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Abstract: In this paper, subspace identification for wind turbines and more generally rotating
periodic systems are investigated. Previous works have stressed the difficulty of modeling such
systems as Linear Time Invariant and thus to apply classical Stochastic Subspace Identification.
Such works plead for periodic or augmented theories. In this paper, the classical SSI can be
applied to recover modal information that is related to the eigenstructure of the instrumented
system despite the system excitation being modeled as non-stationary.
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1. INTRODUCTION

Due to the increase in the number of wind farms, it
is important to implement reliable monitoring methods
based on data collected during operation. The operational
modal analysis (OMA) methods are part of the solutions.
There are already many OMA methods developed for civil
engineering, thus for linear time invariant (LTI) systems,
in frequency or time domain, and transposed to the
monitoring of those new systems. However, a wind turbine
should rather be modelled as a linear time periodic (LTP)
system and therefore does not satisfy the assumptions of
classical OMAmethods, so defining OMAmethods specific
to LTP systems is needed.

A first method enabling the identification of the eigen-
structure of an LTP system, applied to bladed structures,
is the multi-blade coordinate (MBC) method (Bir, 2008).
This method is based on the reformulation of the LTP
system as an LTI system by a change of variable on the
data. However, this method is based on the hypothesis
of an isotropic rotor, a hypothesis which is not verified
in practice (Tcherniak and Larsen, 2013). Other methods
are based on the harmonic transfer function (Allen et al.,
2011), first defined for control purposes (Wereley and Hall,
1991), and also extended into a subspace method (Tcher-
niak et al., 2014). The drawback of these methods is that
they require to increase the dimension of the observation
space, as a consequence of the required formalism. Another
problem is that these methods require knowledge of the
actual rotational speed of the system. A last group of
methods is those adapting the classical subspace methods.
One example is the SSI LPTV method (Jhinaoui et al.,
2014), which allows to correctly identify the exact eigen-
modes of an LTP system. However, the drawback of the
method is that it converges in period number, which is

more suitable for systems with a high rotational speed
as helicopters. All these methods present modifications of
classical frequency or time domain identification methods
without solving all problems and sometimes introducing
constrains and artefacts (Yang et al., 2014).

Stochastic Subspace Identification (SSI) methods have
been proved effective for the identification of LTI system,
by a now abundant literature (Verhaegen and Dewilde
(1992); van Overschee and de Moor (1993); Qin et al.
(2005)). They also have the advantage of being applicable
in the context of output-only system identification, partic-
ularly in mechanical engineering, see Peeters and de Roeck
(1999) for example. So, they fit nicely in the context of
OMA system identification. Application of the classical
SSI method with or without pre- or post-processing has
been experimented in civil engineering and wind turbines
monitoring (Tcherniak, 2014). The objective of the current
paper is to address the validity of such practice.

According to Floquet (1879), the response of an LTP
system can be defined as a sum of modes with periodic
amplitudes, the so-called Floquet modes. These modes are
expanded into Fourier series, with an infinity of compo-
nents. A system composed of an infinity of Fourier com-
ponents with constant amplitude (identical to the eigen-
modes of an LTI system) would theoretically be equivalent
to an LTI system of infinite dimension. However, Acar and
Feeny (2016) shows (with an application on the Mathieu
oscillator) that only some Fourier components are needed
to describe a Floquet mode. Thus, by selecting only some
specific components of the modes, an LTI system of fi-
nite dimension can be approximated and thus identified.
However, the defined approximation is only on the homo-
geneous part, i.e. the transition and observation matri-
ces. The input and feedthrough matrices remain periodic,



giving an LTI system subject to non stationary input,
which does not satisfy the assumptions of classical OMA
methods.

There are a number of convergence studies on subspace
methods in a stationary context in the literature (see
Benveniste and Mevel (2007) for some of them). These pa-
pers provide deep and technically difficult results including
convergence rates. They typically address the problem of
identifying the system matrices or the transfer matrix, i.e.
both the pole and zero parts of the system. In contrast,
the non stationary consistency of the estimation of the
eigenstructure (the pole part) has been less studied and
we refer to Benveniste and Mevel (2007) for a general
consistency proof applied to many subspace methods.

