
Tansley review

NLR we there yet? Nucleocytoplasmic
coordination of NLR-mediated immunity

Authors for correspondence:
Daniel L€udke

Email: daniel.luedke@tsl.ac.uk

Marcel Wiermer

Email: m.wiermer@fu-berlin.de

Received: 14 April 2022

Accepted: 7 June 2022

Daniel L€udke1,3 , Qiqi Yan1 , Philipp F. W. Rohmann1 and

Marcel Wiermer1,2

1Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-

Lermontowa-Weg 3, 37077, Goettingen, Germany; 2Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences,

Institute of Biology, Freie Universit€at Berlin, K€onigin-Luise-Str. 12–16, 14195, Berlin, Germany; 3Present address: The Sainsbury

Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK

Contents

Summary 24

I. Introduction 24

II. Macromolecular transport into and out of the nucleus: a
regulatory hub and convergence point for defence signalling
and gene expression 25

III. Plant immunity relies on nonself and modified-self
recognition by cell surface and intracellular immune receptors 26

IV. Defence signalling mediated by PRRs and NLRs is integrated into
signalling networks across the cytoplasm and the nucleoplasm 30

V. Nuclear NLRs can function in effector perception, transcriptional
reprogramming and cell death induction 31

VI. The nuclear transport machinery directly contributes to the
regulation of NLR-mediated plant immunity 33

VII. Conclusions 36

Acknowledgements 36

References 36

New Phytologist (2022) 236: 24–42
doi: 10.1111/nph.18359

Key words: NLR immune receptor, nuclear
envelope, nuclear pore complex, nuclear
transport receptor, nucleocytoplasmic NLR
signalling, plant immunity.

Summary

Plant intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) perceive the

activity of pathogen-secreted effector molecules that, when undetected, promote colonisation of

hosts. Signalling fromactivatedNLRs convergeswithandpotentiates downstreamresponses from

activated pattern recognition receptors (PRRs) that sense microbial signatures at the cell surface.

Efficient signalling of both receptor branches relies on the host cell nucleus as an integration point

for transcriptional reprogramming, and on the macromolecular transport processes that mediate

the communication between cytoplasm and nucleoplasm. Studies on nuclear pore complexes

(NPCs), the nucleoporin proteins (NUPs) that compose NPCs, and nuclear transport machinery

constituents that control nucleocytoplasmic transport, have revealed that theyplay important roles

in regulating plant immune responses. Here, we discuss the contributions of nucleoporins and

nuclear transport receptor (NTR)-mediated signal transduction inplant immunitywithanemphasis

onNLR immune signalling across the nuclear compartment boundary andwithin the nucleus.We

also highlight and discuss cytoplasmic and nuclear functions of NLRs and their signalling partners

and further consider thepotential implicationsofNLRactivationand resistosome formation inboth

cellular compartments for mediating plant pathogen resistance and programmed host cell death.

I. Introduction

Plants can sense microbial invaders using genome-encoded cell
surface and intracellular immune receptors. Surface-associated

pattern recognition receptors (PRRs) detect nonself microbe-
associatedmolecular patterns (MAMPs), or modified-self damage-
associated molecular patterns (DAMPs), which can be generated
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during attempted pathogen invasion (Boutrot & Zipfel, 2017;
Gust et al., 2017; Albert et al., 2019; Hou et al., 2019; Kanyuka
& Rudd, 2019). The activation of PRRs triggers immune
responses known as pattern-triggered immunity (PTI) that can be
sufficient to prevent colonisation by nonadapted microbes (Dangl
et al., 2013). To subvert PTI and manipulate host cell physiology,
host-adapted pathogens secrete effector molecules into plant cells
(Macho & Zipfel, 2015; Collemare et al., 2019; Wang et al.,
2022). Intracellular nucleotide-binding leucine-rich repeat recep-
tors (NLRs) can detect the presence of these pathogen effectors
and trigger robust immune responses that often include a
localised programmed cell death at attempted invasion sites,
referred to as the hypersensitive response (HR; Jones & Dangl,
2006; Balint-Kurti, 2019). Therefore, NLR-mediated effector-
triggered immunity (ETI) is particularly effective in restricting
host invasion by biotrophic pathogens that require living host
tissues to complete their life cycle (Glazebrook, 2005; Dangl
et al., 2013).

Cell surface and intracellular branches of defence work syner-
gistically and share a conserved cellular signalling network that
conveys signals of pathogen invasion into the nuclear envelope
(NE)-enclosed nucleus. In the nucleus, the perceived stress signals
trigger changes in gene expression that lead to the further induction
of immune responses and immunity. Compared with responses
mediated by surface receptors alone, ETI-triggered transcriptional
changes are amplified and more sustained (Tao et al., 2003; Tsuda
et al., 2009; Cui et al., 2015; Mine et al., 2018; Ngou et al., 2021;
Yuan et al., 2021a). Embedded in the double lipid bilayer of the
NE, nuclear pore complexes (NPCs) connect the nucleoplasm to
the surrounding cytoplasm. Nuclear pore complexes function as
macromolecular transportation hubs that facilitate the selective
bidirectional exchange of information in form of proteins, RNAs
and ribonucleoprotein particles (RNPs) in a signal-, nuclear
transport receptor (NTR)- and energy-dependent manner (L€udke
et al., 2021a).

Here, we discuss advances in our understanding of NLR-
dependent immune responses in plants with a focus on the nuclear
transport machinery in regulating cellular signal transduction
between and within the cytoplasm and the nucleus. Whereas other
excellent recent reviews have covered important mechanistic
insights into plasma membrane-associated cell death signalling
uponNLRcomplex formation (Saur et al., 2020;Bi&Zhou, 2021;
Maruta et al., 2022; Parker et al., 2022), we discuss nucleocyto-
plasmic signalling events that induce transcriptional changes and
cell death upon NLR activation and resistosome formation. We
further consider the contributions of the nuclear transport
machinery in signal integration and crosstalk regulation of cell
surface and intracellular defence branches.

II. Macromolecular transport into and out of the
nucleus: a regulatory hub and convergence point for
defence signalling and gene expression

Thenucleus is compartmentalised from the surrounding cytoplasm
by the NE. Whereas imported proteins and small molecules
mediate signal integration, exported proteins and several RNA

species function as output responses towards stimuli that are
perceived intracellularly or transduced from the cell surface (Ibarra
& Hetzer, 2015; Ashkenazy-Titelman et al., 2020; L€udke et al.,
2021a). The gateways for the selective macromolecular exchange
across the NE are NPCs, which are composed of proteins called
nucleoporins (NUPs) that assemble in distinct subcomplexes
within the supramolecular NPC (Tamura et al., 2010; Tamura &
Hara-Nishimura, 2013; Tang et al., 2020). By fusing the two lipid
bilayers of the NE, the inner and outer nuclear membrane (INM
and ONM), NPCs form transport channels across the perinuclear
space that is continuous with the lumen of the endoplasmic
reticulum (ER). The channels formed by NPCs enable the passive
diffusion of small soluble molecules below c. 40 kDa as well as the
energy-dependent selective bidirectional transport of larger macro-
molecules and macromolecular complexes (Stewart, 2007; Wang
& Brattain, 2007; Raveh et al., 2016). Nucleoporins with
intrinsically disordered domains containing phenylalanine-
glycine (FG) repeats form a selectively permeable barrier within
the NPC central transport channel that enables the regulation of
macromolecular trafficking into and out of the nucleus (Grossman
et al., 2012; Tamura & Hara-Nishimura, 2013; Beck & Hurt,
2017). Soluble NTRs that mediate nuclear import (importins) or
export (exportins) of macromolecular cargos can traverse the
central channel by interacting with the FG-NUP permeability
barrier (Fig. 1; Christie et al., 2016; Schmidt & G€orlich, 2016).

