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Abstract 

 
Quantifying the effect of extreme and seasonal floods on waterborne infectious disease in the 

United States 

Victoria Devereux Lynch 

 

The severity of flood events is predicted to increase as a consequence of climate change 

and may lead to a higher burden of waterborne infectious diseases in the United States. 

Contaminated floodwater transports bacterial, protozoal, and viral pathogens that typically cause 

moderate intestinal or respiratory disease, but can also lead to more serious disseminated 

infections among immunocompromised, young, and older people. Hydroclimatology and 

drinking water infrastructure influence the transmission of disease, but their roles are not well-

understood and may vary by pathogen-type or geographic region. Specific outbreaks of 

waterborne disease have been attributed to major floods and cases have been positively 

associated with some meteorological variables, but the association between infections and 

flooding has not been systematically examined.  

In this dissertation, we examine the association between seasonal and extreme floods and 

parasitic and bacterial infections using multiple flood-indicator variables and exposure 

definitions. In Chapter 2, we use multimodel inference and generalized linear mixed models to 

determine the effect of seasonal meteorology on hospitalizations across the US. We found that 

hospitalization rates were generally higher in rural areas and in places that relied on groundwater 

for drinking water sources. Soil moisture, precipitation, and runoff were associated with 

significant increases in hospitalizations for Legionnaires' disease, Cryptosporidiosis, and 

Campylobacteriosis, respectively. In Chapter 3, we use 23 years of weekly case data to examine 



  
 

the effect of cyclonic storms on six waterborne infections in a conditional quasi-Poisson 

statistical model. Storm exposure was defined separately for distinct storm hazards, namely wind 

speed and cumulative rainfall, and effects were examined over 3 weeks post-storm. We found 

that exposure to storm-related rainfall was associated with immediate and lagged increases in 

cases. In Chapter 4, we use a nonparametric bootstrap to examine the effect of anomalous 

meteorological conditions, i.e. extremes unrelated to cyclonic storms, on Legionnaires' disease 

hospitalizations. We also assess the effect of exposure to specific cyclonic storms in a GLMM 

framework and compare these approaches. Extreme precipitation and months with cyclonic 

storms were positively associated with Legionnaires' disease hospitalizations. Determining the 

effect of flooding on Legionnaires' disease is particularly important as it causes severe illness 

and has steadily increased in incidence for 20 years.  

An objective of this dissertation was to develop a framework for examining flood-disease 

dynamics in the context of hydrometeorological and infrastructure-related factors that may 

influence transmission. We demonstrated that drinking water source, rurality, and geography 

may play an important role in these dynamics; the analyses also underscored, however, the 

urgent need for more extensive epidemiological surveillance and water quality data. Climate 

change will likely place a considerable strain on aging water infrastructure in the US. A nuanced 

understanding of flood-disease dynamics is central to mitigating these effects.   
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Chapter 1 

1.1 Overview 

An estimated 7,150,000 cases of waterborne infectious disease occur annually in the 

United States through contact with contaminated environmental, recreational, and drinking 

waters [1]. Floods are likely an important driver of disease transmission, but their effect has not 

been systematically examined across multiple pathogens and flood-indicator variables. A 

challenge to establishing flood-disease dynamics is that distinct flood types should be measured 

by different hydrometeorological variables; river floods, for example, are best characterized by 

soil moisture or runoff whereas precipitation is the appropriate metric for flash floods [2, 3]. The 

effects of flooding are also not uniform among pathogens but vary based on biology and 

predominant reservoir type, which influence their ability to enter and persist in the environment 

[4-7]. Further complicating flood-disease dynamics are the roles of hydroclimatology, land use, 

and drinking water infrastructure. Hydroclimatology determines where and when floods occur 

while land use influences the sources of contamination; flooding near agricultural land can result 

in different types of pathogenic contamination compared to coastal floods driven by cyclonic 

storms [8, 9]. Drinking water systems, meanwhile, affect the likelihood of transmission because 

effective treatment removes waterborne pathogens regardless of contamination events [10]. In 

practice, however, the quality of drinking water treatment varies by water source and location as 

rural areas are particularly vulnerable to inadequate water systems [11]. Quantifying the effects 

of flooding on multiple waterborne pathogens thus requires an analytical framework that 

accounts for the variability of flood types, contamination sources, and infrastructure.  
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1.2. Waterborne pathogens 

Thirteen bacterial, protozoal, and viral pathogens are responsible for most waterborne 

infectious disease in the US and cause health conditions ranging from ear infections to life-

threatening pneumonia or septicemia [1]. This work focuses on the 9 waterborne pathogens that 

lead to gastrointestinal or respiratory illness. While the pathogens are distinct, they share 

characteristics that demonstrate why waterborne disease is difficult to eradicate and how 

flooding may affect their transmission. Prime among these characteristics is the ability to exploit 

a wide range of animal and environmental reservoirs [12-14]. The enteric bacterial and parasitic 

pathogens infect wild and domestic animals including, crucially, livestock and birds [15, 16]; the 

biofilm-forming bacteria are natural inhabitants of soil and a diversity of environmental waters 

[17]. This array of hosts and reservoirs provides numerous opportunities for water contamination 

and infections. Transmission occurs after exposure to pathogenic drinking, environmental, or 

recreational water. 

These waterborne diseases are also uniformly most severe among vulnerable groups [1]. 

Mild to moderate infections are common within the general population [1], but severe disease is 

typically limited to immunocompromised, young (under 5), or older people [18, 19]. The parasite 

Cryptosporidium emerged in the 1980s as an important infection in AIDS patients [14] and has 

manifest fatality rates ranging from 52% to 68% among immunocompromised people [18]. 

Cryptosporidiosis in young and malnourished children increases the risk of stunted growth and 

can lead to chronic infections [20]. Children are also more susceptible to Shiga-toxin producing 

E. coli (STEC) infections, which have a high risk of hospitalization and kidney failure [21]. 

Younger and older people may be particularly susceptible to enteric infections as they have less 

stable microbiomes that enable pathogenic bacteria to outcompete commensal species in the 
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gastrointestinal tract [22]. Biofilm-forming bacteria, meanwhile, are opportunistic pathogens that 

primarily cause severe illness in elderly hospitalized patients [17]. All of the pathogens are alike 

in that they require a very low infectious dose for infection [16, 23, 24]; as few as 30 oocysts are 

required for infection with Cryptosporidium, whereas an infected person excretes 109 in a single 

bowel movement [25].  

Despite these shared traits, pathogen biology substantially varies among and within the 

enteric bacterial, parasitic, and biofilm-forming pathogen groups. Waterborne diseases 

encompass pathogens from several phyla and have distinct morphologies and infection 

mechanisms (Table 1.1). Some of these differences are related to pathogen ability to persist in 

the environment and may provide insight into how floods affect transmission. Variations in size 

may further explain differences in transmission dynamics because size is one of the factors that 

determines whether a pathogen remains suspended in water or deposits into sediment [23]. 

Several of the infections are caused by multiple species or serotypes within a particular 

pathogen’s genus (Table 1.1), and this information can also indicate the source of the 

contamination as these different strains are typically specific to certain reservoirs [26, 27]. 

The proportion of infections attributable to waterborne transmission, rather than 

foodborne or person-to-person transmission, most clearly distinguishes pathogen groups. The 

biofilm-forming bacteria are almost exclusively waterborne whereas a small fraction of the 

enteric bacteria is thought to be transmitted via water (Table 1.2); these estimates mask, 

however, the role of contaminated water in foodborne transmission [28]. Agricultural runoff and 

irrigation water are often highly pathogenic and can contaminate crops [28, 29] leading to 

foodborne outbreaks that are at least partially, or indirectly, driven by water. The origin of most 
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foodborne cases is unknown and water may play a critical and under-recognized role in 

foodborne cases [16].  

The clinical differences among pathogens demonstrate that the effects of flooding on 

specific infections could lead to considerable variation in the overall burden of disease and strain 

on the healthcare system (Table 1.2). Legionnaires' disease and Pseudomonas infections, in 

particular, almost always require hospitalization and have comparatively high mortality rates 

whereas people infected with Giardia often do not seek care [1]. Previous research on the 

associations between environmental drivers and cases has largely varied by pathogen, which 

suggests that the effects of flooding on waterborne infectious diseases are not likely to be 

uniform (Table 1.3). This underscores the need for pathogen-specific analyses to elucidate how 

the effects of flooding may change depending on location, drinking water or sanitation system, 

and severity of flood event.  
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Table 1. 1 Description of basic biological characteristics of waterborne pathogens 

Pathogen Type Size 

(m) 

Infection mechanism Strains 

Campylobacter 

 

Phylum: 

Protobacteria 

 

Intracellular, 

Gram-neg., 

obligate 

microaerophilic 

bacteria; motile, 

spiral [16] 

0.5 - 5 Bacteria bypass mucus layer and enter 

extracellular matrix via M cells; invade 

intestinal epithelial cells through 

endocytosis; replicate in vacuole in host 

cells; cause inflammatory response [30] 

Two strains responsible for 

most human illness, C. jejuni 

and C. coli, multiple 

serotypes [16] 

E. coli 

 

Phylum: 

Protobacteria 

 

Extracellulara, 

Gram-neg., 

facultative 

anaerobic 

bacteria; motile 

and non-motile 

strains [23]  

1 - 2 Unique mechanism for each strain but 

generally bacteria adhere to epithelial 

cells in small intestine or colon, secrete 

toxins, and cause inflammation and cell 

death; adhesion can include forming 

biofilms or creating pedestal-like lesions 

[21, 31] 

Six strains that cause illness 

in humans, each with multiple 

serogroups or serotypes 

defined by O and H antigens 

[21] 

Salmonella 

 

Phylum: 

Protobacteria 

 

Intracellular, 

Gram-neg., 

facultative 

anaerobic bacteria 

[23]; motile, 

straight rods 

2 - 5 Bacterial proteins alter cytoskeleton of 

intestinal epithelial to allow entry; use 

immune response to out-compete 

commensal bacteria; alter host cell 

membrane to create membrane-bound 

organelles that infect other cells [22] 

>2,600 serovars that vary by 

O and H antigens; have 

different reservoirs, virulence, 

and geographic locations [15, 

16, 32] 

Shigella 

 

Phylum: 

Protobacteria 

 

Intracellular, 

Gram-neg. 

bacteria; non-

spore-forming, 

non-motile, rod-

like [23] 

0.4 – 0.6 Bacteria are internalized via endosomes 

by epithelial cells in colon; replicate in 

cytoplasm; release endotoxins to cause 

inflammatory response [23] 

Four main strains, each with 

multiple serotypes [33] 

Cryptosporidium 

 

Phylum: 

Apicomplexan 

 

Intracellular, non-

flagellated, 

parasite 

4.2 – 5.4 Fully sporulated oocysts release four 

sporozoites in the GIT and enter epithelial 

cells; alter host cell membrane to create a 

parasitophorous vacuole that protects 

parasite from immune response; 

C. parvum and C. hominis 

cause most disease in humans, 

3 other species also common 

[34] 
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undergoes asexual and sexual 

reproduction before releasing new 

oocyst[25] 

Giardia 

 

Phylum: 

Metamonada 

 

Extracellular, 

anaerobic, 

flagellated 

parasite 

10 – 14 Cysts release two trophozoites in the 

distal intestine; adhere to intestinal wall 

using ventral adhesive disks; obtain 

nutrients from host while undergoing 

binary fission; new trophozoites released 

and transform back into cysts [35] 

G. duodenalis and G. lamblia 

infect humans, 7 genotypes 

within them [14] 

Legionella 

 

Phylum:  

Proteobacteria 

Intracellular, 

Gram-neg. 

bacteria; L. 

pneumophilia is 

aerobic, non-

spore-forming, 

flagellated 

2 – 20 Bacteria are phagocytosed by alveolar 

macrophages; alter host membrane to 

avoid phagolysom.  

fusion; create vacuole that supports 

bacterial replication [36] 

L. pneumophilia causes 

Legionnaires’ disease; 24 

species can infect humans 

Non-tuberculous 

Mycobacteria 

 

Phylum: 

Actinobacteria 

Intracellular, 

Gram-pos., 

facultative, 

aerobic bacteria; 

non-motile, non-

spore-forming, 

irregular rods 

1 – 10  Bacteria are phagocytosed by alveolar 

macrophages; lipids on bacterial cell wall 

modulate phagosome maturation so avoid 

degradation; bacteria replicate in their 

protected vacuoles [37, 38] 

>170 species, most human 

respiratory infections caused 

by M. avium and M. 

abscessus; two main 

phenotypic groups are slow-

growing (SGM) and rapidly 

growing (RGM) [39] 

Pseudomonas 

 

Phylum: 

Proteobacteria 

Extracellular, 

Gram-neg., 

aerobic bacteria; 

motile, flagellated  

1.5 – 3  Bacteria adhere to damaged epithelial 

cells using flagella and pili; secrete 

virulence factors that damage host lung 

and alter immune response; secrete 

extracellular matrix for biofilm formation; 

biofilm grows and protects bacteria from 

immune cells and antibiotics [40, 41] 

>140 species, 25 of which 

infect humans; most 

Pseudomonas pneumonia 

cases caused by P. aeruginosa 

[42] 

aOne strain that causes illness in humans, EIEC, is intracellular [21].  
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1.2.1 Enteric bacteria 

Campylobacter, Escherichia coli, Salmonella, and Shigella primarily cause 

gastrointestinal illness characterized by diarrhea, vomiting, nausea, and high fever [33]. Shigella 

is unique among them because humans are its only reservoir and person-to-person transmission 

is common, especially in crowded settings and vulnerable populations [43, 44]. The other 

pathogens, however, are well-suited for waterborne transmission as they have adaptable genomes 

that enable them to flourish in multiple reservoirs and persist in the natural environment [22, 31, 

45]. Salmonella and E. coli strains, in particular, exchange genes that improve their ability to 

withstand harsh environments. Within the E. coli species, there is a small core genome and a 

much larger, flexible pangenome that includes genes that confer the ability to obtain nutrients 

from a range of sources and endure temperature fluctuations [31, 45, 46]. Similarly, the more 

than 2,600 Salmonella serotypes exchange plasmids that make them robust to environmental 

conditions, in addition to enhancing their virulence [22].  
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Table 1. 2 Description of clinical characteristics of waterborne pathogens 
Pathogen Est. annual cases [1] Est. % 

hospitalized 

[1]  

Est. % 

waterborne 

[1] 

Incubation 

period 

(range) [16] 

Serious 

sequalae 

Campylobacter 1,540,000 

(597,000-3,250,000) 

19.5 13 2–3 days 

(1-10) 

Guillen-Barre 

syndrome [16] 

E. coli 

283, 200 

(93,000-681,000) 

30.5 5 0.5–4 days 

(0.5 – 10) 

Hemolytic 

uremic 

syndrome [31] 

Salmonella 1,350,000 

(733,000-2,450,000) 

28.4 6 0.5–2 days  

Shigella 449,000 

(97,800-1,350,000) 

24.4 4 1–3 days 

(0.5 – 4) 

 

Cryptosporidium 

823,000 

(243,000-2,160,000) 

19.2 43 7 days 

(2-12) 

Chronic 

infections; 

stunted growth 

[20] 

Giardia 1,070,000 

(727,000-1,560,000) 

7.9 44 7 days 

(1-14) 

Recurring 

infections [6] 

Legionella 11,400 

(8,920-13,600) 

98. 1 97 5-6 days 

(2-10) 

 

Non-tuberculous 

Mycobacteria 

97,000 

(75,700-122,000) 

78.4 72 7-10 days  

Pseudomonas 

31,700 

(19,300-46,000) 

97.2 51 1-3 days Chronic 

infections in 

people with 

Cystic Fibrosis 

[47]  

 

Salmonella can persist in river water for a month and has the highest survival rate in 

aquatic environments compared to the other bacteria [28, 48], which are more sensitive to 

external conditions [31, 49]. E. coli and Campylobacter are frequently detected in environmental 

water and can survive under favorable conditions [5, 49], but their concentrations are thought to 

be due more to constant input into environmental waters rather than long-term persistence [50]. 

Storms have been associated with rapid increases in E. coli concentrations and the small size of 

the bacteria makes it unlikely to sediment during high flow events [51]. All four pathogens 

persist the longest in agricultural slurry, the mixture composed of animal waste, soil, and water 

that is stored on farms [9, 50, 52]; this may be a contamination risk when floods occur on 



 9  

 

agricultural land, particularly because the pathogens also persist in soil. Survival in soil is a 

complex function of temperature, nutrient availability, and the microbial community, and thus 

varies by location, but Salmonella typically survives for 1 to 3 months [9, 48] and E. coli for 

several weeks [53, 54].  

Previous research on the association between meteorological variables and enteric 

bacteria suggest that the effect of flooding on disease may depend on the type of flood and 

pathogen. The effect of seasonal rainfall on cases is inconsistent [55-57], but increased cases and 

outbreaks have been associated with extreme rain (Table 3). Salmonellosis cases have risen after 

extreme rain events [32, 58] and the effect has been even stronger when the extreme events 

follow very wet or very dry periods [59]. E. coli cases have also been associated with extreme 

rain [60], including extreme rain with antecedent dry periods [61], as has Campylobacteriosis, 

though the effect may be restricted to certain geographic locations [62-65]. Examination of the 

effect of different flood types, across multiple regions, would help determine whether flooding 

has a similar, nonlinear effect on cases of enteric waterborne disease.  

.  
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Table 1. 3 Average effect of meteorological variables on waterborne infectious diseases1 

Pathogen Seasonality Rainfall Temperature  Extreme wet 

conditions 

River 

conditions 

Campylobacter Summer Predominantly 

positive  

Predominantly 

positive  

Predominantly 

positive  

-  

E. coli Summer Mixed Positive Positive  -  

Salmonella Summer Mixed Positive Positive -  

Shigella None -  Positive Positive2 -  

Cryptosporidium Mixed Predominantly 

positive 

Positive Positive Mixed 

Giardia Late 

summer 

Positive3 Positive -  - 

Legionella Late 

summer/ 

early fall 

Positive Mixed  Positive 

Non-tuberculous 

Mycobacteria 

-  -  -  -  -  

Pseudomonas Weak 

summer4 

 - - - - 

1Associations were considered positive if 90% or more of the studies found a positive association and 

predominately positive if between 75% and 90% of the studies found a positive association.   
2Based on a single outbreak [44].  
3Based on a single study [66].  
4Based on a single study [67].  

 

1.2.2 Parasites 

 
The symptoms of Cryptosporidium and Giardia infections are similar to the enteric 

bacteria, but the parasites are biologically distinct. Unlike the highly flexible bacteria, the 

parasitic pathogens have reduced and conserved genomes [6, 68], as well as fewer strains that are 

pathogenic in humans (Table 1.1). The differences between the primary Cryptosporidiosis 

species, however, are remarkably informative; C. parvum and C. hominis have separate main 

reservoirs, so the type of infection provides insight into the contamination sources and 

transmission routes. C. parvum infect a broad range of animals and cases suggest contact with 

animal waste, whereas C. hominis only infect humans and cases indicate exposure to human 

sewage [34, 69]. As a result, species-specific risk varies by location with a higher risk of C. 

parvum infections in rural areas and C. hominis in cities [20]. The simple parasitic genomes are 
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also ideally suited for waterborne transmission as they can persist in a range of environmental 

conditions.  

Cryptosporidium oocysts and Giardia cysts do not independently replicate in the 

environment but can persist for months in water and soil [4]. Oocysts are small and remain 

suspended in flowing water for long periods, though even when they deposit out into sediment 

they remain viable [4]. They can also persist in water distribution systems, often as members of 

biofilm communities [70]. For both parasites, survival on surfaces is prolonged when organic 

matter is present and thus soil provides an excellent niche for long-term persistence [71]; 

Cryptosporidium can survive for up to 18 months in this environment [72] and Giardia for 

almost a year, though they typically cannot withstand freeze-thaw cycles during the winter [73]. 

Oocysts generally stay in the top 2-cm of soil, which suggests that flooding and overland flow 

easily remobilize them [74]. This is supported by research finding that planting vegetation 

between crops is associated with a reduction in oocysts in drinking and irrigation water because 

it thwarts the movement of contaminated floodwater across land [75].  

Rain is central to the movement of cysts and oocysts in the environment [76], but its 

effect on cases of disease varies by region [77] and is not consistently positive [78]. The effect of 

hydrometeorological variables on cases is likely complex, as increased incidence has often been 

associated with rain [66, 79, 80] but occasionally with dry periods as well [81-83]. Similarly, 

Cryptosporidiosis seasonality exhibits several patterns and differs across regions [84-86]. Some 

countries report peaks in the spring and fall [87], whereas others just in spring or fall [84]. 

Insights derived from the strain-specific studies may help explain the various seasonal patterns. 

Cases of C. parvum, the species common in rural areas, are more prevalent in the spring and may 

be associated with the calving season [87]; a high proportion of calves are colonized with C. 
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parvum and runoff contaminated with their waste may introduce high loads of parasite into 

waterways [69]. C. hominis cases, conversely, are more prevalent in the fall [87] and may reflect 

transmission due to contact with sewage, potentially after floods [60], or foodborne exposure 

[88].  

1.2.3 Biofilm-forming bacteria 

Legionella, Pseudomonas, and Nontuberculous mycobacterium (NTM) are transmitted 

via the inhalation or aspiration of contaminated water and cause pneumonia, though they can 

also lead to disseminated infections [19, 89]. They are natural inhabitants of the environment 

and, unlike the other waterborne pathogens, replicate in water, soil, and water distribution 

systems [17]. Legionella and NTM parasitize amoebae [36, 90], which protect them from 

external conditions. Pseudomonas are metabolically versatile, allowing them to survive in harsh 

environments [91]. This durability underlies the ability to colonize almost all components of 

drinking water infrastructure [17]; pipe material and condition, temperature, and nutrients all 

influence growth, but the biofilms persist in most conditions [90]. These biofilm-forming 

bacteria are ubiquitous in drinking water [92], including public and private sources [93-95], but 

their presence is not necessarily a sign of contamination. They are abundant in most water 

sources and immunocompetent people are thought to be unaffected by exposure to low 

concentrations [96]. The burden of disease is unknown, however, as mild infections or cases of 

community-acquired pneumonia (CAP) are not currently detected by healthcare systems.  

Biofilm-forming bacteria are opportunistic pathogens and infections identified by 

epidemiological surveillance are typically those that occur among immunocompromised or 

elderly people [41]. Pseudomonas and NTM infections, in particular, are associated with 

nosocomial transmission and reasonably studied as hospital-acquired infections (HAI), given that 
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Pseudomonas can be recovered from 50-60% of hospitalized patients [17] and is the second-

most common cause of ventilator acquired pneumonia [41]. Most NTM and Legionnaires’ 

disease cases, however, are community-acquired [92, 97] though it is difficult to estimate their 

true incidence; infections among immunocompetent people may go undetected because they do 

not seek care, in the event of mild illness, or are diagnosed with community-acquired pneumonia 

(CAP) that is not attributed to a specific pathogen [98]. CAP infections are only regularly 

identified for cystic fibrosis patients, for whom infections are severe and typically acquired in the 

community [41, 99]. Legionnaires’ disease surveillance has improved over the last 30 years and 

is increasingly examined as a waterborne disease with environmental drivers, but the effect of 

meteorological variables on NTM and Pseudomonas infections has not been widely studied.  

Legionnaires’ disease has a consistent late summer or early fall seasonality in the US and 

has been associated with rainfall [100-102] and river height [103]. Associations between 

hydrometeorological variables and NTM or Pseudomonas infections have not been explored, but 

there is limited evidence that HAI from these pathogens do not exhibit seasonal patterns. 

Specifically, no seasonality of NTM cases in three states [99] or of Pseudomonas infections 

treated at naval hospitals in the US [104] was observed. An analysis of NTM in cystic fibrosis 

patients, however, found that cases peaked in the fall, which indicates that there may be 

seasonality to community-acquired cases [67].  

