency as a function of the memory distance dm for composite
search strategies with different intensive search modes for τGU = 40τD and target distributions with correlation length lc = 20a
and strength A = 10 (see eq. (10)). All other parameters are chosen to yield the highest efficiency which for the SE kernel leads
to τm = 0.1τD and τΓ = 100τD and for the Markovian case (eq. (6)) to τm = 1τD. For the NE kernel the efficiency is highest
in the Markovian limit (b → 0) and for the PE kernel in the SE kernel limit (α → 0, see eq. (7)). Thus, parameters close to
the limits are chosen: for the NE kernel τm = 1τD, b = −0.1τ−2

D , τΓ = 0.01τD, for the PE kernel τm = 0.1τD, τΓ = 100τD,
b = 0.09τ−2

D (see eq. (7)).

Results. –

Non-composite search. We first consider non-
composite search strategies where the motion is without
interruption described by the GLE in eq. (3) and not mod-
ified by interactions with the targets. We show trajecto-
ries of the four different random walk types we consider
in fig. 1(b), namely (b1) the Markovian persistent random
walk (Ma), (b2) the single-exponential memory walk (SE),
(b3) the negative-exponential memory walk (NE) and (b4)
the positive-exponential memory walk (PE). The observed
differences between these random walk trajectories are
clearly reflected by their mean squared displacements in
fig. 1(c): the persistent random walk exhibits a single
crossover between ballistic motion at short times and dif-
fusive motion at long times, the SE walk is characterized
by pronounced oscillations in the MSD that in the tra-
jectory show up as circular motion pattern, the NE walk
shows a second transient ballistic regime at long times
that gives the trajectory a rather elongated shape (sim-
ilar to active-particle motion and run-and-tumble walks)
and the PE exhibits an intermediate plateau regime in the
MSD which in the trajectory is reflected by sections where
the walk seems to halt [39]. Thus, the different random

walk models we consider exhibit rather different motion
patterns. In fig. 1(d) we present the rescaled efficiency λη
for the four different random walk types as described by
the GLE, eq. (3), as a function of the rescaled persistence
time τm/τD. It is seen that λη increases monotonically
with increasing τm/τD: the straighter the search trajec-
tory is, the closer is the efficiency to the maximal possible
value of λη = 1 for non-composite search. For a given
value of τm/τD, the SE and PE walks have the highest ef-
ficiency, which is not surprising since their MSD’s ballistic
regimes are the longest. The maximal efficiency λη = 1 is
reached in the limit τm/τD → ∞, i.e., for straight trajec-
tories or for ballistic motion. This is generally true inde-
pendent of the target distribution as long as the searcher is
completely uninformed and has no additional information
about the targets.

Composite search. For an informed searcher that
keeps track of the elapsed time after it has last found a
target, as implemented in our composite search model, the
efficiency can become higher than one target per MFPL,
i.e., λη > 1, for correlated targets. In fig. 2(f) the effi-
ciency of all four different random walk types in the com-
posite search scenario is shown as a function of the memory
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Fig. 3: Rescaled efficiency λη as a function of the memory distance dm for composite search using the single-exponential
(SE) memory kernel, defined in eq. (7), for the non-Markovian motion in the intensive search modus with fixed memory time
τΓ = 100τD and persistence time τm = 0.1τD. (a) λη for fixed giving-up time τGU = 40τD and target distributions described by
the RDF (eq. (10)) with fixed correlation length lc = 10 and different values of the correlation strength A. (b) λη for targets
distributed according to the RDF (eq. (10)) with fixed lc = 20a and A = 10 for different values of the giving-up time τGU . (c)
λη for fixed giving-up time τGU = 40τD and targets distributed in circular patches. The different symbols represent different
patch radii R for fixed target number per patch n = 200.

distance dm for a correlated target distribution charac-
terized by a correlation length lc = 20a and correlation
strength A = 10 for fixed giving-up time τGU = 40τD.
All other parameters τm, b and τΓ are optimized for each
random walk type to yield the highest value of λη for the
optimal value of dm, leading to parameter values given
in the caption. Clearly, the non-Markovian SE walk leads
to the highest search efficiency and significantly outper-
forms the Markovian persistent random walk. The PE
walk has an efficiency that is much higher than the Marko-
vian case and slightly lower than the SE walk for a given
τm, whereas NE walks have an efficiency that is slightly
lower than Markovian walks. Interestingly, the efficien-
cies show a maximum at a finite memory distance dm
where the efficiency is significantly higher than in the limit
dm → ∞, which represents the standard GUT searcher,
and in the limit dm → 0, which corresponds to ballistic
search and where the universal limit λη = 1 is found.