For canonical nuclear import of proteins, a cytoplasmic complex
is formed between cargo proteins carrying nuclear localisation
signals (NLSs), importin-a adapter proteins that directly interact
with NLSs and importin-b transport receptors, which mediate the
passage of the ternary complex through the NPC (Fig. 1; Kobe,
1999; Chang et al., 2012; C-W. Chang et al., 2013; Marfori et al.,
2012). The cargo binding to and release from the importin-a/b
heterodimer is controlled by the bound nucleotide state of RAS-
RELATED NUCLEAR PROTEIN (RAN), a small GTPase that
exists in a GTP-bound nuclear and GDP-bound cytoplasmic state
and energises nucleocytoplasmic protein transport (Fig. 1; Izaur-
ralde et al., 1997; Terry et al., 2007; Nielsen, 2020). This
compartmentalised asymmetric RAN�GDP-RAN�GTP distribu-
tion is generated by RAN GTPase-ACTIVATING PROTEIN
(RanGAP) and its co-factor RAN�GTP BINDING PROTEIN1
(RanBP1) that impart GTP hydrolysis on RAN in the cytoplasm,
whereas chromatin-associated RAN GUANINE NUCLEOTIDE
EXCHANGEFACTOR (RanGEF)mediates nucleotide exchange
on RAN in the nucleus (Fig. 1; Stewart, 2007; Nielsen, 2020).
Binding of RAN�GTP to importin-b in the nucleoplasm triggers
the dissociation of ternary import complexes and drives nuclear
cargo release (G€orlich et al., 1996; Moroianu et al., 1996). Some
importin-b NTRs, however, can function independently of
importin-a adapters to mediate nuclear cargo import or export
(Fig. 1; Christie et al., 2016).

Whereas Ran�GTP triggers the dissociation of cargos from the
nuclear import receptor inside the nucleus, it imposes the
association of export receptors with nuclear cargo substrates. For
instance, protein export from the nucleus is mediated by the export
receptor EXPORTIN1 (XPO1, also known as CRM1) that
recognises leucine-rich nuclear export signals (NESs) on cargo
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proteins (Fig. 1; Fornerod et al., 1997; Stade et al., 1997; Fukuda
et al., 1997; laCour et al., 2004;Kosugi et al., 2009). XPO1directly
binds to cargos cooperatively with Ran�GTP and facilitates the
translocation of the ternary cargo/XPO1/Ran�GTP complex
through the central pore into the cytoplasm, where the complex
disassembles followingGTP hydrolysis on RAN (Fig. 1; Hutten&
Kehlenbach, 2007).

In addition to their roles in selective bidirectional exchange of
macromolecules between the nucleoplasm and the cytoplasm,
NPCs are also involved in regulating several other transport-
independent cellular processes including chromatin organisation,

DNA repair, gene expression and epigenetic gene regulation (Meier
et al., 2017; Groves et al., 2020; L€udke et al., 2021a). In plants,
several genes encoding NPC and nuclear transport machinery
components were initially revealed in genetic screens for specific
mutant phenotypes, including defects in or the suppression of,
NLR-mediated (auto)immune responses, as detailed in Section VI.

III. Plant immunity reliesonnonself andmodified-self
recognition by cell surface and intracellular immune
receptors

The perception of pathogens in the apoplastic space via PRRs is
considered the first line of active defence. Plasma membrane-
associated PRRs can recogniseMAMPs orDAMPs via extracellular
ligand recognition domains (Albert et al., 2019). Elicitor binding
by these receptors usually activates phosphorylation-based sig-
nalling cascades initiated by surface-receptors through associated
co-receptor kinases and leads to responses including the generation
of reactive oxygen species (ROS) at the cell surface (Kadota et al.,
2014; Kimura et al., 2017; Lee et al., 2020; Ngou et al., 2021).
Through protein kinase relay systems, these signals are also
transmitted into the nucleus, where they converge on the
transcriptional machinery to initiate defence responses towards
perceived pathogen threats (Adachi et al., 2015; Bi et al., 2018;
Bigeard & Hirt, 2018; Saijo & Loo, 2020).

In contrast with cell surface PRRs, plant NLRs function as
intracellular receptors of effector molecules that are delivered by
host-adapted pathogens to suppress immune responses and
promote infection (Toru~no et al., 2016; Kourelis et al., 2021b;
Wang et al., 2022). Nucleotide-binding leucine-rich repeat
immune receptor activation occurs either through direct interac-
tion with effectors or through indirect mechanisms, such as the
surveillance of functional host effector targets (‘guardees’), or
nonfunctional target derivatives (‘decoys’; van der Biezen & Jones,
1998; van der Hoorn & Kamoun, 2008). Nucleotide-binding
leucine-rich repeat immune receptors across plant species can
contain additional integrated domains (IDs) within their canonical
protein structures, some of which directly interact with and/or are
modified by cognate effector molecules. These IDs can often
represent nonfunctional effector targets, which are likely to have
evolved from ancient, functional targets and serve as integrated
effector decoys (C�esari et al., 2014; Maqbool et al., 2015; Saucet
et al., 2015; Le Roux et al., 2016; Sarris et al., 2016; Fujisaki et al.,
2017; Bailey et al., 2018; De la Concepcion et al., 2018; Oikawa
et al., 2020; Białas et al., 2021; Maidment et al., 2021; Kourelis
et al., 2021b)

To date, nearly 500 NLRs from over 30 different plant genera
have been experimentally validated to function in immunity
(Kourelis et al., 2021b). Although NLRs use different molecular
mechanisms for effector detection, they share a modular, tripartite
domain architecture with a central NB-ARC (nucleotide-binding
adaptor shared by APAF-1, certain R gene products and CED-4),
C-terminal LRRs and either a Toll/interleukin-1 receptor (TIR)
domain or a coiled-coil (CC) domain at the N-terminus. Distinct
phylogenetic classes of NLRs can be determined through their NB-
ARC domain. The N-terminal domain generally follows this
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Fig. 1 Nuclear transport receptor (NTR)-mediated nucleocytoplasmic pro-
tein transport. Importin-b or importin-a/b complexes associate with nuclear
localisation signals (NLSs) of respective cargo proteins to mediate translo-
cation across the inner and outer nuclear membrane (INM and ONM)
through the nuclear pore complex (NPC). Transport directionality is imposed
by the small GTPase RAS-RELATEDNUCLEARPROTEIN (RAN).Chromatin-
associated RAN GUANINE NUCLEOTIDE EXCHANGE FACTOR (RanGEF)
mediates GDP to GTP exchange on RAN, initiating dissociation of import
complexes and cargo release inside the nucleoplasm. Nuclear Ran�GTP
enables the association of export receptors (Exp) with respective nuclear
cargo proteins containing nuclear export signals (NESs). After translocation
through theNPC, the ternary cargo/Exp/Ran�GTP complexdissociates upon
GTP hydrolysis on RAN, mediated by RAN GTPase-ACTIVATING PROTEIN
(RanGAP) tethered to the cytoplasmic side of theONMand its cofactor RAN
BINDING PROTEIN1 (RanBP1).
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phylogeny, subdividingNLRs intoTIR-typeNLR (TNL) andCC-
type NLR (CNL) clades (Jacob et al., 2013; Bentham et al., 2016;
Shao et al., 2016; Kourelis et al., 2021b). Whereas some ancient
CNLs, such as HOPZ ACTIVATED RESISTANCE1 (ZAR1),
can function as multifunctional singletons that combine both
effector detection and downstream signalling capacities and do not
require additional NLRs, all characterised TNLs and several CNLs
function as effector sensors that require helper NLRs for the
induction of immunity (Fig. 2; Adachi et al., 2019b, 2020). The
two helper NLR families, ACTIVATED DISEASE RESIS-
TANCE (ADRs) and N REQUIREMENT GENE (NRGs), can
have specific and redundant functions in downstream signalling for
sensor NLRs that perceive effector activities (Fig. 2; Peart et al.,
2005; Bonardi et al., 2011;Castel et al., 2019;Wu et al., 2019; Saile
et al., 2020). The ADR/NRG helper NLR families are highly
preserved in land plants and contain anN-terminal RESISTANCE
TO POWDERY MILDEW8 (RPW8)-type coiled-coil (CCR)
domain (also termed RNLs; Collier et al., 2011; Shao et al., 2016).
The CCR domain shares structural homology with animal and
plant mixed-lineage kinase domain-like (MLKL), as well as HeLo
and HeLo-like (HELL) domains found in fungi, which can form
multi-helix bundles and induce cell death (Greenwald et al., 2010;
Seuring et al., 2012; Bentham et al., 2016; Daskalov et al., 2016;
Mahdi et al., 2020; Tamborski & Krasileva, 2020; Jacob et al.,
2021).

