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1 IntrodutionA bus network is a ommuniation network in whih the nodes (representingnodes of a physial network) are onneted by a set of shared buses (rep-resenting the ommuniation media). These networks have been onsideredin the literature and are usually modelled by hypergraphs (see [1℄ [3℄ [12℄).They have also gained interest reently in optial networks (see [2℄ [11℄ [13℄[14℄ [15℄).Here we are interested in strutured ommuniation problems, and inpartiular, gossiping. Gossiping in a network refers to the proess of dis-seminating the information from all the nodes in a given bus network to allthe other nodes. We will also onsider broadasting, where a given node hasto send its information to all the other nodes, and aumulation, where onenode wants to know (aumulate) all the information from the other nodes.The time required to perform a protool will depend on the model used. Herewe �rst suppose that we are in the �store and forward" model (also alled�paket swithed"), where a node an only send the ontent of a message af-ter it has reeived the whole message; so an intermediate node has to �store"the message before being able to �forward" it.We also assume that the network funtions in some synhronous way;more exatly, the protool onsists of steps, and, during one step, messagesare transmitted from ertain nodes to ertain other nodes on buses. Wesuppose furthermore that, during one step, a bus an arry at most onemessage.Finally, we onsider the �1-port hypothesis", where during one step, anode an either send or reeive (but not both at the same step) on at mostone bus. We will denote g(G) (resp. b(G), a(G)) the minimum gossipingtime (resp. broadasting time, aumulation time) of a bus network G underthe 1-port model, that is the minimum number of steps required to perform agossip (resp. broadast, aumulation) protool in G under the 1-port model.Various results have been obtained on these parameters. For example, in [7℄the following result was obtained.
max{⌈log2n⌉, ⌈n/m⌉} ≤ g(G) ≤ min{n − 1, (l − 1)D∆} + 2⌊n/l⌋,2



where G is any bus network of order n, maximum degree ∆, and diameter
D, having m buses and maximum bus length l. (The length of a bus is thenumber of nodes on the bus.)If we restrit the struture of the bus networks in question, then thebounds an be improved substantially.A bus network in whih any subset of verties of size l ≤ k, where k ≥ 2is a onstant, is onneted by a shared bus of length l, is alled a ompletebus network. It was proved in [5℄ that if G is a omplete bus network, then
g(G) ≤ clog2n + logkn + O(1).Here we are interested in mesh bus networks. These networks have beenextensively studied and shown to be e�ient for many algorithms, in parti-ular routing, sorting (see [9℄) and gossiping (see [4℄ and [6℄).A mesh bus network of dimension d, denoted M(n1, n2, ..., nd), is a hy-pergraph where the vertex set is {(x1, x2, ..., xd) : xi ∈ {1, 2, ..., ni}} and anedge ontains the nodes whih agree on all oordinates but one. Let Md

n bea mesh bus network of dimension d, where ni = n, 1 ≤ i ≤ nd.In [8℄, it is proved that b(Md
n) = d,

⌊n/2⌋ + ⌈log2n⌉ ≤ g(M2
n) ≤ ⌊n/2⌋ + 2⌈log2n⌉ + 1, and

⌊n/d⌋ + ⌈(d − 1)log2n⌉ ≤ g(Md
n) ≤ ⌈n/d⌉ + 2(d − 1)⌈log2n⌉ + 3d − 3.In this paper we present the following improved bounds for gossiping inmesh bus networks (this question was asked in [7℄). First we gave results onaumulation time and then we use them to obtain the improved bounds forgossiping. In the 2-dimensional ase, we obtain some exat answers or verylose bounds.Theorem 1.1If n is even, a(M2

n) = n/2 + ⌈log2n⌉If n is odd, a(M2
n) = (n − 3)/2 + ⌈log23n⌉Theorem 1.2If n is even, n/2 + ⌈log2n⌉ + 1 ≤ g(M2

n) ≤ n/2 + ⌈log2n⌉ + 2.If n is odd, (n− 1)/2+ ⌈log2(3n)⌉ ≤ g(M2
n) ≤ (n− 1)/2+ ⌈log2(3n)⌉+1.Note that the upper bounds of Theorem 1.2 follow from Theorem 1.1and the fat that we an realize a gossiping protool by �rst performing an3



aumulation protool, and then performing, in two steps, a broadastingprotool from the node at whih the information has been aumulated. Wewill all suh a vertex whih knows all the information of the other nodes anexpert node or an expert. The lower bounds will be obtained in Setion 2.In some ases we an improve the lower bounds and obtain exat answers.Theorem 1.3If n = 2k, then g(M2
n) = n/2 + log2n + 2.If 3n = 2k − 1, then g(M2

n) = (n + 1)/2 + ⌈log2(3n)⌉.For d-dimensional mesh networks, we have the following results.Theorem 1.4 For d ≥ 3, ⌊n/d⌋ + ⌈log2(d + r)nd−1⌉ ≤ a(Md
n) ≤ ⌊n/d⌋+