In the following we exclusively use the non-Markovian
SE walk as it is in fig. 2(f) seen to be most efficient. In
fig. 3(a) the composite search strategy using the SE walk
is demonstrated to become more efficient as the target cor-
relation strength A increases. Conversely, in the limit of
uniformly randomly distributed uncorrelated targets, cor-
responding to A = 0, the composite search becomes less
efficient than ballistic motion, which is reflected by the fact
that λη < 1 for increasing memory distance dm. The op-
timal memory distance dm depends also quite sensitively
on the giving-up time τGU , as shown in fig. 3(b). The
higher τGU is, the shorter the optimal memory distance
dm becomes.
When searching for targets distributed in circular

patches, the composite search efficiency can become even
higher than for targets distributed according to the ex-
ponentially decaying RDF defined in eq. (10), as demon-
strated in fig. 3(c). The efficiency is maximal for a patch
radius around R = 20a, but there is no pronounced maxi-
mum in the efficiency as a function of the memory distance

dm unless the patch radius is so large that different patches
start to overlap.

Discussion. – For destructible targets and without
searcher-target interaction, i.e., for non-composite search,
there is no better search strategy than moving ballistically,
which is true in the long time limit and for large search
spaces [31,40]. This we demonstrate to hold also for non-
Markovian random walks in fig. 1(d). This finding can be
rationalized by noting that for destructible targets there is
only a very small chance to find targets at places that have
been visited before, thus, every crossing of the search tra-
jectory with its own path makes the search less efficient.
This holds even for the case of correlated targets: an unin-
formed searcher that samples a certain area very intensely
without knowing if the target density is locally increased,
will in the long time limit not increase its search efficiency.

In contrast, for correlated targets, a composite search
model can perform better than moving just straight. Us-
ing non-Markovian motion described by the SE kernel for
the intensive search mode yields the highest efficiency, see
fig. 2(f), since the trajectory shape, shown in fig. 1(b),
presumably samples target clusters most efficiently. This
means that non-Markovian motion can be advantageous as
the intensive search mode in a composite search. Besides,
non-Markovian motion of the SE and PE type exhibits
for given persistence time high search efficiencies also in
the absence of searcher-target interaction, as shown in
fig. 1(d). This might explain why some organisms exhibit
non-Markovian motion, such as cancer cells [38] or slime
mould [41,42], as an adaption to the need to search effi-
ciently for resources. Clearly, evolutionary adaptation has
been achieved in multiple ways, for instance by chemotaxis
or other sensory abilities, which certainly can increase the
search efficiency [25]. Nevertheless, in areas of low tar-
get gradients, the searcher needs to use search strategies
that do not rely on chemotactic clues, in which case non-
Markovian motion can be advantageous. While we focus
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on exponentially decaying memory kernels, power-law ker-
nels constitute an interesting model as well but are rather
difficult to simulate by means of Markovian embedding
and therefore are not considered by us.
The efficiency of a composite random search with

searcher-target interaction strongly depends on the target
distribution and increases with increasing target correla-
tion strength A, as shown in fig. 3(a). For targets dis-
tributed in circular patches, the maximal search efficiency
is particularly high, as seen by comparison of fig. 3(c)
and (a). The introduction of the memory distance dm
leads to a higher certainty for the searcher to be in an
area with high target density when switching to intensive
search mode and therefore, the efficiency can be higher
than the standard GUT search algorithm, which is recov-
ered in the limit dm → ∞, as shown for the case when
targets are distributed according to the RDF (eq. (10)) in
fig. 2(f). In some sense, the concept of a memory distance
constitutes a simple estimator of the local target density
and allows the searcher to efficiently switch to intensive
search. If targets are distributed in circular patches, the
extra certainty to be inside a cluster obtained by the com-
parison with the memory distance dm brings however no
advantage, because finding a target is strictly equivalent
to finding a patch. Therefore, for patchy target distri-
butions the best strategy is to change to intensive search
every time a target is found, i.e., dm → ∞, as can be seen
in fig. 3(c). Nonetheless, when the target patch radius be-
comes large, such that patches overlap, it once again be-
comes advantageous to have a finite memory distance, as
seen in fig. 3(c). The overlap of patches leads to areas that
are more dense in targets and thus a finite memory dis-
tance can increase the probability to search in such over-
lap regions. We have not varied the mean target density
and have not considered search in three dimensions, but
would assume that a maximum in the memory distance
appears in higher dimensions and for different densities as
well, so that the concept of a memory distance is likely
also useful for efficient searching in these more general
situations.
It is important to note that the concept of a memory

