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Automated planning for robotic guidewire navigation in the coronary arteries

Pierre Schegga,b, Jérémie Dequidta, Eulalie Coevoeta, Edouard Leurenta, Rémi Sabatierc,
Philippe Preuxa and Christian Durieza

Abstract— Soft continuum robots, and comparable instru-
ments allow to perform some surgical procedures non-
invasively. While safer, less morbid and more cost-effective,
these medical interventions increase the complexity for the
practitioners: the manipulation of anatomical structures is
indirect through telescopic and flexible devices and the visual
feedback is indirect through monitors. Interventional cardiology
is an example of complex procedures where catheters and
guidewires are manipulated to reach and treat remote areas of
the vascular network. Such interventions may be assisted with
a robot that will operate the tools but the planning (choice of
tools and trajectories) remains a complex task. In this paper
we use a simulation framework for flexible devices inside the
vasculature and we propose a method to automatically control
these devices to reach specific locations. Experiments performed
on 15 patient geometries exhibit good performance. Automatic
manipulation reaches the goal in more than 90% of the cases.
Keywords: Catheter Navigation, Quadratic Programming, Monte
Carlo Tree Search.

I. INTRODUCTION

Robotic guidewire navigation within arteries is a planning
problem of underactuated soft continuum robots. The move-
ments (translation or rotation) are imposed on the proximal
base of the guide, outside the patient. This allows to navigate
the distal part of the guidewire which is very soft and
deforms in the vessels by contacting the walls. The physician
(with or without robot) seeks to impose a movement on
the distal end and must therefore anticipate the deformation
of the guidewire in order to move forward efficiently. In
this paper, we propose a new approach for the planning of
guidewire navigation in coronary arteries with a robot, in
order to offer guidance assistance to physicians.

The targeted cardiovascular diseases are pathologies in
which the coronary arteries get narrower (stenosis), thus
impairing the blood flow to certain areas of the heart, which
may lead to myocardial infarction. They are one of the lead-
ing causes of death worldwide, particularly in Europe and the
United States [1], [2]. Percutaneous Coronary Interventions
(PCI) are minimally invasive surgery procedures used to treat
those coronary artery diseases. PCI consists in inserting one
or several concentric guidewires and catheters and navigating
the arteries in order to inflate a stent inside the lesion, thus
restoring a normal blood flow.

The guidewires are pre-curved wires and have an elastic
behavior. Contrary to the instruments used in other cardiol-
ogy procedures (such as electrophysiology), the guidewires
used in PCI are not steerable. This means that the shape
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of the guidewire cannot be actively modified during the
procedure. The guidewire can only be either pushed, pulled
or rotated along its longitudinal axis. As a consequence,
navigating the guidewire in the coronaries relies heavily on
the contacts between the instruments and the artery walls,
particularly to pass through bifurcations.

Several robotic platforms have been developed for as-
sisting these interventions [3], [4]. Robotization aims to
provide the physician with more comfort in performing the
procedure, thus reducing the risk for orthopedic injuries [5],
and to reduce their exposure to X-rays [6]. Several clinical
trials and physicians also report that the use of the robot
allows for a greater precision and facilitates some complex
procedures [7], [8]. These robots are all used as teleoperation
tools and the physician directly controls the movement of the
instruments at their base.

In this paper, we focus on the design of a planning
module responsible for the generation of feasible trajectories
taking into account the highly underactuated aspect of the
system and the contacts with the patient’s vessels. The long-
term goal is to integrate this planner into a larger closed-
loop control system to fully automate guidewire navigation.
Several semi-automatic and automatic functionalities can be
derived from this planning module while developing fully
automatic navigation. For instance, the planning module can
be used to generate feasible trajectories and can also test
reachability with various instruments and select the most
appropriate. Both of these information are valuable to less
experienced cardiologists. The planning functions could also
lead to assistance functions during the procedure, such as
compensation for heart movement or safety functions.

Where other recent works propose new steerable [9] or
magnetic [10] tools, we designed our algorithm to consider
the instruments already used in angioplasty. This should
allow to implement them faster in a clinical setting as it
doesn’t require a change in the tools clinicians use or specific
operating rooms.

