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Abstract—The problem of scheduling moldable tasks has been widely
studied, in particular when tasks have dependencies (i.e., task graphs),
or when tasks are released on-the-fly (i.e., online). However, few study
has focused on both (i.e., online scheduling of moldable task graphs). In
this paper, we derive constant competitive ratios for this problem under
several common yet realistic speedup models for the tasks (roofline,
communication, Amdahl, and a combination of them). We also provide
the first lower bound on the competitive ratio of any deterministic on-
line algorithm for arbitrary speedup model, which is not constant but
depends on the number of tasks in the longest path of the graph.

1 INTRODUCTION

This work investigates the online scheduling of parallel task
graphs, where each task in the graph is moldable. In the
scheduling literature, a moldable task (or job) is a parallel
task that can be executed on an arbitrary but fixed number
of processors. The execution time of the task depends upon
the number of processors chosen to execute it. This number
of processors is chosen once and for all, when the task
starts its execution, and cannot be modified later on during
execution. This corresponds to a variable static resource
allocation, as opposed to a fixed static allocation (rigid tasks)
and to a variable dynamic allocation (malleable tasks) [7].

Moldable tasks offer a nice trade-off between rigid and
and malleable tasks: they easily adapt to the number of
available resources, contrarily to rigid tasks, while being
easy to design and implement, contrarily to malleable tasks.
This explains that many computational kernels in scientific
libraries for numerical linear algebra and tensor computa-
tions are provided as moldable tasks that can be deployed
on a wide range of processor numbers. We assume that
the scheduling of each task is non-preemptive and without
restarts [8], which is a highly desirable approach to avoid
high overheads incurred by checkpointing partial results,
context switching, and task migration.

Because of the importance and wide availability of
moldable tasks, scheduling algorithms for such tasks have
received considerable attention. The scheduling problem,
whose objective is to minimize the overall completion time,
or makespan, comes in many flavors:
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Offline vs. online. In the offline version of the problem,
all tasks are known in advance, before the execution
starts. The problem is NP-complete, and the goal is to
derive lower bounds and approximation algorithms.
On the contrary, in the online version of the problem,
tasks are released on the fly, and the objective is to
derive competitive ratios [17] for the performance
of a scheduling algorithm against an optimal offline
scheduler, which knows in advance all the tasks and
and their dependencies in the graph. The competitive
ratio is established against all possible strategies
devised by an adversary trying to force the online
algorithm to take bad decisions.

Independent tasks vs. task graphs. There are two versions
of the online problem, with independent tasks or with
task graphs. For the version with independent tasks,
the tasks are released on the fly and the scheduler
discovers their characteristics only upon release. For
the version with task graphs, the whole graph is
released at the start, but the scheduler discovers a
new task and its characteristics only when all of
its predecessors have completed execution. In other
words, the shape of the graph and the nature of the
tasks are not known in advance and are revealed only
as the execution progresses.

In this work, we investigate the most difficult instance
of the problem, namely, the online scheduling of moldable
tasks graphs. Our main contribution resides in several new
competitive ratios, which greatly depend upon the speedup
model of the tasks. Several common yet realistic speedup
models have been introduced and analyzed, including the
roofline model, the communication model, the Amdahl’s
model, and a general combination of them (see Section 3.1
for definitions). We provide a constant competitive ratio for
each of these four models. In addition, we derive a new
lower bound on the competitiveness of any deterministic
online algorithm under the arbitrary speedup model. To the
best of our knowledge, a competitive ratio was only known
for task graphs under the roofline model [8], and we extend
the result to several other speedup models.

The rest of this paper is organized as follows. Section 2
surveys related work. The formal model and problem state-
ment are presented in Section 3. Section 4 is the heart of the
paper: we introduce the new online algorithm and prove
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its competitive ratios for the different speedup models. Sec-
tion 5 is devoted to the lower bound for arbitrary speedup
models. Finally, Section 6 concludes the paper and provides
hints for future directions.

2 RELATED WORK

Several prior studies have considered offline scheduling of
independent moldable tasks, and derived approximation
results. While some results depend on specific speedup
models for the tasks, other results hold for the arbitrary
model. Turek et al. [18] designed a 2-approximation list-
based algorithm for the arbitrary model. Furthermore, when
each task only admits a subset of all possible processor
allocations, Jansen [10] presented a (1.5 + ε)-approximation
algorithm, which is tight since it was also shown that the
problem cannot have an approximation ratio better than
1.5 unless P = NP [14]. For the monotonic model, where
the execution time is non-increasing and the area (processor
allocation times execution time) is non-decreasing with the
number of processors, Jansen and Land [11] further pro-
posed a polynomial-time approximation scheme (PTAS).

For online scheduling of independent moldable tasks
that are released on-the-fly, Ye et al. [21] designed a 16.74-
competitive algorithm. They also explained how to trans-
form an algorithm for rigid tasks whose makespan is at most
ρ times the lower bound into a 4ρ competitive algorithm for
moldable tasks. Further, some algorithms designed in the
offline setting will also work online if they make scheduling
decisions independently for each task; see for instance [6],
[9], [15], which studied the communication model.

