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Abstract. Parallel Surrogate-Assisted Evolutionary Algorithms (P-SAEAs)
are based on surrogate-informed reproduction operators to propose new
candidates to solve computationally expensive optimization problems.
Differently, Parallel Surrogate-Driven Algorithms (P-SDAs) rely on the
optimization of a surrogate-informed metric of promisingness to acquire
new solutions. The former are promoted to deal with moderately com-
putationally expensive problems while the latter are put forward on very
costly problems. This paper investigates the design of hybrid strategies
combining the acquisition processes of both P-SAEAs and P-SDAs to
retain the best of both categories of methods. The objective is to reach
robustness with respect to the computational budgets and parallel scal-
ability.

1 Introduction

To solve black-box expensive optimization problems where the objective function
is computationally costly to evaluate, Parallel Surrogate-Based Optimization Al-
gorithms (P-SBOAs) are built by leveraging parallel computing and machine
learning. Two categories of P-SBOAs arise: Parallel Surrogate-Assisted Evolu-
tionary Algorithms (P-SAEAs) and Parallel Surrogate-Driven Algorithms (P-
SDAs). Both families of algorithms differ by their Acquisition Process (AP), the
mechanism in charge of suggesting new promising candidate solutions. On the
one hand, the AP from P-SDAs aims at quickly reaching good solutions, conse-
quently providing a strong improvement that faints after few cycles. On the other
hand, the AP from P-SAEAs is more exploratory, thus making the improvement
slighter but more durable. In a previous study, we observed that P-SAEAs are
generally recommended in the context of moderately expensive problems and
that P-SDAs are usually preferred to deal with very expensive problems [1].
Moderately expensive problems are characterized by a budget greater than 1000
simulations or a simulation lasting less than 5 minutes. In this article, we present
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a hybrid method retaining the best of both P-SAEAs and P-SDAs. A strategy
previously proposed in [2] already relies on hybridization of APs but shows a
serious limitation regarding parallel scalability. The challenge we address in this
study is to come up with a strategy that is robust with respect to the compu-
tational budget allocated to the search and that scales with multiple computing
cores.

For a moderately expensive objective function, the computational budget
may allow a meaningful number of expensive evaluations. Consequently, the
database of exactly evaluated solutions may grow significantly enough for the
surrogate training to become non-negligible in terms of computations. In this
situation, it is not convenient to express the computational budget only as a
limited number of objective function evaluations as it is commonly done in the
field of surrogate-based optimization [3–7]. Indeed, the cost related to surrogate
training would be hidden. Instead, we chose to define the budget as a limited
duration on a limited number of computing cores.

Benefiting from numerous computing cores raises concerns to the perfor-
mance of P-SBOAs. The AP emphasized in [8] outputs q = 4 new candidates
per iteration, consequently triggering q = 4 parallel evaluations. The low value
attributed to q points the difficulty of conserving a relevant degree of diver-
sity when numerous new candidates are sampled at once, thus preventing to
efficiently leverage more computing cores. In [2], the proposed Surrogate Model
Based Optimization + Evolutionary Algorithm (SMBO+EA) demonstrates a su-
periority compared to state-of-the-art P-SDAs for a number of computing cores
ncores < 10. However, this hybrid method performs similarly to a surrogate-free
parallel evolutionary algorithm for ncores ⩾ 10.

The main contribution of this paper is the HSAP strategy (Hybrid Successive
Acquisition Processes) that employs successively two APs during the search, thus
providing robustness with respect to the computational budgets and efficient use
of multiple computing cores. The numerical experiments consider an objective
function based on a black-box simulator of Covid-19 transmission. The related
moderately expensive real-world optimization problem consists in finding the
best contact reduction strategy to minimize the number of deaths while attaining
herd immunity.

The paper is organized as follows. In Section 2 a background on surrogate-
based optimization is proposed and the Covid-19-related problem is presented
in Section 3. The new algorithms based on hybrid APs are dissected in Section
4 and are compared with state-of-the-art methods through numerical experi-
ments whose outcomes are reported in Section 5. Finally, conclusions and future
research directions are pointed out in Section 6.

