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A bound for Delaunay flip algorithms on flat tori

Loïc Dubois∗

Abstract

We are interested in triangulations of flat tori. A Delau-
nay flip algorithm performs Delaunay flips on the edges
of an input triangulation T until it reaches a Delaunay
triangulation. We prove that no sequence of Delaunay
flips is longer than CΓ · n2 · Λ(T ) where Λ(T ) is the
maximum length of an edge of T , n is the number of
vertices of T , and CΓ > 0 depends only on the flat
torus. The bound improves on the upper bound previ-
ously known [4] in three ways: the dependency in the
“quality” of the input triangulation is linear instead of
quadratic, the bound is tight, and the “quality parame-
ter” is simpler.

Acknowledgments. The author thanks Vincent
Despré, Benedikt Kolbe, and Monique Teillaud for their
help and discussions.

1 Introduction

Delaunay triangulations are mostly known in the Eu-
clidean plane setting. In this context a triangulation T
can be defined as a maximal planar subdivision of a fi-
nite set of points P [3, Chapter 9]. If the two bounded
faces of T incident to an inner edge e form a strictly
convex quadrilateral then the edge e can be replaced,
in T , by the other diagonal of the quadrilateral. Such
operation is called a flip. The flip graph of P is the
graph whose vertices are the triangulations on P and
such that two triangulations are linked by an edge if
there is a flip transforming one into the other. This
graph is connected and its diameter is quadratic in the
cardinal of P [5]. A triangulation is Delaunay if the cir-
cumdisk of every bounded face contains no point of the
triangulation in its interior. A Delaunay flip algorithm
takes as input a triangulation and performs Delaunay-
flips until it reaches a Delaunay triangulation. Such an
algorithm terminates [3, Observation 9.3].

Generalizing Delaunay triangulations [2] [1] and De-
launay flip algorithms [4] to other geometric spaces than
the Euclidean plane is a natural question that has been
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studied (and implemented [7] [6]). In that setting De-
launay flip algorithms present the advantage of handling
triangulations containing loops and multi-edges. A flat
torus TΓ is the quotient space of the Euclidean plane
under the action of a group Γ generated by two inde-
pendent translations (Section 2.1). In this paper we are
interested in the complexity (number of flips) of Delau-
nay flip algorithms on flat tori. We prove Theorem 1.

Theorem 1 Every sequence of Delaunay flips starting
from a triangulation T of a flat torus TΓ has length at
most

CΓ · n2 · Λ(T )

where Λ(T ) is the maximum length of an edge of T , n
is the number of vertices of T , and CΓ > 0 depends only
on TΓ. This bound is asymptotically tight.

An upper bound was already proved [4, Theorem 16],
together with the connectivity of the flip graph, as a
particular (easy) case of a more general result on geo-
metric triangulations of hyperbolic surfaces:

Ch · n2 ·∆(T )2

where Ch depends only on TΓ and ∆(T ) is a parameter
measuring in some sense how “stretched” T is. The def-
inition of ∆(T ) is not used in this paper but we give it
(in the special case of triangulations of flat tori) for the
interested reader: the real ∆(T ) is the smallest diame-
ter that can have a domain of R2 that is the union over
every face t of the triangulation T of a lift (Section 2.1)
of the face t.

To obtain their bound the authors showed that the
edges flipped in a sequence of Delaunay flips cannot be
longer than 2∆(T ) [4, Lemma 10]. The upper bound
follows from the observation that the number of seg-
ments no longer than L > 0 between two given points
of TΓ is at most quadratic in L.

Our first (small) improvement is to replace the pa-
rameter ∆(T ) by the maximum length Λ(T ) of an edge
in T . The inequality Λ(T ) ≤ ∆(T ) is easily observed to
be true. Moreover the definition of ∆(T ) is more intri-
cate than the definition of Λ(T ) and it is not obvious
how to compute ∆(T ).

Our second (main) improvement is to replace the
quadratic dependency by a linear dependency in Λ(T ),
obtaining a bound that is asymptotically tight.

https://sos.loria.fr/
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2 Background

In this paper Rd, d ≥ 1, denotes the usual d-dimensional
Euclidean space with the L2 norm. We call segment
of Rd the convex hull [ũ, ṽ] of any two distinct points
ũ, ṽ ∈ Rd. We call interior of [ũ, ṽ] the set [ũ, ṽ]\{ũ, ṽ}.
The interior of a segment of Rd is not empty.

2.1 Flat tori

A flat torus TΓ is the quotient of R2 under the action of
a group Γ generated by two independent translations.
For the needs of this section we introduce the projection
ρ : R2 → TΓ mapping every point of R2 to its Γ-orbit.