For offline scheduling of moldable tasks with depen-
dencies, Wang and Cheng [19] showed that the earliest
completion time algorithm is a (3 − 2/P )-approximation
for the roofline model. For the monotonic model, Lepère
et al. [16] proposed an algorithm with approximation ratio
3 +
√

5, which was later improved to 4.73 by Jansen and
Zhang [13]. Chen and Chu [5] further proposed improved
approximations for a more restrictive model, where the area
is a concave function and the execution time is strictly
decreasing with the number of processors.

Feldmann et al. [8] designed an online algorithm for
moldable tasks with dependencies, under the roofline
model. By keeping the system utilization above a given
bound and by carefully tuning of this bound, their algo-
rithm achieves 2.618-competitiveness, even when the task
execution times and the DAG structure are unknown. Canon
et al. [4] focused on hybrid platforms with several types of
processors (for instance, CPUs and GPUs), and derived com-
petitive ratios depending on the number of such resources,
but they did not consider moldable tasks.

We have recently investigated the problem of scheduling
independent moldable tasks subject to failures [3], where
tasks need to be re-executed after a failure until a successful
completion. This corresponds to a semi-online setting, since
all tasks are known at the beginning, but failed tasks are
only discovered on-the-fly. Although we do not consider
task failures in this paper, but rather focus on the general
online scheduling of moldable task graphs (as in [8]), the
results can readily carry over to the failure scenario.

Table 1 summarizes the instances of different scheduling
problems and the related papers under each instance.

Table 1. Instances of the scheduling problem.

Problem Instance Offline Online
Independent moldable tasks [10], [11], [18] [6], [9], [15], [21]
Moldable task graphs [5], [13], [16], [19] [8], [This paper]

3 PROBLEM STATEMENT

In this section, we formally present the online scheduling
model and the objective function. We also show a simple
lower bound on the optimal makespan, against which the
performance of our online algorithms will be measured.

3.1 Model and Objective
We consider the online scheduling of a directed acyclic
graph (DAG) of moldable tasks on a platform with P
identical processors. Let G = (V,E) denote the task graph,
where V = {1, 2, . . . , n} represents a set of n tasks and
E ⊆ V ×V represents a set of precedence constraints among
the tasks. An edge (i, j) ∈ E indicates that task j depends
on task i, and therefore it cannot be executed before task i
is completed. Task i is called the predecessor of task j, and
task j is called the successor of task i.

The tasks are assumed to be moldable, meaning that the
number of processors allocated to a task can be determined
by the scheduling algorithm at launch time, but once the
task has started executing, its processor allocation cannot
be changed. The execution time tj(pj) of a task j is a
function of the number pj of processors allocated to it, and
we assume that the processor allocation must be an integer
between 1 and P . In this paper, we focus on the following
execution time function:

tj(pj) =
wj

min(pj , p̄j)
+ dj + cj(pj − 1) , (1)

where wj denotes the total parallelizable work of the task,
p̄j denotes the maximum degree of parallelism of the task,
dj denotes the sequential work of the task, and cj denotes
the communication overhead when more than one proces-
sor is used. The execution time function in Equation (1)
generalizes several speedup models commonly observed for
parallel applications. In particular, it contains the following
well-known models as special cases:
• Roofline Model [20] (with dj = 0 and cj = 0):

tj(pj) =
wj

min(pj , p̄j)
. (2)

This model assumes that the task has a linear speedup
until a maximum degree of parallelism p̄j ≤ P .

• Communication Model [9] (with p̄j ≥ P and dj = 0):

tj(pj) =
wj
pj

+ cj(pj − 1) . (3)

This model assumes that the work of the task can be
perfectly parallelized, but there is a communication
overhead when more than one processor is allocated
to the task, and that overhead increases linearly with
the number of allocated processors.

• Amdahl’s Model [1] (with p̄j ≥ P and cj = 0):

tj(pj) =
wj
pj

+ dj . (4)
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This model assumes that the task has a perfectly par-
allelizable fraction with work wj and an inherently
sequential fraction with work dj .

From the execution time function of the task j, we can
further define the area of the task as a function of the pro-
cessor allocation as follows: aj(pj) = pj× tj(pj). Intuitively,
the area represents the total amount of processor resources
utilized over the entire period of task execution.

In this work, we consider the online scheduling model,
where a task becomes available only when all of its pre-
decessors have been completed. This represents a common
scheduling model for dynamic task graphs [4], [8]. Further-
more, when a task j is available, all of its execution time
parameters (i.e., wj , p̄j , dj , cj) also become known to the
scheduling algorithm. The goal is to find a feasible schedule
of the task graph that minimizes its overall completion time
or makespan, denoted by T . The performance of an online
scheduling algorithm is measured by its competitive ratio:
the algorithm is said to be c-competitive if, for any task
graph, its makespan T is at most c times the makespan TOPT

produced by an optimal offline scheduler, i.e., T ≤ c×TOPT.
Note that the optimal offline scheduler may know all the
tasks and their speedup models, as well as all dependencies
in the graph, in advance. The competitive ratio is established
against all possible strategies by an adversary trying to force
the online algorithm to take bad decisions.

