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Synthetic phosphoethanolamine-modified
oligosaccharides reveal the importance of glycan
length and substitution in biofilm-inspired
assemblies
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Daniel Varón Silva 2,3, Peter H. Seeberger1,2 & Martina Delbianco 1✉

Bacterial biofilm matrices are nanocomposites of proteins and polysaccharides with

remarkable mechanical properties. Efforts understanding and tuning the protein component

have been extensive, whereas the polysaccharide part remained mostly overlooked. The

discovery of phosphoethanolamine (pEtN) modified cellulose in E. coli biofilms revealed that

polysaccharide functionalization alters the biofilm properties. To date, the pattern of pEtN

cellulose and its mode of interactions with proteins remains elusive. Herein, we report a

model system based on synthetic epitomes to explore the role of pEtN in biofilm-inspired

assemblies. Nine pEtN-modified oligosaccharides were synthesized with full control over the

length, degree and pattern of pEtN substitution. The oligomers were co-assembled with a

representative peptide, triggering the formation of fibers in a length dependent manner. We

discovered that the pEtN pattern modulates the adhesion of biofilm-inspired matrices, while

the peptide component controls its stiffness. Unnatural oligosaccharides tune or disrupt the

assembly morphology, revealing interesting targets for polysaccharide engineering to develop

tunable bio-inspired materials.
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Bacteria secrete various biomolecules to create extensive
networks of extracellular matrix (ECM). These biofilms,
often associated with pathogenic infections1, have gained

popularities for their remarkable mechanical properties, trans-
forming bacteria into elegant biofactories of smart materials2–5.
The major components of the ECM of Escherichia coli (E. coli)
biofilms are curli fibrils—bacterial functional amyloids6,7—and
cellulose8,9 (Fig. 1a). Genetic engineering approaches10 permitted
the programming of bacterial amyloid production11,12 to generate
tunable bioplastics13. Similar strategies to tune the production of
bacterial polysaccharides4,14,15, the other major components of
bacteria biofilms, are limited by complex biosynthetic pathways.

Recently, it was discovered that some bacteria (e.g., E. coli and
Salmonella enterica) produce chemically modified cellulose
bearing phosphoethanolamine (pEtN) substituents16. The

composite of curli and pEtN cellulose generates biofilms with
enhanced elasticity and adhesion to bladder epithelial cells17. This
exciting discovery suggests that the carbohydrate component
tunes the biofilm properties and may be the basis for tailoring
cellulosic materials for applications in tissue engineering, bio-
technology, and the food industry18,19. With the genes respon-
sible for the pEtN modification identified16, genetically
engineered bacteria could be imagined for the production of
specifically modified cellulose14,20–22.

Several fundamental aspects remain to be elucidated before
pEtN cellulose can be exploited to its full potential. Approxi-
mately half of the glucose units of cellulose are substituted at the
C-6 hydroxyl group with a pEtN moiety and the ratio of curli-to-
pEtN cellulose varies among different E. coli strains23. The pat-
tern of modification, the length of the pEtN cellulose, and the

Fig. 1 E. coli biofilm and synthesis of its representative matrix components. a Cartoon representation of E. coli biofilm. b Representative synthesis of a pEtN
hexasaccharide. AGA includes cycles of glycosylation, capping, and Fmoc deprotection. A final Lev deprotection liberates the hydroxyl groups that are
functionalized in post-AGA steps. Reaction conditions for AGA are reported in the SI. PivCl= pivaloyl chloride, py= pyridine, MeONa= sodium methoxide.
c Collection of oligosaccharides synthesized in this work. d Chemical structure of the peptide R5.
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mode of interaction with curli remain unknown18. Pure, well-
defined oligosaccharide standards are essentials to better under-
stand pEtN cellulose and its role in the ECM, in anticipation of
applications. Isolation of pEtN cellulose from natural sources
generates ill-defined mixtures and may alter its chemical
structure17. Chemical synthesis can provide standards with pre-
cise control over the sequence, length, and substitution
pattern24,25. However, to date, the inherent complexity of car-
bohydrate synthesis has prevented the production of pEtN cel-
lulose oligomers beyond a disaccharide26.