2 Background on Surrogate-based optimization

The surrogate-model is based on a machine learning algorithm for interpolation
or regression in order to imitate the expensive objective function. The two models
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considered in this study are a Gaussian Process with a Radial Basis Function
kernel (GP RBF) and a Bayesian Neural Network approximated by Monte-Carlo
Dropout (BNN MCD).

The general idea of the GP RBF is to model the influence of one point x on
the prediction at another point x′ by the kernel function defined by:

k(x,x′) = σ exp

(
−||x− x′||2

2s2

)
(1)

where σ and s are hyper-parameters called the scale and the length scale re-
spectively. By considering the observations as random variables and by applying
the Bayes theorem, the GP RBF provides a prediction f̂(x′) and a predictive
standard deviation ŝ(x′) at an unknown point x′. The operation of training a
GP is cubic to the number of training samples. More thorough details about
GPs are given in [9].

The main principle behind BNN MCD is to sample nsub sub-networks f̂i from
a global artificial neural network and to use the nsub predictions to compute an
average prediction and a standard deviation:

f̂(x′) =
1

nsub

nsub∑
i=1

f̂i(x
′) ŝ(x′) =

√√√√ 1

nsub

nsub∑
i=1

(f̂i(x
′)− f̂(x′))2 (2)

The sub-networks are sampled by randomly deactivating neurons in the global
network. It has been proven in [10] that this technique amounts to perform an
approximated Bayesian training. The operation of training a BNN MCD is lin-
ear to the number of training samples.

The two categories of P-SBOAs, namely P-SAEAs and P-SDAs, differ by the
coupling between the surrogate-model and the optimizer [1]. In P-SAEAs, the
surrogate is attached to the Evolutionary Algorithm (EA) by means of an Evo-
lution Control (EC) that defines the promisingness of new candidate solutions.
The EA carries out the search by evolving a population of candidates through
the stages of selection, reproduction and replacement. The surrogate is intro-
duced at any stage to replace the expensive objective function [11]. In P-SDAs,
a metric of promisingness called the Infill Criterion (IC) is optimized to locate
new potential candidates [12]. The IC and the EC are based on the predictive

objective value (f̂) and/or predictive standard deviation (ŝ) delivered by the
surrogate. The difference between the two concepts of IC and EC is thin. The
EC is defined as a comparison operator while the IC is a real-valued metric. It
is straightforward to convert an IC into an EC and a dedicated EA can be set
up to optimize an IC corresponding to a given EC (by basing the selection and
replacement on the EC) [13].

To build the new hybrid acquisition processes, we rely on two actual surrogate-
optimizer couplings. The first one is denoted SaaF (Surrogate as a Filter) and
comes from a P-SAEA [11]. The corresponding AP consists in generating mul-
tiple new solutions by reproduction and to filter them through the EC to retain
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the q most promising candidates. The second coupling is derived from a P-SDA
and is denoted cl-mean (Constant Liar with Mean) [14]. In cl-mean, to gener-
ate q new candidates, the IC is optimized q times and the surrogate model is
updated between each optimization. The surrogate update is based on the new
proposed candidates associated to the mean of the objective values observed in
the database of already simulated points. As soon as the q new candidates are
available, they are simulated in parallel.