(d−1)⌈log2n⌉+⌈log2(d+r)⌉+d−2, where n = qd+r, 0 ≤ r < d.In the d-dimensional ase, the expert an �nish broadasting in d steps.Thus we obtain the following upper bounds for the gossiping time.Theorem 1.5 For d ≥ 3, g(Md
n) ≤ a(Md

n) + d.2 Lower boundsIn this setion we give lower bounds for the minimum aumulation andgossiping times in the d-dimensional mesh bus network Md
n , under the 1-porthypothesis. We begin with some general lemmas onerning aumulationand gossiping times in arbitrary bus networks under the 1-port hypothesis.Lemma 2.1 Under the 1-port hypothesis, the minimum gossiping time forany bus network is at least one more than the minimum aumulation timefor that network.Proof. Let G be a bus network, and let a(G) denote the minimum aumu-lation time in G. Then in any gossiping algorithm for G, no vertex knowsall the information before step a(G). Therefore the gossiping time for G isat least a(G). However, at least one vertex must send a message during step

a(G); this vertex annot reeive during step a(G), and in partiular annotreeive its last message during this step. Sine it annot have reeived its lastmessage any earlier (by de�nition of a(G)), it must reeive its last messageduring or after step a(G) + 1. The lemma follows.4



Lemma 2.2 Suppose that in an aumulation algorithm for a network Gunder the 1-port model, there is a set A of verties none of whih has sentany message in the �rst s steps. Then at least log2|A| more steps are neededto omplete the aumulation algorithm. Furthermore, if |A| = 2p or 2p − 1,then at step s + p, there are at most L− 1 experts, where L is the maximumlength of buses in G.Proof. For the �rst part, it su�es to prove that at step s + p an arbitraryvertex v an have reeived information from at most 2p − 1 elements of A,where p < ⌈log2|A|⌉. Let u be the vertex whih sends to v at step s + p.Reall that v an reeive from at most one vertex at eah step.If p = 1, the result follows from the fat that even if u belongs to A, udoes not know that information from any other element of A; so the messageit sends to v ontains at most one piee of information from A.Let p > 1. By indution, u has reeived the information from at most
2p−1 − 1 elements of A before step s + p. So at step s + p, u an send to
v at most 2p−1 (the information it reeived plus its own if it belongs to A)piees of information from A. Hene v has reeived at most 2p−1 − 1 (beforestep s + p) plus 2p−1 (at step s + p) piees of information from A, that is alltogether 2p − 1.It is not di�ult to see that if |A| = 2p, then only one vertex of A anbe expert after step s + p as this expert an not have sent its informationto any other verties. It is also lear that none of the verties outside A anbeome experts either.Now suppose |A| = 2p − 1. Observe �rst that any vertex whih hasreeived 2i−1−1 piees of information from A during steps s+1, . . . , s+ i−1,where 1 ≤ i ≤ p, annot have sent any messages during steps s + 1, . . . , s +
i − 1. Moreover, any vertex whih knows 2i−1 piees of information from Aat the end of step s + i − 1 must itself belong to A.Consider a vertex v whih beomes an expert at the end of step s + p. If
v has never sent out its information, then it is the unique expert. Otherwisewe have two ases to onsider.If v ∈ A and v sent out its information, then it must have sent its infor-mation at step s + 1 (otherwise, the total number of piees of informationit ould have reeived from A by the end of step s + p would be at most(2p − 1) − 2, and it would not be an expert). Furthermore, v should have5



reeived 2p−1 piees of information of A from some vertex u at step s + p.If v /∈ A, then it should have also reeived 2p−1 piees of information of
A from some vertex u at step s + p.By the observation above, in both ases, u ∈ A and u has not sent itsinformation in the �rst s + p − 1 steps.Now suppose that two verties v and v′ are experts at the end of step
s + p. Let u and u′ be the two verties from whih v and v′ reeived theinformation at step s + p. Then it is neessary that u = u′ as otherwise
v would not learn the information of u′ and so it would not be an expert.Hene the experts an be informed at the last step by a unique vertex u of Aand they are all on the same bus ontaining u. Therefore the total numberof experts is at most L − 1.We now give a lower bound for the aumulation time in Md

n .Lemma 2.3 Let n = qd + r, 0 ≤ r < d.Then a(Md
n) ≥ q − 1 + ⌈log2(d + r)nd−1⌉.Proof. Sine Md

n has dnd−1 buses (nd−1 in eah dimension), at most dnd−1messages an be sent during any single step (reall that by the hypothesis,a bus an arry at most one message per step). After q − 1 steps, where
q = ⌊n/d⌋, at most (q − 1)dnd−1 verties have sent their messages. Let Abe the set of verties whih have not sent any messages before step q. Thenwe have |A| ≥ nd − (q − 1)dnd−1 = (d + r)nd−1. So by Lemma 2.2 we needat least ⌈log2|A|⌉ steps to omplete the aumulation algorithm and hene,
a(Md

