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Abstract
This paper introduces a conservative form of the extended Boussinesq equations for waves in porous
media. This model can be used in both porous and non-porous media since it does not requires any
boundary condition at the interface between the porous and non-porous media. A hybrid Finite Vol-
ume/Finite Difference (FV/FD) scheme technique is used to solve the conservative form of the extended
Boussinesq equations for waves in porous media. For the hyperbolic part of the governing equations,
the FV formulation is applied with Riemann solver of Roe approximation. Whereas, the dispersive and
porosity terms are discretized by using FD. The model is validated with experimental data for solitary
waves interacting with porous structures and a porous dam break of a one-dimensional flow.

Keywords: conservative form, extended Boussinesq equations, FV/FD scheme, porous media, porous
dam break

1. Introduction

In coastal and ocean engineering computations, the Boussinesq-type (BT) equations have become
the most favorable approximations of the Navier-Stokes equations. In contrast to the also widely used
nonlinear shallow water equations (NSWE), the BT mathematical models have larger capabilities on
the approximation of short waves generation and propagation, due to the existence of the dispersive
terms in those models. Peregrine [1] was the first author who derived the weakly dispersive Boussinesq
equations for long waves. In efforts to extend the Boussinesq equations to be valid in deeper areas, two
approaches were presented by Madsen and Sørensen (MS) [2] and Nwogu [3]. Madsen and Sørensen [2]
employed more dispersive terms in the momentum equations while Nwogu [3] used the particle velocity
at a specific depth. Both sets of equations are weakly nonlinear weakly dispersive and are derived under
the assumption of clean water. More recently, several authors developed fully nonlinear Boussinesq
models [4][5][6], which can account for the nearshore wave circulation. However, these fully nonlinear
Boussinesq models took into account higher powers of nonlinear parameters which is computationally
expensive compared to the weakly nonlinear extended Boussinesq model.

The past decades have noticed some notable efforts on modeling the hydrodynamics interactions
of waves and porous structures using BT models. The porous structures, e.g., the porous breakwaters,
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are used to dissipate the wave energy at the coastlines, see for example [7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17]. Abbott et al. [7] were the pioneer researchers who derived the Boussinesq equations in
porous breakwaters with the energy dissipation in the drag resistance term but without yet considering the
inertial resistance term. When the drag resistance term is neglected, the Abbott’s Boussinesq equations
are reduced to Peregrine’s Boussinesq equations for clean water waves. Various works in the literature
attempted to include the inertial and drag resistance simultaneously, see for example [8, 11, 12, 15] with
satisfactory results in the dissipating efficiency of various porous media in real coastal problems. The
limitation of these works is that the BT equations used were developed in a non-conservative form, using
non-conservative numerical schemes. This results in the inability of the schemes to properly handle
shock waves and other discontinuity problems like wave breaking at coastal structures or surf zones.

In terms of numerical methods for weakly dispersive BT equations, there are lots of efforts related
to the finite difference (FD), finite element (FE) and finite volume (FV) methods. For an extensive
review on the topic we refer the interested readers to [18] and [19, 20]. The FV method requires less
computational effort compared to the FE method and the nonlinear advection terms can be handled easier
compared to the FD method. Recently the combination of FV and FD methods have been introduced for
BT equations in order to exploit the flexibility and shock capturing capabilities of the FV method and
the easiness of the FD in the discretization of the higher order terms. Some notable hybrid approaches
for BT models, in clean water, can be found in [21, 22, 23, 6, 24, 25, 26, 27, 19] and references therein.

The objective of this work is to develop a relevant hybrid FV/FD numerical scheme for the extended
Boussinesq equations for waves in porous media of Vu et al. [15]. These Boussinesq equations, which
follow the weakly nonlinear weakly dispersive Madsen and Sørensen’s Boussinesq equations [2], include
drag resistance as well as inertial resistance to compute correctly the short wave dissipation in porous
media. Also, the BT equations are derived following the conservative form, which can deal with the
nearshore waves [23] like breaking waves.

