N
N

N

HAL

open science

Uncertainty propagation in subspace methods for

operational modal analysis under misspecified model

orders

Szymon Gres, Michael Déhler

» To cite this version:

Szymon Gres, Michael Déhler. Uncertainty propagation in subspace methods for operational modal
analysis under misspecified model orders. ISMA 2022 - International Conference on Noise and Vibra-

tion Engineering, Sep 2022, Leuven, Belgium. pp.1-12. hal-03784395

HAL Id: hal-03784395
https://hal.inria.fr /hal-03784395

Submitted on 23 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.inria.fr/hal-03784395
https://hal.archives-ouvertes.fr

Uncertainty propagation in subspace methods for
operational modal analysis under misspecified model
orders

S. Gre§ ', M. Déhler 2
I Aarhus University, Department of Civil and Architectural Engineering,
8000 Aarhus, Denmark

2 Univ. Gustave Eiffel, Inria, COSYS-SII, 14S,
Campus de Beaulieu, 35042 Rennes, France

Abstract

The quantification of statistical uncertainty in modal parameter estimates has become a standard tool, used in
applications to, e.g., damage diagnosis, reliability analysis, modal tracking and model calibration. Although
efficient multi-order algorithms to obtain the (co)variance of the modal parameter estimates with subspace
methods have been proposed in the past, the effect of a misspecified model order on the uncertainty estimates
has not been investigated. In fact, the covariance estimates may be inaccurate due to the presence of small
singular values in the supposed signal space. In this paper we go back to the roots of the uncertainty propa-
gation in subspace methods and revise it to account for the case when a part of the noise space is erroneously
added to the signal space. What is more, the proposed scheme adapts a different approach for the sensitivity
analysis of the signal space, which improves the numerical efficiency. The performance is illustrated on an
extensive Monte Carlo simulation of a simple mechanical system and applied to real data from a bridge.

1 Introduction

The identification of dynamic system characteristics from vibration measurements is a fundamental task in
engineering. Amongst others, subspace-based system identification methods are well-suited for this purpose.
They identify the system matrices of a linear time-invariant state-space model that describes the dynamic
system behavior [1], from which the modal parameters are retrieved. The estimates are inherently afflicted
with statistical uncertainties due to the unknown ambient excitation, measurement noise and limited data
length. The quantification of these uncertainties is important for engineering applications related to Opera-
tional Modal Analysis (OMA) and Structural Health Monitoring, e.g., as in [2-5]. However, the subspace
identification methods only produce point estimates but not their related confidence bounds.

The objective for uncertainty quantification in OMA is to obtain the modal parameter estimates and their con-
fidence bounds from the same dataset. While the statistical properties of estimates from subspace methods
have been analyzed in great detail in the automatic control literature in the past, e.g. in [6-8], the expres-
sions therein cannot be directly used for an actual covariance estimation in practical applications, since they
require in addition e.g. the estimation of the unknown states and their covariances, which are not computed
in the modal parameter estimation. A different approach was proposed in [9], where the covariance of esti-
mated parameters is computed easily from the sample covariances of the underlying output data covariances
and their related sensitivities. A memory efficient and fast computation scheme for this method has been
developed in [10] based on a mathematical reformulation of the algorithm.

The sensitivity-based covariance propagation is a simple and powerful tool for uncertainty quantification,
and is theoretically justified by the statistical delta method [11]. It turns out that the sensitivity computation
in one of the first steps of this propagation through the subspace algorithm, where the SVD of the output



covariance Hankel matrix is truncated at an assumed model order, is sensitive to the actual model order
choice. This is particularly relevant for the analysis of stabilization diagrams, where the system is identified
at many successive model orders. In fact, the developments in [9, 10] that are based on the SVD sensitivities
from [12] are only valid when the model order is chosen lower than the theoretical true order of the system,
i.e., none of the considered singular values in the truncation of the SVD converge to zero when the number
of data samples increases. If part of the noise space is erroneously added to the signal space, the sensitivity
estimation from [9, 10] is perturbed, leading to inaccurate covariance estimates of the modal parameters.
In this paper, the uncertainty quantification for the modal parameter estimates is adapted considering both
signal and noise space contributions of the underlying SVD based on [13], assuming that the model order for
the separation between signal and noise spaces is known. What is more, the sensitivity analysis of the signal
space from [13] in the proposed scheme uses a different derivation than in the previous approaches [9, 10, 12]
and yields a simpler computation, improving the numerical efficiency of the existing efficient approaches.
The performance of the proposed approach is illustrated on an extensive Monte Carlo simulation of an simple
mechanical system and applied to real data from a bridge.