The proposed modeling introduced in this paper leads to
an LTI model with a non stationary input. The application
of a subspace method to this model warrants the study
of its consistency that will be proved and demonstrated
on a numerical simulation of a small scale system. The
main contribution of the paper is to assess the application
of a standard SSI method and evaluate how model and
subspace-derived modal estimates are linked through an
approximate model.

Section 2 derives the approximate linear time invariant
model for the LTP system derived therein. Section 3 recalls
the principle of a particular SSI method for identification
of modal properties of LTI systems. Section 4 investigates
the validity of the proposed model and the impact of the
non stationary periodic input. Finally, Section 5 demon-
strates the validity of the approximation on a small scale
numerical example.

2. LINEAR TIME PERIODIC (LTP) SYSTEM
APPROXIMATION

2.1 Dynamic model

The motion of a constant rotating wind turbine can be
expressed as a linear time periodic system,

M(t)ξ̈(t) + C(t)ξ̇(t) +K(t)ξ(t) = v(t), (1)

where ξ(t) ∈ Rm are the displacements of the structure
at the degrees of freedom (dof) of the system, and M(t+
T ) = M(t), C(t+T ) = C(t), K(t+T ) = K(t), respectively
the mass, damping and stiffness matrices. T represents the
rotational period. The unknown input v(t) is assumed to
be a Gaussian white noise. In the following, the mechanical
system is expressed in a state space form, from the
definition of the state vector x(t) ∈ Rn where n = 2m
and the observation y(t) ∈ Rr.

x(t) =

[
ξ(t)

ξ̇(t

]
and y(t) = Caξ̈(t) +Cv ξ̇(t) +Cdξ(t), (2)

where Ca, Cv and Cd are selection matrices. A noise w(t)
can be added to the observation. w(t) is assumed to be
a Gaussian white noise. This leads to the following state
space expression:{

ẋ(t) = Ac(t)x(t) +Bc(t)v(t)

y(t) = C(t)x(t) +D(t)v(t) + w(t)
, (3)

with

Ac(t) =

[
0 I

−M(t)−1K(t) −M(t)−1C(t)

]
,

C(t) =
[
Cd − CaM(t)−1K(t) Cv − CaM(t)−1C(t)

]
,

Bc(t) =

[
0

−M(t)−1

]
and D(t) = CaM−1(t).

All matrices are periodic with period T , with Ac(t) ∈
Rn×n, C(t) ∈ Rr×n, Bc(t) ∈ Rn×m and D(t) ∈ Rr×m.

2.2 Modal analysis

The Floquet theory (Floquet, 1879) was initially intended
for solving linear differential equations with periodic co-
efficients. The general solution of the differential equation
reads:

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)Bc(τ)v(τ)dτ, (4)

with Φ(t, t0) the fundamental matrix. From this theory, it
is possible to express the eigenmodes of an LTP system
(Skjoldan and Hansen, 2009). Looking first at the homo-
geneous part of the differential equation:

ẋh(t) = Ac(t)xh(t) (5)

the fundamental matrix Φ(t, t0) is the solution of this
equation such that

xh(t) = Φ(t, t0)x(t0). (6)

To simplify Equation (6), Φ(t) := Φ(t, t0) = Φ(t)Φ(t0)
−1,

with Φ(t0) = I the identity matrix. Also the monodromy
matrix Q is defined by Q = Φ(T ), where Φ(t+T ) = Φ(t)Q.

