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Abstract
Fault detection by modal analysis is a highly developed field in civil engineering. For wind turbines, a loss
of isotropy for the rotor can be the consequence of a defect in the angle of attack (pitch) of the blades, or
the accumulation of ice, or else the presence of structural defects resulting in a loss of stiffness on one or
more blades. It is highly desirable to apply classical OMA techniques, and this despite the rotation of the
blades. It is shown in this paper that it is possible to apply LTI approaches on wind turbines similarly to the
methodology usually applied to standard civil engineering structures using an approximate Fourier modeling
of the eigenmodes. The monitoring of anisotropy using the mode shapes of the estimated modes is validated
with an example where a global loss of stiffness of 5% of a rotor blade is simulated.

1 Introduction

Considering the forecasted increase in the number of wind farms in the coming years, it is important to
implement reliable fault detection methods based on data collected during operation. The methods based on
Operational Modal Analysis (OMA) for Linear time Invariant - modeled structures are part of the solution.
The Floquet theory modeling a Linear Time Periodic system such as structures with in-operation rotating
rotor is another part of the solution, provided both can be related.

To monitor a wind turbine rotor, one way is to monitor its anisotropy (or imbalance). The anisotropy can be
the consequence of a pitch angle misalignment, an ice accumulation, or a structural fault. These three causes
lead to different behaviors of the structure and the first two have been largely studied. Previous works have
treated the stiffness anisotropy and its consequences on the dynamical behavior. The anisotropy can be seen
through two indicators, namely the apparition of new harmonics in the Floquet modes in the fixed frame
(nacelle and tower) and the change of amplitude and phase shift between blades in whirling modes [1]. The
change of phase shift is more than 10 times more sensitive than the change of frequency [2]. The paper will
be focused on the change of amplitude and phase shift.

Mainly due to the periodic behavior of an operating wind turbine (modeled as a Linear Time Periodic (LTP)
system), it is theoretically not possible to use the existing OMA methods on such systems, as they no longer
meet the basic OMA assumptions defined for Linear Time Invariant (LTI) systems. A first method enabling
the identification of the eigenstructure of an LTP system, applied to bladed structures, is the multi-blade
coordinate (MBC) method [3]. However, this method is based on the assumption of an isotropic rotor, a
hypothesis that is not verified in practice. Other methods are based on the harmonic transfer function [4].
The drawback of these methods is that they require to increase the dimension of the observation space, as
a consequence of the required formalism. Another problem is that these methods require knowledge of
the actual rotational speed of the system. A last group of methods is those adapting the classical subspace
methods. One example is the SSI LPTV method [5], which allows to correctly identify the exact eigenmodes
of an LTP system, the so-called Floquet modes. However, this method converges in period number, which
is more suitable for systems with a high rotational speed such as helicopters. To overcome the difficulty



to define an identification method for LTP systems, an approach based on the approximation of the LTP
eigenmodes defined in [6] is used. This approximation leads to the definition of modes similar to the LTI
modes, that can be identified with the existing OMA methods.

The identification of structural modes with OMA is a stochastic procedure, so identified modes are uncertain.
Therefore, to decide if the structure has changed, it is needed to obtain the identified modes coupled with
their uncertainties. With the existing OMA methods such as the Stochastic Subspace Identification (SSI)
[7], it is possible to use an uncertainty computation method [8], based on the first order delta method. As
the objective is to monitor the phase shift and the amplitude, the uncertainty of both quantities needs to be
developed.

In this paper, a method to detect anisotropy based on the study of the evolution of the phase shift and the
amplitude using the blade root moments is proposed. The mode shapes of the reference structure (considered
healthy) are compared to the current (considered to be possibly damaged) identified eigenmodes by studying
phases and amplitudes change while including the associated uncertainties. Finally, the eigenmodes are
also compared with the Modal Assurance Criterion (MAC) and its associated uncertainty computation [9] to
validate the anisotropy detection method and thus demonstrate its effectiveness for wind turbine monitoring.