Several works in the literature have looked at autonomous
control of guidewires and catheters. Those include model-
based control of steerable catheters in the aorta [11], re-
inforcement learning based control of guidewires in 2 di-
mensional vessels [12]–[14], guidewire control based on
a Finite State Machine in 2 dimensional vessels [15] and
Jacobian based control of ablation catheters [16]. Most of
these previous works use steerable catheters in much larger
vessels [11], [12], [16] which means the distal part of the
instrument can be deformed and steered rather than relying
on contacts. Other articles navigate a guidewire in simplified



2 dimensional vessels and train or test their agent on one
geometry [13]–[15]. None of these articles have shown
the capacity to navigate in several 3-dimensional patient
geometries.

Contributions of the work

Our approach is based on a Finite Element Model (FEM)
of the guidewire behavior combined with Signorini’s law
for the contacts with the vessels. The simulator is patient-
specific and the scenarios were tested on real 3D patient
data. This simulator is coupled with an inverse model ob-
tained by convex optimization extended to complementarity
constraints, which often provides good solutions but falls
into local minima. Finally, we combine this with tree search
techniques to overcome these minima and allow to find a
navigation solution even in complex cases. In summary, the
contributions are:

1) A framing of a cardiology procedure (PCI) as a sequen-
tial decision making problem using a 3-dimensional
medical simulator based on FEM.

2) A new method using parallelized optimistic plan-
ning to automatically control and steer catheters and
guidewires in the coronaries using contacts.

3) A new method for combining direct control and inverse
control within optimistic tree search based planning.

This paper focuses on the decision making process which
enables the navigation in the coronaries. The physical model
of the simulation was validated in previous works [17]–[19].

II. BACKGROUND

The contributions presented in this paper were made
possible by a novel combination of three approaches: the
training simulation of interventional cardiology, a contact
deformable model inversion technique by optimization, and a
tree search approach for planning. Each of these approaches
has its own state of the art. We summarize in this section
what is needed to understand the remaining of the paper.

A. Physics based training simulation

Many reports [20] have demonstrated the advantages of
computer-based simulation over the conventional training
method of apprenticeship in medicine. Therefore, new train-
ing simulation systems for various surgeries or procedures
have been developed. Typically, these simulators offer a
combination of simulation software that aims at reproducing
some parts of the surgery procedure and hardware devices
that allow the practitioners for realistic interaction with the
simulation. In the context of interventional cardiology, sev-
eral virtual-reality simulators have been proposed to train and
learn cardio-vascular procedures [21], [22]. The scientific
challenge remains in the simulation of the navigation of
guidewires and catheters when many computational models
exist [23]. The use of physics-based simulation can also
applied to robot-assisted cardiovascular interventions [24].

We use the Simulation Open Framework Architecture
(SOFA) [25] to simulate the coronary arteries and their
interaction with the instruments. SOFA is an open source

physics-based simulation framework initially developed for
interactive medical simulations, and extended via plugins to
a range of applications including soft robotics. In this paper
we use two plugins: for the modeling of guidewires and
catheters [19] (section III-A) and for inverse model control
of the instruments [26] (section IV-A). We also used the
standard OpenAI Gym [27] interface and SofaGym [28] to
link the planning algorithms to the simulations.

B. Quadratic Programming with Complementarity Con-
straints for planning

In our modeling, the configuration of the guidewire is
represented by a position vector x ∈ SO(3). The quasi-
static equilibrium of the guidewire inside the blood vessels
is driven by the internal elastic forces f(x) that are computed
using Timoshenko–Ehrenfest beam elements, the constant
external forces such as gravity fext, the forces exerted by
the robot actuators at the base (proximal extremity) of the
guidewire H>a λa and the contact forces with the arterial
walls H>c λc. For these last two forces, we use Lagrange
multipliers because the intensity of the forces is part of the
unknowns of the computation (whereas their directions H>

can be considered as known on a given configuration x).

fext − f(x) +H>a (x)λa +H>c (x)λc = 0 (1)

When one of these forces is modified, the static equilib-
rium is altered and new position and new Lagrange multiplier
values need to be found to restore the equilibrium. To do this,
we linearize around the current position:

∂f

∂x︸︷︷︸
K(x)

dx = fext−f(x)+H>a (λa+dλa)+H>c (λc+dλc) (2)

Additionally, we use a specific solver to compute the
values of the Lagrange multipliers. This computation is based
on a minimization of the distance δe(x + dx) between the
tip position and a desired trajectory.

