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Abstract
Purpose We aimed at describing for the first time peripheral small-fiber neurotoxicity and pain sensitization in survivors of 
pediatric acute lymphoblastic leukemia after stem cell transplantation (SCT).
Methods In a cross-sectional, retrospective, single-center study, we assessed 25 relapse-free long-term survivors (median 
age at SCT: 11 ± 4.9 years; median time between SCT and testing: 8.25 years, 19 males) using a reduced version of the 
pediatric-modified total neuropathy score for clinical assessment and Quantitative Sensory Testing (QST). Inclusion criteria: 
≥ 6 years old at testing, ≤ 18 years old at time of SCT, ≥ 1 year between SCT and testing.
Results Nine patients (36%) had peripheral neuropathy as defined by the clinical red-pmTNS (≥ 4). The QST parameters 
mechanical pain sensitivity, mechanical detection threshold, thermal sensory limen, vibration detection threshold and pres-
sure pain threshold were significantly abnormal in the survivor cohort (p < 0.0038). Except for one, all survivors showed at 
least one abnormal QST parameter. When using QST, signs of small and large fiber dysfunction were present in 22 (88%) and 
17 (68%) survivors, respectively. More than half of all survivors were found to experience pathologic sensitization to pain.
Conclusions and implications for cancer survivors Survivors of pediatric acute lymphoblastic leukemia after SCT are at high 
risk for long-term peripheral neuropathy with a dominating small-fiber and pain sensitization pattern.

Keywords Acute lymphoblastic leukemia · Chemotherapy-induced peripheral neuropathy · Quantitative sensory testing · 
Small- and large nerve fibers · Pain sensitization
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SCT  Stem cell transplantation
VCR  Vincristine
VDT  Vibration detection threshold
WDT  Warm detection threshold
WUR   Wind-up-ratio

Introduction

Acute lymphoblastic leukemia (ALL) is the most common 
malignancy in childhood (Siegel et al. (2014)) and hemat-
opoietic stem cell transplantation (SCT), an established 
curative option for patients with high-risk biology or recur-
rent disease (Merli et al. 2019). Since survival rates after 
SCT consistently increased over the last decades, long-term 
sequelae have become a center of interest (Socie et al. 1999; 
Wingard et al. 2011; Gooley et al. 2010). Central and periph-
eral neurological complications are reported in up to 40% of 
patients undergoing SCT (Brabander et al. 2000).

First-line polychemotherapy of ALL includes neurotoxic 
components such as vincristine (VCR) and methotrexate 
(Board 2002; Gomber et al. 2010) and the most common 
adverse effect is acute chemotherapy-induced peripheral 
neuropathy (CIPN) affecting up to 85% of patients (Add-
ington and Freimer 2016; Lavoie Smith et al. 2015). Despite 
recovery in most cases, CIPN is an important long-term 
sequel compromising sensory and motor function in survi-
vors of pediatric ALL at clinically significant levels (Ness 
et al. 2012).

Peripheral polyneuropathy is subdivided into damage 
of large fibers, small fibers and a combination of both. 
Large-fiber neuropathy (LFN) affects Aα-and Aβ-fibers 
and is clinically characterized by loss of vibration percep-
tion, proprioception and motor control (Misra et al. 2008). 
Small-fiber neuropathy (SFN) involves the small Aδ- and 
C-fibers (Hovaguimian and Gibbons 2011) characterized by 
abnormal sensations of heat or cold, hypersensitivities to 
heat or cold, paresthesia, allodynia, spontaneous pain and 
abnormal perception of thermal stimuli or pain (Blackmore 
and Siddiqi 2017). Central pain sensitization is considered 
as increased synaptic function within the central nervous 
system by nociceptive inputs and a result of use-dependent 
plasticity of homosynaptic and predominantly heterosynap-
tic potentiation in the spinal cord (Woolf 2011). Inflamma-
tion or injury of peripheral nerves may contribute to periph-
eral pain sensitization (Bishop et al. 2010; Perl et al. 1976). 
More than half of the survivors of allogenic SCT report at 
least one chronic health condition, associated with dimin-
ished quality of life by impaired physical function (Schultz 
et al. 2017). Everyday impairments like sheet intolerance, 
burning feet or sensitive skin are claimed in 50–58.9% of 
patients with SFN (Bakkers et al. 2014).

