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Abstract

This paper presents an interactive framework for develop-
ing high-performance C code via series of source-to-source
transformations. Optimization steps are described in trans-
formation scripts, expressed as OCaml programs. The pro-
grammer can interactively visualize the textual differences
associated with any step of the script. We demonstrate the
effectiveness of OptiTrust by reproducing a manually opti-
mized Particle-In-Cell numerical simulation, starting from
a direct, unoptimized version of the algorithm. This case
study covers many state-of-the-art optimization patterns
that appear in numerical simulation codes. We argue that,
compared with optimizing code by hand, deriving high per-
formance code using a transformation script makes the code
easier to review, easier to debug, and easier to maintain as
the intended program or as the target hardware evolves.

1 Introduction

Turning a high-level, unoptimized algorithm into a high-
performance code is a challenging process. Outside of niche
domains where specialized compilers for domain-specific
languages (DSL) can be leveraged, the transformations re-
quired for taking full advantage of the hardware capabilities
are, by far, out of reach of automated compilers. Compilation
hints provided by the programmer in the form of pragmas en-
able to describe a first set of transformations. However they
are ill-suited to describe the second—or the twentieth—round
of transformations.

In practice, it is commonplace for programmers to opti-
mize code manually, i.e., to explicitly code the result of a
combination of numerous transformations. Typically, to op-
timize the code that runs on a specific computation node, a
programmer would focus on the critical computation kernels
and then work for weeks, if not months, to optimize them.
Doing so generally requires to reorganize the data layout
in memory, to reorder loops, to set up parallel threads, to
sparingly introduce concurrent instructions, etc. Common
goals are to maximize the use of vector instructions (SIMD),
to minimize the pressure on the memory bus, and to exploit
all the cores available.

Manual code optimization is, however, quite unsatisfac-
tory. Cost: Manually implementing code optimizations is
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very time consuming, in particular because optimizations
typically make the code size grow substantially. Perfor-
mance: Because each candidate implementation takes a lot
of time to develop, the programmer often lacks time to ex-
plore the optimization space. Maintainability: When small
changes are made to the high-level algorithm, corresponding
changes need to be transposed to the optimized code. Doing
so requires the programmers that manipulate the code to
fully understand all the optimizations that have been baked
into the code. Correctness: Manual code optimization is er-
ror prone. If a programmer combines 35 optimizations, and
implements each one correctly with probability 98%, then
the final code has over 50% chances of containing a bug!

An alternative route to producing a highly optimized code
is to derive it from an unoptimized, high-level code, via a
series of source-to-source transformations, guided by the pro-
grammer. In this paper, we present OptiTrust: an interactive
framework for developing source-to-source transformation
scripts. To argue for the expressiveness of the framework,
we present a case study that reproduces a state-of-the-art,
high-performance C implementation of a Particle-In-Cell
(PIC) simulation, starting from a direct, unoptimized imple-
mentation of the simulation.

2 Related work

Optimizing compilers. General purpose compilers such as
GCC or ICC apply advanced program optimizations. They
are, however, inherently limited by three factors. First, they
must respect the C standard, preventing them from, e.g.,
refactoring certain floating point expressions. Second, they
may be unable to synthesize complex program invariants
required to justify certain transformations. Third, they gen-
erally cannot apply transformations for which the risk of
significantly degrading performances is too high. OptiTrust,
in contrast, aims to leverage human expertise.

Compiler directives. To introduce human guidance, a
common approach is to insert pragmas into the code. For
example, Scout [1] is a pragma-based tool for guiding source-
to-source transformations that introduce vector instructions.
The main limitation of pragmas is that they are ill-suited for
describing sequences of optimizations. Indeed, there is no



easy way to attach a pragma to a line of code that is gen-
erated by a first optimization. Kruse and Finkel [2] suggest
the possibility to stack up pragmas, by providing labels as
additional pragma arguments: a second pragma may refer to
the labels introduced by the transformation described in a
first pragma. This approach does not scale up well beyond a
handful of successive transformations. OptiTrust, in contrast,
aims to support chains of dozens of transformations.
Domain specific languages (DSLs). Another possible
approach to overcome the limitations of general-purpose
compilers is to leverage domain specific languages (DSL),
such as Halide [3], TVM [4], or Boast [5]. Because DSLs are
restricted languages, they can benefit from specialized com-
pilers that explore a large space of possible code layout, using
carefully tuned heuristics and ad-hoc performance diagnosis
tools. Yet, the language restriction is also the Achilles’ heel
of DSLs: as soon as the user’s application requires a single
feature that falls outside of what the DSL can express, the
programmer loses most if not all of the benefits of the DSL.
In contrast to DSLs, OptiTrust sticks to a general-purpose
language, supporting a large subset of the C language.
Code transformations via rewrite rules. A rewrite rule
maps a code pattern to another code pattern. A number of
tools exploit rewrite rules to perform source-to-source trans-
formations. For example, TXL [6] is a multi-language rewrite
system, whose patterns are expressed at the level of syntax,
using grammars. Coccinelle [7] allows the programmer to de-
scribe semantic patches in C code. CodeBoost [8] applies the
Stratego program transformation language [9] to C++ code.
CodeBoost was used to turn high-level operations on matri-
ces and vectors into typical high-performance source code.
As we demonstrate through our case study, OptiTrust is also
able to optimize vector-manipulating code. At the same time,
OptiTrust provides a much more expressive language for
describing transformations, going far beyond rewrite rules.
Source code manipulation frameworks. Frameworks
that offer more expressiveness than rewrite rules generally
give access to the abstract syntax tree (AST) of the source
code. Traditional compilers employ an AST, but they are not
designed for synthesizing pieces of AST. Moreover, tradi-
tional compilers operate on intermediate representations,
and lose the structure of the original code. Other compilers,
such as ROSE [10, 11] and Cetus [12], are designed to sup-
port code transformations (and code analyses) at the level
of C code. Source-to-source transformations have also been
employed to produce code targeting GPUs [13-15]. All these
source-level tools focus only on implementing generic code
transformations, whereas OptiTrust furthermore provides
facilities for writing scripts to optimize specific programs.
Interestingly, Cetus [12] exploits an intermediate represen-
tation (IR), with fewer constructs than the C language, and
yet has the possibility to return to readable C code. OptiTrust
follows a similar route, but for interactive transformations.
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Transformation scripts. Expressing a series of source-
level transformations for a specific program can be done
by means of a transformation script. Such scripts have ap-
peared in particular in the context of polyhedral transfor-
mations [16, 17], for example in Loopy [18] and in work by
Zinenko et al. [19]. CHILL [20, 21] includes transformations
that go beyond the polyhedral model. It has been applied
to generate finely tuned CUDA code from high-level lin-
ear algebra kernels. Clava [22] is a C++ source-to-source
analysis and transformation framework. Its transformation
scripts are written in LARA, a JavaScript-based DSL with
special constructs for code queries, analysis and transforma-
tions. POET [23, 24] is a scripting language for performing
program transformations, for C/C++ as well as other lan-
guages. POET has been employed to generate optimized code
for linear algebra kernels, including semi-automated explo-
ration of a search space of possible optimizations. None of
the aforementioned projects have demonstrated the ability
to optimize realistic numerical simulation code like that of
our case study. Moreover, none of them feature a system
for targeting program points with the expressiveness and
conciseness offered by OptiTrust targets.

