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Scale function vs Topological entropy

Federico Berlai∗ Dikran Dikranjan† Anna Giordano Bruno†

Abstract

In the realm of topological automorphisms of totally disconnected locally compact groups, the
scale function introduced by Willis in [19] is compared with the topological entropy. We prove that
the logarithm of the scale function is always dominated by the topological entropy and we provide
examples showing that this inequality can be strict. Moreover, we give a condition equivalent to the
equality between these two invariants. Various properties of the scale function, inspired by those
of the topological entropy, are presented.
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1 Introduction

The scale function for inner automorphisms of totally disconnected locally compact groups was intro-
duced by Willis [19] and developed in his later works; among them we mention [20, 21, 22], where the
scale function was defined for topological automorphisms of such groups as well. A wealth of results
concerning the explicit computation of the scale function in p-adic Lie groups and in linear groups
over local fields were obtained by Glöckner [10, 11, 12].

On the other hand, Adler, Konheim and McAndrew introduced in [1] the topological entropy for
continuous selfmaps of compact spaces, while later on Bowen in [4] gave a different definition of topo-
logical entropy for uniformly continuous selfmaps of metric spaces, and this was extended to uniformly
continuous selfmaps of uniform spaces by Hood in [14]. As explained in detail in [8], this definition
can be significantly simplified in the case of continuous endomorphisms of totally disconnected locally
compact groups.

For a topological automorphism of a totally disconnected locally compact group, the scale function
and the topological entropy seem to be strongly related. A question in this direction was posed by
Thomas Weigel, who asked for a possible relation of the scale function with either the topological
entropy or the algebraic entropy. Even if they do not coincide in general, we see in this paper that
the values of the scale function and of the topological entropy can be obtained in a similar way, and
this permits to find the precise relation between them. Further aspects of the connection of the scale
function to the topological and the algebraic entropy are discussed in the forthcoming paper [3].

So in this paper we are mainly concerned with a totally disconnected locally compact group G and
a topological automorphism φ : G → G; when not explicitly said, we are assuming to be under these
hypotheses. It is worth recalling immediately that a totally disconnected locally compact group G has

∗The first named author was partially supported by the European Research Council (ERC) grant of Prof. Goulnara
Arzhantseva, grant agreement no. 259527.
†The second and the third named authors were partially supported by “Progetti di Eccellenza 2011/12” of Fondazione

CARIPARO.
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as a local base at eG the family B(G) of all open compact subgroups of G, as proved by van Dantzig
in [18].

We start now giving the precise definition of scale function as it was introduced in [22]. For G a
totally disconnected locally compact group and φ : G → G a topological automorphism, the scale of
φ is

sG(φ) = min{sG(φ,U) : U ∈ B(G)}, (1.1)

where
sG(φ,U) = [φ(U) : U ∩ φ(U)].

Note that for every U ∈ B(G) the index sG(φ,U) is finite as U ∩ φ(U) is open and φ(U) is compact,
so the value sG(φ) of the scale function of φ is always a natural number. We use the notations s(φ,U)
and s(φ) when the group G is clear from the context.

It is worth to observe immediately that the scale function of any topological automorphism φ of
G is trivial (i.e., s(φ) = 1), whenever the group G is either compact or discrete.

Since the scale function is defined as a minimum, there exists U ∈ B(G) for which this minimum
realizes, that is s(φ) = s(φ,U), and such U is called minimizing for φ in [21]. Let M(G,φ) be the
subfamily of B(G) consisting of all compact open subgroups of G that are minimizing for φ, that is

M(G,φ) = {U ∈ B(G) : U minimizing for φ}.

Moreover, we say that a subgroup U of G is φ-invariant if φ(U) ⊆ U , inversely φ-invariant if U ⊆ φ(U)
(i.e., φ−1(U) ⊆ U), and φ-stable if φ(U) = U (i.e., U is both φ-invariant and inversely φ-invariant).

It is easy to see that M(G,φ) contains all φ-invariant or inversely φ-invariant U ∈ B(G); in
particular, s(φ) = 1 precisely when there exists a φ-invariant U ∈ B(G), that is, M(G,φ) = {U ∈
B(G) : U φ-invariant} when s(φ) = 1 (see Lemma 2.1).

On the other hand, if one has to use only the definition of scale function, the subgroups minimizing
for φ that are not φ-invariant or inversely φ-invariant become quite hard to come by, since in (1.1)
one has to check all subgroups from the large filter base B(G). So, in order to characterize and find
minimizing subgroups, a different approach is adopted by Willis and we describe it in what follows.
For U ∈ B(G) let

Uφ+ =
⋂
n∈N

φn(U) and Uφ− =
⋂
n∈N

φ−n(U); (1.2)

and also
Uφ++ =

⋃
n∈N

φn(Uφ+) and Uφ−− =
⋃
n∈N

φ−n(Uφ−). (1.3)

Note that Uφ− = Uφ−1+ is φ-invariant and Uφ+ = Uφ−1− is inversely φ-invariant (for further properties
of these subgroups see Lemma 2.1 and the diagram (2.1)). When the automorphism φ is clear from
the context it is omitted from these notations.

The subgroup U is said to be:

(a) tidy above for φ if U = U+U− (or equivalently, U = U−U+);

(b) tidy below for φ if U++ is closed;

(c) tidy for φ if it is tidy above and tidy below for φ.

The consequence of the so-called “tidying procedure” given in [21] is the following fundamental
theorem showing that the minimizing subgroups are precisely the tidy subgroups, namely

M(G,φ) = {U ∈ B(G) : U tidy for φ}.
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Theorem 1.1. [21, Theorem 3.1] Let G be a totally disconnected locally compact group, φ : G→ G a
topological automorphism and U ∈ B(G). Then U is minimizing for φ if and only if U is tidy for φ.
In this case

s(φ) = [φ(U+) : U+].

Note that the index [φ(U+) : U+] is finite as U+ = U ∩ φ(U+) and U is open, so U+ is open in
φ(U+), while φ(U+) is compact.

We pass now to recall the definition of topological entropy in this setting, following [8]. Let G be
a totally disconnected locally compact group, φ : G→ G a continuous endomorphism and U ∈ B(G).
For an integer n ≥ 0 let

Un =
n⋂
k=0

φk(U) and U−n =
0⋂

k=−n
φk(U). (1.4)

The topological entropy of φ with respect to U is given by the following limit, which is proved to exist,

Htop(φ,U) = lim
n→∞

log[U : U−n]

n
;

and the topological entropy of φ is

htop(φ) = sup{Htop(φ,U) : U ∈ B(G)}.

As mentioned above the scale function of any topological automorphism of any totally disconnected
compact group is trivial. This is not the case for the topological entropy; indeed, for example for a
prime p the topological entropy of the left Bernoulli shift of Z(p)Z is log p (see Example 3.2). So it
is immediately clear that the topological entropy does not always coincide with the logarithm of the
scale function.

The following limit free formula for the computation of the topological entropy was proved in
[9] and gives the possibility to easily compare the scale function with the topological entropy. An
analogous formula for the topological entropy of continuous endomorphisms of totally disconnected
compact groups was previously given in [6].

Theorem 1.2. [9] Let G be a totally disconnected locally compact group, φ : G → G a topological
automorphism and U ∈ B(G); then

Htop(φ,U) = log[φ(U+) : U+].

In [9] this formula is applied to verify the basic properties of the topological entropy, well-known for
compact groups (see [17]), also for topological automorphisms of totally disconnected locally compact
groups. These properties are the so-called Logarithmic Law, Invariance under conjugation, Mono-
tonicity for subgroups and quotients, Weak Addition Theorem and Continuity for inverse limits (see
Fact 4.1 below).