min
dλa,dλc

‖δe(x+ dx)‖2 (3)

Solving this minimization while relying on the FEM models
provides a way to do realistic planning of the guidewire
trajectory [29]. Thanks to the linearization in equation (2)
and the linearization of this distance δe(x+ dx) = δe(x) +
Hedx, the problem, at each iteration, can be brought to
quadratic programming. However, the modeling of contacts
is particular and requires the use of complementarity con-
straints between the contact distance δc(x + dx) and the
contact force λc + dλc (Signorini’s law):

0 ≤ δc(x+ dx) ⊥ λc + dλc ≥ 0 (4)

Consequently, a non-convex QPCC algorithm (Quadratic
Programming with Complementarity Constraints) can be
used [29], [30] but as the problem is inherently not convex,
the solution found by the algorithm can fall into local
minima. In our application, this happens particularly in
complex bifurcations where the guidewire becomes ”stuck”.



In such case, one should first move away from the objective
to get out of a contact before trying to minimize the distance
to the objective again. Yet, the algorithm QPCC cannot
”decide” to temporarily move away from the objective, since
it minimizes it at each iteration. Thus we need to rely on
other strategies to get out of those local minima.

C. Tree Search based Planning

In the following, we model the problem of navigating
in the coronaries as a Markov Decision Process (MDP), a
general framework for sequential decision-making in optimal
control. An MDP is a tuple {S,A, T,R} where:
• S is the state space. The state contains the information

that is available about the environment and the agent at
a given moment.

• A is the action space which defines the interactions
between the agent and the environment.

• T : S × A × S → [0, 1] is the transition function.
T (s, a, s′) represents the probability to be in state s′

after the agent performed action a in state s.
• R : S × A → R is the reward function, and indicates

whether the agent is making progress towards the goal.
Planning algorithms aim to create a plan, that is to find

a sequence of actions, which maximizes the cumulative
reward received along the trajectory. Since the plan must
be constructed before the sequence of actions is carried out,
a model of the environment must be available. In this paper,
we use a simulator as a model of reality.

A popular example of tree search based planning algorithm
is Monte Carlo Tree Search [31]. Many other tree search
algorithms have been developed, often stemming from the
Multi-Armed Bandit community. Some examples include
Upper Confidence bound for Trees (UCT) [32], Open Loop
Optimistic Planning (OLOP) [33], [34] and Optimistic
Planning for Deterministic systems (OPD) [35].

In this article we use OPD. The goal of this algorithm
is, starting from any state of the system, to select a near-
optimal action by planning, while respecting a pre-defined
budget. OPD builds a look-ahead tree rooted at the current
state s0. At each node st, the branches represent the possible
actions ai that the agent can choose from state st and the
children nodes are the states st+1,ai

that the system can
reach after performing action ai in state st. The look-ahead

Fig. 1. Example of a tree which has been expanded twice. In this
example there are 3 actions.

tree is constructed by iteratively expanding a leaf node and
simulating the corresponding transitions. An example of a
tree after two such iterations is shown in Figure 1. At each
iteration, OPD selects the most promising leaf to expand by
computing an upper-bound on the cumulative reward that
can be obtained by following the corresponding trajectory.
OPD will grow its look-ahead tree for a predefined number
of planning iterations and then return the action with the
highest observed cumulative reward.

III. MATERIALS AND METHODS

A. Modeling guidewires and catheters

Guidewires and catheters are wire-like structures. We
model them using serially linked elements using Timo-
shenko–Ehrenfest beam theory which allows to simulate
their dynamical behavior [17]–[19]. The guidewires are pre-
curved, meaning they are straight and their tip is curved with
a specific radius. The curvature is chosen as constant and
equal to 2.5mm. Guidewires are made of nitinol and have
a Young’s modulus of 75GPa. Both of these parameters can
easily be changed prior to running the algorithms presented
in this article as discussed in section V-A.

B. Patient based coronary arteries

Given the large anatomical variety between patients, we
create generic simulations allowing to easily test various
vessel geometries. We tested our framework with 15 different
patient geometries (6 Right Coronary Arteries and 9 Left
Coronary Arteries) from 2 different databases [36], [37].
The dataset is composed of both healthy and anomalous
topologies and geometries of coronary arteries, offering a
large variety of test cases. There are a total of 70 branches
within these 15 patient geometries. This is a preliminary
study. In future work, the algorithms presented should be
tested on a larger dataset for more thorough validation.