We call segment of TΓ any projection s = ρ(s̃) of a
segment s̃ of R2 such that the restriction of ρ to the
interior of s̃ is injective. If ũ and ṽ are the endpoints of
s̃ then ρ(ũ) and ρ(ṽ) are the (possibly equal) endpoints
of s. We call interior of s the image by ρ of the interior
of s̃.

A lift of a point p ∈ TΓ is any point p̃ in the Γ-orbit
ρ−1(p). A lift of a segment s of TΓ is any segment s̃
of R2 whose interior is, through ρ, in one-to-one corre-
spondence with the interior of s.

The length l (s) of a segment s of TΓ is the length of
a lift of s in R2. It is independent of the lift.

2.2 Delaunay triangulations and flip algorithms

A topological triangulation of a flat torus TΓ is any em-
bedding of a finite undirected graph onto TΓ such that
each resulting face is homeomorphic to an open disk and
is bounded by exactly three distinct edge-embeddings.
Observe that this graph may have loops or multiple
edges. A geometric triangulation of TΓ is a topolog-
ical triangulation in which each edge is embedded as
a segment of TΓ. In this paper every triangulation is
geometric so we just use the term triangulation.
The lift of a triangulation T of TΓ is the infinite tri-

angulation of R2 whose vertices and edges are the lifts
of the vertices and edges of T .

A Delaunay triangulation of TΓ is a triangulation T
of TΓ whose lift T̃ is a Delaunay triangulation of R2

(Figure 1). In other words for each face t̃ of T̃ the disk
circumscribing t̃ contains no vertex of T̃ in its interior.
We refer to the literature for an introduction to Delau-
nay triangulations of R2 [3, Chapter 9].

Consider a triangulation T of TΓ, an edge e of T and
a lift ẽ of e. The segment ẽ of R2 is an edge of the lift
T̃ of T and ẽ is incident with two faces t̃1 and t̃2 of T̃ .
Let D̃1 and D̃2 be the open disks of R2 circumscribing
t̃1 and t̃2 respectively. Let also ṽ1 be the vertex of t̃1
that is not a vertex of t̃2, and ṽ2 be the vertex of t̃2
that is not a vertex of t̃1. The condition ṽ1 ∈ D̃2 is
equivalent to ṽ2 ∈ D̃1. If it is satisfied we say that
the edge e is Delaunay-flippable in the triangulation T

Figure 1: A portion of the lift of a Delaunay triangula-
tion of a flat torus. (Gray) Six lifts of a single face.

and this definition is independent of the choice of the
lift ẽ. In such a case the union of the closures of t̃1
and t̃2 is a convex quadrilateral and replacing, in the
triangulation T , the edge e by the segment ρ([ṽ1, ṽ2]) of
TΓ yields another triangulation T ′ of TΓ. We say that
the triangulation T ′ results from the Delaunay flip of
the edge e in the triangulation T .

We call sequence of Delaunay flips any sequence
T0, . . . , Tm of triangulations of TΓ, for some m ≥ 0,
such that for every k ∈ {1, . . . ,m} the triangulation
Tk results from the Delaunay flip of an edge in the tri-
angulation Tk−1. We say that m is the length of the
sequence.

Every Delaunay flip algorithm takes as input a trian-
gulation of TΓ and flips Delaunay-flippable edges until
there is none left to flip. Such an algorithm terminates
and outputs a Delaunay triangulation [4].

2.3 Stereographic projection and Delaunay flips

In R3 let S2 denote the 2-dimensional sphere of radius
1 centered at (0, 0, 0). The point P = (0, 0,−1) belongs
to S2. We identify R2 with the plane of R3 containing
the points whose third coordinate is 1. Given p̃ ∈ R2 we
denote by Ip̃ the unique line of R3 containing the points
p̃ and P (Figure 2).

The stereographic projection π is a bijection from R2

to S2 \ P . It maps every point p̃ ∈ R2 to the unique
intersection of the line Ip̃ with S2 \ P .

A triangle in R3 is the convex hull of three points
that do not belong to a common line. We call triangular
surface any connected union of triangles satisfying the
following properties. Firstly if the intersection of any
two distinct triangles of the union is not empty then it
is either a vertex or an edge of both of the two triangles.
Secondly every edge belongs to at most two triangles.
Finally the triangles incident to a common vertex v can
be either circularly or linearly ordered so that two such
triangles share an edge e that is incident to v if and
only if the two triangles are adjacent in the (circular or
linear) ordering.
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Every infinite triangulation T of R2 is mapped
uniquely to a triangular surface S as follows. The ver-
tices of S are the images of the vertices of T under π
and the triangles of S are in one-to-one correspondence
with the faces of T : the three vertices ṽ1, ṽ2 and ṽ3 of a
face of T are mapped to the three vertices π(ṽ1), π(ṽ2),
and π(ṽ3) of a triangle of S. We say that such a trian-
gular surface (issued of an infinite triangulation of R2)
is standard.