Contents of the paper. The paper is organized as follows.

In the first part of Section 2 we recall some basic properties of the tidy subgroups, which are
applied in the following sections to prove the main results of this paper. Then we give a background
on a subgroup considered in [2] and studied more in deed and given a name in [23], which is strongly
related to tidy subgroups and the scale function. Namely, for G a totally disconnected locally compact
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group and φ : G → G a topological automorphism, the nub of φ is the intersection of all subgroups
U ∈ B(G) tidy for φ, that is, in view of Theorem 1.1,

nub(φ) =
⋂
{U ∈ B(G) : U ∈M(G,φ)}. (1.5)

Clearly, M(G,φ) is a local base at eG precisely when nub(φ) = {eG} (see Corollary 2.8). Moreover,
nub(φ) is φ-stable and compact (see Fact 2.7), so s(φ �nub(φ)) = 1.

In Section 3 we compare the values of the logarithm of the scale function with those of the topo-
logical entropy. Indeed, we see that for G a totally disconnected locally compact group and φ : G→ G
a topological automorphism, they are respectively the min and the sup of the same subset of logN+,
that is

{log[φ(U+) : U+] : U ∈ B(G)}.
An immediate consequence is that the inequality

log s(φ) ≤ htop(φ) (1.6)

holds in general (see Theorem 3.1). Moreover, this inequality can be strict, even in the non-compact
(abelian) case (see Example 3.10), and this occurs precisely when the nub is not trivial. Indeed, the
following theorem gives the precise relation between the scale function and the topological entropy, so
answers the above mentioned question motivating this paper.

Theorem 1.3. Let G be a totally disconnected locally compact group and φ : G → G a topological
automorphism. Then log s(φ) = htop(φ) if and only if nub(φ) = {eG}.

In the first version of this paper Theorem 1.3 was formulated as a conjecture. More precisely,
the sufficiency of the condition nub(φ) = {eG} for the equality log s(φ) = htop(φ) was proved (see
Proposition 3.5), while we only conjectured the necessity of that condition. Two different proofs of the
necessity, included at the end of Section 3, were offered to us by Udo Baumgartner (a more topological
one) and by Pablo Spiga (a more algebraically oriented one).

In Section 4 we give the properties of the scale function with respect to the typical properties of the
topological entropy. Logarithmic Law, Invariance under conjugation and Monotonicity for subgroups
and quotients were proved in [19, 21], while we see that also the Weak Addition Theorem holds true
and we discuss Continuity for direct and inverse limits.

In Section 5 we present an explicit computation of the scale function of any topological automor-
phism of Qn

p , where Qp denotes the field of p-adic numbers and n is a positive integer (see Theorem
5.2). This result is inspired by the so-called p-adic Yuzvinski Formula for the topological entropy. In-
deed, the Yuzvinski Formula was proved in [24] by Yuzvinski and it gives the values of the topological
entropy of topological automorphisms φ of Q̂n in terms of the Mahler measure of the characteristic
polynomial of φ. A different and clear proof of the Yuzvinski Formula is given in [15], and it is based
on the computation of the topological entropy of topological automorphisms of Qn

p , that is the result
we referred to above as p-adic Yuzvinski Formula. A particular case of Theorem 5.2 (when all eigen-
values of φ belong to Qp) was mentioned without proof in [22]. Moreover, one can obtain this result
directly from the general method given by Glöckner in [11] for computing the scale function on p-adic
Lie groups.

In the second part of Section 5 we assume the totally disconnected locally compact group G to
be abelian. Under the hypothesis that G is covered by its compact subgroups, that ensures total
disconnectedness of the Pontryagin dual Ĝ of G, we prove that

s(φ) = s(φ̂),

where φ̂ : Ĝ→ Ĝ is the dual automorphism of the topological automorphism φ of G (see Theorem 5.5).
This is a so-called Bridge Theorem, inspired by the analogous one from [7] connecting the topological
entropy with the algebraic entropy in the same setting.

4



Notation and terminology

As usual, N denotes the set of natural numbers and N+ the set of positive integers, P denotes the set
of all prime numbers, Z denotes the group of integers and T denotes the circle group with its usual
topology. For p ∈ P, Z(p) = Z/pZ denotes the cyclic group of order p, Jp denotes the group/ring of
p-adic integers and Qp denotes the field of p-adic numbers.

If G and H are topological groups we indicate by G ∼= H that they are topological isomorphic,
that is, they are isomorphic both as groups and as topological spaces.

Let F be a group and consider G = FZ; then the left Bernoulli shift on G is the automorphism
σ : G → G defined by σ

(
(fi)i∈Z

)
= (fi+1)i∈Z; if F is a topological group and G is endowed with the

product topology, then σ : G→ G is a topological automorphism.
Let G be a topological abelian group, then the Pontryagin dual Ĝ of G is the (abelian) group of

all continuous homomorphisms χ : G→ T (i.e., characters), endowed with the compact-open topology.
If φ : G → G is a continuous endomorphism, then its dual homomorphism φ̂ : Ĝ → Ĝ is defined by
φ̂(χ) = χ ◦ φ for every χ ∈ Ĝ. If G is a locally compact abelian group, so is its dual group Ĝ, and the
dual endomorphism φ̂ : Ĝ → Ĝ is continuous. Moreover, if G is finite then G ∼= Ĝ, and G is discrete
if and only if Ĝ is compact. Recall also that, if X ⊆ G, the annihilator of X in Ĝ is X⊥ = {χ ∈ Ĝ :
χ(x) = 0 ∀x ∈ X} and, if Y ⊆ Ĝ, the annihilator of Y in G is Y ⊥ = {g ∈ G : χ(g) = 0 ∀χ ∈ Y }.

Acknowledgements

It is a pleasure to thank Thomas Weigel for asking the question that inspired this work, George
Willis for sending us his preprint [23] which was fundamental for give an answer to the question, Udo
Baumgartner and Pablo Spiga for their kind permission to include here their proofs of our conjecture.
Last, but not least, we thank the referee for the sharp and useful comments and suggestions.

2 Scale function and tidy subgroups

In the first part of this section we are mainly concerned with basic properties of tidy subgroups.

The next lemma collects in particular known immediate examples of minimizing subgroups.

Lemma 2.1. Let G be a totally disconnected locally compact group, φ : G→ G a topological automor-
phism and U ∈ B(G). Then:

(a) if U is φ-invariant then U is minimizing for φ and s(φ) = s(φ,U) = 1;

(b) U is minimizing for φ if and only if U is minimizing for φ−1, i.e., M(G,φ) =M(G,φ−1);

(c) if U is inversely φ-invariant then U is minimizing for φ and s(φ) = s(φ,U) ≥ 1, with equality
exactly when U is also φ-stable;

(d) consequently, the following conditions are equivalent:

(i) s(φ) = 1

(ii) there exists a φ-invariant U ∈ B(G);

(iii) M(G,φ) = {U ∈ B(G) : U φ-invariant}.

Proof. (a) follows immediately from the definition of scale function, (b) is [19, Corollary 1], (c) follows
from (a) and (b), while (d) from (a) and the definition of scale function.
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If G is a totally disconnected locally compact group and φ : G → G a topological automorphism,
for a subgroup U ∈ B(G) one can consider the following diagram, helping to memorize better the
subgroups defined in (1.2), (1.3) and (1.4), and their interrelations. Note that U+U− need not be a
subgroup of G; this condition is satisfied exactly when U is tidy above for φ, and in this case the
diagram is contained in the lattice of all subgroups of G.