The organisation of the paper is as follows. Section 2 presents the proposed approach for performing OMA
on operating wind turbines. Section 3 assesses the impact of the rotor anisotropy on the eigenmodes. Then,
Section 4 introduces the considered underlying identification method and defines the associated uncertainty
quantification. Finally, Section 5 shows that phase shift and amplitude can be used for fault detection, with
an application of the defined damage detection method on simulated data.

2 OMA Approach for wind turbines

2.1 Dynamic model

The motion of a constant rotating wind turbine can be expressed as an LTP-system,

M(t)ξ̈(t) + C(t)ξ̇(t) +K(t)ξ(t) = v(t), (1)

where ξ(t) ∈ Rm represents the displacements of the structure at the degrees of freedom (DOF) of the
system, and M(t + T ) = M(t), C(t + T ) = C(t), K(t + T ) = K(t), respectively the mass, damping and
stiffness matrices. T represents the rotational period. The unknown input v(t) is assumed to be a Gaussian
white noise. In the following, the mechanical system is expressed in a state-space form, from the definition
of the state vector x(t) ∈ Rn where n = 2m and the observation y(t) ∈ Rr.

x(t) =

[
ξ(t)

ξ̇(t

]
and y(t) = Caξ̈(t) + Cv ξ̇(t) + Cdξ(t), (2)

where Ca, Cv and Cd are selection matrices. A noise w(t) can be added to the observation. w(t) is assumed
to be a Gaussian white noise. This leads to the following state-space expression:{

ẋ(t) = Ac(t)x(t) +Bc(t)v(t)

y(t) = C(t)x(t) +D(t)v(t) + w(t)
, (3)

with all the matrices defined in [6]. Using the Floquet theory [10, 11], the homogeneous part of the state
vector can be expressed as a sum of n eigenmodes with a periodic amplitude, namely the Floquet modes

xh(t) =

n∑
j=1

Xj(t) exp (µjt) qj(t0), (4)

with µj the j–th characteristic exponent, qj(t0) depending of the initial conditions and Xj(t) the associated
T-periodic amplitude.



2.2 Approximation of the Floquet modes

Once the Floquet mode decomposition is applied, the observation vector is expressed as a finite sum of
eigenmodes to obtain the description of a time invariant system. Similarly, the Floquet mode decomposition
of the observation yh(t) is

yh(t) =
n∑

j=1

Yj(t) exp (µjt) qj(t0), (5)

where Yj(t) = C(t)Xj(t) is both the amplitude of the j–th Floquet mode of the observation and a periodic
vector of period T = 2π

Ω . Using Equation (5) and expanding into a Fourier series the amplitudes of the
Floquet modes, it comes

yh(t) =
n∑

j=1

∞∑
l=−∞

Yj,l exp ((µj + ilΩ) t) qj(t0). (6)

with Yj,l the Fourier coefficients. The contributions of the harmonics in the expansion of yh(t) are determined
by the participation factor [12]

ϕyj,l =
∥Yj,l∥∑∞

l=−∞ ∥Yj,l∥
. (7)

A minimum participation factor (ϕymin) is applied to select harmonics with the highest contribution. Then,
an approximation of the observation is constructed as ŷ(t) by a finite sum of eigenmodes,

ŷh(t) =
∑

(j,l),ϕy
j,l≥ϕy

min

Yj,l exp ((µj + ilΩ) t) qj(t0), (8)

ŷ(t) can then be expressed as a sum of ñ eigenmodes

ŷh(t) =

ñ∑
p=1

Yp exp (µpt) qp(t0), (9)

where each index p corresponds to a pair (j, l) and µp = µj + ilΩ.

Finally the Floquet modes of an LTP-system have been approximated by a finite number of eigenmodes
identical to those of an LTI-system. Consequently the dynamical behavior of an LTP-system can theoretically
be approximated as the behavior of an LTI-system. This approximation has been demonstrated in [6] and
used with a subspace identification of a multi-physics model of wind turbine model in [13]. In the next
section, the evolution of the approximation eigenmodes regarding the rotor anisotropy is assessed, with an
application to the DTU 10MW model of wind turbine [14].

