
HAL Id: hal-03784693
https://hal.inria.fr/hal-03784693

Submitted on 23 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The complexity of unsupervised learning of
lexicographic preferences

Hélène Fargier, Pierre-François Gimenez, Jérôme Mengin, Bao Ngoc Le
Nguyen

To cite this version:
Hélène Fargier, Pierre-François Gimenez, Jérôme Mengin, Bao Ngoc Le Nguyen. The complexity of
unsupervised learning of lexicographic preferences. MPREF 2022 - 13th Multidisciplinary Workshop
on Advances in Preference Handling, Jul 2022, Vienne, Austria. pp.1-8. �hal-03784693�

https://hal.inria.fr/hal-03784693
https://hal.archives-ouvertes.fr

The complexity of unsupervised learning of lexicographic preferences

Hélène Fargier1 , Pierre-François Gimenez2 , Jérôme Mengin3 and Ngoc Bao Nguyen4

1,3IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France
2CentraleSupélec, Univ. Rennes, IRISA

4INSA Toulouse
{helene.fargier,jerome.mengin}@irit.fr, pierre-francois.gimenez@centralesupelec.fr,

nbnguyen@etud.insa-toulouse.fr

Abstract
This paper considers the task of learning users’
preferences on a combinatorial set of alternatives,
as generally used by online configurators, for ex-
ample. In many settings, only a set of selected al-
ternatives during past interactions is available to the
learner. Fargier et al. [2018] propose an approach to
learn, in such a setting, a model of the users’ pref-
erences that ranks previously chosen alternatives as
high as possible; and an algorithm to learn, in this
setting, a particular model of preferences: lexico-
graphic preferences trees (LP-trees). In this paper,
we study complexity-theoretical problems related
to this approach. We give an upper bound on the
sample complexity of learning an LP-tree, which
is logarithmic in the number of attributes. We also
prove that computing the LP tree that minimises the
empirical risk can be done in polynomial time when
restricted to the class of linear LP-trees.

1 Introduction
Modern, interactive decision support systems like recom-
mender systems or configurators often handle a very large
set of possible decisions/alternatives. The task of finding the
alternatives that best suit their preferences can be challeng-
ing for users, but the system can guide them towards their
optimal decision if it has some knowledge of their prefer-
ences. In many settings, the users’ preferences are not known
in advance. This is especially the case with systems that en-
able anonymous users to browse the catalogues: such systems
must be able to acquire users’ preferences.

Preference learning has emerged as an important field;
many interesting results are reported in, e.g., the book edited
by Fürnkranz and Hüllermeier [2011], or the proceedings of
recent Preference Learning or DA2PL (Decision Aid to Pref-
erence Learning) workshops. A general problem is: given a
set of observed preferences, induce a model of preferences
that best explains these observations within a certain class of
models. As input, it is often assumed that the observed pref-
erences are given as a set of pairwise comparisons or partial
rankings of alternatives [Joachims, 2002]; or can be elicitated
online by asking the user to choose between two alternatives
[Viappiani et al., 2006, Koriche and Zanuttini, 2009].

But in some circumstances, such input is not available.
This is especially the case with some anonymous on-line con-
figurators, where little information is stored about interac-
tions. However, e-commerce companies generally keep a his-
tory of past sales. Users have chosen sold items, so they are
probably ranked high in their preferences, but not necessar-
ily at the very top. Indeed, a user may eventually choose an
item that is not the optimal one in her preference order. For
instance, because of the difficulty in grasping all possible op-
tions, a phenomenon called “mass confusion” [Huffman and
Kahn, 1998], because of the influence of an advertisement,
or because her preferred item is unavailable. Yet, this list of
highly ranked items does provide information about the users’
preferences.

Fargier et al. [2018] propose a model for learning prefer-
ences in such settings: the learning algorithm receives a mul-
tiset of alternatives that past users have chosen and induces
a ranking of the alternatives to guide future users in their ex-
ploration of the set of possible alternatives. If, for instance,
the colour red appears more often in the sales history than
the colour yellow, then we want to induce a model that ranks
alternatives with the colour red higher than alternatives with
the colour yellow – maybe in association with some other cri-
teria. This is similar to the usual, unsupervised setting when
learning Bayesian networks [see e.g. Neapolitan, 2003]. This
unsupervised setting is convenient from a machine learning
point of view, as data is usually easy to obtain and does not
necessitate any input labeling. The alternatives that users in
past sessions have chosen are called “positive examples” in
[Fargier et al., 2018], as opposed to possible “negative exam-
ples” that one could have in a setting where we would also
have information about alternatives rejected by past users.

Research on the representation and learning of prefer-
ences has brought forward several types of models. Numer-
ical models, like linear ranking functions or additive utili-
ties [Joachims, 2002, Freund et al., 2003, Schiex et al., 1995,
Gonzales and Perny, 2004, Braziunas, 2005], are rich families
of models, especially if one allows high-dimensional feature
spaces. Research in Artificial Intelligence has also brought
forward ordinal models, like CP-nets [Boutilier et al., 2004a]
and several extensions or variants. Lexicographic preferences
are another family of ordinal models. This kind of preference
is based on the importance of the attributes: when comparing
two outcomes, their values for the most important attribute

are compared; if the two outcomes have different values for
that attribute, then the one with the preferred value is deemed
preferable to the other; otherwise one looks at the next most
important attribute, and so on. This model can be extended
by allowing the preferences on the values of an issue to de-
pend on the values of more important ones. The relative im-
portance of issues is no longer a linear order, but a “lexico-
graphic preference” tree [Fraser, 1993, 1994, Brewka et al.,
2006, Wallace and Wilson, 2009, Booth et al., 2010].