3.2 Lower Bound on Optimal Makespan
Given the execution time function in Equation (1), let us
define sj =

√
wj/cj . We can then compute the maximum

number of processors that should be allocated to the task as

pmax
j = min (P, p̄j , p̃j) ,

where p̃j =

{
bsjc, if tj(bsjc) ≤ tj(dsje)
dsje, otherwise

(5)

Indeed, allocating more than pmax
j processors to the task will

no longer decrease its execution time while only increasing
its area. Thus, we can assume that the processor allocation
of the task should never exceed pmax

j under any reasonable
algorithm. In addition, we can observe that, when the pro-
cessor allocation is in the range [1, pmax

j ], the task satisfies
the following monotonic property [16]:
• The execution time is a non-increasing function of the

processor allocation, i.e., tj(p) ≥ tj(q) for all 1 ≤ p <
q ≤ pmax

j ;
• The area is a non-decreasing function of the processor

allocation, i.e., aj(p) ≤ aj(q) for all 1 ≤ p < q ≤ pmax
j .

Thus, the minimum execution time of the task is tmin
j =

tj(p
max
j ) and the minimum area of the task is amin

j = aj(1).
We note that the second point above also shows that the task
cannot achieve superlinear speedup, i.e.,

tj(p)

tj(q)
≤ q

p
for all 1 ≤ p < q ≤ pmax

j . (6)

We now define two quantities that can be used as a lower
bound of the optimal makespan.

Definition 1. The minimum total area Amin of the task graph
is the sum of the minimum area of all tasks in the graph, i.e.,
Amin =

∑n
j=1 a

min
j .

Definition 2. The minimum length Lmin(f) of a path1 f in the
graph is the sum of the minimum execution time of all tasks along
that path, i.e., Lmin(f) =

∑
j∈f t

min
j . The minimum critical

path length Cmin of the graph is the longest minimum length of
any path in the graph, i.e., Cmin = maxf Lmin(f).

Clearly, the optimal makespan cannot be smaller than
Amin

P and Cmin. This follows from the well-known area
bound and critical-path bound for scheduling any task
graph. The choice of minimum value for both quantities
ensures that they can serve as the lower bounds on the
optimal makespan. The following lemma states this result.

Lemma 1. TOPT ≥ max
(
Amin

P , Cmin

)
.

4 ONLINE ALGORITHM

In this section, we present an online scheduling algorithm
and derive its competitive ratio for the considered speedup
model (Equation (1)) as well as for its three special cases.

4.1 Algorithm Description
Algorithm 1 presents the pseudocode of the online schedul-
ing algorithm, which at any time maintains the set of avail-
able tasks in a waiting queue Q. At time 0 or whenever a
running task completes execution and thus releases proces-
sors, it checks if new tasks have become available. If so, for
each newly available task j, it finds a processor allocation pj
for the task (using Algorithm 2) before inserting it into the
queue Q. Then, it applies the well-known list scheduling
strategy by scanning through all the available tasks in Q
and executing each one right away if there are enough
processors.

Algorithm 2 presents the details of the processor allo-
cation strategy for any task j. It consists of two steps. The
first step performs an initial allocation for the task, which
is inspired by the Local Processor Allocation (LPA) strategy
proposed in [2], [3]. Specifically, for each possible allocation
p ∈ [1, pmax

j ], we define the ratio between the area of the
task and the minimum area to be αp = aj(p)/a

min
j , and

the ratio between the execution time of the task and the
minimum execution time to be βp = tj(p)/t

min
j . We then

find an allocation that minimizes αp subject to the constraint
βp ≤ 1−2µ

µ(1−µ) , where µ ≤ 3−
√

5
2 ≈ 0.382 is a constant whose

exact value will be determined based upon the speedup
model under consideration. The justification for this strategy
as well as for the choice of µ will be presented in the next
section. Since αp is non-decreasing with p and βp is non-
increasing with p, the above optimization problem can be
efficiently solved in linear time.

In the second step, the algorithm reduces the initial
allocation to dµP e if it is more than dµP e; otherwise the
allocation will be unchanged. Let pj denote the initial allo-
cation for the task and p′j the final allocation. Thus, after the
second step, we have:

p′j =

{
dµP e, if pj > dµP e
pj , otherwise

. (7)

1. A path f consists of a sequence of tasks with linear dependency,
i.e., f = (jπ(1), jπ(2), . . . , jπ(v)), where the first task jπ(1) in the
sequence has no predecessor in the graph, the last task jπ(v) has
no successor, and, for each 2 ≤ i ≤ v, task jπ(i) is a successor of
task jπ(i−1).
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This step adopts the technique first proposed in [16] and
subsequently used in [12], [13]. The purpose is to be able
to execute more tasks at any time during the schedule, thus
potentially increasing the overall resource utilization of the
platform and reducing the makespan.

Algorithm 1: Online Scheduling Algorithm
1 initialize a waiting queue Q
2 when at time 0 or a running task completes execution do

// Processor Allocation
3 for each new task j that becomes available do
4 Allocate Processor(j)
5 insert task j into the waiting queue Q
6 end

// List Scheduling
7 for each task j in the waiting queue Q do
8 if there are enough processors to execute the task then
9 execute task j now

10 end
11 end
12 end

Algorithm 2: Allocate Processor(j)
// Step 1: Initial Allocation

1 Compute pmax
j based on Equation (5)

2 Compute tmin
j = tj(p

max
j ) and amin

j = aj(1)

3 Find an allocation pj ∈ [1, pmax
j ] by solving the following

optimization problem:

min
p

αp =
αj(p)

αmin
j

s.t. βp =
tj(p)

tmin
j

≤
1− 2µ

µ(1− µ)

// Step 2: Allocation Adjustment
4 if pj > dµP e then
5 p′j ← dµP e
6 else
7 p′j ← pj
8 end

4.2 General Analysis Framework

We now outline a general analysis framework, under which
the competitive ratio of the proposed online algorithm will
be derived for different speedup models.