The eigenvalues of Q are called the characteristic multipli-
ers (λi), with ψi the associated eigenvectors. The charac-
teristic exponents (µi) are defined as λi = exp (µiT ). The
fundamental matrix can be factorized into a matrix of n
independent periodic vectors p(t) collected into the matrix
P (t)

Φ(t) = P (t) exp (Rt) , (7)

with R = 1
T log (Q). R can then be diagonalized using the

characteristic exponents and the eigenvectors of Q,

R = Ψ [µ] Ψ−1. (8)

So the matrix Φ(t) can be expressed with the characteristic
exponents

Φ(t) = P (t)Ψ exp ([µ] t)Ψ−1. (9)

Finally using Equation (9) and Equation (6), the state
vector is expressed as a sum of n Floquet modes

xh(t) =

n∑
j=1

Xj(t) exp (µjt) qj(t0) (10)

with qj(t0) = ψ′
jx(t0), ψ

′
j the j–th row of the matrix Ψ−1

and Xj(t) = P (t)ψj the T-periodic amplitude of the j–th
mode.

2.3 Approximation of the Floquet modes

The next step is to express the observation vector as a
finite sum of eigenmodes to obtain the description of a
time invariant system. The Floquet mode decomposition
of the observation yh(t) is



yh(t) = C(t)

n∑
j=1

Xj(t) exp (µjt) qj(t0) (11)

=

n∑
j=1

Yj(t) exp (µjt) qj(t0), (12)

where Yj(t) = C(t)Xj(t) is the amplitude of the Floquet
modes of the observation and a periodic vector of period
T = 2π

Ω , which can then be expanded into a Fourier series:

Yj(t) =

∞∑
l=−∞

Yj,l exp (ilΩt) (13)

By combining Equations (12) and (13), the observation
vector can be expressed as an infinite sum of terms:

yh(t) =

n∑
j=1

∞∑
l=−∞

Yj,l exp ((µj + ilΩ) t) qj(t0) (14)

Relevant components of the expansion of yh(t) are deter-
mined by the participation factor (Bottasso and Cacciola,
2015):

ϕyj,l =
∥Yj,l∥∑∞

l=−∞ ∥Yj,l∥
. (15)

By defining a minimal participation factor (ϕymin) an
approximation of the observation (ŷ(t)) is constructed as
a finite sum of eigenmodes,

ŷh(t) =
∑

(j,l),ϕy
j,l

≥ϕy
min

Yj,l exp ((µj + ilΩ) t) qj(t0), (16)

ŷ(t) can then be expressed as a sum of ñ eigenmodes

ŷh(t) =

ñ∑
p=1

Yp exp (µpt) qp(t0), (17)

where each index p corresponds to a pair (j, l) and µp =
µj+ilΩ. From the approximation of the observation vector,
the state space expression, and the associated transition
matrices are now formulated.

2.4 Space state expression

From the modal analysis, the transition matrix and the
observation matrix of the approximation can be expressed.
Once these matrices are defined, they can be inserted in
the state space defined for an LTP system (Equation (3)).
Equation (17) shows that the shape of the approximation
of the observation ŷ(t) is the same as the observation of
an LTI system (for modal analysis). So there must exist a
state-space composed of some state vector z(t) ∈ Rñ and
the approximation of the observation ŷ(t) such that the
homogeneous part reads{

żh(t) = Ãzh(t)

ŷh(t) = C̃zh(t)
, (18)

with Ã and C̃ the transition and observation matrices of
the approximation and

zh(t) =

ñ∑
p=1

Zp exp (µpt) qp(t0). (19)

With Equations (19) and (18)

ñ∑
p=1

Zpµp exp (µpt) qp(t0) = Ã

ñ∑
p=1

Zp exp (µpt) qp(t0),

(20)
expressing the sums in matrix form

Z [µp] exp([µp] t)q(t0) = ÃZ exp([µp] t)q(t0), (21)

with Z ∈ Rñ×ñ regrouping the amplitudes of the state
vector Zp (one vector per column), [µp] a diagonal ma-
trix containing the eigenvalues of the approximation and
q(t0) ∈ Rñ regrouping the scalar qp(t0). So, the transition
matrix is defined as

Ã = Z [µp]Z−1 ∈ Rñ×ñ. (22)

The observation matrix of the approximation (C̃) in Equa-
tion 18, with Equations (17) and (19)

