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Abstract

Differential rendering has recently emerged as a pow-
erful tool for image-based rendering or geometric re-
construction from multiple views, with very high qual-
ity. Up to now, such methods have been benchmarked
on generic object databases and promisingly applied to
some real data, but have yet to be applied to specific
applications that may benefit. In this paper, we inves-
tigate how a differential rendering system can be crafted
for raw multi-camera performance capture. We ad-
dress several key issues in the way of practical usability
and reproducibility, such as processing speed, explain-
ability of the model, and general output model qual-
ity. This leads us to several contributions to the dif-
ferential rendering framework. In particular we show
that a unified view of differential rendering and classic
optimization is possible, leading to a formulation and
implementation where complete non-stochastic gradi-
ent steps can be analytically computed and the full per-
frame data stored in video memory, yielding a straight-
forward and efficient implementation. We also use
a sparse storage and coarse-to-fine scheme to achieve
extremely high resolution with contained memory and
computation time. We show that results rivaling or ex-
ceeding the quality of state of the art multi-view human
surface capture methods are achievable in a fraction of
the time, typically around a minute per frame.

1. Introduction
We examine how differential rendering algorithms

can be applied and improved for practical setups such
as multi-view surface capture of human subjects, an
inherently challenging task due to the complexities of
human motion and clothing, hair, self-occlusion, and
other corrupting factors. This task is of broad interest
for all applications requiring 3D content that reflects

Figure 1. Typical results of our method: input image (left),
colored mesh (center), geometry (right)

Figure 2. Close-up on another mesh: input image (left),
colored mesh (center), geometry (right)

and digitizes the real world, such as 3D broadcasting,
entertainment, virtual reality, serious games, virtual-
try on, and is gaining new relevance in light of the push
toward the metaverse in the industry. Producing this
content in controlled environments with many cameras
is also vastly useful to build training sets for data-
driven methods addressing the same problems with less
views [9, 37], or even monocular input [31, 25]. To be
useful, a surface reconstruction pipeline in this context
must target several desirable properties. First, visual
fidelity and quality of the produced mesh models are
of course a priority. Second, efficiency of the algorithm
and ease of use are typical requirements, since such
data is often acquired in one or multiple sequences for
reconstruction of motions, which for practical reasons
calls for reasonably fast per-frame processing times.
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In recent years, differential rendering methods have
gathered significant attention from the research com-
munity, as a new angle to address multi-view recon-
struction and image-based rendering problems with
high fidelity outputs. This makes them particularly
palatable candidates to address the aforementioned
quality requirement. Among those, volumetric dif-
ferential rendering approaches such as the popular
NeRF [18] have shown that scene estimation can be
cast as a light field problem parameterized by a neu-
ral network, and have given rise to a number of more
recent volumetric approaches. A rough surface can
be extracted from the latter by thresholding the in-
ferred opacity field, but better surface reconstructions
can be extracted with dedicated differential render-
ing approaches centered on a surface parameteriza-
tion [35, 23, 33]. While all of these methods produce
amazing results, they typically require several hours
per frame, and tens of hours for some, which rules
out the approaches on the basis of tractability, for se-
quences that can be typically several hundred frames.

Contributions. We take inspiration in a stream of
recent works showing that volumetric differential ren-
dering can be significantly accelerated [26, 19], such
that they achieve equivalent results to the original Nerf,
in a matter of minutes. We show that a volumetric
framework can be modified to output quality meshes
thanks to the adjunction of appropriate losses. We
also show that, with a simple non-neural parameteri-
zation analogous to [26] and an appropriate spatial en-
coding, the problem entirely fits in GPU memory, and
can be cast as a pure optimization solved with classic,
non-stochastic gradient descent. This yields a straight-
forward and fully explainable implementation of dif-
ferential rendering offering a new quality/computation
time tradeoff, whose results approach state of the art
surface-based differential methods for mildly reflective
models of the popular Nerf and DTU benchmarks, and
quite significantly improved model quality with respect
to classic multi-view surface reconstructions in realistic
human capture scenarios. Last, we show that these re-
sults are achievable in one to two minutes, an order of
magnitude faster than a typical state of the art geomet-
ric reconstruction method applied in this context [13].