We emphasize that every standard triangular surface
shares no other point with the sphere S2 than its ver-
tices. In fact if a point belongs to, but is not a vertex
of, a standard triangular surface then it is at distance
less than one from the point (0, 0, 0).

P

S2

p̃

π(p̃)

Ip̃

R2

Figure 2: Mapping a lift of a triangulation of flat torus
to a standard triangular surface.

Every standard triangular surface S induces bijection
πS : R2 → S sending every p̃ ∈ R2 to the unique in-
tersection with S of the line Ip̃. Given two standard
triangular surfaces S and S′ (possibly with S = S′) we
say that S is above S′ if for every p̃ ∈ R2 the point
πS′(p̃) lies on the closed segment [P, πS(p̃)] of R3, on
the line Ip̃. The aboveness relation is a partial order
on the set of standard triangular surfaces. Lemma 2 is
folklore and follows from the fact that every circle on
R2 is mapped under the stereographic projection to a
circle on S2 \ P , the latter being the intersection with
S2 \ P of a plane of R3.

Lemma 2 Assume that a triangulation T of a flat torus
TΓ results from the Delaunay flip of an edge e′ in a
triangulation T ′ of TΓ and let e be the edge of T resulting
from the flip. Let S and S′ be the standard triangular
surfaces associated to the lifts of T and T ′, respectively.
Then S is above S′. Let also p ∈ TΓ be the intersection
point of the interiors of e and e′ and p̃ ∈ R2 be any lift
of p. Then πS(p̃) 6= πS′(p̃).

3 Lower bound

On a flat torus TΓ the length of a sequence of De-
launay flips ending at a Delaunay triangulation cannot

be bounded from above by a function depending only
on the number of vertices of the starting triangulation.
This fact follows from two observations. The first ob-
servation is that it is easy to construct an infinite set
of triangulations of TΓ all having a single common ver-
tex, say v, as their vertex set (Figure 3). The second
observation is that there can only be a finite number of
Delaunay triangulations of TΓ having v as their unique
vertex1.

Figure 3: On a flat torus, three portions of the lifts of
three triangulations with a single common vertex.

To understand this phenomenon more precisely, we
consider a second parameter of the starting triangula-
tion T : the maximum length Λ(T ) of an edge in T . We
exhibit in Proposition 3 a family of starting triangula-
tions T for which we prove a lower bound on the length
of every sequence of Delaunay flips starting from T and
ending at a Delaunay triangulation.

We are interested in a particular flat torus. Consider
the two independent translations by the vectors (1, 0)
and (0, 1) respectively. We are interested in the flat
torus T� that is the quotient of R2 under the action
of the group generated by those two translations. We
denote by ρ� the canonical projection from R2 to T�.
We say that T� is the unit flat torus.

Proposition 3 For every n ≥ 1 and every Λ0 > 0 there
is a triangulation T of the unit flat torus T� such that
every sequence of Delaunay flips starting from T and
ending at a Delaunay triangulation is longer than

c · n2 · Λ(T )

where Λ(T ) > Λ0 is the maximum length of an edge in
T , n is the number of vertices of T , and c > 0 is a
constant.

The quadratic dependence in the number of vertices is
also a consequence of a more general fact about flips (not
necessarily Delaunay flips) of triangulated polygons in
the plane [5, Theorem 3.8]. Our construction is inspired
from one previously known in that setting [5].

1Pick’s theorem [8] infers the existence of Λ1 > 0 depending
only on TΓ such that in R2 every disk of diameter Λ1 intersects a
lift of v. It follows that the edges of any Delaunay triangulation
of TΓ with vertex set {v} are not longer than Λ1. There can only
be a finite number of such edges.
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p̃00 p̃01 p̃02 p̃03

p̃10 p̃11 p̃12 p̃13

. . .

. . .

p̃0−1

p̃1−1. . .

. . .

Figure 4: A portion of the lift of a triangulation belong-
ing to F in the proof of Proposition 3. The fixed edges
are in gray.

Proof. We fix n ≥ 1 and Λ0 > 0. See Figure 4.
For every z ∈ Z and every ε ∈ {0, 1} we define the

point p̃εz = ( zn , ε) in R2 and the point pz of T� by pz =
ρ�(p̃0

z). Observe that if z, z′ ∈ Z are such that z ≡ z′

mod n then pz = pz′ and the points p̃0
z, p̃

1
z, p̃

0
z′ , and p̃

1
z′

are all lifts of pz. For every z, z′ ∈ Z we define the
segment sz,z′ of T� as ρ�(

[
p̃0
z, p̃

1
z′

]
).