. . . φ−2(U) φ−1(U) U φ(U) φ2(U) . . .

U−− U−1 U1 U++

. . . U−2 U2 . .
.

φ−1(U−) . .
.

U+U−
. . . φ(U+)

U− U+

U− ∩ U+

(2.1)

The motivation to introduce these subgroups is to measure the extent to which the subgroup U is
φ-invariant or inversely φ-invariant. Indeed, U is φ-invariant if and only if U− = U , while U is inversely
φ-invariant if and only if U+ = U .

The subgroup U+ is compact and it is the largest inversely φ-invariant subgroup contained in U ;
moreover, we have an increasing chain of subgroups

U+ ⊆ φ(U+) ⊆ . . . ⊆ φn(U+) ⊆ . . . ⊆ U++ =
⋃
n∈N

φn(U+),

where all indices [φn+1(U+) : φn(U+)] coincide with [φ(U+) : U+] (so are finite, as noted above). Hence
U++, which is the increasing union of this chain, is a subgroup of G that contains U+. If U is tidy
below for φ, that is U++ is closed in G, then U++ is locally compact with the subspace topology,
hence a Baire space; so there exists an integer n ≥ 0 such that φn(U+) is open in U++; in this case
U+ is also open in U++. The converse implication holds true as well, so we have the following lemma
characterizing the subgroups tidy below for φ.

Lemma 2.2. Let G be a totally disconnected locally compact group, φ : G→ G a topological automor-
phism and U ∈ B(G). Then the following conditions are equivalent:

(a) U is tidy below for φ;

(b) U++ is locally compact;

(c) U+ is open in U++.

The next Lemma 2.4 was inspired by the proof of [19, Lemma 1] concerning the case of inner
automorphisms; it provides characterizations of the tidy above subgroups. The following elementary
fact from group theory is needed.

Claim 2.3. Let G be a group and let A, B, C be subgroups of G. If C ⊆ B and B ⊆ A · C, then
B = (A ∩B)C = C(A ∩B).

Lemma 2.4. Let G be a totally disconnected locally compact group, φ : G→ G a topological automor-
phism and U ∈ B(G). Then the following conditions are equivalent:
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(a) U is tidy above for φ;

(b) φ(U) = φ(U+)(U ∩ φ(U));

(c) φn(U) = φn(U+)Un for every integer n ≥ 0;

(d) U+ ∩ uU− 6= ∅ for every u ∈ U .

Proof. (a)⇒(b) Let U ∈ B(G) be tidy above for φ. This means that U = U−U+ and so φ(U) =
φ(U−)φ(U+). Moreover, φ(U−) ⊆ U− ⊆ U and then φ(U) ⊆ Uφ(U+). Now Claim 2.3 applied to U ,
φ(U) and φ(U+) yields φ(U) = φ(U+)(U ∩ φ(U)).

(b)⇒(c) Let n ≥ 0. The inclusion Un ⊆ U is always satisfied, so

φ(Un) ⊆ φ(U) = φ(U+)(U ∩ φ(U)) ⊆ φ(U+)U,

thus Claim 2.3 applied to U , φ(Un) and φ(U+) yields

φ(Un) = φ(U+)(U ∩ φ(Un)) = φ(U+)Un+1. (2.2)

Using (2.2) we prove by induction the condition in (c). Indeed, the case n = 0 is clear and the case
n = 1 is exactly the condition in (b). Now assume that φn(U) = φn(U+)Un. Therefore φn+1(U) =
φn+1(U+)φ(Un) = φn+1(U+)Un+1, where the last equality follows from (2.2) noting also that φ(U+) ⊆
φn+1(U+).

(c)⇒(d) Let u ∈ U and consider, for every integer n ≥ 0, the subset Cn(u) = U+ ∩ uU−n. These
subsets are compact and satisfy Cn+1(u) ⊆ Cn(u). Moreover, since φn(U−n) = Un,

Cn(u) = {z ∈ U+ : z ∈ uU−n}
= {z ∈ U+ : u−1 ∈ z−1U−n}
= {z ∈ U+ : φn(u−1) ∈ φn(z−1)Un}.

Then Cn(u) is non-empty in view of the condition in (c). By the compactness of U+, the intersection
C =

⋂
n∈NCn(u) is non-empty. Moreover, it coincides with U+ ∩ uU−; in fact, the inclusion U+ ∩

uU− ⊆ C is clear. To verify the converse inclusion let z ∈ C, that exists since C is non-empty; then
z ∈ U+ ∩ uU−n for every n ≥ 0, in particular z ∈ U+ and u−1z ∈ U−n for every n ≥ 0, that is
z ∈ U+ ∩ uU−.

(d)⇒(a) For every u ∈ U there exist u+ ∈ U+ and u− ∈ U− such that u+ = uu−, that is
u = u+(u−)−1. This means that U ⊆ U+U−, that is U is tidy above for φ.

This lemma has important consequences. In particular, the following corollary of Lemma 2.4 and
Theorem 1.1, which is contained in Step 1 of the proof of [21, Theorem 3.1], is one of the two main
ingredients to prove in the next section the inequality announced in (1.6).

Corollary 2.5. Let G be a totally disconnected locally compact group, φ : G → G a topological auto-
morphism and U ∈ B(G). Then s(φ,U) ≥ [φ(U+) : U+]; equality holds exactly when U is tidy above
for φ.

In particular,
s(φ) = min{[φ(U+) : U+] : U ∈ B(G)}.

Proof. Since φ(U) ⊇ φ(U+)U1, where U1 = U ∩ φ(U), we have

s(φ,U) = [φ(U) : U1] ≥ [φ(U+)U1 : U1].

Moreover,
[φ(U+)U1 : U1] = [φ(U+) : U1 ∩ φ(U+)] = [φ(U+) : U+].
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This proves that s(φ,U) ≥ [φ(U+) : U+].
If U is tidy above for φ, then φ(U) = φ(U+)U1 by Lemma 2.4, and hence we have the equality

s(φ,U) = [φ(U+) : U+].
From what we have just proved it follows that s(φ) ≤ min{[φ(U+) : U+] : U ∈ B(G)}. Equality

holds, since Theorem 1.1 yields that s(φ) = s(φ, V ) = [φ(V+) : V+] for some V ∈M(G,φ).

Another consequence of Lemma 2.4 is the following result. It was proved in [19, Lemma 1] in the
case of inner automorphisms.

Corollary 2.6. Let G be a totally disconnected locally compact group, φ : G → G a topological auto-
morphism and U ∈ B(G). There exists an integer n ≥ 0 such that Un is tidy above for φ. In particular,
the subgroups tidy above for φ form a local base at eG.

Proof. Consider the subfamily {φ(Un)}n≥0 of B(G), and note that φ(Un) ⊇ φ(Un+1) for every n ≥ 0,
and φ(U+) =

⋂
n∈N φ(Un). Consider the set φ(U+)U , which is a compact and open neighborhood of

φ(U+). There exists an integer n ≥ 0 such that φ(Un) ⊆ φ(U+)U . Apply now Claim 2.3 to U , φ(Un)
and φ(U+) to obtain

φ(Un) = φ(U+)(U ∩ φ(Un)) = φ(U+)Un+1.

Since U+ = (Un)+ and Un+1 = Un ∩ φ(Un) we have that

φ(Un) = φ((Un)+)(Un ∩ φ(Un)).