distance does not require more abilities than the stan-
dard GUT searcher has already, but leads to higher or
equal efficiencies. Hence, it is plausible that biological
searchers that presumably perform GUT search, actually
use composite search with a finite memory distance, es-
pecially when targets are correlated but not exclusively
found in patches. As a matter of fact, this might ap-
ply to the behavior of ladybugs, which tend to increase
τGU after being initially fed with more or higher quality
prey [43,44]. This indicates that the certainty of being in-
side a target cluster might be measured by successive prey
consumption, which is captured in our composite search
model that includes a finite memory distance. Our model
is not designed for a specific organism or specific spatial
scale and should be applicable to the search process of a
single cell equally well as to the search process of insects

or mammals. Nevertheless, our model is rather simple and
higher evolved organisms might actually use more sophis-
ticated mechanisms. More complex models will certainly
lead to even higher search efficiencies by using for instance
target quality evaluation [26], mental mapping of all target
positions [27], or additional sensory cues [25].

It is instructive to compare our results with Lévy walk
search strategies which have been amply studied. An un-
informed Lévy walk search strategy, characterized by a
power-law step length distribution of the form p(l) ∝ l−μ,
does not outperform ballistic motion in an unconfined
search space for destructible immobile targets [31]. In
contrast, when the search space is confined or targets are
non-destructible, there are even uninformed search strate-
gies that can be more efficient than moving on a straight
line, for instance Lévy walks [31] or composite random
walks [45]. Moreover, if a searcher-target interaction is
introduced in a Lévy search model, namely if the searcher
stops at every found target [31,46], Lévy search strate-
gies lead to higher efficiencies in the case when targets are
clustered or non-destructible. In fact, the most efficient
GUT Lévy search strategy for different target distribu-
tions that involve circular patches was shown to consist of
segments of straight motion (corresponding to μ → 1) in-
terrupted by pure diffusion (corresponding to μ ≥ 3) as the
intensive search mode [25]. Since diffusion can be repre-
sented by Markovian motion with low persistence time τm
and the Markovian intensive search strategy is in fig. 2(f)
shown to be less efficient than motion described by the SE
kernel (eq. (7)), we conclude that the most efficient com-
posite search using an SE kernel is more efficient than the
most efficient GUT Lévy search strategy for targets dis-
tributed in patches as well as targets distributed according
to eq. (10).

Conclusions. – We analyze the search efficiencies of
rather general non-Markovian composite random search
strategies and different target distributions. We reconfirm
that uninformed searchers which do not interact with the
targets exhibit an upper bound for the efficiency of one
target per MFPL when targets are destructible, which is
reached for a ballistic searcher moving straight in one di-
rection. Hence, the efficiency of non-composite random
walks that are described by the GLE (eq. (3)) is the high-
est for very large persistence times but for finite persis-
tence time depends on the type of the utilized memory
kernel: for instance the SE kernel (eq. (7)) and the PE
kernel (eq. (7)) lead to higher efficiencies, especially for
long memory time τΓ, compared to the Markovian case
(eq. (6)). Our results suggest that composite search with a
non-Markovian intensive search mode can be more efficient
than a Lévy walk when searching for correlated targets.
Furthermore, the non-Markovian composite search using
the SE kernel (eq. (7)) for the intensive search mode leads
to higher search efficiencies than the Markovian motion
(eq. (6)). For rather smooth spatial target distributions
described by the RDF (eq. (10)), a finite memory distance
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dm leads to higher search efficiencies than the standard
GUT searcher which is recovered in the limit dm → ∞.
This is an interesting finding, since usage of a finite mem-
ory distance does not require the searcher to have more
abilities beyond being able to measure the time elapsed
since the last target encounter. Thus, we suggest that
simple organisms, searching for correlated targets without
the ability to probe the environment, are likely to use a
composite search with a finite memory distance in order
to increase their search efficiency.
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