We are interested in the set F of the triangulations
of T� satisfying the following. The vertices of every
triangulation T ∈ F are p1, . . . , pn and the edges of
T are partitioned as follows: T contains n edges that
we call fixed and 2n edges that we call free. For k ∈
{1, . . . , n} the kth fixed edge of T is ρ�(

[
p̃0
k−1, p̃

0
k

]
). The

only restriction on the free edges of T is that they must
belong to {sz,z′ : z, z′ ∈ Z}.

Claim 1. For every T ∈ F the following holds:

(a) The fixed edges of T are not Delaunay-flippable.

(b) The Delaunay flip of a free edge e in T results in a
triangulation T ′ ∈ F .

(c) Such a Delaunay flip replaces the edge e in T by an
edge e′ in T ′ such that l(e′) ≥ l(e)− 2/n.

(d) The lengths of two free edges of T cannot differ by
more than 2.

Claim 2. There is a triangulation in F having a free
edge longer than Λ0.

Claim 3. There is a constant Λ1 > 0 such that
the edges of every Delaunay triangulation in F are not
longer than Λ1.

Claims 2 and 3 are straightforward. We will prove
Claim 1 in the end. We first show that those claims
imply the result. By Claim 2 there is a triangulation
T0 ∈ F having a free edge longer than Λ0. Let Λ(T )
denote the maximum length of an edge in T0; Λ(T ) is
the length of a free edge of T0. Indeed the free edges
of T0 have length at least 1 while the fixed edges of T0

have length 1/n.
We assign to every triangulation T ∈ F a weight ω(T )

that is the sum of the lengths of its edges. By Claim
1.d ω(T0) ≥ 1 + 2n(Λ(T ) − 2). Indeed T0 has n fixed
edges of length 1/n and 2n free edges of length at least
Λ(T )− 2.

Consider a sequence T0, . . . , Tm of Delaunay flips for
some m ≥ 0 that starts from T0 and ends at a Delaunay
triangulation Tm. By Claims 1.a and 1.b all the trian-
gulations T0, . . . , Tm belong to F . By Claim 1.c holds
ω(Tm) ≥ ω(T0)− 2m/n. By Claim 3 there is a constant
Λ1 > 0 such that ω(Tm) ≤ 3nΛ1. Thus

2m ≥ n(ω(T0)− ω(Tm)) ≥ n+ (2Λ(T )− 3Λ1 − 4)n2.

That proves the result. Now we prove Claim 1.
Proof of Claim 1. To prove (a) consider a fixed

edge e of the triangulation T . There is k ∈ {1, . . . , n}
such that the segment ẽ of R2 between p̃0

k−1 = (k−1
n , 0)

and p̃0
k = ( kn , 0) is a lift of e. Consider the two faces t̃1

and t̃2 of the lift T̃ of T that are incident to ẽ. Let ṽ1 be
the vertex of t̃1 that is not a vertex of t̃2 and let ṽ2 be the
vertex of t̃2 that is not a vertex of t̃1. Up to renaming
ṽ1 and ṽ2 there are z, z′ ∈ Z such that ṽ1 = p̃1

z = ( zn , 1)

and ṽ2 = ( z
′

n ,−1). It is straightforward to check that
the open disk whose boundary contains p̃0

k−1,p̃
0
k, and ṽ1

does not contain ṽ2.
To prove (b) and (c) consider a free edge e of the

triangulation T and assume that e is Delaunay-flippable.
There are z, z′ ∈ Z such that e = sz,z′ . The segment
ẽ =

[
p̃0
z, p̃

1
z′

]
is a lift of e so it is incident to two faces

t̃1 and t̃2 of the lift T̃ of T . Let ṽ1 be the vertex of t̃1
that is not a vertex of t̃2 and let ṽ2 be the vertex of t̃2
that is not a vertex of t̃1. Up to renaming ṽ1 and ṽ2

there is ε ∈ {1,−1} such that ṽ1 = p̃0
z−ε and ṽ2 = p̃1

z′+ε:
every other case would contradict the fact that both T
and the triangulation resulting from the flip of e in T
are indeed triangulations. The edge e′ resulting from
the lift of e in T admits the segment [ṽ1, ṽ2] as a lift and
l(e′) ≥ l(e)− 2/n.