1.3 Floods  

Flooding occurs when weather events deliver more water to a drainage basin than can be 

absorbed or stored [105]; however, this basic process belies the complex mechanisms that 

determine where and when flood events arise [105, 106]. While most regions are vulnerable to 

flooding, seasonality, severity, and dominant flood types vary throughout the US [2, 107]. This 
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variability is a function of the large-scale climatic processes that determine seasonal 

meteorological conditions and weather events, as well as regionally-specific hydroclimatology, 

topology, and soil geomorphology [3, 105]. Flood severity, in particular, depends on the 

interaction between the type of weather event and surface characteristics; large thunderstorms, 

for example, can have no effect in rural areas with large drainage basins but lead to devastating 

flash floods in cities that lack permeable surfaces. Similarly, an unseasonably warm period can 

cause rapid snowmelt and heavy runoff in regions with extensive snow packs whereas areas 

without snow are unaffected. Both the hydroclimatology and land surface characteristics of a 

region regulate the effect of weather events and the types of floods that they can generate [3]. 

Hydroclimatology describes the movement of water between and within the atmosphere 

and land surface, synthesizing interactions among rainfall, water vapor, streamflow, and soil 

moisture [108, 109]. This framework helps explain why the effect of weather events depends on 

underlying meteorological and land surface conditions. In urban areas, convective storms are the 

primary driver of flooding so rainfall intensity or cumulative rainfall are typically the best flood 

indicators [110, 111]. Heavy rainfall does not always lead to flooding, however, because an 

unsaturated drainage basin may be able to absorb the influx; when soil is fully saturated, 

however, even light rain will generate surface runoff [105]. Premature snowmelt often leads to 

flooding because it occurs in the early spring when soil is at peak saturation after months of 

minimal evapotranspiration [105]. While rainfall is the critical environmental driver for some 

flood types, soil moisture and snowmelt regulate flooding for most of the US [3]. A mechanistic 

understanding of flood drivers enables identification of the variables, for example snowmelt in 

the Upper Midwest or duration of cyclonic storms along the East Coast, that best define flooding 

for different regions which is crucial because flooding cannot be measured by a single metric. 
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Hydroclimatology also determines the dominant flood type in a region and can help 

explain variability in the associations between flooding and specific waterborne infections, as 

different floods can lead to contamination from distinct sources. River floods typically occur in 

areas dominated by snowmelt or rain-on-snow hydroclimatology [106] and affect transmission 

by mobilizing pathogens that persist in floodplains or churning up sediment that harbors 

environmental pathogens [112]. River floods also create pools of standing water that may 

increase the likelihood of groundwater contamination [113, 114]; this is particularly relevant to 

the transmission of waterborne disease as groundwater is thought to be protected from 

contamination and thus is untreated [112]. Many areas of the US are vulnerable to flash floods 

but they are dominant in regions that experience thunderstorms and have small catchment areas 

[106]. While a single intense thunderstorm can cause flooding, flash floods usually occur when 

multiple thunderstorms sequentially affect the same area in a process called training 

thunderstorms [106]. Flash floods are more common in cities but arise in rural areas that have 

experienced drought, which reduces soil permeability, or have steep terrain with thin soil layers 

[106]. In urban areas, flash floods are often associated with sewage contamination from 

combined sewer overflow (CSO) systems and inundated waste treatment plants [113].   

Coastal floods are primarily driven by storm surges associated with convective storms, 

though unusually high tides and large waves can also lead to flooding. Tropical cyclones are 

typically the most destructive, as associated storm surges can reach up to a mile inland [115]. 

These floods affect regions that encompass multiple land surface types, including rural and urban 

locations, and as a result can lead to contamination with agricultural and industrial runoff in 

addition to sewage [116, 117]. Lake floods are less common than other flood types and are 

generated by various weather events depending on the size, type, and location of the lake [106]. 
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They are similar to coastal floods in that they are often due to storm surges or seiches, which are 

pressure difference-driven waves [106], and cause contamination from numerous sources [118, 

119].  

The dominant flood type in a region provides insight into the expected seasonality of 

flooding. Seasonality is often weak in places that experience multiple types of flooding, which 

can occur throughout the year, whereas areas with a single dominant flood type have a clear 

seasonality [2, 120]. For example, river floods generated by snowmelt or the combination of 

rain-on-snow generally typically manifest during the spring and exhibit a strong seasonal signal 

[2]. Summer or early fall flood seasonality is more common in areas that experience tropical 

cyclones, though this signal is less stable as cyclonic storms can make landfall between May and 

November along the East Coast [120]. Regions characterized by winter or summer seasonality 

are not always geographically isolated; in North Carolina, for example, peak flood season in the 

western mountainous part of the state is between December and April whereas in the central 

Piedmont and coastal areas flooding is during late summer or early fall [121]. Dominant flood 

types can vary over relatively short geographical distances and identifying the appropriate flood 

indicator variables is a challenge when examining the effects of flooding on waterborne disease.   

The Eastern US experiences the greatest variety of flood types and includes few areas 

with pronounced flood seasonality. Appalachia exhibits the weakest seasonality as its topography 

facilitates flash floods during heavy rain and river floods associated with snowmelt, but it also 

covers a region that is vulnerable to cyclonic storms [2]. Seasonality is also weak along the 

Eastern seaboard and the Gulf Coast, where flooding occurs in conjunction with winter 

extratropical cyclones, particularly in the northeast, and summer convective storms [107, 120]. 

Among southeastern states five distinct hydroclimatological regions have been identified with 
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flood peaks occurring during winter, spring, mid-summer, fall or none at all [122]. Seasonality is 

more pronounced in areas where meteorological conditions enable co-occurring flood types; 

Florida has a summer flood season associated with the combination of tropical cyclones and 

summer thunderstorms, and in New England flooding peaks in early spring when cold 

extratropical cyclones and snowmelt lead to extensive river flooding [107, 120]. 

The Midwest is roughly divided between two dominant flood generating processes and 

flood seasons. The Northern Great Plains experience a consistent snowmelt and rain-on-snow 

driven spring flood season whereas in the south flooding is driven by mesoscale convective 

systems during the summer [123]. These storm systems bring intense rainfall to the entire 

Midwest, but do not necessarily lead to flooding in the north where land surface conditions allow 

for greater absorption. Areas of the West are similarly divided between two flood seasons; 

however, these distinct hydroclimatological regions are often geographically adjacent. In the 

Southwest, the North American Monsoon brings heavy rainfall to the region when warm, moist 

air from the Pacific is conveyed northward to Arizona and New Mexico during the summer 

[105]. This localized system leads to destructive flash floods due to the region’s relatively 

impermeable soil and topography [124]. The mountainous region in central Arizona exhibit the 

opposite seasonality, however, as it is dominated by river floods associated with snowmelt [2]. 

Along the coast, floods are highly seasonal and peak during the winter in conjunction with cold 

extratropical cyclones and atmospheric rivers, which are bands of concentrated water vapor that 

carry moist air from the tropics to the midlatitudes [125]. The inland Cascade and Sierra Nevada 

mountain ranges experience snowmelt-driven flooding in addition to rainfall associated with 

storms and atmospheric rivers; this combination leads to longer, less pronounced flood seasons 

that can extend into spring or early summer [2]. Accounting for the diversity of flood generating 
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processes and types is necessary to analyze thoroughly the effects of flooding on waterborne 

disease in the US. 

1.4 Contamination  

Floods mobilize pathogens in the environment and inundate sanitation infrastructure, 

which can lead to the contamination of drinking water sources and transmission of waterborne 

disease [113, 126, 127]. Churning floodwater increases pathogen loads by resuspending 

pathogens in benthic sediment and dislodging biofilms in rivers or streams [128, 129]. Flooding 

also transports pathogens over land, especially when soil is already saturated, and deposits them 

into waterbodies or sewers. The influx into sewers can cause sewage overflows and reduce the 

efficacy of wastewater treatment, which results in heavily contaminated water entering the 

environment [129, 130]. This is of particular concern during snowmelt-driven flooding because 

there are fewer restrictions on raw sewage discharges during the winter [131]. In 1993, the 

largest waterborne disease outbreak recorded in the US occurred after a combination of 

snowmelt and rain led to river flooding; the contamination affected the primary drinking water 

source for Milwaukee, Wisconsin and over 400,000 people were infected with Cryptosporidium 

[132]. Cyclonic storms and extreme rainfall have also been associated with elevated cases of 

waterborne infections due to contamination from agricultural runoff, sewage, and damaged 

infrastructure [60, 133-135].    

Most of the waterborne pathogens that cause enteric disease in humans also infect 

livestock and are frequently detected in soil or water samples on farms [13, 72, 136, 137]. 

Campylobacter and Salmonella strains common in pigs and poultry are prevalent in agricultural 

watersheds, which suggests that animal waste enters and is transported throughout the 

environment [137-139]. Newborn calves are often infected with parasites [140, 141] and the 
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seasonality of Cryptosporidium in both river samples and human cases has been attributed to the 

spring calving season [69, 81].  Large livestock operations, like concentrated animal feeding 

operations (CAFOs), typically use liquid waste management practices to store animal waste in 

pits [142]. Fecal matter is mixed with water in wastewater lagoons to create slurry, which is 

sprayed onto fields planted with cover crops [28, 143]. During extreme storms these lagoons 

have overflowed, ruptured, and become inundated with floodwater, leading to widespread 

contamination in fields and neighboring waterways [144]. In addition to transporting slurry and 

pathogens in soil to drinking water sources, runoff can also contaminate irrigation water that is 

used on crops [27, 145-147]. E. coli, Salmonella, and Campylobacter persist on produce and 

outbreaks have been attributed to contaminated irrigation water [136, 145], in some cases driven 

by extreme rainfall [148]. Most enteric bacterial infections are estimated to be foodborne, but 

flooding on farmland may play an important role contaminating crops [121].   

In urban areas, inadequate sanitation infrastructure is more likely to cause contamination 

than agricultural runoff. Wastewater is highly pathogenic [149-152] and sediment in sewers act 

as a sink for pathogens while pipes often harbor biofilm communities containing Legionella or 

Pseudomonas [153, 154]. Under normal conditions, sewers deliver wastewater to treatment 

plants that provide at least secondary treatment before discharge to receiving waters (i.e. bays, 

lakes, or rivers) [155]. When they are overwhelmed with floodwater, however, untreated 

wastewater can spill or be discharged directly into the environment [156]. Old sanitation systems 

are especially vulnerable as they use combined sewer systems that collect sanitary wastewater 

and water from storm drains into a single pipe [157]. Above capacity, these systems experience 

combined sewer overflows (CSOs) and discharge untreated wastewater into nearby waterbodies 

[127]; CSOs are subject to regulations under the Clean Water Act but in practice the water often 
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exceeds permittable contamination levels [157]. Even without CSOs, excess inflow to treatment 

plants can result in reduced treatment efficacy or sewage bypasses whereupon wastewater only 

undergoes primary treatment before discharge [158]. This is a particularly hazardous process 

when flooding occurs after dry periods, which can result in low-flow conditions that increase the 

concentration of pathogens in waterbodies and in sewage sediment [153]. Discharging this 

extremely pathogenic water in a CSO or sewage bypass without treatment can lead to the 

contamination of drinking water [127, 134]. CSOs have been associated with elevated 

Cryptosporidium, Giardia, Campylobacter, and E. coli concentrations in recreational and 

drinking water sources [134, 151, 159], as well as with increased cases of gastroenteritis [160, 

161].   

Wastewater treatment plants (WWTPs) are typically built near coasts, riverbanks, or 

lakefronts to minimize the cost of conveying treated wastewater to receiving waters, but these 

locations make them vulnerable to inundation [162]. For coastal WWTPs, this vulnerability is 

compounded by sea level rise and the potential influx of marine water, which corrodes pipelines 

and pumps [163]. In the Eastern US, WWTPs are also susceptible to severe damage during 

cyclonic storms that can disrupt wastewater treatment; after Hurricane Harvey in 2017, for 

example, 40 WWTPs in Houston were inoperable for weeks [162]. This vulnerability reflects a 

fundamental challenge to sanitation infrastructure in the US. Redundancy is not built into the 

system so when a plant is damaged, there is no mechanism to back it up with another water 

treatment facility [162]. Further, much of wastewater treatment infrastructure is aging; old pipes 

are prone to infiltration from groundwater or floodwater, thereby increasing the likelihood of 

CSO events [156]. Even under normal conditions, wastewater treatment is not completely 

effective and low pathogen concentrations are often detected in lakes and rivers used for 
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municipal water [152, 164]; after CSOs, however, pathogen concentrations substantially increase 

[127].   

Cases and outbreaks of waterborne disease have been attributed to direct contact with 

contaminated floodwater [126, 135, 165] and exposure via recreational activities [166].  

Cryptosporidiosis, Giardiasis, and Campylobacter infections have been associated with exposure 

to urban floodwater, especially among children, and the clean-up periods immediately after 

floods have been identified as high-risk for transmission [126, 165]. Exposure associated with 

recreation poses an even greater risk and is estimated to cause millions of waterborne disease 

infections annually in the US [167, 168]. Transmission has been associated with swimming, 

fishing, and boating in lakes and rivers contaminated with pathogenic runoff [169-172], 

particularly after heavy rainfall [118, 171, 173, 174].   

Most cases, however, are due to contaminated drinking water sources. Pathogens are 

frequently detected in waterbodies used for drinking water, but effective treatment generally 

removes them before distribution [10]. Flooding can compromise this process, though, by 

simultaneously increasing the pathogen concentration of source water and disrupting water 

treatment. Outbreaks of Giardia, Cryptosporidium, Campylobacter, and Salmonella have been 

attributed to drinking water sources in agricultural watersheds after spring runoff and summer 

storms [175-177]. Slurry and newborn calves have been specifically identified as contamination 

sources for drinking water-related transmission of Cryptosporidium and Giardia [24]. Cities are 

less susceptible to agricultural contamination but their extensive water distribution systems 

facilitate the growth and spread of biofilm-forming bacteria [178]. Indeed, Legionnaires' disease, 

NTM, and Pseudomonas infections have been associated with domestic water supply, as they 
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flourish in residential plumbing systems [93]; however, the effects of flooding or meteorological 

extremes have not been thoroughly examined.  

1.5 Drinking water infrastructure  

Drinking water infrastructure is highly localized in the US and varies by distribution 

system, source water, and water treatment method [179, 180]. Most people rely on drinking 

water from public water systems that control distribution from the entry point (the water 

treatment plant or the source water, if it is untreated) to the service connection, at which point the 

property owner becomes responsible for further distribution. The majority are community water 

systems (CWSs) that supply water to the same population year-round for domestic, agricultural, 

and commercial uses [181]. CWSs are subject to federal and state regulations, which are 

designed to ensure safe drinking water quality, though compliance and enforcement vary by 

system [182]. Private wells, however, are unregulated and individual owners are responsible for 

the maintenance of safe drinking water standards [183]. The exact number of private wells is 

unknown but an estimated 14% to 17% of the US population rely on drinking water from private 

sources, particularly in rural areas [184-186]. In addition to the effects of regulations and 

treatment methods, drinking water quality also depends on source water; private wells rely on 

groundwater whereas CWSs use both groundwater and surface water [183]. These factors 

influence the likelihood of contamination and may mediate the effects of flooding on waterborne 

disease transmission [112, 179, 187].   

CWSs that use groundwater serve different communities and are vulnerable to distinct 

types of contamination compared to those that use surface water [187]. Groundwater systems are 

more likely to serve small, rural populations and were largely untreated until EPA enacted the 

Groundwater Rule in 2006 [188]. Groundwater is stored below the earth’s surface, often in 



 23  

 

aquifers, and for many years treatment was considered unnecessary [10]. Evidence that 

groundwater could become contaminated with fecal waste eventually led to the adoption of the 

Groundwater Rule (GWR), which mandates sanitary surveys to identify deficiencies in 

groundwater systems and treatment requirements if fecal contamination is identified during Total 

Coliform monitoring [188]. Compliant CWSs are required to undergo occasional monitoring 

whereas noncompliant systems must take corrective action to address the source of 

contamination or to provide enhanced water treatment. Unlike groundwater sources, the 

vulnerability of surface water to contamination has long been established and treatment standards 

were set in the 1974 Safe Drinking Water Act (SDWA), the first piece of federal drinking water 

regulation [10]. The Surface Water Treatment Rule (SWTR) is more stringent than the GWR as 

it requires filtration and disinfection, including residual disinfectants to ensure continuous 

treatment, for most drinking water systems [189]. The SWTR and GWR set maximum 

contaminant level goals (MCLGs) for Giardia, Legionella, E. coli, and viruses at zero because 

any exposure to these pathogens is considered unsafe [190]. In such cases where the goal is to 

completely eliminate contamination, the drinking water regulations are defined according to a 

treatment technique, e.g. a 3-log (99.9%) or 4-log (99.99%) removal, instead of a maximum 

containment level (MCL) [190].  

While regulations have substantially improved drinking water quality since the 1970s, 

contamination is still prevalent throughout the US [179, 191]. Between 1982 and 2015, an 

estimated 9 to 45 million people relied on CWSs that violated water quality standards in a given 

year, an approximation that does not include contamination in private wells [11]. Treatment 

failures often occur in old or poorly maintained systems, even in the absence of storms or floods 

[175, 192].  Substandard water quality and disease outbreaks have been attributed to cracks in 
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water containment facilities, allowing for the infiltration of animal waste, and with disinfectant 

or filtration failures [193]. Flooding exacerbates these existing deficiencies and causes high-flow 

conditions, which can inhibit water treatment and increase turbidity in drinking water. 

Groundwater is particularly vulnerable to contamination because multi-barrier water treatment is 

not required under the GWR. The rule’s objective was to enforce treatment requirements in 

CWSs at greatest risk for contamination while allowing those with high quality source water 

flexibility in selecting treatment methods [194]. In practice, however, the rule does not provide a 

framework for identifying these vulnerable CWSs, so systems with low quality water are not 

necessarily targeted and can operate using insufficient treatment techniques [11]. Even though 

groundwater is typically better protected from contamination than surface water, disinfection 

alone has still been found to be inadequate during high turbidity periods compared to the 

combination of disinfection and filtration [195].  

Advanced water treatment is especially important for water sources vulnerable to 

contamination with Cryptosporidium oocysts and Giardia cysts [24, 196]. Due to their size, the 

parasites are able to penetrate conventional sand filters, and Cryptosporidium oocysts are 

resistant to most disinfectants; Giardia, however, is sensitive to common disinfectants and thus 

removed more readily during chemical water treatment [24]. The majority of Cryptosporidium 

outbreaks reported to CDC occur in systems that ostensibly treat drinking water, underscoring 

the need for advanced treatment, such as ozone or UV radiation, in more CWSs [187]. This is an 

especially serious problem in rural CWSs, which report more water quality violations than urban 

or suburban communities [11], likely due to compounding contamination risk factors that 

disproportionately affect rural areas. Rural CWSs are often in regions that experience river 

floods, which can generate standing floodwater that contaminates groundwater sources with 
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agricultural waste. They are also usually smaller and have fewer resources to implement or 

enforce SDWA regulations [197, 198].   

The highest risk, though, is associated with consuming drinking water from private wells 

[199]. They are also more common in rural areas and are vulnerable to agricultural runoff, 

leaking septic tanks, and floodwaters [184, 200]. Private wells are not typically monitored for 

contamination. One survey in Georgia found that 41% of private wells were contaminated with 

fecal coliform and that 95% of people in rural Georgia relied on wells [200]. Consuming 

drinking water from private wells has been associated with increased risk for Salmonellosis, 

Campylobacteriosis, E. coli infection, and norovirus [172, 199, 201, 202]. Urban drinking water 

systems are better protected from contamination because they generally rely on surface water 

sources and undergo multi-barrier water treatment, per the SWTR [203]. They are susceptible, 

however, to the biofilm-forming pathogens that are natural inhabitants of water and flourish in 

extensive distribution systems [17]. The bacteria are ubiquitous in drinking water and often 

accumulate in domestic (property owner) systems, rather than CWSs, because premise plumbing 

has low residual disinfectant and intermittent stagnation that facilitate biofilm-formation [17, 

92]. None of the waterborne pathogens are restricted to groundwater or surface water sources, 

but the overall associations among water sources, contamination routes, and distribution systems 

provides insight into how the effects of flooding on disease transmission vary by location.  

1.6 Dissertation overview   

The objective of this work is to quantify the effects of flooding on waterborne infectious 

diseases in the US and to determine whether they vary by location or drinking water source. The 

burden of waterborne disease is likely to increase in the future due to more severe seasonal and 

extreme floods, a problem compounded by aging water and sanitation infrastructure. Our ability 
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to mitigate the effects of flooding is contingent upon a thorough understanding of flood-disease 

dynamics. To that end, we seek to address two critical gaps in the flood-disease literature by 1) 

examination of the effects of flooding on specific pathogens, rather than syndromic conditions 

like acute gastroenteritis, and 2) use of multiple flood-indicator variables to account for the 

variety of flood-types common in the US. This is also the first study to examine the effects of 

tropical cyclones on specific waterborne diseases over multiple storm seasons. Flood-disease 

dynamics defy simple characterization because they are influenced by factors, namely 

hydrometeorological conditions and drinking water infrastructure, that vary across space.  

In Chapter 1 above, we propose a framework for analyzing these complex associations, 

which we apply to the following dissertation work. In Chapter 2 we use the Healthcare Cost and 

Utilization Project (HCUP) dataset to examine the effects of seasonal hydrometeorological 

variables on hospitalizations for 13 different waterborne pathogens. Using Multimodel Inference 

(MMI) we assess the relative importance of flood-indicator variables and select the most highly-

weighted factors to include in further statistical analysis. We then use a generalized linear mixed-

model (GLMM) to determine the effects of seasonal hydrometeorology, location (rural/urban), 

and drinking water source on hospitalizations for the pathogens separately and grouped by 

pathogen-type (i.e. parasites, enteric bacteria, biofilm-forming bacteria). In Chapter 3 we use 

weekly case data for six waterborne diseases from the National Notifiable Disease Surveillance 

System (NNDSS) to evaluate the effects of named cyclonic storms. We use a conditional quasi-

Poisson model to compare cases in weeks with and without storms, and repeat the analysis using 

different storm exposure definitions based on cumulative rainfall, windspeed, and distance from 

the storm track. We also combine wind and rainfall exposure to create storm-type categories, e.g. 

“"high rain-high wind" or "low rain-low wind", to determine whether different types of storms 
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had a distinct effect waterborne disease. In Chapter 4 we focus on hospitalizations for 

Legionnaires’ disease, which is increasing in incidence in the US and may be an important, 

underestimated cause of community-acquired pneumonia (CAP) [98, 204, 205]. We first use the 

MMI and GLMM approach outlined in chapter 2 to study the effects of seasonal meteorology; 

next, we examine the effects of extreme floods using two approaches. We use a non-parametric 

approach to compare hospitalizations in months with extreme hydrometeorology to bootstrapped 

monthly averages. We also compare Legionnaires' disease hospitalizations in months with and 

without named tropical cyclones using a conditional logistic model. In Chapter 5 we present 

further discussion and conclusions. 
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Abstract 

 

Meteorology, hydroclimatology, and drinking water infrastructure influence the transmission of 

waterborne infectious diseases in the United States, but their roles are not well-understood and 

may vary by pathogen type or geographic region. These pathogens cause severe intestinal, 

respiratory, or systemic infections in vulnerable people and pathogens that form biofilms may be 

an important driver of community-acquired pneumonia. Identifying the mechanisms that underlie 

contamination events and disease transmission is particularly important given that climate 

change may lead to more extreme floods, droughts, and seasonal precipitation. We examined the 

effect of meteorological variables, drinking water source, geographic region, and location 

(rural/urban) on hospitalizations for 12 waterborne bacterial, parasitic, and viral infections in the 

United States. Twelve years of hospitalization data from 516 hospitals in 25 states were used to 

assess seasonality and long-term trends in hospitalizations; we found that hospitalizations for 

bacterial and parasitic pathogen groups peaked between July and September and that 

Legionnaires’ disease peaked between August and October. We used a multimodel inference 

approach to identify the most highly-weighted explanatory variables and included these in a 

generalized linear mixed model (GLMM) framework. There was a 16% (95% CI: 8% - 24%) 

decrease in hospitalizations for the bacterial pathogen group in urban compared to rural areas; for 

Campylobacter, specifically, there was a 31% (95% CI: 9% - 53%) decrease in urban areas, a 

27% (95% CI: 6% - 48%) decrease associated with drinking water from surface water sources, 

and an 11% (95% CI: 4% - 17%) increase with a 1-standard deviation (SD) increase in runoff. 

