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Language VMs are Ubiquitous

• They are everywhere: browsers, mobile phones, drones, robots…


• Banks, servers, aircrafts


• Portability, self-optimisation and adaptation, high-level services (GC)


• Java, Javascript, Pharo, PHP, Python, Ruby, C#…


• Derivates: Typescript, Scala, web assembly



Language Virtual Machines
Modern Language Implementations

Runtime Binary Translation

Hardware/System Interaction

Managed Execution

Managed Memory



Key Players

• Javascript: Safari (Apple), V8 (Google), SpiderMonkey (Mozilla)


• Java: Truffle, GraalVM (Oracle)


• .NET, C#, VB: (Microsoft)



VMs as Competitive Advantage

Large companies developed their OWN


• Hack: Facebook’s PHP


• Ruby: Shopify


• GemTalk Systems


• Netflix


• Many python, ruby are popping up



Virtual Machines
Typical Architecture Overview

cold code
hot spot

detection hot code

Interpreted

Execution

Machine

Execution

Managed Memory
VMs: auto-adaptive 

systems



Compiler Pipeline Example
source code - to - bytecode interpreter. 
Example: arithmetics

a + b
push a

push b

send +

send_+(op1, op2){

if (isInteger(op1) && isInteger(op2)) {


r = op1 + op2;

if (!overflow){


return push(r);

}


}

send_message(+)


}

source code bytecode interpreter code



Interpreter and Compiler Semantics



https://webkit.org/blog/10308/speculation-in-javascriptcore/

A concrete example: Javascript core
Multiple levels 
Different representations 
Engineering cost!



Quid Complexity and Cost of VMs?
Apple’s	Safari	JavascriptCore[2021]

Google’s	v8	TurboFan

https://webkit.org/blog/10308/speculation-in-javascriptcore/ 
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8

https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8


Managed Execution
Remarkable Challenges

• Challenge 1: What are optimal organisations of multi-tier engines?


• Combining interpreters with many levels of optimising compilers


• Challenge 2: What is a better/minimal runtime support for developer 
tooling?


• Better debugging support


• Runtime (speed, energy…) profiling


• Benchmark automatic generation



Runtime Binary Translation
Remarkable Challenges

• Challenge 3: How can runtime-compilers better speculate on application 
behaviour?


• Speculate on more than types


• Speculate for more than speed


• Challenge 4: How can we improve the efficiency of cold code?


• Better interpreter optimisations


• Low overhead binary translators

VMs are auto-adaptive systems



Managed Memory
Remarkable Challenges

Challenge 5: How can managed memory adapt to memory consumption 
patterns?


• Scalability to multi-TB heaps


• Automatically memory re-organisation


• Reduce pauses


• Support for modern hardware (e.g., disaggregated memory, non-volatile memories)


• encrypted memory (arm trustzone/intel sgx), compressed memory


• OS and System VM Interations



Hardware/System Interaction
Remarkable Challenges

Challenge 6: How can modern VMs exploit hardware-software co-
design?


• Automatic deport computation to dedicated hardware


• GPU


• FPGA


• Extensible ISAs (e.g., RISC-V)



Cross-Cutting Challenges
(And Contradictory Challenges!)

Energy Consumption

Execution Speed

Correctness

Modularity

Security



• Security threats of multi-tier execution engines


• Speculative runtime compilation for frugal systems 

• Profile-guided detection of application parallelisation opportunities


• Securing VMs through dedicated hardware


• Minimising energy impact of garbage collection algorithms

Cross-Cutting Challenges
Selected Challenges



• Automatic detection of performance regressions


• Automatic validation of multi-tier execution engines


• Controling the construction COST of efficient JIT compilers

Selected Software Engineering Challenges



AlaMVic: a generative approach

- implementation native
- autogenerée

Slang -> C Compiler

Virtual Machine + Simulateur

Production Virtual Machine

Interprète Bytecode

- autogenerated

Garbage Collector + 
Representation Objet

- autogenerated

Compilateur JIT

- autogenerated

- État: non-existent

JIT compiler compilerInterpreter compiler

AlaMVic: Virtual Machine Distiller

Garbage Collector 
Composer

Language
Specification

Hints / Heuristics

energy space speed

Benchmark /
Evaluation
Platform

energy space speed
energy

space speed

• Compiler generation 

• Exchangeable 
components 

• Optimization 
heuristics 

• Open exploratory 
platform



• JIT for Apple M1, Windows, Raspberry ARM 64bits in production


• Helping ENSTA Bretagne to develop a RISC-V JIT 


• Streamlining transpilation/compilation chain


• Taking advantage of VM tests [MPLR, MoreVM paper]


• Some productivity enhancer tools (Unicorn simulator, assembly 
browser, interactive CFG navigation,…)

Early RMOD achievements
Dev side of things



• RQ: static code reordering: is it worth ? (alternative to Pettis-
Hansen BB reordering)


• Reducing manual code (~100 bytecodes, ~300 primitives)


• RQ: Are interpreted and compiled code equivalent? Concolic + 
differential testing


• RQ: Can we generate JIT compilers? Abstract interpreter for 
compiled code generation (underway)

Early RMOD achievements
Research side



Benagil
Research side

• J-NVM: Efficient integration of a persistent memory in a Java Virtual Machine


• PrivaDSL: Use of Intel SGX in a Java virtual machine


• Study of a Java virtual machine for disaggregated memory


• A shell language and runtime for serverless applications



• RISC-V JIT for a production level VM - Pharo consortium


• RISC-V board

Early ENSTA achievements
Dev side of things

Research side

• Study language VM level attacks


• Starting to propose protections against language VM-level attacks



• Controlling the execution engine, controls the world


• French research should not miss the opportunity


• Independence from the will of big companies is crucial for research


• Rare french teams on the topic should be supported!

Language VMs are strategical assets
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