The arteries are represented by rigid surfacic meshes.
The vessel deformation due to the heart beat, breathing and
interaction with surrounding organs is left as future work.
Blood flow is not simulated because realistic and accurate
3D models [38] are computationally intensive.

In order to compare different automatic navigation algo-
rithms, we designed a benchmark comprising 70 different
experiments. An experiment corresponds to navigating auto-
matically from the ostium of the coronaries to the farthest
point of one branch, as shown in the accompanying video. To
simplify the setting we always use the same guidewire shape.
This is a limitation as in a real setting a cardiologist would
shape the tip of the guidewire differently for each trajectory.
Some trajectories are therefore completely infeasible (even
manually) with the chosen guidewire, which reduces our
final success rate. Overcoming this limitation is discussed
in section V-A.

When controlling the guidewire by hand, we can only
successfully complete 66 of the 70 trajectories (94% success
rate). In the unsuccessful cases the distal tortuosity of some
vessels and the large angulation of the bifurcation makes
the navigation impossible with the default instrument. In



Fig. 2. Two impossible trajectories. On top the distal tortuosity of
the vessel is very high. Trying to push the base of the guidewire (top
right) doesn’t move the distal part. On the bottom the anglulation of
the bifurcation is too large, trying to push (bottom right) or rotate
results in the distal part of the guidewire being pulled out of the target
branch and pushed into the other.

a clinical setting, this would be solved by using either a
different guidewire shape or a combination of concentric
instruments as discussed in section V-B. In this experiment,
this means that the maximum expected success rate for any
algorithm is 94%.

C. Center line extraction and reward engineering

Using the SOFA Skeleton Plugin [39] and the CGAL
library [40], we extract the center line of the vessels. The cen-
ter lines form a graph, we can thus use Dijkstra’s algorithm
[41] to find a sequence of waypoints connecting the starting
point (the coronary ostium) and a goal point (the lesion to
cure). This list of waypoints is the shortest path within the
arteries considered and is used as a trajectory which we aim
to follow with Quadratic Programming in section IV-A. It is
also used to engineer a reward for the planning algorithms
in sections IV-B and IV-C

D. PCI as a sequential decision making problem

We model the problem of navigating guidewires as a
Markov Decision Process. Specifically we define:

1) The space S is a vector which contains the position of
the goal to reach, of the points of the instruments and
of the centerline of the blood vessels.

2) The action space A is discrete and has 4 actions: move
forward, move backwards, rotate clockwise and rotate
counter-clockwise.

3) The reward function R(s, a) is 1 if the instrument is
moving forward along the defined path and 0 other-
wise.

4) The Transition function T : S ×A× S → [0, 1] is the
simulation of the system when actions are applied

IV. AUTOMATIC GUIDEWIRE NAVIGATION

A. Using inverse control to navigate

1) Principle: We use the sequence of waypoints defined
in section III-C and inverse model based control in the form

Fig. 3. Starting from some state of the physical system (left), the
agent can choose between 4 discrete actions: move forward (a0), turn
clockwize (a1), turn counter clockwize (a2) and move backward (a3),
leading to 4 new states of the system.

of quadratic programming with contacts to follow this path.
There is one effector which is the tip of the guidewire,
and two actuators, controlling the translation and rotation
along the guidewire’s longitudinal axis. We initialize the
target position at the closest way point from the ostium. The
QP computes the actuation which allows to minimize the
distance between the effector and the target position. Each
time this distance is smaller than a predefined threshold we
change the target position to the next way point.

2) Results: On our benchmark, this algorithm achieves a
success rate of 20% (14 successful trajectories out of 70)
and achieves more than 80% of the trajectory in 29% of the
test cases (21 out of 70) as shown in Fig. 5.

By examining the videos of the experiments, it is obvious
that this algorithm often gets stuck in local minima. In many
cases, the guidewire needs to momentarily get farther from
the target in order to progress in the longer run and one-step
optimization is not able to achieve this behavior. Though the
algorithm often gets stuck, most of the time it does make
significant progress in the navigation. The main advantage of
this algorithm is that it runs very fast. On the benchmark, the
longest computation time for a trajectory was 174 seconds
and the median was 66 seconds.