Parasitic hospitalizations increased 9% (95% CI: 4% - 15%) with a 1-SD increase in 

precipitation, predominantly driven by Cryptosporidium hospitalizations, and were greater in 

areas that relied on groundwater rather than surface water as a drinking water source. 
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Legionnaires’ disease increased 124% (95% CI: 90% - 157%) with a 1-SD increase in soil 

moisture. Associations between hospitalization rates and meteorological conditions, location, and 

drinking water source varied among the specific pathogens; the pathogen-group level analyses 

masked several of these findings and were largely uninformative. Precipitation, runoff, and rural 

locations were positively associated with some bacterial and parasitic infections; many of these 

pathogens regularly colonize livestock, and these findings suggest that agricultural areas may be 

particularly vulnerable to contamination events and disease transmission. Conversely, 

hospitalizations for biofilm-forming pathogens were associated with soil moisture and 

hospitalization rates were higher in urban areas. For these pathogens, prolonged wet conditions, 

and locations with extensive water distribution systems may drive transmission.  
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2.1 Introduction 
 

Waterborne infectious disease is a persistent problem in the United States, where an 

estimated 7,150,000 cases occur annually despite safe drinking water regulations and sanitation 

infrastructure [1]. Waterborne pathogens transmitted via contaminated environmental or drinking 

water can cause severe respiratory, gastrointestinal, and systemic disease [179]. Drinking water 

and wastewater treatment substantially reduces the burden of disease but these systems are still 

vulnerable to contamination, a problem that will likely intensify in conjunction with aging 

infrastructure [11].  

Waterborne pathogens include bacteria that naturally inhabit water (e.g. Nontuberculous 

mycobacteria, Pseudomonas) and thrive in biofilm-forming communities in pipes and water 

storage facilities [90, 206, 207]; Legionella, in particular, is associated with outbreaks linked to 

plumbing systems [208]. The biofilm-forming bacteria are opportunistic pathogens that when 

aspirated cause pneumonia among immunocompromised, elderly, or hospitalized people [41, 96, 

206]. These pathogens are ubiquitous in drinking water [47, 94] and household plumbing [17], 

however, and may also cause a considerable proportion of community-acquired pneumonia [97].  

Waterborne pathogens that cause gastrointestinal disease (e.g. Cryptosporidium, E. coli) 

are introduced into the environment through human or animal waste, and their seasonality 

suggests that meteorological factors influence the contamination events necessary for 

transmission [209, 210]. Intense precipitation, flooding, and drought affect the concentration and 

dispersal of these pathogens that, while not natural inhabitants of water, persist in the 

environment for months [49, 63, 211, 212]. Floods mobilize pathogens in sediment, soil, and 

water and overwhelm sanitation infrastructure so that sewage circumvents treatment [161]. 

Flooding after prolonged dry periods is of particular concern. Low-flow conditions during 
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droughts can increase pathogen concentration in water distribution systems; this pathogenic 

water is then flushed out with rapid flood-driven inflow [61, 82]. Most previous research has 

focused on non-specific gastrointestinal infectious disease and has found positive associations 

with flooding [213], precipitation [214], dry periods [82, 215], and temperature [55, 216], which 

affects the survival of some pathogens in the environment. Some pathogen- and location-specific 

studies have found more inconsistent associations, however, which indicate that the effect of 

meteorological variability is not uniform across regions or pathogens [77, 217].  

The contamination events necessary for transmission are governed by dynamic 

interactions among hydroclimatology, land use, and water infrastructure. Meteorological 

conditions that lead to contamination in one setting may have no effect in regions with different 

hydroclimatology [3, 218, 219]; for example, Cryptosporidiosis has been found to increase with 

precipitation and temperature in tropical and temperate climates [76], but exhibits no seasonality 

or association with meteorological variables in arid regions [77]. Environment-disease dynamics 

can vary even within a small geographic area; precipitation has been positively associated with 

Campylobacter and Salmonella bacterial infections in low-lying coastal areas, but not inland 

regions, within a single state in the US [58, 59, 64].  

Drinking water sources from both groundwater [112, 220] and surface water [187] are 

susceptible to contamination but meteorological drivers, exposure routes, and pathogens may 

vary by location [130, 179, 220], particularly between urban and rural areas [221]. In cities or 

places experiencing drought, precipitation on impermeable surfaces can lead to flash floods that 

cause sewage by-passes or combined sewer overflows (CSOs) [127]; this wastewater is highly 

pathogenic [131, 153] and can contaminate surface water sources used for drinking water [126, 

222]. In agricultural regions with large drainage basins, however, exposure is often driven by 
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snowmelt [131], which generates standing water in fields and runoff polluted with animal waste 

[112]. Floodwater carrying pathogens from soil, including biofilm-forming bacteria, and from 

livestock fecal matter can contaminate drinking water from groundwater sources through direct 

contact or infiltration [112, 199, 223].  

In this study, we examined the effect of meteorological variables on hospitalizations for 

waterborne infectious diseases and whether these associations were influenced by drinking water 

source, location (rural/urban), and region. We assessed these associations for bacterial, protozoal, 

viral, and biofilm-forming pathogen groups, and for each pathogen independently, to determine 

whether environment-disease dynamics were consistent among pathogens with similar biology. 

Previous research has examined the effect of precipitation or temperature on cases, but these 

studies have focused on nonspecific diarrheal illness, narrow geographic regions, or on 

outbreaks. Waterborne infectious diseases will become a more pressing public health challenge 

as climate change leads to more severe floods and droughts [224]. A thorough understanding of 

contamination mechanisms is necessary to identify communities at risk for waterborne illness 

and to develop effective interventions.  

2.2 Methods 
 

2.2.1 Data 

 
Hospitalization data 

The Centers for Disease Control and Prevention (CDC) has identified 12 waterborne pathogens 

that are endemic to the US and can cause severe illness [1]. In this analysis, we used the National 

Inpatient Sample (NIS) from the Healthcare Cost and Utilization Project (HCUP) to identify 

hospitalizations for the bacterial, protozoal, and viral pathogens that cause enteric or respiratory 

disease; we excluded the pathogens that predominantly cause ear and wound infections. We also 
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included hospitalizations for unspecified intestinal amoebic and protozoal infections which, 

while not included in CDC surveillance data, are waterborne pathogens known to cause severe 

disease [225]. We identified infections by ICD-9 code and found the monthly hospitalization 

count for each of the 12 pathogens at every hospital between 2000 and 2011. We restricted our 

analysis to hospitals that contributed at least 4 years of data to the NIS dataset, provided monthly 

counts of hospitalizations, and reported their exact geographic location. We excluded one 

hospital in Denver, Colorado, that specialized in respiratory infections, including those caused by 

the biofilm-forming pathogens included in this analysis, and treated patients from across the US. 

Since the NIS data are de-identified and in a publicly available dataset, Columbia University’s 

Human Research Protection Office does not consider this to be research with human subjects and 

thus does not require an IRB review.  

In the primary analysis, we also restricted hospitals to those that had at least 10 

hospitalizations for waterborne infections during the study period. Hospitals with low case 

counts may be in areas without endemic waterborne pathogens, and the few cases that are 

identified and treated may be due to travel, foodborne outbreaks, or other sources that do not 

reflect local waterborne contamination. As a sensitivity analysis for this exclusion criteria, we 

repeated the analysis using several case count thresholds. We created subsets of our 

hospitalization data containing hospitals with at least 1, 5, 15, and 20 cases of waterborne disease 

during the study period; all of the analyses were repeated with these case threshold datasets.  

Hospitals were categorized by location (rural/urban) and size (number of hospital beds) 

according to the definitions used by HCUP. Prior to 2004, urban hospitals were those within 

Metropolitan Statistical Areas (MSAs), as defined by the US Census Bureau based on 1990 

Census data, and rural hospitals were those outside MSAs. From 2004 to 2011, Core Based 
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Statistical Areas (CBSAs) defined by the US Census Bureau were used to determine location; 

hospitals within ‘Metropolitan’ or ‘Division’ CBSAs were considered urban while those in 

‘Micropolitan’ or ‘Rural’ CBSAs were rural. Hospital size was determined by the number of 

hospital beds given the hospital’s geographic region, location, and teaching status (teaching 

hospital or non-teaching hospital).  

Meteorological data 

Precipitation, soil moisture, surface runoff, and temperature data were obtained from the 

NASA/ NOAA North American Land Data Assimilation System 2 (NLDAS-2) forcing dataset 

and were aggregated from hourly temporal resolution to mean monthly values for each hospital 

location.  

Drinking water data  

Drinking water data were extracted from the Safe Drinking Water Information System 

(SDWIS) for the community water system (CWS) that served each hospital. The correlation 

among drinking water source, primary water source, ownership of water system, and 

implementation status of source water protection measures was assessed to inform variable 

selection for the statistical model.  

2.2.2 Trend and seasonality analysis by geographic region and pathogen group 

 
We categorized the hospitalizations for waterborne illnesses into “bacterial”, “parasitic”, 

“biofilm-forming”, and “viral” pathogen groups. The biofilm-forming pathogens are bacterial, 

but distinct from the other bacterial pathogens in that they are natural inhabitants of 

environmental water. We also assigned the hospitals to geographic regions according to United 

States Geological Survey (USGS) categories, with slight modifications to prevent single states 

from being the only representative in a region. The pathogen group and geographic region 
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variables were used to assess how seasonality and trends in hospitalizations varied throughout 

the US during the study period.  

For each hospital, we calculated monthly hospitalizations per 10,000 discharges for each 

waterborne pathogen. We averaged monthly hospitalizations by pathogen group, geographic 

region, and month to determine if there was a distinct seasonality to hospitalizations. We also 

averaged monthly hospitalizations by only geographic region to examine the differences in 

trends between 2000 and 2011 across the US. We repeated the seasonality and trend analyses 

with the pathogen-specific hospitalizations to evaluate the consistency within the pathogen 

groups.  

2.2.3 Statistical analysis 

 
We modeled the association between waterborne disease hospitalizations and 

meteorological variables, drinking water source, and location using a negative binomial 

generalized linear mixed model (GLMM) framework to account for overdispersion in the 

hospitalization data. Drinking water source was included as a binary variable (groundwater or 

surface water), and location variables included terms for geographic region and hospital location 

(rural or urban). The models included a term for year and annual sine and cosine terms to adjust 

for secular and seasonal trends, respectively, and a random intercept for each hospital. Hospital- 

and year-specific total annual discharges were used as an offset to obtain the rate of 

hospitalizations; we present all results from the statistical analysis as percent changes in 

hospitalization rates. We modeled hospitalization rates for each pathogen separately and as 

pathogen-type groups.  

Multimodel inference was used to compare models with all combinations of the 

standardized meteorological variables, drinking water source, geographic region, and hospital 
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location and to determine the importance weight of each explanatory variable. The candidate 

models varied only in these variables, but otherwise had the same structure. We used log 

likelihood and the number of parameters to calculate the Akaike weight for each model and 

ranked them by weight. The top models were the smallest number of models whose weights 

summed to 0.90 or greater, and the best-fitting model was the one with the highest weight.  

Among the top models, variable weight importance for the meteorological, drinking 

water, and location variables was determined; these importance weights were used to calculate 

the weighted average effect estimates. Cross-validation was performed by removing 20% of the 

data and conducting multimodel inference on the remainder; this process was iterated 1,000 

times to evaluate the consistency of the weights and effect estimates, and to compare these 

results to the top full models. These analyses were repeated for each case-count threshold.  

2.2.4 Sensitivity analyses 

 
The NIS includes the location of the reporting hospital, but not case residential locations. 

To address the possibility of misclassification bias, given that flood data are associated with the 

location of a hospital, we matched the hospitals to Hospital Service Areas (HSA) provided by the 

Dartmouth Atlas of Healthcare [226]. The HSA is the catchment area for each hospital and 

includes the zip codes where most Medicare patients receive care from a given hospital. We 

repeated the analyses using flood data associated with the HSA catchment area, instead of the 

hospital location, as a sensitivity analysis to assess the consistency of our findings.  

2.3 Results 
 

2.3.1 Waterborne disease hospitalizations  

 
There were 57,335 hospitalizations for waterborne disease between 2000 and 2011 from 

516 hospitals in the United States (Figure 2.1). The biofilm-forming pathogens comprised nearly 
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81% of all hospitalizations for waterborne illnesses, with 66% of hospitalizations due to 

respiratory Pseudomonas infections alone (Table 2.1). Apart from the Pseudomonas-related 

hospitalizations, the most common causes for hospitalization were Nontuberculous mycobacteria 

(NTM) infection (9.6%), Salmonella infections (8.0%), and Legionnaires’ disease (4.1%) (Table 

2.1).  

 

 

Figure 2. 1: Hospitals included in the analysis. 

516 hospitals (black circles) in the HCUP dataset met the inclusion criteria and had a minimum 

of 10 total hospitalizations for at least one of the waterborne infectious diseases. The dark gray 

states are those that did not provide monthly geolocated data or did not report to HCUP.  
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Table 2. 1 Total count of hospitalizations for pathogen groups and specific pathogens between 

2000 and 2011 

Pathogen group Specific pathogens Number of 

cases 

Percent of all 

hospitalizations 

Bacteria  9, 259 16.2 

 Salmonella 4,587 8.0 

 Shigella 1,024 1.8 

 E. coli 1,451 2.5 

 Campylobacter  2,197 3.8 

Parasite  1,580 2.8 

 Giardia 654 1.1 

 Cryptosporidium 661 1.2 

 Protozoa (multiple species 79 0.1 

 Amoeba (multiple species) 186 0.3 

Biofilm-forming 

bacteria 

 46,221 80.6 

 Legionella 2,327 4.1 

 Respiratory pseudomonas 37,681 65.7 

 Intestinal pseudomonas 717 1.3 

Virus   0.5 

 Norovirus  275 0.5 

 

Hospitalizations for intestinal and biofilm-forming bacterial pathogens were significantly 

higher in areas that used groundwater as a drinking water source instead of surface water (Table 

2.2); parasitic hospitalizations were slightly elevated as well, but the difference was insignificant 

(p = 0.97). However, the pathogen groups did not accurately reflect the pathogen-specific 

differences in hospitalizations by drinking water source (Table 1.S.1). Cryptosporidiosis 

hospitalizations were almost three times greater in groundwater areas compared to surface water 

while Giardiasis hospitalizations were slightly higher in latter (Table 1.S.1). Among the 

intestinal bacteria, Campylobacteriosis and E. coli hospitalizations were much higher in 

groundwater while Salmonellosis and Shigellosis were evenly split between drinking water 

categories (Table 1.S.1).  

  Hospitalizations for intestinal and biofilm-forming bacteria were also significantly higher 

in areas with privately owned CWSs, and in state-owned systems just for biofilm hospitalizations 
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(Table 2.S.2). Bacterial and parasitic hospitalizations did not substantially vary by primary water 

source (i.e. purchased groundwater, groundwater under influence of surface water, etc.) or by 

whether or not source water protection had been implemented (Table 2.S.2). Among biofilm-

forming pathogens, however, hospitalizations were much higher in areas that relied on purchased 

groundwater and that had not implemented source water protection measures (Table 2.S.2).  

 

Table 2. 2 Average monthly hospitalizations per 10,000 discharges by hospital location and type 

for the pathogen groups 
Hospital 

characteristicsa 

Bacteria  

Mean ± SD 

P Biofilm-

forming 

Mean ± SD 

P Parasite 

Mean ± SD 

P Virus 

Mean ± SD 

P 

Number of 

hospitals 
302  516  89  13  

Hospital bed 

size 
        

Small 0.35 (1.02)  2.6 (14.81)  0.26 (1.02)  0.32 (0.58)  

Medium 0.29 (0.94)  0.89 (2.04)  0.17 (0.61)  0.77 (5.88)  

Large 0.23 (0.55) <0.001 0.73 (1.45) <0.001 0.1 (0.27) <0.001 0.14 (0.64) 0.24 

Hospital 

location         

Rural 0.48 (1.42)  1.33 (3.49)  0.35 (1.23)  1.06 (8.39)  

Urban 0.22 (0.50) <0.001 1.13 (8.01) <0.001 0.11 (0.38) 0.41 0.24 (0.89) 0.001 

Region         

New England 0.21 (0.51) 0.26 0.70 (1.34) <0.001 0.08 (0.17) 0.90 -  

Mid-Atlantic 0.29 (0.86) 0.37 1.16 (5.38) <0.001 0.16 (0.61) 0.96 0.50 (4.66) 0.52 

Central 

Midwest 0.25 (0.70) - 1.41 (9.81) - 0.12 (0.34) - 0.21 (0.84) - 

North-Central 

Midwest 0.35 (1.02) <0.001 2.6 (14.81) <0.001 0.26 (1.02) 0.05 0.32 (0.58) 0.24 

Mountain 0.29 (0.94) <0.001 0.89 (2.04) <0.001 0.17 (0.61) 0.001 0.77 (5.88) 0.24 

Pacific 0.23 (0.55) - 0.73 (1.45) - 0.1 (0.27) - 0.14 (0.64) - 

Water source         

Groundwater 0.30 (0.88)  1.39 (10.16)  0.17 (0.70)  0.55 (5.62)  

Surface water  0.24 (0.68) 0.13 1.06 (4.47) <0.001 0.11 (0.31) 0.97 0.28 (0.99) 0.26 
aDifferences between or among hospital types were assessed for each pathogen group using  

Kruskal-Wallis test (for multiple groups) and Mann-Whitney U test (two groups) for non-

parametric continuous data.  

 

Hospitalizations for all of the pathogen groups were greater in small and rural hospitals, 

especially for the parasitic infections (Table 2.2). The pathogen-specific analysis demonstrated, 

however, that Legionnaires' disease hospitalizations were higher in urban areas unlike the other 
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pathogens in its group (Table 2.S.1). There were starker differences among group 

hospitalizations by geographic region; they were highest in the North-Central Midwest and 

Central Midwest regions for parasitic infections and in the Mountain and Pacific regions for 

biofilm-related infections. Hospitalizations for intestinal bacterial infections were relatively 

consistent across the geographic regions, though slightly higher in the North-Central Midwest 

(Table 2.2). An estimated 0.4% of all Norovirus cases lead to hospitalizations [1] and there were 

few in the dataset. Among the hospitals that reported cases, Norovirus hospitalizations were 

greater in medium-sized, rural hospitals and in the Pacific states (Table 2.2). These findings were 

not skewed by the specific HCUP hospitals included in the analysis; the number, size, and 

geographic breakdown of the hospitals was relatively consistent across pathogen group, though 

hospitals contributing to the parasitic pathogen group were disproportionately located in the 

North-Central Midwest and less likely to be located in the Pacific compared to the other 

geographic regions (Table 2.S.3). Most of the hospitals in the analysis were large facilities and 

located in urban areas with the exception of the hospitals restricted by Pseudomonas case 

thresholds; among these hospitals, which had at least 10 Pseudomonas infections, 30.4% were in 

rural areas and 56% were small- or medium-sized (Table 2.S.4).  

2.3.2 Seasonality and time series trends in hospitalizations  

 
The seasonality of waterborne disease hospitalizations varied by pathogen group and 

region in the United States (Figure 2.2). The bacterial pathogens exhibited the most consistent 

seasonality with hospitalizations peaking between July and September in all geographic regions 

(Figure 2.2a). During peak months, the average hospitalization rate for bacterial infections was 

greatest in the Central and North-Central Midwest compared to the other regions; this difference 

was not evident throughout the rest of the year, when hospitalizations for bacterial infections 
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were comparable among the geographic regions. These findings were consistent across the 

specific bacterial pathogens, though Campylobacter hospitalizations peaked earlier in the year in 

all geographic regions (Figure 2.S.1).  

 

 

Figure 2. 2: Seasonality of hospitalizations by pathogen group and geographic region. 

Average monthly hospitalizations per 10,000 discharges for a) bacterial infections peaked 

between July and September for all regions; b) parasitic hospitalizations exhibited a seasonality 

similar to bacterial infections but only in the Midwest and Pacific regions. There was no clear 

seasonality to hospitalizations for c) biofilm-related infections and d) Norovirus hospitalizations 

peaked during winter months, though data were limited to only 13 hospitals in New England, 

North-Central Midwest, and Pacific states.  
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 Seasonality for the parasitic pathogen-group was driven by hospitalizations for 

Cryptosporidium infections in the North-Central Midwest, which exhibited a sharp increase in 

May and then consistently increased until September (Figure 2.S.2); in the other geographic 

regions, peaks occurred throughout the year. There was no seasonality to hospitalizations for any 

of the other parasitic pathogens (Figure 2.S.2). Amoebic and protozoal hospitalizations were 

higher in the Mountain and Pacific regions throughout the year, but there were too few cases to 

assess seasonality.   

 There was no clear seasonality to hospitalizations for infections caused by biofilm-

forming pathogens (Figure 2.2c), though this group-level analysis obscured the seasonality of 

specific pathogens. Hospitalizations for Legionnaires’ disease peaked between August and 

October in all regions except the Pacific states, and for intestinal Pseudomonas infections in the 

late fall and winter (Figure 2.S.3). Finally, the only hospitals that met the 10-case threshold for 

Norovirus were in New England, the North-Central Midwest, and the Pacific, and 

hospitalizations peaked between January and March in all of those regions (Figure 2.2d).  

 Between 2000 and 2011 there was no significant change in monthly hospitalizations 

for any of the waterborne pathogen groups (Table 2.S.5). This was consistent across the specific 

pathogens except for Legionnaires’ disease and Nontuberculous mycobacterium, which increased 

in New England, Mid-Atlantic, and the North-Central Midwest (Figure 2.S.4). In the latter half 

of the time series, biofilm-related hospitalizations increased in areas served by surface water and 

decreased in areas that used groundwater for drinking water (Figure 2.S.5); this trend was not 

evident among the bacterial or parasitic hospitalizations.  
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2.3.3 Statistical analysis  

 
The most highly weighted meteorological variables identified by multimodel inference 

varied both among and within the pathogen groups, though drinking water source and hospital 

location were at least moderately weighted for most of the pathogens (Figure 2.3). The biofilm-

forming group was the most consistent, with soil moisture and drinking water source highly 

weighted for the overall group and for all of the specific pathogens, other than intestinal 

Pseudomonas hospitalizations. Region was highly weighted only for respiratory Pseudomonas 

while hospital location (rural/urban) was moderately weighted for all of the other biofilm-

forming pathogens. Multimodel inference for the bacterial pathogen group also moderately 

weighted drinking water source and soil moisture, though the latter was due to Salmonella 

hospitalizations (Figure 2.3). The pathogen-specific models were not well-aligned with the 

overall model; region was highly weighted only for Salmonella, while hospital location was 

highly or moderately weighted for Campylobacter, E. coli, and Shigella. Runoff was highly 

weighted in the Campylobacter model and precipitation was moderately weighted for E. coli and 

Shigella (Figure 2.3). Water source, hospital location, precipitation, and runoff were moderately 

weighted in the parasitic pathogen groups and more highly weighted for Cryptosporidium on its 

own (Figure 2.3). There were not enough amoeba and protozoal cases to assess the effects of 

region, hospital location, or drinking water source. Finally, in the Norovirus model none of the 

explanatory variables had high importance weight. 
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Figure 2. 3: Importance weights identified by multimodel inference. 

Consistency between the group-level and pathogen-specific weights varied. Drinking water 

source and hospital location (rural/urban) were highly or moderately weighted in most of the 

models, but the importance weights for the meteorological variables were inconsistent between 

the group-level and pathogen-specific models. Runoff was highly weighted for Campylobacter 

while precipitation was moderately weighted for the other intestinal bacteria. Soil moisture was 

highly weighted for most of the biofilm-forming pathogens. Among the parasitic pathogens, only 

precipitation in the Cryptosporidium model was highly weighted.  
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There was a 16% (95% CI: 8% - 25%) decrease in hospitalization rates for the bacterial 

pathogen group in urban compared to rural locations (Figure 2.4), which was largely driven by a 

31% (95% CI: 9% - 53%) decrease in Campylobacter hospitalizations in urban areas (Table 2.3). 