Recall that T denotes the makespan of the online
scheduling algorithm. Since the algorithm allocates and
de-allocates processors upon task completions, the sched-
ule can be divided into a set I = {I1, I2, . . . } of non-
overlapping intervals, where tasks only start (or complete)
at the beginning (or end) of an interval, and the number of
utilized processors does not change during an interval. For
each interval I ∈ I , let p(I) denote its processor utilization,
i.e., the total number of processors used by all tasks running
in interval I . Following the analysis of [16], we classify the
set of intervals into the following categories.
• I1: subset of intervals whose processor utilization sat-

isfies p(I) ∈ (0, dµP e);
• I2: subset of intervals whose processor utilization sat-

isfies p(I) ∈ [dµP e, d(1− µ)P e);
• I3: subset of intervals whose processor utilization sat-

isfies p(I) ∈ [d(1− µ)P e, P ].
Let |I| denote the duration of an interval I , and let T1 =∑
I∈I1 |I|, T2 =

∑
I∈I2 |I| and T3 =

∑
I∈I3 |I| be the total

durations of the three categories of intervals, respectively.
Since I1, I2 and I3 are obviously disjoint and partition I ,
we have T = T1 + T2 + T3.

The next two lemmas relate these durations to the min-
imum total area and minimum critical path length of the
task graph, given certain conditions on the initial processor
allocations of the tasks.

Lemma 2. If there exists a constant α such that, for each task j,
its initial processor allocation satisfies aj(pj) ≤ α × amin

j , then
we have:

µT2 + (1− µ)T3 ≤ α×
Amin

P
. (8)

Proof. As the area of each task j is non-decreasing with its
processor allocation and p′j ≤ pj , the final area of the task
should satisfy aj(p′j) ≤ aj(pj) ≤ α × amin

j . Thus, the total
area A′ of all tasks after their final allocations will satisfy
A′ =

∑
j aj(p

′
j) ≤ α×

∑
j a

min
j = α×Amin.

Since at least dµP e ≥ µP processors are utilized during
T2 and at least d(1−µ)P e ≥ (1−µ)P processors are utilized
during T3, we have µT2 + (1− µ)T3 ≤ A′

P ≤ α×
Amin

P .

Lemma 3. If there exists a constant β such that, for each task j,
its initial processor allocation satisfies tj(pj) ≤ β × tmin

j and
β ≤ 1

µ , then we have:

T1

β
+ µT2 ≤ Cmin . (9)

Proof. During T1 and T2, the processor utilization is at most
d(1− µ)P e − 1, so there are at least P − (d(1− µ)P e − 1) ≥
dµP e available processors. Based on Algorithm 2, any task
is allocated at most dµP e processors. Thus, there are enough
processors to execute any new task (if one is available).
This implies that there is no available task in the queue Q
during T1 and T2. When a task graph is scheduled by the
list scheduling algorithm, it is well known that there exists a
path f in the graph such that some task along that path will
be running whenever there is no available task in the queue
[8], [13], [16].

For any task j along path f running during T1, its
processor allocation must be less than dµP e, hence is not
reduced by Step 2 of Algorithm 2, i.e., p′j = pj . Thus, its
execution time should satisfy tj(p′j) = tj(pj) ≤ β × tmin

j .
For any task j along path f running during T2, its

processor allocation may or may not be reduced. If it is not
reduced, then similarly we can get tj(p′j) ≤ β × tmin

j ≤
1
µ × tmin

j . Otherwise, if it is reduced, and based on Equa-
tion (6), the task execution time should satisfy:

tj(p
′
j)

tmin
j

=
tj(dµP e)
tj(pmax

j )
≤
pmax
j

dµP e
≤ P

µP
=

1

µ
.

Now, let L′min(f) (resp. L′′min(f)) denote the minimum
length for the portion of path f executed during T1

(resp. T2). The argument above implies that T1 ≤ β ×
L′min(f) and T2 ≤ 1

µ × L
′′
min(f). Thus, we have

T1

β + µT2 ≤ L′min(f) + L′′min(f) ≤ Lmin(f) ≤ Cmin.

Based on the results of Lemmas 2 and 3, we can now
derive a bound on the makespan of the online scheduling
algorithm as shown below.
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Lemma 4. If there exist two constants α and β such that, for each
task j, its initial processor allocation satisfies aj(pj) ≤ α× amin

j

and tj(pj) ≤ β × tmin
j with β ≤ 1−2µ

µ(1−µ) , then we have:

T ≤ µα+ 1− 2µ

µ(1− µ)
× TOPT . (10)

Proof. As the makespan is given by T = T1 + T2 + T3, we
can multiply both sides by 1−µ

α and apply Equation (8) to
remove the T3 term, which gives:

1− µ
α

T ≤ 1− µ
α

T1 +
1− 2µ

α
T2 + TOPT .

We can then multiply both sides of the above inequality by
µα

1−2µ and use Equation (9) to remove the T2 term (since
β ≤ 1−2µ

µ(1−µ) = 1
µ −

1
1−µ ≤

1
µ ). This gives:

µ(1− µ)

1− 2µ
T ≤

(
µ(1− µ)

1− 2µ
− 1

β

)
T1 +

(
µα

1− 2µ
+ 1

)
TOPT .