2. Related Work
Multi-view capture. A very large corpus of work
examines the problem of retrieving 3D models of hu-
man subjects from multiple cameras. We can roughly
classify these methods along two lines. First, model-
based methods use a pre-defined shape template or hu-
man deformation model and fit it to observations. Ini-
tially pioneered with subject-specific articulated tem-

plates using different image features such as stereo
matches or silhouettes [5, 28, 32, 7], later methods have
used human-generic parameterization based on shape
spaces [2, 16] allowing them to estimate both pose and
shape identity parameters simultaneously [4]. Later
models may include clothing to complete the initially
naked mesh [36], and have been increasingly enhanced
with hybrid neural components to represent surface de-
tails on top of a human core parameterization [1]. In
so doing the approaches target the ability to fit sur-
faces with more variability and detail, but they are still
inherently constrained by the precision limits of the
underlying represented shape space. For this reason
lower-level surface reconstruction approaches are still
metrologically relevant and used for detailed surface
capture. Finding their roots in classic reconstruction
approaches such as multi-view stereo [8, 30, 11, 27],
they have been demonstrated to yield very high qual-
ity results in the multi-view capture case [20, 6, 24, 13].
Yet they are sometimes prone to artifacts and incom-
pleteness issues, and are still generally slow, typically
taking from several minutes to a few hours depending
on the scene complexity, both issues we target improve-
ments for in our proposal.

Differential rendering methods. Recent methods
exploiting differentiable rendering are able to recover
complete scenes with great accuracy, even in challeng-
ing conditions with reflective and translucent materi-
als. They can be roughly split in two categories: sur-
face or volume-based. Surface methods model the sur-
face implicitly as an isosurface of a level set. In [21], the
level set is sampled at regular intervals along each ray
to find the first intersection with the surface, where
the color is evaluated. [35, 14] replaced the level set
with a signed distance function to find the isosurface
more efficiently with sphere tracing. These methods
are susceptible to local minima because the gradients
are computed only at the current location of the sur-
face. For this reason, silhouette masks are typically
used for initialization and to constrain estimates in-
side the visual hull. In contrast, volumetric methods
do not aim at recovering a surface at all. The scene
is modelled by a radiance field and opacity volume,
which contain color and opacity information at each
point in space. An image is created by accumulating
color and opacity along rays by marching in the volume.
Lambertian materials can be approximated by a con-
stant color, as shown by [15], but direction-dependent
encodings are necessary to handle reflective surfaces.
[18], later improved by [3], optimize a view-dependent
radiance field for novel view synthesis, at which they
excel. [23, 33, 34] can be classified as hybrid meth-
ods. They parameterize the density of a radiance field



by an underlying signed distance function, which can
be rendered and optimized as a radiance field. They
avoid local minima more easily than surface methods
since the gradients are defined in a band of controllable
width near the surface. Their main downside is that
they need hours of optimization. The new volumetric
methods [26, 29, 19] addressed that issue and obtain
results comparable to [18] in a few minutes and even a
few seconds in the case of [19]. However, they do not
recover meshes of good quality since the the focus is on
a radiance field scene encoding. We capitalize on the
volumetric representation’s flexibility and potential for
efficiency, while focusing our method on the underlying
surface thanks to appropriate regularizations.

3. Methodology
Our goal is to extract a surface given a set of multi-

view calibrated images In and background images Bn.
The background images are typically available in per-
formance capture setups by recording the acquisition
room when empty, giving a strong cue to isolate the
subject of interest. We use a differential volume re-
construction as proxy, for which we add appropriate
regularization losses (section 3.2), such that a surface
is easily extractible from the resulting opacity volume.