Lexicographic preference trees have several advantages
over other preference representation models. First, this is an
ordinal model, which is sufficient to represent a ranking of
alternatives. Furthermore, they are generally an accurate rep-
resentation of human behaviours [Gigerenzer and Goldstein,
1996]. Finally, one can quickly (in polytime) perform some
interesting requests for recommendations, such as finding an
optimal object or an optimal value for some attribute [Fargier
and Mengin, 2018].

Learning lexicographic preference models with pairwise
comparisons as inputs has been studied by e.g. Schmitt and
Martignon [2006], Dombi et al. [2007], Yaman et al. [2008],
while Booth et al. [2010], Bräuning and Hüllermeyer [2012],
Bräuning et al. [2017], Liu and Truszczynski [2015] studied
learning of lexicographic preference trees. More recently,
Fargier et al. [2018] have proposed a greedy algorithm for
learning lexicographic preference trees from sales history.
They reported some promising results on experimentation on
both synthetic data and an industrial dataset from a car man-
ufacturer (Renault), using clustering in a pre-processing step
and a pruning pass in a post-processing step.

This paper proposes a complexity theoretical analysis of
the approach proposed by Fargier et al. [2018]. We derive
an upper bound on the sample complexity of computing the
optimal LP-tree w.r.t. a given sample of chosen alternatives.
This complexity is, in particular, logarithmic in the number of
attributes. We also prove that computing this optimal LP-tree
can be done in polynomial time when restricted to the class
of “linear” LP-trees (which correspond to usual lexicographic
preferences). Finally, we propose an algorithm for computing
it for the more expressive class of LP lists [Bräuning et al.,
2017], where several attributes can be at the same importance
level.

The paper is structured as follows. The next section re-
call some background on combinatorial domains, LP-trees
and the learning model introduced by Fargier et al. [2018].
In section 3 we derive some results on the computation of the
rank of alternatives w.r.t some LP-tree. The following three
sections are devoted to three classes of LP-trees, in order of
increasing generality.

2 Background and notations
2.1 Combinatorial Domain
We consider a combinatorial domain over a finite set X
discrete attributes that characterise the possible alternatives,
each attribute X ∈ X having a finite set of possible values
X; we assume that |X| ≥ 2 for every X ∈ X ; then X de-
notes the Cartesian product of the domains of the attributes in
X , its elements are called alternatives; we often use the sym-

bols o, o′, o1, o2, . . . to denote alternatives. In the sequel, n
is the number of attributes in X , and d is a bound on the size
of the domains of the attributes: for every X ∈ X , |X| ≤ d.

For a subset U of X , we will denote by U the cartesian
product of the domains of the attributes in U , every u ∈ U is
an instantiation of U , or partial instantiation (of X). If v is an
instantiation of some V ⊆ X , v[U] denotes the restriction of
v to the attributes in V ∩ U ; we say that instantiation u ∈ U
and v are compatible if v[U ∩ V] = u[U ∩ V]; if U ⊆ V and
v[U] = u, we say that v extends u.

Given a partial instantiation u, Var(u) denotes the set of
attributes, the values of which appear in u.

2.2 Preference relation
In this paper, a preference relation is a linear order over X ,
that is, a total, transitive, irreflexive binary relation over X ,
often denoted with curly symbol ≻. For alternatives o, o′ ∈
X , o ≻ o′ indicates that o is strictly more preferred to o′.

Because we consider linear orders over X , we can define
the rank of o ∈ X w.r.t. ≻: rank(≻, o) = 1+ the number
of outcomes strictly preferred to o, so that the most preferred
outcome has rank 1, the least preferred has rank |X |:

rank(≻, o) = 1 + |{o′ ∈ X | o′ ≻ o}|.

2.3 Learning model
We consider an unknown target linear order ≻̆ over X , rep-
resenting the preferences of a decision maker, or of a group
of decision makers: whenever these decision makers have to
make a decision, they choose an alternative according to ≻̆;
these decisions are not always the “top” alternative, maybe
because of the difficulty of finding it, or because of some
context making it not available for instance. However, we
consider that there is some probability distribution p of draw-
ing alternatives of X , unknown but supposed to be decreas-
ing w.r.t. to rank(≻̆, ·): if o > o′, then p(o) ≥ p(o′) and
rank(o) < rank(o′).

We want to learn a (representation of) a linear order ≻ that
is as close as possible to ≻̆, that can be used to give good
answers to queries about ≻̆ (for instance: “what is the optimal
outcome?”, or “is o preferred to o′?”)

In order to have a relevant measure of how close≻ is to ≻̆ ,
Fargier et al. [2018] introduce the notion of ranking loss, de-
fined as the normalised difference between the expected ranks
of the two relations according to the ground probability p:

rlossp(≻, ≻̆)

=
1

|X |
(Ep[rank(≻, ·)]− Ep[rank(≻̆, ·)]) (1)

=
1

|X |
∑
o∈X

p(o)
(
rank(≻, o)− rank(≻̆, o)

)
(2)

The aim of a learning process in this setting is to find, given
an unknown target ≻̆ and an associated, unknown, probability
distribution p, a linear order ≻ that minimises this ranking
loss. Eq. 1 indicates that this is equivalent to finding a linear
order that has minimal expected rank.