Finally, if β ≤ 1−2µ
µ(1−µ) , the first term above becomes non-

positive and hence can be removed without affecting the
inequality. By rearranging the factors, we can then obtain
the result as shown in Equation (10).

The result of Lemma 4 shows that the competitive ratio
of the online algorithm increases with α, for a given µ. This
suggests that the initial processor allocation should try to
minimize α subject to the constraint β ≤ 1−2µ

µ(1−µ) , which is
what is done in Step 1 of Algorithm 2. Since β ≥ 1, the
value of µ needs to satisfy 1−2µ

µ(1−µ) ≥ 1, and solving it gives

µ ≤ 3−
√

5
2 ≈ 0.382.

4.3 Competitive Ratio

In this section, we prove the competitive ratio of the online
algorithm, which is given by µα+1−2µ

µ(1−µ) subject to β ≤ 1−2µ
µ(1−µ) ,

based on Lemma 4. We will show that there exists a pro-
cessor allocation parameterized by a parameter x and that
achieves specific values of α and β for any task that follows
the considered speedup model. Then, by carefully choosing
the values of x and µ, we can minimize the ratio while
satisfying the constraint.

In the following, we first consider the three special
speedup models (i.e., roofline, communication and Amdahl)
before tackling the general model. As the analysis focuses
on bounding the ratios α and β for each individual task, we
drop the task index j for simplicity.

4.3.1 Roofline Model
Recall that a task follows the roofline speedup model if its
execution time satisfies t(p) = w

min(p,p̄) for some p̄ ≤ P .

Lemma 5. For any task that follows the roofline speedup model,
there exists a processor allocation that achieves α = 1 and β = 1.

Proof. Setting the processor allocation to p̄ achieves both the
minimum execution time and the minimum area for the
task, thus giving α = β = 1.

Theorem 1. The online algorithm is 2.62-competitive for any
graph of tasks that follow the roofline speedup model. This is
achieved with µ = 3−

√
5

2 ≈ 0.382.

Proof. With β = 1, the condition 1−2µ
µ(1−µ) ≥ β = 1 can be

satisfied with µ ≤ 3−
√

5
2 . Since α = 1, the competitive ratio

is given by µ+1−2µ
µ(1−µ) = 1

µ . By setting µ = 3−
√

5
2 ≈ 0.382, the

ratio is minimized at 1
µ = 3+

√
5

2 < 2.62.

The above ratio retains the same result by Feldmann et
al. [8]2. They also proved a matching lower bound for any
online deterministic algorithm under the “non-clairvoyant”
setting, where the work w of a task is also unknown to the
scheduler.

4.3.2 Communication Model
Recall that a task follows the communication model if its
execution time satisfies t(p) = w

p + c(p− 1). For the ease of
analysis, we rewrite the execution time function as: t(p) =
c(w

′

p + p− 1) with w′ = w
c .

Lemma 6. For any task that follows the communication model
and for any x ∈ [

√
13−1
6 , 1

2 ], there exists a processor allocation
that achieves αx = 1 + x2 + x

3 and βx = 3
5x + 3x

5 .

Proof. Recall that pmax denotes the number of proces-
sors that minimizes the execution time function t(p), i.e.,
t(pmax) = tmin. Clearly, we have either pmax = P or
b
√
w′c ≤ pmax ≤ d

√
w′e. Also, the area function is given

by a(p) = p × t(p) = c(w′ + p(p − 1)), and the minimum
area is obtained with one processor, i.e., amin = a(1) = cw′.
We consider two cases.

Case 1: w′ ≤ 9. In this case, we must have pmax ≤ 3.
We further divide this case into three subcases and, for each
subcase, we will show that there always exists a processor
allocation p that achieves α ≤ 4

3 and β ≤ 3
2 .

• If pmax = 1, we can set p = 1 and get α = β = 1.
• If pmax = 2, we can set p = 1 and get α = 1. Moreover,
t(2) ≤ t(3)⇒ w′

2 +1 ≤ w′

3 +2⇒ w′ ≤ 6. We then have
β = t(1)

tmin = w′

w′
2 +1

≤ w′

w′
2 + w′

6

= 3
2 .

• If pmax = 3, we can set p = 2. In this case, t(2) ≥
t(3) ⇒ w′ ≥ 6, and we also supposed w′ ≤ 9. Thus,
α = a(2)

amin = w′+2
w′ , which is decreasing with w′, and

plugging in w′ ≥ 6, we get α ≤ 4
3 . Furthermore, β =

t(2)
tmin =

w′
2 +1
w′
3 +2

= 3w′+6
2w′+12 , which is increasing with w′,

and plugging in w′ ≤ 9, we get β ≤ 11
10 .

Case 2: w′ > 9. In this case, for any x ∈ [
√

13−1
6 , 1

2 ], we
can set p = min(dx

√
w′e, P ). First, if we allow the processor

allocation to take non-integer values, the execution time
function t(p) would be minimized at p∗ =

√
w′. Thus, the

minimum execution time should satisfy tmin ≥ t(p∗) =
c(2
√
w′ − 1). We further consider two subcases.