ñ∑
p=1

Yp exp (µpt) qp(t0) = C̃

ñ∑
p=1

Zp exp (µpt) qp(t0). (23)

In a matrix form

Φ̃ exp ([µp] t) q(t0) = C̃Z exp ([µp] t) q(t0) (24)

with Φ̃ ∈ Rr×ñ regrouping the amplitudes of the obser-
vations eigenmodes. The observation matrix is expressed
as

C̃ = Φ̃Z−1 ∈ Rr×ñ. (25)

To express the full discrete state space, the discrete tran-
sition matrix and the input matrix are needed. First let us
define the observation of the state space using Equation
(4)

y(t) = C(t)Φ(t)x(t0) + C(t)Φ(t)

∫ t

t0

Φ(τ)−1Bc(τ)v(τ)dτ.

(26)
With the approximation of the observation of the homo-
geneous part (Equation (17)) and with Equation (6) the
approximation of C(t)Φ(t) is defined in matrix form

C(t)Φ(t) ≃ Φ̃ exp ([µp] t) Ψ̃, (27)

with Ψ̃ such that q(t0) = Ψ̃x(t0). To express the approxi-
mation of Φ(τ)−1 the approximation of the homogeneous
part of the state space is needed. With the same Fourier
components as ŷh(t)

x̂h(t) =

ñ∑
p=1

Xp exp (µpt) qp(t0), (28)

leads to the approximation

Φ(τ) ≃ X exp ([µp] τ ]) Ψ̃, (29)

with X ∈ Rn×ñ regrouping the vectors Xp. For simplicity,
assume t0 = 0 and t a multiple of ∆t, the approximation
of the observation in discrete time is defined as

ŷk = Φ̃ exp ([µp] k∆t) q(0) + Φ̃ exp ([µp] k∆t)

k∑
i=1

Iivi−1,

(30)
with

Ii =

∫ i∆t

(i−1)∆t

exp (− [µp] τ)X †Bc(τ)dτ, (31)

where (·)† denotes the Moore-Penrose pseudo inverse and
with the hypothesis of a zero-order hold on v(t). With



Equation (25) it is possible to express the observation
matrix into ŷk+1 such that

ŷk+1 = C̃Z exp ([µp] (k + 1)∆t) q(0)

+ C̃Z exp ([µp] (k + 1)∆t)

k+1∑
i=1

Iivi−1.
(32)

The state vector in discrete time zk at time index k+ 1 is
expressed as

zk+1 = Z exp ([µp] (k + 1)∆t) q(0)

+ Z exp ([µp] (k + 1)∆t)

k+1∑
i=1

Iivi−1.
(33)

Using the definition of zk

zk+1 = Ãzk +Bkvk. (34)

with Ã = exp
(
Ã∆t

)
andBk = Z exp ([µp] (k + 1)∆t) Ik+1.

Finally adding the term of the excitation in the observa-
tion, the discrete state space of the approximation can be
defined as {

zk+1 = Ãzk +Bkvk

yk = C̃zk +Dkvk + w̃k

, (35)

with w̃k = wk+εy k the new observation noise, where εy k

is the approximation error of the observation (suppose to
be with zero mean, independent and square-integrable).
Bk and Dk = D(k∆t) are periodic matrices of period

Td = T
∆t . Assume Ã has all non zero distinct eigenvalues

with modulus less than 1.

The final equations in (35) represent a linear system with
constant system matrices under a non stationary input
forcing, precisely the statistical moments of the input are
periodic. In the next section, it will be recalled the classical
SSI method and detail how it can still be used for such
model.