Here, we report the synthesis by automated glycan assembly27

(AGA) of nine pEtN cellulose oligosaccharides with varying chain
lengths, degrees and patterns of pEtN substitution. The interaction
of these glycans with a representative amylogenic peptide of curli
(R5)28,29 is studied. Co-assembly experiments generate artificial
fibers and matrices with morphologies and mechanical properties
depending on the oligosaccharide structure. Unnatural, synthetic
oligosaccharides disrupt or modulate the artificial fibers. These
results suggest that selective polysaccharide modification is a
valuable approach to generate tunable biofilm-inspired materials.

Results
Synthesis of pEtN-substituted oligosaccharides. The pEtN-
substituted oligosaccharides were prepared by a combination of
AGA and post-AGA steps. The cellulose backbone was con-
structed by AGA, following cycles of glycosylation and Fmoc
deprotection on solid support L1 (Fig. 1b). BB1 allowed for linear
chain elongation. BB2 was designed with a levulinoyl (Lev) ester
at C-6 that can be selectively hydrolyzed to unmask the hydroxyl
group for the subsequent introduction of pEtN. BB1 and BB2
were strategically assembled to generate oligomers with the
desired pattern of hydroxyl groups. BB3 was employed in the last
cycle of the assembly. After Lev removal, the oligosaccharide
backbone was cleaved from the solid support and subjected to
post-AGA transformations. The available hydroxyl groups were
coupled to the H-phosphonate 4 to give the protected phos-
phorylated compounds, upon oxidation with aqueous iodine30.
Steric hindrance made multi-phosphorylation progressively more
difficult, requiring five equiv. of 4 and pivaloyl chloride (PivCl)
per hydroxyl group to reach full conversion. Excess reagents
necessitated extensive purifications to avoid interference with the
deprotection steps. Removal of all the remaining protecting
groups (PGs) via methanolysis and hydrogenolysis required a
careful optimization of the reaction conditions to avoid aggre-
gation/precipitation of the amphiphilic intermediates31. Nine
zwitterionic compounds were prepared; a mono- and a di-
saccharide bearing one pEtN group, a trisaccharide carrying two
pEtN groups, and six hexasaccharides substituted with one, two
or three pEtN units (Fig. 1c). The neutral cellulose analogue A6

was synthesized as a control.

Assembly of artificial amyloid fibers. Well-defined pEtN oligo-
saccharides provided the bases for exploring the role of the car-
bohydrate component in biofilm-inspired assemblies. We
envisioned an artificial model system consisting of synthetic
molecules representatives of the major components of the E. coli
ECM. As epitome for the protein part, we selected R5 (Fig. 1d),
the most amyloidogenic repeat of the CsgA unit of curli28 (the
detailed solid-phase synthesis is available in the SI). To generate
artificial curli fibers, R5 was dissolved in hexafluoroisopropanol
(HFIP)32,33. HFIP was then removed under nitrogen purging
followed by evaporation under high vacuum. Addition of water
triggered a structural transition from an alpha helix to a beta-
sheet conformation, as confirmed by circular dichroism (CD)
spectroscopy (Supplementary Fig. 50). The transition was

completed within 20 min (Fig. 2a and Supplementary Fig. 53).
Microscopic analysis (AFM, TEM, and SEM, Fig. 2a and Sup-
plementary Fig. 56) performed after 1 or 5 days of incubation
showed the presence of ill-defined aggregates.

We then repeated the same assembly process in the presence of
the respective oligosaccharide using a R5:oligosaccharide mass
ratio of 6:1 that best resembles the ECM produced by the
uropathogenic E. coli strain UTI8916. First, we screened the effect
of the oligosaccharide length on the aggregation of R5. Co-
assembly with the shorter analogues P, PA, and PAP did not
significantly affect the structural transition rate of R5, while in the
presence of longer hexasaccharides, the secondary structure
transition of R5 to the beta-sheet conformation was slower
(Fig. 2a and Supplementary Fig. 52). The beta-sheet motif was
confirmed by the ThT binding test34 (Supplementary Fig. 60).
Fiber-like structures instead of ill-defined aggregates were
detected. We observed a length dependent behavior, with fibers
becoming longer with the oligosaccharide chain length.

