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1 Univ. Gustave Eiffel, Inria, COSYS-SII, I4S
Campus de Beaulieu, 35042 Rennes, France
e-mail: enora.denimal@inria.fr

2 Aarhus University, Department of Civil and Architectural Engineering
Nordre Ringgade 1, 8000 Aarhus, Denmark

Abstract
The vibration-based Structural Health Monitoring plays a central role in ensuring the safe operation of infras-
tructures by monitoring their structural integrity based on data collected by sensors. While damage detection
has reached maturity, the localization and the quantification of small-scale damage remain an open challenge.
To address it, both the localization and the quantification of damage are often posed as an updating problem
of a Finite Element Model (FEM) of the operating structure, minimizing the misfit between some features
computed from response measurements of a faulty structure and its FEM in a reference, healthy condition.
This paper investigates the choice of the features for the design of the objective function to quantify struc-
tural cracks. For this purpose, a FEM of a beam with a transverse crack is developed and parametrized by
the second moment of area of the elements to locate and quantify the crack-related damage. Subsequently,
the impact on the choice of the objective function is discussed based on a small-samples Monte Carlo study.

1 Introduction

Three pillars of Structural Health Monitoring (SHM) are fault detection (is the structure changed?), local-
ization (where?) and quantification (how big is the change?) [1]. Whereas the detection of damage from
vibration measurements is well established, e.g., in [2–6], the localization and quantification of damage is
more complex, and requires additional physical information on the examined structure [7–10]. In this respect,
few complete frameworks for damage identification exist, e.g., [11–15]. Some methods are constrained to a
specific structural models, e.g., beams [12], tailored to a specific damage type, e.g., crack damage [13–15],
while other methods incorporate a global physical information from a FE model allowing for applications
to more general systems. In this context, the sensitivities of damage features computed from the structural
responses can be used to infer FE model parameter changes in [11], under the assumption of small damage
extents. Contrary to these approaches, FE model optimization-based methods are usually not limited by the
structural type or by the damage extent. Therein model updating is a generic term encompassing a family of
many methods [16,17], that are often applied in the damage quantification context [18–21]. Model updating
methods, however, are often poorly conditioned due to the possibly large FE parameter space in compar-
ison to relatively few parameters that can be extracted from data, which may potentially detract from the
reliability of the damage diagnosis procedure, particularly under the uncertainty errors on the estimated fea-
tures. Among several methods to account for those uncertainty errors, e.g., with Bayesian strategies [13], the
recently proposed statistical model-based optimization approach incorporates the uncertainty on the target
features into the objective function that is evaluated in a stochastic optimization strategy for the data-model
matching.

This paper investigates the choice of the features for the design of the objective function to quantify structural



cracks. For this purpose, a FE model of a beam with a transverse crack is developed. To locate and quantify
the crack-related damage, the model is parametrized by the second moments of area of damaged elements.
Subsequently, the impact on the choice of the objective function is discussed based on a small-samples Monte
Carlo study.

2 Background

The aim of this paper is to estimate a parameter that characterizes damage in a Finite Element (FE) model of
a mechanical system. Let θ ∈ Θ ⊂ Rp be the parameter vector that contains damage-sensitive parameters
of the structural elements of interest for the considered problem within a bounded parameter space Θ. This
parametrization is defined after the specific monitoring problem at hand, such that θ contains parameters
of the dynamic system whose sensitivity to damage is non-zero and which fully parametrize the considered
damage, e.g., Young’s modulus, mass density of elements, crack parameters (width, length), among others.
Finding the optimal θ̂ can be formulated as an optimization problem, where an objective function F (θ) is
minimized over some bounded parameter space Θ with the purpose of finding the true value of the parameter
θ∗.