3. SUBSPACE IDENTIFICATION METHOD

Let us consider an LTI system defined by the quadruplet
of matrices (A, B, C, D), evolving under a stationary
Gaussian white noise excitation vk{

xk+1 = Axk +Bvk

yk = Cxk +Dvk
. (36)

The Stochastic Subspace Identification (van Overschee
and de Moor, 1993) aims to identify the eigenmodes of
the system through the sample correlations. Here the SSI
covariance-driven is presented. First, the Hankel matrix
filled by correlations must be constructed. It can be done
directly from matrices gathering the observations

Ĥ = Y+
(
Y−)T . (37)

Where Y+ ∈ R(p+1)r×N and Y− ∈ Rqr×N are defined in
(van Overschee and de Moor, 1993). Ĥ can be seen as the

Hankel matrix filled with the correlations R̂i, the estimate
of the correlation Ri = E

(
yky

T
k−i

)
= CAi−1G, where

G = E
(
xk+1y

T
k

)
. The Hankel matrix can be factorized

such that Ĥ = OpCq, where Op denotes the observability

matrix and Cq the controllability matrix, with Ĝ a consis-
tent estimate of G.

Op =


C
CA
...

CAp

 and Cq =
[
Ĝ AĜ . . . Aq−1Ĝ

]
. (38)

In the LTI case, Op is full column rank and Cq is full row
rank. The observability matrix is obtained from a thin
singular value decomposition of Ĥ and its truncation at
the correct model order n

Ĥ = UΣV T = [U1 U2]

[
Σ1 0
0 Σ2

] [
V T
1

V T
2

]
, (39)

Op = U1Σ
1/2
1 , (40)

where Σ1 contains the first n singular values and U1 the n
first column of U . The observation matrix C is identified
as the first block row of Op and the state transition matrix
A is identified in a least-squares sense

A = O†
p (2:p+1)Op (1:p), (41)

with Op (1:p) the first p blocks rows of Op and Op (2:p+1)

the p last blocks rows. Then, the eigenmodes can be
computed with the eigenvalue decomposition of A, namely
A = Ψ [µi] Ψ

−1.

The continuous time eigenvalues λi are deduced from the
discrete time eigenvalues µi by λi = log(µi)/∆t. Then
the frequency (fi) and the damping (ζi) of the associated
mode are defined such that fi = |λi|/2π and ζi = −100×
Re (λi) /|λi|. Finally, t he mode shape matrix is found from
Φ = CΨ.

The above identification method, also called SSI-cov will
be challenged under a non stationary model (Equa-
tion (35)) in the next section.

4. APPROXIMATE FACTORISATION

After recalling the SSI approach for the LTI systems,
first relax the model (36) to (35). Second, define the

submatrices Ĥm,n of Ĥ by restriction to indices (m,n)
m ∈ [1 : p+ 1] and n ∈ [1 : q] by

Ĥm,n = Y+
m

(
Y−)T

n
, (42)

with Y+
m the m–th block line of Y+ and (Y−)

T
n the n–th

block column of (Y−)
T
.

Y+
m = [yq+m yq+m+1 . . . yq+N+m−1](

Y−)T
n
=

[
yTq+1−n yTq+2−n . . . yTq+N+1−n

]T
Let km = q + m + k and kn = q + 1 − n + k with
km = kn +m+ n− 1, it yields

Ĥm,n =
1

N

N−1∑
k=0

(
C̃zkm

+Dkm
vkm

+ w̃km

)
·
(
C̃zkn +Dknvkn + w̃kn

)T

.

(43)

Finally

Ĥm,n = C̃Ã
m+n−2

Ĝn + o(1), (44)

with o(1) a matrix converging to zero with N , applying
Lemma 3 of (Benveniste and Mevel, 2007) under the
moment hypotheses cited above, then

Ĝn =
1

N

N−1∑
k=0

Ãzkn
zTkn

C̃
T
+Bkn

vkn
vTkn

DT
kn
. (45)