3 Contribution

This paper introduces OptiTrust, an interactive transforma-
tion framework that allows refining an unoptimized code
into a high performance code, through the development of a
transformation script that applies a series of source-to-source
optimizations. OptiTrust is meant to be used by an expert
in program optimization who has some intuition of poten-
tially interesting optimization strategies, and is interested in
producing the corresponding optimized code without going
through the tedious, error-prone and hard-to-maintainable
process of writing optimized code by hand. A key aspect is
that OptiTrust supports transformations whose correctness
is nontrivial: such transformations are out of reach of au-
tomated optimization tools, and can only be applied by an
expert with good understanding of the invariants of the pro-
gram at hand. By providing interactive feedback in the form
of human-readable code, OptiTrust allows human expertise to
be leveraged in the middle of a chain of optimizations.

To demonstrate the expressiveness of OptiTrust, we present
one major case study: the optimization of a numerical simu-
lation, for which we leverage OptiTrust to produce a code
that matches a pre-existing code [25] that had been care-
fully optimized by hand. As detailed in the rest of the paper,
this one case study covers a broad scope of optimizations,
including: (1) core data layout transformations [26] such as
array-of-structure to structure-of-array, array tiling, struc-
ture fields inlining, interchange of dimensions of an array,
scaling or shifting by a constant factor of all the values from
an array; (2) instruction-level transformations [27] such as
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variable and function inlining, uninlining, instruction re-
ordering, constant propagation, dead code elimination, arith-
metic simplifications, pattern-based rewriting; (3) common
control flow transformations [28] such as loop fission, fusion,
interchange, unswitching, unrolling, tiling, or loop-invariant
code motion.

The key ingredients of the OptiTrust framework are:

1. Aninternal library for manipulating a simplified abstract
syntax trees (AST). OptiTrust currently handles a large
subset of C99; it also supports most of OpenMP pragmas,
C11 alignment directives, and a few C++ features, e.g.,
references. The original source code is encoded into the
OptiTrust AST, and can be decoded back to C code.

2. A user-level library of general-purpose transformations.
A fair number of these transformations are illustrated
throughout the paper. This library is extensible with
custom, domain-specific optimizations that can be pro-
grammed either by composing existing transformations,
or, if needed, by manipulating directly the AST.

3. An interactive interface to execute a specific line, or
block of lines, from the transformation script, and to
interactively visualize the corresponding diff. We propose
keybindings for the VSCode editor, yet our bash-based
tooling could be easily invoked from any code editor.

4. The design of a concise, expressive system for target-
ing program points, somewhat similar to XPath [29] for
XML, but specialized for an AST. Concretely, a target is
described via a list of constraints over nodes or edges.
OptiTrust also supports matching on the string represen-
tation of expressions, possibly using regular expressions.

5. The use of OCaml for expressing transformation scripts,
as well as for implementing the framework. The OCaml
programming language features: a type-system, making
scripts easier to maintain; native compilation, ensuring
decent performance; higher-order functions, facilitating
code factorization; and pattern matching, helpful for im-
plementing custom AST manipulations.

6. The possibility for transformation scripts to depend on
parameters. Optimization steps can be guarded by a if-
statement that depends on a combination of parameters.
Doing so enables sharing of pieces of script when pro-
ducing not just one but several optimized code, to be
benchmarked on one or several target hardware.

The major part of the paper consists of the presentation
of the case study that illustrates many of OptiTrust features.
In the last section of the paper, we give a few insights on the
implementation of the framework.

4 Case Study: Optimization of a PIC Code
4.1 Objectives of the Case Study

The optimized code that we aim to reproduce is a Particle-in-
Cell (PIC) plasma physics simulation, implementing Vlasov-
Poisson equations. This code has been written by Yann

Barsamian as part of his PhD thesis [30], which was coad-
vised by experts in applied mathematics and experts in code
optimization. His work, published at Euro-Par’18 [25], inte-
grates state-of-the-art vectorization techniques [31-33].

Barsamian et al’s algorithm [25] is strict-binning: particles
from a same cell are stored in a bag data structure. Bags are
represented as linked lists of fixed-size arrays, called chunks,
with 256 particles in each. This representation is a variant of
AOSOA [34]. A key feature is that the bags support not just
sequential, but also thread-safe push operations. The details
of the algorithm may be found in [25, §2]. Understanding
them is not required for reading the present paper.

Barsamian’s implementation [25] was shown to scale up
to the simulation of 256 billion particles using 128 Skylake
sockets, for a total of 3072 cores and 12.3 TB of RAM. In the
scope of this case study, we ignore the distributed aspects of
the code (MPI), and focus on the thread-parallelization and
vectorization of the code. We also leave aside the optional
custom memory allocator, which maintains (per-thread) free
lists of chunks. Indeed, the corresponding code is fairly com-
plicated, moreover entangled with other initialization func-
tions. The primary purpose of this custom allocator is to
avoid the need for dynamic allocation during the steps of the
simulation. We did not want to modify Barsamian’s code;
and we did not want implement an allocator from scratch for
our program, as it would introduce a divergence unrelated
to OptiTrust transformations. Instead, we relied on jemalloc,
a drop-in replacement for malloc, for chunk allocation.

We started by writing a naive C implementation of the
same algorithm, without any consideration for performance,
instead with the aim of making our naive code as close as
possible to the mathematical equations. Fig. 1 shows our
naive code for the function that processes one time step.