3 Impact of the anisotropy on the eigenmodes

To assess a change in the approximation eigenmodes, the approximation of the DTU 10MW wind turbine
model is computed for three different stiffness reductions for one blade, namely 1%, 2.5% and 5%. With
the software OpenFAST [15], the system matrices are linearized and used to integrate the homogeneous
equation. The approximation can then be computed using the formalism defined in Section 2.

In this paper, the vocabulary commonly used in wind energy is used. Side-Side and Fore-Aft denote the tower
bending respectively in and out of the rotor plane. Edge and Flap denote the blades bending respectively in
and out of the rotor plane. For the edge bending, different modes have to be considered, the Collective
edge represents the in-phase bending of the blades. Backward and Forward Edge correspond to out of phase
bending of the blades, for the Backward edge the bending of the second blade is delayed compared to the first
blade. For the Forward edge, the bending of the second blade is in advance compared to the bending of the
first blade. These two bending modes have an impact on the tower dynamical properties, with respectively a
frequency of fbw − Ω

2π and ffw + Ω
2π , where Ω denotes the rotational speed of the rotor.



First, the change in the eigenfrequency can be assessed. In Table 1, the evolution of the natural frequencies
of some approximation modes is summarised depending on the increase of the stiffness loss for the damaged
blade. It has been computed for a rotational speed of 6 rpm. Looking at the results, one can see that whatever
the loss in stiffness is for the damaged blade, the frequency change remains negligible. Indeed, the difference
between the natural frequencies between the two structural states is negligible, with a maximum of 0.015
Hz for the collective edge. This order of magnitude is not significant for a real structure, where the effects
of varying environmental conditions will be more important. Consequently, the frequency cannot be used
a reliable indicator to detect changes in the rotor properties. So, another approach is investigated and the
change in the mode shapes due to the anisotropy will be assessed, as it is introduced in [2, 1].

Table 1: Some frequencies of the LTI approximation in function of the stiffness for the third blade

Name Isotropic 99% of stiff. 97,5% of stiff. 95% of stiff.
2-SS 2.349 2.348 2.348 2.348

Col. Edge 2.061 2.058 2.054 2.046
Fw. Tower 1.108 1.107 1.106 1.105
Fw. Rotor 1.008 1.007 1.006 1.005
Bck. Rotor 1.001 0.999 0.995 0.988
Bck. Tower 0.901 0.899 0.896 0.888

1-FA 0.257 0.257 0.257 0.257
1-SS 0.253 0.253 0.253 0.253
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Figure 1: Evolution of the polar plot of the edgewise bending mode shapes against the third blade stiffness

Figure 1 represents the evolution of the amplitude and the phase shift between the blades on a polar plot for
the different considered stiffness reductions, where each subfigure corresponds to a different mode. First, it



has to be noted that the first blade defines the reference, with an amplitude equal to 1 and a phase to 0. The
choice of the reference blade will have an impact on the values of phase shift and amplitude, but the global
change compared to the isotropic state will be the same. Figures 1b and 1c show that there is an important
evolution of the phase shift for the backward and forward edge bending modes coupled with an important
evolution of their amplitude. Indeed, for the isotropic state, the phase shift between each blade is 120° and
the amplitude is equal to 1 for each blade. For a stiffness loss of 5%, the phase shift decreases to about 50°
and 190° for the 2nd and 3rd blades for the backward edge bending mode respectively, whereas the vibration
amplitude decreases for the 2nd blade and increases for the third one. Considering the forward edge bending
mode, the amplitudes for both blades decrease but it decreases substantially for the 2nd blade (to about 0.2).
The phase shift of the second blade remains somewhat constant and equal to 120°, whereas it decreases
for the third blade. The collective edge has a different evolution compared to the two others. Indeed, only
the amplitude of the damaged blade is evolving with a reduction of the amplitude in function of the loss of
stiffness. These results illustrate the high sensitivity of the phase shift and the amplitude to anisotropy and
the relevance of tracking these parameters to monitor a wind turbine.