To prove (d) consider a lift ẽ of a free edge e of T and
the two vertices ṽ1 and ṽ2 of ẽ. Let τ1 be the translation
by the vector (1, 0) (one of the two translations defining
T�). The four points of R2 that are ṽ1, ṽ2, τ1(ṽ2) and
τ1(ṽ1) are the vertices of a closed parallelogram P�. The
closed parallelogram P� contains a lift of every free edge
of T . Indeed every free edge f of T distinct from e
admits a lift f̃ whose interior intersects the interior of
P�

2, and the interior of f̃ cannot intersect a side of
P� because that would imply that the interior of the
edge f intersects another edge of the triangulation T .
To conclude observe that by construction the sides of
P� are of length 1 (for the sides ṽ1τ1(ṽ1) and ṽ2τ1(ṽ2))
and of length l(e) (for the sides ṽ1ṽ2 and τ1(ṽ1)τ1(ṽ2))).
Thus every free edge of T has its length between l(e)−2
and l(e) + 2. �

2The closed parallelogram P� is a fundamental domain for the
flat torus T�.
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4 Upper bound

In Section 3 we exhibited a family of triangulations T
for which the length of a sequence of Delaunay flips
starting from T and ending at a Delaunay triangulation
is bounded from below (Proposition 3). In this section
we show that our construction was actually “the worst
possible” and that the lower bound of Proposition 3 is
asymptotically matched by a general upper bound over
all possible starting triangulations on a flat torus. This
upper bound comes from an observation formalized by
Proposition 4. Informally, given two “long” edges e1 and
e2 among the edges flipped in a sequence of Delaunay
flips, if e1 and e2 have “comparable” lengths then they
must be “roughly parallel”.

4.1 Statement of Proposition 4

Consider a flat torus TΓ. We say that a segment s of
TΓ follows a segment s′ of TΓ (possibly with s = s′) if
there are triangulations T and T ′ of TΓ (possibly with
T = T ′) such that s is an edge of T , s′ is an edge of
T ′, and there is a sequence of Delaunay flips (possibly
of length 0) starting from T ′ and ending at T .

We map every segment s of TΓ to a pair {p̃,−p̃} of
opposite nonzero vectors of R2 as follows. We consider
the endpoints ũ and ṽ of a lift of s and define the point
p̃ as the image of 0R2 under the translation that maps ũ
to ṽ. The resulting pair {p̃,−p̃} does not depend on the
choice of ũ and ṽ. We call these two points the signature
points of the segment s.

Consider two segments s and s′ of TΓ and assume
that s and s′ have the same endpoints u and v (u and v
may be equal) and the same signature points p̃ and −p̃.
Consider also a lift ũ of u. For ε ∈ {1,−1} let ṽε denote
the image of ũ under the translation that maps 0R2 to εp̃.
There are ε, ε′ ∈ {1,−1} such that the segment [ũ, ṽε] of
R2 is a lift of s and such that the segment [ũ, ṽε′ ] of R2

is a lift of s′. If ε = ε′ then s = s′. Thus there cannot be
more than two distinct segments of TΓ having the same
endpoints and the same signature points.

Proposition 4 Given a flat torus TΓ there are κ > 0
and l0 > 0 depending only on TΓ such that the following
holds. If a segment s of TΓ follows a segment s′ of TΓ

and if l (s) > l0 and l (s′) ∈ [l (s) /2, 2l (s)] then the
signature points of s′ are at distance at most κ from the
line containing the signature points of s.

See Figure 5 for an illustration of Proposition 4.

4.2 Proof of Proposition 4

Lemma 5 Assume that a segment s of a flat torus TΓ

follows a segment s′ of TΓ and consider a lift s̃ of s and
a lift s̃′ of s′. If s̃ and s̃′ intersect in their respective

2l(s)

1
2 l(s)

(0,0)

Figure 5: Illustration of Proposition 4. (Black disks)
Signature points of s. (Black squares) Signature points
of s′. (Gray) Points at distance at most κ from the line
containing the signature points of s.

interiors and if there is an open disk D̃ whose bound-
ary ∂D̃ contains the two endpoints of s̃ and one of the
endpoints of s̃′ then the other endpoint of s̃′ lies outside
D̃.

Observe that in Lemma 5 if a point lies outside the
open disk D̃ it may still lie within the boundary circle
∂D̃. In particular the conclusion of the lemma holds
when s = s′ and s̃ = s̃′.

Proof. Let ũ, ṽ denote the two endpoints of s̃, and ũ′, ṽ′
denote the two endpoints of s̃′. Assume that the points
ũ, ṽ, and ũ′ belong to the circle ∂D̃. The projection
π(∂D̃) is the intersection with S2 \P of a plane P ⊂ R3.
The plane P bounds two closed half-spaces whose union
is R3 and whose intersection is P. We will show that
π(ṽ′) belongs to the half-space R containing the point
P .