The purpose of the case study is to demonstrate how Op-
tiTrust can be used to transform the naive code into a code
equivalent to the hand-written, carefully optimized code. By
equivalent, we mean a code that: (1) employs the same data
structures, (2) features the same loops, in particular the same
parallel loops and the same vectorized loops, (3) produces
the same output, up to tolerable floating-point rounding dif-
ferences, (4) exhibits at least as good performance, and (5)
reads as easily as manually optimized code.

In what follows, we present several highlights from our
OptiTrust script. Each section is accompanied by a figure
showing the transformation script and the corresponding
diff—or at least a representative excerpt thereof. Note that
many transformations apply not just to the main step func-
tion, but at the same time: (1) in the function steplLeafFrog,
which applies the Leap-Frog method; (2) in the function
addParticle, used when creating the initial particles; (3) in
the function reportParticlesState, used for dumping parti-
cles at the end of the simulation. In our script, the variable
step refers to the main step function, and steps refers to
either step or stepLeafFrog.



bag+ bagsCur, bagsNext; double« deposit; // Key data structures
void step() { // The code executed at each time step of the simulation
for (int idCell = 0; idCell < nbCells; idCell++) { // For each cell
// Read the electric field at the corners of the cell
vect_nbCorners field_at_corners = getFieldAtCorners(idCell, field);
// Enumerate the particles stored in the cell considered
bagx b = &bagsCur[idCell];
bag_iter bag_it;
for (particlex p = bag_iter_destructive_begin(&bag_it, b);
p != NULL; p = bag_iter_next(&bag_it)) {
// Interpolate the field based on the position to the cell corners
double_nbCorners coeffs = cornerInterpolationCoeff(p—pos);
vect fieldAtPos = matrix_vect_mul(coeffs, field_at_corners);
// Compute the acceleration using the formula a = g/m+E
vect accel = vect_mul(particleCharge / particleMass, fieldAtPos);
// Compute the updated speed and position for the particle
vect speed2 = vect_add(p—speed, vect_mul(stepDuration, accel));
vect pos2 = vect_add(p—pos, vect_mul(stepDuration, speed2));
pos2 = wrapArea(pos2); // Periodic grid: apply wrap—around
particle p2 = { pos2, speed2 };
// Push the particle in the bag of the destination cell
const int idCell2 = idCellOfPos(pos2);
bag_push(&bagsNext[idCell2], p2);
// Deposit the charge at the corners of the destination cell
double_nbCorners contribs = cornerInterpolationCoeff(pos2);
accumulateChargeAtCorners(deposit, idCell2, contribs);
}
bag_init_initial(b); // Reinitialized the bag that has been consumed
}
// Swap bags of current step with bags of next time step
for (int idCell = 0; idCell < nbCells; idCell++) {
bag_swap(&bagsCur[idCell], &bagsNext[idCell]);
}
// Compute the electric fiedl based on the charge distribution using a
updateFieldUsingDepositAndResetDeposit(); // Poisson solver
}
Figure 1. Unoptimized, bag-based code for the PIC method.
Each individual step of the script is introduced by a “!!”
symbol. This symbol is followed by the name of the transfor-
mation, possibly by arguments provided to the transforma-
tion, and then by the target describing where in the code the
transformation should be applied. The tilde symbol intro-
duces optional arguments in OCaml. Targets are expressed as
list of constraints, of the form [c1; ¢2; ; cn]. The mod-
ifier nbMulti indicates that we expect the target to resolve
to more than one node.

4.2 Parallelization of the Main Loop

Let us start by illustrating the ability of OptiTrust to manip-
ulate loop nests, to achieve a specific, nontrivial iteration
order. For each cell, the inner loop of Fig. 1 enumerates the
particles stored in the bag associated with that cell. The opti-
mized code processes the cells in parallel, but not all of them
at the same time. The idea, by Kong et al. [32], is to execute
8 phases, one after the other. During each of these phases,
threads process cubic blocks that are spaced away from each
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other in parallel. The interest is to avoid data races for parti-
cles that move no further than half-a-block away from their
block. Fig. 3 illustrates the block phases: in 2D, there are not
8 but 4 phases. At the phase i, each of the 2x2 blocks whose
cells are labeled with i can be handled in parallel.

Fig. 2 shows how we 0011001

. . 110011 1
realize the paralleliza- 0011/00!/11l00/11
tion, starting from the 223322332233
unoptimized, sequential 2233223382233
code. First, we replace 00/1110011/110011 1

’ 001100/11/00|11
nbCells by the product 2 2 3322|332 2/33
gridXxgridYxgridz. We 2 233|223 3|22|33

target the loop with in-
dex idCells that con-
tains the variable accel. Then, we apply the transformation
grid_enumerate to turn the loop over cell indices into 3 loops
over the coordinates. Names for the loop indices are provided
with help of the higher function map_dims, a shorthand for
List.map f ["X";"Y";"Z"], defined for the case study.
Second, we set up the iteration by block. Let us show the
transformation involved for the x-dimension. Starting from:

Figure 3. Parallel processing

for (int iX = 0; iX < gridX; iX++)

we apply a tiling transformation by the block size (the grid
size is assumed to be a multiple of the block size):
for (int bX = 0; bX < gridX; bX += block)

for (int iX = bX; iX < bX + block; iX++)
then we apply to the outer loop a coloring transformation,
for separately processing even and odd iterations:
for (int cX = 0; cX < 2; cX ++)

for (int bX = cX*block; bX < gridX; bX += 2%block)
Finally, we reorder all the loops to iterate first on phases,
then on blocks of that phase, then on cells within each block.

We are then ready to make the code parallel: we mark the
loops on bX, bY, and bz as collapsed-parallel, and turn the
bag-push and the charge deposit into atomic operations. The
conditional for performing non-atomic bag push operations
is introduced in a subsequent step (not shown). In summary,
by carefully composing general-purpose transformations, we
obtain exactly Kong et al’s advanced iteration pattern [32].