The manuscript is organized as follows. The extended Boussinesq equations for porous media in
the conservative form are developed in section 2. In section 3, the extended Boussinesq equations are
discretized using the hybrid FV/FD scheme where the FV scheme solves the advective terms and the
FD scheme solves the dispersive and porosity terms. Section 4 briefly describes the wave breaking
technique along with the boundary conditions used in this work. Finally in section 5, we investigate our
model using standard benchmark test cases for waves in porous media. The manuscript is concluded by
a discussion and an outlook on future work.

2. Governing equations

In this work as a starting point we use the extended BT model of [15]. Their model has some
advantages in simulations of waves inside and outside porous media. The model does not need to specify
any matching condition at the boundary of the porous medium interface. The model has shown its
accuracy to the experimental data and numerical results of [14]. However the model is unable to simulate
wave breaking and waves in surf zones. This also has a consequence in the simulation of the run-up of the
waves on the coasts. In order to overcome this issue we re-write the model of [15] in an one-dimensional
conservative formulation. More precisely we have
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ηt + qx = 0 (1)
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where H = d + η is the total water depth, d is the still water level and η the water surface elevation.
We write the momentum as q = Hu with u being the horizontal seepage velocity and g the gravitational
acceleration. B (=1/18) is the tuning parameter to extend capabilities of the model to the deeper areas.
See also figure 1 for the parameters’ description.

Figure 1: Sketch of the free surface flow problem and main parameter description

α and β are the drag and inertial coefficients respectively given by

α = αl

(
1− λ
λ

)2
ν

d2
s

+ αt
1− λ
λ

1

ds
|u| (3)

β = 1 + (1− λ)κ (4)

where λ is the porosity, κ is the added mass coefficient, αl and αt are the coefficients which represent
the laminar and the turbulent flow respectively. ν is the kinematic viscosity of the water and ds is the
size of the porous material. We have to highlight that if no porosity gradients exists in the domain then
the system of equations (1) and (2) degenerates to the classical system of weakly non linear weakly
dispersive equations of Madsen and Sørensen [2].

In a more compact form, and following the work in [19], the system can be written as:

Ut + F(U)x = Sf + Sl (5)
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with

U =
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U is the vector of the unknown variables, F(U) the non linear flux vector and Sf the friction term
with Nm being the Manning coefficient. The last term in the right hand side of (5) contains both disper-
sive and porosity terms and equals to

Sl =
1

β

[
0

ψ − αq

]
(7)

where ψ = ψd + ψp in which

ψd = Bgd3ηxxx + 2d2dxBgηxx and ψp =
1

3
αddxqx +

(
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1

3

)
αd2qxx. (8)

P is the velocity like function and has all the time derivatives in the momentum equation and is defined
as

P = q −
(

(B +
1

3
)d2qxx −

1

3
ddxqx

)
. (9)

3. Numerical scheme

We use a hybrid FV/FD numerical scheme to solve the system (5). This scheme is based on the one
used in [19] but of course further work is required since the authors in [19] are solving the MS equations
on clean water, without porosity. We will use the FV formulation for the hyperbolic part of the equations
and the FD for the remaining terms. Before applying the discretization in (5) we will examine briefly
some of the properties of the homogeneous system, meaning that the source terms are zero. The Jacobian
matrix of (5) is

J =
∂F(U)

∂U
=

[
0 1

−u2 + g
β
H 2u

]
(10)

The two eigenvalues of the matrix are real and read as

λ1 = u+ c, λ2 = u− c (11)

where the celerity c =
√

(g/β)H. The corresponding eigenvectors are:

r1 =

[
1

u+ c

]
, r2 =

[
1

u− c

]
(12)

The system is hyperbolic but has slightly different eigenvalues and eigenvectors than the classical shallow
water equations. Of course when there is no porosity, i.e., β = 1, the eigenvalues and eigenvectors are
those of the shallow water equations. This property makes it ideal for using an approximate Riemann
solver in the FV discretization in order to compute the numerical fluxes that occur.
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3.1. Numerical treatment for the hyperbolic part
Following the procedure required for a FV scheme and after integrating (5) over a control volume

Ci = [xi−1/2, xi+1/2] × [tn, tn+1] of dimensions ∆x = xi+1/2 − xi−1/2 and ∆t = tn+1 − tn, we obtain
the semi-discrete form for the hyperbolic part of the equations:

∆Un
i

∆t
= − 1

∆x

[
Fn
i+1/2 − Fn

i−1/2

]
. (13)

Un
i is the approximate cell average of U in the control volume at time tn, i.e. Un

i = 1
∆x

∫
Ci

U(x, tn)dx.
Fn
i±1/2 are the numerical fluxes in each interface of the control volume Ci. The numerical fluxes are

computed using the approximate Riemann solver of Roe [28]. To define a linearized Riemann solver
we have to consider the linearized form of the homogeneous system (5) and replace the Jacobian matrix
by some matrix Ĵ depending on the left (Ul) and right (Ur) states. This matrix should satisfy three
properties: consistency, hyperbolicity and conservation. The last one defines the approximate Riemann
solver of Roe while the first two are essential for all the approximate solvers. A general derivation, for
hyperbolic systems, can be found in [28, 29]. Here we follow a simple way by applying the conservation
property that states

Ĵ(Ur,Ul)(Ur −Ul) = F(Ur)− F(Ul). (14)

We look for a matrix Ĵ evaluated in an average state: Ĵ(Ur,Ul) = Ĵ(Û). This ensures consistency and
hyperbolicity if Û is an average of the left and right states. The eigenvalues and the eigenvectors of the
linearized system, evaluated at an average state are:

λ̂1 = û+ ĉ, λ̂2 = û− ĉ (15)

and

r̂1 =

[
1

û+ ĉ

]
, r̂2 =

[
1

û− ĉ

]
(16)

respectively. ĉ is the average celerity and equals
√

(g/β)H . The next step is to decompose the jump
(Ur − Ul) = α1r̂1 + α2r̂2 = R̂α. R̂ is the eigenvector matrix evaluated at the average state and
α = [α1 α2] can be found by solving the linear system α = R̂−1(Ur−Ul). This gives us the expressions:

α1 =
−(û− ĉ)(Hr −Hl) + (qr − ql)

2ĉ
, α2 =

(û+ ĉ)(Hr −Hl) + (qr − ql)
2ĉ

. (17)

Finally, in order to derive the average values of Roe, Ĥ and û we exploit (14) written in the form
Ĵ(Û)(Ur −Ul) = F(Ur)− F(Ul). The second equation of this system writes as:

(−û2 +
gĤ

β
)(Hr −Hl) + 2û(qr − ql) = Hru

2
r −Hlu

2
l +

g

2
(H2

r −H2
l ). (18)

We separate the terms involving g and we get

Ĥ = β
Hr +Hl

2
(19)
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while for those that they do not involve g we write:

û =

√
Hrur +

√
Hlul√

Hr +
√
Hl

. (20)

We can see that the Roe average state for the velocity is the same as one of the classical nonlinear shallow
water equations while the Roe averaged state for the water height is the same as one of the shallow water
multiplied by β. So, the numerical fluxes are written in a classic way as:

Fi+1/2 =
1

2

(
Fr
i+1/2 + Fl

i+1/2

)
− 1

2
|Ĵ|1+1/2

(
Ur

1+1/2 −Ul
1+1/2

)
(21)

where |Ĵ|i+1/2 = [X̂|Λ̂|X̂−1]i+1/2 and X̂i+1/2 is the right eigenvector matrix and Λ̂i+1/2 the diagonal
matrix with the eigenvalues in the diagonal.

Higher order discretization: Up to now if we set Ul = Ui and Ur = Ui+1 then we resolve to a first
order scheme in time. Higher order accuracy in the computation of the numerical fluxes is achieved by
constructing the left and right cell interface values using a third order MUSCL-type extrapolation scheme
[30, 31]. The reconstruction is implemented on the primitive variables. More details on the procedure
can be found in [32].