Assume that the dynamics of the monitored system can be modelled as linear time-invariant (LTI) with d
degrees of freedom (DOF), which are described by the differential equation of motion

Mθ q̈(t) +Dθ q̇(t) +Kθq(t) = u(t) (1)

where t denotes the continuous time, and the matrices Mθ, Dθ and Kθ ∈ Rd×d denote the mass, damping
and stiffness matrices, respectively, which depend on the system parameter θ. Vectors q(t) ∈ Rd and u(t)
∈ Rd denote the continuous-time displacements and the unknown external forces, respectively. Observed at
r sensor positions and sampled at discrete time instants t = kτ with sampling rate 1/τ , system (1) can be
transformed into the discrete-time state-space model [22]{

xθk+1 = Aθxθk + wk

yθk = Cθxθk + vk
(2)

where xθk ∈ Rn are the states, yθk ∈ Rr are the outputs e.g., accelerations, velocities, or displacements,
vectors wk and vk denote the white process and output noise respectively, Aθ ∈ Rn×n, Cθ ∈ Rr×n are the
state and observation matrices, and n = 2d is the model order. The process noise vk is assumed to be a
stationary process with zero mean and covariance matrix Q = E(vkv

T
k ), wk denotes the zero-mean output

noise with covariance matrixR = E(wkw
T
k ), and the covariance between vk andwk is S = E(vkw

T
k ), where

E(·) denotes the expectation operator.

For simplicity, the (·)θ notation is dropped in the remainder of this paragraph. Let Ri = E(yky
T
k−i) =

CAi−1G be the theoretical output covariances of the measurements, where G = E(xk+1y
T
k ) = AΣsCT +S

and Σs = E(xkx
T
k ) = AΣsAT +Q. The collection of Ri can be stacked to form a block Hankel matrix

H =


R1 R2 . . . Rq

R2 R3 . . . Rq+1
...

...
. . .

...
Rp+1 Rp+2 . . . Rp+q

 ∈ R(p+1)r×qr, (3)

where p and q are chosen such that min(pr, qr) ≥ n with often p+1 = q. Matrix H enjoys the factorization
property

H = O(C,A) C(A,G), (4)



where the observability and controllability matrices O(C,A) and C(A,G) are defined as

O(C,A) =


C
CA

...
CAp

 , C(A,G) =
[
G AG . . . Aq−1G

]
. (5)

Matrices (A,C) can be easily obtained from M, D, K [22] andG is obtained based on the chosen noise prop-
erties after [23]. Consistent estimates Ĥ can be obtained from the output covariances of the measurements
{yk}k=1,...,N+p+q

Ĥ = Y+Y−T , (6)

where the data Hankel matrices Y+ and Y− contain the future and the past time horizons

Y+ =
1√
N


yq+1 yq+2 . . . yN+q

yq+2 yq+3 . . . yN+q+1
...

...
. . .

...
yp+q+1 yp+q+2 . . . yp+q+N

 , Y− =
1√
N


yq yq+1 . . . yN+q−1

yq−1 yq . . . yN+q−2
...

...
. . .

...
y1 y2 . . . yN

 . (7)

The estimates of O(C,A) and C(A,G) can be obtained from a singular value decomposition (SVD) of Ĥ
thanks to the factorization property (4). The estimates of the modal parameters of system (1) can be then
obtained from the estimate of O(C,A) with, e.g., subspace identification methods [24].

3 Objective functions and model optimization strategy

An estimate of θ∗ is obtained by minimizing an objective function that is designed to represent the dis-
crepancy between the estimate of a feature vector computed from measurement data collected under the
unknown, true system parameter θ∗, and its counterpart computed from a parametric model. The solution for
θ is obtained as

θ̂ = argmin
θ∈Θ

F (θ). (8)

A decision whether the current model parametrization θ corresponds to the unknown parameter θ∗ needs to
take into account the uncertainty of the estimated feature and its sensitivity towards the considered parame-
terization. To assess this equivalence a residual ζ is defined, whose statistical properties can be evaluated as
the number of samples goes to infinity. For this, two hypotheses are defined

H0 : θ = θ∗ (model matched), (9)
H1 : θ ̸= θ∗ (model mismatched).