We then examined seven cellulose hexasaccharides with
different degree and pattern of pEtN substitution on the assembly
of R5 (Fig. 2b and Supplementary Figs. 52 and 55). CD analysis
indicated that differences in pEtN substitution (degree and
pattern) affect the secondary structure transition rate of R5, with
the sample prepared in the presence of (PA)3 showing the slowest
transition (>6 h) into the beta-sheet conformation (Fig. 2a).
Microscopy analysis showed that the R5 sample containing the
unsubstituted cellulose oligomer A6 assembled into thin fibrils
(Fig. 2b, Day 1) that developed into a fibrous network within
5 days (Fig. 2b). All pEtN substituted hexasaccharides also
generated fibrils, albeit with different growth rates and morphol-
ogies (Fig. 2b, and Supplementary Figs. 52 and 55). While the
samples containing the three-substituted oligomers (PA)3 and
P2APA2 showed long and defined fibrils already on Day 1
(Fig. 2b), the less substituted analogues formed shorter aggregates
(Fig. 2b and Supplementary Fig. 55). Interestingly, the fibers
observed for R5 and (PA)3 adopt the classical curled shape
responsible for the name of the natural analogue (Fig. 2b)35. On
Day 5, all samples formed fibrous networks (Fig. 2b, Supple-
mentary Fig. 55).

The modular approach allowed us to explore different
peptide:carbohydrate ratios to better mimic the ECM produced
by other bacteria strains. For example, the E. coli AR3110 strain
produces a ECM with a much higher pEtN cellulose content (3:1
by mass)23. No drastic differences were observed in the fiber
morphology, however the fibrils obtained starting from a 3:1 ratio
of R5 and (PA)3 or P2APA2 were embedded in a much thicker
surrounding matrix (Supplementary Fig. 59b–c). This observation
suggests that the pEtN-modified cellulose forms the network
connecting the peptide-based fibers, consistent with the existing
descriptions of pEtN-cellulose as the “glue” that provides
cohesion8,16.

Structural analysis. The fibres obtained from the R5 sample in
the presence of A6, (PA)3 or P2APA2 showed a similar z-height of
around 0.8 nm (Fig. 3a), suggesting that the fibrils are built on the
same peptide core. The sample containing R5 and A6 showed
“naked” fibers together with random aggregates, identified as self-
sorted A6 clusters with height of 4 nm (Fig. 2b and Supplemen-
tary Fig. 57, indicated with white arrows and corresponding to
Supplementary Fig. 58). In contrast, the fibers generated from the
sample containing R5 and (PA)3 or P2APA2 were embedded in a
thin matrix (Fig. 3a middle and bottom, highlighted with white
arrows). Non-stained TEM images confirmed the presence of a
matrix around the fibrils, showing the fibers brighter than the
surrounding36 (Fig. 2b).
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To gain insights into the molecular interaction between R5 and
the oligosaccharides, we employed solution-state NMR spectro-
scopy following an approach that revealed key interactions
between synthetic heparin oligosaccharides and amyloid fibers37.
2D 1H-1H total correlated spectroscopy (TOCSY) helped the
assignment of the nineteen amidic protons of R5 (Supplementary
Fig. 63). This sample suffered from poor solubility due to
aggregation, as shown by the broadening and decreased intensity
of the NMR signal with time (Supplementary Fig. 64). The three
samples containing both R5 and A6, (PA)3 and P2APA2

respectively showed higher solubility and chemical shift pertur-
bations for selected amino acids (Fig. 3b). Tyrosine, glutamine,
histidine and serine were the most affected amino acids in all
three samples, albeit to a different extent (Fig. 3b, top panels). The
31P-NMR signals of the pEtN groups did not show any significant

line broadening or chemical shift perturbation (Supplementary
Fig. 72), indicating that the pEtN groups are not directly involved
in the interaction with R538. Taken together, these results indicate
that the presence of the oligosaccharide slow down the R5
transition into the beta-sheet conformation, favoring the forma-
tion of long amyloid fibers over ill-defined aggregates39,40. This
could be the result of a direct peptide-oligosaccharide interaction
that leaves the ionic pEtN groups exposed to water or of a
change in the peptide environment due to the presence of the
oligosaccharide.