In view of Lemma 2.4 this means that Un is tidy above for φ.

In the second part of this section we recall the properties of the nub (that is the intersection of
all tidy subgroups, see (1.5)), starting with the following useful characterization of this remarkable
subgroup.

Fact 2.7. [23, Corollary 4.7] Let G be a totally disconnected locally compact group and φ : G → G a
topological automorphism. Then nub(φ) is the largest φ-stable compact subgroup of G having no proper
φ-stable relatively open subgroups.

This fact implies that when the nub is finite, then it is trivial. Indeed, if nub(φ) is finite then
{eG} is open in nub(φ), consequently {eG} is a φ-stable relatively open subgroup of nub(φ), and thus
nub(φ) = {eG} by Fact 2.7.

Moreover, it is worth to observe that always s(φ �nub(φ)) = 1 as nub(φ) is compact.

We know that the family B(G) of compact open subgroups of G is a local base at eG and that every
U ∈ B(G) contains a compact open subgroup that is tidy above for φ by Corollary 2.6. Moreover,
[23, Corollary 4.3] asserts that a subgroup U ∈ B(G) is tidy below for φ if and only if nub(φ) ⊆ U
(see also [2, Lemma 3.31]). So we have the following result, where (b) can be deduced from (a) via
Lemma 2.1, and (a) is essentially contained in [2, Theorem 3.32], where several conditions equivalent
to nub(φ) = {eG} are given.

Corollary 2.8. Let G be a totally disconnected locally compact group and φ : G → G a topological
automorphism. Then:

(a) M(G,φ) is a local base at eG if and only if nub(φ) = {eG};

(b) if s(φ) = 1, then nub(φ) = {eG} if and only if G has a local base at eG consisting of φ-invariant
compact open subgroups.
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If s(φ) = 1, we have U ∈M(G,φ) precisely when U is φ-invariant by Lemma 2.1, so in this case

nub(φ) =
⋂
{U ∈ B(G) : U is φ-invariant}. (2.3)

Now (2.3) allows us to extend the definition of the nub also to arbitrary continuous endomorphisms
of totally disconnected compact groups (note that [φ(U) : U ∩ φ(U)] is finite for every U ∈ B(G)).

Let us see some examples of computation of the nub.

Example 2.9. (a) Let G be a totally disconnected locally compact group and φ : G → G a topo-
logical automorphism. If φ is periodic (i.e., φm = idG for some integer m > 0), then G has a
base of φ-invariant compact open subgroups, so nub(φ) = {eG} as noted after Corollary 2.8.

(b) If G =
∏
pNp, where p is a prime and each Np is a finitely generated Jp-module, then G has a

base of fully invariant compact open subgroups (namely, {mG : m ∈ N+}), so nub(φ) = {eG}
for every continuous endomorphism of G.

(c) Let G = FZ, where F is an arbitrary finite group. Then nub(σ) = G, where σ : G → G is the
left Bernoulli shift, (see Fact 2.7).

(d) Let G be a totally disconnected compact (i.e., profinite) abelian group. Then for every continuous
endomorphism φ : G→ G one can completely describe nub(φ) by using the dual endomorphism
φ̂ : Ĝ→ Ĝ. Indeed,

nub(φ) = t
φ̂
(Ĝ)⊥,

where t
φ̂
(Ĝ) is the sum of all finite φ̂-invariant subgroups of the discrete torsion abelian group

Ĝ; in terms of [5], t
φ̂
(Ĝ) is the Pinsker subgroup of φ̂, defined as the largest φ̂-invariant subgroup

of Ĝ where the restriction of φ̂ has algebraic entropy zero.

According to [5], nub(φ) is the largest φ-invariant closed subgroup of G where the restriction of
φ acts ergodically, or, equivalently, has strongly positive topological entropy; this means that the
induced endomorphism φ : G/nub(φ)→ G/nub(φ) is the Pinsker factor of φ, that is htop(φ) = 0
and this is the largest factor with this property (see [5] for more details).

(e) As noted in [23], the dynamical property of the subgroup nub(φ) from item (d) remains true in
the non-abelian case too. Namely, φ acts transitively on nub(φ), and nub(φ) is the largest closed
φ-invariant subgroup of G where φ acts ergodically.

(f) For any integer n > 0 and every topological automorphism φ : Qn
p → Qn

p , nub(φ) is trivial.
Indeed, being a compact subgroup of Qn

p , nub(φ) ∼= Jmp for some 0 ≤ m ≤ n. By (b) we can
conclude that nub(φ) has plenty of proper φ-stable open subgroups. According to Fact 2.7, this
implies m = 0.

3 The scale function and the topological entropy

It follows from Corollary 2.5 that

log s(φ) = min{log[φ(U+) : U+] : U ∈ B(G)}.

Furthermore, Theorem 1.2 yields

htop(φ) = sup{log[φ(U+) : U+] : U ∈ B(G)}.

This gives the inequality announced in (1.6):
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Theorem 3.1. Let G be a totally disconnected locally compact group and φ : G → G a topological
automorphism. Then

log s(φ) ≤ htop(φ). (3.1)

We observe immediately that if G is compact, then the inequality in Theorem 3.1 can be strict in
a trivial way. Indeed, G compact implies log s(φ) = 0, while the topological entropy htop(φ) can be
positive, as in the next example.

Example 3.2. For a prime p let G = Z(p)Z and σ : G → G the left Bernoulli shift. Then htop(σ) =
log p (see [1, 17]); on the other hand, we have seen that s(σ) = 1 and nub(σ) = G in Example 2.9(c).

The inequality in Theorem 3.1 can be obtained also in different way based on an equivalent defi-
nition of the scale function, as explained in the next remark.

Remark 3.3. For G a totally disconnected locally compact group and φ : G → G a topological
automorphism, it was proved in [16, Theorem 7.7] that, for any U ∈ B(G),

log s(φ) = lim
n→∞

log[φn(U) : U ∩ φn(U)]

n
.

This gives immediately that log s(φ) ≤ htop(φ), because [φn(U) : U ∩ φn(U)] = [U : φ−n(U) ∩ U ] as φ
is an automorphism, and [U : φ−n(U) ∩ U ] ≤ [U : U−n] as U−n ⊆ φ−n(U) ∩ U .

Let G be a totally disconnected locally compact group and φ : G→ G a continuous endomorphism.
Since Htop(φ,−) is antimonotone, that is,

if U, V ∈ B(G) and U ⊆ V , then Htop(φ, V ) ≤ Htop(φ,U),

by the definition, it is clear that to compute the topological entropy htop(φ) it suffices to take the
supremum of Htop(φ,U) when U ranges in a local base at eG of G:

Claim 3.4. Let G be a totally disconnected locally compact group, φ : G→ G a continuous endomor-
phism and B ⊆ B(G) a local base at eG. Then htop(φ) = sup{Htop(φ,U) : U ∈ B}.

Applying this claim on topological entropy, as well as Theorem 1.1 and Theorem 1.2, in the
following proposition we give a sufficient condition to have equality in (3.1).

Proposition 3.5. Let G be a totally disconnected locally compact group and φ : G→ G a topological
automorphism. If nub(φ) = {eG} then log s(φ) = htop(φ).

Proof. Suppose that nub(φ) = {eG}, then for every U ∈ B(G) tidy for φ we have log s(φ) = log[φ(U+) :
U+] by Theorem 1.1 and so Htop(φ,U) = log s(φ) by Theorem 1.2. We are assuming that nub(φ) =
{eG}, so the tidy subgroups form a local base at eG by Corollary 2.8. Hence Claim 3.4 permits to
conclude that log s(φ) = htop(φ).