n) ≥ q − 1 + ⌈log2(d + r)nd−1⌉.Using Lemma 2.1, we dedue the following orollary.Corollary 2.4 g(Md
n) ≥ q + ⌈log2(d + r)nd−1⌉.In the speial ase d = 2, Lemma 2.3 and Corollary 2.4 an be statedexpliitly as follows.Lemma 2.5 If n is even, a(M2

n) ≥ n/2 + ⌈log2n⌉and g(M2
n) ≥ n/2 + ⌈log2n⌉ + 1.6



If n is odd, a(M2
n) ≥ (n − 3)/2 + ⌈log2(3n)⌉and g(M2
n) ≥ (n − 1)/2 + ⌈log2(3n)⌉.In the ase d = 2 and n = 2k or 3n = 2k − 1, the bounds in Lemma 2.5for gossiping an be further improved.Lemma 2.6 If n = 2k, g(M2

n) ≥ n/2 + ⌈log2n⌉ + 2.If 3n = 2k − 1, g(M2
n) ≥ (n − 1)/2 + ⌈log23n⌉ + 1.Proof. Let n = 2k. From the proof of Lemma 2.3, there will be a set ofverties of size at least 2n whih have not sent out any information duringthe �rst n/2 − 1 steps. From the proof of Lemma 2.2, there will be at mostone expert after step n/2 + ⌈log2n⌉ (= n/2 − 1 + ⌈log2(2n)⌉) and Lemma2.5 guarantees that there is no expert before that step. Clearly, at least twomore steps are required to omplete the gossip, as the unique expert needstwo steps to broadast its messages to the others.Let 3n = 2k−1. Here n is odd and from the proof of Lemma 2.3, there willbe a set of verties of size at least 3n whih have not sent out any informationduring the �rst (n − 3)/2 steps. From Lemma 2.2 and 2.5, there will be atmost n − 1 experts after step (n − 3)/2 + ⌈log2(3n)⌉. Again two more stepswill be required to omplete gossiping.3 Upper bounds for d = 2In this setion we �rst give the proof of Theorem 1.1, determining a(M2

n),the exat values of the aumulation time of M2
n. From this we dedue anupper bound for the gossiping time in M2

n. It su�es to onsider a gossipingprotool obtained by �rst applying an aumulation protool in time a(M2
n),followed by a broadast, whih an be done in two steps.Theorem 3.1 g(M2

n) ≤ a(M2
n)+2 =

{

n/2 + ⌈log2n⌉ + 2, n even,
(n − 3)/2 + ⌈log2(3n)⌉ + 2, n odd.When n = 2k or 3n = 2k − 1, by Lemma 2.6 and Theorem 3.1 we haveTheorem 1.3, whih determines the exat gossiping time in M2

n for the given
n. 7



Before we present the proof of Theorem 3.1, we will give some morede�nitions and notations.In what follows we will label the verties of M2
n with ordered pairs (x, y),using �matrix notation", where x is the row index and y is the olumn index.Reall that M2

n ontains 2n buses, with n in eah dimension. We refer tothose buses in the �rst dimension (that is, those buses of the form {(α, y) :
1 ≤ α ≤ n}, where y is �xed) as vertial buses, and those in the seonddimension as horizontal buses.Our protool will follow from the way we obtained the lower bound. The�rst stage onsists of ⌊n/2⌋ − 1 steps during whih the information from
M2

n will be olleted inside an intermediate set An whih must satisfy therequirement:
• In eah step of the �rst stage, it is feasible to send 2n di�erent messagesfrom M2

n to An.Observe that if our protool is to be optimal, then the set An must alsosatisfy:
• |An| = 2n if n is even, and |An| = 3n if n is odd.In the seond stage, the information now onentrated in An will beaumulated at a �xed vertex of An, whih in fat will always be the vertex

(1, 1). This leads to a third requirement:
• During the seond stage, the information lying inside An an be au-mulated at (1, 1) in ⌈log2(|An|)⌉ steps (and of ourse we need (1, 1) ∈

An).To satisfy the above property, at eah step of an aumulation algorithmfor An, the number of verties whih have not yet sent their information to
(1, 1) must be halved. In other words, at eah step, one half of these vertiesmust send their information to the other half. It is worth bearing this inmind when the sets An are de�ned. 8