There are triangulations T and T ′ of TΓ such that
s is an edge of T , s′ is an edge of T ′, and there is a
sequence of Delaunay flips starting from T ′ and ending
at T . The lift T̃ of T and the lift T̃ ′ of T ′ are infinite
triangulations of R2; s̃ is an edge of T̃ and s̃′ is an edge
of T̃ ′. Let S and S′ be the standard triangular surfaces
associated to T̃ and T̃ ′ respectively. Lemma 2 and the
transitivity of the aboveness relation imply that S is
above S′ (possibly with S = S′). Thus any point p̃ ∈ R2

of the intersection of s̃ and s̃′ is such that πS′(p̃) lies on
the segment of R3 [P, πS(p̃)] on the line Ip̃. (Section 2.3).
The point πS(p̃) is the intersection with the line Ip̃ of
an edge of S: this edge is the segment of R3 [π(ũ), π(ṽ)].
This segment is fully contained in the plane P since its
endpoints π(ũ) and π(ṽ) both belong to P. In particular
πS(p̃) belongs to P and πS′(p̃) belongs to the half-space
R. Since πS′(p̃) is distinct from π(ũ′) and belongs to
the segment of R3

[
π(ũ′), π(ṽ′)

]
and since both πS′(p̃)

and π(ũ′) belong to R then so does π(ṽ′). �
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Lemma 6 Let ε > 0 and d > 20ε. Let ũ ∈ R×]−∞, 0[
and ṽ ∈ R×]0,+∞[ such that ‖ũ‖ < ε and ‖ṽ − ũ‖ <
4d. There is a unique open disk D̃ whose boundary con-
tains ũ and the points (d, 0) and (−d, 0). If ṽ lies outside
D̃ then yṽ < 100ε where yṽ denotes the second coordi-
nate of ṽ.

Observe that in Lemma 6 if the point ṽ lies outside
the open disk D̃ it may, still, belong to its boundary.
See Figure 6 for an illustration of Lemma 6.

(d, 0)(−d, 0) (0, 0)

c̃

ũ

ṽ

D̃

Figure 6: Illustration of Lemma 6.

We put the proof of Lemma 6 in Appendix 5. Now
we prove Proposition 4 using Lemmas 5 and 6.

Proof. (Proof of Proposition 4)
Assume that a segment s of a flat torus TΓ follows a

segment s′ of TΓ. Consider a lift s̃ of s. Up to a rota-
tion and a translation we assume that s̃ is a horizontal
segment whose center is the point (0, 0). We claim that
there exist ε > 0 depending only on TΓ and a lift s̃′ of
s′ whose endpoints ũ = (xũ, yũ) and ṽ = (xṽ, yṽ) satisfy
the three following conditions: ‖ũ‖ < ε, yũ < 0, and
yũ ≤ yṽ. To prove this claim start with any lift of s′
and let p̃ = (xp̃, yp̃) and q̃ = (xq̃, yq̃) denote the end-
points of this lift. Up to renaming p̃ and q̃ we assume
yp̃ ≤ yq̃. There is ε > 0 such that any open disk of
diameter ε intersects the Γ-orbit of p̃. Hence there is a
point ũ ∈ R2 at distance less than ε/2 from the point
(0,−ε/2) and a translation τ ∈ Γ such that τ(p̃) = ũ.
Setting ṽ = τ(q̃) proves the claim.

The signature points of s belong to the line R× {0}.
We set κ = 101ε and consider one of the two signature
points of s′, namely ṽ − ũ. Since −ε < yũ < 0 and
yũ ≤ yṽ proving yṽ < 100ε will infer the proposition.
Having yṽ ≤ 0 would conclude so we assume yṽ > 0.
There are two cases: either s̃ and s̃′ intersect in their
interiors or they do not.

First assume that s̃ and s̃′ intersect in their interiors.
We set d = l (s) /2 and we can enforce that d > 20ε.
Indeed we assumed l (s) > l0 and we can choose l0 large
enough with respect to ε (recall that ε depends only on
TΓ). Lemma 5 implies that ṽ lies outside the open disk
D̃ whose boundary contains ũ and the endpoints (d, 0)
and (−d, 0) of s̃. Thus the conditions of Lemma 6 are
satisfied and yṽ < 100ε.

If s̃ and s̃′ do not intersect in their interiors then ṽ lies
outside D̃ and the conditions of Lemma 6 are satisfied
again. �

4.3 Proof of the upper bound

Lemma 7 is folklore. We prove it in Appendix 6 for
completeness.