• If p = dx
√
w′e, we apply x

√
w′ ≤ p ≤ x

√
w′ + 1 to get

α = a(p)
amin = w′+p(p−1)

w′ ≤ 1+x2+ x√
w′
≤ 1+x2+x

3 = αx,

and β = t(p)
tmin ≤

√
w′
x +x

√
w′

2
√
w′−1

= 1/x+x

2−1/
√
w′
≤ 1/x+x

2−1/3 =
3
5 ( 1
x + x) = βx.

• If p = P < dx
√
w′e, then as x ≤ 1

2 , we must have√
w′ > P and thus p̃ = p = P . In this case, we clearly

2. In [8], each task has a parallelism p, and can be virtualized if p′ ≤
p processors are used for execution, with a linear slowdown. This is
equivalent to the roofline model.
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have β = 1 ≤ βx. Moreover, we still have p ≤ x
√
w′+1,

thus α = a(p)
amin ≤ 1 + x2 + x

3 = αx holds.
Lastly, we need to make sure that αx ≥ 4

3 and βx ≥ 3
2 ,

because the ratios must hold for Case 1 as well. We can
easily check that x ≤ 1

2 ⇒ βx ≥ 3
2 and x ≥

√
13−1
6 ⇒ αx ≥

4
3 , thus the result holds for any x ∈ [

√
13−1
6 , 1

2 ].

Theorem 2. The online algorithm is 3.61-competitive for any
graph of tasks that follow the communication model. This is
achieved with µ ≈ 0.324.

Proof. From result of Lemma 6, we aim to minimize
αx = 1 + x2 + x

3 while satisfying the constraint βx =
3

5x + 3x
5 ≤

1−2µ
µ(1−µ) . For a fixed µ, multiplying both sides

of the constraint by x and rearranging terms, we get a
second-degree inequality: 3

5x
2 − 1−2µ

µ(1−µ)x + 3
5 ≤ 0. The

smallest x satisfying this inequality can be computed to be

x∗µ = 5
6

(
1−2µ
µ(1−µ) −

√( 1−2µ
µ(1−µ)

)2 − 36
25

)
.

Now, plugging the above expression of x∗µ into αx =
1+x2 + x

3 and plugging the result into the competitive ratio
µαx+1−2µ
µ(1−µ) , we get a function with only a single variable µ.

Minimizing this function numerically for µ ∈ (0, 3−
√

5
2 ], we

can get the optimal competitive ratio to be at most 3.61,
which is obtained at µ∗ ≈ 0.324. This results in the value
x∗µ ≈ 0.446, which is indeed in [

√
13−1
6 , 1

2 ], thus is a valid
choice.

4.3.3 Amdahl’s Model
Recall that a task follows the Amdahl’s model if its execu-
tion time function is t(p) = w

p + d, so the area function is
given by a(p) = p× t(p) = w + dp.

Lemma 7. For any task that follows the Amdahl’s model and
for any x > 0, there exists a processor allocation that achieves
αx = 1 + x and βx = 1 + 1

x .

Proof. The minimum execution time of the task is obtained
by allocating all P processors, i.e., tmin = t(P ) = w

P + d,
and the minimum area is obtained with one processor, i.e.,
amin = a(1) = w + d.

For any x > 0, we can set p = min(dxwd e, P ). This
implies p ≤ dxwd e ≤ xwd + 1. Thus, we have α = a(p)

amin =
w+dp
w+d ≤

w+d(xw
d +1)

w+d = w+d+xw
w+d = 1 + xw

w+d ≤ 1 + x = αx.
Furthermore, if p = dxwd e ≥ xwd , we have β = t(p)

tmin ≤
w

xw
d

+d

w
P +d ≤

d
x +d

d = 1 + 1
x = βx. Otherwise, if p = P , we get

t(p) = tmin and thus β = 1 < βx.

Theorem 3. The online algorithm is 4.74-competitive for any
graph of tasks that follow the Amdahl’s model. This is achieved
with µ ≈ 0.271.

Proof. Again, we need to minimize αx = 1 + x subject to
the constraint βx = 1 + 1

x ≤
1−2µ
µ(1−µ) . For a fixed µ, the

smallest x satisfying the above inequality can be computed
as: x∗µ = µ(1−µ)

µ2−3µ+1 .
Plugging x∗µ into αx = 1 + x, and then plugging the

result into the competitive ratio µαx+1−2µ
µ(1−µ) and simplifying,

we can get the following function:

f(µ) =
−2µ3 + 5µ2 − 4µ+ 1

−µ4 + 4µ3 − 4µ2 + µ
.

Minimizing this function numerically for µ ∈ (0, 3−
√

5
2 ],

we can get the optimal competitive ratio to be at most 4.74,
which is obtained at µ∗ ≈ 0.271 (thus x∗µ ≈ 0.759).

4.3.4 General Model

We finally consider the general speedup model as given in
Equation (1). Again, for the ease of analysis, we rewrite the
execution time function as: t(p) = c( w′

min(p,p̄) + d′ + p − 1)

with w′ = w
c and d′ = d

c .

Lemma 8. For any task that follows the general model and for
any x > 1, there exists a processor allocation that achieves αx =
1 + 1

x + 1
x2 and βx = x+ 1 + 1

x .

Proof. If we allow the processor allocation to take non-
integer values and assuming unbounded p̄, the execution
time function t(p) would be minimized at p∗ =

√
w′.