Another helper family, the NLR-REQUIRED FOR CELL
DEATH (NRC) superclade of CNLs, has been extensively
described in Solanaceae plant species. NRCs form elaborate
receptor networks with NRC-sensors relying on NRC-helpers for
downstream signalling. NRC-helpers together with their sensor
mates can function specifically or redundantly in conferring robust
resistance against an array of pathogens, including viruses, bacteria,
oomycetes, nematodes and insects (Wu et al., 2016, 2017; Adachi
et al., 2019b). In contrast with CCR-domain helpers, NRC-
helpers, and some singleton CNLs (e.g. ZAR1), contain a MADA
amino acid motif within the first alpha-helix of their CC domain
that is required for downstream signalling function. Strikingly, a
MADA motif is absent/degenerated in NRC-sensors, which is
likely to be the result of a specialisation towards effector perception
within the sensor clade. Therefore, the MADAmotif appears to be
an ancient signature of singleton NLRs that is maintained in the
NRC-helper clade throughout evolution, substantiating a require-
ment of this motif for downstream signalling function (Adachi
et al., 2019a, 2020).

The molecular mechanisms underpinning activation of immu-
nity andHRcell death byMADAcontainingCNLs came to light in
structure-based studies of Arabidopsis (At) ZAR1 and wheat Sr35.
The reconstruction of active ZAR1 and Sr35 resistosomes –
pentameric wheel-like structure anchored to the plasmamembrane
– suggests that integration of theMADAmotif containinga-helices
disturbsmembrane integrity, leading to the initiation of a cell death
response (Fig. 2;Wang et al., 2019a; F€orderer et al., 2022). Indeed,
the ZAR1 and Sr35 resistosomes form membrane channels that
allow for the influx of mono- and divalent cations including Ca2+

(Bi et al., 2021; F€orderer et al., 2022). Strikingly, activated
AtADR1 and AtNRG1 helper NLR complexes are also plasma

membrane localised and can function as Ca2+ influx channels
(Fig. 2; Jacob et al., 2021; Saile et al., 2021). Ca2+ plays important
signalling roles in plant defence, and misregulation of Ca2+ influx
in plant cells can induce HR cell death and auto-immunity (Wang
et al., 2019b; Thor et al., 2020; Tian et al., 2020; Ren et al., 2021;
Kim et al., 2022; Xu et al., 2022). The activated Nicotiana
benthamiana (Nb) helpers NRC2 and NRC4 also form homo-
oligomers and dynamically reorganise into plasma-membrane
localised punctate structures upon sensor activation (Adachi et al.,
2019a; Duggan et al., 2021; Ahn et al., 2022; Contreras et al.,
2022). This suggests that activated CC-type singleton/helper NLR
resistosomes act as membrane channels that initiate downstream
responses, likely to involve Ca2+ signalling-mediated transcrip-
tional changes and cell death (Fig. 2; Bi & Zhou, 2021). Whether
this function is restricted to plasma membranes remains an
important question to address, as other membrane-enclosed cell
compartments, such as the endoplasmic reticulum (ER), can
function as Ca2+ reservoirs, and an ER localisation has previously
been described for Arabidopsis NRG1A and NRG1B (Wu et al.,
2019). Considering that the ER is continuous with the NE, a
perturbation of nuclear integrity through resistosome formation at
the ONM or INM might be a potential function of singleton/
helper NLRs to boost either cytoplasmic (when formed at the
ONM) or nuclear (when formed at the INM) Ca2+ influx (Fig. 3).
Nuclear Ca2+ influx pathways have previously been described to
regulate transcriptional changes in other plant signalling pathways
(Charpentier, 2018; Leit~ao et al., 2019). To investigate this idea,
the subcellular localisations of activated resistosome complexes
requires more in-depth analyses. In addition, the exact mechanism
of how Ca2+ influx signals at the plasma membrane, or other
membrane compartments, are translated into transcriptional
changes inside the nucleus and HR cell-death that mediate
immunity still requires characterisation.

Similar to resistosome-forming CNLs, (homo-)oligomerisation
is also required for the function of TNLs (Zhang et al., 2017;Wang
et al., 2019a; Horsefield et al., 2019; Burdett et al., 2021; Yu et al.,
2022). In contrast with CNL singletons or helper NLRs, the
activation of TNL sensors, such as At RECOGNITION OF
PERONOSPORA PARASITICA1 (RPP1) and Nb RECOGNI-
TION OF XopQ1 (ROQ1), by their respective effectors, leads to
the formation of tetrameric resistosomes that appear not to be
membrane associated. The resistosome formation of TNLs induces
an enzymatic function of the TIR domains that depends on
structurally distinct oligomers and distinct TIR domain interfaces
(Horsefield et al., 2019;Wang et al., 2019a;Ma et al., 2020;Martin
et al., 2020; Burdett et al., 2021; Yu et al., 2022). The enzymatic
activities of activated TNLs include the degradation of NAD+/
NADP+, leading to the production of (cyclic-)ADP-ribose ((c)
ADPR) isomer products, and the hydrolysis of DNA/RNA
substrates, leading to the synthesis of 20,30-cAMP/cGMP (Fig. 2).
Strikingly, the NADase function of plant NLR TIR domains is
similar to the NAD+/NADP+ degrading function of human sterile
alpha andToll/interleukin-1 receptormotif containing1 (SARM1)
but appears not to be aimed at NAD+/NADP depletion but rather
the generation of the small molecules (Essuman et al., 2017;
Horsefield et al., 2019; Wan et al., 2019). However, neither (c)
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machinery. Signalling and defence output from activated cell surface PRRs is potentiated by N-terminal RESISTANCE TO POWDERYMILDEW8 (RPW8)-type
coiled-coil domain (CCR) andMADA motif-containing intracellular helper NLRs. Pathogens secrete effector proteins that interfere with immune signalling on
various levels. Intracellular sensor NLRs or singleton NLRs detect the presence/activity of effectors and initiate downstream signalling via respective helper NLRs.
ActivatedhelperNLR ‘resistosomes’ localise to theplasmamembranewhere theyfunctionas ion influxchannels.Asa localisationto theendoplasmic reticulum(ER)
hasalsobeendescribed forNRG1,activatedcoiled-coil (CC)-typeNLR(CNL) resistosomesmightalso functionas ionchannelsatothermembrane-enclosedcellular
compartments such as the nuclear membrane or the Golgi apparatus. Multiple Toll/interleukin-1 receptor (TIR)-type NLR (TNL) and CNL sensor NLRs show a
nucleocytoplasmicdistributionandsomesensors require anuclear localisation todetecteffectors inside thenucleoplasm.TNLactivationand resistosomeformation
in the nucleus and the cytoplasm lead to the production of small molecules ((c)ADPR, pRib-AMP/ADP,ADPr-ATP/di-ADPRand 20,30-cNMP).While nuclear TNL
subpools could utiliseDNA andRNAas substrate, cytoplasmic TNL pools probably use RNA for 20,30-cNMPproduction. EDS1 (E) togetherwith either PAD4 (P) or
SAG101 (S) is required for downstream signalling upon TNL-mediated production of small molecules. pRib-AMP/ADP induces a structural change in PAD4
allowing for the formation of the EDS1-PAD4-ADR1 complex while ADPr-ATP/di-ADPR induces a structural change in SAG101 to allow the formation of EDS1-
SAG101-NRG1. Distinct subpopulations of EDS1 complexes exert transcriptional control inside the nucleus, but also associate with RESISTANCE TOPOWDERY
MILDEW8 (RPW8) coiled-coil domain (CCR)-type helper NLRs (RNLs) during the induction of immunity. Dashed arrows indicate speculation.
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ADPRnor 20,30-cAMP/cGMPgeneration alone is sufficient for the
induction of a cell death response and defence activation (Horse-
field et al., 2019; Wan et al., 2019; Yu et al., 2022). The
combination of molecules produced by TNLs might act as a signal
for host cell transcriptional reprogramming and/or HR cell death
initiation. As some nucleocytoplasmic TNLs are known to be
activated and function inside the nucleus (Xu et al., 2014a), and
DNA/RNA species were identified as potential TIR domain
substrates (Yu et al., 2022), it is conceivable that the generation of
20,30-cAMP/cGMP (but also of (c)ADPR) by activated TNLs
inside the nucleus is essential for these processes (Fig. 3; please refer
to Section V). In addition, activated nucleocytoplasmic TNLsmay
release their catalytic products from cytoplasmic RNA species or
from NAD+/NADP+ inside the cytoplasm.