3.1. Rendering model

The reconstruction volume contains two volumetric
fields: opacity and color. The actual parameteriza-
tion of the opacity field varies a lot between methods,
ranging from a regular voxel grid [29], a sparse grid
[26], hash tables [19], or a fully connected neural net-
work [18]. The color field has special parameterizations
to achieve view-dependent effects: a neural network
[18], neural features fed to a smaller neural net [19, 29]
or spherical harmonics [26]. Independently from the
actual parameterization, all volumetric differentiable
rendering methods are based on the non-linear opti-
mization of the following color similarity loss:

Lphoto =
∑
r∈rays

||C(r)−Cgt(r)|| (1)

where Cgt(r) is the ground truth color of the pixel from
which the ray r originates. C(r) is the color obtained
by sampling the volume at regular intervals along the
ray r and accumulating color and opacity information
over a finite range. We subsequently drop r from no-
tation for clarity, and introduce the following:

αi ∈ [0, 1] transparency of a sample (2)
ci ∈ [0, 1]3 color of a sample (3)

Transmittance 

Figure 3. Volumetric integral example

We opt for a sparse grid representation, where color
and transparency are obtained by interpolating from
neighboring grid samples similarly to [26]. Since the
samples are regularly spaced, they can be indexed by
an integer k along the ray.

Tk =
∏
j<k

αj partial transmittance (4)

Ck =
∑
j≤k

(1− αj)cjTj partial color (5)

C =
∑
k<∞

(1− αk)ckTk + T∞Cbg (6)

Note that for our purposes, a simple extension of the
integration allows to account for the background Cbg in
the final integrated color C, when all ray opacities sam-
pled before are transparent. We opt for the convention
that α = 0 for fully opaque media and α = 1 for trans-
parent regions. Figure 3 shows the transmittance value
Tk along two rays. The transmittance starts at 1 but
may not be 0 at the exit. In that case, the background
is blended additively at the end of the ray integration.

The color and transparency of a particular sample
are obtained by linear interpolation of the 8 closest vox-
els: α = lerp(ᾱ) and c = lerp(c̄), where the bar above
a letter denotes voxels’ values. We drop the indices
for convenience. Following [26], we achieve view de-
pendent effects, e.g. diffuse lighting and some specular
lighting, by using spherical harmonics (SH):

c̄(v) =
B∑
l=0

l∑
m=−l

Yl,m(v)βl,m (7)

where v is the unit direction of a ray, βl,m ∈ [−1, 1]3
are the coefficients controlling the color and B is the
number of SH bands. We typically use 0, 1 or 2 for B,
which translates to 4, 13 and 28 coefficients per voxel
respectively (including α). The Yl,m(x, y, z) functions
are simple, computation-friendly polynomials.

3.2. Losses and regularization

Robust photometric loss. Let ||x||H = x2 if x <
ε else ε(|x|− ε

2 ) the robust Huber norm. If x is a vector,
we take the sum of the norms applied component-wise.



We opt for a robust differentiable version of the pho-
tometric loss, which mitigates spill of outlier colors :

Lphoto =
∑
r∈rays

||C(r)−Cgt(r)||H (8)

Spatial Regularization. We classically use a total
variation regularization over all voxels:

Lsmooth α =
∑

voxels
||∇ᾱ||22 (9)

We also use a similar term on the voxels’ color coeffi-
cients βl,m. Our coarse-to-fine scheme (4.2) allows to
place sparse grid elements in the vicinity of the surface,
with the assumption that non-grid regions are identi-
fied as fully inside or outside the object. Those regions
are assigned boundary values α = η inside and α = 1
outside where η is a small positive value. We make
sure α is never zero to avoid a division by zero in the
computation of the gradients. Similarly, we use black
color boundary values for the inside and outside re-
gions. Enforcing boundary values promotes a smooth
and monotonous progression of the opacity which helps
remove some volumetric noise and allows an easy ex-
traction of a mesh by using marching cubes on ᾱ.

Ray color consistency. Following [29], we also use
a per-sample regularization:

Lsample =
∑

samples
||ck −C||H Tk(1− αk) (10)

The purpose of this term is to favor voxel colors con-
sistent with the input color observed by the ray, and
to avoid occasional ray-dependent overfitting seen in
NeRF, where input colors can be explained by a sum
of view-dependent color contributions dispersed among
a wider and non-physically meaningful range of voxels
along a ray, with some individual colors drifting away
from the observed ray color. We empirically observe
that this term also drastically improves surface graz-
ing ray colors, where two voxel color explanations may
otherwise compete, background or actual surface color.
The term also acts as a direct voxel color supervision
term which favors better convergence.