Thus, the minimum execution time should satisfy tmin ≥
c(2
√
w′ + d′ − 1). Note that this bound will hold true

regardless of the value of p̄: it is obviously true if p̄ ≥ p∗,
otherwise tmin is achieved at p̄, with a value also higher
than c(2

√
w′ + d′ − 1). Furthermore, the minimum area is

obtained with one processor, i.e., amin = a(1) = c(w′ + d′).
Recall that pmax denotes the number of processors that

minimizes the execution time, i.e., t(pmax) = tmin. Clearly,
we have either pmax = P , or b

√
w′c ≤ pmax ≤ d

√
w′e, or

pmax = p̄. We consider two cases.
Case 1: w′ ≤ 1. In this case, it must be that pmax = 1. We

can then set the processor allocation to be p = 1 and have
α = β = 1.

Case 2: w′ > 1. In this case, for any x > 1, we can set
p = min(d w′+d′

x(
√
w′+d′)

e, p̄, P ), thus have a(p) = c(w′ + p(d′ +

p− 1)). Since p ≤ d w′+d′

x(
√
w′+d′)

e ≤ w′+d′

x(
√
w′+d′)

+ 1, we obtain:

α =
a(p)

amin
=
w′ + p(d′ + p− 1)

w′ + d′

≤
w′ +

(
w′+d′

x(
√
w′+d′)

+ 1
)(

d′ + w′+d′

x(
√
w′+d′)

)
w′ + d′

=
w′ + d′ w′+d′

x(
√
w′+d′)

+
(

w′+d′

x(
√
w′+d′)

)2
+ d′ + w′+d′

x(
√
w′+d′)

w′ + d′

= 1 +
d′ + 1

x(
√
w′ + d′)

+
w′ + d′

x2(
√
w′ + d′)2

≤ 1 +
1

x
+

1

x2
= αx .

The last inequality above comes from w′ > 1 and d′ > 0.
Since w′ > 1, we get tmin > c(

√
w′+d′). To derive β, we

further consider two subcases.
• If p = d w′+d′

x(
√
w′+d′)

e, then p × tmin > cw
′+d′

x = amin

x .

We can then get β = t(p)
tmin < x t(p)pamin = x a(p)

amin ≤ xαx =
x+ 1 + 1

x = βx.
• If p < d w′+d′

x(
√
w′+d′)

e, then we must have p = min(p̄, P ) <

d w′+d′

x(
√
w′+d′)

e. Since p is an integer, it is necessarily the

case that p < w′+d′

x(
√
w′+d′)

≤ w′+d′√
w′+d′

≤
√
w′ (because

w′ > 1). Therefore, we should also have pmax =
min(p̄, P ) = p, and thus β = 1.
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Theorem 4. The online algorithm is 5.72-competitive for any
graph of tasks that follow the general speedup model given in
Equation (1). This is achieved with µ ≈ 0.211.

Proof. Once again, we aim at minimizing αx = 1 + 1
x + 1

x2

subject to βx = x + 1 + 1
x ≤

1−2µ
µ(1−µ) . For a fixed µ,

the constraint above corresponds to a second-degree in-
equality: x2 − µ2−3µ+1

µ(1−µ) x + 1 ≤ 0. The largest x satisfying

this inequality can be computed as x∗µ = 1
2

(
µ2−3µ+1
µ(1−µ) +√(

µ2−3µ+1
µ(1−µ)

)2
− 4
)

.

Plugging the above x∗µ into αx = 1 + 1
x + 1

x2 and then
plugging the result into the competitive ratio µαx+1−2µ

µ(1−µ) , we
get a function with only a single variable µ. Minimizing
this function numerically for µ ∈ (0, 3−

√
5

2 ], we obtain that
the optimal competitive ratio is at most 5.72, obtained at
µ∗ ≈ 0.211. This results in the value x∗µ ≈ 1.972.

5 A LOWER BOUND FOR ARBITRARY SPEEDUP
MODEL

In the previous section, we have proven constant compet-
itive ratios of our online algorithm for task graphs under
several common speedup models. In this section, we show
that the competitive ratio of any deterministic online algo-
rithm can be unbounded for the arbitrary speedup model.

Theorem 5. Any deterministic online algorithm is at least
Ω(ln(D))-competitive for scheduling moldable task graphs under
the arbitrary speedup model, where D denotes the number of tasks
along the longest (critical) path of the graph.

Proof. We fix an arbitrary integer ` > 1 and set K = 2`.
The instance consists of n = 2K − 1 independent linear
task chains organized in groups. Specifically, for any i ∈
[1,K], group i contains 2K−i linear chains, each with exactly
i tasks. Thus, the number of tasks along the longest path
of the graph is given by D = K . Figure 1 shows such an
instance for ` = 2,K = 4 and n = 15. All tasks in the graph
are identical, with an execution time function t(p) = 1

lg(p)+1 .
We set the total number of processors to be P = K× 2K−1.