2 Background

2.1 Subspace identification

Assume that the vibration behavior of a structure can be modelled by a linear time-invariant system, and that

only outputs of the structure (accelerations, velocities, displacements or strains) are measured while inputs

(acting forces) are unknown. Then the system dynamics can be described by the discrete-time state space
model [14]

Tpy1 = Axg + wi

{ (1

yr = Cog + vy,
where z;, € R"™ are the states, y;, € R" are the outputs, vectors wy, and vy denote the white process and
output noise respectively, A € R™*" (' € R"™™ are the state and observation matrices, and n is the model
order.
Let R; = E(ykykT_ ;) be the theoretical output covariances of the measurements, which yield, following from

(), R; = CA'™'G, where G = E(mkﬂy;{) denotes the cross-covariance between the states and the outputs.
The collection of R; can be stacked to form a block Hankel matrix

R Ry ... R,
R R ... R
H = ‘2 ‘3 . q'+1 e RP+Drxar )
Bpy1 Rpz oo Rpig

where p and ¢ are chosen such that min(pr, gr) > n with often p+ 1 = ¢q. Matrix H enjoys the factorization
property
H=0C, 3)

where the observability and stochastic controllability matrices O and C are

C

CA
o=\ . , C=[G AG ... ATqG]. (4)

C AP
Estimates R; and consequently H can be computed from the output covariance estimates of the measure-

ments {yx } k=1, N4ptq> €-&. DY

H=yty T ®)



where the data Hankel matrices ))* and ))~ contain future and past time horizons

Yq+1 Yq+2 -+« YN+q Yqg  Ygq+1 -+ YN+4g-1
1 Yq+2 Yq+3 «vo YN+g+1 1 Yg—1 Y -v+ YN+qg—2
y+ = ﬁ q: q: . :q ; y_ = ﬁ q. .q . .q (6)
Yp+q+1 Yp+q+2 --- Yp+q+N Y1 Y2 oo YN

Thanks to decomposition (3), an estimate of O can be retrieved from H by a Singular Value Decomposition
truncated at model order n,

3 N ~ b i 0 ~ P ~
H = [Usig Unuu] { Sg bnu“} VT, 6= UblgDsll/gz. @)

An estimate of the observation matrix C'is then obtained from the first block—row of O. The state transition
matrix A is estimated from the shift invariance property of 0, namely A= (’) (9 where (’) O € R are
respectively the matrix O without the first and the last block rows. Finally, the modal parameter estimates
are obtained from the eigenvalues and eigenvectors of A, and from C.

2.2 Uncertainty quantification

The delta method is a statistical tool that helps to estimate the covariance of a function of an asymptotically
Gaussian variable [11]. It is used to propagate the sample covariance of the output covariances that are
computed in the first step of the subspace algorithm through all steps of the algorithm down to the modal
parameters. The output covariances are asymptotically Gaussian, i.e.,

VNvec(H — H) = N(0,2%), €))

where vec(-) denotes the column stacking vectorization. An estimate 333, of the covariance can be easily
evaluated by the sample covariance based on partitions of the available data. The propagation of this co-
\iarianceAto the modal parameter estimates is then based on the delta method, stating that a matrix function
Y = f(H) has also asymptotically Gaussian entries with

VNvec(Y —Y) = N(0, Ty STy z)- 9)

The derivative Jy 3 of the function with respect to H is obtained from perturbation theory. For a first-order
perturbation it holds AY ~ Jy 3 AH. Hence, perturbing the functional relationship between H and Y
analytically and neglecting higher-order terms yields the desired derivative, in particular for cases where
the functional relationship is not explicit like for the SVD or eigenvalue decomposition. Subsequently,
covariance expressions for the estimates satisfy

i]y ~ jY,HSHjXZjH (10)

With this principle, the uncertainties of the output covariances from the first step of the subspace method can
be propagated step by step through the algorithm down to the modal parameters. The analytical sensitivities
are derived in detail in [9], with a computationally efficient algorithm proposed in [10]. The modal parameter
covariance follows from (10) based on the Hankel matrix sample covariance and estimates of the respective
sensitivities.