Now observe that if, in the �rst stage, we wish to send 2n messagesduring a single step, then we must send n messages from M2
n to An alongthe horizontal buses and n more along the vertial buses. Consequently, theset An must ontain at least one vertex from every horizontal bus and onevertex from every vertial bus. In addition, the verties from whih the 2nmessages originate must be suitably plaed in M2

n. A transversal of M2
n, thatis, a set of n verties interseting eah bus in a single vertex, is a partiularlyuseful on�guration in this respet, sine the elements of a transversal anall send their messages simultaneously, either horizontally or vertially. It iswith this in mind that we make the following de�nitions.De�nition 3.2 Let S be any set of verties in M2

n of the form
S = {(a + α, b + β) : 1 ≤ α, β ≤ s},for some hoie of a, b and s. We say a subset T of S is a transversal of S if

T ontains a unique vertex of eah bus whih intersets S. It is not di�ultto verify that every suh set S an be partitioned into transversals.We use T (S, i), 1 ≤ i ≤ s, to denote a partition of the elements of S intotransversals. We will always assume that T (S, 1) = {(a+ α, b +α) : 1 ≤ α ≤
s} (the diagonal elements of S), but otherwise the hoie of the transversalsis arbitrary.Notation 3.3 We say f i

h(X) = Y (or f i
h : X → Y ) if at step i of thealgorithm, the verties in X send their information to the verties in Yalong horizontal buses. Clearly this presupposes that X and Y satisfy |X| =

|Y |, and that X and Y interset the same set of |X| horizontal buses. Thenotation f i
v(X) = Y (or f i

v : X → Y ) is analogous, the messages being sentalong vertial buses in this ase.Finally, we make the following de�nitions in order to failitate the de-sription of ertain subsets of verties of M2
n.De�nition 3.41. We use Ta,b to denote the following translation:

Ta,b((x, y)) = (x + a, y + b), and
Ta,b(X) = {(x + a, y + b) : (x, y) ∈ X} for a set X of verties.9



2. We use Ds to denote the �rst s elements of the main diagonal in M2
n ;that is,

Ds = {(α, α) : 1 ≤ α ≤ s}.Note that for the set S of De�nition 3.2, T (S, 1) = Ta,b(Ds).Proof of Theorem 3.1We are now ready to present the proof of Theorem 3.1. We will dividethe proof into three ases, aording to whether n is a power of 2, n is even,or n is odd. In eah ase we will de�ne a subset An of M2
n, with |An| = 2nif n is even and |An| = 3n if n is odd, and show that the information in M2

nan be sent to An in ⌊n/2⌋ − 1 steps, and that the information in An an beaumulated at (1, 1) in ⌈log2(|An|)⌉ steps.Case 1: n = 2k, k ≥ 1.We let An = Hn ∪ Vn, where
H2 = {(1, 1), (2, 2)},

H2i+1 = H2i ∪ T0,2i(D2i);

V2 = {(1, 2), (2, 1)},

V2i+1 = V2i ∪ T2i,0(D2i).Note that |An| = 2n, and that Vn ontains exatly one vertex from eahhorizontal bus while Hn ontains exatly one vertex from eah vertial bus.Lemma 3.5 If n = 2k, then the information in An an be aumulated at
(1, 1) in ⌈log2|An|⌉ = k + 1 steps.Proof. The proof is by indution on k; and the result is lear for k = 1.Observe that for eah k > 1, H2k\H2k−1 ontains exatly one vertex from eahhorizontal bus interseting H2k−1, and similarly V2k\V2k−1 ontains exatlyone vertex from eah vertial bus interseting V2k−1 .Therefore for k > 1, the information ontained in A2k\A2k−1 an be sentto A2k−1 in one step as follows. Observe that H2k\H2k−1 = T0,2k−1(D2k−1) and
V2k\V2k−1 = T2k−1,0(D2k−1), and let

f 1
h : T0,2k−1(D2k−1) → V2k−1, 10



and
f 1

v : T2k−1,0(D2k−1) → H2k−1.Lemma 3.6 If n = 2k, the information ontained in M2
n an be aumulatedin An in n/2 − 1 = 2k−1 − 1 steps.Proof. The proof is again by indution on k, and is lear for k = 1; so welet k ≥ 2.We �rst partition M2

n into four subsets, X, P, Q and R, where X = M2

2k−1 ,
P = T0,2k−1(X), Q = T2k−1,0(X) and R = T2k−1,2k−1(X). Note that A2k =
A2k−1 ∪ T (P, 1) ∪ T (Q, 1).By indution, all information ontained in X an be olleted inside A2k−1in 2k−2 − 1 steps. We will add to eah of these steps the following transmis-sions, using only the rows and olumns of M2

n\M
2

2k−1 :
f i

h(T (R, 2i − 1)) = T (Q, 1); and
f i

v(T (R, 2i)) = T (P, 1), 1 ≤ i ≤ 2k−2 − 1.To de�ne the remaining steps, we let j = i − 2k−2 + 1.For i = 2k−2, 2k−2 + 1, . . . , 2k−1 − 2,
f i

h(T (P, i + 1)) = V2k−1 ,
f i

h(T (Q, j + 1)) = T (Q, 1));