The question of what is a promising solution is answered by defining the
promisingness. In this work, we focus on two ensembles of ECs: the voting com-
mittee of ECs and the dynamic inclusive ensemble of ECs. The voting committee
already presented in [15], consists in making the ECs vote for the candidates. A
solution receives one vote if one EC considers it as promising and the candidates
gathering the more votes are the most promising ones. The actual committee
highlighted here is denoted com-spf and embeds three ECs, the minimization of
f̂ (favoring exploitation), the maximization of ŝ (promoting exploration) and a
third EC based on the Pareto dominance between exploitation and exploration
similar to the one exhibited in [16]. The dynamic inclusive ensemble of EC de-
noted dyn-df-incl comprises two ECs, the maximization of the distance d to the
database of known solutions (favoring exploration) and the minimization of f̂ .
The contribution of each EC to constitute the batch of the q new candidates
varies during the search. Indeed, the search is decomposed into 5 equal periods
and the proportions of the contribution for (max d, min f̂) are consecutively
(100%,0%), (75%,25%), (50%,50%), (25%,75%) and (0%,100%). In other terms,
exploration is favored at the beginning of the search and exploitation is rein-
forced at latter stages.

3 COVID-19 contact reduction problem

At the beginning of the Covid-19 crisis, when no vaccines were available, govern-
ments of the affected countries adopted different strategies to contain the spread
of the virus. While some countries imposed lockdown and physical distancing,
others, bet on reaching herd immunity by natural transmission. This approach
has not proven to be effective during the first two years of the epidemic [17].
However, at the time, studying the possible consequences of this strategy was
of importance. Recently, the new Omicron variant of the coronavirus and the
deployment of vaccines revive the debate about herd immunity [18].

The problem consists in optimizing the contact reduction strategy to mini-
mize the number of Covid-19-related deaths in Spain while reaching herd immu-
nity. The Spanish population is divided into 16 age-categories and the decision
variables represent the contact mitigation factors to apply to each category. For
a decision vector x ∈ [0, 1]16, f1(x) represents the simulated number of deaths
after the considered period and f2(x) ∈ {0, 1} is a simulated boolean variable
indicating whether herd immunity has been reached. The optimization problem
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consists in finding x∗ such that:

x∗ = argmin
x∈[0,1]16 s.t. f2(x)=1

f1(x) (3)

According to [19], handling constrained problems with EAs can be realized
by different means. For our problem, it is not known how to generate feasible
candidates so designing repairing operators or specific reproduction operators
is impossible. Rejecting infeasible individuals would prevent to keep knowledge
about the infeasible region location, besides, this technique works only if the
search space is convex, that is probably not the case. Adding the amount of infea-
sibility as an additional objective would increase the complexity of the problem
because the new objective would be boolean. Finally, we opt for the penaliza-
tion of the infeasible candidates to handle the constraint of the Covid-19 contact
reduction problem. The penalty value is set to the approximate Spanish popu-
lation size (46,000,000) as it is the only a priori known upper bound for f1. A
higher value would more likely prevent the search to visit the boundary region
between the feasible and infeasible search spaces.

Therefore, the problem is re-formulated as an unconstrained optimization
problem by applying a penalty to the objective f1 when herd immunity is not
reached. The re-formulated problem consists thus in finding x∗ such that:

x∗ = argmin
x∈[0,1]16

f̃(x) (4)

where:

f̃(x) =

{
f1(x) if f2(x) = 1

f1(x) + 46, 000, 000 if f2(x) = 0
(5)

The impact of the contact reduction strategy is simulated thanks to the Au-
TuMN simulator available at https://github.com/monash-emu/AuTuMN/ [20].
This simulator is developed by the Department of Public Health and Preven-
tive Medicine at Monash University in Melbourne, Australia, to study epidemic
transmission. Both quantities f1 and f2 are obtained via resolution of differen-
tial equations governing the flow of individuals in a compartmental model where
the population is divided according to the disease state (Susceptible, Exposed,
Infectious, Recovered) [21]. The graph of f1 is expected to be multi-modal with
flat regions according to the prior knowledge issued by the developers of Au-
TuMN. The simulation takes place in three phases. First, the past dynamic of
the epidemic is analysed by calibrating uncertain parameters according to past
information. Second, the contact reduction strategy is applied during a period of
12 months. After the 12-month period, mobility restrictions are lifted and herd
immunity is recognized if incidence still decreases after two weeks while assum-
ing persistent immunity for recovered individuals [22]. The degrees of contact
between individuals are integrated into the model through the contact matrix C
provided by [23] where the populations are divided into 16 age-categories. Ci,j is
the average number of contacts per day that an individual of age-group j makes
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with individuals of age-group i. The decision variables representing the mitiga-
tion factors are applied to matrix C such that Ci,j is replaced by xi.xj .Ci,j . A
decision variable xi = 0 impedes any contact to individuals from age-category
i while setting xi = 1 lets the contact rates unchanged compared to the pre-
Covid-19 era.