2.3 Uncertainty propagation for O

In this paper, the influence of the model order selection on the uncertainty quantification of the modal pa-
rameters is considered, which takes place in the truncation of the SVD in (7) for the estimation of the



observability matrix. The related part of the uncertainty quantification is recalled from [9, 10] in this section,
i.e., the respective sensitivity Jo 3 satisfying

vec(AO) = Jou vec(AH). (11)

This sensitivity is directly related to the sensitivity of the SVD of ‘H by AO = U, SAD;/ 4 AU, SD;/ 2,
The sensitivities of the SVD as shown in [12] and used in [9, 10] are based on perturbing the relationships
Hv; = oui, uy = Hvi/o; and v; = HTu,; /o, respectively, where o;, u; and v; are the singular values in

Dyg, the left singular vectors in Uy and the right singular vectors in Vs for ¢ = 1, ..., n. This yields
Ao = ul AH v, (12)
I —H/oi| [Aui] _ 1 [ (I —wul)AHo (13)
~HT Jo; I Avi| oy |(I—vivl)AHT ;|

To obtain the singular vector sensitivities from the second equation, the matrix on the left side needs to be
inverted. However, it is a rank-deficient matrix. The solution in [9] is obtained by using the pseudoinverse.
In [10], the condition uiTAui + viTAvi = 0 is added to (13), which results from the norm of the singular
vectors being constantly one. This results in an invertible matrix on the left side, for which the matrix
inversion lemma is used to efficiently obtain the solution for Aw; only in [10]. With these sensitivities,
matrix Jp 7 is assembled.

An important requirement in these developments is that o; # 0. A consistent estimate of the sensitivities can
thus only be achieved if &; is an estimate of a non-zero singular value, i.e., when the data length N — oo
then 6; — o; # 0. To ensure that the sensitivity computations are correct, it is thus not sufficient to ensure
that &; is non-zero (this will always be the case for noisy data), but that the SVD in (7) is truncated at a model
order that is not higher than the “true” theoretical order of the considered system.

In contrast, when the SVD in (7) is truncated at a model order 7 that is higher than the theoretical order
n of the considered system, some of the considered singular values and the associated singular vectors
are estimates corresponding to singular values that are theoretically zero. While this does not affect the
consistency of the estimates of the true system modes, the singular value and vector sensitivities as presented
in the previous section are only consistent until model order n, but not for 2 > n. Since the sensitivities of the
true system modes identified at order 7 depend on matrix A and thus also on the singular vector sensitivities
for 1 > n, this can lead to an erroneous covariance computation of the modal parameter estimates, as
illustrated in the next section.

2.4 Numerical application for illustration and validation

Consider a 6 DOF chain-like system as illustrated in Figure 1 that, for any consistent set of units, is modeled
with spring stiffnesses k1 = k3 = ks = 100 and ky = k4 = k¢ = 200, mass m; = 1/20 and a proportional
damping matrix such that each mode has a damping ratio of 2%. The exact modal parameters of the system
are depicted in Table 1. The system is excited by a white noise signal in all DOFs and sampled with a
frequency of 50 Hz for a duration of 2000 seconds. The responses are measured only at DOFs 1, 3 and 5. To
emulate measurement noise, Gaussian white noise with 5% of the standard deviation of the output is added
to the response for each channel.

k2 ]CS k}4 ks k'G
mi AM— M2 AN M3 AMA—] s A s Aa—] g

| | |
sensor 1, sensor 2, sensor 3.
—_— —_— —_—

Figure 1: Illustration of 6 DOF chain system used for Monte Carlo simulation.

A Monte Carlo experiment is performed, where 1000 realizations of the described signal are computed.



Table 1: Exact modal parameters of the chain system.

Natural frequency (Hz)

Damping ratio (%)

f1 f2

3

fa Is Je G G

G3

G ¢ Ce

1.936 5.618

8.682

14.494

15.798 17.007 2 2

2

2 2 2

In the following, the behavior of the existing modal parameter uncertainty quantification approach as out-
lined in Section 2.3 is examined at different model orders. The modes of the chain are identified with the
covariance-driven subspace method with p + 1 = ¢ = 26 at the (true) model order n = 12 as well as model
orders 24, 48 and 60, where the observability matrix is obtained in (7). In Fig. 2 and 3, the means of the
estimated standard deviations with the presented uncertainty quantification strategy are shown for different
model orders and compared to the empirical standard deviation from the Monte Carlo simulation for fre-
quency and damping ratio estimates. First, it can be observed that the computed standard deviations are
identical either using the original derivation from [9] or the efficient reformulation from [10] at all model
orders. Second, it can be seen that the estimated standard deviations always match the empirical ones very
well at the true model order n = 12 for all cases. However, the situation is different at higher model orders:
the estimated standard deviations are in general inaccurate for higher model orders, which is particularly
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Figure 2: Mean of computed standard deviations and empirical standard deviations of frequencies (in Hz)
from Monte Carlo simulation at different model orders.
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pronounced for modes 4-6. Only for the first modes 1 and 2, and there only for moderately over-estimated
model orders the previous uncertainty quantification is still accurate. The empirical standard deviations seem
to be quite stable for the different model orders.