Table 2: MAC criterion of the whirling mode, computed between the isotropic and the anisotropic modes for
different anisotropy levels

Mode Stiff. 99% Stiff. 97.5% Stiff. 95%
Col. 0.999 0.996 0.982
Bck. 0.968 0.846 0.691
Fw. 0.973 0.849 0.704

Table 2 summarizes the MAC between the mode shapes of the isotropic state and the anisotropic states. It
confirms the graphical analysis as a larger evolution of the MAC is observed for the backward and forward
edge mode shapes. It can be concluded that the mode shapes of the backward and the forward edge have a
similar sensitivity to the anisotropy. The mode shape of the collective edge is less affected globally by the
change scenarios since only the amplitude of the damaged blade is affected by the rotor anisotropy.

As a conclusion, due to the important sensitivity of the mode shapes of the edge bending modes regarding
the anisotropy, the mode shapes can be used to detect the anisotropy. The next section is dedicated to the
introduction of a subspace identification method and the definition of the uncertainties of the amplitude and
the phase shift.

4 Identification method and uncertainty computation

4.1 Stochastic Subspace Identification (SSI)

Before performing the subspace identification, the state-space representation of the approximation is needed.
From the definition of an LTP-system and its associated approximation, it is possible to define the following
discrete state-space {

zk+1 = Azk + Bkvk

yk = Czk + Dkvk + w̃k
, (10)

with zk the new state vector based on the approximation of the outputs, A and C two constant matrices and
Bk and Dk two periodic matrices of period Td = T

∆t (∆t the data time step). The complete definition of the
state-space of the approximation and the demonstration of the applicability of the Stochastic Subspace Iden-
tification (SSI) method is detailed in [6]. Here, an efficient version [16] of the SSI method [7] is used. The
SSI [7] aims to identify the eigenmodes of the system through the sample correlations. The SSI covariance-
driven is presented in the following. The first step is to construct a Hankel matrix filled by correlations,
directly constructed from matrices gathering the observation data

Ĥ = Y+
(
Y−)T . (11)



where Y+ ∈ R(p+1)r×N and Y− ∈ Rqr×N are defined in [7]. Ĥ can be seen as the Hankel matrix filled with
the correlations R̂i, the estimate of the correlation Ri = E

(
yky

T
k−i

)
= CAi−1G, where G = E

(
zk+1y

T
k

)
.

From the estimation of the Hankel matrix, by using a singular value decomposition it is possible to identify
the system matrices A and C. Then, the eigenmodes can be computed with the eigenvalue decomposition of
A

A = Ψ [µi] Ψ
−1. (12)

The continuous time eigenvalues λi are found from the discrete time eigenvalues µi by λi =
log(µi)
∆t . Then

the frequency (fi) and the damping (ζi) of the associated mode are defined such that fi = |λi|
2π and ζi =

−100.Re(λi)
|λi| . Finally, the mode shape matrix is found from Φ = CΨ.

4.2 Uncertainty computation

Following the identification, an uncertainty computation method is used [17]. Defined in [8], the method
estimates the covariance matrices of the identified modes from the same data used for the identification.
From the covariance matrices, it is possible to express the standard deviations σf and σζ of the frequency
and damping, respectively.

To perform the uncertainty quantification, the delta method and a first order approximation are used. Thus,
using the sensitivity matrix of the considering parameter regarding the correlations and the covariance ma-
trices of correlations (Σ̂R), the covariance matrix of all the identified parameters can be computed. For
example, the covariance matrix of an eigenfrequency is

ˆcov(fi) = JfiΣ̂RJ T
fi
. (13)

Where Jfi denotes the sensitivity of the i–th eigenfrequency regarding the correlations, with Jfi =
∂fi

∂vec(R) .
The sensitivity of the frequencies, damping and mode shapes of the eigenmodes are defined in [17].