Eq. 2 shows that this loss bears some similarity with the
Spearman distance between linear orders; here however, the

contribution of the rank difference for each alternative o is
weighted with its probability of being drawn. This is because
we want to learn a model that orders more accurately pre-
ferred alternatives; it is less significant to make mistakes with
the ordering of less preferred alternatives. Also, there will not
be much information about the alternatives in the tail of the
distribution, which are the less preferred one.
Proposition 1 (Fargier et al. 2018). Let ≻̆ and ≻ be two lin-
ear orders over X and p a probability distribution decreas-
ing w.r.t. rank(≻̆, ·). Then 0 ≤ rlossp(≻, ≻̆) < 1. Fur-
thermore, if p is strictly decreasing w.r.t. rank(≻̆, ·), then
rlossp(≻, ≻̆) = 0 iff ≻̆ =≻.

The target preference is unknown, and we try to learn it
from some data. In our context, a sample S is a multiset
of alternatives, that may be, in the case of e-commerce for
instance, a list of items that have been chosen by users of
the system. Thus, S is considered to be representative of the
preference expressed with the target linear order: every alter-
native can have several occurrences in S, and the higher the
rank of an alternative o in ≻̆ is, the more likely it is to find o
in S, and the higher p(o) is, where p is the unknown, ground
probability, supposed to be decreasing w.r.t. to rank(≻̆, ·). In
other words, alternatives in S are supposed to be drawn with
replacement from X according to p.

Since the target preference is unknown, we cannot mea-
sure the ranking loss of an induced preference. However,
since minimising the ranking loss of the induced preference
amounts to minimising the sum of the ranks of the outcomes
weighted by their probabilities of being drawn, we aim to
minimise it by minimising the empirical mean rank of the
training sample S. For alternative o ∈ X ,m(S, o) denotes the
multiplicity of alternative o in S, that is, the number of occur-
rences of o in S. We can define pS to be the empirical proba-
bility distribution over X such that pS(o) = m(S, o)/|S| (in
particular, pS(o) = 0 if o /∈ S). Then the empirical mean
rank is defined as follows:

rank(≻,S) =
∑
o∈S

pS(o)× rank(≻, o) = EpS [rank(≻, ·)]

In the sequel, given S, ≻∗ denotes a linear order that min-
imises, often within a given class C of linear orders that will
be clear from the context, the empirical mean rank : ≻∗∈ C
and for every ≻∈ C, rank(≻∗,S) ≤ rank(≻,S). Or, equiva-
lently:

≻∗= argmin≻∈Crank(≻,S)
From a complexity point of view, two questions arise :

1. How many examples in S guarantee that ≻∗ is probably
a good approximation of ≻̆ ?

2. What is the time complexity of computing a representa-
tion of ≻∗ ?

The first question can be made more specific in the PAC
setting: given a target linear order ≻̆; a sample of outcomes
S drawn from X according to some probability distribution
p supposed to be decreasing with rank(≻̆, ·); a class C of lin-
ear orders; and two real numbers 0 < δ, ϵ < 1, what is the
minimal function S(C, n, δ, ϵ) such that

if |S| > S(C, n, δ, ϵ) then Pr(rlossp(≻∗, ≻̆) ≤ ϵ) ≥ 1− δ

The function S(C, ·, ·, ·) is called the sample complexity of
learning a linear order in the class C from “positive” examples
(as opposed to learning from a set of pairwise comparisons).
Parameter ϵ is the approximation that is wanted, here a bound
on the ranking loss, and δ specifies the probability with which
with we want to attain this approximation.

2.4 Lexicographic preference trees
In this paper, we study the complexity of learning a specific
class of preference relations: the preference relations that can
be represented with lexicographic preference trees, or LP-
trees. LP-trees generalise lexicographic orders, which have
been widely studied in decision making – see e.g. Fishburn
[1974]. As an inference mechanism, they are equivalent to
search trees used by Boutilier et al. [2004b], and formalised
by Wilson [2004, 2011]. As a preference representation,
and elicitation, language, slightly different definitions for LP-
trees have been proposed by Booth et al. [2010], Bräuning
and Hüllermeyer [2012], Fargier et al. [2018].

LP-trees provide a nice graphical representation of the cor-
responding preference relation. We illustrate that on an ex-
ample before giving the formal definition that we use in this
paper.

Example 1. (Example A in Wilson [2011], slightly extended)
I am planning a holiday, with three choices / attributes: wait
til next month (W = w) or leave now (W = w), going to city
1, 2 or 3 (C = c1, C = c2 or C = c3), travelling by plane
(P = p) or by car (P = p). The picture below shows an
LP-tree φ0 over X = {W,C, P} which defines a linear order
≻ over X as follows.

W w > wφ0 :

CP

c3p > c1p > c3p > c1p >
c2p > c1p > c2p > c2p

P p > p

C
c3 > c1 > c2

w w

• The root of φ0 is labelled with attribute W , meaning
that this is the most important attribute in my decision.
Associated to it is the local preference w > w, that in-
dicates that I would rather go now, irrespective of the
other attributes: given two alternatives o and o′ such that
o[W] = w and o′[W] = w, o ≻ o′.

• On the right branch, the next node is labelled with P ; it
is connected to its parent with an edge labelled with w,
and has the local preference p > p: it indicates that if I
go later (w) then the second most important attribute is
the means of transport, and that I’d rather avoid flying;
so whatever the cities ci and cj , wpci ≻ wpcj .