IV. Defence signalling mediated by PRRs and NLRs is
integrated into signalling networks across the
cytoplasm and the nucleoplasm

Accumulating evidence suggests that PRRs and NLRs employ
similar signalling pathways to induce partially overlapping
immune responses, albeit at different amplitudes and dynamics.
These responses include ROS production, Ca2+ influx, protein
kinase signalling cascades, transcriptional reprogramming, and
production of phytohormones such as salicylic acid (SA), that
mediates plant defence against biotrophic and hemi-biotrophic
pathogens (Lu & Tsuda, 2021; Yuan et al., 2021b). Indeed, PTI
and ETI can function synergistically. Whereas NLRs utilise and
require PRR activation for efficient immune responses including
HR cell death, some PRRs also rely on helper NLRs for efficient
immunity and cell death induction upon elicitor perception (Ngou
et al., 2021; Pruitt et al., 2021; Kourelis et al., 2021a; Yuan et al.,
2021a). Collectively, these results show that there is extensive PTI
and ETI crosstalk and argue against the separation of different
immune branches into distinct defence layers (Fig. 2). Rather, the
plant immune system utilises functionally distinct receptor
branches for pathogen detection, but shares signalling, defence
activation, and output responses. Signalling of both activated
immune receptor types appears to converge transcriptionally.
Thus, it is likely that signal integration either occurs inside the
nucleus or at the level of signal transmission into the nucleus,
outlining the importance of nucleocytoplasmic communication in
plant immune signalling. The spatial communication between
both cellular compartments is regulated by the nuclear transport
machinery. Transported cargos comprise NLRs and central
defence signalling components, which localise to the nucleus or
shuttle between the cytoplasm and the nucleoplasm (Fig. 3).
Consistently, defects in the nuclear transport machinery can affect
PRR- as well as NLR-mediated immune responses (see section VI).

For full induction of immunity, all characterised TNLs not only
depend on helper NLRs, but also require downstream signalling
functions of the nucleocytoplasmic defence regulator
ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1; Wiermer
et al., 2005; Wagner et al., 2013; Bhandari et al., 2019). Indeed,
cell death upon transient expression of plant NLR TIR domains in
N. benthamiana is abolished in eds1 mutant plants, whereas

Arabidopsis eds1 mutants lack a full transcriptional response, SA
accumulation and are hypersusceptible when challenged with
virulent and avirulent pathogens (Bhandari et al., 2019; Horsefield
et al., 2019; Saile et al., 2020; Sun et al., 2021; Yu et al., 2022). The
loss of a cell death response in eds1 mutant plants further suggests
that EDS1 is a key component required for conversion of TIR
domain enzymatic products into HR cell death (Horsefield et al.,
2019; Yu et al., 2022). EDS1 forms nucleocytoplasmic complexes
with the lipase-like protein PHYTOALEXIN DEFICIENT4
(PAD4), which are distinct from predominantly nuclear EDS1
complexes with another related lipase-like protein, SENES-
CENCE ASSOCIATED GENE101 (SAG101; Fig. 2; Feys
et al., 2001, 2005; Rietz et al., 2011). The lipase-like proteins
appear to be directly connected to the helper NLRs ADR1 and
NRG1 for defence regulation in Arabidopsis (Wu et al., 2019;
Pruitt et al., 2021; Sun et al., 2021). Strikingly, the formation of
EDS1-SAG101-NRG1 is induced by ADP-ribosylated ATP
(ADPr-ATP) or ADPr-ADPR (di-ADPR), while EDS1-PAD4-
ADR1 complexes are induced by 20-(500-phosphoribosyl)-50-
adenosine mono-/di-phosphate (pRib-AMP/ADP), which consti-
tute some of the TIR-type NLR produced ADPR small molecules.
In recent publications, ADPr-ATP/di-ADPR and pRib-AMP/
ADP were shown to trigger a conformational change in EDS1
complexes with SAG101 and PAD4, respectively to allow
interactions with the NRG1 and ADR1 helpers (Huang et al.,
2022; Jia et al., 2022).

Hypersensitive response cell death and transcriptional rein-
forcement for bacterial resistance are uncoupled from each other
and require the distinct sets of EDS1 complexes and helper
NLRs, respectively (Gassmann, 2005; Heidrich et al., 2011;
Lapin et al., 2019; Saile et al., 2020; Ngou et al., 2021; Sun
et al., 2021; Yuan et al., 2021a). Accordingly, a branched TNL
signalling model was proposed, in which EDS1-PAD4-ADR1
mainly signal to restrict bacterial growth through transcriptional
reinforcement inside the nucleus, whereas signal transmission by
EDS1-SAG101-NRG1 is essential for HR induction (Bonardi
et al., 2011; Dong et al., 2016; Cui et al., 2018; Castel et al.,
2019; Lapin et al., 2019; Wu et al., 2019; Sun et al., 2021). It
thus appears, that the distinct nuclear/cytoplasmic EDS1 defence
signalling branches are a central part of cell death induction and
resistance based on transcriptional host cell reprogramming upon
TIR-type NLR small molecule production (Lapin et al., 2020;
Huang et al., 2022; Jia et al., 2022). The complexes of NRG1 or
ADR1 with EDS1/SAG101 and EDS1/PAD4, respectively,
suggests that these associations are dynamically formed and have
specific functions in the cytoplasm and/or nucleoplasm where
the EDS1 defence signalling network localises (Fig. 3; Qi et al.,
2018; Sun et al., 2021). It is conceivable that the defence
regulatory complexes communicate across the nuclear compart-
ment border via active shuttling and that compartment specific
complexes are dynamically formed in a stimulus-dependent,
transient manner. In Arabidopsis, complexes between EDS1 and
PAD4 or SAG101 have been described as spatially distinct.
While EDS1–PAD4 complexes are nucleocytoplasmic, EDS1–
SAG101 appeared exclusively nuclear (Feys et al., 2005; Lapin
et al., 2019). This conflicts with findings that the cytoplasmic
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pool of EDS1 (Heidrich et al., 2011) and helper NLRs are
required for HR, thus requiring a cytoplasmic SAG101 local-
isation. However, functional SAG101 isoforms from Solanaceae
are indeed nucleocytoplasmic (Zhu et al., 2011; Gantner et al.,
2019; Lapin et al., 2019), suggesting that subpools of these active
complexes might also be of nucleocytoplasmic nature in other
plant species, although at lower abundance (Lapin et al., 2020).
Such cytoplasmic localisation of a cellular sub-pool of SAG101
would be more consistent with the branched TNL signalling
model (Fig. 3).