4 Hybrid Acquisition Processes

The two categories of P-SBOAs, namely P-SAEAs and P-SDAs, are attractive
for different budgets or landscapes as shown in [1]. In this section, we attempt
to retain the best of both categories by investigating the design of hybrid APs.
The generation of new candidates is envisioned via both IC optimization and
reproduction operators.

Two APs are combined into two novel optimization algorithms. The first AP
is a cl-mean with the voting committee EC com-spf and the GP RBF surrogate
model. The second AP is inspired by P-SAEA, where a BNN MCD surrogate is
only used as a filter to discard unpromising candidates (SaaF). Both APs are
the most adequate for each framework on the Covid-19 problem as identified
by a preliminary grid-search considering multiple surrogate models (Kriging,
Bayesian Linear Regressor, GP RBF, BNN MCD), definitions of promisingness
(Expected Improvement, Lower Confidence Bound etc.) and surrogate-optimizer
couplings (notably Kriging Believer, cl-max and cl-min) [13].

The first new hybrid method is named HCAP for ”Hybrid Concurrent Ac-
quisition Process” and is presented in Algorithm 1. The two aforementioned APs
are executed concurrently at each cycle to propose new candidates that are sub-
sequently simulated in parallel. The algorithm starts by a search space sampling
via LHS and the evaluation of the initial candidates (line 1). The surrogates are
created and the population is initialized (lines 2 to 4). At the beginning of a
cycle, the first AP generates q1 = 9 new promising candidates (line 6). Thence,
parents are selected from the population and reproduced to create a batch Pc

of nchld = 288 children (lines 7 and 8). From Pc, the q2 = 63 more promising
candidates are retained and the remaining ndisc = 225 candidates are discarded
(line 9). A total of q1 + q2 = 72 new candidates are simulated in parallel at each
cycle (lines 10 and 11). Thereafter, the surrogates are updated (lines 13 and 14)
and a new population is formed by elitist replacement (line 15).

The analysis led in [1] indicates that P-SDAs are relevant for few objective
function evaluations and P-SAEAs to deal with moderately expensive problems.
This conclusion appeals to design another hybrid method that would execute
successively an AP based on IC optimization and an AP relying on evolutionary
computations. The novel method is referred to as HSAP for ”Hybrid Successive
Acquisition Processes” and is detailed in Algorithm 2. The first stage consists of
running 6 cycles of q-EGO cl-mean with GP RBF and com-spf for q = 18 thus
corresponding to 108 simulations (lines 2 to 11). Afterwards, P-SAEA is run with
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Algorithm 1 Framework of HCAP.

Input
simulator : real objective function
budget : computational budget for the search
GP RBF: surrogate model for AP1
com-spf : evolution control for AP1
q1 = 9: number of candidates to simulate per cycle for AP1
npop1 = 50: population size for AP1
ngen = 100: number of generations for AP1
BNN MCD: surrogate model for AP2
dyn-df-incl : evolution control for AP2
npop2 = 72: population size for AP2
nchld = 288: number of new candidates issued per cycle for AP2
q2 = 63: number of candidates to simulate per cycle for AP2
ndisc = 225: number of discarding per cycle for AP2