• Still on the right branch, the leave is labelled with C and
has associated local preference c3 > c1 > c2, indicat-
ing that, still when going later, if I must choose between
alternatives that have the same means of transport, I pre-
fer the alternative that has my most preferred destination
c3, whereas my least preferred destination is c2; so for
instance wpc3 ≻ wpc1 ≻ wpc2.

• The only node below the root on the left branch is la-
belled with the pair of attributes CP . It is connected
to its parent with an edge labelled with w, and has an
associated local preference that linearly orders the carte-
sian product of the domains of C and P . It indicates
that, if I go now (w), I’d rather fly to c1 than drive to c3,
but drive to c2 rather than fly to c1: wpc1 ≻ wpc3 and
wpc2 ≻ wpc1.

Now, because the root indicates that W is the most im-
portant attribute and that w > w, every alternative that
has W = w will be preferred to every alternative that has
W = w. So the most preferred alternative is wc3p, whereas
the least preferred one is wpc3. And wpc2 is preferred to
wpc3, because both alternatives have equal value for the at-
tribute at the root (W = w for both), and the first node where
they have differing values is the one labelled with P , and
p > p at that node.

Definition 1. An LP-tree φ over X is a rooted tree with la-
belled nodes and edges, and a set of local preference tables;
specifically

• every nodeN is labelled with a set of attributes, denoted
Var(N);

• if N is not a leaf, it can have one child, or |Var(N)|
children;

• in the latter case, the edges that connectN to its children
are labelled with the instantiations in Var(N);

• if N has one child only, the edge that connects N to its
child is not labelled: all instantiations in Var(N) lead to
the same subtree;

• a local preference table CPT(N) is associated with N , it
specifies a linear order over Var(N);

• moreover, every attribute must appear exactly once on
every branch of φ.

We denote by Anc(N) the set of ancestors of N : the at-
tributes that appear in the nodes between the root and N (ex-
cluding those at N), and by Inst(N) (resp. NonInst(N)) the
set of attributes that appear in the nodes above N that have
more than one children (resp. only one child). Finally, we de-
note by Desc(N) the set of descendents of N : the attributes
that appear below N ; thus (Anc(N),Var(N),Desc(N)) is a
partition of X .

Given an LP-tree φ and an alternative o ∈ X , there is a
unique way to traverse the tree, starting at the root, and along
edges that are either not labelled, or labelled with instantia-
tions that agree with o, until a leaf is reached.

LP-tree φ defines a linear order ≻φ over X as follows:
given two distinct alternatives o, o′, it is possible to traverse
the tree along edges that correspond to o and o′ as long as o
and o′ agree, until a node N is reached which is labelled with
some W such that o[W] ̸= o′[W]: we say that N decides
{o, o′}, and o ≻φ o′ if and only if o[W] > o′[W] in the linear
order in CPT(N). In the sequel, slightly abusing notations for
ease of readability, we will often write φ where ≻φ would be
expected: for instance, we will denote by rank(φ, o) the rank
of alternative o in the linear order ≻φ; and write rlossp(φ, φ̆)

the ranking loss of ≻φ with respect to target linear order ≻̆ if
φ̆ is an LP-tree that represents ≻̆.

Definition 1 corresponds to the k-LP-trees of Fargier et al.
[2018]. It is more general than the definition of LP-trees of
Bräuning and Hüllermeyer [2012] because it allows for nodes
with one child only, and is more general than the definition of
Booth et al. [2010] in that it allows for more than one at-
tribute at every node. (However, Booth et al. [2010] allow
incomplete LP-trees, where some attributes may be missing
on some branch, leading to partial orders over X .) Every lin-
ear order can be represented with an LP-tree as defined above,
possibly with a single node that contains all attributes at the
root.

Fargier et al. [2018] give a greedy, top-down unsupervised
algorithm to learn such an LP-tree from a multiset of positive
examples, and describe some experiments.

3 Computing the rank expectation
Many results in the sequel crucially rely on the possibility to
decompose the rank of any alternative o in (the order repre-
sented by) any LP-tree. In this section, we slightly modify the
decomposition given by Lang et al. [2018] in order to com-
pute the rank expectation over all alternatives. We illustrate
this on an example first, and then give the general formula.
Example 2. Consider the LP-tree φ0 of Example 1, and sup-
pose that we want to compute the rank of alternative wc1p:
this amounts to counting the number of alternatives that are
“to its left” in φ0. wc1p is less preferred than all alternative
that have W = w, there are |CP | = 3 × 2 = 6 of them. Al-
ternatives that have W = w and P = p are also preferred to
wc1p, there are |C| = 3 of them. wc1p is also less preferred
than wc3p. Finally rank(φ0, wc1p) = 1 + (6 + 3 + 1) = 11.

In general, the rank of any alternative can be decomposed
as (one plus) a sum of contributions at every node: the root
of φ0 contributes 6 to the rank of wc1p, the left-most leaf
labelled CP contributes 0 because it is not on the branch that
corresponds to wc1p, the node labelled P contributes 3, and
the node labelled C contributes 1.