3.2. Discretization of the dispersive and porosity terms
The terms of the right hand side Sl that contains some dispersive and porosity terms are discretized by

using the Finite Difference (FD) technique. We have to be careful in the discretization of the equations as
we do not want the leading truncation error terms derivatives to be of the same order as of those contained
in the equations. These terms will affect the dispersion relation significantly the reader can refer to [33,
34] and [32] for more details. In this work we discretize the dispersive and porosity terms using fourth
order central FD approximations for the first order derivatives, third order central FD approximations for
the third order derivatives and second order central FD approximations for the second order derivatives.
We write the cell average of second term, Sl, of (7) :

(Sl)i =
1

∆x

∫
Ci

1

β
(ψ − αq)dx. (22)

The second part of the equation is by default αiqi. To compute the first part of the above term we
substitute the cell average values into the Taylor series and we express a cell average value with values
defined at the cell interfaces [35, 36]. After some calculus we discretize the term ψ using

(fi)x =
fi−2 − 8fi−1 + 8fi+1 − fi+2

12∆x
+O(∆x2), (23)

(fi)xx =
fi−1 − 2fi + fi+1

∆x2
+O(∆x2),

(fi)xxx =
−fi−2 + 2fi−1 − 2fi+1 + fi+2

2∆x3
+O(∆x3).

where, fi, fi+1, ..., are the average values, so we get

(ψd)i = −Bgd
3
i

2∆x3
(ηi+2 − 2ηi+1 + 2ηi−1 − ηi−2)−Bgd

2
i

6∆x3
(di−2 − 8di−1 + 8di+1 − di+2) (ηi−1−2ηi+ηi+1)

(24)
For the porosity terms ψp we again use (23) to approximate the derivatives.
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3.3. Time integration and Recovery of the velocity field
The temporal domain is discretized by a set of non-overlapping cells [tn, tn+1]. We denote ∆tn+1 =

tn+1 − tn which is computed by means of the CFL condition

∆tn+1 = CFL
∆x

maxi(|uni |+
√

(g/β)hni )
. (25)

The integration scheme that we use is the fourth order Adams-Bashforth/Adams-Moulton predictor-
corrector method which requires two stages. The scheme is widely used for Boussineq modeling and
full details can be found in [19] and the references therein. In both steps we obtain the values for Hi

and Pi from which we have to extract the values of the momentum qi and consequently the velocity
ui. In order to discretize (9) we use the approximations form (23) for the existing first and second order
derivatives in P . We also use the central FD approximation for (qi)x. Equation (9) results in a tridiagonal
system which is exactly the same as the one obtained from the MS equations in clean water [19]. This is
expected since no porosity terms are involved in the velocity like function. For the sake of completeness
we repeat here the form of the tridiagonal linear system of equations:

γiqi−1 + δi + εiqi+1 = Pi (26)

with
γi = −k1 +

k2

72
, δi = 1 + 2k1, εi = −k1 −

k2

72
(27)

in which

k1 =

(
B +

1

3

)(
d2
i

∆x2

)
and (28)

k2 =
d2
i

∆x2
(di−2 − 8di−1 + 8di − di+2). (29)

We use the Lapack-Linear Algebra Package to efficiently solve the tridiagonal system in each sub time
step.

4. Boundary conditions and wave breaking treatment

The boundary conditions used in all the test cases are solid wall boundary conditions. For this reason
three boundary nodes in the first and last cell are introduced and their values are determined through the
boundary conditions. More precisely we use an odd and even extrapolation for H while the velocity in
the ghost cells is defined as the opposite value of the velocity from the interior. The boundary conditions
are introduced in the linear system before solving in order to obtain the velocity field.

Last but not least we briefly describe the wave breaking treatment that we use. Following [20, 32, 22],
among others, a hybrid strategy is implemented in the scheme to handle wave breaking. The hybrid wave
breaking strategy is widely used with BT models due to its easy implementation. The interested reader
can find more information on the topic in [37, 38]. The treatment can be divided into two parts. First the
detection and characterization of breaking regions through explicit criteria and second the application
of the NSWE in the breaking regions and the MS equations elsewhere. We remind the reader that we
obtain the NSWE for our model by simply omitting the dispersive terms. Following [20] we use the
combination of the two local criteria for the following mechanism:
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1. |ηt| ≥ γ
√
gH, γ ∈ [0.35, 0.65], the surface variation criterion

2. ||∇η|| ≥ tan(φc), φc = 30◦ is the critical angle value, the local slope angle criterion.