Scores assessing symptoms and clinical signs in addi-
tion to Nerve Conduction Studies (NCS) are the most accu-
rate diagnostic methods for large fiber CIPN (England et al. 
2005). As NCS do not assess small-fiber function and are 
painful, they are inappropriate for detecting SFN in pediatric 
patients. Definitive diagnosis of SFN remains a challenge 
as skin biopsy determining intraepidermal fiber density 
is the current gold standard for diagnosing SFN (Devigili 
et al. 2008), but remains reserved for severe SFN causes 
due to its invasiveness and expense (Blackmore and Siddiqi 
2017). Ridehalgh et al. and others examined clinical tests 
to determine their sensitivity to discover SFN and found 
that Quantitative Sensory Testing (QST) is a valid assess-
ment to rule out SFN (Ridehalgh et al. 2018; Hansson et al. 
2007; Magda et al. 2002), which is easily combined with 
neurological scoring for CIPN (Blackmore and Siddiqi 
2017). QST is a psychophysical tool that covers almost all 
somatosensory aspects by investigating large- and small-
fiber function. In 2006 and further approved in 2016, the 
German Research Network on Neuropathic Pain (DFNS) 
published a standardized protocol, which allows the com-
parison with reference values and reduces bias in children 
and adolescents (Rolke et al. 2006a,b; Vollert et al. 2016). 
Its cost-efficiency, non-invasiveness and applicability in chil-
dren are substantial advantages (Lieber et al. 2018; Blank-
enburg et al. 2010,2012). QST detects pain sensitization as 
increased responses to noxious inputs, shifting the sensitiv-
ity of pain perception to activation by innocuous stimuli, 
continued pain after end of stimuli, expanding neuronal 
receptive fields and sensitizing normal tissue (Woolf 2011).

So far, no studies addressed peripheral neuropathy in sur-
vivors of pediatric ALL after SCT. We aimed at identifying 
(1) especially SFN besides LFN using a questionnaire for 
symptoms and clinical signs for the assessment of periph-
eral neuropathy as well as QST, (2) patients with signs of 
pain sensitization with QST, and (3) clinical risk factors for 
peripheral neuropathy. We hypothesized to reveal abnormal 
somatosensory function and pain sensitization in a substan-
tial percentage of survivors of pediatric ALL after SCT.

Patients and methods

The Ethics Committee of Charité-Universitätsmedizin Ber-
lin approved our study (EA2/105/16) in accordance with the 
Declaration of Helsinki. We identified survivors from the 
database of our pediatric SCT program at Charité-Univer-
sitätsmedizin Berlin.

Patients

We performed a single-center cross-sectional retrospec-
tive study with 25 of 84 eligible survivors of pediatric 
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ALL after SCT performed between 2006 and 2016 at our 
center (Fig. 1). A minimum age of 6 years was obligatory 
for testing as both, clinical scores for CIPN and QST are 
validated as of this age (Blankenburg et al. 2010). Exclu-
sion criteria for testing were age > 18 years at SCT, intel-
lectual impairment, no relapse-free survival and < 1 year 
after SCT to exclude acute conditions of the treatment 
itself. Median recovery time between SCT and testing was 
8.25 years (1.16–19 years). Patients were treated along 
current active protocols of first-line and SCT protocols for 
pediatric ALL approved by the German Society of Pediat-
ric Oncology and Hematology (GPOH). Median cumula-
tive vincristine dose was 12.28 mg/m2 (range 0–22.5 mg/
m2). Cyclosporine A, prednisone, mycophenolate mofetil, 
and if needed corticosteroid pulses, were administered. 
Standard criteria defined acute or chronic Graft versus 
Host Disease (GvHD) (Filipovich et al. 2005; Martin et al. 
2006, 2015). Almost all survivors had experienced acute 
GvHD. Grade I only affecting the skin was present in 13, 

grade II affecting skin and gut in 6 and grade III affecting 
skin, gut and liver in one survivor, respectively. Chronic 
GvHD was present in 3 survivors and still active during 
testing in one. Neurological complications during treat-
ment were observed in 5 patients: Convulsions in 2, hemi-
plegia in one and sinus venous thrombosis in 2 patients. 
All these had resolved completely.

Testing

We obtained written consent before examination and tested 
between 09/2016 and 04/2017 each patient for about one 
hour using standardized conditions as reported elsewhere 
(Rolke et al. 2006a).