A classic feature used for the residual evaluation and the design of the objective function F (θ) (8) is based
on the modal parameters of the monitored system and their statistical uncertainties [25]. In this work, three
sets of damage sensitive features are evaluated in damage residuals that are used as objective functions in
data-model optimization, namely

• subspace-based damage residual from [2],

• Hankel matrix difference residual from [26],

• modal parameter-based residual from [27].

A short description of the aforementioned damage residuals is enclosed below.



3.1 Subspace-based damage residual

Let Oθ
model be the parametric model-based observability matrix and let Ĥθ∗

data be the Hankel matrix obtained
from a data set of length N . The subspace damage residual is defined after [2] as

ζ̂θS
def
=

√
Nvec((U θ

null)
T Ĥθ∗

data), (10)

where U θ
null is the left null space of Oθ

model defined from the SVD partitioned at order n

Oθ
model =

[
U θ

sig U θ
null

] [Dθ
sig 0

0 Dθ
null

][
V θT

sig

V θT
null

]
. (11)

Matrix Oθ
model can be obtained by using the FE model-based (A,C) matrices in (5). The residual ζ̂θS (10) is

zero iff the parameters θ and θ∗ correspond, which is evaluated in a Generalized Likelihood Ratio (GLR) test

tθS = (ζ̂θS)
T Σ̂−1

S ĴS

(
Ĵ T
S Σ̂−1

S ĴS

)−1
Ĵ T
S Σ̂−1

S ζ̂θS , (12)

where ĴS is the consistent estimate of the sensitivity of the residual w.r.t. model parameter JS = ∂ζθS/∂θ (θ∗)

and Σ̂H denotes the consistent estimate of the residual covariance. The test value from (12) can be directly
used in the objective function for the model optimization as FS(θ) = tθS. When the model features match
the features obtained from data, the GLR test statistics follows a central χ2 distribution with the degrees of
freedom l = rank(JS). The quantile qχ2 of the underlying χ2 distribution, satisfying

∫ qχ2

0 fχ2(x)dx = γ,
where γ is a desired confidence level, can be used to define an acceptance region

ΘS = {θ : tθS ≤ qχ2}, (13)

which comprises all parameter vectors θ for which U θ
null is the left null space of the estimated reference Ĥθ∗

data.
Thus, ΘS comprises the statistically plausible solutions for θ∗ with regards to the considered models, which
allows to stop the optimization search when θ ∈ ΘS.

3.2 Hankel matrix difference

The Hankel matrix difference damage residual is defined after [26] as

ζ̂θH
def
=

√
Nvec(Oθ

modelẐ
†
modelẐdata − Ĥθ∗

data), (14)

where Ẑdata and Ẑmodel are defined from the SVD partitioned at order n

[
Ĥθ∗

data Oθ
model

]
=

[
Ûsig Ûnull

] [D̂sig 0

0 D̂null

][
V̂ T

sig V̂ T
sig

V̂ T
null V̂ T

null

]
, (15)

as Ẑdata = D̂sigV̂
T

sig, Ẑmodel = D̂sigV̂
T

sig. The residual (14) is zero iff the parameters θ and θ∗ correspond,
which is also evaluated in a GLR test

tθH = (ζ̂θH)
T Σ̂−1

H ĴH

(
Ĵ T
H Σ̂−1

H ĴH

)−1
Ĵ T
H Σ̂−1

H ζ̂θH , (16)

where ĴH is the consistent estimate of the sensitivity of the residual w.r.t. model parameter JH = ∂ζθH/∂θ (θ∗)

and Σ̂H denotes the consistent estimate of the residual covariance. The GLR test value (16) can be directly
used in the objective function for the model optimization as FH(θ) = tθH and an acceptance region

ΘH = {θ : tθH ≤ qχ2}, (17)



is defined based on the similar principles as for the objective function corresponding to the subspace-based
residual.