We show that the optimal offline algorithm completes
the above instance with a makespan at most 1, whereas any
deterministic online algorithm may produce a makespan at
least ln(K)− ln(`)− 1

` , thus showing the result.
First, the optimal offline algorithm could schedule the

tasks as follows: for any group i ∈ [1,K], it allocates
2i−1 processors to each linear chain in the group. The total
number of required processors is then

∑K
i=1 2i−1 × 2K−i =

K × 2K−1 = P . Thus, all linear chains could be executed in
parallel. Furthermore, they will all be completed at time 1,
since each linear chain in group i has i tasks, and each task
has an execution time t(2i−1) = 1

lg(2i−1)+1 = 1
i . Figure 2

illustrates the schedule for our instance with ` = 2.
Now, we establish a lower bound on the makespan of

any deterministic online algorithm. For any i ∈ [1,K − 1],
let Li denote the set of linear chains in all groups j ≤ i, and
let L′i denote the set of linear chains in all groups j > i. Let
us define ti to be the first time a linear chain in L′i completes
i tasks. We further define t0 = 0 and let tK denote the
makespan of the online algorithm.

15(1) 15(2) 15(3) 15(4)

14(1) 14(2) 14(3)

13(1) 13(2) 13(3)

11(1) 11(2) 12(1) 12(2)

9(1) 9(2) 10(1) 10(2)

5 6 7 8

1 2 3 4

Group 1

Group 2

Group 3

Group 4

Fig. 1. Lower bound instance for ` = 2, K = 4, and n = 15 linear task
chains. Each circle represents a task and the number inside each circle
indicates the ID of the linear chain the task is in (and the number in the
parenthesis indicates the task’s position in that linear chain).

Time

Pr
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es
so

rs

15(1) 15(2) 15(3) 15(4)

14(1) 14(2) 14(3)

13(1) 13(2) 13(3)

12(1) 12(2)

11(1) 11(2)

10(1) 10(2)

9(1) 9(2)
8
7
6
5
4
3
2
1

0 1
4

1
2

3
4

1

Fig. 2. An offline schedule for the lower bound instance with ` = 2,
K = 4, and n = 15 linear chains, producing a makespan of 1.

Lemma 9. In the worst case, a schedule produced by any
deterministic online algorithm could satisfy:

ti − ti−1 ≥
1

`+ i
, ∀i ∈ [1,K].

Proof. Since all tasks are identical, an online algorithm can-
not distinguish the linear chains. Thus, for any i ∈ [1,K], an
adversary could make all linear chains that first complete i
tasks by the online algorithm be chains from Li. Therefore,
at time ti, all linear chains containing exactly i tasks (i.e., the
ones from group i) are already completed, and at time ti−1,
no linear chain has started its i-th task by definition (this
also holds for t0 and tK ). Hence, all tasks in the i-th position
of the linear chains in group i must be entirely processed
between ti and ti−1, and the number of such tasks is 2K−i.
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Time

Pr
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so

rs

15(1)

14(1)

13(1)

12(1)

11(1)

10(1)

9(1)

8

7

6

5

4

3

2

1

15(2)

14(2)

13(2)

12(2)

11(2)

10(2)

9(2)

15(3)

14(3)

13(3)

15(4)

t0=0 t1=
1
2 t2=

5
6

t3≈1.07
t4≈1.23

Fig. 3. The schedule of an online algorithm for the lower bound instance
with ` = 2, K = 4, and n = 15 linear chains. The algorithm allocates
(approximately) the same number of processors to all linear chains,
producing a makespan t4 ≈ 1.23.

For the sake of contradiction, suppose we have ti −
ti−1 < 1

`+i . Thus, the execution time of these tasks must
satisfy t(p) = 1

lg(p)+1 ≤
1
`+i , hence their processor allocation

must be at least p ≥ 2`+i−1 = K × 2i−1. As the area of
the task a(p) = p × t(p) = p

lg(p)+1 is increasing with the
number of processors, the total area of all tasks that needs
to be processed between ti and ti−1 is at least 2K−i×a(K×
2i−1) = 2K−i×K×2i−1

log(K×2i−1)+1 = K×2K−1

`+i = P
`+i . Since we have P

processors, the total time required to process this area is at
least 1

`+i which contradicts ti − ti−1 <
1
`+i .

One strategy to cope with the worst-case scenario above
is to allocate the same number of processors to each linear
chain (or more precisely allocate one more processor to some
linear chains in order to utilize all the processors). Figure 3
illustrates this strategy for the same instance with ` = 2.

Finally, we can use the result of Lemma 9 to lower bound
the makespan of an online algorithm, which is given by
tK =

∑K
i=1(ti−ti−1). Since ∀j, ln(j)+γ <

∑j
i=1

1
i < ln(j)+

γ + 1
j where γ is the Euler constant, we obtain:

tK ≥
K∑
i=1

1

`+ i
>

K∑
i=`+1

1

i
>

K∑
i=1

1

i
−
∑̀
i=1

1

i

> (ln(K) + γ)−
(

ln(`) + γ +
1

`

)
= ln(K)− ln(`)− 1

`
.

This completes the proof of Theorem 5.

6 CONCLUSION AND FUTURE WORK

This paper studies the online scheduling of moldable task
graphs whose tasks obey different speedup models. To the
best of our knowledge, no competitive ratio was known
under this setting, except for the roofline model [8]. We

have extended the result and derived competitive ratios for
several other speedup models, including the communica-
tion model, the Amdahl’s model and a general combination.
We have also established a lower bound for the arbitrary
speedup model. Altogether, these new results lay the foun-
dations for further study of this important but difficult
scheduling problem. Future work will aim at assessing the
tightness of the competitive ratios obtained in this work.
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