4.3 Inlining of Vector and Matrix Operations

In order to enable data-layout and data-scaling transforma-
tions, we convert high-level vector operations into per-field
operations. Fig. 4 shows the corresponding steps. The first,
preliminary step, eliminates two local variables by replacing
them with in-place write operations. This step avoids the
need for an auxiliary array when subsequently splitting the
loop. The second step performs two actions. First, it inlines
the vector multiplication and addition operations. Second, it
converts assignment of a structure into the corresponding
set of assignments to the individual fields of the structure.
These steps highlight in particular the ability of OptiTrust
to maintain human-readable code through inlining.
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Step: change the iteration over the cells to introduce coordinates

let tg = cTarget [step; cFor "idCell" ~body:[cVarDef "accel"]] in
I'l Instr.read_last_write ~write:[cWriteVar "nbCells"] [tg; dForStop; cReadVar "nbCells"];
'l Loop.grid_enumerate ~indices:(map_dims (fun d -> "i"~d)) [tgl;

for (int idCell = 0; idCell < nbCells; idCell++) { + for (int iX = 0; iX < gridX; iX++) {

+ for (int iY = 0; iY < gridy; iY++) {

+ for (int iZ = 0; iZ < gridZ; iZ++) {

+ const int idCell = (iX * gridY + 1Y) * gridZ + iZ;

Step: parallel processing of the cells by phases with spaced-out blocks

Il iter_dims (fun d -> let index = "b"Ad in
Loop.tile (expr "block") ~bound:TileBoundDivides ~index [step; cFor ("i"*d)];
Loop.color (lit "2") ~index:("c"*d) [step; cFor index] );
I'l Loop.reorder ~order: ((add_prefix "c" dims) @ (add_prefix "b" dims) @ idims) [step; cFor "cX"1;
'l Expr.replace_fun "bag_push_concurrent" [step; cFun "bag_push"];
!'l Instr.set_atomic [step; clLabel "charge"; cWrite ()1;
!'l Omp.parallel_for ~collapse:3 [step; cFor "bX"];

for (int iX = 0; iX < gridX; iX++) { + for (int cX = 0; X < 2; eX++) {
for (int iY = 0; 1Y < gridY; iY++) { + for (int cY = 0; cY < 2; cY++) {
for (int iZ = 0; iZ < gridZ; iz++) { + for (int ¢z = 0; ¢Z < 2; cZ++) {
+ #pragma omp parallel for collapse(3)
i for (int bX = cX * block; bX < gridX; bX += 2 * block) {
+ for (int bY = cY * block; bY < gridY; bY += 2 * block) {
i for (int bZ = cZ * block; bZ < gridZ; bZ += 2 * block) {
+ for (int iX = bX; iX < bX + block; iX++) {
+ for (int iY = bY; iY < bY + block; iY++) {
+ for (int iZ = bZ; iZ < bZ + block; iZ++) {
+ bag push concurrent(
bag push(&bagsNext[MINDEX1(nbCells, idCell2)], p2); + &bagsNext [MINDEX1(nbCells, idCell2)], p2);
double nbCorners contribs; double _nbCorners contribs;
charge: charge:
for (int k = 0; k < 8; k++) { for (int k = 0; k < 8; k++) {
i #pragma omp atomic
depositCorners[MINDEX2(nbCells, 8, idCellz, k)] += depositCorners[MINDEX2 (nbCells, 8, idCell2, k)] +=

Figure 2. Steps: parallelization of the main loop over the cells

Step: eliminate an intermediate storage by reusing an existing one

!l Variable.reuse (expr "p->speed") [step; cVarDef "speed2" 1;
'l Variable.reuse (expr "p->pos") [step; cVarDef "pos2"];

vect speed2 = vect add(p->speed, vect mul(stepDuration, accel)); + p->speed = vect add(p->speed, vect mul(stepDuration, accel));
vect pos2 = vect_add(p->pos, vect_mul(stepDuration, speed2)); + p->pos = vect_add(p->pos, vect_mul(stepDuration, p->speed));
pos2 = wrapArea(pos2); + p->pos = wrapArea(p->pos)

particle p2 = {pos2, speed2, p->id}; + particle p2 = {p->pos, p->speed, p->id};

const int idCell2 = idCellOfPos(pos2); + const int idCell2 = idCellOfPos(p->pos);

Step: inline vector operations, and convert struct assignments to per-field assignments

'l Function.inline [steps; cFuns ["vect_mul"; "vect_add"]];
let tg = cOr [[steps]; [cTopFunDefReg "bag_push_.x"]] in
I'l List.iter (fun typ -> Struct.set_explicit [nbMulti; tg; cWrite ~typ ()]1) ["particle"; "vect"];

vect accel = vect_mul(particleCharge / particleMass, fieldAtPos); vect accel = {particleCharge / particleMass * fieldAtPos.x,
particleCharge / particleMass * fieldAtPos.y,
particleCharge / particleMass * fieldAtPos.z};

p->speed.x + stepDuration * accel.x;

p->speed.y + stepDuration * accel.y;

p->speed.z = p->speed.z + stepDuration * accel.z;

p->pos.x = p->pos.x + stepDuration * p->speed.x;

p->pos.y = p->pos.y + stepDuration * p->speed.y;

p->p0s.z = p->pos.z + stepDuration * p->speed.z;

p->speed = vect_add(p->speed, vect mul(stepDuration, accel)); p->speed.

¥
4
o
+ X
+ p->speed.y
+ z
+ =
4
o

p->pos = vect_add(p->pos, vect_mul(stepDuration, p->speed));

= c->items[index] = p; c->items[index].pos.X = p.pos.X;
c->items[index].pos.y = p.pos.y;
c->items[index].pos.z = p.pos.z;
c->items[index] .speed. p.speed.x;
c->items[index].speed.y = p.speed.y;
c->items[index].speed.z = p.speed.z;

+ o+ + 4+ o+ o+
I oo

N < X
I

Figure 4. Steps: inlining of vector operations, and expliciting of struct assignments



4.4 Array-of-Structures to Structure-of-Arrays

In the unoptimized code, a bag is represented as a linked
list of chunks, where each chunk consists of a fixed-sized
arrays of particles, and each particle consists of two vec-
tors (pos and speed). In the optimized code, however, each
chunk stores 6 fixed-sized arrays: x-positions, y-positions,
z-positions, x-speeds, y-speeds, and z-speeds. These arrays
can be efficiently processed by vector instructions (like with
AOSOA [34]). Fig. 5 describes the steps involved in this con-
version of the data representation from an array-of-structures
to a structure-of-arrays (AoS-to-SoA). This transformation
is a performance-critical data layout optimization that com-
pilers respecting the C standard cannot apply.