B. Using tree search based planning to navigate

1) Principle: Related works often use model-free re-
inforcement learning to tackle the autonomous navigation
problem [13], [14]. On the contrary, we use FEM simulation
as a generative model and estimation oracle. Given the access
to an oracle and by defining a discrete action space, we
can use sampling-based estimation methods such as Monte
Carlo Tree Search [31] or other tree search based planning
algorithms [32]–[35]. Contrary to Learning approaches, this
method does not require any prior training, and will not suffer
from generalization problems. It will however require more
computation at run time and probably will run slower.



In this type of planning algorithms, a look-ahead tree
rooted at the current state is gradually expanded through a
fixed number of calls to the generative model. We refer to this
predetermined number of calls to the simulator as planning
iterations and having a fixed number of planning iterations
guarantees that the planner converges in finite time. After
the tree has been extended within this number of iterations,
the planner will recommend a sequence of actions (a plan)
which will maximize the reward. The agent can then take
one action (receding horizon value of 1) or a sequence of
actions (receding horizon value larger than 1). After these
steps, either the goal is reached, or a new tree rooted at the
current state is created and the planning sequence starts again
(we create a new plan, using the same number of planning
iterations).

There exists a large variety of tree search based planning
algorithms, which differ in the way they expand the look
ahead tree. Since our simulator is deterministic we used a
parallel version of the OPD algorithm [35] with a receding
horizon. OPD was designed for deterministic systems which
translates to a faster convergence than algorithms that handle
stochastic systems [34].

The efficiency of planning algorithms is often defined
in terms of the numbers of calls to the simulator (sample
efficiency), which means that nodes have to be expanded
sequentially to always make the best use of all past infor-
mation. In contrast, in this work we are interested in time
efficiency, we can thus leverage parallelism to obtain addi-
tional samples in the same compute time, through additional
computational power. This is why we select and expand
several leaves in parallel. This maintains the optimality of
the traditional OPD exploration, but also allows some extra
exploration in parallel. For the same reason we use a receding
horizon larger than 1, allowing the agent to take several steps
without replanning under certain conditions.

2) Receding horizon: In this experiment, the best time
performance is achieved when using a receding horizon
larger than 1, meaning that for one planning step (one
expansion of the tree for the predefined number of planning
iterations), the agent is allowed to pick a sequence of actions
(instead of picking only one action) before replanning. In
our case, as long as the root of the tree has a value larger
than 1.01 this means there is at least 2 nodes with non zero
rewards in the subtree, therefore we allow the agent to act
without replanning.

Without this feature, the agent needs to replan everytime
it picks an action. Since planning is the most expensive step
in terms of time, reducing the number of times the agent
needs to plan divides the median run time of the benchmark
by more than 4.

3) Parallelizing the tree expansion: In the standard OPD
process, the tree growth is done by choosing one leaf with the
highest value and expanding all of its children. While this is
optimal in terms of the number of calls to the simulator, it is
not necessarily optimal in terms of computation time. Indeed
if one has more computation resources, one can choose the
n leaves with the highest values and expand all of their

children. A lot of this computation will probably not be used
for the final trajectory, but since it is executed in parallel, it
still allows to converge faster.

In this section we first allowed a very high number of
planning iterations to the sequential version of OPD in order
to find the maximum success rate. We then decrease the
number of iterations to make the algorithm run faster, while
maintaining this maximum success rate.

Parallelizing the tree expansion allows to reduce the num-
ber of planning iterations needed to find the best trajectory.
Indeed, if two leaves are expanded at each planning step for
instance, the algorithm only needs half the planning iterations
to have the same number of nodes in the tree. Thus, for
each number of leaves expanded in parallel, we search for
the minimum number of planning iterations that allows to
maintain the maximum success rate. As shown in Figure 4,
expanding more leaves in parallel and reducing the number
of planning iterations allows the algorithm to run faster while
maintaining the success rate.