Spherical harmonics parsimony. We penalize
non-constant SH coefficients (l > 0) to prioritize the
constant term, which empirically resolves more details
for quasi-Lambertian surfaces in our experiments:

LSH parsimony =
∑

voxels
||βl,m||H (11)

Ballooning occupancy bias. Regions of an object
with no texture or texture not visible at lower resolu-
tions of our coarse-to-fine strategy are harder to recon-
struct, because the coexistence of multiple photocon-
sistent surface hypotheses usually results in a spreaded
band of multiple low opacity voxels, difficult to convert
to a mesh. A simple workaround is to artificially pro-
mote more opaque voxels, which inflates the surface:

Lballooning =
∑

voxels
ᾱ2 (12)

This strategy works well when the surface is close to the
visual hull, which is a reasonable expectation of human
capture scenes, but can prevent good convergence for
scenes with deep concavities or many fine structures.

Color normalization. Additionally, we estimate a
per camera gain and bias value to account for differ-
ences in exposures, similarly to [15]:

Cgt = gCuncorrected gt + b (13)
Cbg = gCuncorrected bg + b (14)

3.3. Gradient descent

A key insight of [26] is to show that the neural com-
ponent in NeRF is less important to the result than the
differential rendering logic. We take this notion a step
further by also removing auto-differentiation for addi-
tional control and finetuning, since the losses admit
simple analytical gradients. This elegantly leverages
the benefit of previously explored differential rendering
methods while casting inverse differential rendering as
a classic optimization. We here give the final expres-
sions for the opacity derivative of the photometric term
for illustration. Consider a particular sample of values
αk and ck from a particular ray of integral C:

∂Lphoto

∂αk
= ∂Lphoto

∂C
∂C
∂αk

(15)

∂Lphoto

∂C = ||C−Cgt||
′

H (16)

∂C
∂αk

= −ckTk + C−Ck

αk
(17)

We march once per ray to build T∞ and C, then march
a second time to build ∂Lphoto

∂αk
, which we store for each

sample of each ray, according to the expression above.
We can then compute derivatives with respect to the
values ᾱ of a particular voxel with the chain rule:

∂Lphoto

∂ᾱ
=

∑
r∈rays

∑
k∈S(r)

∂Lphoto

∂αk

∂αk
∂ᾱ

(18)



Figure 4. Gradient interpolation

S(r) is the set of samples on ray r to which the voxel
of interest contributes. Instead of taking all these con-
tributions into account explicitly, we read interpolated
values of the per-sample gradients:

∂Lphoto

∂ᾱ
≈

∑
cameras

lerp(∂Lphoto

∂α
) (19)

Figure 4 shows our double interpolation: on the left,
each sample interpolates values from the 8 nearest vox-
els’ centers to produce a gradient. On the right, each
voxel reads gradients from the 8 nearest samples.

The computations are analogous for the partial
derivatives with respect to voxel colors, and for the
similarly ray-based Lsample loss. The gradients of the
voxel-wise regularizations Lsmooth α, LSH parsimony and
Lballooning are much simpler since they only involve a
voxel and its immediate neighbors. For instance the
gradient of Lsmooth α is:

∂Lsmooth α

∂ᾱ
= −∆ᾱ (20)

We provide all gradient derivations as supplemental.

3.4. Surface extraction

We extract meshes from the voxel opacity grid us-
ing marching cubes [17] on the transparency values ᾱ.
The color is computed per pixel at rasterization time by
sampling the volume at the location of the unprojected
pixel, taking into account the view direction when eval-
uating the SH basis. The threshold for the extraction
of the isosurface is chosen manually and fixed for all
datasets at 0.81. This simple strategy proves very effec-
tive, provided the optimization converged to an SDF-
like distribution of transparency values.

4. Sparsity and coarse-to-fine strategies
Most differential rendering methods are prone to two

main types of inefficiency: a complex parameterization
and the redundant sampling of empty space. Our pa-
rameterization is as simple as possible: a sparse voxel
grid with a two-level data structure. We also opt for a
coarse-to-fine strategy for quick convergence, starting

with down-scaled images and a coarse grid that we pro-
gressively upscale. We avoid sampling empty space in
two ways: first, by computing the visual hull [12] for a
rough estimate of the location of the surface, and sec-
ond, by precomputing integration ranges for all rays as
determined by the estimation in the previous hierarchy
level. The combination of the coarse-to-fine and sparse
storage allows to focus the method on relevant portions
of space while targeting very high resolution, millimet-
ric voxels in our capture experiments, with contained
compute times and memory.