In the previous section, it has been shown that the phase shift and the amplitude are good indicators of the
rotor anisotropy. Consequently, the sensitivity of the phase shift and the amplitude will be defined in the next
section.

4.3 Definition: Sensitivity of phase shift and amplitude

First, let us define the phase shift Pj of a mode shape ϕ ∈ Rr at the degree of freedom j. The mode shape at
the DOF j can be defined as

ϕj = aj exp (iPj)

= aj cos (Pj) + iaj sin (Pj) ,

where aj denotes the amplitude. From this expression, the phase shift can be defined as

Pj = arctan

(
ℑ(ϕj)
ℜ(ϕj)

)
. (14)

As it was introduced in the previous section, to estimate the uncertainty of a quantity, its sensitivity from
another quantity has to be defined. So, the sensitivity of the phase shift regarding the mode shape is defined
as

JP,ϕ =
[

∂P
∂ℜ(ϕ)

∂P
∂ℑ(ϕ)

]
∈ Rr×2r. (15)



First

∂Pj

∂ℜ(ϕj)
= − ℑ(ϕj)

ℜ(ϕj)2
1

1 +
(
ℑ(ϕj)
ℜ(ϕj)

)2 (16)

=
−ℑ(ϕj)
|ϕj |2

, (17)

analogously

∂Pj

∂ℑ(ϕj)
=

1

ℜ(ϕj)
1

1 +
(
ℑ(ϕj)
ℜ(ϕj)

)2 (18)

=
ℜ(ϕj)
|ϕj |2

. (19)

Finally, the definition of JP,ϕ is

JP,ϕ =
[[

−ℑ(ϕk)
|ϕk|2

] [
ℜ(ϕk)
|ϕk|2

]]
, (20)

with
[
ℑ(−ϕk)
|ϕk|2

]
∈ Rr×r a diagonal matrix, as for

[
ℜ(ϕk)
|ϕk|2

]
.

JP,ϕ is defined and non-zero if ϕ is non-zero for all degrees of freedom. This condition is verified if the
associated mode shape is non zero at every sensor. If a mode shape has a zero amplitude at a sensor, it is not
useful to compute the phase shift and its uncertainty.

The amplitude (ai) of the DOF i of the mode shape ϕ is defined as

ai = |ϕi| =
√
ℜ(ϕi)2 + ℑ(ϕi)2. (21)

Analogously as previously, the sensitivity of the amplitude regarding the mode shape has to be defined,

Ja,ϕ =
[

∂a
∂ℜ(ϕ)

∂a
∂ℑ(ϕ)

]
∈ Rr×2r. (22)

First
∂ai

∂ℜ(ϕi)
=

ℜ(ϕi)
|ϕi|

, (23)

and
∂ai

∂ℑ(ϕi)
=

ℑ(ϕi)
|ϕi|

. (24)

Finally, the sensitivity matrix (Ja,ϕ) is defined as

Ja,ϕ =
[[

ℜ(ϕk)
|ϕk|

] [
ℑ(ϕk)
|ϕk|

]]
, (25)

with
[
ℜ(ϕk)
|ϕk|

]
∈ Rr×r a diagonal matrix, as for

[
ℑ(ϕk)
|ϕk|

]
. Like JP,ϕ, Ja,ϕ is defined and non-zero if ϕ is

non-zero for all sensors.

An identification method and the associated uncertainties have been defined, now this method will be used
to monitor the change of the identified edgewise bending mode shapes with the analysis of the phase shift
and the amplitude, to detect anisotropy.



5 Anisotropy detection method

5.1 Method to detect rotor anisotropy

As the identified modes are obtained from correlation estimates, they are uncertain. Thus, to determine if a
mode shape has changed it is necessary to compare the identified values with the associated uncertainties.
The Modal Assurance Criterion (MAC) [18] can be used to asses the difference between two mode shapes
(ϕ, ψ)

MAC(ϕ, ψ) =

∣∣ϕHψ∣∣2
(ϕHϕ) (ψHψ)

. (26)

Also this criterion can be used to determine if two mode shapes are statistically distinct. In [9] it has been
shown that the MAC follows different statistical laws depending on the compared mode shapes. If the
compared mode shapes are identical, the criterion follows a χ2 law and if the mode shapes are different, it
follows a Gaussian law. For the χ2 law, the confidence interval is defined with the lower bound of the 95%
quantile as the upper bound is 1. For the Gaussian law, the confidence interval is computed with the standard
deviation.