Reduced pediatric‑modified Total Neuropathy Score

To test for the presence of chronic pain conditions, all 
patients were asked to fill out the painDETECT questionnaire 

Fig. 1  Enrollment of par-
ticipants. Out of 100 ALL 
survivors 84 matched the inclu-
sion criteria. Eventually, 25 
survivors participated
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(Freynhagen et al. 2016) that we used in our previous study 
(Lieber et al. 2018). We used a reduced version of the pedi-
atric-modified Total Neuropathy Score (red-pmTNS), con-
sisting in 5 items (questionnaire on motor symptoms, sen-
sory symptoms, autonomic symptoms and examination of 
muscle function, tendon reflexes) instead of the original 8 
items to identify clinically relevant peripheral neuropathy 
as described elsewhere (Gilchrist and Tanner 2013). Due to 
double-testing, three items, light touch sensation, pin sensa-
tion and vibration, of the original pm-TNS were not included 
in our red-pmTNS as all 3 items were tested in QST too, but 
in a different approach when compared to pmTNS (Rolke 
et al. 2006a,b; Gilchrist and Tanner 2013; Gilchrist et al. 
2014). Each category was scored from 0 to 4, with 0 given 
by no clinical symptoms/signs and four given by worst symp-
toms/signs. The scale of the red-pmTNS ranged from 0 to 20 
points. Higher scores indicated worse severity of peripheral 
neuropathy. The cut-off score of 5 (16% of maximum score) 
for definition of clinical relevant peripheral neuropathy in 
the original pm-TNS was conservatively lowered to 4 (20% 
of maximum score).

Quantitative sensory testing

For QST, we chose the bilateral dermatomes L5/S1 on the 
dorsum of the feet since the longer nerve fibers on the lower 
limb are most likely to be impaired in peripheral neuropa-
thy. QST was performed according to the amended DFNS 
protocol for children and adolescents identifying small and 
large fiber abnormalities and pain sensitization (Rolke et al. 
2006a,b). For thermal testing, we used the TSA 2001-II 
(Thermal Sensory Analyzer, Medoc Ltd., Israel). In total, 
13 parameters covering all somatosensory modalities were 
tested: Cold Detection Threshold (CDT), Warm Detection 
Threshold (WDT), Cold Pain Threshold (CPT), Heat Pain 
Threshold (HPT), Thermal Sensory Limen (TSL), Paradoxi-
cal Heat Sensations (PHS), Mechanical Detection Threshold 
(MDT), Mechanical Pain Threshold (MPT), Mechanical 
Pain Sensitivity (MPS), Wind Up Ratio (WUR), Allodynia 
(ALLO), Vibration Detection Threshold (VDT), Pressure Pain 
Threshold (PPT). According to Maier et al. we grouped QST 
results as combinations of losses and gains of somatosensory 
function (Maier et al. 2010).

Analysis

Results of QST were analyzed according to the standardized 
protocol using the published reference data for gender, age and 
body region (Magda et al. 2002; Rolke et al. 2006a; Gilchrist 
and Tanner 2013) and categorized into z scores as described 
elsewhere. Statistical analysis was performed using SPSS (ver-
sion 23).

Results

Clinical characteristics of the survivor cohort

Out of 84 eligible subjects, 25 survivors were assessed 
(response rate 30%). Our assessed cohort did not differ 
significantly from non-participants except for an increase 
of males and patients treated with SCT in first remission 
(Table 1).

Symptoms and clinical signs of peripheral 
neuropathy

The median of the total reduced pediatric-modified Total 
Neuropathy Score was 2 (0–10) (Fig. 2). The median was 
zero for each item, except for autonomic symptoms with 
a median value of one. Autonomic symptoms were noted 
in 15 survivors (60%), 8 patients (32%) reported on sen-
sory symptoms, and 3 (12%) on motor symptoms. Clinical 
signs like reduced muscle strength or loss of deep tendon 
reflexes were noted in 8 (32%). Nine survivors (36%) 
scored on or above the cut-off level of 4 in total. All of 
them reported autonomic symptoms; whereas, the other 
items were varying. No survivor reported chronic pain 
conditions in the painDETECT questionnaire.