The values of γ and φc depend on the type of breaker. The first criterion flags for breaking when ηt
is positive, since breaking starts on the front face of the wave, while the second criterion, acting com-
plementary to the first, is useful for the detection of hydraulic jumps. Moreover, the estimation of the
Froude number of the wave is used to established when to switch of the breaking and to detect non-
breaking bores.

5. Numerical tests

In order to verify the developed model, in this study we compare our numerical results with the
numerical and physical experimental data of [10]. The numerical results show good agreement with the
compared data. Secondly, we compare with a porous dam-break cases of [39].

5.1. Solitary waves interaction with porous structures
In this part, the effect of the nonlinearity on the wave transmission behind a porous breakwater is

verified with the experimental data of [10]. Solitary waves with amplitude of 1-3.5 cm were generated
in constant water depth of 10 cm which results in the nonlinearity ε = a/d = 0.1− 0.35, and the surface
elevations were measured 1 m in front of and 1 m behind the porous breakwater. Breakwater widths
are tested for 2 cases, 15 cm and 30 cm together with two types of gravel diameter ds = 1.6cm and
ds = 2cm. The porosity λ = 0.5 is used in all cases. The laminar and turbulent drag coefficients are
αl = 3000 and αt = 3, respectively.

5.1.1. Effect of the nonlinearity
Figure 2 shows the transmission and reflection coefficients (T and R, respectively) of the experi-

mental data and numerical results when the nonlinearities increase from 0.1 to 0.35. In general, the
transmission coefficients have the same decreasing trend when the nonlinearities increase due to high
nonlinearity effect. Meanwhile, the reflection coefficients increase with small values of nonlinearity
(i.e., a/d < 0.15). However, when the nonlinearity increases, the reflection coefficients decrease due
to the frequency dispersion induced by the porous breakwater and the nonlinearity effect becomes more
noticeable. The reflected solitary waves include a prominent wave and some trailing waves. When the
nonlinearity increases, the trailing wave heights increase which may reduce the reflection wave height in
front of the porous breakwater. This phenomenon has been explained in [40].

In comparison to the non-conservative form of Boussinesq model for waves in porous media of [15],
the conservative form model in this study shows its advantage in the reflection coefficients.

5.1.2. Effect of the width of the porous breakwater
The reflection and transmission of solitary waves to a porous breakwater are determined in some

more cases when we change the breakwater width. The porous breakwater conditions are the same as
the previous cases, such as λ = 0.5, αl = 3000 and αt = 3. Lynett et al. (2000) [10] did the physical
experiment for two breakwater widths (b/d = 1.5 and b/d = 3). We want to investigate how far the
reflection and transmission of the incident solitary wave are affected by the porous breakwater width.
The numerical simulations are executed for more cases with various breakwater widths. The breakwater
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Figure 2: Reflection and transmission of solitary waves to a porous breakwater. Line definition: filled circle = Lynett et al.’s
experiment; blank circle = Lynett et al.’s model; dashed line = [15] (non conservative form); solid line = conservative form

width is from 1 to 3.5 times the water depth (b/d = 1 − 3.5). It can be seen in figure 3 that when the
breakwater width increases, the reflection slightly increases whereas the decrease of the transmission
wave is more significant. The nonlinearities for both cases (figures 3a and 3b) are almost the same, the
gravel diameters are different from each other and selected from the physical experiment of [10].

5.2. Porous dam-break
The advantage of the conservative form of the porous model is illustrated in this section when the

model is simulated for porous dam-break cases. The experiments of [39] were carried out in a fish tank
with the dimensions 44cm x 89.2cm x 58cm (width x length x height). A porous dam was placed at the
middle of the fish tank with a length of 29 cm (figure 4).