The objective of the method is to asses changes in the mode shapes. To achieve such goal, an actual set of
identified eigenmodes has to be compared to a reference set. Precisely, a change in rotor isotropy is sought
through changes in the edgewise bending modes. The method to detect anisotropy changes is composed of
the following steps:

1. Identification of the reference state using only the blade root edge-moment: uncertainty computation
of the mode shape, amplitude and phase shift

2. Identification of the actual state (potentially damaged) using only the blade root edge-moment: uncer-
tainty computation of the mode shape, amplitude and phase shift

3. Comparison of the mode shape of edgewise bending and their associated uncertainties on a polar plot.
The compared estimated mode shapes are not corresponding to the same state if the 95% confidence
intervals do not cross each other

4. Computation of the MAC criterion and the associated uncertainties. If the MAC follows a χ2 law the
mode shapes are considered to be corresponding to the same state, and if the MAC follows a Gaussian
law the mode shapes are corresponding to different states and anisotropy is detected

Now this method will be tested, with an change scenario in the DTU 10MW rotor isotropy.

5.2 Detection of 5% loss of stiffness under turbulent wind

In this example, a loss of 5% of stiffness on the third blade is simulated for the damaged state. To have the
same environmental conditions, both states (reference and damaged) are simulated with the same turbulent
wind. The wind speed and the rotational speed are illustrated in Figure 2a.

With Figures 2b, 2c and 2d, the mode shapes of the three edge bending modes can be compared. These
figures represent the phase shift and the amplitudes of the three blades with their uncertainty intervals for
the three different modes considered. As it was stated in Section 3, the first blade defines the reference, so
the associated phase and amplitude to this blade are exact (without uncertainty). In Figures 2b and 2d, the
confidence intervals of the reference and damaged state do not cross each other. It can be concluded, that
the associated mode shapes are different for the Backward and Collective edge. In Figure 2c, the confidence
intervals are crossing each other, so the corresponding mode shapes can not be considered to be different.
Now, this graphical analysis will be validated, with the study of the statistical law of the MAC.

Table 3 summarizes the MAC and uncertainties of each mode. For the Collective and Backward edge, the
value of the identified MAC is below the lower bounds of the 95% quantile defined with a chi-square law
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Figure 2: Comparison of the edgewise bending mode shapes between the reference state and the damaged
state under a turbulent wind

modelling. This confirms that the mode shapes of the damaged state are different from those of the reference
state. Also, the MAC of the Forward edge mode seems to follow a chi-square law, meaning that the mode
shapes are close or similar. Consequently, the uncertainty analysis for the MAC is validating the graphical
analysis based on the confidence interval.

6 Conclusion

It has been shown that the amplitude and phase of the mode shape of the edge bending modes are good
indicators of the rotor anisotropy. So, a method to monitor the change of those quantities has been defined.
Regarding the results, it can be concluded that the analysis of the edgewise bending mode shapes can be used
to detect fault corresponding to a loss of 5% of stiffness on one blade. It is possible to use the amplitudes of

Table 3: MAC criterion and the respective uncertainties, under a turbulent wind

Name MAC Standard deviation Quantile
Col. 0.9827 0.0089 0.9913
Bck. 0.6672 0.1565 0.7853
Fw. 0.8063 0.1515 0.6846



the collective mode shape for the fault localization.

Future works, will be dedicated to automation of the fault detection method and development of more so-
phisticated methods using the evolution of the phase shift and amplitude.
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[16] M. Döhler and L. Mevel, “Fast multi-order computation of system matrices in subspace-based system
identification,” Control Engineering Practice, vol. 20, no. 9, pp. 882–894, 2012.
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