1: database ← LHS+parallel simulations(simulator, npop2)
2: GP RBF ← training(database)
3: BNN MCD ← training(database)
4: P ← database ▷ initial population
5: while budget ̸= 0 do
6: Bsim1 ← Constant Liar AP(database, com-spf, GP RBF, q1, npop1, ngen)
7: Pp ← selection(P, nchld) ▷ population of parents
8: Pc ← reproduction(Pp, nchld) ▷ population of children
9: Bsim2 ← filtering(Pc, dyn-df-incl, BNN MCD, q2, ndisc)
10: Bsim ← Bsim1 ∪ Bsim2

11: parallel simulation(simulator, Bsim)
12: database ← database ∪ Bsim
13: GP RBF ← training(database, 72)
14: BNN MCD ← training(database, all)
15: P ← elitist replacement(P, Bsim, npop2)
16: budget ← get remaining budget(budget, elapsed time)
17: end while
18: (xmin, ymin) ← get best cost(database)
19: return xmin, ymin
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reproduction operators informed by BNN MCD through the dyn-df-incl EC un-
til the budget is totally consumed (lines 12 to 24). The population is initialized
by taking a special care of balancing between exploration and exploitation. To
foster exploitation, the 10 best candidates identified so far are included in the
initial population (line 12). To boost exploration, a K-Means algorithm [24, 25]
partitions the set of decision vectors from the database into 62 groups and one
randomly-selected solution per cluster is added to the initial population (line 13).

To test the new HCAP and HSAP, the SMBO+EA from [2] is reproduced
by considering ncores = 18 as allowed by the computational budget further
described in the next section. Moreover, the GP RBF surrogate model replaces
the Kriging model originally employed in [2] as this latter has not been relevant
in the preliminary grid search. In SMBO+EA, a cycle consists in running three
APs in parallel. The first AP, executed on one computing core, maximizes the
Expected Improvement IC [12] to produce a new candidate. The second AP,

also running on one computing core, minimizes f̂ to output one new solution.
The third AP generates q = 16 new candidates via reproduction of 16 parents
extracted from the current population. The 18 new candidates are simulated in
parallel on the 18 cores. After the simulation step, the database, the surrogate
and the population are updated and the cycle is repeated until the computational
budget is wasted.

In SMBO+EA, no EC is used in the AP based on the reproduction operators
whereas a dynamic ensemble of ECs helps to discard unpromising candidates in
HCAP and HSAP. Relying on an EC at this step gives more opportunity to
the reproduction operators to generate good candidates. The objective pointed
out in [2] for future works is to improve the performance of the method when
ncores increases. Indeed, in the experiments reported in [2], SMBO+EA performs
similarly to P-EA (without surrogate) for ncores ⩾ 15. In HCAP and HSAP, the
use of two surrogates from different types aims at enhancing diversification in
the batch of new samples and improving the overall performance of the hybrid
methods. In SMBO+EA, the three APs are performed in parallel while the two
APs from HCAP are performed sequentially thus giving a slight advantage to
SMBO+EA regarding idleness of computing cores.

5 Experiments

The experimental protocol consists in repeating the execution of the algorithms
ten independent times to compute the statistics reflecting the performance of
the stochastic methods. The ten initial databases are constituted via LHS. The
experiments are supported by a parallel machine made of 18 computing cores
provided in an Intel Xeon Gold 5220 CPU. The parallel machine is part of the
Grid5000, a French infrastructure dedicated to parallel and distributed com-
puting and enabled by several universities [26]. A computational budget of 30
minutes on 18 computing cores is granted for each search.
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Algorithm 2 Framework of HSAP.

Input
simulator : real objective function
budget : computational budget for the search
GP RBF: surrogate model for AP1
com-spf : evolution control for AP1
q1 = 18: number of candidates to simulate per cycle for AP1
npop1 = 50: population size for AP1
ngen = 100: number of generations for AP1
BNN MCD: surrogate model for AP2
dyn-df-incl : evolution control for AP2
npop2 = 72: population size for AP2
nchld = 288: number of new candidates issued per cycle for AP2
q2 = 72: number of candidates to simulate per cycle for AP2
ndisc = 216: number of discarding per cycle for AP2