Mechanical properties of artificial biofilm-inspired matrices.
The co-assembled samples that generated fibers were drop-
casted on a glass slide to prepare artificial biofilm-inspired
matrices with a thickness of around 300 nm. Their mechanical

Fig. 2 Assembly of R5 in the presence of selected oligosaccharides. a Screening of oligosaccharides with different lengths. CD spectra and AFM (Day 1)
of the samples containing R5 alone or in the presence of different oligosaccharides. The R5 alone sample results in ill-defined aggregation, whereas fiber-
like structures of different dimensions are generated when R5 is assembled in the presence of an oligosaccharide. b Screening of hexasaccharides with
different degrees and patterns of pEtN substitution. AFM (Day 1 and Day 5) and TEM (Day 5) of the samples containing R5 in the presence of
hexasaccharides with different degrees and patterns of pEtN substitution. The aggregation of A6 is indicated with white arrows.
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properties were explored using AFM force-distance curve
analysis (Fig. 4). A stiffness of around 12 MPa for all the
matrices was measured with AFM nanoindentation experi-
ments, indicating that the peptide fibres are the major structural
component of the artificial matrix. The presence of the pEtN-
modified oligosaccharides dramatically enhanced adhesion. The
adhesion force for the sample containing R5 and (PA)3 was
around 130 nN, six times higher than the value obtained for the

sample containing R5 and A6. No direct correlation between
the number of pEtN groups and the adhesion was found. The
highest values were measured for compounds with the pEtN
moiety coupled to the non-reducing end glucose (i.e., (PA)3 and
PA5). Multiple pEtN substituents in close vicinity (e.g.,
A2P2A2) resulted in much lower adhesion forces, underscoring
the importance of the substitution pattern in determining the
mechanical properties of the film.

Fig. 3 Structural analysis of the fibers generated from the assembly of R5 in the presence of three different oligosaccharides. a AFM images of the
fibers at Day 1. The average fiber height is around 0.8 nm for all three samples. The enmeshed matrices are highlighted with white arrows. b Overlay of a
selected region of the 1H-1H TOCSY spectra for the samples containing R5 alone (gray) and in the presence of A6 (blue), (PA)3 (red) and P2APA2

(yellow). Each spectrum was recorded with a R5 concentration of 200 µM in H2O/D2O (9:1) at 25 °C. The four amide protons mostly affected by the
presence of the oligosaccharides are highlighted (top panels), showing a change in chemical shift (His, Gln, Tyr) or signal broadening (Ser).

Fig. 4 Mechanical properties of artificial matrices generated from the assembly of R5 in the presence of different hexasaccharides. a A cross-sectional
SEM and AFM image of the film of R5 with (PA)3. b Adhesions and stiffness resulting from AFM force-distance curves (see Supplementary Figs. 73, 74
and Table 17). Each data point corresponds to the mean of 50–100 force measurement and the error bars represent the standard deviation of the mean.
Adhesion for R5 only could not be measured due to inhomogeneity of the film.
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The effect of unnatural oligosaccharide modifications. The
discovery of the naturally modified pEtN-cellulose opened up
opportunities to generate tuneable materials upon engineering of the
carbohydrate components18. It has been shown that carbohydrates
can modulate the formation of neurotoxic amylogenic fibrils, with
chitosan oligosaccharides inhibiting aggregation41 and heparan sul-
fates promoting fiber formation42. To explore the effect of different
glycan modifications on R5 aggregation, two hexasaccharides not
present in natural bacterial biofilms were prepared following estab-
lished protocols43,44 (Fig. 5a). N6 is a neutral analogue of A6 that
carries an acetyl amino substituent in position C-2. (SA)3 is an
analogue of (PA)3 in which the pEtN groups are replaced by nega-
tively charged sulfate moieties. In the presence of the N-acetyl glu-
cosamine hexasaccharide N6, the secondary structure transition of
R5 into beta-sheet was completed in less than 3 h (Fig. 5b). Fibrils
shorter than 1 µm that further aggregated into supramolecular
bundles were formed (Fig. 5b and Supplementary Fig. 56). Artificial
matrices composed of R5 and N6 were prepared, showing compar-
able stiffness but higher adhesion than the samples prepared fromR5
and A6 (Supplementary Table 17). In contrast, the negatively
charged sulfated hexasaccharide (SA)3 interrupted the R5 transition
into the beta-sheet conformation (Fig. 5b) and the formation of
fibrils (Fig. 5b and Supplementary Fig. 56). This inhibition might be
a consequence of strong columbic interactions between the nega-
tively charged oligosaccharide (SA)3 and the cationic groups on R5,
stressing the importance of the zwitterionic pEtN groups in directing
R5 aggregation. The ability of the sulfated hexasaccharide, (SA)3, to
inhibit amyloid formation renders this compound an interesting
starting point for novel approaches toward the treatment of neuro-
logical diseases or as antibacterial agent45,46.