Without lack of generality, assume that N is a multiple of
Td,

Ĝn =
1

N
Ã

N−1∑
k=0

[
zkn

zTkn

]
C̃

T

+
1

Td

Td∑
j=1

Bj
Td
N

∑
kj

[
vkj

vTkj

]
DT

j ,

(46)

where kj denote the indices corresponding to the specific
instants of the period and where Bj and Dj are periodi-

cally equal. Notice that Ĝn and Ĥm,n have a limit as N
tends to infinity due to the periodicity of the input and
feedthrough matrices periodic. Also, it can be proven that
Ĝn do not depend of the index n and it can be noted G.
The matrix Ĥ can then be expressed similarly to Equation
(38). To apply (Benveniste and Mevel, 2007), it is sufficient

that the ñ first singular values of C̃q are uniformly lower

bounded. This can be assumed considering Ĝ converges
to a constant matrix and the noise is stationary Gaussian.
The consistency is then a consequence. Then Ã and C̃ can
be estimated up to a change of basis from Ĥ. Also notice
that it can be shown that G can be expressed as a sum
of statistically equivalent terms due to the periodicity of
Bj and Dj . It implies that the computation of Gaussian
confidence intervals is possible similarly to Döhler and
Mevel (2013). In the next section, this will be validated
numerically on a reduced model of wind turbine.

5. APPLICATION

A theoretical model of wind turbine is used here with an
isotropic rotor and a constant rotational speed defined in
Skjoldan (2009) (see Figure 1). It is composed of 3 dof of
blade bending, and two dof of nacelle bending. The matri-
ces of the systemM(t), C(t) and K(t) are periodic matrices
of period T = 2π

Ω , with Ω the rotational speed. The
model parameters are identical to those used in Skjoldan
(2009). The objective is to validate the identification of
the approximation with the SSI method.

Fig. 1. Wind turbine model (Skjoldan, 2009)

5.1 Model approximation

First, to determine the approximation of the model, the
modal analysis of the model is performed. To do this, the
transition matrix is computed, then the periodic shape
modes are computed, to finally determine the components
of the Floquet modes considered in the approximation.

With a rotational speed of 1.4 rad/s and a minimum
participation factor of 1%, the Fourier components of
the obtained Floquet modes are listed in Table 1. For
each Floquet mode the sum of the participation factors
is greater than 99%.

Table 1. Fourier components of Floquet modes,
with a minimal participation factor of 1%, for

a rotational speed of 1.4 rad/s

Floquet
mode

Participation
factor (%)

Frequency (Hz) Damping (%)

1
46.04 1.693 0.670
29.32 1.470 0.794
23.73 1.248 0.936

2
36.75 1.813 0.599
31.43 1.590 0.682
30.97 1.367 0.794

3
48.13 0.642 0.324
29.24 0.864 0.240
22.19 1.087 0.191

4 99.34 0.746 0.267

5
90.28 0.670 0.230
9.15 0.448 0.344

A method to obtain the approximation error is to compare
the exact periodic modes shapes with those reconstructed
with the approximation. In Figure 2, the periodic mode
shape is approximated with a relative approximation error

of
∥Yj(t)−Ŷj(t)∥

∥Yj(t)∥ = 0.01%.

5.2 Identification and comparison

From simulated acceleration data for a model with a
constant rotational speed of 1.4 rad/s (sampled at 25
Hz during 600 s), a subspace identification using all
degrees of freedom is performed. The SSI-cov is defined in
Peeters and de Roeck (1999) coupled by the uncertainty
computation method as defined in Döhler and Mevel
(2013).

Once the eigenmodes are identified, with their frequency,
damping and the estimation of their standard deviations
(σf and σd), they are matched with the eigenmodes defined
from the model by comparing the modes shapes with the
MAC criterion (Pastor et al., 2012). The MAC criterion
between two modes shapes ψ1 and ψ2 is

MAC (ψ1, ψ2) =
|ψH

1 ψ2|2

ψH
1 ψ1ψH

2 ψ2
. (47)

The obtained results are summarized in Table 2.

The eigenmodes determined by the model are clearly
identified validating the approximation. Note that no extra
modes are identified beside those predicted by the model.
A mode with a low participation factor appears as a noise
mode during the SSI analysis.