f i
v(T (Q, i + 1)) = H2k−1 ,

f i
v(T (P, j + 1)) = T (P, 1).For i = 2k−1 − 1,

f 2k−1−1

h (T (P, 2k−1) = V2k−1 ,

f 2k−1−1

h (T (R, 2k−1 − 1)) = T (Q, 1);

f 2k−1−1
v (T (Q, 2k−1)) = H2k−1 ,

f 2k−1−1
v (T (R, 2k−1)) = T (P, 1).It is straightforward to verify that all information from M2

n has now beenolleted in An.Case 2: n even, n 6= 2k for any k.
11



Let n = 2k + r, where 0 < r < 2k and r is even. Let
Hn = H2k ∪ T0,2k(Dr),

Vn = V2k ∪ T2k ,0(Dr)and An = Vn ∪ Hn.Note that |An| = 2n. For the purpose of the proofs, we de�ne H1 = {(1, 1)}and V1 = {(1, 2)}.Lemma 3.7 If n is even, the information in An an be aumulated at (1, 1)in ⌈log2(2n)⌉ = 1 + ⌈log2n⌉ steps.Proof. In one step, we an send all information in An\A2k into A2k , via
f 1

h(T0,2k(Dr)) = Vr, and
f 1

v (T2k ,0(Dr)) = Hr.In the remaining ⌈log2n⌉ = 1 + ⌈log2(2
k)⌉ steps, we an aumulate allinformation now in A2k at (1, 1), as in Lemma 3.5.Lemma 3.8 If n is even, the information in M2

n an be aumulated in Anin n/2 − 1 steps.Proof. Reall that n = 2k+r, where 0 < r < 2k and r is even. Let s = 2k−r.Partition M2
n into the following subsets:

X = M2

2k ,

P = T0,2k(M2

r ),

Q = T2k ,0(M
2

r ),

R = T2k ,2k(M2

r ),

U = Tr,2k(M(s, r)),

W = T2k ,r(M(r, s)),where M(s, r) and M(r, s) are s by r and r by s arrays respetively. Wefurther partition eah of U and W into four �idential" quadrants; eahquadrant in U is an s/2 by r/2 array, and eah quadrant in W is an r/2by s/2 array. More preisely, we let U = U11 ∪ U12 ∪ U21 ∪ U22, where12



U11 = Tr,2k(M(s/2, r/2)), U12 = T0,r/2(U11), U21 = Ts/2,0(U11) and U22 =
Ts/2,r/2(U11). Similarly, we let W11 = T2k ,r(M(r/2, s/2)), W12 = T0,s/2(W11),
W21 = Tr/2,0(W11) and W22 = Tr/2,s/2(W11).Finally, we let U i

h be the union of the ith row of U11 and the ith row of
U22, 1 ≤ i ≤ s/2, and U j

v be the union of the jth olumn of U12 and the jtholumn of U21, 1 ≤ j ≤ r/2. We make the orresponding de�nitions for W .Note that An = A2k ∪ T (P, 1) ∪ T (Q, 1).From Lemma 3.6, the information ontained in X an be olleted inside
A2k in 2k−1 − 1 steps. During these 2k−1 − 1 steps we also perform thefollowing transmissions, whih use only the rows and olumns of M2

n\X.For 1 ≤ i ≤ r/2,
f i

h(T (R, 2i)) = T (Q, 1), and
f i

v(T (R, 2i − 1)) = T (P, 1).For r/2 + 1 ≤ i ≤ 2k−1 − 1,
f i

h(W
i−r/2
v ) = T (Q, 1), and

f i
v(U

i−r/2

h ) = T (P, 1).Thus after the �rst 2k−1−1 steps, all information from R has been sent to
An, as has that from every U i

h but one and every W i
v but one. There remain

r/2 steps in whih all rows and olumns of M2
n an partiipate; we desribethese steps below.For i = 2k−1,

f i
h(T (P, r/2 + 1)) = Vr,

f i
h(U

1
v ) = V2k\Vr,

f i
h(W

2k−1−r/2
v ) = T (Q, 1);and

f i
v(T (Q, r/2 + 1)) = Hr,

f i
v(W

1
h ) = H2k\Hr,

f i
v(U

2k−1−r/2

h ) = T (P, 1).Now let j = i − 2k−1 + 1. For 2k−1 + 1 ≤ i ≤ 2k−1 + r/2 − 1 (and, hene,
2 ≤ j ≤ r/2),

f i
h(T (P, j)) = Vr, 13



f i
h(U

j
v ) = V2k\Vr,

f i
h(T (Q, j + r/2)) = T (Q, 1);and

f i
v(T (Q, j)) = Hr,

f i
v(W

j
h) = H2k\Hr,

f i
v(T (P, j + r/2)) = T (P, 1).It is straightforward to hek that after these steps, all the remaininginformation in M2

n has been transferred to An.Case 3: n odd and n ≥ 5.Let n = 2m + 1. In this ase, we will set |An| = 3n = 6m + 3. Let
p = ⌊log2m⌋.Note that p + 3 ≤ ⌈log2(3n)⌉ ≤ p + 4, and that ⌈log2(3n)⌉ = p + 4 if andonly if 6m + 3 ≥ 2p+3 + 1, or equivalently, m ≥ 2p+2/3 − 1/3.Let Sp = {m : 2p < m < 2p+2/3 − 1/3}. We will distinguish two ases,aording to whether m ∈ Sp for some p.Case 3.1: m 6∈ Sp for any p.In this ase, there is some p for whih either