However, planning is still an inherently sequential task and
the depth of the tree can never be higher than the number
of planning iterations. This is because in order to expand
any node, the algorithm needs to have expanded its parent
at the previous planning step. This property is shown in
Figure 4. Indeed no matter the amount of parallelization,
the minimum time required to solve a trajectory is always
around 30 seconds. These are the cases when the planner
always finds the optimal action immediately, but it still needs
to plan the entire trajectory. In those cases, any computation
done in parallel is not useful. As a consequence there is
an upper limit to the number of leaves we can expand in
parallel without hurting the run time performances: when
we can no longer reduce the number of planning iterations to
compensate the overhead of adding more parallel processes
without hurting the success rate of the algorithm.

Fig. 4. Time (in minutes) comparison of running OPD on the
benchmark examples using no parallelization (blue), expanding 2 leaves
in parallel (red) and expanding 4 leaves in parallel (green). The sample
budget (number of planning iterations) is tuned to achieve the same
success rate on all three versions.

4) Results: On the 70 planning tests, the fastest version
of OPD, expanding 4 leaves in parallel and with 6 planning
iterations, achieves a success rate of 43% (30 successful
trajectories out of 70). It also solves more than 80% of the



trajectory on 52% of the experiments as shown in Fig. 5.
The algorithm always runs in less than 23 minutes on a

computer with two Intel Xeon E5-2630 v4 CPUs at 2,20
GHz (using 16 of the 20 available cores). The median run
time is 7 minutes as shown in Fig. 6. It is interesting to
note that the successful trajectories always have a shorter
run time than the unsuccessful ones. Indeed, in unsuccessful
cases the algorithm will get stuck in an action loop, repeating
forward and backward motions without being able to cross
the bifurcation. The maximum length of trajectories is 70
actions. Unsuccessful trajectories will run for 70 actions
while successful ones will find a shorter action sequence
and thus finish the experiment faster.

In the context of generating example trajectories to show
the cardiologist feasible ways of navigating to the target lo-
cation, or in the context of testing several instrument shapes,
these computation times are acceptable. Indeed coronary CT
scans are usually done at least several hours before the
intervention, thus running one or several times an algorithm
that runs in less than 30 minutes is acceptable. However, in
the context of autonomous navigation, where the planning
would be integrated in a larger control scheme, these run
times would not be acceptable. Indeed, the planning would
need to be recomputed several times online to account for
the simulation registration.

C. Coupling tree search planning and inverse control

1) Principle: One of the main limitations of using OPD
is that the action space has to be discrete. This implies that
the control inputs can not always be as precise as needed,
especially on the rotation. Adding more actions to have
more choice is not possible without increasing the branching
factor and thus, decreasing the efficiency of the tree search
algorithm. Reducing the value of the rotation (smaller step
size) does not work either as this makes the action sequences
much longer. Another possible way to tackle this problem is
to use another tree search algorithm which handles continu-
ous action spaces. However those algorithms have a higher
complexity which results in longer computation times [42],
[43].

Instead we seek to combine the best of the two previous
approaches. The QP being based on a convex approach has
a deterministic behavior. Using the result of the QP to move
forward can therefore be used as a possible discrete meta-
action in the MDP. This action will allow for continuous
translation and rotation, as long as it does not fall into a
local minimum. And precisely, when it does get stuck in
such a local minimum, the algorithm will be able to use one
of the 4 other actions to get out of it.

More precisely, each step of the MDP, meaning each
action taken by the high level controller, corresponds to
50 simulation steps. The four actions we defined in sec-
tion III-D correspond to a low level controller applying a
constant command of translation/50 or rotation/50 at
each simulation step. In this section we introduce a fifth
high level action which we name Apply QP control. This
high level action corresponds on the low level to applying

translationqp(i) and rotationqp(i), i ∈ {1, ..., 50} at each
of the 50 simulation steps. When this fifth high level action is
selected, at each simulation step we solve the QPCC problem
as in section IV-A and apply this low level command at each
of the 50 simulation steps. The new action space of the MDP
is thus:

1) Translate forward
2) Rotate clockwize
3) Rotate counter clockwize
4) Translate backward
5) Apply QP control
2) Results: On our benchmark, this algorithm achieves a

success rate of 90% (63 successful trajectories out of 70)
which is 3 successful trajectories short of the maximum
expected success rate. This means the algorithm achieves
95% of successful trajectories obtained in manual mode, our
maximum expected success rate (see section III-B).