3.3 Modal parameter and MAC difference

As an alternative to objective functions designed based on data-driven residuals (10) and (14), a classic
objective function for model optimization can be expressed by the difference between the estimated and the
numerical modal parameters [27]. For this purpose, denote ∆θ

fi
as the normalized difference between the

estimated natural frequency f̂i and the natural frequency fθi from the model under parameter θ, with

∆θ
fi
= 1− fθi

f̂i
. (18)

For the comparison of the mode shape estimate φ̂i (computed from measurements under unknown system
parameter θ∗) to the numerical counterpartψθ

i from the model, the MAC is used. Let ∆θ
MACi

be the difference
between 1 and the respective MAC, defined as

∆θ
MACi

= 1−MAC(φ̂i, ψ
θ
i ) . (19)

The objective function FM(θ) indicates the distance between the estimated modal parameters and their model
counterparts, and it can be expressed as the sum of the respective differences ∆θ

fi
and ∆θ

MACi
for all consid-

ered modes i = 1, . . . ,m, as

FM(θ) =
m∑
i=1

∣∣∣∣∆θ
fi

∣∣∣∣+ m∑
i=1

∆θ
MACi

. (20)

The corresponding acceptance region is defined based on the confidence intervals derived for the natural
frequency estimates cf̂i and the MAC between an estimate of a mode shape and a mode shape obtained from
an FE model tMACi , as

ΘM = {θ : fθi ∈ cf̂i and MAC(φ̂i, ψ
θ
i ) > tMACi for all i = 1, . . . ,m}. (21)

3.4 Model optimization with the modified Covariance Matrix Adaptation Evolution
Strategy (CMA-ES)

Starting with the initial value θ = θinit corresponding to the model in the reference state, the CMA algorithm
consists in generating λ model candidates θgj , j = 1, . . . , λ, in each population g, by sampling a multivariate
Gaussian distribution. The sampling is carried out on the considered parameter subset for the subsequent
population g + 1 as

(θj)
g+1 = mg + εj , εj ∼ σgN (0, Cg) , (22)

where j = 1, . . . , λ and mg is a weighted mean of the model candidates (θj)g in the parent generation. The
covariance matrix Cg of the added Gaussian noise εj represents the amplitude of sampling, and the scaling
factor σg determines the range of the search. For the convergence to a solution, the stopping criteria (13),
(17) and (21) are included in the optimization of the objective functions FS(θ), FH(θ) and FM(θ), which
ceases when the respective acceptance regions are reached. Then the final solution is computed as the mean
of the selected t model candidates θgjk ∈ Θ in the last population g that are lying in the acceptance region,
with

θsol =
1
t

t∑
k=1

θgjk . (23)



4 Numerical case study

The mechanical system under study consists of a circular beam of radiusR and length L. The beam is simply
supported at both ends and the values of the model parameters are given in Table 1. The damage is emulated
as a transverse crack located at L/3 based on [28]. The beam is discretized with 30 Euler beam elements,
where each node has four degrees of freedom (dof). The damping matrix is taken as a Rayleigh damping,
i.e., D = αM+ βK with α = 0.66 and β = 1.2−6. The model is illustrated in Figure 1.

Figure 1: The considered parametrized beam finite element model.

Table 1: Mechanical and geometrical properties of the cracked beam

Parameter Value

Length (m) 1
Radius (m) 0.05
Young’s modulus (Pa) 2×1011

Shear modulus (Pa) 7.1×1010

Density (kg/m3) 7800
Poisson ratio 0.3

The crack model is based on the model of Mayes and Davies [29], where it has been proposed to recreate the
local flexibility induced by the crack as a change in the second moment of area. In what follows, the second
moment of area at the location of the crack is reduced by ∆I

∆I = I0

(
R/l(1− ν2)F (µ)

1 + (R/l)(1− ν2)F (µ)

)
, (24)

where I0 is the second moment of area of the uncracked section,R is the beam radius, ν is the Poisson’s ratio,
l is the element length, µ = h/R is the non-dimensional crack depth and h is the depth of the crack. F (µ) is
the compliance function depending on the non-dimensional crack-depth detailed in [29]. Subsequently, the
stiffness matrix Ki

crack of the cracked element i is defined as

Ki
crack =

E

l3



12IX 0 0 6lIX −12IX 0 0 6lIX
12IY −6lIY 0 0 −12IY −6lIY 0

4l2IY 0 0 6lIY 2l2IY 0
4l2IX −6lIX 0 0 2l2IX

12IX 0 0 −6lIX
Sym. 12IY 6lIY 0

4l2IY 0
4l2IX


, (25)

where IX and IY are the new moment of inertia [28]. The global stiffness matrix Kcrack is defined as the
concatenation on the diagonal of the cracked matrix of each element

diag(Kcrack) = (08×8 · · · 08×8 Ki
crack 08×8 · · · 08×8). (26)