• m = 2p, so that ⌈log2(3n)⌉ = ⌈log2(6m + 3)⌉ = p + 3 as p ≥ 1, and
⌈log2(2(n − 1))⌉ = ⌈log2(4m)⌉ = p + 2,or

• 2p+2/3− 1/3 ≤ m < 2p+1, so that ⌈log2(3n)⌉ = ⌈log2(6m + 3)⌉ = p + 4,and ⌈log2(2(n − 1))⌉ = ⌈log2(4m)⌉ = p + 3.Thus if m 6∈ Sp for any p, then ⌈log2(3n)⌉ = ⌈log2(2(n − 1))⌉ + 1. Ourstrategy in this ase will onsist of de�ning An so that all the information in
An\An−1 an be sent to An−1 in one step; the aumulation within An (to
(1, 1)) will then require 1 + ⌈log2(2(n − 1))⌉ = ⌈log2(3n)⌉ steps.Case 3.2: m ∈ Sp for some p.In this ase, we will de�ne An so that the information from An\A2p+1 anbe sent to A2p+1 in one step. The aumulation within An will then require
1 + log2(2

p+1) + 1 = p + 3 = ⌈log2(3n)⌉ steps.We now de�ne An. Reall that n = 2m + 1 and p = ⌊log2m⌋, and let
2m = 2p+1 + r.We let An = A2m ∪ Em ∪ Fm, where14



Em =

{

{(i, n) : 1 ≤ i ≤ m + 2}, m 6∈ Sp

{(r + i, n) : 1 ≤ i ≤ m + 2}, m ∈ Sp;and
Fm =

{

{(n, i) : 1 ≤ i ≤ m + 1}, m 6∈ Sp

{(n, r + i) : 1 ≤ i ≤ m + 1}, m ∈ Sp.Note that |An| = 3n, as desired.Lemma 3.9 If n is odd, the information in An an be aumulated at (1, 1)in ⌈log2(3n)⌉ steps.Proof. From the above disussion, it su�es to show that if m 6∈ Sp, thenall information in An\An−1 an be sent to An−1 in one step, and if m ∈ Sp,then all information in An\A2p+1 an be sent to A2p+1 in one step.If m 6∈ Sp, we let f 1
h(Em) = Vm+2, and f 1

v (Fm) = Hm+1.If m ∈ Sp, we let f 1
h(Em∪T0,2p+1(Dr)) = Vr+m+2, and f 1

v (Fm∪T2p+1,0(Dr)) =
Hr+m+1.With regard to this last step, note that for m ∈ Sp,

r + m + 2 = 3m − 2p+1 + 2 < 2p+2 − 1 − 2p+1 + 2 = 2p+1 + 1, so that
Vr+m+2, Hr+m+1 ⊆ A2p+1 .Lemma 3.10 If n is odd, the information in M2

n an be aumulated in Anin (n − 3)/2 steps.Proof. Note that (n − 3)/2 = m − 1. From Lemma 3.8, the information in
M2

n−1 an be aumulated in An−1 in (n − 3)/2 steps. We add the followingtransmissions to these steps.For m 6∈ Sp:
f i

h((n, m + 1 + i)) = (n, 1), and
f i

v((m + 2 + i, n)) = (1, n), 1 ≤ i ≤ m − 1.For m ∈ Sp:For 1 ≤ i ≤ r,
f i

h(n, i) = (n, r + 1)
f i

v(i, n) = (r + 1, n). 15



For r + 1 ≤ i ≤ m − 1,
f i

h(n, m + 1 + i) = (n, r + 1)
f i

v(m + 2 + i, n) = (r + 1, n).In both ases it is straightforward to hek that during these extra trans-missions, all information in M2
n\M

2
n−1 has been sent to An.Finally we deal diretly with n = 3 whih is not overed above. We willshow that a(M2

