
HAL Id: hal-03770053
https://hal.inria.fr/hal-03770053

Submitted on 6 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-performance language virtual machines: an
analysis and challenges

Stéphane Ducasse, Guillermo Polito, Pablo Tesone, Gaël Thomas, Loïc
Lagadec

To cite this version:
Stéphane Ducasse, Guillermo Polito, Pablo Tesone, Gaël Thomas, Loïc Lagadec. High-performance
language virtual machines: an analysis and challenges. 2022. �hal-03770053�

https://hal.inria.fr/hal-03770053
https://hal.archives-ouvertes.fr

S. Ducasse G. Polito [RMOD/Evref - Inria] P. Tesone [Pharo consortium]
G. Thomas [Telecom SudParis]
L. Lagadec [ENSTA]

High-Performance Language
Virtual Machines:
an analysis and challenges

EvreffervEMarch 2022

Language VMs are Ubiquitous

• They are everywhere: browsers, mobile phones, drones, robots…

• Banks, servers, aircrafts

• Portability, self-optimisation and adaptation, high-level services (GC)

• Java, Javascript, Pharo, PHP, Python, Ruby, C#…

• Derivates: Typescript, Scala, web assembly

Language Virtual Machines
Modern Language Implementations

Runtime Binary Translation

Hardware/System Interaction

Managed Execution

Managed Memory

Key Players

• Javascript: Safari (Apple), V8 (Google), SpiderMonkey (Mozilla)

• Java: Truffle, GraalVM (Oracle)

• .NET, C#, VB: (Microsoft)

VMs as Competitive Advantage

Large companies developed their OWN

• Hack: Facebook’s PHP

• Ruby: Shopify

• GemTalk Systems

• Netflix

• Many python, ruby are popping up

Virtual Machines
Typical Architecture Overview

cold code
hot spot

detection hot code

Interpreted

Execution

Machine

Execution

Managed Memory
VMs: auto-adaptive

systems

Compiler Pipeline Example
source code - to - bytecode interpreter. 
Example: arithmetics

a + b
push a

push b

send +

send_+(op1, op2){

if (isInteger(op1) && isInteger(op2)) {

r = op1 + op2;

if (!overflow){

return push(r);

}

}

send_message(+)

}

source code bytecode interpreter code

Interpreter and Compiler Semantics

https://webkit.org/blog/10308/speculation-in-javascriptcore/

A concrete example: Javascript core
Multiple levels
Different representations
Engineering cost!

Quid Complexity and Cost of VMs?
Apple’s	Safari	JavascriptCore[2021]

Google’s	v8	TurboFan

https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8

https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8

Managed Execution
Remarkable Challenges

• Challenge 1: What are optimal organisations of multi-tier engines?

• Combining interpreters with many levels of optimising compilers

• Challenge 2: What is a better/minimal runtime support for developer
tooling?

• Better debugging support

• Runtime (speed, energy…) profiling

• Benchmark automatic generation

Runtime Binary Translation
Remarkable Challenges

• Challenge 3: How can runtime-compilers better speculate on application
behaviour?

• Speculate on more than types

• Speculate for more than speed

• Challenge 4: How can we improve the efficiency of cold code?

• Better interpreter optimisations

• Low overhead binary translators

VMs are auto-adaptive systems

Managed Memory
Remarkable Challenges

Challenge 5: How can managed memory adapt to memory consumption
patterns?

• Scalability to multi-TB heaps

• Automatically memory re-organisation

• Reduce pauses

• Support for modern hardware (e.g., disaggregated memory, non-volatile memories)

• encrypted memory (arm trustzone/intel sgx), compressed memory

• OS and System VM Interations

Hardware/System Interaction
Remarkable Challenges

Challenge 6: How can modern VMs exploit hardware-software co-
design?

• Automatic deport computation to dedicated hardware

• GPU

• FPGA

• Extensible ISAs (e.g., RISC-V)

Cross-Cutting Challenges
(And Contradictory Challenges!)

Energy Consumption

Execution Speed

Correctness

Modularity

Security

• Security threats of multi-tier execution engines

• Speculative runtime compilation for frugal systems

• Profile-guided detection of application parallelisation opportunities

• Securing VMs through dedicated hardware

• Minimising energy impact of garbage collection algorithms

Cross-Cutting Challenges
Selected Challenges

• Automatic detection of performance regressions

• Automatic validation of multi-tier execution engines

• Controling the construction COST of efficient JIT compilers

Selected Software Engineering Challenges

AlaMVic: a generative approach

- implementation native
- autogenerée

Slang -> C Compiler

Virtual Machine + Simulateur

Production Virtual Machine

Interprète Bytecode

- autogenerated

Garbage Collector +
Representation Objet

- autogenerated

Compilateur JIT

- autogenerated

- État: non-existent

JIT compiler compilerInterpreter compiler

AlaMVic: Virtual Machine Distiller

Garbage Collector
Composer

Language
Specification

Hints / Heuristics

energy space speed

Benchmark /
Evaluation
Platform

energy space speed
energy

space speed

• Compiler generation

• Exchangeable 
components

• Optimization 
heuristics

• Open exploratory 
platform

• JIT for Apple M1, Windows, Raspberry ARM 64bits in production

• Helping ENSTA Bretagne to develop a RISC-V JIT

• Streamlining transpilation/compilation chain

• Taking advantage of VM tests [MPLR, MoreVM paper]

• Some productivity enhancer tools (Unicorn simulator, assembly
browser, interactive CFG navigation,…)

Early RMOD achievements
Dev side of things

• RQ: static code reordering: is it worth ? (alternative to Pettis-
Hansen BB reordering)

• Reducing manual code (~100 bytecodes, ~300 primitives)

• RQ: Are interpreted and compiled code equivalent? Concolic +
differential testing

• RQ: Can we generate JIT compilers? Abstract interpreter for
compiled code generation (underway)

Early RMOD achievements
Research side

Benagil
Research side

• J-NVM: Efficient integration of a persistent memory in a Java Virtual Machine

• PrivaDSL: Use of Intel SGX in a Java virtual machine

• Study of a Java virtual machine for disaggregated memory

• A shell language and runtime for serverless applications

• RISC-V JIT for a production level VM - Pharo consortium

• RISC-V board

Early ENSTA achievements
Dev side of things

Research side

• Study language VM level attacks

• Starting to propose protections against language VM-level attacks

• Controlling the execution engine, controls the world

• French research should not miss the opportunity

• Independence from the will of big companies is crucial for research

• Rare french teams on the topic should be supported!

Language VMs are strategical assets

EvreffervE