Note that Ki
crack = 08×8 when there is no crack. Finally, the structural matrices of the cracked beam are

written as Mc = M, Kc = K − Kcrack and Dc = αMc + βKc, where the subscript c denotes the cracked



Figure 2: Objective function FS(θ) (left) and FH(θ) (right) for the parameter pair (I10x , I
10
y ).

Figure 3: Objective function FM(θ) (left) for the parameter pair (I10x , I
10
y ). Contour of parameter sets satis-

fying the stopping criteria (right).

system.

In the following study, the crack is modelled in the 10th element and the non-dimensional crack depth is
µ = 0.8. The beam is excited with a white noise at all dofs in x and y directions. Three biaxial sensors
located at 5, 20 and 25 dof in x and y directions are considered. As the presence of the crack reduces the
second moments of area of the beam section, the model is parametrized by these second moments of area.
As such, there are 2 parameters for each element, where Iix and Iiy will denote the second moment of area in
the x and y direction of the element i, respectively.

4.1 Preliminary analysis

Before the model optimization, the considered objective functions and the corresponding acceptance regions
are examined. Functions FH(θ), FM(θ) and FS(θ) map the p-dimensional parameter space to a multidimen-
sional plane whose shape can easily be illustrated for p = 2, i.e., in two dimensional parameter space. For
this purpose, let θ ∈ Θ2 contains the second moments of area in x and y directions for the damaged element,
i.e., element number 10. The objective functions FH(θ), FS(θ) and FM(θ) are then obtained for a parameter
pair I10x ∈ [7.79 · 10−7, 1.53 · 10−6], I10y ∈ [1.90 · 10−6, 2.45 · 10−6] and are displayed in Figure 2 and in
the left part of Figure 3. Note that the remaining second moments of area are considered to correspond to
an undamaged model. Contours of parameters that satisfy the stopping criteria are shown in the right part of



Figure 4: Average second moments of area for elements 5 to 15 in x and y direction. FM(θ) objective
function (left). FS(θ) objective function (right)

Table 2: CMA-ES population size, the associated number of evaluations and the simulation time for FM(θ)
and FS(θ).

Case id. Population size No. evaluations Simulation time
FM(θ) FS(θ) FM(θ) FS(θ)

1 50 8000 2200 1 min 1.1 h
2 200 24600 7200 2.7 min 3 h
3 1000 76000 23000 8 min 9 h
4 2000 114000 35000 13 min 15.5 h

Figure 3.

It can be viewed that each objective function is convex in the considered parameter space and for each
function the true value of the parameter lies in the respective acceptance region. The shape of the objective
functions FS(θ) and FH(θ), and the respective contours of parameters laying in the acceptance region is
identical. The FM(θ) is stepper and more rugged than FS(θ) and FH(θ), and the corresponding acceptance
region is narrower. Based on this, it is expected that the optimization of FM(θ) will yield more precise
estimates of θ∗. Moreover, for all the considered objective functions, the acceptance region for Ix is narrower
than for Iy, thus it is expected that the estimates of Ix will be more precise than the estimates of Iy.

Next, the impact of the population size of the CMA-ES is examined. As FS(θ) and FH(θ) turn out to be
numerically identical, only FS(θ) and FM(θ) are considered. The model optimization is performed on the
second moment of area in x and y directions for elements 5 to 15. Four population sizes are considered,
i.e., [50, 200, 1000, 2000]. For each population size, 20 evaluations of the respective objective functions
are conducted. The average values of the solution from each function is displayed in Figure 4, where it is
confronted to the reference values of the second moments of area of the cracked beam (black dots). The
number of evaluations and the total simulation time of the optimization are summarized in Table 2.