Campylobacter hospitalization rates also increased 11% (95% CI: 4% - 17%) in association with 

a 1-standard deviation (SD) increase in runoff and decreased 27% (95% CI: 6% - 48%) in areas 

that used drinking water from surface water instead of groundwater sources (Table 2.3). E. coli 

hospitalization rates increased in rural areas but decreased 14% (95% CI: -29 % - 1%) with a 1-

SD increase in precipitation, though these effects were marginally significant.   
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Figure 2. 4: Effect estimates from top model for each pathogen group. 

There was a 16% decrease in the hospitalization rate for bacterial infections (blue) in urban 

compared to rural areas and soil moisture was included in the top model, but the positive 

association was marginally insignificant. Biofilm-related hospitalization rates (red) increased 

12% with a 1-standard deviation increase in soil moisture and were greater in areas that used 

drinking water from surface water sources (Table 2.2), though this association was marginally 

insignificant in the model. A 1-SD increase in precipitation was associated with a 9% increase in 

hospitalization rates for parasitic infections (green).  
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Table 2. 3 Associations between hospitalization rates and meteorology, drinking water source, 

and location 

Pathogen group Precipitation Soil 

moisture  

Runoff Temperature    Surface 

water 

Urban 

Bacteria 
- 

0.09  

(-0.02, 0.21) 
 - - 

-0.16  

(-0.24, -0.08) 

Salmonella 
- 

0.09  

(-0.09, 0.28) 
-  

0.01  

(-0.12, 0.15) 
- 

Shigella 
0.04 

(-0.13, 0.21) 
- -  

-0.14 

(-0.65, 0.36) 
- 

E. coli  
-0.14 

(-0.29, 0.01) 
- -  - 

-0.15  

(-0.49, 0.18) 

Campylobacter 
- - 

0.11  

(0.04, 0.17) 
 

-0.27  

(-0.48, -0.06) 

-0.31  

(-0.53, -0.09) 

Biofilm 
- 

0.12 

 (0.07, 0.17) 
 - 

0.05  

(-0.03, 0.14) 
- 

Legionnaires' 

disease 
- 

1.24  

(0.9, 1.57) 
-  - 

0.16  

(-0.04, 0.37) 

NTM 
- 

-0.09  

(-0.25, 0.07) 
-  

-0.17  

(-0.38, 0.03) 
- 

Respiratory 

pseudomonas 
- 

0.09  

(0.04, 0.15) 
-  

0.08  

(-0.01, 0.17) 
- 

Intestinal 

pseudomonas 
0.16  

(-0.11, 0.42) 
- -  - 

-0.62  

(-1.21, -0.02) 

Parasite 
0.09 (0, 0.18) -  - 

-0.1  

(-0.3, 0.09) 
- 

Cryptosporidium 
0.22  

(0.01, 0.44) 
- 

 

 
 - 

-0.33  

(-0.83, 0.17) 

Giardia 
-0.01  

(-0.2, 0.19) 
- -  - 

0.08  

(-0.44, 0.59) 

Protozoa 
- - 

-0.47  

(-1.92, 0.98) 
 - - 

Amoeba 
0.24  

(-0.02, 0.51) 
- -  - - 

Virus 
- -  

-15.7  

(-37.2, 5.71) 
- - 

 

Hospitalization rates for biofilm-related infections increased 12% (95% CI: 7% - 17%) 

with a 1-SD increase in soil moisture (Figure 2.4), but the group-level findings obscured 

pathogen-specific associations. A 1-SD increase in soil moisture was associated with a 124% 

(95% CI: 90% - 157%) increase in Legionnaires’ disease and a 9% (95% CI: 4% - 15%) increase 

in respiratory Pseudomonas hospitalizations (Table 2.3). Drinking water from surface water 

sources was also associated with an 8% (95% CI: -1% - 17%) increase in respiratory 

Pseudomonas, though the effect was marginally significant. Intestinal Pseudomonas 
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hospitalization rates, meanwhile, decreased 62% (95% CI: 2% - 121%) in urban areas, unlike the 

other biofilm-forming pathogens that were higher in urban locations, and were positively, though 

not significantly, associated with precipitation.  

Cryptosporidium and amoebic hospitalization rates exhibited a similar relationship with 

precipitation, though location and drinking water variables were not included when modeling 

amoebas because data were too sparse.  A 1-SD increase in precipitation was associated with a 

22% (95% CI: 1% - 44%) increase in Cryptosporidium and a 24% (95% CI: -2% - 51%) increase 

in amoebic infections, though these effects was marginally insignificant (Table 2.3). Norovirus 

did not have a significant relationship with any of the meteorological variables in either the best 

model or the average of the top models. The importance weights, best model, and effect 

estimates were consistent across the hospitalization thresholds (Figure 2.S.6) and hospital service 

areas.  

2.4 Discussion 
 

Hospitalization rates for waterborne infectious diseases were associated with 

meteorological conditions, location, and drinking water source throughout the United States; 

however, the strength and direction of the relationships varied among pathogens. Rurality, 

runoff, and precipitation were associated with some bacterial and parasitic infections that are also 

common among livestock; conversely, soil moisture had an effect on hospitalization rates for 

biofilm-related infections and for Legionnaires' disease, hospitalizations were higher in urban 

areas. In general, the pathogen groups obfuscated important pathogen-specific associations and 

were ineffective at identifying trends.  

Pathogen-specific water quality monitoring is onerous and expensive [227], and as a 

result infrequently conducted; these results suggest, however, that it may be necessary to 
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establish accurate associations between meteorological variables and waterborne disease. The 

need for pathogen-specific analyses was further underscored by the variability in seasonal peaks 

and general seasonal patterns, especially among pathogens within the same group. Seasonal 

variation can be a powerful tool for disentangling relationships between meteorological variables 

and infectious diseases because deviations from seasonal patterns can provide insight into the 

drivers of transmission [228, 229]. Given long time-series, even small changes in the seasonal 

environmental variables can indicate important, and potentially obscured, factors related to 

infectious disease dynamics. Extreme departures from seasonal norms, like rainfall during 

cyclonic storms, are also informative but their relative infrequency is limiting. Most waterborne 

diseases are considered highly seasonal, but we found considerable variability by geographic 

region and pathogen. Salmonellosis hospitalization rates peaked sharply in August in the Central 

Midwest but not in neighboring regions (North-Central Midwest, Mid-Atlantic) with similar 

meteorological seasonality. Conversely, in the North-Central Midwest E. coli hospitalizations 

peaked during the same time of year while Salmonellosis did not. More geographically and 

temporally resolved epidemiological data would allow a broader examination of why different 

regions exhibit distinct seasonality.   

Bacterial and parasitic hospitalization rates were higher in small, rural hospitals and in 

Midwestern regions. Much of the Midwest experiences a wet spring season where the 

combination of snowmelt and intense precipitation can lead to flooding and heavy runoff [3]. 

Rural communities typically use drinking water from private wells, which are vulnerable to 

inundation during floods, or groundwater sources, which are often undertreated relative to 

surface drinking water [112, 187]. This is of particular concern in agricultural regions; both 
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increased pathogen concentrations in water and illnesses have been associated with wet 

conditions near farms [59, 81].  

The ability to persist in the environment or evade water treatment measures varies by 

pathogen and may help explain why the effect of meteorological conditions is not uniform. Only 

Campylobacter hospitalizations were significantly associated with environmental or drinking 

water variables. Campylobacter can enter a dormant state in the environment, persisting for 

weeks in water or sewage, but do not replicate outside of animal hosts [5, 147]; this suggests that 

contaminated water may be as important a driver of transmission as foodborne exposure. 

Campylobacter hospitalizations were positively associated with runoff, drinking water from 

groundwater sources, and rurality, results that are consistent with previous research identifying 

associations with precipitation, rural coastal areas, and untreated well water [5, 64].  

Among the parasitic pathogens, we found that Cryptosporidium hospitalizations 

increased with average monthly precipitation. Giardia is a cyst-forming parasite but unlike 

Cryptosporidium (which forms oocysts), hospitalizations were not associated with environmental 

variables and demonstrated no discernable seasonality. The difference between these pathogens 

underscores the roles of pathogen biology and water treatment in transmission dynamics. While 

both pathogens colonize livestock and have been positively associated with wet conditions [66], 

they differ in their persistence in the environment and response to water treatment [211]. Giardia 

has been associated with high flowrates, indicating that runoff and flood conditions dilute its 

concentration and flush it out of the environment [130, 230]; Giardia is also easily removed from 

water, so treatment is highly effective [130]. Cryptosporidium, however, persists in water, 

potentially as part of biofilm communities, and is highly resistant to chlorination [211].  
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Waterborne diseases have also been associated with drought conditions when pathogens 

are concentrated in diminished waterbodies; we found some evidence for this in hospitalizations 

for E. coli, which increased in months with lower precipitation, though this association was 

marginally significant. E. coli cases have been found to increase during dry periods and, in 

particular, during intense precipitation with antecedent dry periods [82].   

Biofilm-forming bacteria may be an important source of community-acquired pneumonia 

(CAP) but their transmission dynamics outside hospital environments have not been thoroughly 

examined. We found hospitalizations for biofilm-related infections were positively associated 

with soil moisture, which integrates rainfall and snowmelt and reflects more extreme 

hydrological conditions including floods and droughts [231, 232]. Prolonged wet periods and 

overland flow likely mobilize these pathogens that naturally inhabit soil. The group-level 

association was driven by Legionnaires’ disease and respiratory Pseudomonas-related 

hospitalizations, though the importance of environmental drivers on transmission differed 

between them. The effect of soil moisture on Legionnaires’ disease was 10-times stronger 

compared to the group and while Legionnaires’ hospitalizations demonstrated consistent 

seasonality across geographic regions, there was no seasonality to Pseudomonas hospitalizations. 

This suggests that respiratory Pseudomonas is less tightly coupled to environmental variability, 

though this finding may be due to the inability to distinguish community-acquired and 

nosocomial infections.  

Legionnaires’ disease hospitalization rates were higher in urban areas and in places that 

used drinking water from surface water sources; these associations were not statistically 

significant in the model framework but provide important guidance for future research with more 

temporally or geographically resolved data. Cities have complex distribution systems and a large 
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number of premise plumbing systems that provide locations (e.g. pipes, holding tanks) for 

biofilm formation [17]. Rural drinking water sources are still vulnerable to contamination but 

non-centralized systems, and private wells in particular, offer fewer opportunities for biofilms to 

form or grow. Intestinal Pseudomonas hospitalizations, however, were substantially higher in 

rural areas and associated with precipitation at marginally significant levels; these associations 

closely mirror those of Cryptosporidium, and suggest that both infections share similar 

transmission mechanisms. The similarity between intestinal Pseudomonas and Cryptosporidium, 

in addition to the overall inconsistency between pathogen group-level and pathogen-specific 

findings, demonstrate the complexity of factors that influence waterborne transmission and 

indicate that they may not be adequately captured by broad categorization.  

Our findings are constrained by several limitations. The monthly resolution of the 

hospitalization data prevented examination of the effect of rapid changes in meteorological 

conditions, which may increase contamination by concentrating and then flushing pathogens [61, 

82]. Data geolocation also introduces the potential for misclassification bias, given that 

meteorological data were associated with hospital locations, which may not reflect conditions at 

patients’ work and home. We aimed to address these limitations by repeating the study using 

hospital catchment areas as a sensitivity analysis, which was consistent with the primary 

findings. The analysis also does not include data from the Southeast because these states did not 

report monthly data to HCUP; this is a major limitation as many Southeastern states include 

agricultural regions and experience substantial flooding associated with cyclonic storms.  

The severity of floods and droughts are likely to change in conjunction with atmospheric 

warming; identifying the effect of environmental factors on waterborne infectious diseases is 

necessary to prepare for these events. Future research should aim to develop a comprehensive 
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mechanistic model of contamination events by incorporating water quality data from 

environmental and drinking water sources. Detailed microbiological data would enable an 

exploration of the interactions of waterborne pathogens in water with multiple contaminants. In 

lab studies, biofilm formation was enhanced in water with biofilm-forming bacteria (Legionella 

and nontuberculous Mycobacterium) and amoebas [225]; there were too few amoebic 

hospitalizations in this dataset to assess their relationship with biofilm-related infections, but in 

the future associations between microbiological contamination and infections should be 

examined. As most cases of waterborne disease are not hospitalized, future work should also 

expand to include all reportable cases; this is particularly important for understanding the burden 

of community-acquired pneumonia due to biofilm-forming pathogens. Some previous studies 

have found associations between waterborne diseases and extreme climatic events, including 

floods and droughts. These potential nonlinear effects are not captured in this analysis, and future 

work should examine cases and outbreaks due to extreme events.  
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2.5 Supplementary Materials 
 

Table 2. S. 1 Average hospitalizations per 10,000 annual discharges by hospital location and type  

Pathogen Salm.  Shigella E. coli  Campy. Crypto. Giardia Protozoa Amoeba 

Legionnaires' 

disease NTM Pseudomonas 

Int. 

pseudo Norovirus 

No. cases 4,587 1,024 1,451 2,197 661 654 79 186 2,327 5,496 37,681 717 275 

No. hospitals 173 26 40 71 20 27 2 11 75 147 496 9 13 

Hospital 

Location(%)                           

Rural 0.306 0.069 0.125 0.144 0.338 0.092 0 0.003 0.053 0.075 1.716 0.049 1.058 

Urban 0.153 0.038 0.055 0.085 0.068 0.062 0.007 0.015 0.07 0.511 1.495 0.029 0.24 

Hospital 

Bedsize (%)              

Small 0.184 0.055 0.088 0.153 0.215 0.111 0.004 0.006 0.076 1.105 2.583 0.055 0.323 

Medium 0.19 0.053 0.067 0.102 0.102 0.08 0.005 0.014 0.057 0.114 1.288 0.027 0.766 

Large 0.178 0.037 0.064 0.079 0.059 0.05 0.007 0.015 0.062 0.135 1.176 0.031 0.139 

Region (%)              

New 

England 0.174 0.023 0.062 0.124 0.047 0.057 0.006 0.006 0.097 0.144 1.188 0.031 0.216 

Mid-Atlantic 0.22 0.033 0.036 0.078 0.051 0.056 0.004 0.011 0.095 0.143 1.547 0.021 - 

Central 

Midwest 0.184 0.048 0.105 0.079 0.074 0.086 0 0.006 0.062 0.06 2.269 0.085 - 

North-

Central 

Midwest 0.159 0.04 0.112 0.132 0.203 0.07 0.003 0.007 0.049 0.089 1.184 0.035 0.138 

Mountain 0.173 0.071 0.085 0.072 0.031 0.059 0.016 0.023 0.049 3.03 1.156 0.032 - 

Pacific 0.153 0.061 0.061 0.097 0.041 0.074 0.011 0.033 0.031 0.113 1.834 0.032 0.7 

Water 

Source (%)              

Groundwater 0.186 0.05 0.086 0.114 0.146 0.055 0.005 0.012 0.055 0.756 1.393 0.039 0.553 

Surface 

water 0.181 0.045 0.059 0.087 0.052 0.068 0.007 0.015 0.071 0.127 1.675 0.033 0.281 
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Table 2. S. 2 Average monthly hospitalizations per 10,000 annual discharges by drinking water 

variables for the pathogen groups 
CWS characteristicsa  Bacteria Biofilm-forming 

pathogens 

Parasite Virus 

Water Source     

Groundwater 0.299* 0.977* 0.168 0.553 

Surface water 0.244 1.066 0.110 0.281 

Ownership of Water System     

Federal 0.207* 0.582* 0.129 - 

Local 0.264 0.961 0.135 0.423 

Private/public 0.161 0.393 0.044 - 

Native American 0.273 0.673 - - 

Private 0.321 1.831 0.086 0.225 

State 0.202 1.536 0.035 - 

Primary Water Source     

Groundwater infl. by surface water 0.392 1.001* 0.179 - 

Purchased groundwater infl. by surface 

water 

0.248 0.702* - - 

Groundwater 0.302 0.945 0.168 0.609 

Purchased groundwater 0.158 1.842 - 0.233 

Surface water 0.240 0.986 0.101 0.411 

Purchased surface water 0.237 1.182 0.118 0.105 

Water Source Protection     

Water source protection not 

implemented 

0.254 1.017* 0.115 0.205 

Water source protection implemented 0.211 0.696 0.076 - 

Not reported  0.289 1.171 0.158 0.503 

 
aDifferences between or among hospital types were assessed for each pathogen group using  

Kruskal-Wallis test (for multiple groups) and Mann-Whitney U test (two groups) for non-parametric continuous 

data.  

*Indicates significant differences between or among CWS characteristics (p < 0.05).  
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Table 2. S. 3 Description of the hospitals included in the analysis by pathogen group using 

HCUP variables and drinking water source data 

Hospital 

characteristicsa 

Bacteria Parasites Biofilm-forming 

bacteria 

Virus Overall 

No. of hospitals 302 89 516 13 524 

Hosp. Location (%)      

Rural 19.2 6.2 31.7 20 24.9 

Urban 80.8 93.8 68.3 80 75.1 

Hospital Bedsize (%)      

Small 13.9 8.8 25.2 1.7 19.5 

Medium 30.2 26.9 30.6 41.7 30.2 

Large 55.9 64.3 44.2 56.7 50.3 

Region (%)      

New England 10 10.2 7.9 28.3 9.1 

Mid-Atlantic 32.6 34.3 30.1 0 30.9 

Central Midwest 7.5 5.5 12.6 0 10 

North-Central 

Midwest 

19 23.8 19.4 28.3 19.8 

Mountain 10.6 13.1 8.9 0 9.8 

Pacific 20.3 13.1 21.1 43.3 20.3 

Water Source (%)      

Groundwater 33.2 38.2 34.4 46.2 36.3  

Surface water 66.8 61.8 65.6 53.8 63.7 

Annual Discharge      

Mean (SD) 16,100 

(11,100) 

24,100 

(13,500) 

11,300 (10,600) 17,800 

(10,700) 

14,200 

(11,800) 

Median (Min, Max) 14,000 

 (1,040, 

65,800) 

23,100 

 (1,500, 

65,800) 

7,670 

 (76, 65,800) 

17,100 

(503, 

42,600) 

10,900 

(76, 65,800) 

aDifferences between or among hospital types were assessed for each pathogen group using  

Kruskal-Wallis test (for multiple groups) and Mann-Whitney U test (two groups) for non-parametric continuous 

data. There were significant differences by hospital characteristics (p < 0.05) for all of the categories except water 

source. Differences among the pathogen groups, however, were mostly insignificant. 
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Table 2. S. 4 Description of the hospitals by specific pathogen using HCUP variables and drinking water source data 

 

Pathogen Salm.  Shigella E. coli  Campy. Crypto. Giardia Protozoa Amoeba 

Legionnaires' 

disease NTM Pseudomonas 

Int. 

pseudo Norovirus 

No. cases 4,587 1,024 1,451 2,197 661 654 79 186 2,327 5,496 37,681 717 275 

No. hospitals 173 26 40 71 20 27 2 11 75 147 496 9 13 

Hospital 

Location 

(%)                           

Rural 13.6 5 14.4 4.9 9.8 0 0 2.9 6.4 5.6 30.4 14.6 20 

Urban 86.4 95 85.6 85.1 90.2 100 100 97.1 93.6 94.4 69.6 85.4 80 

Hospital 

Bedsize (%)                           

Small 9.1 9.3 6.7 6.1 10.8 4.4 0 0 9.8 9.3 24.5 0 1.7 

Medium 23.2 30 17.4 25 15.7 19 0 18.8 24.9 26.5 31 39 41.7 

Large 67.6 60.7 75.9 68.9 73.5 76.6 100 81.2 65.4 64.1 44.6 61 56.7 

Region (%)                           

New 

England 9 9.3 17.4 12.8 5.9 10.2 64.3 0 14 10.7 8.2 14.6 28.3 

Mid-Atlantic 41.3 28.6 24.6 29.4 37.3 40.9 0 31.9 52.2 39 30.3 31.7 0 

Central 

Midwest 6 3.6 6.7 1.2 4.9 6.6 0 0 5.9 4.1 12.7 9.8 0 

North-

Central 

Midwest 14.8 9.3 23.1 19.2 38.2 19.7 0 7.2 10.9 11.4 19.4 12.2 28.3 

Mountain 9.6 22.9 16.9 12.5 4.9 13.9 35.7 11.6 12.3 14.1 8.1 22 0 

Pacific 19.2 26.4 11.3 25 8.8 8.8 0 49.3 4.7 20.7 21.3 9.8 43.3 

Water 

Source (%)                           

Groundwater 32 30.8 27.5 29.6 47.6 25 0 100 35.5 27.2 37.5 22.2 46.2 

Surface 

water 68 69.2 72.5 70.4 52.4 75 100 0 64.5 72.8 62.5 77.8 53.8 
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Primary 

Water 

Source                           

GW 30.9 30.8 27.5 29.6 47.6 25   100 35.5 27.2 35.9 22.2 38.5 

GU 1.7 0 2.5 2.8 4.8 0   0 0 1.3 1.8 11.1 0 

GWP 36.6 34.6 42.5 36.6 33.3 50   0 36.8 39.1 33.9 55.6 30.8 

SW 29.1 34.6 27.5 31 14.3   0 27.6 32.5 26.3 0 23.1   

SWP 0.6 0 0 0 0   0 0 0 0.4 11.1 0 <0.001 

Annual 

Discharge                           

Mean (SD) 

20,500 

(11,800) 

25,100 

(15,000) 

24,700 

(15,200) 

23,200 

(13,000) 

28,100 

(18,000) 

37,400 

(4,950) 

25,700 

(12,800) 

23,300 

(13,100) 

21,600 

(11,600) 

11,600 

(10,700) 

18,900 

(15,300) 

17,800 

(10,700) 
  

Median 

(Min, Max) 

19,200 

(2,130, 

65,800) 

24,600 

(1,570, 

64,700) 

22,100 

(4,320, 

65,800) 

21,700 

(2,170, 

64,700) 

25,000 

(3,610, 

65,800) 

36,300 

(28,600, 

43,500) 

23,900 

(6,170, 

65,800) 

20,800 

(1,760, 

65,800) 

20,100 

(76, 65,800) 

8,080 

(128, 

65,800) 

15,500 

(4,500, 

65,800) 

17,100 

(503, 

42,600) 
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Table 2. S. 5 Assessment of time series trends by pathogen group using Mann-Kendall test 

Pathogen group Mann-Kendall 

p-value 

Mann-Kendall slope Mann-Kendall 

indicator 

Bacteria 0.338 7.01E-06 0.429 

Biofilm 0.613 6.14E-04 0.744 

Parasite 0.685 6.76E-06 1 

Virus <0.001 8.89E-04 2.34 
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Figure 2.S. 1: Seasonality of bacterial hospitalizations by geographic region. 

Average monthly hospitalizations per 10,000 discharges for all bacterial pathogens exhibited 

clear seasonality, with most peaking in the late summer or early fall. Campylobacter 

hospitalizations peaked earlier in the year compared to the other bacterial pathogens.  
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Figure 2.S. 2: Seasonality of parasitic hospitalizations by geographic region. 

Average monthly Cryptosporidium hospitalizations per 10,000 discharges in the Midwestern 

regions were the only parasitic hospitalizations to show strong seasonality. Giardia 

hospitalizations in the Pacific region also demonstrated a seasonal peak in August, but there were 

few hospitalizations in that area.  
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Figure 2.S. 3: Seasonality of biofilm-related hospitalizations by geographic region. 

Average monthly Legionnaires’ disease hospitalizations per 10,000 discharges peaked in New 

England and Mid-Atlantic states earlier in the year (July – August) compared to Midwestern and 

Mountain states (September – October). The other respiratory biofilm-forming pathogens 

exhibited no discernible seasonality. Intestinal pseudomonas hospitalizations peaked between 

October and February in some regions but there were few hospitals in the intestinal 

Pseudomonas-specific dataset.  
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Figure 2.S. 4: Time series for biofilm-related hospitalizations per 10,000 discharges averaged by 

geographic regions.  