Direct interactions between EDS1 and some AtTNLs in the
cytoplasm or at the cytoplasmic side of endomembrane
compartments, have also been reported (Bhattacharjee et al.,
2011; Heidrich et al., 2011; Kim et al., 2012). Such direct
associations with small molecule producing TNL sensors might
facilitate the activation of EDS1-containing complexes for
subsequent interaction with helper NLRs at the plasma mem-
brane, ER or NE. This mechanism may provide a direct
molecular link between TNL sensors and helpers (Fig. 3).
Whether TIR domain enzymatic products can be generated in
the cytoplasm and the nucleus upon effector-triggered TNL
oligomerisation, or whether these products translocate between
compartments – either by passive diffusion or via active transport
– is an important question to address. It also remains to be
determined how and in which cellular compartment(s) NRG1/
ADR1 and NRC dependent CNL sensors signal to their
respective helper NLRs. As no enzymatic function has been
identified for CNL sensors and they do not appear to form part
of the helper NLR resistosome (Contreras et al., 2022), one
possibility is that in the absence/presence of a pathogen effector,
they have a direct negative or positive regulatory function on
resistosome formation by helper NLRs. Several examples have
shown that a mis-localisation to nuclear or cytoplasmic com-
partments interferes with efficient immune signalling (please
refer to Section V). This suggests that the nucleocytoplasmic
transport machinery plays a vital regulatory role in spatial
communication and complex formation between sensors, help-
ers, and downstream defence regulators involved in relaying
signals derived from activated NLRs.

V. Nuclear NLRs can function in effector perception,
transcriptional reprogramming and cell death
induction

The first report linking nuclear NLR receptor localisation to host
cell transcriptional reprogramming for pathogen defence uncov-
ered that the barley (Hv) CNL MLA10 is nucleocytoplasmic and
shows increased nuclear accumulation upon activation by the
Blumeria graminis effector AvrA10 (Shen et al., 2007). Although it is
not clear in which cellular compartment HvMLA10 perceives
AvrA10, the effector-activated HvMLA10 directly associates with
the transcriptional repressors, HvWRKY1/2, and with the tran-
scriptional activator of immune response genes, HvMYB6 (Shen
et al., 2007; C. Chang et al., 2013).HvMLA10 association releases
the HvMYB6 activator from WRKY repression, inducing MYB6-
mediated target gene expression and immunity (C. Chang et al.,

2013). Whereas the nuclear pool of HvMLA10 confers fungal
disease resistance, its cytoplasmic pool is sufficient to trigger host
cell death signalling (Bai et al., 2012). This suggests a cell
compartment-specific bifurcation of HvMLA10-mediated cell
death and defence branches, which may also hold true for other
NLRs that induce immune responses across compartment borders.
Based on evidence from the activated AtZAR1 resistosome
structure, it is conceivable that the cytoplasmic pool ofHvMLA10
forms a resistosome at the plasma membrane to induce HR cell
death, whereas the nuclear pool mediates transcriptional defence
against pathogens. Nuclear activities and interactions with tran-
scription factors were also revealed for CNL sensors in other plant
species, including chickpea and rice (Os) (Inoue et al., 2013;Wang
et al., 2016; Hu et al., 2017; Chakraborty et al., 2018; Zhai et al.,
2019).

A nuclear function has also been determined for the auto-
active variant of the Arabidopsis TNL sensor SNC1. Autoactive
SNC1E552K as well as wild-type SNC1 are nucleocytoplasmic
and a sufficient abundance of the SNC1E552K cellular pool
inside the nucleus is required for manifestation of the snc1
autoimmune phenotype (Palma et al., 2005; Cheng et al., 2009;
Wiermer et al., 2010; L€udke et al., 2021b). Inside the
nucleoplasm, SNC1 engages multiple transcription modifiers
including TOPLESS-RELATED1 (TPR1) and related co-
repressors to repress the transcription of negative regulators of
immunity, and the basic helix–loop–helix (bHLH) transcrip-
tional activator bHLH84 and related paralogues for transcrip-
tional defence mobilisation inside the nucleus (Zhu et al., 2010;
Xu et al., 2014b). In addition, nuclear SNC1 negatively
influences the accumulation of phasiRNAs, leading to a global
upregulation of NLR transcripts (Cai et al., 2018). In tobacco,
the TNL sensor N confers resistance to tobacco mosaic virus
(TMV) after recognition of the p50 helicase domain of the viral
replicase proteins. Upon TMV infection, p50 recruits the
chloroplastic sulfur transferase N RECEPTOR INTERACT-
ING PROTEIN1 (NRIP1) and redirects its localisation to the
cytoplasm and nucleus. In the cytoplasm, N recognises either
the presence of the NRIP-p50 complex or a p50-induced
modification of NRIP1. Activation of N leads to its nuclear
interaction with the TF SQUAMOSA PROMOTER BIND-
ING PROTEIN-LIKE6 (SPL6) to reprogram infected host cells
for antiviral defence (Burch-Smith et al., 2007; Caplan et al.,
2008; Padmanabhan et al., 2013). As a TNL sensor, N depends
on the helper NLR NRG1 for resistance against TMV (Peart
et al., 2005). As the snc1 auto-immune phenotype also depends
on the AtADR1 and AtNRG1 helper NLR families (Dong
et al., 2016; Wu et al., 2019), this suggests that nuclear
functions of sensor NLRs in host cell transcriptional repro-
gramming could generally be helper NLR dependent. It is
unclear how such NLR nuclear function could be supported by
activated helpers that have been reported to function at the
plasma membrane and potentially at other membrane com-
partments. It is conceivable that Ca2+ signalling initiated at the
plasma membrane relays back into the nucleus and is supported
by nuclear sensor NLR transcriptional functions (Fig. 3). In
addition, it remains to be seen whether the nuclear functions
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and TF interactions of TNLs requires resistosome formation
and TIR-domain enzymatic activity.

The NRC sensor Rx from potato (St) mediates extreme
resistance to potato virus X (PVX) upon viral coat protein
recognition and requires balanced nucleocytoplasmic partitioning
to mediate full viral resistance (Bendahmane et al., 1995, 1999;
Slootweg et al., 2010; Tameling et al., 2010; Richard et al., 2021).
Significantly, activation of StRx by the PVX coat protein (CP) is
cytoplasmic and requires functional RanGAP2, which is tethered
to the cytoplasmic side of the NE to regulate RAN-dependent
nucleocytoplasmic transport. Therefore, RanGAP2 appears to
sequester part of the cellular pool of Rx at theNE for recognition of
PVX (Sacco et al., 2007; Slootweg et al., 2010; Tameling et al.,
2010). In tobacco plants, nuclear Rx is proposed to associate with
and reduce the DNA binding activity of the TF GOLDEN2-
LIKE1 (NbGLK1) and the DNA-binding bromodomain contain-
ing protein NbDBPC that negatively regulate Rx-mediated
immune responses to PVX (Townsend et al., 2018; Sukarta et al.,
2020).Moreover, in vitroDNAbinding has been demonstrated for
the NB-ARC domain of StRx and other NLRs (Fenyk et al., 2015,
2016). However, the biological relevance of such binding in
potential transcriptional control needs to be determined. In
contrast with a potential function in restricting pathogen growth
via transcriptional control, the autoactive maize CNL Rp1-D21
requires nucleocytoplasmic mobility for the induction of a cell
death response in N. benthamiana (Wang & Balint-Kurti, 2015).
The resistance provided by paired NLRs OsPikh-1 and OsPikh-2
also relies on a nucleocytoplasmic distribution and mislocalisation
ofOsPikh-1 abolishes the cell death response that is triggered upon
effector recognition (Zhai et al., 2014). These examples indicate
that a mis-localisation of NLRs might interfere with efficient
signalling/communication between sensor and helper NLRs or
with NLR transcriptional responses.