To begin with, we need to reveal all the relevant array
accesses. The first step of Fig. 5 replaces the loop that iter-
ates over the bag cells using an iterator, with a pair of nested
loops that directly access the internal representation of the
chunks. For this transformation, we extended the bag library
with two higher-order functions, named bag_iter_ho_basic
and bag_iter_ho_chunk, describing the high-level and the
low-level iteration patterns, respectively. The transforma-
tion employs pattern matching to recognize an instance of
the body of bag_iter_ho_basic, then replaces it with the
corresponding instance of the body of bag_iter_ho_chunk.

In the second step, we eliminate a local variable named p,
which denotes the particle being processed. Doing so reveals
accesses with the pattern, e.g., c—>items[i].speed.x. In the
third step, we convert this pattern into c—itemsSpeedX[i].
To that end, we reveal, in the type definition of particle,
the components of the type vect in the fields speed and pos;
then, we reveal, in the type chunk, the components of the
type particle in the field items, which is a fixed-size array.

4.5 Scaling and shifting of values

We next explain how OptiTrust allows to apply transforma-
tions to numerical data stored in memory, for the purpose
of simplifying computations. For simplicity, we consider a
single dimension in the formulae, and we ignore the wrap-
around (i.e., the periodic conditions). Consider a particle at a
given time step. Its speed, v, and its position, x, are updated.
For the updated position, we need to compute the index of
the destination cell, i, as well as the normalized position, r,
relative to the corner of the cell i (with 0 < r < 1). The value
of r is used for interpolations. The formulae are as follows:

vi=LEAt  x+=oAt 0= || r=xglx

Ax Ax

where E denotes the electric field, At denotes the duration of
a time step, Ax the width of a cell, and q and m are constants.
The idea of scaling is to store and manipulate not the
values of E, v and x, but instead the values E’, v’ and x’
defined as: E’ = %AA—;ZE and v’ = ﬁ—;v and x’ = ALxx. Using
these entities, the previous formulae simplify as follows.

v +=E’ x'+=0v’ i=|x'] r=x"—1i
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Fig. 6 first shows the step that performs the scaling of
positions. We provide as targets to the transformation the
read operations (whose results are multiplied) and write op-
erations (whose arguments are divided) on array cells and
variables that store positions. Compared with applying scal-
ing by hand, targeting reads and writes in a systematic way
using a tool makes it much less likely to miss out instructions.

Fig. 6 next shows the step that performs the simplification
of arithmetic expressions. OptiTrust features a module for
performing basic simplification of arithmetic expressions
(expand products, aggregate sums and products, including
cancellation of divisions and subtractions of equal terms).
Rather than specifying precisely the instructions to simplify,
we found it easier to request simplification throughout the
steps function, using the wrapper function with_nosimpl to
exclude the one loop that contains operations to ignore.

After scaling, we apply shifting. The idea is to store coordi-
nates not relative to the side of the grid, but instead relative
to the side of the cell that contains the particle. Bowers et
al. [31, Section IILE.] used this representation, storing, for
each particle, the identifier of its cell plus the relative coor-
dinates. Barsamian et al’s algorithm [25], however, features
one distinct bag per cell (strict binning), thus there is no need
to store cell identifiers. Concretely, shifting amounts to in-
troducing x”’ = x’ — i. The value of r is then immediately
available, as x”/. The absolute coordinate x’ can be recov-
ered as x”’ + i. When moving a particle, we need to shift its
coordinate by an amount that depends on the array cell in
which the particle is about to be stored. We provided the
relevant shifting values explicitly in the script, as this infor-
mation would be quite challenging for a tool to automatically
synthesize from the code in a robust manner.

4.6 Adding Dimensions to Matrices (Delocalize)

We next present another kind of data layout transforma-
tion, which introduces distributed and/or redundant mem-
ory storage. We call delocalize this transformation that, on
a given scope, replaces accumulation operations on a ma-
trix a[i][j] with the corresponding operations on a fresh,
auxiliary matrix d[i1[j1[k]. This transformation takes as
argument the scope considered, the name of the existing ma-
trix a, a fresh name d, and a size K. The idea is that: a[i1[j] =
Ykefo,k) dLi1[31[k]. When entering the scope, d[i1[j1[k]
is zero-initialized, except d[i][j1[@] which is set to ali][j].
When leaving the scope a[i1[j] is set to the sum of the
d[i1Cj1Ck] values. Within the scope, expressions of the form
alil[j] += varereplaced with d[iJ[jI[ANY(K)] += v, where
ANY (K) indicates that the programmer is there free to choose
any valid index in the range [0, K).

In the case study, we exploit delocalize 3 times. First, we
use it to introduce redundant representation for the deposit
array. We explain the details further on. Second, we use
it to introduce a per-thread representation for the matrix
depositCorners, leading to the introduction of the matrix
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Step: changing the iteration pattern from an iterator to low-level loops
'l Function.inline [steps; cFuns ["bag_iter_begin"; "bag_iter_destructive_begin"1];
I'l Loop.change_iter ~src:"bag_iter_ho_basic" ~dest:"bag_iter_ho_chunk" [steps; cVarDef "bag_it"];
!l Instr.delete [nbMulti; cTopFunDefAndDeclReg "bag_iter.x"1;

bag iter bag it;

for (particle *p = bag_iter_destructive begin(&bag_it, b); p != NULL; for (chunk *c = b->front; ¢ != NULL; c = chunk_next(c, true)) {
const int nb = c->size;
for (int i = 0; i < nb; i++) {

p = bag_iter_next(&bag_it)) { particle *p = &c->items[i];

Step: inlining of a variable that corresponds to a pointer on an array cell
Il Instr.inline_last_write [nbMulti; steps; cReadVar "p"J;
particle *p = &c->items[i];

const int iX@ = int_of_double(p->pos.x / cellX); + const int iX® = int_of double(c->items[i].pos.x / cellX);
const double rX® = (p->pos.x - iX0 * cellX) / cellX; + const double rX0 = (c->items[i].pos.x - iX0 * cellX) / cellX;