More generally, given LP-tree φ and alternative o, it can be
shown that:

rank(φ, o) = 1 +
∑

N∈nodes(φ)
Jo[Inst(N)] = inst(N)K (3)

× (r(Var(N) >N , o[Var(N)])− 1)× |Desc(N)|

where :
• nodes(φ) denotes the set of nodes of LP-tree φ;
• Jo[Inst(N)] = inst(N)K is an indicator function, that

equals 1 when the condition o[Inst(N)] = inst(N) is
true; that is, when N is on the branch of φ that corre-
sponds to o; and equals 0 otherwise;

• >N is the linear order over Var(N) specified in
CPT(N);

• r(Var(N), >N , o[Var(N)]) denotes the rank in Var(N)
with respect to >N of the instantiation given by o to
Var(N); so that r(Var(N) >N , o[Var(N)]) − 1 is the

number of subtrees rooted at children of N that are less
preferred than o at N ;

• Desc(N) = X − (Anc(N) ∪ Var(N)) is the set of
attributes that appear below N in that branch, so that
|Desc(N)| is the number of instantiations that are “con-
tained” in every subtree of φ rooted at a child of N .

The difference with the decomposition of Lang et al.
[2018] is that we sum over all nodes of φ, irrespective of the
alternative. This is useful to express the expectation of the
rank of φ with respect to some probability distribution p over
X . For set of attributes V ⊆ X , linear order > over V , and
v ∈ V , let r(V,>, v) be the rank of v in V with respect to >.
Then the expectation of this rank, w.r.t. p, is

Ep[r(V,>, ·)] =
∑
v∈V

p(v)r(V,>, v)

where p(v) denotes the probability of drawing an alternative
o such that o[V] = v.
Proposition 2. For LP-tree φ and probability distribution p:

Ep[rank(φ, ·)] = 1+ (4)∑
N∈nodes(φ)

|Desc(N)| × p(inst(N))

× Ep|inst(N)[r(Var(N), >N , ·)− 1]

where p|inst(N) denotes the probability distribution
marginalized to inst(N), that is: p|inst(N)(v) =
p(v|inst(N)).

Proof sketch. By definition,Ep[rank(φ, ·)] =
∑
o∈X

(
p(o)×

rank(φ, o)
)
. Equation 3 shows that rank(φ, o) can be decom-

posed as a sum of contributions over all nodes of φ. It is not
difficult to see that it is possible to invert the sum over X and
the sum over nodes(φ), which yields the result.

Locally optimal LP-trees Proposition 2 above suggests
that, given some LP-tree φ, and a probability distribu-
tion p, one can reduce the rank expectation of φ by re-
ordering the values at every node N , so as to minimize
Ep|inst(N)[r(Var(N), >N , ·)]: essentially, one only has to or-
der the instantiations of Var(N) in order of non-increasing
probability. Thus we have here a desirable property shared
by many graphical models of preferences, namely that learn-
ing can often be decomposed in two parts: 1) learning the
structure, often a hard problem; and 2) learning the local pref-
erences, often an easy task.
Definition 2. Given a probability distribution p over X , we
say that LP-tree φ is p-locally optimal if at every node N of
φ, the linear order >N orders the instantiations of Var(N) in
order of non-increasing probability.

In the sequel, given set of attributes V ⊆ X , and probabil-
ity distribution p over X , we denote by E∗

p(V) the minimum
expectation that is possible for the ranks of the instantiations
of V given p, that is, when ordering these values in order of
non-increasing probability p:

E∗
p(V) = argmin

>
Ep[r(V,>, ·)]

In the next sections, we study, for different classes of LP-
trees, how difficult it is to compute an LP-tree that has mini-
mum mean rank with respect to sample S, and how many al-
ternatives in S guarantee that this S-optimal LP-tree is close
to the target one.

4 Linear lexicographic preference trees with
univariate nodes

We consider in this section the class of linear LP-trees, that
is, LP trees that have a single branch; and also such that ev-
ery node is labelled with a single attribute. Let us denote by
LPT1

lin this class. It is in fact the class of the usual lexico-
graphic preference relations Fishburn [1974].

4.1 Greedy algorithm for the optimal LP-tree
Note first that at every node N of some φ ∈ LPT1

lin,
Inst(N) is empty, so inst(N) is the empty instantiation, and
p|inst(N) = p. Thus :

Ep[rank(φ, ·)] = 1+∑
N∈nodes(φ)

|Desc(N)| × Ep[r(Var(N), >N , ·)− 1]

We define, for every attribute X ∈ X and probability dis-
tribution p over X :

Score(p,X) = E∗
p(X) / (|X| − 1)

Proposition 3. Let p be a probability distribution over X ,
the LP-tree that has minimal expected rank in LPT1

lin has the
attributes in order of non-decreasing values for Score(p, ·)
along its single branch from the root down to its single leaf,
and is locally optimal.

Proof. Let φ be a locally optimal tree of LPT1
lin. Suppose

that there are two nodes of φ, N and N ′, labelled with
X and Y respectively, such that N ′ is the child of N but
Score(p,X) > Score(p, Y). Let φ′ be identical to φ ex-
cept that X and Y have been inverted: X is at N ′ in φ′,
and Y at N . Then Desc(N) = Desc(N ′) ∪ Var(N ′), where
Var(N ′) = {Y } in φ, andVar(N ′) = {X} in φ′. Thus:

Ep[rank(φ, ·)]− Ep[rank(φ′, ·)] =
|Desc(N ′)| ×

(
E∗
p(X)(|Y | − 1)− E∗

p(Y)(|X| − 1)
)

On the other hand:

Score(p,X) > Score(p, Y)

⇔
E∗
p(X)

|X| − 1
−
E∗
p(Y)

|Y | − 1
> 0

⇔ E∗
p(X)× (|Y | − 1)− E∗

p(Y)× (|X| − 1) > 0

⇔ Ep[rank(φ, ·)]− Ep[rank(φ′, ·)] > 0

This shows that, by applying a kind of bubble sort to the
nodes of φ so as to order them in order of non-decreasing
score, we obtain a new tree that has better expected rank.