More examples ofNLRs that dynamically distribute between the
cytoplasm and the nucleus, and partially function inside the
nucleus, include the Solanaceae domain (SD)-containing NRC-
sensor Sw5b of tomato, which confers resistance to the tomato
spotted wilt virus (TSWV; Brommonschenkel et al., 2000;
Spassova et al., 2001). The SD domain of Sw5b is involved in
the recognition of a conserved region in the viralmovement protein
NSm of TSWV (Zhu et al., 2017), but also interacts with several
NTRs via NLSs for its localisation to the nucleus (H. Chen et al.,
2021). The nucleocytoplasmic distribution and distinct functions
of Sw5b within the cytoplasm and the nucleus are required for full
immunity. Whereas exclusively nuclear Sw5b can restrict intercel-
lular viral movement, the cytoplasmic pool is required for the
induction of a cell death response that restricts viral replication (H.
Chen et al., 2021). Whether Sw5b interacts with transcriptional
regulators inside the nucleus for defence gene induction that leads
to a restriction of viral movement is unknown, but the dependency
of Sw5b-mediated viral resistance on the NRC-helpers NRC2/3/4
has recently been revealed (Wu et al., 2017; Z. Chen et al., 2021).

Besides the roles of nuclear NLRs in host cell transcriptional
reprogramming or cell death induction, some sensor NLRs require
a nuclear localisation for the detection of effector proteins that
localise to and function inside the nucleus. The potato late blight

resistance protein R1 from Solanum demissum requires co-
localisation with the Phytophthora infestans RxLR effector AVR1
inside the nucleus for activation of cell death (Du et al., 2015). In
Arabidopsis, the ID containing TNL RESISTANCE TO RAL-
STONIA SOLANACEARUM1-R (RRS1-R) harbours a WRKY-
type TF DNA-binding domain at its C-terminus and cooperates
genetically and molecularly with the TNL RPS4 inside nuclei to
form a TNL pair. The nuclear localisation of RRS1-R and RPS4 is
consistent with their function in recognizing the activity of
pathogen effectors that manipulate defence-regulatoryWRKYTFs
(Deslandes et al., 2003; Heidrich et al., 2013; Sarris et al., 2015; Le
Roux et al., 2016). In unchallenged tissues, RRS1-R and RPS4
form a nuclear complex in which RRS1-R functions as a sensor that
represses the signalling activity of RPS4 and anchors the RRS1-R/
RPS4 complex at chromatin via itsWRKYdomain (Williams et al.,
2014; Sarris et al., 2015; Le Roux et al., 2016; Huh et al., 2017).
The DNA-bound WRKY domain of RRS1-R recognises the P.
syringae effector AvrRps4, the Ralstonia solanacearum effector
PopP2, and a yet unidentified effector of Colletotrichum higgin-
sianum (Birker et al., 2009; Narusaka et al., 2009; Tasset et al.,
2010; Sarris et al., 2015; Saucet et al., 2015; Le Roux et al., 2016).
Whereas AvrRps4 is unlikely to possess enzymatic activity (Sohn
et al., 2012), PopP2 specifically acetylates lysine residues of
multiple WRKY TFs to manipulate DNA promoter binding and
transcriptional regulation of defence genes. The PopP2 enzymatic
activity is sensed by the integratedWRKY-type domain ofRRS1-R,
resulting in the release of inhibition on RPS4 to activate NRG1s-
and ADR1s-mediated defence (Deslandes et al., 2003; Williams
et al., 2014; Sarris et al., 2015; Le Roux et al., 2016;Ma et al., 2018;
Castel et al., 2019). As the RRS1-R TIR domain is lacking NAD+

enzymatic activity, it requires the catalytically active TIR domain of
RPS4 for signalling upon effector-induced RPS4 TIR domain
homo-oligomerisation (Williams et al., 2014; Horsefield et al.,
2019; Wan et al., 2019). Whether nucleotide-based small
molecules are generated inside the nucleus and/or in the cytoplasm
upon redistribution of a potential signalling active RPS4 resisto-
some, andwhether the TIR enzymatic activities in different cellular
compartments have spatially distinct signalling functions in disease
resistance and cell death, still needs to be determined for RPS4 and
other nuclear TNLs. AsTIRdomains can function as nucleases that
produce 20,30-cAMP/cGMP from DNA/RNA upon effector
recognition, a nuclear localisation of RRS1-R and RPS4 may
directly induce DNA/RNA degradation upon disturbance of the
transcriptional machinery by effectors at chromatin level.

Notably, At RRS1-R and RPS4 also reside in the cytoplasm but
accumulate in the nucleus upon pathogen recognition (Deslandes
et al., 2003; Wirthmueller et al., 2007; Heidrich et al., 2011),
suggesting thatNLRs exhibit a degree of effector-triggeredmobility
as well as functional cooperativity of both subcellular NLR pools.
This idea is supported by the finding that forced nuclear
localisation of AvrRps4 abolishes cell death responses but retains
RPS4-mediated bacterial resistance. AvrRps4, when excluded from
either compartment, fails to induce transcriptional reprogramming
of defence genes normally observed in the presence of the effector.
Thus, cooperativity of cytoplasmic and nuclear functions of RPS4
is required for full activation of immunity (Wirthmueller et al.,
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2007; Heidrich et al., 2011) and may potentially involve
compartment specific TIR enzymatic activities.

In addition to WRKY-domain-containing NLRs there are
several BED-domain containing NLRs encoded in wheat and rice
genomes that could potentially have a function inDNA/chromatin
binding inside nuclei (Yoshimura et al., 1998; Das et al., 2014;
Marchal et al., 2018). Indeed, the BED domain-containing rice
NLR Xa1 directly interacts with the TF OsERF101 which is
implemented in the recognition of transcription activator-like
(TAL) effectors of Xanthomonas oryzae pv oryzae inside the nucleus
(Yoshihisa et al., 2021).Moreover, BEDdomain-containingNLRs
that are required for pathogen resistance inwheat contain predicted
NLSs, raising questions of whether these NLSs mediate nuclear
import and whether they are required for NLR functionality in
immunity (Marchal et al., 2020). The presence of NLS signatures
on an NLR suggests that it may recognise nuclear effector activities
or is involved in transcriptional processes in association with
transcriptional regulators or chromatin.

Using NLS prediction tools on the RefPlantNLR dataset
(Kourelis et al., 2021b) to detect NLRs that may undergo classical
importin-a dependent nuclear transport resulted in the identifi-
cation of several NLRs predicted to shuttle into the nucleus (Fig. 4;
Supporting Information Dataset S1). This includes the known
nuclear NLRs AtRRS1-R/AtRPS4, HvMLA10 and OsXa1.
Whether the predicted NLSs are functional and lead to a nuclear
or nucleocytoplasmic localisation requires experimental validation.
As some reported nucleocytoplasmic/nuclear NLRs (e.g. AtSNC1)
do not score high for canonical NLSs, alternative localisation
signals and importin-a independent nuclear transport pathways
might be required for these NLRs. In general, NLRmobility across
cellular compartment borders might broaden the cellular surveil-
lance capacities of sensor NLR for pathogen effectors and extend
the effector detection and downstream signalling capabilities of the
cellular NLR network.