Step: array-of-structures to structure-of-arrays change in data layout

I'l Struct.reveal_fields ["speed"; "pos"] [cTypDef "particle"l;
Il Struct.reveal_field "items" [cTypDef "chunk"J;

typedef struct chunk { typedef struct chunk {
struct chunk *next; struct chunk *next;
int size; int size;
particle items[CHUNK SIZE]; + double itemsPosX[CHUNK SIZE];
+ double itemsPosY[CHUNK SIZE]
+ double itemsPosZ[CHUNK SIZE]
+ double itemsSpeedX[CHUNK_SIZE];
+ double itemsSpeedY[CHUNK SIZE];
+ double itemsSpeedZ[CHUNK SIZE];
} chunk; } chunk;
-c->items[i].speed.x = c->items[i].speed.x + stepDuration * accel.x; c->itemsSpeedX[i] = c->itemsSpeedX[i] + stepDuration * accel.x;
c->items[i].speed.y = c->items[i].speed.y + stepDuration * accel.y; c->itemsSpeedY[i] = c->itemsSpeedY[i] + stepDuration * accel.y;
c->items[i].speed.z = c->items[i].speed.z + stepDuration * accel.z; c->itemsSpeedZ[i] = c->itemsSpeedZ[i] + stepDuration * accel.z;

Figure 5. Steps: array-of-structures to structure-of-arrays

Step: scaling of positions by a constant factor, amounting to normalizing grid cells
Il iter_dims (fun d -> let factor = var_mut ("cell"*d) in
Accesses.scale ~factor [cTopFunDef "addParticle"; cFieldRead ~field: (lowercase_ascii d) ~base:[cVar "pos"] ()1;
Accesses.scale ~inv:true ~factor [nbMulti; steps; cOr [
[sExprRegexp ~substr:true ("c->itemsPos"~d*"\\[i\\]1")];
[cFieldWrite ~field:("pos"d) ()1 11);

const int iX0 = int of double(c->itemsPosX[i] / cellX); + const int iX0 = int_of double(c->itemsPosX[i] * cellX / cellX);
const double rX0 = (c->itemsPosX[i] - iX® * cellX) / cellX; + const double rX0 = (c->itemsPosX[i] * cellX - iX@ * cellX) / cellX;
p2.posX = c->itemsPosX[i]; + p2.posX = c->itemsPosX[i] * cellX / cellX;
p2.posY = c->itemsPosY[i]; + p2.posY = c->itemsPosY[i] * cellY / cellY;
p2.posZ = c->itemsPosZ[i]; + p2.posZ = c->itemsPosZ[i] * cellZ / cellZ;

Step: simplification of arithmetic expressions after scaling of speeds and positions

'l Variable.inline [steps; cVarDef "accel"];
!l Arith.with_nosimpl [nbMulti; steps; cFor "idCorner"] (fun () —->
Arith. (simpl_rec expand) [nbMulti; stepsl);

vect accel = {fieldAtPosX / (stepDuration * stepDuration) * cellX,
fieldAtPosY / (stepDuration * stepDuration) * cellY,
fieldAtPosZ / (stepDuration * stepDuration) * cellZ};
c->itemsSpeedX[i] = (c->itemsSpeedX[i] / (stepDuration / cellX) + + c->itemsSpeedX[i] += fieldAtPosX;
stepDuration * accel.x) *
(stepDuration / cellX);

.c->itemsPosX[i] =

(c->itemsPosX[1i] * cellX + + c->itemsPosX[i] += c->itemsSpeedX[i]
stepDuration * (c->itemsSpeedX[i] / (stepDuration / cellX))) /
cellX;

Figure 6. Steps: excerpt from the scaling transformations
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Step: introduction of OptiTrust matrix indexing operators (simplified presentation)
Il Matrix.intro_mops [nbMulti; cVarDefs ["deposit"; "bagsNext"]l;

double *deposit = (double *)malloc(nbCells * sizeof(int)); + double *deposit = (double *)MMALLOC1(nbCells, sizeof(int));
for (int idCell = 0; idCell < nbCells; idCell++) { for (int idCell = 0; idCell < nbCells; idCell++) {
deposit[idCell] += 1.; + deposit[MINDEX1(nbCells, idCell)] += 1.;

Step: delocalize for the deposit array (simplified presentation)

I'l Matrix.delocalize "deposit" ~into:"depositCorners" ~acc:"sum" ~ops: (Ast.Local_arith (Lit_double 0., Binop_add))
~dim: (var "nbCorners") ~index:"idCorner" ~indices:["idCell"] ~alloc_instr:[cVarDef "deposit"] [cFor "idCell"];

double* deposit = (double*)MALLOC1l(nbCells, sizeof(int)); double* deposit = (double*)MALLOC1(nbCells, sizeof(int));
for (int idStep = 0; idStep < nbSteps; idStep++) { for (int idStep = 0; idStep < nbSteps; idStep++) {
+ double* depositCorners = (double*)MALLOC2(nbCorners, nbCells, sizeof(int));
+ for (int idCell = 0; idCell < nbCells; idCell++) {
+ depositCorners[MINDEX2(nbCorners, nbCells, 0, idCell)] =
+ deposit[MINDEX1(nbCells, idCell)];
+ for (int idCorner = 1; idCorner < nbCorners; idCorner++)
+ depositCorners[MINDEX2(nbCorners, nbCells, idCorner, idCell)] = 0.;
+ }
for (int idCell = 0; idCell < nbCells; idCell++) { for (int idCell = 0; idCell < nbCells; idCell++) {
const int nb = nbParticlesInCell(idCell); const int nb = nbParticlesInCell(idCell);
for (int i = 0; i < nb; i++) { for (int i = 0; i < nb; i++) {
const int idCell2 = computeParticleDestination(idCell, 1i); const int idCell2 = computeParticleDestination(idCell, i);
for (int k = 0; k < 8; k++) { for (int k = 0; k < 8; k++) {
+ depositCorners[MINDEX2(nbCorners, nbCells, ANY(nbCorners),
deposit[MINDEX1(nbCells, indicesOfCorners(idCell2).v[k])] += 1.; + indicesOfCorners(idCell2).v[k])] += 1.;
* }
} }
} }
for (int idCell = 0; idCell < nbCells; idCell++) {
double sum = 0.;
for (int idCorner = 0; idCorner < nbCorners; idCorner++) {
sum += depositCorners[MINDEX2(nbCorners, nbCells, idCorner, idCell)];
}
deposit[MINDEX1(nbCells, idCell)] = sum;

+ o+ o+t o+ o+

}
+ MFREE (depositCorners);