In particular, Proposition 3.5 says that, if the inequality log s(φ) ≤ htop(φ) in (3.1) is strict,
then nub(φ) 6= {eG}. As already mentioned, this is the case of topological automorphisms φ of totally
disconnected compact groups with positive topological entropy; indeed, log s(φ) = 0, while htop(φ) > 0.
So we have the following consequence of Proposition 3.5 on topological entropy.

Corollary 3.6. Let G be a totally disconnected compact group and φ : G→ G a topological automor-
phism. If htop(φ) > 0 then nub(φ) 6= {eG}.

Another consequence of Proposition 3.5 on topological entropy concerns its values. Indeed, the
scale function assumes only finite values as noted above, while the topological entropy can be infinite,
being defined as a supremum. We see now that when the nub is trivial, the topological entropy has
only finite values.
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Corollary 3.7. Let G be a totally disconnected locally compact group and φ : G → G a topological
automorphism. If nub(φ) = {eG}, then htop(φ) is finite.

Moreover, htop(φ) = Htop(φ,U) = log[φ(U+) : U+] for every U ∈ B(G) tidy for φ.

Proof. By Proposition 3.5 we have htop(φ) = log s(φ). Then apply Theorems 1.1 and 1.2.

We give now two examples of non-compact totally disconnected locally compact groups G and
topological automorphisms φ : G→ G for which nub(φ) = {eG} and so log s(φ) = htop(φ).

Example 3.8. (a) For any integer n > 0 and every topological automorphism φ : Qn
p → Qn

p the
equality log s(φ) = htop(φ) holds true. Indeed, we know that nub(φ) is trivial by Example 2.9(f),
so we can conclude using Proposition 3.5.

(b) Let p be a prime, G = Z(p)Z and σ : G→ G the left Bernoulli shift. Modify the usual compact
product topology of G taking U = Z(p)N to be an open subgroup (equipped with its compact
product topology) of G in this new topology. With respect to Example 3.2, the value of the
topological entropy remains htop(σ) = log p.

Since nub(σ) is trivial, Proposition 3.5 applies to give log s(σ) = htop(σ) = log p > 0 in this case
(compare with the particular case of coincidence of log s(φ) and htop(φ) considered in Corollary
3.9 below).

We know that s(φ) = 1 if and only if there exists a φ-invariant U ∈ B(G) by Lemma 2.1(d).
Moreover, Corollary 2.8(b) implies that if s(φ) = 1 and nub(φ) = {eG} then G has a local base at eG
consisting of φ-invariant compact open subgroups. We see in the next corollary that this condition is
equivalent to htop(φ) = 0.

Corollary 3.9. Let G be a totally disconnected locally compact group and φ : G → G a topological
automorphism. Then the following conditions are equivalent:

(a) htop(φ) = 0;

(b) G has a local base at eG formed by φ-invariant U ∈ B(G);

(c) G has a local base at eG formed by subgroups tidy for φ and s(φ) = 1;

(d) nub(φ) = {eG} and s(φ) = 1.

Proof. (a)⇒(b) By the definition of topological entropy htop(φ) = 0 implies Htop(φ,U) = 0 for every
U ∈ B(G). The condition Htop(φ,U) = 0 implies that there exists an integer n ≥ 0 such that
U−n = U−; this follows from [6, Lemma 3.1] in the compact case (see [9] for the general case). Then
U− ∈ B(G), U− ⊆ U and it is φ-invariant. This shows that G has a local base at eG formed by
φ-invariant U ∈ B(G).

Now (b)⇒(c)⇒(d) are obvious, and (d)⇒(a) follows from Proposition 3.5.

The hypothesis s(φ) = 1 of Corollary 3.9(c,d) is satisfied in obvious way when G is compact. In
contrast to Example 3.2, now Example 3.10 furnishes a totally disconnected locally compact group G
that is not compact, and a topological automorphism φ : G→ G such that s(φ) = 1 and htop(φ) > 0.
By Proposition 3.5, this yields that nub(φ) is necessarily a non-trivial subgroup of G, and in this case
nub(φ) is also proper (compare with Examples 3.2 and 3.8(b)).

Example 3.10. Let p be a prime and G = Z(p∞)Z. Imposing that U = Z(p)Z is open in G (equipped
with its compact product topology), then G is given a totally disconnected locally compact (non-
compact) topology. Consider σ : G→ G the left Bernoulli shift; clearly σ(U) = U , and then:
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(a) nub(σ) = U ;

(b) s(σ) = 1;

(c) Htop(σ, U) = 0;

(d) Htop(σ, V ) = log p, where V = Z(p)−N+ ⊕ {0} ⊕ Z(p)N+ ; in fact [σ(V+) : V+] = p and apply
Theorem 1.2. Note that V+ = Z(p)N+ and V− = Z(p)−N+ , therefore V is tidy above for σ. On
the other hand, V++ = Z(p)(−N) ⊕ Z(p)N+ , which is dense in U and so it is not closed; in other
words V is not tidy below for σ.

(e) htop(σ) = log p, since {Vn : n ∈ Z} is a local base at eG, Htop(σ, Vn) = log p as in item (d). Then
apply Claim 3.4.

Since the sufficiency was already proved in Proposition 3.5, it is enough to prove the necessity in
order to complete the proof of Theorem 1.3.

First proof of Theorem 1.3. Suppose that nub(φ) 6= {eG}; then there exists an element eG 6= g ∈
nub(φ). The family

Bg = {U ∈ B(G) : U is tidy above for φ, g /∈ U}

is a local base at eG, so by Claim 3.4

htop(φ) = sup{Htop(φ,U) : U ∈ Bg}.

As every subgroup tidy for φ contains g by the choice of g, no subgroup U in Bg is tidy for φ. By
Theorem 1.1, no U ∈ Bg is minimizing for φ and so, in view of Theorem 1.2 and Corollary 2.5,

log s(φ) < log s(φ,U) = log[φ(U+) : U+] = Htop(φ,U).

Therefore, log s(φ) < htop(φ).

Second proof of Theorem 1.3. Suppose that log s(φ) = htop(φ). Let U ∈ B(G) be tidy above for
φ. Then

s(φ,U) = [φ(U) : U ∩ φ(U)] = [φ(U+) : U+]

by Corollary 2.5. By Theorem 1.2 and by our assumption we have

log s(φ,U) = log[φ(U+) : U+] = Htop(φ,U) ≤ htop(φ) = log s(φ).

Therefore s(φ) = s(φ,U) and so U is minimizing for φ, that is U is tidy for φ by Theorem 1.1. We
have shown that every U ∈ B(G) that is tidy above for φ is also tidy for φ. Then M(G,φ) is a local
base at eG by Corollary 2.6, hence nub(φ) = {eG} by Corollary 2.8.

4 Basic “entropic” properties of the scale function

In this section we give properties of the scale function similar to the basic properties satisfied by the
topological entropy; so we start reminding the latter ones in the following result.

Fact 4.1. Let G be a totally disconnected locally compact group and φ : G → G a topological auto-
morphism.

(a) [Logarithmic Law] For every integer k ≥ 0 we have htop(φ
k) = k · htop(φ).
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(b) [Invariance under conjugation] If H is another totally disconnected locally compact group and
ξ : G→ H is a topological isomorphism, then htop(φ) = htop(ξφξ

−1).