1: database ← LHS+parallel simulations(simulator, npop2)
2: GP RBF ← training(database)
3: counter=0
4: while counter< 6 AND budget ̸= 0 do
5: Bsim ← Constant Liar AP(database, com-spf, GP RBF, q1, npop1, ngen)
6: parallel simulation(simulator, Bsim)
7: database ← database ∪ Bsim
8: GP RBF ← training(database)
9: budget ← get remaining budget(budget, elapsed time)
10: counter=counter+1
11: end while
12: P ← get best(database, 10) ▷ initial population
13: P ← P∪ K-Means sampling(database, 62)
14: BNN MCD ← training(database)
15: while budget ̸= 0 do
16: Pp ← selection(P, nchld) ▷ population of parents
17: Pc ← reproduction(Pp, nchld) ▷ population of children
18: Bsim ← filtering(Pc, dyn-df-incl, BNN MCD, q2, ndisc)
19: parallel simulation(simulator, Bsim)
20: database ← database ∪ Bsim
21: BNN MCD ← training(database, all)
22: P ← elitist replacement(P, Bsim, npop2)
23: budget ← get remaining budget(budget, elapsed time)
24: end while
25: (xmin, ymin) ← get best(database, 1)
26: return xmin, ymin
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The GP RBF, implemented through GPyTorch [27], is trained on a controlled-
size set in HCAP whereas the whole database is used in HSAP and SMBO+EA.
The BNN MCD is built using the Keras library [28] and is always updated thanks
to all the simulations performed so far. Training BNN MCD lasts around 7 sec-
onds on sets of 72 or 256 samples while the GP RBF training varies from 40 to
100 seconds on non-normalized data. Normalizing the data limits the training
of GP RBF to 1 second due to an early stopping mechanism implemented in
GPyTorch. In addition to the three hybrid methods presented in the previous
section, the parallel evolutionary algorithm (P-EA) without surrogate is consid-
ered. Besides, SaaF with BNN MCD as surrogate and dyn-df-incl as EC, and
cl-mean with GP RBF as surrogate and com-spf as IC are also included into the
comparison. The pySBO platform is used as the software framework for imple-
mentation and experimentation [29]. The calibration of the algorithms is given
in Table 1. Two versions of cl-mean are considered: the one where the surrogate
is trained on the complete training set (CTS) made of all the solutions already
simulated during the search, and the other one on the restricted training set
(RTS) of the last 72 simulations. In cl-mean, q = 18 simulations are performed
per cycle and the optimizer is an EA where both the selection and replacement
are based on the criterion defined by com-spf. For this specific EA, the popu-
lation size and the number of generations are set by grid-search to 50 and 100
respectively and the remaining parameters are set as in Table 1 for P-EA.

Figure 1 shows the distribution of the 10 best objective values obtained at
the end of the search for each strategies. The corresponding ranking according to
the average final objective value is displayed in Table 2. It can be observed that
the new hybrid method HSAP significantly outperforms all its competitors. The
average, median and variance of the results are all improved when employing
HSAP as shown in Figure 1. The concurrent combination of APs proposed by
HCAP is also a reliable strategy as, it outperforms all the non-hybrid methods
and SMBO+EA as displayed in Figure 1 and Table 2. It can be noticed that
SMBO+EA behaves as expected as it produces results similar to the P-EA with-
out surrogate.

The convergence profiles are displayed in Figure 2. Expectedly, HSAP and
the P-SDAs exhibit a similar very steep curve for less than 108 simulations. Af-
ter the AP switch in HSAP, the improvement is slowed down but a continuous
progress is noted until around 600 simulations where the convergence is almost
reached. Figure 3 displays a zoom that highlights the benefit from using HSAP
over cl-mean with GP RBF trained on a reduced training set (RTS) from 300
simulations. Firstly, HSAP allows one to perform more simulations than cl-mean
as indicates the length of the curves in Figure 2. Secondly, the use of the sur-
rogate to inform the reproduction operators enables a continuous improvement
as soon as the IC-based AP has reached steady state. An attractive enhance-
ment of HSAP would be to automatically detect the flatness in the convergence
curve and trigger the AP switch. Such a mechanism is not trivial to design, par-
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Table 1. Calibration of the algorithms.