Step: apply a bijection to the indexing pattern of the depositCorner array
I'l Function.insert "int bij(int nbCells, int nbCorners, int idCell, int idCorner) { ... (* 14 lines not shown %) ...
return MINDEX2(nbCells, nbCorners, bijection[idCorner], idCorner);" [tBefore; step];
Il Matrix.biject "bij" [step; cVarDef "depositCorners"];
I'l Expr.replace (expr "MINDEX2(nbCells, nbCorners, idCell2, idCorner)")
[step; sExpr "bij(nbCells, nbCorners, indicesOfCorners(idCell2).v[idCorner], idCorner)"];

for (int idCorner = 0; idCorner < nbCorners; idCorner++) { for (int idCorner = 0; idCorner < nbCorners; idCorner++) {
deposit[MINDEX1(nbCells, + depositCorners[MINDEX2 (nbCells, nbCorners,
indicesOfCorners(idCell2).v[idCorner])] += + indicesOfCorners(idCell2).v[idCorner],
+ idCorner)] +=
.for (int idCorner = ©; idCorner < nbCorners; idCorner++) { for (int idCorner = ©; idCorner < nbCorners; idCorner++) {
sum += depositCorners[MINDEX2(nbCells, nbCorners, idCell, idCorner)]; + sum += depositCorners[bij(nbCells, nbCorners, idCell, idCorner)];

Figure 7. Steps: excerpt from the delocalize transformations

depositCornersThreads. In this second case, delocalize is sim- x*xY+y. The first step from Fig. 7 shows the introduction of Op-
ilar to the reduction pragma of OpenMP. Exploiting that tiTrust macros. The second step illustrates the application of
OpenMP feature directly is not possible, because we subse- a delocalize transformation that introduces redundant cells
quently need to fuse the aggregation loops introduced by two for storing the charge accumulated at every corner. Observe
different delocalize operations. Third, we use delocalize to the expression ANY (nbCorners), which we refine to idCorner
replace each destination bag with a pair of bags: one private in a subsequent step (not shown). For clarity, the script and
bag for non-atomically receiving particles that come from diff shown in step 2 of Fig. 7 are associated with a unit test
nearby cells (at most half a block away from the currently that exhibits a similar structure as the real code.
processed block of cells [32]) and one shared bag for atom- The motivation for introducing redundant cells for corners
ically receiving particles that come from further away [25, is that, by applying an appropriate shuffling of array cells, it is
§2]. In that case, the aggregation is performed with respect to possible to deposit the charge contributions associated with
the function that initializes empty bags, and the (destructive) one particle on the 8 corners of its destination cell via 8 write
bag union function. operations performed in adjacent memory locations [33].
To ease array manipulations, OptiTrust provides macros The shuffling is implemented by the bijection function intro-
for allocating and for accessing n-dimensional arrays rep- duced at the third step of Fig. 7. The bijection is applied to all
resented as flat C arrays. MALLOC2(X, Y, sizeof(double)) allo- accesses to the array. By design, the write operation in the
cates a matrix of size X * Y, and MINDEX2(X, Y, x,y) refers to performance-critical loop simplifies to a simple expression

the coordinates (x,y) of a matrix of size X * Y. It is defined as
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Step: vectorization of the interpolation function

let ctx = cTarget [nbMulti; cTopFunDef "cornerInterpolationCoeff"] in

I'l Rewrite.equiv_at "double a; ==> 1. - a == (1. + (-1.) * a)" [nbMulti; ctx; cVarDefReg "c."; cInit()];
I'l Rewrite.equiv_at "double a; ==> a == (0. + 1. * a)" [nbMulti; cWrite(); cVarReg "r[X-Z1"];

!'l Variable.inline [nbMulti; ctx; cVarDefReg "c."];

I'l Variable.intro_pattern_array ~const:true ~pattern_aux_vars:"double rX, rY, rz"

~pattern_vars:"double coefX, signX, coefY, signY, coefZ, signz"

~pattern:"(coefX + signX * rX) x (coefY + signY x rY) x (coefZ + signZ * rz)" [nbMulti; ctx;

cWrite(); dRHS];

!'l Instr.move_out ~dest:[tBefore; ctx] [nbMulti; ctx; cVarDefReg "\\(coef\\|sign\\)."];

!l Loop.fold_instrs ~index:"idCorner" [ctx; cWrite()];

const double cX = 1. - rX;
const double cY = 1. - rY;
const double cZ = 1. - rZ;

double nbCorners r;

r.v[@] = cX * cY * cZ;
r.vii] = eX * ¥ *'rZ;
r-vi2] E eX * ry *cZ;
r.vi3] = X * rY * rZ;
r.v[4] = rX * cY * cZ;
r.v[5] = rX * cY * rZ;
r.v[6] = rX * ryY * cZ;
r.v[7] = rX * rY * rzZ;

+ + + + +

double nbCorners r;
for (int idCorner = ©; idCorner < nbCorners; idCorner++) {
r.v[idCorner] = (coefX[idCorner] + signX[idCorner] * rx) *
(coefY[idCorner] + signY[idCorner] * rY) *
(coefZl[idCorner] + signZ[idCorner] * rZ);

with 6 arrays of constant values being defined outside of the function, for example:

+ const double coefZ[8] = {1., 0., 1., 0.,

1.,0., 1., 0.};

Figure 8. Steps: several instruction-level code optimizations

depositCorners[MINDEX2(nbCells,8,idCell2,k)], which can
be vectorized.

We are not aware of any previously existing tool that
would be able to express or synthesize the combination of
the delocalize and bijection transformations exploited here
to achieve vectorization of the charge deposit process.

4.7 Instruction-Level Code Optimization

Fig. 8 illustrates a instruction-level optimization, performed
by means of the pattern rewriting feature of OptiTrust. The
optimization considered corresponds to the last ingredient
of Vincenti et al’s vectorization technique [33]. It consists
of computing the interpolation coefficients for the 8 corners
by introducing arrays of constants, and rewriting arithmetic
expressions into a uniform pattern in such a way that the 8
computations can be factorized into a loop. This loop, unlike
the original code, is sucessfully vectorized by GCC and ICC.