(c) [Monotonicity] If H is a φ-stable closed subgroup of G, then htop(φ) ≥ htop(φ �H); if H is normal
and φ : G/H → G/H is the topological automorphism induced by φ, then htop(φ) ≥ htop(φ).

(d) [Weak Addition Theorem] If G = G1 ×G2 and φi : Gi → Gi is a topological automorphism for
i = 1, 2, then htop(φ1 × φ2) = htop(φ1) + htop(φ2).

(e) [Continuity] If G is an inverse limit G = lim←−G/Ni with Ni a φ-stable closed normal subgroup,

then htop(φ) = supi∈I htop(φi), where φi : G/Ni → G/Ni is the topological automorphism induced
by φ.

The Logarithmic Law for the scale function is already known:

Fact 4.2 (Logarithmic Law). [19, Corollary 3] Let G be a totally disconnected locally compact group,
φ : G→ G a topological automorphism and n ≥ 0 an integer. Then s(φn) = s(φ)n.

Invariance under conjugation is clear also for the scale function:

Lemma 4.3 (Invariance under conjugation). Let G be a totally disconnected locally compact group
and φ : G → G a topological automorphism. Let H be another totally disconnected locally compact
group and ξ : G→ H a topological isomorphism. Then

(a) U ∈ B(G) if and only if ξ(U) ∈ B(H), therefore B(H) = {ξ(U) : U ∈ B(G)}.

(b) If U ∈ B(G), then U ∈M(G,φ) if and only if ξ(U) ∈M(H, ξφξ−1), and in particular,

M(H, ξφξ−1) = {ξ(U) : U ∈M(G,φ)};

(c) s(φ) = s(ξφξ−1).

Proof. (a) is clear, (b) follows from the fact that sG(φ,U) = sH
(
ξφξ−1, ξ(U)

)
for every U ∈ B(G),

and (c) follows from (b).

Consider the case H = G in the above lemma. We see in Example 4.4 that, whileM(G, ξφξ−1) =
{ξ(U) : U ∈M(G,φ)} and also s(φ) = s(ξφξ−1) by Lemma 4.3(c), it may occur the case thatM(G,φ)
do not coincide withM(G, ξφξ−1). This stresses the fact that the correspondence between minimizing
subgroups for φ and minimizing subgroups for ξφξ−1 is given by U 7→ ξ(U).

Example 4.4. Let φ : Q2
p → Q2

p the topological automorphism defined by the matrix

(
0 p
p−1 0

)
. Then

φ2 = id and so s(φ) = 1 by Fact 4.2. Nevertheless,

s(φ, J2p) =
[
(pJp)× (p−1Jp) : (pJp)× Jp

]
= p

and hence J2p is not a minimizing subgroup for φ, although it is a minimizing subgroup for the canonical

Jordan form of φ. Indeed, let ξ : Q2
p → Q2

p be the topological automorphism defined by

(
p −p
1 1

)
and

ψ : Q2
p → Q2

p the topological automorphism defined by

(
1 0
0 −1

)
, then φ = ξψξ−1, i.e., ψ is the

canonical Jordan form of φ. It is obvious that s(ψ, J2p) = 1.

Monotonicity was proved in [21], indeed the following more precise relation was given there.

13



Fact 4.5 (Monotonicity). [21, Proposition 4.7] Let G be a totally disconnected locally compact group,
φ : G→ G a topological automorphism and H a φ-stable closed subgroup of G. Then

(a) s(φ) ≥ s(φ �H).

If H is also normal and φ : G/H → G/H is the topological automorphism induced by φ, then

(b) s(φ �H) · s(φ) divides s(φ).

Remark 4.6. (a) We call the property in item (d) of Fact 4.1 Weak Addition Theorem. Indeed,
the stronger so-called Addition Theorem holds for the topological entropy in the compact case
(see [4, 17, 24]). More precisely, by Addition Theorem we mean the following property, imposed
on all continuous endomorphisms φ : G → G of compact groups G: if H is a closed φ-invariant
normal subgroup of G, then

htop(φ) = htop(φ �H) + htop(φ),

where φ : G/H → G/H is the continuous endomorphism induced by φ.

(b) It is not known whether the Addition Theorem for the topological entropy holds also in the
general case of locally compact groups, even under the hypotheses that G is totally disconnected
(and abelian) and that φ : G→ G is a topological automorphism.

(c) The counterpart of the Addition Theorem for the scale function does not hold true in general,
since [21, Example 6.4] shows that the inequality s(φ) ≥ s(φ �H) · s(φ) in Fact 4.5(b) can be
strict.

On the other hand, we see in Theorem 4.7 below that the Weak Addition Theorem holds also
for the scale function.

Note that we call this kind of properties Addition Theorem also for the scale function, even if they
have a multiplicative form in this case; just take the logarithm to have the additive form.

Theorem 4.7 (Weak Addition Theorem). Let G, H be totally disconnected locally compact groups
and φ : G→ G, ψ : H → H topological automorphisms. Then s(φ× ψ) = s(φ) · s(ψ).

Proof. Let V ∈ B(G) be tidy for φ and W ∈ B(H) be tidy for ψ. For the compact and open subgroup
V ×W ⊆ G×H, we have that

(V ×W )+ =
⋂
k≥0

(φ× ψ)k(V ×W ) =
⋂
k≥0

(
φk(V )× ψk(W )

)
=
(⋂
k≥0

φk(V )
)
×
(⋂
k≥0

ψk(W )
)

= V+ ×W+,

and in the same way one can prove that (V ×W )− = V− ×W−. Since

(V ×W )+(V ×W )− = (V+V−)× (W+W−) = V ×W,

we have that V ×W is tidy above for φ×ψ. The subgroup V ×W is also tidy below for φ×ψ because

(V ×W )++ =
⋃
k≥0

(φ× ψ)k(V ×W )+ =
⋃
k≥0

(
φk(V+)× ψk(W+)

)
∗
=
(⋃
k≥0

φk(V+)
)
×
(⋃
k≥0

ψk(W+)
)

= V++ ×W++
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is a closed subgroup ofG×H. The equality (∗) holds because the families {φk(V+)}k≥0 and {ψk(W+)}k≥0
are increasing families of subgroups of G and H respectively.

Therefore V ×W is tidy for φ× ψ and

s(φ× ψ) =
[
(φ× ψ)(V ×W ) :

(
(V ×W ) ∩ (φ× ψ)(V ×W )

)]
.

This index is equal to [
φ(V ) : V ∩ φ(V )

]
·
[
ψ(W ) : W ∩ ψ(W )

]
= s(φ) · s(ψ)

and hence s(φ× ψ) = s(φ) · s(ψ).

We conclude this section discussing the continuity of the scale function with respect to direct and
inverse limits. The next proposition should be compared with [21, Proposition 5.3], where the scale
function is considered for inner automorphisms on an increasing sequence of closed subgroups.

Proposition 4.8 (Continuity for direct limits). Let G be a totally disconnected locally compact group
and φ : G → G a topological automorphism. If G ∼= lim−→i∈I Hi, where {Hi}i∈I is a directed system of
φ-stable open subgroups of G, then there exists j ∈ I such that

s(φ) = s(φ �Hj ) = max
i∈I

s(φ �Hi).

Proof. By Lemma 4.5(a) the inequalities

s(φ) ≥ s(φ �Hi) (4.1)

hold true for every i ∈ I. Then s(φ) ≥ maxi∈I s(φ �Hi).
Let U ∈ M(G,φ). Then {Hi ∩ U}i∈I is an open covering of U and so it admits a finite open

subcover, because U is compact. This means that there exists a finite set F ⊆ I such that U ⊆
⋃
i∈F Hi.