As a consequence:

Corollary 4. Let φ̆ be some target LP-tree in LPT1
lin and

p some probability distribution over X non-decreasing w.r.t.
rank(φ̆, ·), then the attributes appear in φ̆ in order of non-
decreasing values for Score(p, ·) from the root down to the
leaf.

Corollary 5. Let S ⊆ X , recall that pS denotes the probabil-
ity distribution over X such that pS(o) is the frequency of o
in S. Let φ∗ be the LP-tree in LPT1

lin that has minimal mean
rank w.r.t. S, then then the attributes appear in φ∗ in order of
non-decreasing values for Score(pS , ·) from the root down to
the leaf.

4.2 Time and sample complexity
According to Corollary 4 above, in order to compute φ∗, we
can, for every X ∈ X , compute the number of occurrences in
S of every x ∈ X , and compute >pSX and Score(pS , X), and
then order the attributes w.r.t. Score(pS , ·). Thus:

Proposition 6. Given sample S ⊆ X , computing φ∗ in
LPT1

lin can be done in time in O(n log n|S|d log d), where
d is an upper bound on the size of domains of each attribute
X ∈ X .

Proposition 7. S(LPT1
lin, n, δ, ϵ) = O(1

ϵ2 (ln
1
δ + ln d +

ln(n+ 1)))d4).

Proof. This is simple consequence of the more general
Proposition 10 given in section 6 for the sample complex-
ity of learning LP-trees with bounded number of leaves and
bounded number of attributes at every node: here both bounds
equal 1.

5 Linear lexicographic preference trees with
multivariate nodes

We consider now the more general settings of the class
LPTklin, for some fixed k ≤ n: linear LP-trees (with a sin-
gle leaf), where each node can be labelled with a non-empty
set of no more than k attributes.

The score defined in the case of univariate nodes in the
previous section can easily be extended to multivariate nodes:
for V ⊆ X and probability distribution p over X :

Score(p, V) = E∗
p [V] / (|V | − 1)

Proposition 3 can be generalised in this settings as follows:

Proposition 8. Let p be a probability distribution over X , let
P be a partition of X . The LP-tree that has minimal expected
rank, within the class of LP-trees with a single leaf, and where
each node is labelled with an element of P , is locally optimal
and has the set of attributes that label its nodes in order of
non-increasing values for Score(p, ·) along its single branch
from the root down to its single leaf.

Proof. Given partition P of X , consider each part P ∈ P as
a new attribute with domain P , Prop. 3 gives the result.

Based on this, algorithm 1 computes the tree in LPTklin that
minimises the empirical mean rank with respect to some sam-
ple S: it enumerates the k-partitions of X , i.e. the partitions

such that no part has more than k attributes; and, for every
partition, orders the parts in order of non-increasing score and
compute the empirical mean rank of the tree thus obtained.

Algorithm 1 Optimal linear multivariate LP-tree
Input : sample S;

1. r∗ ← +∞;
2. for every k-partition P of X do:

a. order the parts in P in order of non-decreasing
Score(pS , ·);

b. φ← the optimal linear univariate LP-tree over set of
attributes P;

c. if rank(φ,S) < r∗: r∗ ← rank(φ,S) and φ∗ ← φ;
3. return φ∗.

Proposition 9. For fixed k, the time complexity of Al-
gorithm 1 is in Ω(knn(log n + |S|dk log d)) and in
O(kn+1n(log n+ |S|dk log d).

Proof. The number of k-partitions of X is also the number of
partitions of X into at most k non empty parts (in the same
way as the number of partitions of integer n into positive in-
tegers no greater than k is equal to the number of partitions of
n into k non-negative integers). Let S(n, k) denote the num-
ber of partitions of a set of n elements into exactly k non-
empty parts, it is known as the Stirling number of the sec-
ond kind, an asymptotic approximation is S(n, k) ∼ kn/k!
[e.g. Knuth, 1997]. Therefore, for fixed k, the number of
k-partitions of X is asymptotically equivalent to

∑k
i=1 i

n/i!,
which is≥ kn/k!. We also have that in/i! < jn/j! for i < j,
thus

∑k
i=1 i

n/i! < k × kn/k!. So the number of k-partitions
is in Θ(kn).

For a given partition, at step 2.a., one has to compute the
scores of the parts, and order them. There are no more than n
parts; each part has no more than dk possible instantiations,
so computing and ordering the numbers of occurrences of for
all instantiations takes worse time in Θ(n|S|dk log(dk)). Or-
dering the parts then takes time in Θ(n log n).

6 Lexicographic preference trees with
bounded number of leaves

We now turn to the class of LP-trees with a bounded number
of attributes at each node, and a bounded number of leaves.
Specifically, LPTkl denotes the set of LP-trees that have no
more than k attributes at each node, and no more than l leaves.
(In particular, when l = 1, LPTk1 = LPTklin

Proposition 10. S(LPTkl , n, δ, ϵ) = O(1
ϵ2 (ln

1
δ + k(ln d +

ln(n+ 1)))l2d4k).