Table 1  Characteristics of participants and non-participants

Ratio male: female of participants was 3.2:1 in comparison to all eli-
gible subjects of 1.4:1. The ratio CR:CR2 of participants was 1.77:1 
in comparison to all eligible subjects of 0.74:1

Participants (n = 25) Non-
participants 
(n= 59)

Median age (range) in years 18 (8–33) 18 (3–34)
Gender
 Male 19 30
 Female 6 29

Malignancy
 Precursor-B-ALL 17 46
 T-ALL 6 9
 Unclassified 2 4

Median age at SCT (range) 11 (2–18) 7 (1–18)
Source of stem cells
 Bone marrow 17 38
 Peripheral blood stem cells 8 21

Donor
 Related 4 22
 Unrelated 21 37

Stage of disease
 CR1 16 18
 CR2 9 36
 CR3 - 5
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QST reveals somatosensory deficits and pain 
sensitization in the survivor cohort

In total, 24/25 (96%) survivors showed at least one sig-
nificant abnormal parameter (i.e., z-score above or below 
1.96) in QST, 17 (68%) at least two and 14 (56%) three or 
more parameters (Table 2). Nearly, half of the patients had 
increased thresholds for vibration (14 patients; 56%) and 
tactile detection (10 patients; 40%). One-quarter of patients 

had increased thermal detection thresholds for thermal dis-
tinction (7 patients, 28%) and cold (2 patients, 8%).

One-third of survivors had decreased thresholds for 
mechanical nociceptive stimulation regarding pressure 
(8 patients, 32%) and mechanical pain (6 patients, 24%). 
Only few survivors showed decreased nociceptive thermal 
perception for cold (2 patients, 8%) and warm (3 patients, 
12%). Nine (32%) survivors showed paradox heat sensa-
tions (PHS). A patient was diagnosed with the phenomenon 

Fig. 2  Distribution of total 
scores in the reduced pedi-
atric-modified Total Neu-
ropathy Score. Total scores 
of 4 or higher (grey colored 
background) indicated periph-
eral neuropathy. y-axis: number 
of patients; x-axis: total score in 
red-pmTNS
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Table 2  QST-results of 
survivors for all 13 parameters 
presented in Z-Scores

p values were analyzed with one-sided t-test for normally distributed parameters and with one-side non-
parametric Wilcoxon-test for parameters with a skewness > 1 or < − 1 after transformation. We per-
formed Bonferroni-adjustment for statistical-significance due to multiple testing and defined p < 0.0038 
as statically significant
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of pain sensitization when showing at least one abnormal 
finding such as hyperalgesia to pressure, mechanical stim-
uli, allodynia or when testing wind-up ratio. This meant 
that the perception of a stimulus that is not painful in the 
healthy age-matched population was already perceived as 
painful. Half of our cohort fulfilled this criterium (13/25), 
i.e., that survivors had at least one abnormal finding in the 
four above-mentioned tests. Among them, seven survivors 
showed pain sensitization in one QST parameter, five in two 
and one in three, respectively.

Isolated positive symptoms like hyperalgesia to thermal or 
mechanical stimuli, allodynia and PHS were found in 4 patients 
(16%). Isolated negative symptoms like hypoesthesia and 
hypoalgesia to thermal or mechanical stimuli were detected in 
7 patients (28%). Thirteen survivors (52%) presented a combi-
nation of positive and negative symptoms. The median number 
of abnormalities in QST was 3 (range: 0–7, SD 1.915).

LoGa‑Classification of the survivor cohort

When grouped into the LoGa scheme of losses and gains of 
function, the most frequent somatosensory deficit combina-
tion was L3G2 found in 7 patients (28%) (Table 3). Within 
the L3G2-combination, 5 out of 7 patients (71%) scored a 
total of 4 or higher in the red-pmTNS.

The other way around, survivors with pathologic red-
pmTNS showed a L3G2-pattern in 30%.

Small and large fiber neuropathy in the survivor cohort

Isolated LFN was shown in 2 patients (8%), whereas 7 
patients (28%) revealed a dominant SFN. A combination of 
LFN and SFN was found in 15 patients (60%).

Risk factors associated with peripheral neuropathy

We identified no significant clinical risk factor for abnormal red-
pmTNS score and only one for QST parameters. Using Pear-
son’s correlation shorter recovery time after SCT was associated 
with increased sensitivity to pinprick stimuli (Pearson’s corre-
lation coefficient: -0.573, p-value 0.003) and decreased VDT 
(Pearson’s correlation coefficient: 0.507, p-value 0.009).