Moreover, there exists an index j ∈ I such that Hi ⊆ Hj for every i ∈ F and so U ⊆ Hj . In particular,
U ∈ B(Hj). This implies that U is tidy above also for φ �Hj . Indeed, both automorphisms φ and
φ �Hj share the same subgroups U+ and U−. Moreover, U is tidy below for φ �Hj , because

Uφ�Hj
++ = Uφ++ = Uφ++ ∩Hj

is a closed subgroup of Hj . This means that

s(φ) = s(φ,U) = s(φ �Hj , U) = s(φ �Hj ).

Hence, in view of (4.1),
s(φ) = s(φ �Hj ) = max

i∈I
s(φ �Hi),

and this concludes the proof.

Remark 4.9. A counterpart of Proposition 4.8 regarding continuity for inverse limits holds true:
if G is a totally disconnected locally compact group, φ : G → G is a topological automorphism
and G = lim←−G/Ni is an inverse limit where {Ni}i∈I is an inverse system of φ-stable closed normal

subgroups of G, then s(φ) = maxi∈I s(φi), where φi : G/Ni → G/Ni is the topological automorphism
induced by φ for every i ∈ I. A proof can be found in [3], while the case of inner automorphisms is
proved in [21, Proposition 5.4].

Applying Proposition 4.8 one obtains the following corollary still concerning continuity of the scale
function with respect to direct limits; the condition on the stable subgroups is relaxed from open to
closed, while the set of indices is now supposed to be countable.
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Corollary 4.10. Let G be a totally disconnected locally compact group and φ : G → G a topological
automorphism. If G ∼= lim−→n≥0Hn, where {Hn}n≥0 is a directed system of φ-stable closed subgroups of

G, then exists an integer n ≥ 0 such that

s(φ) = s(φ �Hn) = max
n∈N

s(φ �Hn).

Proof. Apply the Baire Category Theorem to G =
⋃
n∈NHn to conclude that for some m ≥ 0 the

subgroup Hm has non-empty interior. Therefore, Hn is open for all n ≥ m. Now apply Proposition
4.8 to the family of these open subgroups.

5 Scalar p-adic Yuzvinski Formula and Bridge Theorem

In the first part of this section, and more precisely in Theorem 5.2, we compute directly the value of
the scale function of any topological automorphism φ : Qn

p → Qn
p , where n > 0; note that such an

automorphism φ is a Qp-linear transformation and so it is given by an n× n matrix with coefficients
in Qp.

We start recalling some useful information about the p-adic numbers, giving reference to [13] for
more details. Let |−|p be the p-adic norm over Qp, that is, for ξ ∈ Qp

|ξ|p =

{
0 if ξ = 0,

pr if ξ = p−r
(∑∞

i=0 aip
i
)

with a0 ∈ {1, 2, . . . , p− 1}.

Note that Jp = {ξ ∈ Qp : |ξ|p ≤ 1} is a local PID with maximal ideal {ξ ∈ Qp : |ξ|p < 1}.
If K is a finite extension of Qp of degree d = [K : Qp], then the p-adic norm |−|p over Qp can be

extended to a norm over K, and this extension is unique. We indicate this extended norm with |−|p
and we call it the p-adic norm over K. Let

O = {ξ ∈ K : |ξ|p ≤ 1},

then O is a local PID with maximal ideal

m = {ξ ∈ K : |ξ|p < 1}.

Consider now a generator π′ for m, then there exists an integer e > 0 such that p = uπ′e, where u is a
unit in O. Denote by π a generator of m such that p = πe. This number e is independent of the choice
of the generator of m, divides the degree d of the extension and it is called the ramification index of
K over Qp. One can prove that the residual field O/m has cardinality∣∣O/m∣∣ = [O : m] = pf , (5.1)

where we let f = d/e.

The following example is the basic case necessary to obtain in Theorem 5.2 an explicit formula for
the scale function of topological automorphisms of Qn

p .

Example 5.1. Let K be a finite extension of Qp of degree d, let λ ∈ K and consider the topological
automorphism φ : Kn → Kn defined by the Jordan block

J =


λ 1 0 . . . 0
0 λ 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 λ 1
0 . . . 0 0 λ

 ∈ GLn(K).
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We see that On is minimizing for φ and that

sKn(φ) = max{1, |λ|ndp } = max{1, |det J |dp}. (5.2)

Note that the nature of the automorphism φ is completely determined by λ. In fact if λ ∈ O then
On is φ-invariant and s(φ) = s(φ,On) = 1, otherwise it is inversely φ-invariant. In both cases the
subgroup is minimizing for φ by Lemma 2.1(a,c).

Suppose that λ /∈ O, this means that

s(φ) = s(φ,On) =
[
φ(On) : On ∩ φ(On)

]
=
[
(λO)n : On

]
=
[
λO : O

]n
.

Let e be the ramification index of the extension K over Qp, π a generator for m such that p = πe and
f = d/e. Then λ = π−lξ, where ξ ∈ O \m, l > 0 and

|λ|p = |π−l|p = |p−l/e|p = pl/e.

This yields
s(φ) =

[
λO : O

]n
=
[
π−lO : O

]n
= [π−1O : O]ln.

By (5.1), [π−1O : O] = pf and so

s(φ) = (pf )ln = (pl/e)efn = |λ|dnp .

This means exactly that
sKn(φ) = max{1, |λ|dnp }.

In conclusion note that |λ|np = |det J |p, so this proves also the other equality in (5.2).

By Example 3.8(a) we have that the equality log s(φ) = htop(φ) holds true for all topological
automorphism φ : Qn

p → Qn
p , so one could apply the p-adic Yuzvinski Formula for the topological

entropy proved in [15] to obtain (5.3). Nevertheless, we give another direct proof of this formula for
sake of completeness, but also because the computation of the scale function is simpler than that of
the topological entropy; indeed, for the scale function it suffices to take into account only one compact
open subgroup which is minimizing (i.e., tidy) for φ, without any recourse to the Haar measure.

Theorem 5.2. Let φ : Qn
p → Qn

p be a topological automorphism, for an integer n > 0. Then

sQn
p
(φ) =

∏
|λi|p>1

|λi|p, (5.3)

where {λ1, . . . , λn} is the family of all eigenvalues of φ contained in a finite extension K of Qp.

Proof. Assume without loss of generality that K = Qp[λ1, . . . , λn], that is, K is the splitting field of
the minimal polynomial of φ over Qp, and let d = [K : Qp].

Let φK = φ ⊗Qp idK : Kn → Kn, where ⊗Qp is the tensor product over Qp. The automorphisms
φ and φK are represented by the same matrix respectively over Qp and K, hence they have the same
eigenvalues.

Let A be a base of K over Qp, then every ξ ∈ K has coordinates [ξ]A = (ξ(1), . . . , ξ(d)). Moreover,

Kn ∼= Qdn
p and this isomorphism α : Kn → Qdn

p is given by

α(ξ1, . . . , ξn) =
(

[ξ1]A, . . . , [ξn]A

)
.