Symbol Name Value Calibration method

Calibration of BNN MCD
nsub number of sub-networks 5 grid search
nhl number of fully-connected 1 grid search

hidden layers
mu number of units per layer 1024 grid search

λdecay weight decay coefficient 10−1 grid search
l Normal standard deviation 10−2 grid search

for weights initialization
pdrop dropout probability 0.1 grid search
h() activation function Relu [30]
ξ Adam initial learning rate 0.001 [30]

Calibration of P-EA
npop population size 72 grid search
pc cross-over probability 0.9 grid search
ηc cross-over distribution index 10 set from [5]
pm mutation probability 1

d
set from [31]

ηm mutation distribution index 50 set from [5]
nt tournament size 2 set from [32]

Calibration of SaaF
nchld children per cycle 288 grid search
q simulations per cycle 72 = 0.25 ∗ nchld [33, 34]

ndisc discardings per cycle 216 nchld − q
(δES , nES) BNN MCD early stopping (10−8, 32) grid search

2-fold cross-validation yes grid search

Fig. 1. Distribution of the best objective values from the 10 runs of the experiment.
Averaged values are depicted by red squares, median values by red dashes and variance
information is given by the length of the boxes.
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Table 2. Ranking of the best strategies according to the final objective value averaged
over 10 runs. Ordering according to ascending average from top to bottom.

Strategy Average

HSAP 4,178
HCAP 6,487
SaaF 6,854
cl-mean (RTS) 7,824
cl-mean (CTS) 8,897
P-EA 21,483
SMBO+EA 24,262

ticularly because user-defined parameters must be avoided. However, exploiting
the gradient of the curve is a potential lead that we plan to investigate in the
future. HCAP outperforms SMBO+EA and SaaF in Figure 2 while SaaF over-
takes SMBO+EA from 260 simulations. The bad performances of P-EA stressed
by Figure 2 demonstrate again the profit brought by surrogate models for both
moderately and very expensive problems.

The length of the curves in Figure 2 yields indications about the computa-
tional cost of the methods. Among the hybrid methods, SMBO+EA is the more
computationally costly as the surrogate is trained on the entire database and
IC optimizations are run at each cycle. By reducing the training set size as in
HCAP, more simulations are enabled and by reducing the computational effort
dedicated to IC optimization as in HSAP, the number of simulations gets closer
to the one of SaaF. A possible way to relieve the computational cost of HCAP
would be to execute both APs in parallel.

Fig. 2. Convergence profile in terms of best objective values averaged over the 10
repetitions of the experiment.
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Fig. 3. Convergence profile in terms of best objective values averaged over the 10 runs
of the experiment.

6 Conclusion

In this paper, the hybridization of IC optimization and informed reproduction
operators is investigated to propose new candidate solutions in P-SBOAs with
the aim of bringing robustness with respect to the computational budgets. The
Hybrid Successive Acquisition Processes (HSAP) we propose outperforms state-
of-the-art methods on a simulation-based problem of Covid-19 contact reduction
with a significant number of computing cores. The new strategy consists in
relying on IC optimizations during the early stages of the search and in employing
informed reproduction operators at the latter stages. For tight computational
budgets, only the AP inherited from P-SDAs is employed thus providing fast
improvement. For larger budgets, the AP extracted from P-SAEAs is added,
therefore further enhancing the search quality. The use of ensembles of ECs favors
diversification in the set of newly proposed candidates consequently allowing the
efficient use of multiple computing cores. Future works will consider to extend
the numerical comparisons by further increasing the number of computing cores
and by tackling a larger amount of benchmark problems. Moreover, the HSAP
will be improved by designing a mechanism to automatically switch from one
AP to another.
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