VI. The nuclear transport machinery directly
contributes to the regulation of NLR-mediated plant
immunity

The first evidence for a contribution of the nuclear transport
machinery to plant immunity was uncovered in an Arabidopsis
forward-genetic screen for mutants termed modifiers of snc1 (mos).
The mos screen identified suppressors of autoimmunity activated
by the deregulated TNL sensor variant SNC1E552K (Zhang et al.,
2003; Zhang & Li, 2005). Some identified MOS genes (i.e.
MOS3/NUP96, MOS6/IMPORTIN-a3, MOS7/NUP88 and
MOS14/TRANSPORTIN-SR) encode components of the nucle-
ocytoplasmic transport machinery, revealing that this fundamental
cellular process is important for deregulated SNC1 signalling, as
well as for basal resistance to virulent microbes and for immunity
conferred by several other NLRs (Johnson et al., 2012).

1. NTRs regulate NLR-mediated plant immune responses

Mutations in the importin-aNTRMOS6 (MODIFIEROF SNC1,
6) partially suppress the autoimmunity of snc1 and attenuate

resistance (Palma et al., 2005; Wirthmueller et al., 2015). MOS6
encodes IMPORTIN (IMP)-a3, one of nine members of the
importin-a gene family in Arabidopsis (Palma et al., 2005;
Wirthmueller et al., 2013). The expansion of the importin-a gene
family in plants and other higher eukaryotes compared with yeast,
which encodes only a single importin-a gene (Conti et al., 1998),
supposedly enables tissue- and/or stimulus-specific regulation of
nuclear protein import (Wirthmueller et al., 2013). In addition,
the presence of multiple paralogues may effectively buffer
signalling pathways against pathogen interference or mutations.
In plants, there are examples of functional redundancies among
importin-a family members for certain cargo proteins, but there is
also evidence for cargo selectivity (L€udke et al., 2021a). Examples
of importin-a binding selectivity of transported cargo clients
includes NLR proteins and downstream signal transducers. For
instance, the truncated NLR protein TN13 interacts with MOS6/
IMP-a3 but not with its closest homologue IMP-a6 (Roth et al.,
2017). Consistent with the genetic dependency of snc1 autoim-
munity on functional MOS6, and with the requirement of the
nuclear pool of autoactive SNC1E552K for the snc1 autoimmune
phenotypes (Cheng et al., 2009; Wiermer et al., 2010; Xu et al.,
2014b), SNC1 forms nuclear import complexes with MOS6 in
planta, but only weakly associates with the other isoforms (L€udke
et al., 2021b). Considering the high sequence similarity of the
cargo-NLS binding sites among the Arabidopsis a-importins
(Wirthmueller et al., 2013, 2015), it is surprising that MOS6
preferentially associates with SNC1 and TN13, and that only
mutations in MOS6, but in none of the other importin-a genes,
suppresses snc1 nor causes defects in basal immunity (Palma et al.,
2005; Roth et al., 2017; L€udke et al., 2021b). Stimulus-induced
transcriptional and posttranslational modulation of importin-a
protein levels and NLS binding activities, respectively, may be
potential mechanisms to allow importin selectivity (Christie et al.,
2016). However, the specificity determinants that could explain
the high preference of NTRs are not known and functional
evidence on how and towhat extend plants actively regulate nuclear
protein import kinetics and specificities in response to environ-
mental and developmental signals remains poorly understood.

Whereas MOS6/IMP-a3 is likely to mediate nuclear import of
SNC1 and positively regulates the autoimmunity of snc1, the
importin-b NTR KA120 constrains the nuclear accumulation of
SNC1 to prevent SNC1-dependent autoimmunity (Jia et al., 2021).
Inside the nucleus, autoactive SNC1 associates with TPR1 and other
related transcriptional corepressors to repress the expression of negative
immune regulators, therefore activating immunity (Zhu et al., 2010).
A recent study found that the nuclear export activity of the exportin
XPO4 antagonises the accumulation of TOPLESS (TPL) and TPR
proteins inside the nuclei of constitutive expresser of PR genes5 (cpr5)
plants, therebymodulating SA-dependent autoimmune responses that
are activated in the cpr5 nucleoporin mutant (please refer to the
following section for further details on CPR5 functions in NLR
dependent immunity; Xu et al., 2021).

Another NTR gene that was identified from the mos genetic
screen is MOS14, which encodes the importin-b superfamily
protein TRANSPORTIN (TRN)-SR. Consistent with MOS14
permitting nuclear import of serine/arginine-rich (SR) splicing
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factors,mos14mutant plants show specific splicing defects of SNC1
and RPS4 transcripts and, accordingly, are compromised in snc1-
and RPS4-dependent (auto-)immunity (Xu et al., 2011). It is
unknownwhether the overall decreased accumulation of SNC1 and
RPS4 transcripts observed in mos14 is caused by nuclear retention
or the elevated decay of aberrantly processed mRNAs. Another
nuclear MOS protein implicated in RNA metabolism is the
predicted RNA-binding proteinMOS11. The functional relation-
ship of MOS11 and MOS14 is unclear. MOS11 appears to

function in nuclear export of mRNAs, including transcripts that
encode positive regulators of the snc1 autoimmune pathway
(Germain et al., 2010).

2. NPC integrity is a requirement for regulating NLR-
mediated plant immune responses

The mos screen also revealed regulatory roles of the NPC in NLR
mobility and in spatial coordination of resistance pathways
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between the cytoplasm and the nucleus, which appear to provide
plants with a flexible system to control and/or fine-tune defence
outputs.MOS7 encodes ArabidopsisNUP88 and the complete loss
of its function is lethal (Cheng et al., 2009). Themos7-1mutation is
a partial loss-of-function allele resulting in a four amino acid
deletion that impairs its interaction with NUP98A/B, two FG-
NUPs involved in regulating the NPC permeability barrier
(Genenncher et al., 2016). Mos7-1 mutants show broad defects
in immunity to biotrophic, hemi-biotrophic and necrotrophic
bacterial, fungal and oomycete pathogens, including autoimmu-
nity of snc1 and immunity mediated by both TNLs and a subset of
CNLs. Consistent with these immunity defects mos7-1 plants are
impaired in nuclear retention of the autoactive NLR SNC1E552K,
and of important nucleocytoplasmic immune regulators such as
EDS1 and the protein kinase MPK3 (Cheng et al., 2009;
Genenncher et al., 2016).

It was proposed that the wild-type MOS7 protein tethers
NUP98A/B to theNPC to attenuateNTR-mediated nuclear export
of defence regulators, therefore promoting their nuclear accumula-
tion and immune response activation (Genenncher et al., 2016).
Because NTR conformations can be influenced by specific cargos,
and the NTR–cargo conformation can determine the binding sites
within the central transport channel, and therefore the export route
of transport complexes through the NPC (Wu et al., 2001; Yang
et al., 2004; Kubitscheck et al., 2005; Wohlwend et al., 2007; Ma
et al., 2012),we speculate that certain immune regulatory cargosmay
impose a NTR conformation that depends on binding to NUP98/
MOS7 for nuclear retention. Therefore, MOS7 may be involved in
signal integration and crosstalk regulation of multiple defence
pathways to modulate plant immune responses at the level of cargo
translocation across the NPC.