Discussion

The red-pmTNS uncovered signs and symptoms of func-
tional impairment in about one out of three survivors. In 
2013, Gilchrist introduced the pmTNS and demonstrated its 
validity and reliability in pediatric cancer patients (Gilchrist 
and Tanner 2013). In total, 86% and 68% displayed signs 
and symptoms of CIPN using the pmTNS and the CTCAE 
criteria at the end of therapy, respectively. When using the 
CTCAE criteria, about 40% of the children with pathologi-
cal scores of 5 or higher in the pmTNS were missed (Lavoie 
Smith et al. 2015; Gilchrist et al. 2014). In our previous 
study in survivors after pediatric ALL treated with chemo-
therapy alone (median recovery time 2.5 years), 33% of sur-
vivors showed pathological results in red-pmTNS (Lieber 
et al. 2018) when compared to 36% of the survivors in our 
cohort (median recovery time 8.25 years). We suggest that 
SCT does not add clinical signs of PN investigated by scor-
ing systems like red-pmTNS. Genetic variations, i.e., in 
CYP3A5, may change VCR metabolisms and, therefore, 
critically influence CIPN development (Egbelakin et al. 
2011). Similarly, previous studies using comparable clini-
cal CIPN scores in childhood ALL survivors also identified 
27–41% showing peripheral neuropathy (Tay et al. 2017; 
Jain et al. 2014; Varedi et al. 2018a) and are in line with our 
observations. On the contrary, Ramchandren et al. uncov-
ered clinical signs of peripheral neuropathy in all survivors 

Table 3  Frequency of combinations of somatosensory abnormalities

L0 no somatosensory dysfunction; L1 loss of thermal detection; L2 loss of mechanical detection; L3 loss of thermal and mechanical detection; 
G0 no gain of function (hyperalgesia); G1 thermal hyperalgesia; G2 mechanical hyperalgesia; G3 mixed thermal and mechanical hyperalgesia
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7.4 years after end of therapy using the Neuropathy Impair-
ment Scale (NIS) (Tay et al. 2017). The prevailing motor 
function within NIS when compared to red-pmTNS may 
explain the discrepancy. In a longitudinal study, Gilchrist 
et al. showed high recovery rates with abnormal pmTNS 
ratings of 85% during treatment and 12%, six months after 
chemotherapy (Gilchrist et al. 2017). In a long-term follow-
up of childhood ALL survivors (median time of 29.9 years 
since diagnosis), Ness et al. outlined long-lasting negative 
impacts of antileukemic treatment on neuromuscular func-
tion in almost 50% of survivors (Ness et al. 2012): Patients 
performed poorer in balance, 6-min walking distance, deep 
tendon reflexes, and vibration detection. Several studies have 
shown associations between higher scores in pmTNS and 
poorer performance in either static or dynamic balance or 
6-min walking distance (Gilchrist and Tanner 2013; Varedi 
et al. 2018a). Further studies should investigate these asso-
ciations by adding performance tests to trial scores.

Thirty-six percent of our cohort showed abnormalities 
in the red-pmTNS, but 96% had at least one abnormality 
in QST, highlighting the broad silent LFN and SFN in our 
survivor group when using the clinical scoring system only. 
The American Academy of Neurology reported a definition 
for diagnosing distal symmetric polyneuropathies using 
combinations of symptoms, clinical signs and electrodiag-
nostic tests (England et al. 2005; England and Asbury 2004; 
Gewandter et al. 2019), indicating the use of scoring systems 
as additional but not sole diagnostic criterion for PN (Caval-
etti et al. 2010,2013; Gilchrist 2012).