4.1. Ray culling

To bootstrap convergence, we cull rays that don’t
initially intersect with the visual hull. Also, we reserve
initial voxels using the visual hull’s bounding box, in
the space regions visible by at least one ray. Our sparse
grid is stored as a 3D array of voxel tile pointers (Fig-
ure 5), where tiles contain 43 voxels. Voxels are ini-
tialized with a black color and α = 0.98. We compute
a similar sparse structure for the rays forming 2D tile
bundles. We precompute integration ranges for each
ray bundle, illustrated by the red frustums, by march-
ing in our structure once. An integration range is a list
of continuous sub-ranges, which skip empty space and
stop when the transmittance is low. We sort tiles in
Morton order for improved cache coherence [22].

Sparse grid Voxel buffers

Pointers

α
β0
β1
β2

Figure 5. Sparse structure

4.2. Coarse-to-fine strategy

We start the optimization at a coarse resolution for
both the grid and the images. After convergence has
been reached for the current level, we remove the empty
tiles and mark full tiles, then upscale the sparse struc-
ture at twice the resolution by linearly interpolating
voxels of the coarser level. Using images of the next
finer resolution, we recompute integration ranges for
the new bundles of rays. We determine which tiles are
empty and which are full by computing the transmit-
tance from each camera to each voxel.

4.3. Implementation details

We implement our optimization and visualization
framework with C++ and OpenGL compute shaders.



For integration, the rays are bundled in groups of 8
for better cache coherency. We use an integration step
size equal to the diagonal of a voxel when marching in
the volume. For datasets without backgrounds, we re-
quire segmentation masks and apply an additional loss
Lmask =

∑
rays(T∞ − mask)2 where mask is a binary

image. The different losses are weighted by coefficients
that we keep constant for all the experiments (see sup-
plemental). We use the ADAM optimizer. Voxel coeffi-
cients are stored with 8 bit integers. All computations
use 32 bit floats but we store gradients in 8 bit, 1, 5, 2
floating point format. Since gradients are small, we
bias the exponent to avoid conversion underflow.

5. Evaluations
To broadly characterize the performance of the

method, we perform a range of experiments on two
real data sets and two synthetic datasets, in both a
generic reconstruction setup and surface capture setup.
All our experiments were run on a Quadro RTX 5000
GPU with 16GB of video memory. We mark ’x’ the
table entries for which we were not able to either run
the particular experiment (due to video memory lim-
itations) or that the paper did not provide means of
computing it. We list the optimization timings and
peak memory used in our experiments. An additional
two seconds are required to load the images, compute
the visual hull and initialize our data structures. More
qualitative results are shown as supplementary content.

5.1. Validation with general-purpose benchmarks

Nerf synthetic dataset comparisons. We per-
form a comparison with [18] and [26] on the Nerf
synthetic dataset to characterize general performance.
This dataset is composed of 8 scenes imaged by 100
cameras arranged in an hemisphere, with easily ex-
tractible background segmentations. The appearance
is evaluated with another set of 200 cameras, differ-
ent from the training set, with all images of resolution
8002. Note that many objects have highly reflective
surfaces and intricate geometry. The quantitative re-
sults are summarized in table 1. We report the aver-
aged PSNR values given in [26]. Our method performs
encouragingly except for very strong reflective surfaces
and concavities.

Scene Nerf Plenoxels Ours B = 1 Ours B = 2

PSNR PSNR PSNR
(raster)

PSNR
(vol) Time (s) vram (GB) PSNR (raster) PSNR (vol) Time (s) vram (GB)

chair 26.48 26.28 27.1 5.4 27.59 26.72 53.6 6.2
drums 21.85 21.56 25.6 5.6 22.22 21.90 39.9 6.2
ficus 25.06 26.78 24 5.3 26.32 28.03 30.5 5.6
hotdog 28.45 28.12 40.9 5.9 28.77 28.57 68.1 6.8
lego 26.52 26.31 33.4 6.4 26.68 26.40 64.2 7.3
mic 24.22 24.66 17.2 3.8 25.55 25.64 33.0 4.1
materials 22.28 24.11 24.9 5.9 23.30 24.40 40.4 6.5
ship 26.48 26.44 65.8 8.8 27.05 26.91 153.3 10.2
mean 31.01 31.71 25.2 25.5 32.3 5.9 25.9 26.0 60.4 6.6

Table 1. Quantitative results on NeRF synthetic dataset.