3 ) ≤ 4. The aumulation protool is de�ned by the followingsteps.
f 1

h({(3, 3), (1, 3), (2, 3)}) = {(3, 1), (1, 1), (2, 1)} and f 1
v ({(3, 2)} = {(1, 2)}

f 2
v ({(2, 1)}) = {(3, 1)}

f 3
v ({(3, 1), (2, 2)}) = {(1, 1), (1, 2)}

f 4
h({(1, 2)}) = {(1, 1)}After these steps, the vertex (1, 1) learly has all the information.It is lear that the upper bounds in Theorem 1.1 follow immediatelyfrom the above lemmas. Combining with the Lemmas 2.3 and 2.5, we haveTheorems 1.1 and 1.2.4 Upper bounds for d > 2In this setion we establish an upper bound for the aumulation time, andtherefore the gossiping time, in Md

n . The aumulation algorithm is on-struted along the same lines as those of Setion 3. We will de�ne an inter-mediary set Ad
n, of ardinality 2nd−1, whih will satisfy the following.Lemma 4.1 The information in Md

n an be sent to Ad
n in at most ⌊n/d⌋ +

⌈log2(d + r)⌉ − 1 steps, where n = qd + r, 0 ≤ r < d.Lemma 4.2 The information in Ad
n an be sent to (1, 1, . . . , 1) in at most

(d − 1)⌈log2n⌉ + (d − 1) steps.This immediately yields the following result.Theorem 4.3 The aumulation time inMd
n is at most ⌊n/d⌋+(d−1)⌈log2n⌉+

⌈log2(d + r)⌉ + (d − 2). 16



Sine we an broadast the information from (1, 1, . . . , 1) to all of Md
n in

d additional steps, we have the following bound.Theorem 4.4 The gossiping time in the d-dimensional mesh bus networksatis�es g(Md
n) ≤ ⌊n/d⌋ + (d − 1)⌈log2n⌉ + ⌈log2(d + r)⌉ + 2d − 2.Constrution of the sets Ad

n and proof of Lemma 4.2For d = 2, reall that An was de�ned in suh a way that |An| = 2n foreven n, and |An| = 3n for odd n. Now as we do not want to onsider theongruene, we need a set whih looks like An, but with slight modi�ation.Let A2
n be the 2n-element set de�ned as follows:Let n = 2k + r, 0 ≤ r < 2k. Then A2

n = A2k ∪ T0,2k(Dr) ∪ T2k ,0(Dr), where
A2k was de�ned in Case 1 of the proof of Theorem 3.1.Note that |A2

n| = 2n, and that for even n, A2
n = An as de�ned in Setion3. As in the proof of Lemma 3.7 we an send the information in A2

n\A
2

2k to
A2

2k in one step, and the information in A2

2k an be aumulated at (1, 1) in
k + 1 steps. Thus we have the following lemma.Lemma 4.5 The information in A2

n an be aumulated at (1, 1) in
⌈log2n⌉ + 1 steps.Let a(Ad

n) be the (aumulation) time needed to send all information from
Ad

n to (1, 1, . . . , 1).We an view Md
n as the union of n opies of Md−1

n (and of ourse thebuses between them), where the ith opy ontains those verties whose lasto-ordinate is equal to i. If we let Ad
n be the union of n opies of Ad−1

n , one ineah opy of Md−1
n , then the information in Ad

n an be olleted at the verties
{(1, 1, . . . , 1, i) : 1 ≤ i ≤ n} in a(Ad−1

n ) steps, by applying the aumulationalgorithm for Ad−1
n in parallel. However, the verties {(1, 1, . . . , 1, i) : 1 ≤

i ≤ n} omprise one bus in Md
n ; the aumulation at (1, 1, . . . , 1, 1) will not,therefore, be optimal.Consequently, we will selet, for eah i, 1 ≤ i ≤ n, a set Ad−1

n (i) in the ithopy of Md
n , having the same aumulation properties as Ad−1

n , exept thatthe information is aumulated at a vertex (xi, yi, 1, . . . , 1, i) (or (xi, yi, i)if d = 3), whih in general is di�erent from (1, 1, . . . , 1, i). If the n ver-ties {(xi, yi, 1, . . . , 1, i) : 1 ≤ i ≤ n} are distint, then in the same step17



eah an send its information to the orresponding vertex (xi, yi, 1, . . . , 1, 1).If, in addition, the set X = {(xi, yi) : 1 ≤ i ≤ n} of n verties hasthe optimal aumulation time of ⌈log2n⌉ in M2
n, then the information in

{(xi, yi, 1, . . . , 1, i) : 1 ≤ i ≤ n} an be aumulated at (1, . . . , 1) in ⌈log2n⌉more steps.With this in mind, we make the following de�nition.De�nition 4.6 Let n = 2k + r, where 0 ≤ r < 2k. We let
X = A2