QST as our main testing modality covers almost all soma-
tosensory functions. When compared to our previous study 
in ALL survivors treated with chemotherapy only, similar 
distribution of significant pathologic QST parameters rep-
resenting large- and small-fiber deficits were found, i.e., 
Mechanical Detection Threshold, Pressure Pain Threshold 
and Thermal Sensory Limen (Lieber et al. 2018). The simi-
larity could be due to neurotoxic vincristine that leads to 
axonal degeneration and was used at varying cumulative 
doses before undergoing SCT (Gomber et al. 2010; Lavoie 
Smith et al. 2015; Mora et al. 2016). We detected signs of 
LFN in about two-thirds of ALL survivors with and without 
SCT (Lieber et al. 2018). In contrast, signs of SFN were 
discovered in 88% of the current cohort, compared to only 
a third ALL survivors having received chemotherapy only 
(Lieber et al. 2018) indicating additional damage associ-
ated with SCT. The similar cumulative doses of VCR in 
survivors after SCT and chemotherapy only, i.e., 12.3 and 
12 mg/sqm, respectively, do not explain the difference. 
Bilic et al. used QST in a prospective study on adults with 
chronic GvHD following SCT and found an isolated SFN 
in 11%, isolated LFN in 15% and mixed SFN and LFN in 
67% of survivors. These data corroborate our findings of 

neuropathy type distribution, i.e., isolated SFN in 28%, iso-
lated LFN in 8% and a mixed SFN and LFN in 60% of sur-
vivors, although we could not find any association between 
GvHD and neuropathy in our study. As chronic GvHD most 
likely resembles an autoimmune mediated pathology plus 
reduced intensity conditioning in contrast to myeloablative 
conditioning was associated with a higher incidence of SFN 
and peripheral nerve damage following SCT (Hoeijmakers 
et al. 2012), peripheral neuropathy following SCT may be 
caused by immune-mediated mechanisms like altered der-
mal and epidermal immune cell and cytokine composition 
and keratinocyte activation damaging particularly small 
fibers (Grauer et al. 2010; Hoeijmakers et al. 2012). Fur-
thermore, immunosuppressive drugs following SCT like 
Cyclosporine A or Tacrolimus may cause additional nerve 
damage (Arnold et al. 2013).

Interestingly, QST parameters reflecting pain sensitiza-
tion like MPS, WUR and ALLO were more pronounced with 
50% in the current cohort compared to 30% of ALL survi-
vors with chemotherapy only. Among them, seven showed 
pain sensitization in one QST parameter, five in two and 
one in three, respectively. Most importantly, pain sensiti-
zation does not imply a chronic pain condition by itself. 
According to Woolf et al. repetitive Aβ-inputs can trigger 
hyperalgesia via conditioned C-fibers (Woolf 2011). Also, 
mechanical and thermal loss of detection may be compen-
sated by reduced thresholds for other stimuli, such as pain, 
resulting in hyperalgesia (Baron et al. 2017; Simone et al. 
1991). In our cohort, 76% of survivors showing symptoms 
of hyperalgesia also had signs of thermal or mechanical 
hypoesthesia at the same time. Still, pathomechanisms of 
SFN and pain sensitization are still unknown (Terkelsen 
et al. 2017). Previous investigations suggest that elevation 
of macrophages and mast cells in immune-mediated SFN 
leads via chemokines and other mediators to microglia cell 
activation (Marchand et al. 2005; Karl et al. 2019). This 
peripheral activation together with altered sensory stimuli 
processing in the CNS may contribute to pain sensitiza-
tion (Hoeijmakers et al. 2012). Moreover, gene variations 
in SCN9A encoding  Nav1.7 sodium channel which carries 
out a gain-of-function by increased spontaneous firing and 
sensitivity to depolarizing stimuli may contribute to addi-
tional SFN (Faber et al. 2012). Nevertheless, it is impor-
tant to keep in mind that survivors were burdened with long 
hospital stays and may have reacted differently to the QST 
testing as healthy individuals due to sensitization towards 
the environment (Vaudre et al. 2005). Still interestingly in 
a study by Schultz et al., SCT survivors categorized their 
quality of life in a self-assessment as excellent/very good/
good, although more than half of them suffered at least one 
chronic health conditions (Schultz et al. 2017), highlighting 
survivors’ changed perception of health and its links.