Hospitalizations for Legionnaires’ disease and NTM increased between 2000 and 2011 in New 

England, Mid-Atlantic, and Midwestern hospitals.  
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Figure 2.S. 5: Time series for pathogen-group hospitalizations by drinking water source.  

After 2006, biofilm-related hospitalizations increased in areas served by surface water and 

decreased in areas that used groundwater for drinking water.  
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Figure 2.S. 6: Best model effect estimates for each pathogen group across different case-count 

thresholds. 

As a sensitivity analysis, the data were restricted use 5-, 10-, 15-, and 20-case thresholds as 

cutoffs for inclusion in the hospitalization dataset. The effect estimates were consistent across the 

case-count thresholds.  
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Abstract 

 

Tropical cyclones cause destructive flooding in the Eastern United States that can lead to a range 

of adverse health outcomes. Storm-driven flooding is known to contaminate environmental, 

recreational, and drinking water sources, but its effect on specific waterborne infections has not 

been examined over time. In this analysis, we used 23 years of tropical cyclone exposure and 

weekly state-level case data to assess the effects of storms on six waterborne diseases in a 

conditional quasi-Poisson model. Storm exposure was defined separately for windspeed, rainfall, 

and proximity to the storm track; in a secondary analysis, we combined wind and rain exposure 

to determine the effect of storm types, e.g. high wind-high rain storms, on cases. We found that 

exposure to storm-related rainfall was associated with increases in Shiga-toxin producing E. coli 

infections (48% increase, 95% confidence interval [CI]: 27-69%) and Legionnaires' disease 

(42%, 95% CI: 22-62%) one- and two-weeks post-storm, respectively. Cryptosporidiosis cases 

increased sharply during the storm exposure week (52%, 95% CI: 42-62%) and remained 

elevated but declined over ensuing weeks. High rain-high wind storms had no effect on cases 

except for Cryptosporidiosis, which increased sharply three-weeks post-storm, while high rain-

low wind storms were associated with delayed increases in Legionnaires' disease cases. Tropical 

cyclones are a risk to public health that will likely become more serious with increasing storm 

severity and aging water infrastructure systems. These findings suggest that storm preparedness 

efforts should focus on identifying and addressing sources of contamination, and on protecting 

source waters.  
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3.1 Introduction 

Tropical cyclones are a seasonal occurrence in the Eastern United States where they 

cause widespread destruction and endanger public health [233-235]. Among many storm-related 

hazards, extreme flooding is a concern because it can lead to the contamination of recreational, 

irrigation, and drinking waters [112, 145, 236], and may facilitate the transmission of waterborne 

infectious diseases [187]. Elevated cases and outbreaks [237] have been attributed to individual 

storms but the effect of tropical cyclones on specific waterborne infections has not been 

evaluated over multiple storm seasons. Understanding the transmission of waterborne pathogens 

is a pressing public health challenge, as the burden of disease will likely increase in conjunction 

with an aging population and deteriorating drinking and wastewater treatment systems [11]. 

Bacterial, parasitic, and viral pathogens cause an estimated 7,150,000 cases of 

waterborne disease annually in the US [1]. Infections are typically mild but can lead to life-

threatening enteric or respiratory illness for immunocompromised, young, or elderly people [14, 

15, 206]. Cyclonic storms may be an important driver of transmission because floodwater 

mobilizes pathogens in the environment and inundates water system infrastructure, which causes 

further contamination through ineffective treatment or sewage overflows [160, 238]. High 

pathogen loads are frequently detected in floodwater [8, 239], as well as environmental [174] and 

drinking water sources [240, 241], following cyclonic storms. Floods may also affect foodborne 

transmission by contaminating irrigation water used on crops [148]; several pathogens of 

concern are predominantly foodborne, but flood-driven contamination may still influence their 

transmission.  

Contamination does not necessarily lead to transmission, however, and while extreme 

events have been associated with gastrointestinal illness [133] or specific outbreaks [176, 242], 
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some storms have been found to have no effect on cases [243]. These inconsistent associations 

reflect the importance of pathogen-specific factors, particularly pathogen biology and primary 

reservoirs, in determining the effects of storms on transmission. Pathogens that form oocysts or 

are members of biofilm communities persist in environmental waters for weeks, which may 

increase the likelihood of transmission [244, 245]; other pathogens that do not persist in the 

environment may be flushed from waterways by flooding [24]. Pathogen biology also affects the 

efficacy of water treatment; Cryptosporidium and Legionella, in particular, are resistant to 

common decontamination methods [211, 246] whereas Giardia is readily removed from water 

[35]. Cyclonic storms may also lead to different types of contamination depending on the land-

use and drinking water or sanitation infrastructure of affected regions. Cattle and poultry are the 

primary reservoirs for several gastrointestinal pathogens, and flooding near livestock production 

can contaminate drinking water sources with animal waste [81]. This is of particular concern in 

rural agricultural regions where many people rely on private wells that are untreated and 

vulnerable to inundation [179]. Storms in densely populated areas, meanwhile, often lead to 

floodwater contaminated with human sewage [247]. Urban flooding can also damage water 

treatment or distribution systems that serve entire cities, leading to large outbreaks [248].  

The effect of cyclonic storms on waterborne disease may also depend on the storm 

characteristics that determine the extent of flooding and destruction. Storms are generally 

defined by windspeed and rainfall, factors that are often weakly correlated upon landfall [249] 

and lead to different conditions in affected areas. Slow-moving storms tend to cause greater 

accumulation of rain and more severe flooding whereas tropical cyclones with high windspeeds 

may cause more damage but bring less rain [233, 250]. Storm type may also dictate disaster 

management decisions and individual-level response to storm events. Evacuation orders, and the 
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ability to comply with them, may depend on storm type and could affect the number of people 

exposed to contaminated water. Storm severity also influences healthcare-seeking behavior and 

healthcare infrastructure. Storm-related disruptions may dissuade people with mild or moderate 

conditions form seeking care [251] whereas catastrophic storms may prevent people with urgent 

needs from accessing healthcare systems [252].  

In this study, we examined the effects of tropical cyclones on waterborne infectious 

diseases and whether these associations varied by pathogen or type of storm exposure. Previous 

research has largely focused on specific storms and outbreaks, or on non-specific gastrointestinal 

illness; associations over multiple storm seasons, however, have not been examined. Storm 

severity is projected to increase with atmospheric warming, so developing a thorough 

understanding of storm effects on waterborne diseases could aid climate adaptation and public 

health policies.  

3.2 Methods 

3.2.1 Data 

 
Case data 

We used surveillance data from the National Notifiable Diseases Surveillance System 

(NNDSS) to identify weekly cases of Cryptosporidiosis, Legionnaires' disease, E. coli infections, 

Giardiasis, Salmonellosis, and Shigellosis from each state in the US between 1996 and 2018. The 

six infections included in this study are caused by bacterial and parasitic pathogens and can lead 

to severe gastrointestinal or respiratory illness. Of the six E. coli strains, only Shiga-toxin 

producing E. coli (STEC) infections are tracked in the NNDSS. The data consist of laboratory-

confirmed cases from hospitalizations, emergency department visits, and primary care visits that 

are reported to local health departments and compiled by state health departments to submit to 
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Centers for Disease Control and Prevention (CDC), which manages the NNDSS. We restricted 

our analyses to the 30 states, and Washington, D.C., that experienced at least one tropical 

cyclone during the study period and to the months of the Atlantic storm season (June – 

November). We also used US Census data to determine county and state populations throughout 

the study period.  

Storm data 

Storm track, windspeed, and rainfall data for tropical cyclones that made landfall in the 

US between 1996 and 2018 were obtained from the hurricaneexposure (version 0.1.1) and 

hurricaneexposuredata (0.1.0) R packages. For each county, the day with the shortest distance 

between the geographic county center and the storm track was defined as the primary exposure 

day. Storm track and surface windspeed data were from the National Hurricane Center’s 

HURDAT-2 dataset and included maximum and sustained windspeeds on the primary exposure 

day. Rainfall data were from the NASA/NOAA North American Land Data Assimilation System 

2 (NLDAS-2) and were included in the dataset as total daily rainfall in each exposed county from 

five days before to three days after the primary exposure day. Correlations among distance, 

wind, and rainfall variables, including total and daily maximum rainfall, were assessed to inform 

the selection of exposure variables used in the analysis.   

3.2.2 Storm exposure definition 

 
Informed by the correlation analysis of storm variables, we defined county-level exposure 

to storms according to total rainfall, sustained gust windspeed, and distance from the storm track. 

In the primary analysis, we defined exposure separately for each variable and repeated the 

analyses using several exposure thresholds. Counties were considered exposed if they 

experienced 50-mm, 75-mm, or 100-mm of total rainfall associated with the storm or were 
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within 500-km, 250-km, or 150-km of the storm track. For windspeed, counties were considered 

exposed to tropical storms if they experienced sustained gusts of at least 34 knots (gale-force 

wind on the Beaufort scale) and to hurricanes if sustained gusts exceeded 64 knots. Correlations 

among the exposure thresholds were assessed. To determine the state-level exposure, we 

calculated the percent of the state population in exposed counties during storm weeks and 

classified the state as exposed if 75%, 50%, 25%, 5% or any of the population was exposed; we 

repeated the analysis for each of these population thresholds.  

In the secondary analysis, we combined storm exposure variables to describe categories 

of cyclonic storms. We categorized storms as: 1) “high rain-high wind” if total rainfall was 

greater than 100-mm and windspeed exceeded 64 knots, 2) “high rain-low wind” if total rainfall 

was greater than 100-mm and windspeed was between 34 and 64 knots, or 3) “low rain-low 

wind” if total rainfall was less than 100-mm and windspeeds were between 34 and 64 knots; a 

low rain-high wind category was not included as no storms met the definition. Counties were 

considered exposed to a specific storm type if they met both the rainfall and windspeed criteria. 

Hurricane-force winds are rare and usually affect a small proportion of a state’s population (S2 

Table); therefore, population-exposure thresholds were defined by rainfall exposure as in the 

primary analysis. A state was considered exposed to a given storm type if: 1) it met the rainfall-

based population exposure threshold, and 2) any of the counties were exposed to the given storm 

type.  

3.2.3 Statistical analysis 

 
We modeled the association between exposure to tropical cyclones and cases of 

waterborne diseases using a conditional quasi-Poisson model, which accounted for 

overdispersion in the case data (S1 Model) [253]. The number of cases in weeks with and 
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without storms was compared across matched strata based on state and week-of-the-year. This 

structure addresses potential confounding due to variation among states, i.e.  different state 

policies regarding storm preparedness or case reporting, and controls for seasonality. Cyclonic 

storm occurrence was modeled as a binary exposure variable and lagged from 0 to 3 weeks to 

account for the incubation periods of the pathogens and the potential for delays in seeking 

healthcare after destructive storms. The model included a flexibly adjusted term for year to 

control for long-term trends that could affect storm exposure or cases of waterborne infectious 

diseases. Annual state population was used as an offset to obtain the rate of cases and we 

modeled cases for each pathogen separately. We present all results as percent changes in weekly 

case rates. The analysis was repeated for all exposure definitions and population exposure 

thresholds. 95% CIs were adjusted for multiple comparisons using the Bonferroni-Holmes 

method. Finally, this method was repeated with counties stratified by drinking water source or 

location (rural/urban); this supplementary analysis is described in S1 Appendix.  

3.3 Results 

The number of cases reported to NNDSS varied by pathogen with enteric bacteria 

comprising the majority of infections (Table 3.1). Most peaked in the late summer or early fall 

but the amplitude of seasonality differed among pathogens and by geographic region (Figure 

3.1).  
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Table 3. 1 Description of pathogens included in the analysis 

Pathogen Cases in 

NNDSS 

 (% of total) 

Pathogen 

type 

Incubation 

period (range) 

[16]  

Estimated % 

waterborne[1] 

Years 

in 

NNDSS 

Legionella 129,559  

(3.4) 

Biofilm-

forming 

bacteria 

5-6 days 

(2 – 10) 

97 1996 – 

2018 

Cryptosporidium 283,030  

(7.4) 

Parasite 7 days 

(2 – 12)  

43 1998 - 

2018 

Giardia 534,911  

(14) 

Parasite 7 days 

(1 – 14) 

44 2002 - 

2018 

E. coli 239,354  

(6.3) 

Bacteria 0.5 – 4 days 

(0.5 – 10) 

5 1996 - 

2018 

Salmonella 1,845,428 

(48.5) 

Bacteria 0.5 – 2 days 

(0.5 – 16)  

6 1998 - 

2018 

Shigella 775,563 

(20.4) 

Bacteria 1 – 3 days 

(0.5 – 7) 

4 1998 - 

2018 
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Figure 3. 1:Average weekly cases by geographic region and infection. 

Average weekly cases per 1,000,000 people by geographic region (colors) and infectious disease 

(a-f) reported to NNDSS between 1996 and 2018; not all infections were reported for the entire 

study period (Table 3.1). The shaded region represents the weeks encompassed in the Atlantic 

storm season (June 1 to November 30). The geographic regions reflect the reporting areas used 

by CDC for infectious disease surveillance.  

 
Cryptosporidiosis exhibited the strongest and most consistent seasonality as cases peaked 

in September in all geographic regions. In the Northeast and Upper Midwest, Legionnaires' 

disease cases were consistently elevated between June and October but did not exhibit a singular 

peak. In most states, Legionnaires' disease and the parasitic infections displayed only a moderate 

increase during summer months (Figure 3.S.1). Enteric bacterial infections were more common 

across all states and Salmonellosis showed a strong summer seasonality in most states (Figure 

3.S.2). Between 1996 and 2018, Legionnaires’ disease and Cryptosporidiosis cases increased, 

and Giardiasis decreased, in all geographic regions; the other pathogens were relatively 

consistent over time (Figure 3.S.3).  
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Wind, rainfall, and distance variables were not highly correlated, though different 

measures of the same variable, i.e. maximum rainfall and total rainfall, were correlated (Figure 

3.S.4). Among the storm variable thresholds used to determine county-level exposure, hurricane- 

and gale-force wind exposure were not highly correlated (r = 0.21) while  50-mm,  75-mm, 

and  100-mm rainfall exposure thresholds were (r = 0.50 to 0.72) (Figure 3.S.5). There were 

134 cyclonic storms during the study period using the most inclusive storm exposure threshold 

(gale-force wind) (Table 3.2). These storms affected 2,363 counties in 30 states and Washington, 

D.C. over 177 weeks. Counties with the greatest number of wind exposure storm weeks were 

concentrated along the coast, particularly in North and South Carolina (Figure 3.2). Rainfall 

exposure was most common in South Florida but was overall more widespread and uniform than 

the wind and distance metrics (Figure 3.2). There was no long-term trend in the number of 

cyclonic storms during the study period (Figure 3.S.6). 

Table 3. 2 Description of cyclonic storm exposure definitions 

Storm exposure 

variable 

Exposure definition Number of storms Number of 

affected counties 

Total rainfall  50-mm 98 2,165 

 75-mm 96 2,041 

 100-mm 87 1,732 

Sustained gusts Gale-force winds (kts) 134 1,025 

 Hurricane-force winds (kts) 31 136 

Distance from 

storm track 

500-km 134 2,363 

 250-km 134 2,179 

 150-km 117 2,072 
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Figure 3. 2: Number of weeks of storm exposure per county by storm hazard. 

Number of weeks of storm exposure per county when exposure is defined by a) distance to storm track (within 

500-km of track), b) cumulative rainfall (minimum 75-mm), and c) sustained gusts above gale-force wind 

(minimum 34 knot  
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Cryptosporidiosis cases significantly increased during storm weeks at low population 

exposure thresholds; storms that brought  75-mm of rainfall were associated with a 40% (95% 

CI: 31% - 50%) increase in weekly cases when any of the state’s population was exposed and a 

52% (95% CI: 42% - 62%) increase when at least 5% was exposed (Figure 3.3). Similar 

associations persisted across lagged exposures, though the effects were weaker, ranging from 8% 

(95% CI: -2%, 19%) to 19% (95% CI: 8% - 31%) increases in the post-storm weeks (Table 

3.S.1). Legionnaires' disease cases were also significantly associated with storm exposure but the 

effect was strongest 2 and 3 weeks after a storm and at higher population exposure thresholds 

(Figure 3.3). When 75% of the state population was exposed to a storm, cases increased by 31% 

(95% CI: 1% - 52%), 42% (95% CI: 22% - 62%), and 39% (95% CI: 26% - 54%) in lagged 

weeks 1-3 (Table 3.S.1). E. coli cases exhibited a clearer peak and decline associated with lagged 

storm events. After an initial decrease during the storm week, cases increased 48% (95% CI: 

27% - 69%) and 33% (95% CI: 11% - 56%) in the first two weeks post-storm when 75% of the 

state population was exposed (Figure 3.3). Salmonellosis and Giardiasis were not significantly 

associated with storm exposure and Shigellosis cases slightly decreased during storm weeks 

(Figure 3.3).  
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Figure 3. 3: Change in case rates associated with exposure to 75-mm of storm-related rainfall. 

Percent change in weekly case rates associated with exposure to  75-mm of storm-related 

rainfall. The estimates and Bonferroni-corrected 95% confidence intervals are reported for each 

infectious disease (shade) and population-exposure threshold (shape); estimates are reported for 

week of the storm and 1 to 3 weeks post-storm.  

 
The associations between storm-related rainfall and Cryptosporidiosis, Legionnaires' 

disease, and E. coli case rates were consistent across different exposure definitions (Figure 3.4). 

Storms with more (100-mm) and less (50-mm) rainfall were associated with significant initial 

increases in Cryptosporidiosis case rates that attenuated over weeks 1 to 3. The strength of the 

association between Legionnaires' disease case rates and storm exposure increased in 

conjunction with population exposure threshold and amount of rainfall (Figure 3.4). Similarly, 



 81  

 

the lagged increase in E. coli case rates was more pronounced in storms with  100-mm rainfall. 

The associations between case rates and storm exposure were similar when exposure was defined 

by distance from the storm track instead of rainfall (Figure 3.S.7). Stratifying exposure by 

drinking water source or rural/urban location also yielded similar results; the lagged effect on E. 

coli and Legionnaires' disease case rates was slightly more pronounced when restricted to rural 

or groundwater-reliant counties, but associations were otherwise consistent (S1 Appendix).  

 

Figure 3. 4: Change in case rates associated with exposure to storm-related rainfall. 

Exposure is defined by three cumulative rainfall thresholds: 1)  50-mm (light blue), 2)  75-mm 

(medium blue), or  100-mm (dark blue) and for two population-exposure thresholds (shape). 

The estimates and Bonferroni-corrected 95% confidence intervals are reported for 

Cryptosporidiosis, Legionnaires' disease, and E. coli infections for the week of the storm and 1 to 

3 weeks post-storm.  
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Storm exposure defined by hurricane-force winds was associated with increased 

Cryptosporidiosis case rates 2 and 3 weeks after storms but otherwise had no effect on cases 

(Figure 3.S.8). Conversely, gale-force wind exposure was associated with decreased 

Cryptosporidiosis and Giardiasis case rates during the storm week and had no effect in the 

lagged weeks post-storm (Figure 3.S.8).  

Combining wind and rainfall exposure in storm-type categories supported the findings of 

the wind exposure analysis. High rain-high wind, high rain-low wind, and low rain-low wind 

storms were all associated with decreased Giardiasis case rates during the storm week before 

returning to baseline 1 week post storm (Figure 3.5). Consistent with the rainfall analysis, high 

rain-low wind storms were positively associated with Cryptosporidiosis case rates up to 2 weeks 

post-storm but, unlike rainfall alone, case rates also increased 3 weeks-post high rain-high wind 

and low rain-low wind storms: a 58% (95% CI: 30% - 78%) increase in Cryptosporidiosis case 

rates when at least 5% of the population was exposed to high wind-high rain storms and a 17% 

(95% CI: 2% - 35%) increase after low rain-low wind storms (Figure 3.5). Finally, there was no 

effect of high rain-high wind storms on Legionnaires' disease case rates and the effect of high 

rain-low wind storms and low rain-low wind storms was only apparent 3 weeks after storms 

(Figure 3.5). 
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Figure 3. 5: Change in weekly case rates associated with exposure to storm types. 

Exposure is defined by three categories according to rainfall and wind thresholds: 1) High rain-

High wind storms (red), 2) High rain-Low wind storms (yellow), and 3) Low rain-Low wind 

storms (green). The estimates and Bonferroni-corrected 95% confidence intervals are reported 

for Giardiasis, Cryptosporidiosis, and Legionnaires' disease at two population-exposure 

thresholds (shape), and for the week of the storm and 1 to 3 weeks post-storm. The population-

exposure thresholds refer to the percent of the state population exposed to storm-related rainfall 

only; no hurricane-force winds affect >25% of the state population.  

 

3.4 Discussion 

Tropical cyclones were associated with waterborne diseases in the United States, though 

the effect magnitude varied by exposure. The associations also differed among the specific 

pathogens; Legionnaires' disease, E. coli, and Cryptosporidiosis increased with rainfall whereas 

Salmonellosis, Shigellosis, and Giardiasis were unaffected, or decreased, during storm weeks. 
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These divergent associations likely reflect factors that mediate the relationship between storms 

and disease, including pathogen biology, transmission routes, and severity of infection.  

Legionnaires' disease and E. coli case rates consistently increased with rainfall and 

population exposure thresholds, though the timing of the effects differed between these 

infections. E. coli case rates peaked 1 week after storms and returned to baseline by week 3 

whereas Legionnaires' disease case rates were highest 3 weeks post storm. These findings 

support microbiological studies that have analyzed bacterial counts in streams [254] and water 

systems [255] after specific hurricanes; elevated E. coli loads were reported 12 to 24 hours after 

a storm started whereas Legionella increased 4 to 5 days later [254]. Legionella are natural 

inhabitants of aquatic environments and replicate in water, typically in biofilm communities that 

colonize household plumbing and water infrastructure systems [17, 206]. The Legionella load, 

therefore, can increase over time whereas for other bacterial pathogens, which do not replicate in 

the environment, the bacterial load typically peaks after the initial contamination event and 

dissipates over time [49].  

Cryptosporidiosis case rates also increased with storm-related rainfall but only at low 

population thresholds, which may be due to the limited overlap between areas with high disease 

burden and vulnerability to tropical cyclones. Cryptosporidiosis infections were most common in 

the North-Central Midwest, a region that infrequently experiences tropical storms or hurricanes 

severe enough to affect more than 25% of the population. The substantial increase in case rates 

concurrent with storm week may be driven by several widespread outbreaks attributed to specific 

storm events that damaged water treatment facilities [256]. Cryptosporidium is resistant to 

standard chemical disinfectants and is small enough to pass through sand filtration systems 
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common in water treatment plants [24]; as a result, when the parasite contaminates water 

distribution systems that serve large populations, it can lead to massive outbreaks [237].   

County-level exposure to heavy rainfall and cyclonic windspeed was often uncorrelated, 

which is characteristic of tropical cyclones [249], and the effect of extreme wind on cases 

differed from that of rainfall for several pathogens. Gale-force wind was associated with a lagged 

increase in Legionnaires' disease, but the effect on E. coli and Cryptosporidiosis was 

insignificant; hurricane-force wind was only associated with increased Cryptosporidiosis case 

rates 3 weeks post storm. Such attenuated effects may reflect the intricate, and possibly 

opposing, factors that influence transmission. High windspeeds are typically associated with 

destructive storms that can damage sanitation infrastructure, increasing the probability of 

transmission [8], but also lead to displacement [257, 258] that reduces the likelihood of people 

coming into contact with contaminated water. Extreme storms can also disrupt healthcare 

systems or alter healthcare seeking behavior, which can lead to a reduction in detection or 

reporting of cases [259].  