4.8 Other Steps from the PIC Transformation Script

In addition to the transformations discussed so far, the script
of our case study includes the following important steps:

e The fusion of the two loops that iterate over the cor-
ners of the target cell, when accumulating charges.

e The optimization of the wrap-around computations.
First, we replace the floating point modulo with an
integer modulo—after scaling is applied to normalize
the dimensions of grid cells. Second, in case the grid
size is statically known to be a power of two, we replace
the integer modulo with a bitwise-and operation.

e The introduction of a conditional in the code to execute
either a non-atomic or an atomic bag push operation,

depending on whether the destination of the particle
is more than half a block away from its current block.

e An optimization of the aggregation of the private and
shared bags at the end of the time step, to merge them
directly into the bag used by the next iteration.

e The splitting of the main loop into three parts: one
to update speeds, one to update positions, and one to
push the particle in its destination bag and deposit
its charge. Like in Barsamian et al’s code [25], we
introduce an auxiliary array of size CHUNK_SIZE to save
identifiers of the destination cells across split loops.

e An transformation for representing relative positions
in single precision instead of double precision, as sug-
gested by Bowers et al. [31, IILE.]. This transformation
is optional, and is controlled by a parameter.

Our full script consists of 150 steps marked with !!, orga-
nized in 34 big steps, each corresponding to one high-level
optimization. For each small or big step, the diff can be dis-
played and reviewed. Currently, processing the full script
takes less than 10 seconds. OptiTrust features a checkpoint
mechanism, so when working on a specific big step, the diff
of a given step gets displayed in less than 1 second.

Using a checker program, we could verify that both our
unoptimized code and our optimized code behave essentially
like Barsamian’s code: the relative error is less than 2 - 1071
when simulating 1 million particles for 1000 steps. (We re-
produced the experiment using 50 different seeds). Such a
minor divergence is expected due to rounding errors.

4.9 Performance Evaluation

The primary purpose of our case study is not to report on
performance improvement. What matters is the fact that



Socket description | Simulation Throughput

(million part./sec/core)

RAM | Cores | Part. | Grid | Orig. | Ours| Diff

#1 | 96GB 18 2000m | 643 23.2 | 27.6 | +19.1%

#2|16GB| 10 200m | 323 | 103 | 113 | +9%

#3|32GB 4 200m | 64° 18.2 | 21.2 | +16.5%

Figure 9. Benchmark results. Higher throughput is better.

OptiTrust allows to produce a code equivalent to one that
had been manually optimized: (1) the output code is human
readable; in particular, lines are short, and do not contain
meaningless variable names; (2) the data structures are the
same as in the original code: same arrays, same bags with
fixed-sized arrays; (3) the loop structures are the same as in
the original code, up to minor difference in the description
of ranges; (4) the omp pragmas are the same as in the original
code, and they appear at the corresponding places in the
code; (5) loops from the step function are vectorized in the
same way, according to GCC and ICC vectorization reports.
Our refinement from unoptimized code to optimized code
lead to code whose memory load patterns appeared, in two
places, to be beneficial. First, in the loop updating the speeds,
our code reads the electric field associated with the cell only
once outside the loop. Second, in the most critical loop (60%
to 70% of the exec. time), our code loads particle data ahead
of the conditional that tests whether the particle moves more
than half a block away, whereas Barsamian’s code loads it
inside the branches, thereby delaying the memory loads. We
did not want to modify Barsamian’s code, nor to make our
code less efficient, thus we kept these two differences.
Barsamian et al. [25] report figures for a 24-core Xeon
Platinum 8160 socket, with 96 GB of RAM. Their simula-
tion involves 2 billion particles on a 64° grid, and runs for
500 steps. We checked that running for a few dozen steps
suffices for performance measures; to be on the safe side, we
used 100 steps in our benchmarks. We observed that execu-
tion times, even when using different seeds, vary by no more
than 1% between runs on a server (up to 5% on a laptop). For
each machine, we averaged execution times over 8 runs.
Our benchmark uses 3 different machines. Machine #1
hosts a 18-core Xeon Gold 6240 socket. Machine #2 hosts
a 10-core E5-2650 socket; this machine has only 15 GB of
RAM, so we used a 323 grid, and fewer particles. Machine #3
is a 4-core laptop (17-8650U). Like Barsamian et al. [25], we
compiled the code using Intel C compiler (ICC). They report
a throughput of 30.8 million particles per seconds per core.
Results appear in Figure 9, which compares the unmod-
ified, original code [25] (column Orig.), against the code
produced by our transformation script (column Ours). We
conclude that our output code delivers at least as good per-
formance as the original code that we aimed to reproduce.
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5 OptiTrust Infrastructure

The diagram that follows gives a high-level overview of
OptiTrust’s infrastructure. OptiTrust integrates two parsers:
the C/C++ Clang parser [35]; and a faster, OCaml-based, C
parser called Menhir-C [36].

Clang AST
OptiTrust
RawC AST
parse
Menhir-C AST

The OptiTrust AST is simpler than a standard C AST.
We convert the AST obtained from the selected parser into
the OptiTrust AST by performing two encodings. First, we
replace stack-allocated variables by heap allocated variables.
Second, we eliminate the notion of modifiable left-value,
replacing assignments with calls to a set functions. Together,
these encodings lead, essentially, to an imperative A-calculus.
This language features much simpler semantics than C—it is
used in many research papers on programming languages.

To get back from OptiTrust AST to C syntax, we leverage a
small number of annotations introduced during the encoding
phase, and systematically format the output code using clang-
format. This way, the round-trip from C and back to C is the
identity when no transformation is applied. This round-trip
property ensures that diffs are minimal. Moreover, it gives
confidence in the correctness of our translations.

An OptiTrust transformation is implemented in three
stages. First, we resolve the provided target into a list of
AST paths. Second, we mark the corresponding AST nodes
(unless a single node is targeted, in which case we do not
need marks). In general we are required to introduce marks
because applying a transformation at the first target could
move the positions of the other targets. Third, we apply the
desired transformation at each of the marks. All transforma-
tion view the OptiTrust AST as an immutable data structure:
they are implemented in a purely applicative way. Preventing
in-place modifications avoids numerous pitfalls.

For resolving targets, OptiTrust features a backtracking
algorithm. It is the user’s responsibility to provide targets
with constraints that avoid exponential searches. For con-
straints expressed in terms of the string representation of
expressions, we are careful to generate string representations
only when they are required, and only within the scopes that
might contain the desired targets.

Overall, the OptiTrust implementation involves about 25k
lines of OCaml code. The regression suite contains 170 unit
tests, featuring 880 individual steps. Besides, we provide a
generator that takes a transformation script and produces
an interactive HTML page for navigating through the diffs
associated with all the small and big steps involved in the
script. This stand-alone page may be convenient for third-
party reviewing of the optimization process.

transform

parse

encode

OptiTrust
AST

decode
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