Scan IDR Neus Ours B = 1

Chamfer PSNR Chamfer PSNR Chamfer PSNR
(raster)

PSNR
(vol)

Time
(s)

vram
(GB)

24 1.743 23.30 0.831 x 2.8932 24.43 25.03 98.5 14.3
37 x x 1.101 x 3.4356 22.026 23.05 97.5 14.1
65 0.892 23.95 0.721 x 1.0942 25.26 26.37 78.0 12.2
106 0.728 22.81 0.532 x 1.4070 28.35 30.59 95.9 12.9
110 1.10 21.26 1.416 x 2.9493 25.36 28.47 93.2 13.5
114 0.450 25.36 0.331 x 0.7607 24.36 25.54 84.6 11.9
122 0.706 27.06 0.552 x 1.0001 31.18 32.71 63.3 10.3
mean 0.936 23.96 0.79 x 2.05 25.7 27.1 88.7 12.9

Table 2. Quantitative evaluation on the DTU dataset.

Real data comparisons on DTU. We present re-
sults on the classic DTU dataset [10], composed of 49
to 64 close-up pictures of various objects with chal-
lenging elements. First, the high resolution images
(1600x1200) have inconsistent lighting conditions due
to the robot arm casting shadows on the objects, and
second, only the front is visible in most scenes. This
makes it hard to compute an accurate visual hull so
we manually fit a tight bounding box around the ob-
jects. Since no background images are provided, we
use the segmentation masks of [35]. We used only
one band of spherical harmonics (B = 1) to keep the
problem GPU fitted since the object covers much more
rays than for typical human acquisition setups. Ta-
ble 2 shows some quantitative results for a scene sub-
set with the DTU average chamfer-L1 distances met-
ric. We compare against [35, 33] in terms of geometry
and appearance. We evaluate both with rendered im-
ages obtained by surface rasterization (raster columns),
and images obtained by computing the volumetric in-
tegral (vol columns). The PSNR attained in the latter
is slightly higher than in the former since more vox-
els contribute to the value of a pixel. Our method
works best for highly textured, mildly-specular materi-
als but misses some specular or overly concave parts
(see supplemental). Our chamfer distance is conse-
quently slightly below [35, 33] but our method achieves
higher PSNR, and is 2-3 orders of magnitude faster.

5.2. Surface capture evaluations

Quantitative synthetic human benchmark. We
test our method on 3 free meshes from renderpeo-
ple.com, with 60 rendered viewpoints in a circle around
the objects, rendered on a white background. We re-
port the mean Chamfer distances (centimeters) in ta-
ble 3. Points further than 5 centimeters are ignored
similarly to the DTU evaluation protocol (green points
in Figure 6). Our method performs on par or better
than SOTA [13] on this data, while executing around 20
times faster. Note also that, although they are widely
used for quantitative reference, such semi-synthetic
datasets have intrinsic limitations such as lacking re-
flective component realism or fine-scale geometric de-



Figure 6. Chamfer heatmaps error comparison on synthetic
human benchmark with 3 models, [13] vs ours.

tails (e.g. rinkles in clothing, hair strands). As in ren-
derpeople, this often directly results from limitations
of the capture method used to obtain the reference ge-
ometry itself, which we are attempting to address.

Mei Fabienne Dennis
Our method 0.44 0.45 0.62

Leroy et al. [13] 0.44 0.49 0.62

Table 3. Chamfer evaluation (lower is better).