Whereas themos7-1mutation compromises plant (auto)immune
responses, mutation of the plant-specific transmembrane nucleo-
porin CPR5 results in autoimmunity and spontaneous cell death
(Bowling et al., 1997). CPR5 is implicated as a regulatorymodule of
nuclear pore permeabilisation duringNLR-mediated immunity and
cell death (Gu et al., 2016). In uninduced tissues, CPR5 forms
homo-oligomeric complexes at the NPC and behaves as a negative
regulator of NLR-mediated immunity and HR cell death.
Nucleotide-binding leucine-rich repeat immune receptor signalling
is proposed to disrupt CPR5 oligomer formation and therefore the
NPCs selective permeability barrier. This not only provides nuclear
access for stress signals, but also allows the dissociation of cyclin-
dependent kinase inhibitors (CKIs) from the NPC to permit their
nuclear translocation for noncanonical activation of immune gene
expression (Wang et al., 2014; Gu et al., 2016). Therefore, there is
evidence that, upon activation of NLR-mediated immunity, the
NPC undergoes a conformational change and has an active
regulatory role in coordinating nucleocytoplasmic transport and
signal transduction for the activation of immunity. Intriguingly, the
mos7-1mutation rescues autoimmunity of cpr5, suggesting that the
CPR5-gated nuclear influx of stress signal transducers requires
subsequent MOS7-mediated nuclear cargo retention to mount
sufficient (auto)immunity and cell death (Gu et al., 2016).

Several members of the Arabidopsis NUP107-160 NPC sub-
complex also play important roles in plant (auto)immune

responses. For example, a mutation in Arabidopsis NUP96 was
identified and namedMOS3 (Zhang & Li, 2005). The evolution-
ary conserved NUP107-160 complex is the largest subcomplex of
the NPC, comprising approximately one-fourth of the c. 40
constituent NUPs (Tamura et al., 2010; Tang et al., 2020; Kang
et al., 2022). Further forward- and reverse-genetic approaches in
Arabidopsis have uncovered additional NUP107-160 complex
members as components of the plant immune system, some of
which appear to connect cell surface PRR-triggered and intracel-
lular NLR-triggered defence signalling branches (Wiermer et al.,
2012; Du et al., 2016). For example, NUP85 is required for the
autoimmunity and spontaneous cell death activated by the
simultaneous loss of the RLK BRI1-ASSOCIATED KINASE1
(BAK1) and its closest homologue BAK1-LIKE1 (BKK1;He et al.,
2007; Du et al., 2016). The bak1 bkk1 double mutant phenotypes
also depends on the NUP107-160 complex members NUP160,
MOS3/NUP96 and SEH1, as well as on the NUP107-160
complex associated DEAD-box RNA HELICASE1 (DRH1) that
is required for nuclear mRNA export. By contrast, mutations in
other NUP107-160 complex members did not suppress bak1
bkk1-induced autoimmune responses (Du et al., 2016). This
selective involvement in bak1 bkk1-triggered autoimmunity is
consistent with the genetic requirement of NUP160, MOS3/
NUP96 and SEH1 in surface receptor-triggered defence responses
to virulent P. syringae bacteria (Wiermer et al., 2012). NUP160,
MOS3/NUP96 and, to a lesser extent, SEH1 are also important for
snc1-dependent autoimmunity and immunity mediated by other
TNLs against avirulent pathogen isolates (Zhang& Li, 2005; Roth
&Wiermer, 2012;Wiermer et al., 2012), further highlighting that
transport processes across the NPC are potential integration and
convergence points in PRR- and NLR-mediated signal transduc-
tion. As a mutation inMOS7 but not in the ArabidopsisNUP107-
160 complex members NUP85, NUP160 and NUP96 rescues the
cpr5 autoimmune phenotype (Gu et al., 2016), there may be a
differential requirement for certain members of the NPC in
immune response regulation.

The induction of a cell death response in bak1 bkk1 double
mutants, its genetic dependency on certain nucleoporins, and the
finding that certain NUPs control the NPC permeability during
NLR-mediated signalling, suggests that the protein abundance of
the RLKs BAK1 and BKK1 at the plasma membrane is monitored
by an NLR sensor. Indeed, the autoimmune and cell death
phenotypes of bak1 bkk1 depend on the ADR1 family of helper
NLRs (Wu et al., 2020). Accordingly, depletion of activated BAK1
and its paralogues by the P. syringae effector protein HopB1 also
triggers an AtADR1-dependent cell death response (Wu et al.,
2020). In a recent preprint, the TNL protein AtCSA1 and the
genetically linked AtCHS3 were uncovered as components of
autoimmune responses triggered by the loss of BAK1 and BAK1-
INTERACTING RECEPTOR3 (BIR3), suggesting that the
AtCSA1–AtCHS3 pair is involved in guarding the cellular
homeostasis of a BAK1/BIR3 receptor complex at the cell surface
(Schulze et al., 2021). Whereas the bak1 bkk1 cell death is fully
dependent on the ADR1 family of helper NLR proteins, the cell
death of bak1 bir3 also requires the NRG1 helper NLR family,
consistent with AtCHS3 being AtNRG1 dependent (Schulze et al.,
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2021). These findings are also in line with several recent reports
describing the mutual potentiation and functional interdepen-
dence of PRR- and NLR-mediated immunity in plants, which
appear to bemodulated by the nuclear traffickingmachinery (Ngou
et al., 2021; Pruitt et al., 2021; Kourelis et al., 2021a; Yuan et al.,
2021a). Accordingly, PRR- andNLR-mediated immune responses
rely on the transcriptional reprogramming of a similar set of genes
inside the nucleus, and defects in certain members of the NPC and
the nucleocytoplasmic transport machinery affect both pattern-
and effector-triggered immune responses. It therefore appears
plausible that some signalling cascades initiated from activated
PRRs and NLRs converge at the level of the NPC when a common
defence signal is transmitted into the nucleus for conversion into
transcriptional responses. Whether the nuclear transport machin-
ery is involved to the same extent in mediating immunity in
pathogen-infected and -uninfected neighbouring/systemic cells
remains to be investigated.

VII. Conclusions

In the past few years, considerable progress has been made in
understanding how intracellular NLR immune receptors relay
effector perception into host cell death and pathogen resistance.
Recent structure–function analyses of tetrameric TIR holoenzyme
formation by pathogen-activated sensor TNLs, pentameric pore
formation at the host plasma membrane by the activated MADA
motif-containing singleton CNLs AtZAR1 and wheat Sr35, as well
as the studies on CCR-type helper NLRs NRG1 and ADR1,
provide exceptional new insights into NLR resistosome signalling
events. However, plant NLRs locate to different cellular compart-
ments, including the plasma membrane, ER, cytoplasm and
nucleus, and additional research is required to reconcile these
localisations with NLR activation and resistosome formation.
Therefore, key questions that remain unanswered are whether
activated helper NLR resistosomes target other membrane-
enclosed compartments such as the ER or the ONM and INM
of the NE for perturbing cellular ion homeostasis via pore
formation. Another pressing question is whether TNL holoen-
zymes are enzymatically active in the cytoplasm and/or the
nucleoplasm and whether their catalytic products require signal
transmission across cellular compartment borders for the induction
of transcriptional defences and/or host cell death mediated by
helper NLRs. As at least a subset of sensor NLRs directly interacts
with transcription factors and initiates transcriptional changes
within the nucleus, yet still genetically requires the function of
helper NLRs in some cases, a deeper understanding of the
connection and the molecular signalling mechanisms between
sensors and corresponding helper NLRs across compartment
boundaries is required. Therefore, investigating spatially and
temporally resolved in vivo pre- and postactivation NLR dynamics
and complex formations with downstream signalling components
such as the lipase-like proteins EDS1, PAD4 and SAG101 will be
another future research challenge towards a deeper understanding
of NLR-mediated immune signalling and its interplay with surface
receptor-triggered defences at subcellular resolution. To this end,
the NPC and its associated transport machinery provide both

intracellular and surface receptor defence branches with a highly
selective and tunable system to mediate signal integration and
communication between the nucleus and the surrounding cyto-
plasm for the induction of defence responses.
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