It can be viewed that the average optimization results obtained with FM(θ) correspond well to the true value
of the second moment of area of the cracked beam. For population sizes below 200, a drop in the second
moment of area at elements around element 10 is observed, which is more significant for the second moment
of area in y direction. The average optimization results obtained for FS(θ) are less precise than for FM(θ). A
drop in the second moments of area is observed between elements 8 and 12 for all the considered cases and
is more significant for a small population sizes than for larger populations. The lower precision of FS(θ),
and consequently FH(θ), than FM(θ) is expected due to larger acceptance region, see the right part of Figure
3. The optimization performance with the modal parameter-based objective function is also superior than the
optimization with the subspace-based data-driven metrics, see Table 2. While the optimization with FM(θ)



Figure 5: Top: average second moment of areas for elements 5 to 15 (left) and for elements 1 to 30 (right).
Bottom: variance of the second moment of areas for elements 5 to 15 (left) and for elements 1 to 30 (right).

requires more function calls due to the narrower acceptance region than in case of FS(θ), the evaluation of
FM(θ) does not involve data simulation, nor computation of large-size matrices, which results in a better
performance.

4.2 Model optimization results

In this section a small-sample Monte Carlo study is performed for a different model parametrization sets and
three objective functions. Two parameter sets are investigated:

• parameter set 1: 22 parameters corresponding to the second moments of area of elements 5 to 15 in x
and y directions,

• parameter set 2: 60 parameters that correspond to the second moments of area of all the elements in x
and y directions.

The population size for optimization yields 1000 and 10 realizations of the optimization algorithm are per-
formed. The average result of the optimized parameter is depicted respectively for the first and the second
parameter set in the top left and in the top right part of Figure 5. The variance of the parameter is illustrated
respectively for the first and the second parameter set in the bottom left part and in the bottom right part of
Figure 5.

The top part of Figure 5 illustrates that FM(θ) yields the most accurate optimization result when compared
to the other objective functions. Results obtained for the first parameter set indicate that both the damaged
parameters I10x and I10y , as well as the other parameters, are well estimated when the optimization algorithm
minimizes FM(θ). The outcome of the opimization with FS(θ) and FH(θ) is less accurate, e.g., all the



parameters in y direction for elements between 7 and 13 are poorly estimated. The accuracy of the results
obtained with FS(θ) and FH(θ) is very similar, which is expected as both objective functions are numerically
identical. As for the precision of the estimates it can be clearly seen that the variance obtained from the
available Monte Carlo samples is much smaller for FM(θ) than for FS(θ) and FH(θ). It is expected that the
sample variance will decrease with the number of Monte Carlo realizations.

Results obtained for the second parameter set indicate that on average the optimization yields less accurate
parameter estimates when a larger parametrization size is considered. For all three objective functions, large
errors in the estimates of the second moments of area in x and y directions at the boundary elements can be
observed. A possible explanation for this decrease in performance is that due to a limited number of sensors
compared to the large size of FE model parametrization, the acceptance region in the respective objective
functions does not only contain a single value of parameter θ, but there are many physical models that can
yield the same data-driven features. As such, no separation between these models is possible, indicating that
some parameter components are indistinguishable. As the goal of this work is the quantification of damage,
the respective parameter changes should not be evaluated for each component individually, but should also
include the dependent parameter components, as suggested in [27].

5 Conclusion

In this paper, the choice of the features for the design of the objective function to quantify structural cracks
has been studied. It has been shown that the accuracy of damage identification is higher when an objective
function comprising modal parameter difference is minimized, rather than for data-driven subspace-based
objective functions, most likely due to the narrower acceptance region of the former. Numerical efficiency
of the modal parameter-based function is also superior in terms of the computation time. All objective
functions, however, are less efficient as the number of elements in the optimisation increases. In addition,
identification of parameter value at the boundary conditions is subject to high variance for each objective
function. Further studies using reduced order models of large finite element model will be conducted.
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