Lemma 7 Consider a flat torus TΓ, an integer m ≥ 0,
and a sequence of Delaunay flips T0, . . . , Tm. For every
k ∈ {1, . . . ,m} we let ek denote the edge of Tk−1 that is
flipped to obtain Tk. The segments e1, . . . , em of TΓ are
pairwise distinct.

The edges flipped in a sequence of Delaunay flips are
not longer than 2∆(T ) where ∆(T ) is a parameter mea-
suring in some sense how “stretched” the starting trian-
gulation T is [4, Lemma 10]. The arguments yielding a
bound in terms of ∆(T ) easily infer a bound in terms of
the maximum length of an edge in T . This new bound is
stated by Lemma 8. As the proof of Lemma 8 is only a
slight adaptation of the anterior proof [4, Lemma 10] we
omit it here and put it in Appendix 7 for completeness.

Lemma 8 Consider triangulations T and T ′ of a flat
torus TΓ and assume that there is a sequence of De-
launay flips starting from T ′ and ending at T . Then
the edges of T cannot be more than twice as long as a
longest edge of T ′.

Now we prove Theorem 1.

Proof. (Proof of Theorem 1) Consider m ≥ 0 and a
sequence of Delaunay flips T0, . . . , Tm such that T0 = T .
For every k ∈ {0, . . . ,m} the edges of Tk constitute a
set Ek of segments of TΓ. We are interested in the union
E of the sets E0, . . . , Em. By Lemma 7 the cardinal of
E is not smaller than m. We partition the elements of
E into n(n+ 1)/2 subsets according to their endpoints,
as follows. For every unordered pair {u, v} of vertices
of the triangulation T we consider the set of segments
in E that end at u and v. For every single vertex v
of T we consider the set of segments in E that admit
v as their unique endpoint. Proving that each of those
subsets contains at most CΓ · Λ(T ) segments will infer
the result.

So consider such a subset F ⊆ E in the partition that
we just described and let u and v be the (possibly equal)
endpoints of the segments in F . Let κ > 0 and l0 > 0
be given by Proposition 4.

As explained in Section 4.1 there cannot be more than
two distinct segments of TΓ having the same endpoints
and the same signature points. Fix a lift ũ of u and a lift
ṽ of v. For any signature point p̃ of a segment in F there
is τ ∈ Γ such that either p̃ or −p̃ is equal to τ(ṽ) − ũ.
Thus there is a finite number of such signature points
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that are at distance at most l0 from the point (0, 0),
and this finite number depends only on TΓ (recall that
l0 depends only on TΓ). That implies that there is only
a finite number of segments in F that are not longer
than l0.

Consequently we let F ′ ⊆ F be the set of segments
in F that are longer than l0: we will now bound the
cardinality of F ′. By Lemma 8 no segment in F ′ is
longer than 2Λ(T ). We partition the segments in F ′ by
their lengths as follows. We consider j0 = l0 < j1 <
· · · < jN = 2Λ(T ) for some N ≥ 1 such that for every
k ∈ {1, . . . , N} the reals jk−1 and jk differ by a factor of
at most 2. For every k ∈ {1, . . . , N} we let F ′k denote the
set of segments in F ′ whose length belongs to ]jk−1, jk].
We now fix k and claim that F ′k contains at most C ′Γ ·
(jk − jk−1) segments, where C ′Γ > 0 is a constant that
depends only on TΓ.

To prove this claim observe that if F ′k is not empty
then it contains a segment s that follows every other
segment s′ ∈ F ′k \ {s}. For such another segment s′
Proposition 4 states that the signature points of s′ are
at distance at most κ from the line containing the sig-
nature points of s. Also the distance to (0, 0) of the
two signature points of s′ is the length of s′ and thus
lies between jk−1 and jk. Consequently the number of
signature points of elements of F ′k is at most linear in
jk − jk−1 and the constant coefficient depends only on
TΓ.

To clarify this statement observe that the signature
points of elements of F ′k all belong, by definition, to the
Γ-orbit O of some point of R2. We just proved that such
signature points also belong to the set D of points of R2

(1) that are at distance κ from the line containing the
signature points of s and (2) whose distance to (0, 0) lies
between jk−1 and jk. The cardinality of the intersection
of O and D is linear in jk − jk−1, and the constant
coefficient depends only on O and κ, that both depend
only on TΓ.

That, together with Proposition 3 for the lower
bound, concludes the proof of Theorem 1. �
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Appendix

5 Proof of Lemma 6

Proof. We write ũ = (xũ, yũ) and ṽ = (xṽ, yṽ) and recall
that yṽ > 0 and yũ < 0 both hold by assumption. The latter
enforces the existence of the open disk D̃. Now let c̃ denote
the center of D̃. The segment [−d, d] × {0} is a chord of D̃
and its midpoint is the point (0, 0). Thus the first coordinate
of c̃ is 0 and the radius of D̃ is

√
y2
c̃ + d2 where yc̃ denotes

the second coordinate of c̃. One easily gets yc̃ > 0 from the
assumptions yũ < 0, ‖ũ‖ < ε, and d > ε. See Figure 6.