2k−1 ∪ T0,2k−1(D⌊r/2⌋) ∪ T2k−1,0(D⌈r/2⌉).Note that when n is even, X is just An/2 as de�ned in Setion 3. Clearly
|X| = n; and using a proof analogous to that of Lemma 3.7, we an showthat the information in X an be sent to (1, 1) in ⌈log2n⌉ steps.We now let Ad−1

n (i) be obtained from Ad−1
n by the permutation of thebuses in the �rst two dimensions whih sends vertex (1, 1, . . . , 1) to ver-tex (xi, yi, 1, . . . , 1), where {(xi, yi) : 1 ≤ i ≤ n} = X; and we let Ad

n =
∪n

i=1A
d−1
n (i).We now have the following:

• By indution, the information in Ad−1
n (i) an be aumulated at vertex

(xi, yi, 1, . . . , 1) in a(Ad−1
n ) steps, and these n aumulation protoolsan be applied in parallel;

• The information from the verties {(xi, yi, 1, . . . , 1, i) : 1 ≤ i ≤ n} anbe sent to the verties {(xi, yi, 1, . . . , 1) : 1 ≤ i ≤ n} in one step, andthis last set onstitutes a opy of X lying in opy 1 of Md−1
n ;

• The information in this opy of X an be aumulated at (1, 1, . . . , 1)in ⌈log2n⌉ steps.It follows that a(Ad
n) ≤ a(Ad−1

n ) + 1 + ⌈log2n⌉ steps, and using a(A2
n) =

⌈log2n⌉ + 1 we obtain Lemma 4.2.Proof of Lemma 4.1We begin by partitioning Md
n into n sets, M1, . . . , Mn, where Mi is de�nedby

Mi = {(x1, . . . , xd) :
n

∑

j=1

xj ≡ i (mod n)}.18



Note that given a �xed dimension, eah set Mi ontains exatly one vertexfrom eah of the buses in that dimension. It follows that any Mi an sendall of its information to any Mj along the buses of any given dimension;moreover, up to d suh transmissions an take plae simultaneously.Let n = qd + r, where 0 ≤ r ≤ d. During the �rst q − 1 steps ofthe algorithm, we send the information from the sets Md+1, . . . , Mqd to theverties of M1 ∪ · · · ∪ Md. To do this, at eah step we send the informationfrom d Ml's to M1 ∪ · · · ∪Md. More preisely, for j = 1, . . . , q − 1, we de�nethe following steps.
f j

i (Mjd+i) = Mi, 1 ≤ i ≤ d. (Here f j
i generalises f j

h and f j
v of Setion 3,and desribes the transmissions using buses in dimension i at step j. )After these q − 1 steps, the information from Md

n is ontained in M1 ∪
· · · ∪ Md ∪ Mqd+1 ∪ · · · ∪ Mqd+r.During the next ⌈log2(d + r)⌉ − 1 steps, this information will be sent tothe verties of M1 ∪ M2. The steps are de�ned so that if at some step j,the sets M1, . . . , Mc reeive the messages sent, then at step j + 1 the sets
M⌈c/2⌉+1, . . . , Mc will send their information to the sets M1, . . . , M⌊c/2⌋.It an be veri�ed that after step q−1+ ⌈log2(d+ r)⌉−1, the informationfrom Md

n is held by the verties of M1 ∪ M2.Finally, we transfer the information from M1 ∪ M2 to Ad
n. Observe thatbeause of the reursive de�nition, Ad

n onsists of nd−2 `permuted' opies of
A2

n, one in eah of the nd−2 opies of M2
n whose verties all agree in the last

d − 2 oordinates.Now eah of M1 and M2 ontains exatly n verties from eah opy of
M2

n, and these n verties form a (2-dimensional) transversal of M2
n. Thus if Sdenotes a �xed opy of M2

n, we an send the information in S ∩M1 to S∩Ad
nalong the horizontal buses (of dimension 1), and the information in S ∩ M2to S ∩ Ad

n along the vertial buses (of dimension 2), in one step. Moreover,horizontal buses indued by two di�erent suh sets S are vertex-disjoint, andthe same holds for the vertial buses; onsequently, we an in fat send theinformation from all of M1 ∪ M2 to Ad
n in a single step.This last step ompletes the aumulation of information from Md

n at theverties of Ad
n; the total number of steps used is q − 1 + ⌈log2(d + r)⌉ =

⌊n/d⌋ + ⌈log2(d + r)⌉ − 1This ompletes the proof of Lemma 4.1.19



Theorem 4.4 follows immediately. Combining this with Lemma 2.6, wehave the upper bound in Theorem 1.4.5 ConlusionIn the ase d = 2, we believe that the upper bounds for gossiping time inTheorem 1.1 are the exat answers. Therefore it would be interesting to �ndan argument to improve the lower bounds. In the ase d > 2, there shouldbe room to improve both bounds, but probably some new tehniques arerequired. For aumulation time, we onjeture that the lower bounds inTheorem 1.4 are the exat answers. Other than for d = 2, we an also verifythe onjeture for d = 3 and n = 3(2k), but the proof is omitted here. Onean also onsider the same problem for other bus networks or for di�erenthypothesis (see [7℄ [10℄).
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