3 Uncertainty propagation for overmodelled systems

In the following it is assumed that the theoretical model order n is known, and that the system is identified at
some order n > n. The sensitivities of the observability matrix through the SVD are revisited for this case,
being a crucial part in the uncertainty quantification of the modal parameters.

The classical computation of the observability matrix in (7) depends on both the singular vectors and singular
values. When 7 > n, this would mean that the sensitivities of singular values are required, for which some of
the singular values are estimates of zero. The sensitivities of zero singular values are complex and first-order
perturbations insufficient in their approximation [15, 16]. However, we do not have to deal with them if the
observability matrix estimate is defined at the chosen model order # directly by the singular vectors as

0= [Usig Unull,l] ) (14)

where Unum consists of the first n — n columns of Unuu in (7).

To analyze the perturbations of the signal and the null space singular vectors, there is a considerable body of
literature over the last decades. Based on the works by Stewart [17], expressions for the first-order perturba-
tions of the singular vector spaces have been developed in [13], yielding

AUsig = UnitUnnAH Vi D, (15)
AUt = —Usig Dy Vg AR Upar (16)

In comparison to (13), the perturbation of the left singular vectors in the signal space in (15) is decoupled
from the perturbation of the right singular vectors, and no pseudoinverse is required, leading to a more direct
and simpler computation. This expression is further analyzed and developed in [18]. The expression for the
left null space perturbation in (16) has been used in recent subspace-based identification, damage detection
and localization approaches, e.g. [19, 20].

Finally, combine (14)—(16) to obtain the perturbation on the observability matrix

vec(Unung;nAHmigD;gl)
Vec(_UsigDs_igl Vi AR Ui 1)

vec(AO) = [

Ds_igl Vsﬁ ® qnullUrfm
—(UTuu,l ® Usig Dy, V‘T)P(pﬂ)r,qr

n sig " sig

vec(AH), (17)

where ® denotes the Kronecker product and P, ; is a permutation matrix with P, j vec(X) = vec(X Ty for
X € R%P. A consistent estimate of the sensitivity in (17) is obtained by replacing Usig, Dyig, Viig, Unun by
their estimated counterparts from the SVD of H in (7).

The remainder of the uncertainty propagation to the modal parameters, i.e., from the observability matrix
to the state-space matrix estimates of A and C), then to the eigenvalues and eigenvectors of A and finally to

the natural frequencies, damping ratios and mode shapes, is carried out as described in [9, 10]. The modal
parameter covariances are then obtained based on (10).

3.1 Numerical validation

The behavior of the proposed modifications for the uncertainty quantification from the previous section are
examined in the following, where the observability matrix is computed directly from the singular vectors



in (14) for the different model orders. The following approaches for the singular vector sensitivities are
considered:

* Based on (13) as in [9, 10], assuming that all considered singular vectors from SVD of Hankel matrix
belong to signal space. Since the results based on the original computation in [9] and on the efficient
computation in [10] are identical as shown in Fig. 2 and 3, no difference between both computations

is made in the following;

* Based on (15), assuming that all considered singular vectors from SVD of Hankel matrix belong to

signal space;

* Based on (15)—(16) as shown in (17), assuming the separation of signal and noise spaces at the theo-

retical model order n = 12.

In Fig. 4 and 5 the proposed approaches are compared. First of all, it can be seen that the empirical standard
deviations from the Monte Carlo simulation as well as the estimated standard deviations based on the existing
method (Eq. (13)) are identical to the results in Fig. 2 and 3, either using the observability matrix estimate on
the singular vectors only (Eq. (14)) or both the singular vectors and values (Eq. (7)). This indicates that there
is no change in precision of the modal parameters when estimating the observability matrix now in (14).
Second, changing the singular vector sensitivity computation to the formula in (15), while again assuming
that all the considered singular vectors (including the ones above the theoretical system order) belong to the
signal space, leads already to smaller errors on the standard deviation estimates than the previous computa-
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Figure 4: Mean of computed standard deviations and empirical standard deviations of frequencies (in Hz)
from Monte Carlo simulation at different model orders, based on the computation of O in (14).
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tion. However, the errors are still non-negligible, especially for the higher modes and higher model orders.
Finally, the proposed uncertainty computation in (17) considering the sensitivities related to the signal and
noise spaces separately leads to accurate standard deviation estimates for all considered model orders for
both frequencies and damping ratios.