For areas that experienced both rainfall and cyclonic wind, we combined exposures into 

storm-type categories; the results underscored the importance of pathogen-specific analyses 

when evaluating the effect of tropical cyclones and the limitations inherent in studying events 

that rarely occur. The high rain-high wind category encompassed the most devasting storms that 

occurred during the study period (i.e. Hurricane Katrina, Hurricane Ivan) but represented a small 

fraction of all storms. These events were associated with a significant decrease in Giardiasis but 

had no effect on Legionnaires' disease. Giardia transmission often occurs in recreational waters, 

i.e. swimming pools, rivers, etc., and may be thwarted during storm weeks when people are less 

likely to engage in those activities. The burden of Legionnaires' disease, meanwhile, was highest 
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in regions that infrequently experience hurricane-force winds. High rain-high wind storms were 

associated with a substantial increase in Cryptosporidiosis case rates 3 weeks post-storm, though 

the effect may have been driven by a two-month span in 2008 when Texas experienced two 

hurricanes and a tropical cyclone in succession, and reported extremely high case counts for an 

extended period.  

Unlike the other infections, Salmonellosis was unaffected by cyclonic storms at all 

population thresholds. Salmonella transmission is predominantly foodborne and outbreaks 

attributed to contaminated food are common, particularly during the summer [58]. The high 

frequency of outbreaks makes it difficult to detect elevated case-counts associated with storms, 

given that comparison weeks may coincide with foodborne outbreaks. Storm-related rainfall was 

associated with a slight decrease in Shigellosis at high population thresholds during storm weeks. 

These infections are typically mild and the negative association may reflect a reduction in 

seeking healthcare for minor illness after the disruption of storm events.  

With the exception of Shigellosis, cases exhibited a summer seasonality that coincided 

with the cyclonic storm season in the US. The inconsistent associations between storms and 

specific pathogens, however, demonstrates that the effects were not simply driven by 

overlapping seasonal patterns. Salmonellosis and E. coli cases peaked during the same weeks in 

most regions but storm-related rainfall had no effect on the former and a strong positive effect on 

the latter. This study demonstrated the need for more pathogen-specific analyses that combine 

microbiological water quality data from multiple sources with epidemiological data; this 

approach could help explain why pathogens with similar biology or transmission routes exhibited 

divergent associations with cyclonic storms.  
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This analysis is constrained by several limitations, the most prominent of which is the 

spatial mismatch between the case and storm data. Aggregating from county- to state-level storm 

exposure introduced the possibility of misclassification bias given that state-level exposure may 

be inconsistent with the conditions experienced by cases. We aimed to address this limitation by 

repeating the analysis using several population thresholds to define exposure and assessing the 

consistency of the associations. This type of nondifferential misclassification would also be 

biased toward the null and underestimate the associations [260]. Given the spatial resolution, we 

could only perform a rough estimate of the effect of storms stratified by drinking water source or 

rural/urban location using county-level averages; highly resolved water source and location data 

could provide insight into the mechanisms underlying the associations between storms and some 

waterborne diseases. Identifying the drivers of transmission, and opportunities for intervention, is 

crucial as the US has aging sanitation infrastructure [11] and an aging population that is more 

susceptible to serious waterborne disease [206]. 
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3.5 Supplementary Materials  
 

Table 3.S. 1 Effect estimates with rainfall exposure  
 Population 

expo.  (%) 

Week of storm 1 week post 

storm 

2 weeks post 

storm 

3 weeks post 

storm 

 

 

Cryptosporidiosis 

Any 0.4 (0.31, 0.5) 0.08 (-0.02, 0.19) 0.12 (0.02, 0.23) 0.13 (0.02, 0.24) 

5 0.52 (0.42, 0.62) 0.16 (0.04, 0.27) 0.19 (0.08, 0.31) 0.15 (0.02, 0.27) 

25 0.03 (-0.14, 0.2) 0.09 (-0.08, 0.25) 0.19 (0.02, 0.35) 0.16 (-0.01, 0.33) 

50 0.01 (-0.22, 0.23) 0.11 (-0.1, 0.33) 0.18 (-0.03, 0.39) 0.18 (-0.04, 0.4) 

75 -0.11 (-0.43, 0.21) 0.05 (-0.24, 0.34) -0.06 (-0.37, 0.25) 0.05 (-0.27, 0.37) 

 

 

Legionnaires' 

disease 

Any 0.1 (0.01, 0.19) 0.13 (0.04, 0.22) 0.18 (0.09, 0.27) 0.19 (0.1, 0.28) 

5 0.15 (0.05, 0.25) 0.17 (0.07, 0.27) 0.19 (0.09, 0.29) 0.22 (0.12, 0.32) 

25 0.11 (-0.02, 0.24) 0.28 (0.15, 0.4) 0.34 (0.22, 0.46) 0.33 (0.2, 0.45) 

50 0.19 (0.03, 0.34) 0.27 (0.12, 0.42) 0.42 (0.28, 0.56) 0.4 (0.26, 0.54) 

75 0.22 (0, 0.43) 0.31 (0.1, 0.52) 0.42 (0.22, 0.62) 0.39 (0.19, 0.59) 

 

 

E. coli  

Any -0.15 (-0.25, -0.04) -0.05 (-0.15, 0.05) -0.03 (-0.13, 0.07) 0 (-0.1, 0.1) 

5 -0.09 (-0.21, 0.02) 0.02 (-0.1, 0.13) 0.07 (-0.04, 0.18) 0.04 (-0.07, 0.16) 

25 -0.08 (-0.23, 0.07) 0.1 (-0.04, 0.25) 0.05 (-0.1, 0.19) 0.07 (-0.08, 0.22) 

50 -0.1 (-0.3, 0.1) 0.29 (0.12, 0.46) 0.16 (-0.02, 0.33) 0.16 (-0.03, 0.34) 

75 -0.01 (-0.26, 0.24) 0.48 (0.27, 0.69) 0.33 (0.11, 0.56) 0.15 (-0.1, 0.4) 

 

 

Salmonellosis  

Any -0.02 (-0.05, 0.02) -0.02 (-0.05, 0.02) -0.03 (-0.07, 0) -0.02 (-0.06,0.02) 

5 -0.03 (-0.07, 0.01) -0.03 (-0.07, 0.02) -0.04 (-0.08, 0) -0.02 (-0.06,0.03) 

25 0.02 (-0.03, 0.08) 0.01 (-0.04, 0.06) -0.04 (-0.09, 0.02) -0.02 (-0.07,0.04) 

50 0.04 (-0.03, 0.11) 0.01 (-0.06, 0.08) -0.08 (-0.15, -0.01) -0.03 (-0.1, 0.05) 

75 0.02 (-0.07, 0.12) 0.03 (-0.06, 0.13) -0.06 (-0.16, 0.05) -0.02 (-0.13,0.08) 

 

 

Giardiasis  

Any -0.02 (-0.05, 0.02) -0.02 (-0.05, 0.02) -0.03 (-0.07, 0) -0.02 (-0.06,0.02) 

5 -0.03 (-0.07, 0.01) -0.03 (-0.07, 0.02) -0.04 (-0.08, 0) -0.02 (-0.06,0.03) 

25 0.02 (-0.03, 0.08) 0.01 (-0.04, 0.06) -0.04 (-0.09, 0.02) -0.02 (-0.07,0.04) 

50 0.04 (-0.03, 0.11) 0.01 (-0.06, 0.08) -0.08 (-0.15, -0.01) -0.03 (-0.1, 0.05) 

75 0.02 (-0.07, 0.12) 0.03 (-0.06, 0.13) -0.06 (-0.16, 0.05) -0.02 (-0.13,0.08) 

 

 

Shigellosis  

Any -0.02 (-0.05, 0.02) -0.02 (-0.05, 0.02) -0.03 (-0.07, 0) -0.02 (-0.06,0.02) 

5 -0.03 (-0.07, 0.01) -0.03 (-0.07, 0.02) -0.04 (-0.08, 0) -0.02 (-0.06,0.03) 

25 0.02 (-0.03, 0.08) 0.01 (-0.04, 0.06) -0.04 (-0.09, 0.02) -0.02 (-0.07,0.04) 

50 0.04 (-0.03, 0.11) 0.01 (-0.06, 0.08) -0.08 (-0.15, -0.01) -0.03 (-0.1, 0.05) 

75 0.02 (-0.07, 0.12) 0.03 (-0.06, 0.13) -0.06 (-0.16, 0.05) -0.02 (-0.13,0.08) 

Effect of exposure to cyclonic storms on cases when tropical cyclone exposure is defined as a 

minimum of 75-mm cumulative rainfall attributed to the storm. 
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Table 3.S. 2 Total number of storm weeks by population-and exposure-threshold 

Storm exposure 

variable 

Any pop. 

exposed 

5% pop. 

exposed 

25% pop. 

exposed 

50% pop. 

exposed 

75% pop. 

exposed 

50-mm rainfall 4,453 3,734 2,502 1,751 1,100 

75-mm rainfall 3,199 2,487 1,481 902 476 

100-mm rainfall 2,210 1,580 865 547 213 

Gale-force wind 1,437 1,070 586 284 163 

Hurricane-force 

wind 

215 110 6 0  0  

500-km 

distance 

9,108 8,461 7,167 6,107 5,123 

250-km 

distance 

5,219 4,584 3,400 2,577 1,737 

150-km 

distance 

3,758 3,151 2,105 1,304 769 

Note: There are 20,442 weeks included in the analysis given 27 weeks in the storm season, 30 states and 

Washington, D.C. in the affected region, and 23 years of data; West Virginia did not report to the NNDSS 

in 1996 and 1997. 
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S1 Model. Description of the conditional quasi-Poisson model  

 

In the conditional quasi-Poisson framework, the effect of storm exposure is first determined 

within matched strata created by matching on state and week. For week i and state s the within-

strata model is:  

 

log⁡(E[𝑌𝑖𝑠]) = ⁡𝛼0⁡ +⁡𝛼𝑖𝑠⁡ +∑𝛽𝑙

4

𝑙=0

storm𝑙𝑖𝑠 + 𝑛𝑠(year𝑠) ⁡+ log⁡(population𝑖𝑠) 

 

where 𝛼𝑖𝑠⁡is the stratum-specific intercept, 𝛽𝑙 the lag-specific coefficient (log rate ratio) for storm 

exposure,  storm𝑙𝑖𝑠 the binary storm exposure variable, 𝑛𝑠(year𝑠) the spline term for year with 

two degrees of freedom, and population𝑖𝑠  the population for each state and year. Instead of 

estimating model parameters, this approach conditions them out by conditioning on the sum of 

cases for each week i in a multinomial model [253] such that:  

 
(𝑌𝑖𝑠| ∑ 𝑌𝑖𝑠𝑠 ) ~ Multinomial (𝜋𝑠) 

 

where:  

𝜋𝑠 = ⁡
𝑒𝜷

𝑻𝒙𝒔

∑ 𝑒𝜷
𝑻𝒙𝑗

𝑗∈𝑖

 

 

 

The 𝜷𝑻𝒙𝒔 and 𝜷𝑻𝒙𝑗 terms describe row vectors of coefficients, 𝜷, and variables, x, from the 

quasi-Poisson model where j is the subset of s that includes the observations for each week i.  
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S1 Appendix. Supplemental methods and results 

 

Supplementary Methods  

 

Data sources 

The storm and case data were the same as described in the main text. Drinking water data were 

extracted from the Safe Drinking Water Information System (SDWIS), which reports the 

drinking water source (groundwater or surface water) and population served for each community 

water system (CWS) in the US. The primary drinking water source for the county was 

determined by aggregating the CWSs within the county and calculating the proportion of the 

population served by groundwater and surface water; counties where 50% of the population 

was served by groundwater sources were categorized as groundwater counties and 50% served 

by surface water as surface water counties. Rurality categories were extracted from the US 

Department of Agriculture (USDA) Rural-Urban Continuum Codes [261], which categorizes 

metro areas by their population size and nonmetro areas by degree of urbanization and proximity 

to metro areas. Each county in the study area was classified as urban if it was in a metro category 

and rural if in a nonmetro category.  

 

Storm exposure definition and statistical approach  

 

The process for defining state-level exposure was the same as in the main analysis except the 

counties were stratified by drinking water source and rural or urban location. The population 

thresholds were any exposure, 5%, 25%, 50%, and 75% but only applied to counties that met the 

drinking water or location criteria. For example, a state was considered exposed to a storm if 

25% of the population who lives in rural counties was exposed. We used the conditional quasi-

Poisson statistical framework outlined in the main text and S1 Model.  

 

Supplementary Results 

 

The effect of storm exposure on cases when exposure was restricted to groundwater counties (A1 

Table) or rural counties (A2 Table) was essentially the same as the main analysis. When storm 

exposure was defined by 75-mm rainfall, Cryptosporidiosis cases increased during the storm 

week at low population thresholds but had no significant effect in lagged weeks. Legionnaires' 

disease cases increased with lagged weeks and higher population exposure thresholds, and the 

effects were similar to those in the main analysis. At the 50% and 75% population exposure 

thresholds, the increase in E. coli cases 2 to 3 weeks post-storm was more pronounced in 

groundwater-reliant and rural areas. When exposure was restricted to surface water or rural 

counties, few states were considered exposed and the effect of storms on most cases was 

insignificant.   
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A1 Table. Effect of exposure to cyclonic storms on cases when exposure is restricted to counties 

with groundwater drinking water sources. Storm exposure is defined by 75-mm rainfall.    
 Population 

expo. (%) 

Week of storm 1 week post 

storm 

2 weeks post 

storm 

3 weeks post 

storm 

 

 

Cryptosporidiosis 

Any 0.42 (0.32, 0.51) 0.08 (-0.02, 0.19) 0.12 (0.02, 0.23) 0.13 (0.02, 0.24) 

5 0.52 (0.41, 0.62) 0.13 (0.01, 0.25) 0.2 (0.08, 0.31) 0.15 (0.03, 0.27) 

25 0.03 (-0.15, 0.2) 0.08 (-0.09, 0.25) 0.2 (0.03, 0.37) 0.16 (-0.01, 0.34) 

50 0.02 (-0.21, 0.26) 0.08 (-0.14, 0.31) 0.15 (-0.07, 0.38) 0.2 (-0.03, 0.43) 

75 -0.05 (-0.41, 0.3) 0.07 (-0.26, 0.39) -0.01 (-0.34, 0.33) 0.12 (-0.23, 0.46) 

 

 

Legionnaires' 

disease 

Any 0.1 (0.01, 0.19) 0.14 (0.05, 0.23) 0.18 (0.09, 0.27) 0.19 (0.1, 0.28) 

5 0.13 (0.03, 0.24) 0.17 (0.07, 0.27) 0.18 (0.08, 0.28) 0.22 (0.12, 0.32) 

25 0.11 (-0.03, 0.24) 0.27 (0.15, 0.4) 0.35 (0.22, 0.47) 0.35 (0.22, 0.47) 

50 0.17 (0.01, 0.33) 0.28 (0.12, 0.44) 0.38 (0.23, 0.54) 0.41 (0.26, 0.56) 

75 0.23 (0, 0.46) 0.33 (0.1, 0.55) 0.38 (0.16, 0.61) 0.34 (0.12, 0.57) 

 

 

E. coli  

Any -0.15 (-0.25, -0.04) -0.05 (-0.15, 0.05) -0.02 (-0.12, 0.08) -0.01 (-0.11, 0.1) 

5 -0.1 (-0.22, 0.01) 0.02 (-0.1, 0.13) 0.06 (-0.05, 0.18) 0.05 (-0.07, 0.16) 

25 -0.08 (-0.23, 0.08) 0.12 (-0.03, 0.26) 0.04 (-0.11, 0.2) 0.09 (-0.06, 0.24) 

50 -0.1 (-0.31, 0.1) 0.28 (0.1, 0.45) 0.17 (-0.01, 0.36) 0.2 (0.01, 0.39) 

75 -0.03 (-0.3, 0.24) 0.5 (0.28, 0.72) 0.39 (0.15, 0.63) 0.27 (0.01, 0.53) 

 

 

Salmonellosis  

Any -0.02 (-0.06, 0.02) -0.02 (-0.06, 0.02) -0.04 (-0.07, 0) -0.02 (-0.06,0.01) 

5 -0.02 (-0.07, 0.02) -0.03 (-0.07, 0.02) -0.05 (-0.09, 0) -0.02 (-0.06,0.03) 

25 0.03 (-0.03, 0.08) 0.02 (-0.03, 0.07) -0.03 (-0.09, 0.02) -0.01 (-0.06,0.05) 

50 0.04 (-0.03, 0.12) 0.02 (-0.05, 0.09) -0.07 (-0.15, 0) -0.03 (-0.11,0.05) 

75 0.05 (-0.06, 0.15) 0.06 (-0.04, 0.17) -0.04 (-0.16, 0.07) -0.02 (-0.13, 0.1) 

 

 

Giardiasis  

Any 0 (-0.06, 0.05) -0.01 (-0.07, 0.04) 0 (-0.05, 0.06) -0.03 (-0.09,0.03) 

5 -0.01 (-0.07, 0.06) -0.01 (-0.07, 0.06) 0.02 (-0.05, 0.08) -0.03 (-0.09,0.04) 

25 -0.02 (-0.1, 0.07) -0.02 (-0.1, 0.07) 0.04 (-0.05, 0.12) 0.01 (-0.08, 0.09) 

50 -0.05 (-0.16, 0.06) -0.04 (-0.15, 0.06) 0.01 (-0.1, 0.11) 0 (-0.1, 0.1) 

75 -0.02 (-0.17, 0.14) -0.06 (-0.21, 0.1) -0.03 (-0.19, 0.12) 0 (-0.15, 0.16) 

 

 

Shigellosis  

Any -0.08 (-0.18, 0.02) -0.09 (-0.18, 0.01) 0.01 (-0.09, 0.1) 0.02 (-0.08, 0.11) 

5 -0.11 (-0.22, 0.01) -0.08 (-0.2, 0.03) 0.01 (-0.1, 0.12) 0.01 (-0.1, 0.12) 

25 -0.19 (-0.35, -0.03) -0.11 (-0.26, 0.05) -0.01 (-0.16, 0.14) -0.03 (-0.19,0.12) 

50 -0.26 (-0.48, -0.04) -0.07 (-0.28, 0.14) 0.02 (-0.18, 0.23) -0.01 (-0.21,0.19) 

75 -0.35 (-0.67, -0.02) -0.04 (-0.35, 0.27) 0.11 (-0.18, 0.41) 0.09 (-0.2, 0.39) 
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A2 Table. Effect of exposure to cyclonic storms on cases when exposure is restricted to rural 

counties. Storm exposure is defined by 75-mm rainfall.    
 Population 

exposed 

(%) 

Week of storm 1 week post 

storm 

2 weeks post 

storm 

3 weeks post 

storm 

 

 

Cryptosporidiosis 

Any 0.44 (0.34, 0.54) 0.1 (-0.01, 0.21) 0.16 (0.05, 0.26) 0.16 (0.05, 0.28) 

5 0.56 (0.46, 0.66) 0.17 (0.05, 0.29) 0.24 (0.12, 0.35) 0.18 (0.05, 0.3) 

25 0.03 (-0.15, 0.21) 0.09 (-0.09, 0.26) 0.22 (0.05, 0.39) 0.17 (-0.01, 0.35) 

50 0.06 (-0.18, 0.29) 0.16 (-0.06, 0.39) 0.24 (0.01, 0.46) 0.23 (0, 0.47) 

75 -0.42 (-0.89, 0.05) -0.31 (-0.73, 0.11) -0.41 (-0.88, 0.05) -0.22 (-0.67, 

0.24) 

 

 

Legionnaires' 

disease 

Any 0.1 (0.01, 0.2) 0.14 (0.05, 0.23) 0.17 (0.08, 0.26) 0.2 (0.1, 0.29) 

5 0.15 (0.04, 0.25) 0.18 (0.07, 0.28) 0.19 (0.09, 0.29) 0.23 (0.13, 0.34) 

25 0.13 (0, 0.26) 0.3 (0.18, 0.43) 0.37 (0.24, 0.49) 0.34 (0.22, 0.47) 

50 0.21 (0.05, 0.37) 0.27 (0.11, 0.44) 0.42 (0.27, 0.57) 0.4 (0.25, 0.56) 

75 0.28 (0.05, 0.51) 0.3 (0.07, 0.54) 0.41 (0.18, 0.63) 0.45 (0.23, 0.67) 

 

 

E. coli  

Any -0.13 (-0.24, -0.03) -0.03 (-0.14, 0.07) 0.01 (-0.09, 0.11) 0.02 (-0.09, 0.12) 

5 -0.1 (-0.22, 0.02) 0.02 (-0.1, 0.14) 0.07 (-0.04, 0.19) 0.07 (-0.05, 0.19) 

25 -0.08 (-0.24, 0.08) 0.13 (-0.02, 0.28) 0.06 (-0.09, 0.22) 0.11 (-0.05, 0.26) 

50 -0.11 (-0.32, 0.1) 0.33 (0.15, 0.51) 0.22 (0.03, 0.41) 0.11 (-0.1, 0.31) 

75 0 (-0.3, 0.3) 0.51 (0.26, 0.77) 0.49 (0.22, 0.75) 0.23 (-0.07, 0.53) 

 

 

Salmonellosis  

Any -0.02 (-0.05, 0.02) -0.02 (-0.05, 0.02) -0.03 (-0.07, 0) -0.02 (-0.06,0.01) 

5 -0.02 (-0.06, 0.03) -0.03 (-0.07, 0.01) -0.06 (-0.11, -0.02) -0.02 (-0.06,0.03) 

25 0.03 (-0.02, 0.09) 0.01 (-0.05, 0.07) -0.03 (-0.09, 0.02) 0 (-0.06, 0.06) 

50 0.03 (-0.05, 0.1) -0.02 (-0.1, 0.06) -0.09 (-0.17, 0) -0.02 (-0.1, 0.06) 

75 0.05 (-0.08, 0.17) -0.02 (-0.15, 0.1) -0.1 (-0.24, 0.03) -0.01 (-0.14,0.12) 
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Figure 3.S. 1: Average weekly cases of Cryptosporidiosis, Giardiasis, and Legionnaires' disease 

by state. 

Average weekly cases (square-root transformed) per 1,000,000 people by state for 

Cryptosporidiosis (green), Giardiasis (yellow), and Legionnaires' disease (blue) reported to 

NNDSS between 1996 and 2018; not all infections were reported for the entire study period 

(Table 3.1). The shaded region represents the weeks encompassed in the Atlantic storm season 

(June 1 to November 30).  
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Figure 3.S. 2: Average weekly cases for E. coli, Salmonellosis, and Shigellosis by state. 

Average weekly cases (square-root transformed) per 1,000,000 people by state for E. coli 

infections (red), Salmonellosis (purple), and Shigellosis (orange) reported to NNDSS between 

1996 and 2018; not all infections were reported for the entire study period (Table 3.1). The 

shaded region represents the weeks encompassed in the Atlantic storm season (June 1 to 

November 30).  
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Figure 3.S. 3: Total weekly cases by geographic region and infection. 

Total weekly cases by geographic region (colors) and infectious disease (a-f) reported to NNDSS 

between 1996 and 2018; not all infections were reported for the entire study (Table 3.1).  
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Figure 3.S. 4: Correlation matrix for storm characteristics. 

 

 
Figure 3.S. 5: Correlation matrix for storm exposure thresholds. 
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Figure 3.S. 6: Number of tropical cyclones that made landfall in the US between 1996 and 2018. 
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Figure 3.S. 7: Change in case rates associated with distance from storm track. 

Average percent change in weekly case rates associated with exposure to tropical cyclones where 

exposure is defined as being within 250-km of the storm track. The estimates and Bonferroni-

corrected 95% confidence intervals are reported for each infectious disease (shade) and 

population-exposure threshold (shape); estimates are reported for week of the storm and 1 to 3 

weeks post-storm.  
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Figure 3.S. 8: Change in case rates associated with windspeed. 