We first prove a few inequalities that may seem arbitrary
at first but will be used in the end of the proof. Pythagorean
Theorem gives (yc̃ − yũ)2 + x2

ũ = y2
c̃ + d2 which simplifies to

−2yũyc̃ = d2 − x2
ũ − y2

ũ. We assumed ‖ũ‖ < ε and d >
√

2ε,
that implies x2

ũ + y2
ũ < d2/2 and −yũ < ε and thus

4εyc̃ > d2. (1)

Equation (1) combined with the assumption that d > 20ε
implies

yc̃ > 100ε. (2)

The triangular inequality gives ‖ṽ‖ ≤ ‖ṽ − ũ‖ + ‖ũ‖. The
later is smaller than 4d+ ε < 5d by assumptions. So ‖ṽ‖2 <
25d2 and by Equation 1 we obtain

‖ṽ‖2 < 100εyc̃. (3)

Equation (3) and Equation (2) imply

‖ṽ‖ < yc̃. (4)

Now we prove yṽ < 100ε. Since ṽ lies outside D̃ then
(yc̃ − yṽ)2 + x2

ṽ ≥ y2
c̃ + d2, which simplifies to y2

ṽ − 2yc̃yṽ +
x2
ṽ − d2 ≥ 0. We study this inequality to derive a bound

on yṽ. Equation (4) implies 4(y2
c̃ + d2 − x2

ṽ) > 0 hence the
polynomial X2 − 2yc̃X + x2

ṽ − d2 univariate in X admits
two real roots yc̃ ±

√
y2
c̃ + d2 − x2

ṽ. Equation (4) enforces
yṽ ≤ yc̃ −

√
y2
c̃ + d2 − x2

ṽ, which implies

yṽ < yc̃

(
1−

√
1− x2

ṽ/y
2
c̃

)
.

Equation (3) and Equation (2) successively infer

yṽ < yc̃
(

1−
√

1− 100ε/yc̃
)
≤ 100ε.

That proves the lemma. �

6 Proof of Lemma 7

Proof. Assume there are k, k′ ∈ {1, . . . ,m} such that k <
k′ and ek = ek′ . Let Sk−1, Sk and Sk′−1 be the standard
triangular surfaces associated to the lifts of Tk−1, Tk and
Tk′−1, respectively. Consider the edge f of Tk resulting from
the Delaunay flip of the edge ek in Tk−1. Let p ∈ TΓ be the
intersection point of the interiors of f and ek. Let also p̃ ∈ R2

be a lift of p.
Since ek = ek′ then πSk−1(p̃) = πSk′−1

(p̃). By Lemma 2
Sk′−1 is above Sk and Sk is above Sk−1. We deduce πSk (p) =
πSk−1(p̃) = πSk′−1

(p̃). But Lemma 2 also gives πSk (p̃) 6=
πSk−1(p̃) hence a contradiction. �

7 Proof of Lemma 8

Proof. Let Λ(T ′) be the maximum length of an edge of
T ′ and assume that there is an edge e of T such that
l(e) > 2Λ(T ′). Consider a lift ẽ of e and let p̃ ∈ R2 be
the middlepoint of ẽ. There is a face t̃′ of the lift T̃ ′ of T ′

such that p̃ belongs either to t̃′ or to the boundary of t̃′. The
three edges of the triangle t̃′ are not longer than Λ(T ) so, by
the triangular inequality, the distance from p̃ to any vertex
of t̃′ is not greater than Λ(T ) and the closed disk D̃ ⊂ R2 of
diameter Λ(T ) and centered at p̃ contains t̃′. Also the two
endpoints ũ and ṽ of ẽ lie outside D̃.

Consider the standard triangular surfaces S and S′ asso-
ciated to the lifts of T and T ′, respectively. The projection
π(∂D̃) of the boundary ∂D̃ of D̃ is the intersection with
S2 \ P of a plane P ⊂ R3. The plane P bounds two open
half-spaces. The points π(ũ) and π(ṽ) both belong to the
half-space R that contains P . Thus πS(p̃) ∈ R. The vertices
w̃1, w̃2 and w̃3 of t̃′ all belong to ∂D̃ thus π(w̃1), π(w̃2) and
π(w̃3) all belong to P and πS′(p̃) ∈ P. Consequently πS′(p̃)
does not lie on the segment [P, πS(p̃)] of R3, contradicting
Lemma 2. �
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