Let
Φ = φ× · · · × φ︸ ︷︷ ︸

d times

: Qdn
p → Qdn

p ;

17



then φK = α−1Φα. Lemma 4.3(c) and Fact 4.2 yield

sQn
p
(φ)d = sQdn

p
(Φ) = sKn(φK). (5.4)

In Kn there exists a base with respect to which the automorphism φK is in the canonical Jordan form,
because φK splits over K. So, by Lemma 4.3(c), we can suppose that φK itself is represented by a
matrix in the canonical Jordan form. Let J1, . . . , Jr be the Jordan blocks of this matrix, where each
Jl ∈ GLnl

(K) is associated to the eigenvalue ξl ∈ {λ1, . . . , λn} of φK .
Define φl : K

nl → Knl as the topological automorphism associated to Jl, for every l = 1, . . . , r.
Then by Example 5.1

sKnl (φl) = max{1, |ξl|dnl
p } = max{1, |det Jl|dp}. (5.5)

Since φK = φ1 × . . .× φr, Theorem 4.7 entails

sKn(φK) = sKn1 (φ1) · . . . · sKnr (φr).

Hence, from (5.4) and (5.5), we obtain

sQn
p
(φ)d = sKn(φK) =

r∏
l=1
|ξl|p>1

|ξl|dnl
p .

This means that

sQn
p
(φ) =

r∏
l=1
|ξl|p>1

|ξl|nl
p =

n∏
i=1
|λi|p>1

|λi|p =
∏
|λi|p>1

|λi|p,

and this concludes the proof.

In the second part of this section we provide a so-called Bridge Theorem for the scale function. To
this end we first recall some properties of the Pontryagin duality.

We say that a locally compact group G is compactly covered, if every element of G is contained
in some compact subgroup of G. The following folklore fact can be easily deduced from the standard
properties of locally compact abelian groups.

Fact 5.3. For a locally compact abelian group G, the following conditions are equivalent:

(a) G is compactly covered;

(b) G contains no copies of the discrete group Z;

(c) there exist no continuous surjective homomorphisms Ĝ→ T;

(d) Ĝ is totally disconnected.

Our interest in Fact 5.3 stems from the necessity to describe the class of totally disconnected locally
compact abelian groups G, such that their dual group Ĝ is totally disconnected as well. According to
the above fact, these are precisely the compactly covered totally disconnected locally compact abelian
groups. Therefore, for such a group G one can define the scale function on the dual group Ĝ, and
we are interested in the relationship between sG(φ) and s

Ĝ
(φ̂), where φ : G → G is a topological

automorphism of G.

In the next fact we collect several known properties that apply in the proof of Theorem 5.5.
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Fact 5.4. Let G be a locally compact abelian group, φ : G → G a topological automorphism and U a
compact subgroup of G. Then:

(a) (U⊥)⊥ = U ;

(b) U⊥ ∼= Ĝ/U and Û ∼= Ĝ/U⊥;

(c)
(
U + φ(U)

)⊥
= U⊥ ∩ φ̂−1(U⊥);

(d) if V is another compact subgroup of G and U ⊆ V , then V̂/U ∼= U⊥/V ⊥.

We are now in the conditions to prove the next Bridge Theorem, which asserts in particular that
s
Ĝ

(φ̂) is equal to sG(φ); note that according to Fact 5.3, the group Ĝ is totally disconnected, so one

can define the scale function on Ĝ.

Theorem 5.5. Let G be a compactly covered totally disconnected locally compact abelian group and
φ : G→ G a topological automorphism. Then:

(a) U ∈ B(G) if and only if U⊥ ∈ B(Ĝ);

(b) s(φ,U) = s(φ,U⊥);

(c) U ∈M(G,φ) if and only if U⊥ ∈M(Ĝ, φ̂);

(d) s
Ĝ

(φ̂) = sG(φ).

Proof. (a) Assume that U ∈ B(G). Then G/U is discrete because U is open in G, and so Ĝ/U is a

compact group. Since U⊥ ∼= Ĝ/U by Fact 5.4, so U⊥ is a compact subgroup of Ĝ. Moreover, U is
compact in G and so, since Ĝ/U⊥ ∼= Û by Fact 5.4, Ĝ/U⊥ is discrete; therefore, U⊥ is open in Ĝ.
Hence, we have proved that U ∈ B(G) implies U⊥ ∈ B(Ĝ).

To verify the converse implication it suffices to note that by Pontryagin duality G is canonically

isomorphic to
̂̂
G, so that we can identify G and

̂̂
G; moreover, (U⊥)⊥ = U by Fact 5.4(a). Now apply

the previous implication.
(b) It is clear that U/

(
U ∩ φ(U)

) ∼= (U + φ(U)
)
/U and so

s(φ,U) =
∣∣∣ U

U ∩ φ(U)

∣∣∣ =
∣∣∣U + φ(U)

U

∣∣∣. (5.6)

Moreover, let F =
(
U + φ(U)

)
/U ; then F is a finite abelian group and so F ∼= F̂ . Therefore, by (5.6)

and Fact 5.4, we have that

s(φ,U) = |F | = |F̂ | =
∣∣∣ U⊥

(U + φ(U))⊥

∣∣∣ =
∣∣∣ U⊥

U⊥ ∩ φ̂−1(U⊥)

∣∣∣. (5.7)

Finally, since φ̂ is an automorphism,∣∣∣ U⊥

U⊥ ∩ φ̂−1(U⊥)

∣∣∣ =
∣∣∣ φ̂(U⊥)

φ̂(U⊥) ∩ U⊥

∣∣∣ = s(φ̂, U⊥). (5.8)

Now (5.7) and (5.8) give immediately the equality in (b).
(c) Let U ∈M(G,φ). If V ∈ B(Ĝ), then V ⊥ ∈ B(G) by item (a), and s(φ, V ⊥) = s(φ̂, V ) by item

(b). So, applying twice (b), we have

s(φ̂, U⊥) = s(φ,U) ≤ s(φ, V ⊥) = s(φ̂, V ).

Since this inequality holds true for all V ∈ B(Ĝ), we can conclude that U⊥ ∈M(Ĝ, φ̂).
To prove the converse implication apply Fact 5.4(a) and the previous implication.
(d) follows from (c).
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[16] R. G. Möller, Structure theory of totally disconnected locally compact groups via graphs and per-
mutations, Canad. J. Math. 54 (4) (2002) 795–827.

[17] L. N. Stoyanov, Uniqueness of topological entropy for endomorphisms on compact groups, Boll.
Un. Mat. Ital. B (7) 1 (3) (1987) 829–847.

[18] D. van Dantzig, Studien over topologische Algebra, Dissertation, Amsterdam 1931.

[19] G. A. Willis, The structure of totally disconnected locally compact groups, Math. Ann. 300 (2)
(1994) 341–363.

20



[20] G. A. Willis, Totally disconnected groups and proofs of conjectures of Hofmann and Mukherjea,
Bull. Austral. Math. Soc. 51 (1995) 89–494.

[21] G. A. Willis, Further properties of the scale function on a totally disconnected group, J. Algebra
237 (1) (2001) 142–164.

[22] G. A. Willis, Tidy subgroups for commuting automorphisms of totally disconnected groups: An
analogue of simultaneous triangularisation of matrices, New York J. Math. 10 (2004) 1–35.

[23] G. A. Willis, The nub of an automorphism of a totally disconnected locally compact group, sub-
mitted; arxiv:1112.4239.

[24] S. Yuzvinski, Metric properties of endomorphisms of compact groups, Izv. Acad. Nauk SSSR, Ser.
Mat. 29 (1965) 1295–1328 (in Russian). English Translation: Amer. Math. Soc. Transl. (2) 66
(1968) 63–98.

21

arxiv:1112.4239

	Introduction
	Scale function and tidy subgroups
	The scale function and the topological entropy
	Basic ``entropic'' properties of the scale function
	Scalar p-adic Yuzvinski Formula and Bridge Theorem