As shown in Fig. 6, the maximum run time of the fastest
version of this algorithm, expanding 4 leaves in parallel
and with a budget of 5 planning iterations, is 35 minutes.
The median run time is less than 3 minutes. The median
computation time is close to what would be acceptable in a
clinical context.

Fig. 5. Comparison of the progress made by the 3 control strategies.
The QP Control achieves more than 80% of the trajectory in 29%
of cases, OPD achieves more than 80% of the trajectory in 52%, the
combined strategy coupling tree search and inverse control achieves
more than 80% of the trajectory in 93%

Fig. 6. Comparison of the run time of the fastest version of the 3
control strategies. The QP is fastest and always runs in less than 3
minutes. The maximum run time of our combined strategy is higher
than that of parallelized OPD (35 minutes versus 22) but the median
run time of the combined approach is 2.4 times smaller.



V. DISCUSSION

A. Using planning to optimize the instruments’ shape
In a real intervention, cardiologists choose the shape of

the guidewire depending on the geometry of the arteries
and the location of the lesion to treat by either choosing
a pre-curved guidewire, or manually deforming the tip. We
have not yet included the guidewire tip curvature radius as
a planning parameter but we can run the planning algorithm
several times with different radii. The radius which delivers
the highest reward is likely to be the most appropriate for
the intervention, using this control strategy. We could also
generate navigation videos with different instruments to help
novice cardiologists choose the most appropriate guidewire.

We show in the accompanying video and Figure 7 the
same trajectory with two different instrument radii (on top
the curvature of the guidewire has a radius of 2.5mm and
on the bottom 3.5mm). The algorithm can’t navigate in the
branch with the 2.5mm instrument but can with the 3.5mm
one. We assume that if the control is easier for the algorithm
with a specific instrument shape, it is likely that it would also
be easier for human control with this same shape.

Fig. 7. Different instruments (left 2.5 mm and right 3.5 mm) attempting
the same trajectory.

B. Manipulating several instruments
Contrary to existing methods in the literature, our method

based on tree search based planning and discrete actions
easily extends to manipulating several instruments. Indeed,
to manipulate both a guidewire and a coaxial catheter for
instance, one simply needs to add 2 discrete actions to the
4 listed in section III-D. Those 2 actions are to move the
catheter forward and backward.

Preliminary results suggest an improvement in perfor-
mance when multiple instruments are used. As shown in
the video paired with this article, the concentric catheter
(green instrument) deforms the guidewire (red instrument)
and provides additional rigidity that improves the maneuver-
ability near the branch. This allows in this example to get
the instruments into a branch which isn’t accessible using
only the guidewire of this shape (2.5mm).

Increasing the number of actions from 4 to 6 increases the
branching factor of the tree search, which makes the search
more complex. However as stated in section IV-B.4, success-
ful trajectories are computed faster than unsuccessful ones.
Thus trajectories which are unsuccessful with one instrument
tend to be computed faster when using 2 instruments.

C. Preventing hazardous trajectories

One main limitation of our algorithm is that though it can
most of the time solve a trajectory, it will sometimes exhibit
dangerous behaviours as shown in the video accompanying
this article and Figure 8. In a clinical setting, cardiologists
rely on visual cues and manual force feedback to estimate
the risk of dissection. An extension of our algorithm could be
to detect those dangerous situations and forbid those states
by making them terminal and with a reward of 0. The tree
search planning algorithm would then naturally find another
trajectory.

Fig. 8. In the main branch (top left) the guidewire is coiling on itself,
creating a spring. This behavior exerts large forces at the tip of the
guidewire, which can lead to a dissection of the artery.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduce a framework for planning the
navigation of guidewires within blood vessels, tailored to
the geometry of the patient. The method is based on a tree
search combined with an inverse model obtained by convex
optimization.

In future work, two challenges still need to be overcome
for the method to be truly usable in practice. The first is to
be able to emulate the influence of the patient’s heartbeat
movements on the arteries, for which no routine data exist.
We are working on integrating this in our simulator. Pre-
liminary results show that the planning algorithm presented
in this article should transfer to a model with deforming
vessels, but this has to be further verified. The second is the
famous sim-to-real challenge and in our case the transfer to a
physical robot and physical artery phantom. To compensate
for unavoidable modeling errors, this transfer will introduce
vision, simulation registration and closed loop control.
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