Qualitative comparison on real data. We com-
pare with the state of the art surface capture method
[13] in Figure 7, on data captured by the Kinovis multi-
camera platform. It is composed of 68 2048×2048 RGB
cameras arranged in an hemisphere with a radius of ap-
proximately 4 meters. Our method provides a drastic
improvement in the reconstruction of all high frequency
details, such as cloth wrinkles, face features, which are
mostly smoothed out with [13]. The distinct geome-
try of fingers and veins are clearly visible in Figure 2,
despite the noisy input. We want to emphasize that
all of these results were routinely obtained in less than
a minute of computation time. The meshes obtained
contain 5 million triangles on average, with each trian-
gle projecting on areas smaller than one pixel thanks
to our sparse coarse-to-fine scheme. We use 4 levels of
detail in our coarse-to-fine strategy, with voxels of 1.25
mm at the finest resolution.

5.3. Transverse performance insights

Ablation of regularization terms. We ablate our
regularizations and coarse-to-fine scheme in table 4 and
Figure 8 on Nerf’s mic model. Varying the number B
of SH bands has the highest impact on quality and per-
formance. The surface has a strong tendency to buckle
when the reflectance cannot be well approximated by
the SH decomposition. We mitigate this effect to some
extent with our ballooning regularization but it cre-
ates a global bloating of the surface that can be hard

Figure 7. Ours (columns 2 & 4) vs [13] (columns 1 & 3)

to overcome in some scenes. Dropping the spherical
harmonic parsimony term results in a faded base color
and creates additional surface buckling, even though
the overall color is more vibrant.



Figure 8. Top: B = 0 (right), B = 1 (center), B = 2 (left)
Center: No ballooning term (right), with ballooning (left)
Bottom: Without SH parsimony term (top row) vs with
(bottom row). From left to right: geometry, mesh colors,
β0,0 only, specularity only

B=2 B=1 B=0 no
ballooning

no SH
parsimony Coarse (left) to fine (right)

PSNR raster 25.9 24.3 23.0 25.7 25.7 23.3 24.2 24.8 25.9
PSNR vol 25.7 24.6 23.4 25.7 25.7 23.0 24.4 25.3 25.8

Table 4. Ablations of regularization terms on the mic model

Ablation of color normalization. The influence of
the color normalization term can only be characterized
on real data where per-camera exposure discrepancies
actually occur, as opposed to synthetic datasets which
don’t show any. Table 5 ablates this optimization term
on three frames of our captured data, showing the in-
crease of PSNR resulting from inclusion of the term.

with color normalization no color normalization
raster vol raster vol

cartwheel t=182 22.6 26.7 21.8 25.3
run t=168 24.6 29.0 23.5 26.9

dance t=367 23.4 26.1 22.5 24.9

Table 5. PSNR on real data

Tradeoffs of surface extraction strategy. Our
regularization and ballooning terms successfully bias
the estimation toward opacity fields with well-defined
surfaces, free of density artifacts as Figure 9 illus-
trates. Our method then aggressively culls inner vol-
umes deemed far away from the surface (in green in
Figure 9, left), with sparse cells only in the vicinity of

Figure 9. Sectional view of the opacity field (left), Ours
(center), [19] (right)

high opacity gradients. While this allows very speedy
inference in most cases, it also means the method may
miss some concavity information to the resulting vol-
ume inflation bias, which explains some of the perfor-
mance limitations observed in 5.1, or e.g. seen with
over-merging under armpits of subjects in Figure 7.
The proposed strategy is meant and shown to offer its
most compelling tradeoff for the targeted capture cases
of mildly concave and mildly reflective subjects.

6. Conclusion and future work
We have presented a simple and efficient differen-

tiable rendering implementation, targeted at multi-
view surface capture problems. Our coarse-to-fine
strategy and custom gradient descent optimization al-
lows fast convergence on a single GPU, typically in a
minute. Our choice of regularization adapts the differ-
ential volumetric rendering framework for the recovery
of highly detailed meshes, where previous methods had
many imperfections such as holes and noise or take
several orders of magnitude longer. Additionally, we
show that computing analytical gradients is not par-
ticularly complex thanks to a simple parameterization,
casting differential rendering as a classic optimization.
The framework can be extended in many directions,
with other appearance models to better handle specu-
lar reflections. In particular, the high pixel precision
achieved in our capture experiments suggest that the
method would also benefit from better sub-pixel de-
noising models and camera calibration refinement.
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