Average percent change in weekly case rates associated with exposure to tropical cyclones where 

exposure is defined by sustained gust gale-force windspeed ( 34 knots, green) or hurricane-

force windspeed ( 64 knots, red). The estimates and Bonferroni-corrected 95% confidence 

intervals are reported for each infectious disease 5% state population exposed threshold; 

estimates are reported for week of the storm and 1 to 3 weeks post-storm.  
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Abstract 

 

An increasing severity of extreme storms and more intense seasonal flooding are projected 

consequences of climate change in the United States. In addition to the immediate destruction 

caused by storm surges and catastrophic flooding, these events may also increase the risk of 

infectious disease transmission. We aimed to determine the association between extreme and 

seasonal floods and hospitalizations for Legionnaires’ disease in 25 US states during 2000-2011.  

We used a nonparametric bootstrap approach to examine the association between Legionnaires’ 

disease hospitalizations and extreme floods, defined by multiple hydrometeorological variables. 

We also assessed the effect of extreme flooding associated with named cyclonic storms on 

hospitalizations in a generalized linear mixed model (GLMM) framework. To quantify the effect 

of seasonal floods, we used multi-model inference to identify the most highly weighted flood-

indicator variables and evaluated their effects on hospitalizations in a GLMM. We found a 32% 

increase in monthly hospitalizations at sites that experienced cyclonic storms, compared to sites 

in months without storms. Hospitalizations in months with extreme precipitation were in the 89th 

percentile of the bootstrapped distribution of monthly hospitalizations. Soil moisture and 

precipitation were the most highly weighted variables identified by multi-model inference and 

were included in the final model. A 1-standard deviation (SD) increase in average monthly soil 

moisture was associated with a 49% increase in hospitalizations; in the same model, a 1-SD 

increase in precipitation was associated with a 26% increase in hospitalizations. This analysis is 

the first to examine the effects of flooding on hospitalizations for Legionnaires’ disease in the 

United States using a range of flood-indicator variables and flood definitions. We found evidence 

that extreme and seasonal flooding is associated with increased hospitalizations; further research 
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is required to mechanistically establish whether floodwaters contaminated with Legionella 

bacteria drive transmission.  
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4.1 Background 
 

Legionnaires’ disease is among the most severe and costly waterborne illnesses in the 

United States, where it is responsible for an estimated 15% of all deaths related to waterborne 

infectious disease [1] and between 3% and 9% of all cases of community-acquired pneumonia 

[97, 205]. Legionnaires’ disease was so named in 1977, when a cooling tower contaminated with 

the bacteria was found to be the cause of a pneumonia outbreak among guests at a hotel [262], 

and its incidence has substantially increased since 2000 [263, 264]. Outbreaks of Legionnaires’ 

disease have decreased over the last 40 years, however, with only 4% of reported cases since 

2000 linked to a cluster [206]. Over 80% of cases are sporadic [89], and the source of infection is 

never identified for the majority of these cases. Legionnaires’ disease cases typically peak in late 

summer or early fall, and this consistent seasonality suggests that environmental factors affect 

transmission [265, 266] and may help explain the origin of these sporadic infections.   

Environmental conditions affect the proliferation of Legionella bacteria in lakes, streams, 

and estuaries [267, 268], and the contamination events that may lead to disease transmission 

[113, 214]. The bacteria are abundant in aqueous environments [269] and survive by parasitizing 

amoebae, including many that persist in environmental biofilms [270, 271]. The bacteria 

optimally grow in wet, warm conditions (between 25C and 42C) and flourish in sessile biofilm 

communities [245, 272] in the natural and built environment [273, 274]. Environmental events 

that mobilize biofilms may be an important driver of infection by increasing the bacterial load in 

plumbed water [275-277], water used for industrial processes [278, 279], and surface water 

where direct exposure can occur [280]. Susceptible individuals can become infected by inhaling 

aerosolized bacteria from these contaminated water sources.  
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Previous studies have found positive associations between cases of Legionnaires’ disease 

and rainfall [100-102, 281], relative humidity [266, 282], and streamflow [103], and inconsistent 

associations with proximity to rivers or river height [103, 267]. Temperature has been positively 

associated with cases in several studies, though its effect is often attenuated when adjusting for 

other seasonal factors [101, 266]. While many of these hydrometeorological variables are 

associated with flood events, the relationship between Legionnaires’ disease and flooding has not 

been formally evaluated. Flooding is known to mobilize bacteria-rich biofilms in water bodies 

[239, 259], which may lead to increased bacterial colonization of the built environment. 

Churning flood waters may also lead to the direct aerosolization of bacteria and increased risk of 

exposure for individuals close to flood waters.  

Flooding during extreme storms may be of particular concern because high winds and 

storm surges can damage or overwhelm the water treatment infrastructure necessary to address 

contamination events [8, 127]. The effect of extreme floods on waterborne infectious diseases 

has not been systematically examined in the US; rather, it has only been assessed after specific 

storm events (e.g. Superstorm Sandy [283, 284], Hurricane Katrina [117]). Increased incidence 

of intestinal illness has been reported after major storms, however, and post-storm 

microbiological analyses have found high concentrations of pathogenic bacteria in floodwater [8, 

285]. 

Floods can be measured with a range of hydrometeorological variables and those that 

best describe extreme or seasonal events often vary by region to reflect local hydroclimatology, 

geography, and the built environment [3, 107]. These factors determine the conditions under 

which a flood occurs and help explain, for example, how a single heavy precipitation event can 

lead to a devastating flash flood in an urban area with a small watershed, whereas the same 
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amount of precipitation has no effect in a rural area with a large drainage basin [2]. Precipitation 

has traditionally been the primary variable used to determine flood magnitude; however, recent 

research has demonstrated that soil moisture, snowmelt, and precipitation excess might better 

characterize flooding in many regions [232]. Most studies that have examined the association 

between floods and health outcomes have used a single hydrologic indicator [64, 65] or observed 

storms records [237]. Given that floods cannot be defined by the same set of 

hydrometeorological variables across all locations, this approach does not allow for the 

identification of all major flood types in the US (i.e. river, coastal, and flash floods as well as 

flooding after cyclonic storms).  

Understanding the association between Legionnaires’ disease infections and flood events 

is particularly important given that the severity of flooding is predicted to increase in conjunction 

with rising temperatures [123, 286]. The severity and timing of river floods is projected to 

increase due to earlier snowmelt and more intense precipitation [287, 288]. The number of 

major, billion-dollar floods has increased by 5% each year in the US since 1980 [289]; this is a 

trend that is likely to continue under future global warming, as more severe cyclonic storms and 

coastal flood events are projected to occur in the coming decades [224].  

In this study, we used nonparametric and generalized linear mixed models to determine 

the effect of extreme and seasonal floods on hospitalizations for Legionnaires’ disease across the 

US. Previous research has examined the association between single hydrometeorological 

variables and cases, but a thorough examination of the effect of flooding on Legionnaires’ 

disease has not been conducted. Earlier studies have also been limited to small geographic 

regions, primarily in the northeastern US, whereas this study includes hospitalizations from 25 

states throughout the US. Using this national dataset, we have quantified the effects of extreme 
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and seasonal floods, measured using multiple flood-indicator variables, on hospitalizations for 

Legionnaires’ disease across the US. 

4.2 Methods 
 

4.2.1 Data 

 
Hospitalization data 

Legionnaires’ disease infections occur primarily among older or immunocompromised 

individuals, and an estimated 97% of identified cases are hospitalized [1, 272]. We used the 

National Inpatient Sample (NIS) from the Healthcare Cost and Utilization Project (HCUP) to 

identify Legionnaires’ disease hospitalizations between 2000 and 2011 throughout the US. The 

NIS is the largest publicly available all-payer inpatient database in the US; it captures 20% of 

hospitalizations per year and is designed to be representative of all hospitalizations nationwide. 

We identified infections by ICD-9 code (482.84) and found the monthly Legionnaires’ disease 

hospitalization count for each hospital. We restricted our analysis to hospitals that contributed at 

least 4 years of data to the NIS dataset, provided monthly counts of hospitalizations, and reported 

their geographic location.  

Hospitals that reported no Legionnaires’ disease cases were excluded from the analysis 

because the absence of cases could indicate that Legionella were not present in environmental or 

household water sources in that region, or because a hospital was not testing for Legionnaires’ 

disease among patients with pneumonia. Many hospitals reported only one case during the study 

period; as a sensitivity analysis, we repeated the analyses using several case count thresholds to 

further restrict the included hospitals. We created subsets of our hospitalization data containing 

hospitals with at least 1, 5, 10, 15, and 20 Legionnaires’ disease cases during the study period; all 

of the analyses were repeated with these case count threshold datasets. 
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The NIS includes the location of the reporting hospital, but not the cases’ residential 

locations. To address the possibility of misclassification bias, given that the flood data are 

associated with the location of the hospital, we matched the hospitals to Hospital Service Areas 

(HSA) provided by the Dartmouth Atlas of Healthcare [226]. The HSA is the catchment area for 

each hospital and includes the zip codes where most Medicare patients receive care from the 

given hospital. We repeated the analyses using flood data associated with catchment area, instead 

of the hospital location, as a sensitivity analysis to assess the consistency of our findings.  

Flood data 

Flooding can be characterized by several hydrometeorological variables, and we used 

multiple flood-indicator variables to account for the range of flood-types found across the study 

sites (e.g. river floods, coastal floods, flash floods), and to distinguish between extreme and 

seasonal events. Precipitation, soil moisture, and surface runoff data were obtained from the 

NASA/ NOAA North American Land Data Assimilation System 2 (NLDAS-2) forcing dataset 

and were aggregated from an hourly temporal resolution to mean monthly values for each 

hospital location [290]. We used the United States Geological Survey (USGS) National Water 

Information System to find the stream gages closest to each hospital, for those that had a stream 

gage in the same zip code, and obtained daily median and maximum stream discharge 

measurements, which were aggregated to monthly means [291].  

Data on flooding associated with tropical cyclones were obtained from the NOAA Storm 

Event Database, which tracks the location, type, and severity of named storms in the Atlantic 

Storm Basin [292, 293]. For each named storm that occurred during the study period, we 

extracted county-level data on: 1) storm-related precipitation, 2) reported flooding, and 3) 
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distance from the storm track. Exposure to each of these extreme flood-related indicators was 

assessed for each hospital and month in the study period.  

4.2.2 Statistical analysis 

 
Extreme floods associated with cyclonic storms 

Two methods for identifying extreme floods were used to account for the range of flood 

types that occur in the US. In the first approach, we defined extreme floods as those associated 

with named cyclonic storms, and restricted the dataset to the hospitals that experienced these 

storms and to the months of the Atlantic Basin storm season (June – November).  

We modeled the association between Legionnaires’ disease hospitalizations and extreme 

storm-related floods using a negative binomial generalized linear mixed model (GLMM) 

framework to account for the over-dispersed hospitalization data. The counties with HCUP-

contributing hospitals were categorized as exposed or unexposed to storms for each month 

during the storm season between 2000 and 2011. A county was considered exposed if it was 

within 150km of the storm track and unexposed if it was outside of that range. In addition to the 

binary exposure variable, we assessed storm-related precipitation and proximity to the storm 

track as continuous variables and as categorical variables grouped by quartile.  

The model included a binary location variable to assess differences between rural and 

urban hospitals and hospital-specific monthly discharges as an offset to obtain the rate of 

Legionnaires’ disease hospitalizations. We also included hospital-specific random intercepts 

nested within state-specific random intercepts to account for underlying differences in 

hospitalization policies (e.g. testing, reporting, and admitting practices) as well as state-level 

responses to extreme events (Model S1, Additional file 1).  The storm-related variables were 

modeled separately and jointly, and model fit was assessed using the Akaike Information 
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Criterion (AIC). To assess the consistency of our findings, this analysis was repeated for each 

Legionnaires’ disease case threshold to determine whether a storm in the preceding month was 

associated with hospitalizations. 

Extreme floods associated with anomalous hydrometeorology 

In the second analysis, we classified months with anomalously high precipitation, soil 

moisture, surface runoff, or streamflow discharge as those with extreme flooding. For each 

hospital, we found the months with mean hydrometeorological variables above the 95th 

percentile and averaged the number of Legionnaires’ disease hospitalizations in this “extreme 

group”. We compared the hospitalizations in the extreme group to a bootstrapped distribution of 

monthly Legionnaires’ disease hospitalizations.  

The bootstrap generated a sampling distribution by randomly selecting 5% of months in 

the time series, with replacement, averaging the number of hospitalizations in those months, and 

then repeating the process 10,000 times. To control for seasonality, the sample was selected from 

the same range of months as those included in the extreme group for each hospital (i.e. if the 

extreme group for a given hospital did not include hospitalizations for November, then other 

November months in that hospital’s time series were not selected during the bootstrapping 

process). The probability of the Legionnaires’ disease hospitalizations in the extreme group was 

determined by comparison to the empirical cumulative distribution generated by the bootstrap. 

The bootstrap process was repeated for the all of the hydrometeorological flood indicators and 

for each case threshold.  

Seasonal floods 

In a third analysis, we used a multimodel inference approach to determine the effect of 

seasonal flood indicators on Legionnaires’ disease hospitalizations for the whole time series, not 



 111  

 

restricted to months with extreme floods or during the Atlantic Basin hurricane season. 

Multimodel inference was conducted on candidate models that varied only in the explanatory 

hydrometeorological variables, but that otherwise had the same structure. All combinations of 

standardized precipitation, soil moisture, surface runoff, and observed flood count were included 

in the candidate models; temperature was also included, given that the growth of Legionella has 

been associated with temperature seasonality. The models also included terms to control for 

seasonal and secular trends and a random intercept for each hospital (Model S2, Additional file 

1). The streamflow variables were excluded from this analysis due to missing data for hospitals 

that were not near USGS stream gages. 

We used the log likelihood and number of parameters to calculate the Akaike weight for 

each model. The models were ranked by weight, and the top models, the smallest number of 

models whose weights added to 0.90, were selected as the best-fitting models. Among the top 

models, variable weight importance for the hydrometeorological and temperature variables was 

determined. Cross-validation was performed by removing 20% of the data and conducting 

multimodel inference on the remainder; this process was iterated 1,000 times to evaluate the 

consistency of the weights and effect estimates, and to compare them to the top full models. 

These analyses were repeated for each Legionnaires’ disease case threshold.   

4.3 Results 
 

There were 1,376 Legionnaires’ disease hospitalizations between 2000 and 2011 at the 75 

hospitals that met our inclusion criteria for the primary analysis (Figure 4.1a). Most of these 

hospitals were large facilities (65.4%) and located in urban areas in the Northeast (66.2%) or 

Midwest (16.8%). The number, size, and geographic breakdown of the hospitals was relatively 

consistent across years in the study period, with the exception of 2008 when there were no rural 
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hospitals in the dataset (Table 4.1). The rural/urban location and hospital bed-size variables were 

not included in the 2011 HCUP dataset, but the mean annual discharge and geographic region 

breakdown for this year are consistent with previous years. 

 

 

Figure 4. 1: Time series of Legionnaires' disease between 2000 and 2011. 

a) The 75 hospitals in the HCUP dataset with a minimum of 10 total Legionnaires’ disease cases; 

dark gray states are those that do not participate in HCUP or do not provide monthly data. b) 

Total Legionnaires’ disease hospitalizations among the included hospitals between 2000 and 

2011 by geographic region.



 113  

 

Table 4. 1 Description of hospitals from the HCUP dataset included in the primary analysis, 2000 – 2011  
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Overall1 

Number of 

Hospitals 

36 24 36 34 29 30 37 29 38 32 33 31  

Number of Cases 92 55 83 133 90 88 139 100 149 182 141 124 1376 

Hospital  

Location (%) 

             

Rural 11.1 8.3 11.1 5.9 3.4 3.3 8.1 3.4 0 6.2 9.1 - 6.4 

Urban 88.9 91.7 88.9 94.1 96.6 96.7 91.9 96.6 100 93.8 90.9 - 93.6 

Hospital  

Bedsize (%) 

             

Small 8.3 8.3 16.7 11.8 17.2 10 5.4 3.4 5.3 12.5 9.1 - 9.8 

Medium 33.3 29.2 22.2 35.3 13.8 20 21.6 24.1 34.2 18.8 18.2 - 24.9 

Large 58.4 62.5 61.1 52.9 69 70 73 72.5 60.5 68.7 72.7 - 65.4 

Geographic Region 

(%) 

             

Northeast 63.9 70.8 61.1 73.5 72.4 66.7 62.2 69 57.9 71.9 63.6 64.5 66.2 

Midwest 25 16.7 25 8.8 6.9 13.3 16.2 13.8 21.1 18.8 15.2 19.4 16.8 

Southwest 8.3 8.3 8.3 11.8 17.2 13.3 16.2 13.8 18.4 6.2 12.2 9.7 12.3 

West Coast 2.8 4.2 5.6 5.9 3.5 6.7 5.4 3.4 2.6 3.1 9 6.5 4.7 

Mean Annual 

Discharge (SD) 

20,600 

(12,600) 

22,600 

(12,800) 

19,700 

(9,620) 

21,400 

(14,300) 

24,900 

(13,900) 

23,700 

(11,000) 

24,000 

(15,800) 

27,600 

(13,500) 

25,200 

(11,200) 

25,500 

(14,400) 

21,900 

(13,200) 

24,900 

(11,200) 

23,300 

(13,100) 

Number of 

Hospitals 

58.4 62.5 61.1 52.9 69 70 73 72.5 60.5 68.7 72.7 - 65.4 

175 hospitals were included in the primary analysis, each of which contributed at least 4 years of data; the number per year refers to 

the number, out of the 75, that contribute in that given year. 

 

 
 
 
 



 114  

 

 
Seasonality and secular trends in hospitalizations varied by geographic region (Figure 

4.1). In the Northeast and Midwest, hospitalizations increased between July and October, 

peaking in August, and also increased over time (Figure 4.1b). In the Southwest, hospitalizations 

exhibited an attenuated seasonality, with increased hospitalizations between March and October, 

and fluctuated over time. There was no clear seasonal or secular trend in hospitalizations among 

the hospitals in western states.  

The hospital characteristics varied considerably across the datasets with different case 

count thresholds used in the secondary analysis. The subset of hospitals with at least one 

Legionnaires’ disease case included 378 hospitals, with many located on the West Coast (17.6%) 

and in rural areas (23.1%) (Table S1, Additional file 1). At higher case count thresholds, the 

included hospitals on average had larger bed capacity and were concentrated in urban areas in 

the Northeast; among the 15-case and 20-case threshold hospitals, none were from rural areas or 

located on the West Coast (Table S1, Additional file 1). Seasonal and secular trends were 

consistent across the different case count thresholds.    

Fifteen named hurricanes or tropical cyclones affected counties with hospitals included in 

the dataset (Table 4.S.2, Additional file 1). Among the hospitals that experienced these storms, 

there was a significant increase in Legionnaires’ disease hospitalizations during months with a 

storm compared to months during the Atlantic storm season when a storm did not occur (Figure 

4.2). There was a 32% increase in monthly Legionnaires’ disease hospitalizations among 

hospitals that experienced a cyclonic storm compared to those that did not. This association was 

consistent across the case count thresholds, though it was insignificant in the 1-case and 5-case 

subsets and stronger in the 15-case and 20-case subsets, where there was a 46% and 54% 
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increase in hospitalizations, respectively, in months with a cyclonic storm compared to those 

without storms (Figure 4.2).  

 

 

Figure 4. 2: Legionnaires' disease hospitalizations and cyclonic storm exposure. 

Change in monthly Legionnaires’ disease hospitalizations among hospitals that experienced a 

cyclonic storm in the same month compared to hospitals that did not experience a storm; analysis 

was restricted hospitals in regions that experience cyclonic storms from the Atlantic storm basin 

and to the months of the Atlantic storm season (June – November). Symbols represent the effect 

estimates from models using the different Legionnaires’ disease case count thresholds. 

 
The intensity of storm-related precipitation and proximity to the storm track were not 

significantly associated with Legionnaires’ disease hospitalizations (Figure 4.S.1, Additional file 
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1). Hospitals that experienced the most intense storm-related precipitation (quartile 4 of 

maximum rainfall) had an increase in hospitalizations compared to hospitals that did not 

experience storm-related precipitation, but the difference was insignificant (Figure 4.S.1a, 

Additional file 1). Among the hospitals in the 15-case and 20-case subsets, however, this 

association was significant; hospitalizations increased by 81% and 90%, respectively, with 

moderate storm-related precipitation (quartile 3 of maximum rainfall) (Figure 4.S.1a, Additional 

file 1). Proximity to the storm track was not associated with hospitalizations for any of the case 

count thresholds (Figure 4.S.1b, Additional file 1). The sensitivity analysis with storm data 

aggregated to each hospital’s catchment area yielded results consistent with the primary analysis. 

There was a 50% increase in monthly Legionnaires’ disease hospitalizations among hospitals in 

HSAs that experienced a cyclonic storm compared to those that did not (Figure 4.S.2a, 

Additional file 1), and no significant association with precipitation intensity (Figure 4.S.2b, 

Additional file 1) or proximity to the storm track (Figure 4.S.2c, Additional file 1).  

The average number of Legionnaires’ disease hospitalizations in months with extreme 

precipitation was in the 89th percentile of the bootstrapped distribution (Figure 4.3), which was 

substantially higher than the average number of hospitalizations for all other causes in the same 

months. The strength of this association increased among the 15-case and 20-case threshold 

subsets to the 92nd and 94th percentiles, respectively (Table 4.2). Across all case-count 

thresholds, Legionnaires’ disease hospitalizations in months with extreme runoff, soil moisture, 

or temperature did not significantly vary from the bootstrapped averages (Table 4.2). These 

findings are supported by the sensitivity analysis using meteorological data aggregated to the 

hospitals’ catchment areas; the average number of hospitalizations in months with extreme 
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precipitation was in the 84th percentile and increased to the 91st and 93rd percentiles among the 

higher case thresholds (Table 4.S.3, Additional file 1). 

 

 

Figure 4. 3: Anomalous precipitation associated with Legionnaires' disease hospitalizations. 

Among the 75 hospitals with at least 10 cases, the average number of Legionnaires’ disease 

hospitalizations in months with extreme precipitation is in the 89th percentile of the bootstrapped 

distribution of monthly Legionnaires’ disease hospitalizations.  
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Table 4. 2 Associations between anomalous meteorology and hospitalizations 

Percentile of average monthly hospitalizations in months with extreme meteorological conditions 

compared to bootstrapped distribution of average monthly hospitalizations  

Hospitalization Threshold Precipitation Runoff Soil 

Moisture 

Temperature 

1+ Case 0.87 0.57 0.38 0.52 

5+ Cases 0.80 0.60 0.29 0.51 

10+ Cases 0.89 0.58 0.50 0.46 

15+ Cases 0.92 0.76 0.60 0.47 

20+ Cases 0.94 0.70 0.60 0.56 

 

The hydrometeorological flood-indicator variables exhibited seasonal patterns that varied 

by geographic region (Figure 4.S.3, Additional file 1). Precipitation typically peaked between 

June and September in the Northeast, Midwest, and Southwest, whereas along the West Coast it 

was driest during the summer and peaked in December or January (Figure 4.S.3a, Additional file 

1). Soil moisture seasonality was consistent across the US, with maxima occurring in January or 

February and minima mid-summer, but the range varied by region (Figure 4.S.3b, Additional file 

1). In the Northeast and Midwest, monthly soil moisture was relatively stable, whereas in the 

Southwest and on the West Coast there was a steep decline in soil moisture during the summer. 

Surface runoff exhibited the most distinct seasonality by region; on the West Coast it peaked 

during the winter, coinciding with the precipitation peaks, whereas in the Northeast surface 

runoff peaked in late spring, prior to the precipitation peak. Many areas in the Midwest 

experienced two peaks, one in the early spring and one in the later summer (Figure 4.S.3c, 

Additional file 1).  