2150 Journal of Cancer Research and Clinical Oncology (2020) 146:2143–2152

1 3

When categorizing deficit patterns of our current cohort 
as well as ALL survivors with chemotherapy only into the 
LoGa-classification, the most frequent somatosensory defi-
cit combinations were L3G2 and L3G0. This is in line with 
Maier et al. who found patients with central pain sensiti-
zation, peripheral neuropathy and peripheral nerve injury 
most frequently displayed a L3G2 and L3G0 pattern (Maier 
et al. 2010). The similarity of LoGa-patterns may indicate 
the same principal underlying cause for somatosensory def-
icits, i.e., chemotherapy. Still, several studies showed the 
multifactorial genesis of CIPN, including genetic factors like 
CYP3A5 metabolism, treatment-related factors like drug 
concentration, and concomitant treatment with interacting 
medications like azoles (Egbelakin et al. 2011; Mora et al. 
2016; Velde et al. 2017), outlining the difficulty to eluci-
date CIPN’s underlying pathomechanisms. Among the most 
affected survivors (L3G2 pattern), almost all reported dif-
ficulties in daily living concerning difficulties with zipping 
zippers, tripping more often, going up the stairs or decreased 
strength, which underlines the impact on daily living.

Three survivors after chemotherapy only reported chronic 
pain (Lieber et al. 2018), whereas all survivors after SCT 
negated it. As our cohort of survivors showed considerably 
more SFN and pain sensitization, we expected different results. 
Bakkers et al. showed that 60% of SFN patients suffer burning 
feet symptoms at least occasionally (Bakkers et al. 2014). Our 
small sample size of n = 25 may cause our controversial results.

We found a negative correlation between recovery time 
and severity of hyperalgesia for pinprick stimuli as well as 
hypoesthesia for vibration. Few studies support our findings 
of improvement in peripheral nerve function and chronic 
pain conditions over time following ALL treatment (Jain 
et al. 2014; Ramchandren et al. 2009; Miltenburg and Boog-
erd 2014), and yet impairment in peripheral nerve function 
and chronic pain conditions may still be present years after 
treatment (Lavoie Smith et al. 2015; Mora et al. 2016; Ram-
chandren et al. 2009). Treatment options for pediatric cancer 
survivors suffering from long-term CIPN are understudied. 
Data on gabapentin and glutamic acids as protective agents 
against VCR toxicity are inconsistent (Kandula et al. 2016; 
Anghelescu et al. 2011; Rao et al. 2007).

QST as a psychophysical assessment tool is prone to errors, 
especially in children as testing lasts for about one hour and 
attention and collaboration are essential (Rolke et al. 2006a). 
The participation rate of only 30% of eligible survivors and the 
shifted gender and clinical remission ratio (see Table 1) may 
reflect a selection bias. Nevertheless, age- and sex-matched 
reference data moderated its impact on our results. Our red-
pmTNS is another limitation of our study. Still, with our study 
we aimed to compare our QST results with a clinical score. 
Survivors were examined after SCT. Hence, differentiation 
between CIPN prior to SCT or due to SCT is limited. (Lavora-
tore et al. 2009; Wei et al. 2018). Investigating survivors of 

SCT receiving no neurotoxic drugs before SCT, e.g., patients 
with metabolic disorders or hemoglobinopathies may help 
identifying contributing factors to small and large fiber damage 
in the SCT setting. So far, studies on survivors of SCT during 
childhood due to, i.e., sickle cell disease examined long-term 
central nervous system deficits, but not somatosensory func-
tions (Walters et al. 1995,2010). Here, further longitudinal 
studies are needed to elucidate the contribution of SCT to 
long-term neuropathies, particularly SFN. The wide range of 
recovery time and age at testing among our patients may also 
affect our findings, as different developmental levels during 
treatment and at testing may influence this psychophysical 
assessment (Hirschfeld et al. 2012; Blankenburg et al. 2011). 
QoL may have given more insights into the clinical relevance 
of our study (Vetsch et al. 2018; Corella Aznar et al. 2019; 
Ness et al. 2015; Goebel et al. 2019), but was not measured 
due to already extensive testing. In future studies, large- and 
small-fiber neuropathy leading to motor function impairment 
could be tested by, e.g., 6-min walking test, and timed up-and-
go test (Varedi et al. 2018b).

In conclusion, we firstly uncovered that survivors of pediat-
ric acute lymphoblastic leukemia after SCT are at high risk for 
long-term peripheral neuropathy with a dominating small-fiber 
and pain sensitization pattern by applying scoring systems and 
QST as a reliable and valid diagnostic device bearing in mind 
its limitations. Mechanisms of nerve damage during antileu-
kemic treatment and SCT as well as genetic variations influ-
encing dimensions of sequelae should be the center of interest 
for future investigations to elucidate the contribution of the 
varying factors to CIPN in ALL survivors after SCT.
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