There were two types of porous dam used for the experiments: the first one was filled with crushed
stones of 1.59 cm diameter and a porosity of 0.49, the latter was filled with glass beads of 0.3 cm diameter
and a porosity of 0.39. At initial stage, water was hold in a 25cm-high reservoir which was placed 2cm in
front of the porous dam. A layer of water (2.5cm deep) always remains on the bottom of the tank. When
the experiment was conducted, the water column was released and interacted with the porous dam. The
numerical model has been designed to validate two dam-break cases. The grid sizes were selected as
dx = dy = 1cm.
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Figure 3: Reflection and transmission of solitary waves to a porous breakwater of Lynett et al. (2000). Line definition: filled
circle = Lynett et al.’s experiment; solid line = conservative form

Figure 4: Geometrical configuration of the porous dam-break

5.2.1. Crushed stones dam
For the first case, the porous dam is filled with crushed stones, the porosity characteristics of the

porous dam were selected to be the same as the previous test with the laminar and turbulent drag coeffi-
cients αl = 3000 and αt = 3, respectively, and the added mass coefficient κ = 0.34.

Figure 5 shows a good comparison between the numerical results and the experimental data of [39].
The wave breaking happens in front of the porous dam and the surface elevation criterion is applied as
described in Section 4. This is an advantage of the conservative form of Boussinesq model for waves
in porous media comparing to the non-conservative form. The non-conservative form of the Boussinesq
model for waves in porous media can not simulate porous dam break cases naturally.
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Figure 5: crushed stones dam-break validation. solid line: present numerical solution; solid circle: experimental data of [39]

The porosity of the dam varies from 0.19 (very dense) to 1 (non-porous) to see more details about
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the variation of water flow with respect to porosities. The water surface elevations are recorded at 1 sec.
When the porosity is small (i.e., λ < 0.3), the flow inside the dam is slow due to high resistance force
hence the water levels behind the dam are kept unchanged. However, with larger porosities, the fluid
flow is faster. Particularly, when the porosity is unity there is no dam and the water flows freely.

Figure 6: variation of porosities inside crushed stone dam, λ = 0.19− 1

5.2.2. Glass beads dam
For the second experiment, the porous dam is filled with glass beads. Since the glass beads have

different characteristics (shape, diameter, and porosity) from the crushed stones, the porosity character-
istics of the porous dam should be modified. The drag coefficients of the porous dam were calibrated
among 3 values: (αl = 3000, αt = 3), (αl = 3000, αt = 0.1), and (αl = 600, αt = 3). Figure 7 recorded
the water surface elevation for these values at time t = 1.2 sec. It can be seen from this figure that the
turbulent values do not affect the flow much, however, the laminar values are dominant. The affection of
the laminar drag coefficient to the flow was also explained by [13] and [9]. Thus, we use the values of
(αl = 600, αt = 3) for the simulation of flow through a glass bead dam.

Figure 8 illustrates the water released process from the tank through a glass bead dam. At most time
steps, the numerical results show good agreement with the physical data. However, it can be seen at the
last time step there is a large discrepancy in front of the glass bead dam.
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Figure 7: water surface elevation in glass bead case: dashed line: (αl = 3000, αt = 3); solid line (αl = 3000, αt = 0.1);
dash-dotted line: (αl = 600, αt = 3); blank circle: experimental data

Figure 8: glass beads dam-break validation. solid line: present numerical solution; solid circle: experimental data of Lin
(1998)
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6. Concluding remarks

In this study, we introduced a conservative form of the extended Boussinesq equations for waves in
porous media. In a non-conservative form for waves in porous media, the model has been developed
by [15] and shows its accuracy when solitary waves interact with porous structures. In a conservative
form for non-porous media, the model returns the Madsen and Sørensen equations [2] and shows its
advantage on simulating wave breaking and wave run up [19]. The hybrid FV/FD numerical scheme
has been applied and the numerical results were compared with the experimental data. The comparisons
show that the conservative form of the extended Boussinesq equations for waves in porous media give
accurate predictions in the one-dimensional case. The most important contribution of this work is that
the model is able to simulate the porous dam break case, where the non-conservative form can not, see
[15]. For the crushed stone dam, the turbulent drag effect is more dominant whereas for glass bead case,
the laminar drag coefficient has a significant effect.

In future studies, a 2-D conservative model needs to be investigated to simulate important phenomena
in coastal areas such as wave refraction and diffraction from porous structures. A multi porous layer
model in conservative form should be investigated for breaking waves over porous submerged bar, waves
running up on the beach and overtopping waves on porous structures.
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