Proof. Recall that φ̆ is an LP-tree, supposed to be in LPTkl ,
that represents the target, unknown preference relation ≻̆;
p is a probability distribution that is non-increasing w.r.t.
rank(φ̆, ·); and φ∗ denotes the LP-tree in LPTkl that has min-
imal normalised empirical mean rank with respect to some

sample S. Then:

rloss(φ∗, φ̆) =
1

|X |
(
Ep[rank(φ∗, ·)]− Ep[rank(φ̆, ·)]

)
≤ 1

|X |
(
|Ep[rank(φ∗, ·)]− EpS [rank(φ∗, ·)]|

+ EpS [rank(φ∗, ·)]− EpS [rank(φ̆, ·)]
+ |EpS [rank(φ̆, ·)]− Ep[rank(φ̆, ·)]|

)
≤ 2

|X |
max

φ∈LPTk
l

|Ep[rank(φ, ·)]− EpS [rank(φ, ·)]|

because, by definition of φ∗:

EpS [rank(φ∗, ·)]− EpS [rank(φ̆, ·)] ≤ 0.

Now, for φ ∈ LPTkl :

|Ep[rank(φ, ·)]− EpS [rank(φ, ·)]|

≤
∑

N∈nodes(φ)

(
|Desc(N)| × p(inst(N))

× |Ep|inst(N)[r(Var(N), >N , ·)]

− EpS |inst(N)[r(Var(N), >N , ·)]|
)

≤
∑

N∈nodes(φ)

(
|Desc(N)| ×

∑
v∈Var(N)

(
r(v)

× |p(v∧inst(N))−pS(v∧inst(N))|
))

≤M × dk(dk + 1)

2
×
∑

N∈nodes(φ)
|Desc(N)|

where d is a bound on the domain size of the attributes, and
M is an upper bound on |p(v ∧ inst(N))− pS(v ∧ inst(N))|
for every N ∈ nodes(φ), every v ∈ Var(N).

Now consider a single branch ψ of φ, let V1, V2, . . . , Vt be
the set of attributes that label its t nodes from the root down
to its leaf (at unknown depth t), then:∑

N∈nodes(ψ)
|Desc(N)|

=
(
|V 2×V 3×...V t|+...+|V t−1×V t|+|V t|+0

)
=|X |×

(1

|V 1|
+

1

|V 1×V 2|
+...+

1

|V 1×V 2×...×V t−1|
)

≤|X |

because for every node, |Var(N)|≥2. Therefore, since we
consider LP-trees with a bounded number of leaves (and
branches), for every φ∈LPTkl :

|Ep[rank(φ,·)]−EpS [rank(φ,·)]|≤M×d
k(dk+1)

2
×l×|X |

and rlossp(φ∗,φ̆)≤l×dk(dk+1)× max
V⊆X ,v∈V

|p(v)−pS(v)|.

Thus, if rlossp(φ∗, φ̆) ≥ ϵ, there must be some V ⊆ X and
v ∈ V such that |p(v)− pS(v)| ≥ ϵ/(l× dk(dk +1)), which
implies that:

Pr(rloss(φ∗, φ̆) ≥ ϵ)

≤ Pr
(⋃
V⊆X
v∈V

|p(v)− pS(v)| ≥ ϵ/(l × dk(dk + 1))
)

≤
∑
V⊆X
v∈V

Pr
(
|p(v)− pS(v)| ≥ ϵ/(l × dk(dk + 1))

)
For every V ⊆ X and every v ∈ V , pS(v) is an estimate,

from sample S, of the ground probability p(v) of drawing an
alternative o such that o[V] = v. Hoeffding’s inequality states
that for every α > 0:

Pr(|p(v)− pS(v)| ≥ α) ≤ e−2|S|α2

For every i ∈ {1, . . . , k}, there are
(
n
i

)
ways of choosing a

subset V of X of cardinality i, then |V | ≤ di; therefore:

Pr(rloss(φ∗, φ̆) ≥ ϵ)

≤
(k∑
i=1

(
n

i

)
di
)
exp(−2|S|(ϵ/(l × dk(dk + 1)))2)

≤ dk(1 + n)k exp(−2|S|(ϵ/(l × dk(dk + 1)))2)

Therefore, in order to have Pr(rloss(φ∗, φ̆) ≤ ϵ) ≥ 1 −
δ, it is sufficient to have 1 − dk(1 + n)k exp(−2|S|(ϵ/(l ×
dk(dk + 1)))2) ≥ 1− δ, which is equivalent to:

|S| ≥
(
k(ln d+ ln(n+ 1))) + ln

1

δ

) (ldk(dk + 1))2

2ϵ2

7 Conclusion
The bound on the sample complexity given in the last sec-
tion shows several interesting properties of the problem of
unsupervised learning LP-trees from sales history. First, it is
logarithmic in the number of attributes. Also the factor d4k
may, in general, be overly pessimistic, as it assumes that all
attributes have the same domain size. A finer analysis would
show that what counts is the largest domain size of any com-
bination of k attributes. Note that k should be kept small:
Bräuning et al. [2017], Fargier et al. [2018] report promis-
ing results on real datasets with k < 4; larger values of k
would improve the expressiveness, but also greatly increase
the model size and may lead to overfitting.

Concerning the time complexity, we conjecture that the
problem of computing the LP-tree that has minimal empiri-
cal risk may be NP-hard in general, but that is an important
question for future work. Another avenue for future investi-
gation is a finer analysis of the stochastic process that leads
to the probability distribution p.

Acknowledgements
We thank the reviewers for their interesting and helpful com-
ments. The authors gratefully acknowledge the support of the
Artificial and Natural Intelligence Toulouse Institute – AN-
ITI. ANITI is funded by the French ”Investing for the Future –
PIA3” program under grant agreement ANR-19-PI3A-0004.