Fig. 2. Comparison model/approximation for the first
periodic mode shape over one period at a degree of
freedom of the rotor



Table 2. Identification results

Freq. (Hz) σf (Hz) Damp. (%) σd (%) MAC

1.698 0.003 0.833 0.173 0.999
1.479 0.003 1.160 0.188 0.994
1.256 0.003 1.295 0.260 0.999
1.825 0.003 0.627 0.142 0.998
1.600 0.003 0.498 0.096 0.999
1.378 0.002 0.585 0.124 0.998
0.643 0.001 0.714 0.179 0.989
0.867 0.002 0.431 0.156 0.986
1.092 0.007 0.578 0.630 0.987
0.747 0.001 0.329 0.098 1.000
0.671 0.001 0.270 0.093 1.000
0.453 0.005 1.399 0.734 0.994

To validate the uncertainty calculation, the estimated
uncertainties can be compared with those obtained by
Monte Carlo. The system is simulated and the system
matrices and variances are identified 2000 times leading
to comparable orders of magnitude. In Figure 3, for the
first component of the first Floquet mode, the estimated
95% confidence interval is close to the empirical interval,
i.e. σf MC = 3.94× 10−3 and σd MC = 2.03× 10−1. While
the 10-run means of the estimated standard deviations are
σ̄f = 3.37× 10−3 and σ̄d = 2.17× 10−1. It can be deduced
that the uncertainty computation defined for stationary
LTI systems is suitable for our problem.

Fig. 3. Perturbation-based uncertainties vs Monte Carlo

6. CONCLUSION

It has been shown that an LTP system could be approxi-
mated by an LTI system under a non stationary excitation.
For such model, the approximation of the Floquet modes
in a finite sum of components has been presented. It has
been shown that their components, and not the Floquet
modes themselves, could be estimated using a subspace
method validating the empirical use of SSI for such rotat-
ing structures. A small theoretical wind turbine model has
been simulated to illustrate that the model components
were correctly identified. Future work will be dedicated to
the validation on a more sophisticated wind turbine model
and to the comparison with existing LTP methods.
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assurance criterion. Procedia Engineering, 48, 543–548.

Peeters, B. and de Roeck, G. (1999). Reference-based
stochastic subspace identification for output-only modal
analysis. Mech. Sys. Signal Process., 13(6), 855–878.

Qin, S.J., Lin, W., and Ljung, L. (2005). A novel subspace
identification approach with enforced causal models.
Automatica, 41(12), 2043–2053.

Skjoldan, P.F. and Hansen, M.H. (2009). On the similarity
of the coleman and lyapunov–floquet transformations
for modal analysis of bladed rotor structures. J. Sound
Vib., 327(3), 424–439.

Skjoldan, P. (2009). Modal dynamics of wind turbines
with anisotropic rotors. In 47th AIAA Aerospace Sci-
ences Meeting Including The New Horizons Forum and
Aerospace Exposition, 1036.

Tcherniak, D., Yang, S., and Allen, M.S. (eds.) (2014).
Experimental characterization of operating bladed rotor
using harmonic power spectra and stochastic subspace
identification.

Tcherniak, D. (2014). Loss of rotor isotropy as a blade
damage indicator for wind turbine structure health mon-
itoring systems. In EWSHM-7th European Workshop on
Structural Health Monitoring.

Tcherniak, D. and Larsen, G.C. (eds.) (2013). Application
of OMA to an Operating Wind Turbine: now including
Vibration Data from the Blades.

van Overschee, P. and de Moor, B. (1993). Subspace
algorithms for the stochastic identification problem.
Automatica, 29(3), 649–660.

Verhaegen, M. and Dewilde, P. (1992). Subspace model
identification part 2. analysis of the elementary output-
error state-space model identification algorithm. Inter-
national journal of control, 56(5), 1211–1241.

Wereley, N.M. and Hall, S.R. (1991). Linear time periodic
systems: transfer function, poles, transmission zeroes
and directional properties. In American Control Con-
ference, 1179–1184. IEEE.

Yang, S., Tcherniak, D., and Allen, M.S. (2014). Modal
analysis of rotating wind turbine using multiblade coor-
dinate transformation and harmonic power spectrum. In
Topics in Modal Analysis I, Volume 7, 77–92. Springer.