Discussion
A collection of pEtN-modified oligosaccharides was synthesized
with full control over chain length, degree and pattern of sub-
stitutions, providing essential standards to study complex biolo-
gical systems. The oligosaccharides were incubated with a
synthetic peptide, R5, representative of curli, to generate a
modular model of the E. coli biofilm ECM and break down its
complexity. Full control over the chemical structure of the indi-
vidual components permitted to explore the role of oligo-
saccharide length and substitution in peptide aggregation. While
shorter oligomers had little effect, the longer hexasaccharides
slowed down the secondary structure transition into beta-sheet of
the peptide R5, inducing the growth of extended fibrous struc-
tures. The oligosaccharide fine structure dramatically affected the
fiber growth rate and the mechanical properties of the composite.

We demonstrated that not only the degree, but also the pattern of
pEtN substitution influences adhesion. In contrast, stiffness
remains unchanged for all samples indicating its strong connec-
tion to the peptide component. Modifications beyond the natural
one were screened, delivering interesting targets for the future
production of engineered biofilm-inspired materials. Metabolic
engineering47 and/or directed evolution approaches48,49 may
introduce such modifications in vivo and produce novel cellulosic
materials with non-natural modifications.

Methods
Synthesis. The oligosaccharides were prepared using a home-built synthesizer
designed at the Max Planck Institute of Colloids and Interfaces. The solid-phase
peptides synthesis (SPPS) of R5 was performed with a microwave-assisted peptide
synthesizer (Liberty Blue, CEM, USA). All details concerning building block
synthesis, AGA modules, post-AGA manipulations, and SPPS can be found in
Supplementary Information.

Assembly of artificial fibers and matrices. Stock solutions were prepared dis-
solving separately R5 and the oligosaccharides in HFIP with a concentration of
200 µM (0.4 mgmL−1) and 0.13 mgmL−1, respectively. The R5 and oligosaccharide
stock solutions were mixed with 2 to 1 (or 1 to 1) volume ratio to reach the final
mass ratio with 6 to 1 (or 3 to 1) and sonicated for 10min. HFIP was removed
under gentle nitrogen purging followed by evaporation under high vacuum. Water
was added to the dried films to reach the final peptide concentration of 25 µM for
imaging, CD, and ThT binding test, and 200 µM for 2D TOCSY NMR analysis. The
artificial films were prepared by drop-casting of a 25 µM solution of the co-
assembled sample on a pre-washed glass substrate to generate films with a thickness
of 300 nm. The co-assembled sample were prepared with a 6:1 peptide:oligo-
saccharide mass ratio and incubated for 5 days before drop-casting. AFM imaging
and force measurement were performed in air in an AFM chamber with a relative
humidity of 25%. If not mentioned, the standard ratio between R5 and oligo-
saccharide is 6 to 1 by mass. All details concerning fibrils’ structural analysis and
films’ mechanical properties can be found in Supplementary Information.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and in the Supplementary Information files. Data are also available from the
corresponding author upon request.
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