References
Richard Booth, Yann Chevaleyre, Jérôme Lang, Jérôme Men-

gin, and Chattrakul Sombattheera. Learning condition-
ally lexicographic preference relations. In Proceedings of
ECAI’10, pages 269–274, 2010.

Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Hol-
ger H. Hoos, and David Poole. CP-nets: A tool for repre-
senting and reasoning with conditional ceteris paribus pref-
erence statements. Journal of Artificial Intelligence Re-
search, 21:135–191, 2004a.

Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Hol-
ger H. Hoos, and David Poole. Preference-based con-
strained optimization with cp-nets. Computational Intel-
ligence, 20(2):137–157, 2004b.

Michael Bräuning and Eyke Hüllermeyer. Learning con-
ditional lexicographic preference trees. In Johannes
Fürnkranz and Eyke Hüllermeyer, editors, Proceedings of
ECAI’12 Workshop, 2012.

Michael Bräuning, Eyke Hüllermeier, Tobias Keller, and
Martin Glaum. Lexicographic preferences for predictive
modeling of human decision making: A new machine
learning method with an application in accounting. Eu-
ropean Journal of Operational Research, 258(1):295–306,
2017.

Darius Braziunas. Local utility elicitation in GAI models. In
Proceedings of UAI’05, pages 42–49, 2005.

G Brewka et al. An efficient upper approximation for condi-
tional preference. In Proceedings of ECAI’06, volume 141,
page 472, 2006.

József Dombi, Csanád Imreh, and Nándor Vincze. Learning
lexicographic orders. European Journal of Operational Re-
search, 183:748–756, 2007.

Hélène Fargier and Jérôme Mengin. A knowledge compila-
tion map for conditional preference statements-based lan-
guages. In Proceedings AAMAS 2021, pages 492–500,
2018.

Hélène Fargier, Pierre Francois Gimenez, and Jérôme Men-
gin. Learning lexicographic preference trees from positive
examples. In Proceedings AAAI 2018, pages 2959–2966.
ACM, 2018.

Peter C. Fishburn. Lexicographic orders, utilities and deci-
sion rules: A survey. Management Science, 20(11):1442–
1471, 1974.

Niall M Fraser. Applications of preference trees. In Proceed-
ings of SMC’93, pages 132–136, 1993.

Niall M. Fraser. Ordinal preference representations. Theory
and Decision, 36(1):45–67, 1994.

Yoav Freund, Raj D. Iyer, Robert E. Schapire, and Yoram
Singer. An efficient boosting algorithm for combining pref-
erences. Journal of Machine Learning Research, 4:933–
969, 2003.

Johannes Fürnkranz and Heike Hüllermeier, editors. Prefer-
ence learning. Springer, 2011.

Gerd Gigerenzer and Daniel G. Goldstein. Reasoning the fast
and frugal way: Models of bounded rationality. Psycho-
logical Review, 103(4):650–669, 1996.

Christophe Gonzales and Patrice Perny. GAI networks for
utility elicitation. In Proceedings of KR’04, pages 224–
234, 2004.

Cynthia Huffman and Barbara E Kahn. Variety for sale: Mass
customization or mass confusion? Journal of retailing, 74
(4):491–513, 1998.

Thorsten Joachims. Optimizing search engines using click-
through data. In Proceedings of SIGKDD’02, pages 133–
142, 2002.

Donald E. Knuth. The Art of Computer Programming, Vol-
ume I: Fundamental Algorithms. Addison-Wesley, 3rd edi-
tion edition, 1997. ISBN 0201896834.

Frédéric Koriche and Bruno Zanuttini. Learning conditional
preference networks with queries. In Proceedings of IJ-
CAI’09, pages 1930–1935, 2009.

Jérome Lang, Jérome Mengin, and Lirong Xia. Voting on
multi-issue domains with conditionally lexicographic pref-
erences. Artificial Intelligence, 265:18–44, 2018.

Xudong Liu and Miroslaw Truszczynski. Learning par-
tial lexicographic preference trees over combinatorial do-
mains. In Proceedings of AAAI’15, volume 15, pages
1539–1545, 2015.

Richard E. Neapolitan. Learning bayesian networks. Prentice
Hall, 2003.

Thomas Schiex, Hélène Fargier, and Gérard Verfaillie. Val-
ued constraint satisfaction problems: Hard and easy prob-
lems. In Proceedings of IJCAI’95, pages 631–637, 1995.

Michael Schmitt and Laura Martignon. On the complexity
of learning lexicographic strategies. Journal of Machine
Learning Research, 7:55–83, 2006.

Paolo Viappiani, Boi Faltings, and Pearl Pu. Preference-based
search using example-critiquing with suggestions. Journal
of Artificial Intelligence Research, 27:465–503, 2006.

Richard J. Wallace and Nic Wilson. Conditional lexico-
graphic orders in constraint satisfaction problems. Annals
of Operations Research, 171(1):3–25, 2009.

Nic Wilson. Consistency and constrained optimisation for
conditional preferences. In Proceedings ECAI 2004, pages
888–892, 2004.

Nic Wilson. Computational techniques for a simple theory of
conditional preferences. Artificial Intelligence, 175:1053–
1091, 2011.

Fusun Yaman, Thomas J Walsh, Michael L Littman, and
Marie Desjardins. Democratic approximation of lexico-
graphic preference models. In Proceedings of ICML’08,
pages 1200–1207, 2008.