In the final part of the numerical validation the precision of the standard deviation estimates is evaluated.
In Fig. 6 and 7 the coefficients of variation (CV, empirical standard deviation of the delta method-based
standard deviation estimates divided by their mean) are shown for the different considered approaches for
the frequencies and damping ratios. It can be seen that the CV for all approaches is small at the true model
order n = 12, being around 5% of the standard deviation estimate. With the approaches that do not consider
a separation between signal and noise spaces, the CV increases strongly up to 200% and more for the higher
model orders, where the sensitivity computation based on (15) shows better precision than the previous one
based on (13). Finally, the proposed uncertainty computation in (17) considering the sensitivities related to
the signal and noise spaces separately leads to the best precision. The CV still increases for the higher model
orders in particular for the higher modes, but remains reasonable and below 50% in all cases.
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4 Application

This section presents an application of the proposed uncertainty quantification approach for deriving confi-
dence intervals of modal parameters obtained from real data. The application is carried out on measurements
from the monitoring campaign of the S101 Bridge in Austria [21], shown in Fig. 8.



Figure 8: S101 Bridge before demolition.

In this study, the response of the bridge to ambient loads in vertical direction is used from 15 acceleration
sensors mounted on its deck. Measurements were sampled with a frequency of 500 Hz and were decimated
to 27.78 Hz prior to modal parameter estimation and uncertainty quantification. The modal parameters
and the related uncertainties are estimated with p = 20 and model orders ranging from npy;, = 12 to
nmax = 60. A heuristic division of the signal space and the null space is conducted at model order 12 and
used for the uncertainty propagation to the observability matrix in (17). In Fig. 9 the resulting stabilization
diagram of natural frequencies with the corresponding 95% confidence intervals obtained with the proposed
uncertainty propagation approach is shown. In the stabilization diagram the natural frequency estimates
and their confidence intervals are plotted on top of the singular values of the cross power spectral density
(CPSD) matrix evaluated for each frequency line [22]. A threshold on the Coefficient of Variation (CV) for
the natural frequency equal to 20% and for the damping ratio equal to 50% is enforced to filter the uncertain
modal parameter estimates from the stabilization diagram, i.e., any mode whose CV of the natural frequency
exceeds 20% or 50% for the damping ratio, is discarded from the diagram in Figure 9.
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Figure 9: Stabilization diagram of the natural frequency estimates with the corresponding 95% confidence
intervals.

Three modal alignments, i.e., groups of modal parameters obtained at different model orders that correspond
to the same mode, are extracted manually at 4.05 Hz, 6.28 Hz and 9.67 Hz. To assess the real-life per-
formance of the proposed method and to compare it to the previous approaches, a comparison similar to
Section 3.1 is carried out, including:
* The previous approach from [9, 10] based on (13), assuming that all considered singular vectors from
SVD of Hankel matrix belong to signal space;
* Based on (15), assuming that all considered singular vectors from SVD of Hankel matrix belong to
signal space;
* The proposed approach based on (15)—(16) as shown in (17), assuming the separation of signal and
noise spaces at the model order n = 12.



The resulting zoomed stabilization diagrams with the 95% confidence intervals obtained with the different
approaches are illustrated in Fig. 10 for the three modes. It can be seen that with the previous approach (left),
the confidence bounds at high model orders sometimes become very large, up to the point that they exceed the
predefined threshold of the CV so that some of the modes disappear from the diagram. The over-estimation
of the standard deviations at high model orders with this approach was already observed on the numerical
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Figure 10: Confidence intervals of the natural frequency estimates of modes 1 (top), 2 (middle) and 3 (bot-
tom) obtained with the different uncertain propagation methods.



example in the previous section. Changing the singular vector sensitivity computation to the formula in (15),
while again assuming that all the considered singular vectors belong to the signal space (Fig. 10, middle),
leads already to a more stable computation of the confidence intervals. Finally, the proposed uncertainty
computation in (17) considering the sensitivities related to the signal and noise spaces separately (Fig. 10,
right) seems to yield the most stable computation of the confidence intervals at high model orders compared
to the other approaches.

5 Conclusions

In this paper, the problem of misspecified model order selection has been addressed in the uncertainty quan-
tification of modal parameter estimates from covariance-driven stochastic subspace identification. While the
selection of a model order that is higher than the true system order should not affect the consistency of the
modal parameter estimates, it has been shown that the associated estimates of the modal parameter standard
deviations are affected in the previous uncertainty quantification approaches in [9, 10]. The separate consid-
eration of the signal and noise spaces related to the true model order amends this problem in the uncertainty
computation, leading to accurate and more precise estimates of the modal parameter standard deviations. It
can also be applied in the uncertainty quantification of other subspace methods, such as [23, 24].
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