Soil moisture and precipitation were the most highly weighted variables identified by the 

importance weighting and multimodel inference (Figure 4.4). Both variables were positively 

associated with a significant increase in monthly Legionnaires’ disease hospitalizations and were 

included in all of the top models (Table 4.3). A 1-standard deviation increase in average soil 
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moisture was associated with a 49% increase in hospitalizations in the most highly weighted 

model (Table 4.3). In the same model, a 1-standard deviation increase in average precipitation 

was associated with a 26% increase in hospitalizations. Temperature and the other 

hydrometeorological variables were not significantly associated with Legionnaires’ disease 

hospitalizations in any of the top models. The importance weights, top models, and effect 

estimates were consistent across all hospitalization thresholds (Table 4.S.4, Additional file 1) and 

in the cross-validation sensitivity analysis. Similarly, multimodel inference using flood-indicator 

data aggregated to the hospitals’ catchment areas identified the same top models and comparable 

effect estimates. In the most highly weighted model, a 1-standard deviation increase in soil 

moisture and precipitation at the catchment level was associated with a 53% and 26% increase in 

hospitalizations, respectively (Table 4.S.5, Additional file 1).  
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Figure 4. 4: Multimodel inference importance weights. 

Soil moisture and precipitation were the most highly weighted flood-indicator variables assessed 

in the multimodel inference analysis; these variables were highly weighted in 98% and 96% of 

the candidate models, respectively. The red line indicates where variables are highly weighted in 

at least 80% of the candidate models; variables that exceed this importance threshold are 

included in the final model.  
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Table 4. 3 Association between hospitalizations and meteorological variables in the most highly 

weighted models  

Model Precipitation Soil moisture Temperature Runoff Flood count Model 

weight 

1 0.26  

(0.14, 0.38) 

0.49  

(0.24, 0.74) 

 -0.08  

(-0.16, 0.00) 

 0.261 

2 0.28  

(0.16, 0.40) 

0.48 

 (0.23, 0.73) 

 -0.07  

(-0.13, -0.01) 

-0.03 

 (-0.11, 0.05) 

0.176 

3 0.19  

(0.01, 0.29) 

0.44  

(0.20, 0.68) 

   0.133 

4 0.23  

(0.13, 0.33) 

0.42 

 (0.17, 0.67) 

  -0.04  

(-0.10, 0.02) 

0.125 

5 0.26  

(0.14, 0.38) 

0.47  

(0.20, 0.74) 

-1.28  

(-6.49, 3.93) 

-0.08  

(-0.16, 0.00) 

 0.104 

6 0.28  

(0.16, 0.40) 

0.50  

(0.23, 0.77) 

-1.27  

(-6.54, 4.00) 

-0.07  

(-0.13, -0.01) 

-0.04  

(-0.10, 0.02) 

0.070 

7 0.19  

(0.01, 0.29) 

0.42  

(0.17, 0.67) 

-1.31  

(-6.74, 4.12) 

  0.053 

Note: Effect estimates are the change in monthly hospitalizations associated with a 1-standard 

deviation increase in the meteorological variables; values in parentheses indicate the 95% 

confidence interval.  

 

4.4 Discussion 
 

The incidence of sporadic Legionnaires’ disease has increased for over 20 years, but the 

association between cases and flooding as a potential driver of disease has not been thoroughly 

examined in the US. Previous studies have found positive associations among cases, rainfall, and 

relative humidity, but most have focused on specific cities or small geographic regions [266, 

267, 294]. Many have also relied on weather data from a single source [101, 281] or a single 

source per state [100], which may obscure local variation in meteorological conditions. In this 

study, the association between flooding, measured by several hydrometeorological variables, and 

Legionnaires’ disease hospitalizations was analyzed across 75 hospitals in 25 states in the US, a 

geographic scope that encompasses a range of climatological regimes and demographics.  

This work suggests that flooding, which can lead to the contamination of household and 

recreational water sources [8, 285], may be associated with hospitalizations for Legionnaires’ 

disease. While previous work has implied that rainfall influences the spread of disease via 
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contamination [129, 241], none have focused on identifying or quantifying flood events as the 

driver of transmission. To address this gap, we used several methods to characterize extreme and 

seasonal floods; we found that hospitalizations increased during months with flooding due to 

extreme storms and were positively associated with monthly precipitation and soil moisture, 

which are common flood-indicator variables.   

The seasonality and intensity of flooding varies considerably throughout the US, and 

these events cannot be measured with a single flood-indicator variable. We used two definitions 

of extreme events to account for the variety of flood types that occur, including those associated 

with hurricanes or tropical storms as well as those unrelated to cyclonic storms (e.g. due to 

intense precipitation and snowmelt). In the first approach, hospitalizations increased 32% in 

months with named storms during the Atlantic storm basin season among hospitals in the mid-

Atlantic and Northeast. The second approach reinforced this finding and determined that 

hospitalizations throughout the US increased in months with anomalously high precipitation, not 

just those affected by cyclonic storms. The extreme event analysis supported a 2005 study that 

found legionellosis was positively associated with high atmospheric pressure more 10 days 

before occurrence and low atmospheric pressure within 5 days of occurrence, consistent with the 

transition that occurs when a storm front moves through an area [266].  

In addition to extreme floods, many parts of the US experience seasonal flooding, 

including floods associated with snowmelt, frequent thunderstorms, and flash floods after 

droughts. We used multiple flood-indicator variables to characterize these seasonal floods and 

found that monthly soil moisture and precipitation are associated with increased Legionnaires’ 

disease hospitalizations. The association between rainfall and cases is well-supported, but this is 

the first to assess soil moisture, which functions as an integrator of rainfall and is an important 
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flood indicator. Legionella bacteria thrive in extremely warm environments but in our analysis, 

extreme or seasonal temperature was not significantly associated with hospitalizations. This 

effect of temperature on Legionnaires’ disease is inconsistent with previous studies; temperature 

lagged from 1 to 9 weeks was predictive of cases in some studies [102, 281] and associated with 

a decrease in disease rates in others. Given laboratory studies demonstrating that Legionella 

bacteria preferentially grow at high temperatures, it is likely that environmental temperature 

influences transmission. Our findings suggest, however, that extreme or seasonal flood events 

are more strongly associated with increased hospitalizations whereas temperature alone is not. 

While the effect of flooding on Legionnaires’ disease has not been examined in the US, 

our findings are supported by earlier research on the relationship between flood-indicator 

variables and outbreaks of other waterborne diseases [64, 65, 239]. An analysis of 42 years of 

outbreaks in the US found that 51% were preceded by extreme rainfall and that 60% were 

attributed to drinking water contamination [214]. This study did not examine the mechanisms by 

which flooding affects Legionnaires’ disease hospitalizations, but previous research has 

identified Legionella in environments that are vulnerable to flooding. Legionella have been 

detected in surface runoff [129, 241, 280], which can directly contaminate drinking water 

sources or overwhelm water treatment systems during floods. The bacteria have also been found 

in wastewater and sewage treatment plants [135, 150], which are prone to overflows and 

contamination events associated with floods [162]. Our findings indicate an association between 

flooding and Legionnaires’ disease, and future research should focus on examining the 

mechanisms by which flooding could lead to contamination and drive transmission.  

Sources of contamination typical in Legionnaires’ disease outbreaks, namely cooling 

towers, plumbing systems, and recreational or decorative pools [208], are often not the source for 
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sporadic cases [281]. Transmission of sporadic, community-acquired cases may instead be 

driven by household water and environmental exposures. Previous studies have attributed up to 

40% of sporadic cases to potable water [295], and an elevated risk of infection has been 

associated with water from private wells [296] and from surface water (compared to potable 

water from groundwater sources) [241]. Water quality data from a range of sources could help 

determine the primary modes of exposure to Legionella for sporadic cases not associated with 

point source contamination. Detailed exposure analyses would also lead to an improved 

understanding of how infection occurs; while Legionnaires’ disease transmission is thought to 

occur primarily via the inhalation of aerosolized bacteria, some studies suggest that infection also 

occurs via aspiration [246, 297]. Contaminated drinking water may be a crucial source of 

exposure if infection occurs via aspiration, as aerosolization by a household item (e.g. a 

showerhead, faucet, or hose) would not be required for transmission.  

Our findings are constrained by a number of limitations related to the availability and 

resolution of the hospitalization data. The analysis does not include any data from the 

Southeastern US because these states either do not contribute to the HCUP dataset or do not 

provide monthly data; this is a major limitation, as states in this region are most prone to 

cyclonic storms. However, regions with the highest incidence of Legionnaires’ disease were 

included in the analysis, and states that did not contribute to the HCUP dataset generally had 

lower incidence compared to the national average [204]. A recent analysis of Legionnaires’ 

disease epidemiological trends in the United States between 1992 and 2018 found that age-

standardized average incidence was higher in the Northeast and Midwest compared to the South 

and West, and highest in New England and the Mid-Atlantic states [204]; these geographic 

differences in incidence were more pronounced later in the time series (after 2002), which 
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overlaps with most of the study period in this analysis. Future studies should examine the 

associations among hydrometeorological conditions and Legionnaires’ disease throughout the 

US, particularly in the Southeast, but the regions included in the study capture the states with the 

highest Legionnaires’ disease burden.  

Despite rising incidence, hospitalizations for Legionnaires’ disease are relatively 

uncommon and as such our study relies on a small number of cases. During the study period, the 

total number of annual cases, not just hospitalizations, in the US reported to the Centers for 

Disease Control and Prevention (CDC) ranged from 969 to 3,676 [298]. To address this 

limitation, we repeated the analysis using several case-count thresholds in order to examine the 

consistency of our findings when different hospitals were included in the dataset. The stability of 

the associations, even when hospitals with a single case were included in the dataset, indicate 

that the findings are robust.  

The National Inpatient Sample only provides monthly hospitalization data, which 

prohibits a more temporally resolved analysis, and the geographic location of the hospital, not 

the residential locations of the cases. The absence of more temporally or geographically resolved 

data introduces the possibility of misclassification bias, given that the flood data associated with 

the hospital’s zip code may not accurately reflect the conditions at the cases’ residential zip 

codes. We aimed to address these limitations by including a large number of hospitals in the 

study from rural, urban, and suburban areas and evaluating the consistency of our findings across 

different study sites. Our findings are also consistent with small-scale studies that used daily case 

data [266] or had residential location data [103].  
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4.5 Conclusion 
 

Both seasonal and extreme flooding is projected to increase in conjunction with warming 

atmospheric temperatures, and our ability to mitigate the effect of these floods is contingent upon 

a thorough understanding of flood-disease dynamics and how they geographically vary. Our 

findings suggest that the increase of Legionnaires’ disease across the US may be explained by 

flooding and that mitigating the effects of these events in the future is key to reducing the spread 

of disease. These results also suggest that current flood or contamination control measures are 

insufficient with respect to Legionella and may indicate that more rigorous water and wastewater 

treatment policies are required. The findings may also be of use to clinicians treating patients 

with respiratory symptoms in the wake of extreme events or during seasonal flood periods. 

While awareness of and testing for legionnaires’ disease has increased, it remains substantially 

underdiagnosed and underreported among younger and immune-competent individuals. Future 

analysis should incorporate detailed water quality data from natural and built environments to 

better understand the routes of exposure, and how hydrological events affect transmission.  
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4.6 Supplementary Materials  
 

Table 4. S. 1 Description of HCUP hospitals grouped by Legionnaires’ disease case count 

thresholds 

LD Case 

Threshold 

1+ Case 5+ Cases 10+ Cases 15+ Cases 20+ Cases 

Number of 

Hospitals 

378 151 75 36 25 

Number of LD 

Cases 

2,361 1,885 1,376 980 715 

Hospital 

Location (%) 

     

Rural 23.1 8.3 6.4 0 0 

Urban 76.9 91.7 93.6 100 100 

Hospital 

Bedsize (%) 

     

Small 23 13.2 9.8 11.4 11.8 

Medium 27.3 24.9 24.9 25.7 19.1 

Large 49.6 61.9 65.4 62.9 69.1 

Geographic 

Region (%) 

     

Northeast 48 60.2 66.2 72.9 76.5 

Midwest 25.4 18.2 16.8 2.9 16.2 

Southwest 9 9.7 12.3 14.3 7.4 

West Coast 17.6 11.9 4.7 0 0 

Mean Annual 

Discharge 

(SD) 

13,700 

(11,200) 

20,400 

(12,000) 

23,300 

(13,100) 

26,100 

(13,700) 

29,900 

(14,000) 
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Table 4. S. 2 Cyclonic storms that affected counties with HCUP hospitals between 2000 and 

2011 

Storm Year Number of affected counties with HCUP hospitals 

Allison 2001 46 

Charley 2004 58 

Dennis 2005 16 

Frances 2004 32 

Gustav 2008 31 

Ike 2008 32 

Irene 2011 41 

Isabel 2003 22 

Isidore 2002 20 

Ivan 2004 37 

Jeanne 2004 48 

Katrina 2005 6 

Lili 2002 2 

Noel 2007 2 

Rita 2005 4 

 

 

Table 4. S. 3 Bootstrapped associations by HSA  

Percentile of average monthly hospitalizations in months with extreme meteorological conditions 

averaged across Hospital Service Areas (HSAs) compared to bootstrapped distribution of 

average monthly hospitalizations  

Hospitalization Threshold Precipitation Runoff Soil 

Moisture 

Temperature 

1+ Cases 0.75 0.49 0.35 0.43 

5+ Cases 0.81 0.57 0.37 0.45 

10+ Cases 0.84 0.44 0.50 0.41 

15+ Cases 0.91 0.66 0.52 0.41 

20+ Cases 0.93 0.76 0.79 0.58 
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Table 4. S. 4 Association between Legionnaires’ disease hospitalizations and meteorological 

variables in the most highly weighted model for each hospitalization threshold 

Hospitalization 

Threshold 

Precipitation Soil 

moisture 

Temperature Runoff Model weight 

1+ Case 0.15  

(0.09, 0.21) 

0.20  

(0.10, 0.29) 

 -0.07  

(-0.13, -0.01) 

0.21 

5+ Cases 0.19  

(0.07, 0.31) 

0.55  

(0.43, 0.67) 

 -0.06 

 (-0.14, 0.02) 

0.29 

10+ Cases 0.26  

(0.14, 0.38) 

0.49 

(0.24, 0.74) 

 -0.08  

(-0.16, 0.00) 

0.26 

15+ Cases 0.37  

(0.21, 0.53) 

0.61  

(0.20, 1.02) 

 -0.10 (-0.20, 

0.00) 

0.26 

20+ Cases 0.36  

(0.18, 0.54) 

0.92  

(0.35, 1.49) 

-11.64  

(-23.97, 0.69) 

-0.10  

(-0.22, 0.02) 

0.24 

Note: Effect estimates are the change in monthly hospitalizations associated with a 1-standard 

deviation increase in the meteorological variables; values in parentheses indicate the 95% 

confidence interval.  

 

 

 

Table 4. S. 5 Association between Legionnaires’ disease hospitalizations and meteorological 

variables averaged across Hospital Service Areas (HSAs) in the most highly weighted models 

Model Precipitation Soil 

moisture 

Temperature Runoff Flood count Model 

weight 

1 0.26  

(0.12, 0.40) 

0.53  

(0.22, 0.85) 

 -0.08 

(-0.16, -0.00) 

 0.294 

2 0.28  

(0.14, 0.42) 

0.52  

(0.21, 0.83) 

 -0.08  

(-0.16, -0.00) 

-0.03 

(-0.09, 0.03) 

0.179 

3 0.19  

(0.07, 0.31) 

0.48  

(0.17, 0.79) 

   0.125 

4 0.22  

(0.10, 0.34) 

0.48  

(0.17, 0.79) 

  -0.04  

(-0.10, 0.02) 

0.118 

5 0.25  

(0.11, 0.39) 

0.55  

(0.22, 0.88) 

1.25 

 (-5.57, 8.07) 

-0.08 

(-0.16, -0.00) 

 0.084 

6 0.27  

(0.13, 0.41) 

0.54  

(0.21, 0.87) 

1.31  

(-5.57, 8.19) 

-0.08  

(-0.16, -0.00) 

-0.03  

(-0.11, 0.05) 

0.079 

7 0.18  

(0.06, 0.30) 

0.50  

(0.19, 0.81) 

1.38  

(-5.62, 8.38) 

  0.051 

Note: Effect estimates are the change in monthly hospitalizations associated with a 1-standard 

deviation increase in the meteorological variables averaged across HSAs; values in parentheses 

indicate the 95% confidence interval.  
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Figure 4. S. 1: Effect of exposure to cyclonic storms by case thresholds. 

a) Precipitation associated with cyclonic storms and b) proximity to the storm track were not associated with a consistent significant 

change in monthly Legionnaires’ disease hospitalizations among hospitals that experienced the storms, compared to hospitals that 

were unexposed to the storms. Moderately intense precipitation (quartile 3) was associated with a significant increase in 

hospitalizations among the hospitals with a minimum of 15 and 20 total cases, but this association was insignificant at different 

precipitation levels and case thresholds. The analysis was restricted hospitals in regions that experience cyclonic storms from the 

Atlantic storm basin and to the months of the Atlantic storm season (June – November). 

 
 
 

(a) (b) 
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Figure 4. S. 2: Exposure to cyclonic storm at HSA level of analysis. 

The association between exposure to cyclonic storms at the Hospital Service Area (HSA) level of analysis and monthly Legionnaires’ 

disease hospitalizations did not substantially differ from the associations identified using the county-level storm data. a) Among 

hospitals in the 10-, 15-, and 20-case thresholds, hospitals in HSAs exposed to storms had a significant increase in hospitalizations 

compared to those in HSAs unexposed to storms. b) Cyclonic-storm related precipitation and c) proximity to storm tracks at the HSA 

level were not associated with significant changes in monthly hospitalizations; these findings are consistent with the analyses using 

county-level storm data (Fig.2, Supp. Fig

(a) (b) (c) 
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Figure 4. S. 3: Seasonality of hydrometeorological variables by region. 

Monthly hydrometeorological flood-indicator variables averaged across the 75 hospitals in the 

primary analysis between 2000 and 2011, grouped by state (lines) and geographic region (color). 

The seasonality of a) precipitation and c) runoff differs in the Northeast and Midwest compared 

to the Southwest and West Coast, with peaks typically occurring in opposite months of the year. 

The seasonal pattern of b) soil moisture and d) streamflow is more consistent across the US, but 

the magnitude of the seasonal variation differs by region. 
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Supplementary Model Description 1.  

 

Observed number of hospitalizations in hospital i, Yi, is assumed to be distributed as a negative 

binomial variable:  

 

Yi ~ NB (Yi | i, )  

where i is the mean and  is the shape parameter.  

 

The model structure is:  

 

log(i) = Xi + Zib + log(Pi) 

 

Where Xi are the variables of interest, which are storm occurrence and location,  is the vector of 

fixed effects for Xi, b is the vector of random effects for sample variables Zi, and Pi is the offset, 

which is the total monthly hospitalizations for hospital i. The vector of K random effects, b, is 

assumed to follow a normal distribution: b ~ Nk (0, ) where  is a positive definite variance-

covariance matrix that determines the random effects. The statistical analysis was performed in 

R.  
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Supplementary Model Description 2.  

 

Observed number of hospitalizations in hospital i at month t, Yit, is assumed to be distributed as 

a negative binomial variable:  

 

Yit ~ NB (Yit | it, )  

 

where it is the mean,  is the shape parameter and t = 1,…, n. Here n (144) is the number of 

months in the study period.  

 

The model structure is:  

 

log(it) = Xit + Zitb + log(Pit)  

 

Where Xit are the variables of interest, which are the monthly standardized average 

hydrometeorological and temperature variables, monthly sine and cosine terms to account for 

seasonality (sin(2 x 
month𝑡

12
) and cos(2 x 

month𝑡

12
)), and a term for year to account for long-term 

trends.  is the vector of fixed effects for Xit, b is the vector of random effects for sample 

variables Zit, and Pit is the offset, which is the total monthly hospitalizations for hospital i in time 

t. The vector of K random effects, b, is assumed to follow a normal distribution: b ~ Nk (0, ) 

where  is a positive definite variance-covariance matrix that determines the random effects. 

The statistical analysis was performed in R.  
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Chapter 5 

The objective of this work was to quantify the effect of flooding on waterborne infectious 

diseases across common flood types in the US. We expanded on previous research by examining 

associations between specific pathogens and multiple flood-indicator meteorological variables, 

including those related to cyclonic storms, over many years. We incorporated data on 

hydroclimatology, location (rural/urban), and drinking water source to account for factors that 

may influence flood-disease dynamics. By including this wide range of variables, we sought to 

provide insight into the sources of contamination and transmission routes that govern waterborne 

disease in the US. We applied this framework with particular attention to Legionnaires' disease, a 

respiratory infection with high mortality that is rapidly increasing in incidence and may be an 

underestimated cause of community acquired pneumonia. In this final chapter, we first 

summarize our findings and consider them in the context of flood-disease dynamic literature 

(5.1). We then discuss the necessary next steps and future directions for waterborne disease 

research in the US (5.2) and end with a brief conclusion (5.3). 

5.1 Discussion of the results in the context of flood-disease dynamic research  

5.1.1. Summary of findings 

We proposed a framework for considering pathogen biology, hydroclimatology, and 

infrastructure when studying the effect of flooding on waterborne diseases (Chapter 1), and 

applied this approach to our analysis of seasonal flooding on pathogen groups (Chapter 2). 

Hospitalization rates for all pathogen groups were higher in rural locations and, with the 

exception of biofilm-forming pathogens, in areas that relied on groundwater for drinking water 

sources. Waterborne disease is considered seasonal in temperate and subtropical areas [55, 77, 

217], but we found substantial variability in the strength of seasonality by region and pathogen. 
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This underscores the need for more regionally-specific analyses in the US; previous work on 

waterborne infections has largely been conducted in a few states along the East Coast [58, 59, 

64, 161], though we found hospitalization rates to be higher in the Midwest and Southwest. The 

group-level analysis was limited as associations with meteorological and location variables were 

driven by specific pathogens and did not accurately reflect all pathogens in the group, which 

demonstrates the importance of pathogen-specific analyses. To our knowledge, this was the first 

study to examine the effect of environmental variables on Pseudomonas and NTM infections and 

the first to include soil moisture for any of the pathogens. We found that Legionnaires' disease 

and Pseudomonas infections were positively associated with soil moisture.  

Cyclonic storms often cause severe floods that are more destructive than those driven by 

seasonal hydrometeorology [115, 250, 299]. We evaluated the effect of tropical storm or 

hurricane exposure on cases of six waterborne infections using several exposure definitions and 

thresholds (Chapter 3). Storm hazards are often uncorrelated [249], i.e. areas that experience 

hurricane-force winds do not necessarily receive extreme rainfall, and we found that storm-

related rainfall and wind had different effects on cases. Rainfall had a strong effect on 

Cryptosporidiosis, Legionnaires' disease, and Shiga toxin-producing E. coli infections while 

hurricane-force wind was only associated with a delayed increase in Cryptosporidiosis. We 

combined storm hazards to create storm type categories and examined their effect on cases; we 

found that high wind-high rain storms only had an effect on Cryptosporidiosis. This is a notable 

contribution to the field as the association between cyclonic storms and specific infections has 

not been studied across multiple storms seasons.  

Seasonal meteorological conditions can lead to extreme flooding unrelated to tropical 

cyclones, especially in areas prone to spring snowmelt and intense rainfall [3, 107]. We assessed 
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the effect of extreme rainfall, soil moisture, runoff, and temperature on hospitalizations for 

Legionnaires' disease (Chapter 4). Hospitalizations increased significantly in months with 

extreme average rainfall, which indicates different flood-disease dynamics than those that 

determine the effect of seasonal flooding on infections. In the multi-pathogen analysis (Chapter 

2), we found that soil moisture was positively associated with monthly Legionnaires' disease 

hospitalizations, a finding that we confirmed in this study. Under extreme meteorological 

conditions, however, rainfall was associated with Legionnaires' disease while soil moisture was 

not; this suggests that contamination sources or transmission routes may differ between seasonal 

and extreme floods.  

5.1.2. Rurality and vulnerability to waterborne disease  

Flooding and seasonal meteorology are important drivers of transmission in countries 

with endemic waterborne disease [213, 300]. Outbreaks of cholera, typhoid, and general 

diarrheal illness have been associated with monsoon seasons and extreme floods in places that 

lack adequate sanitation infrastructure [219, 301, 302]. These infections were also common in 

the US prior to the introduction of water treatment and organized waste management [303, 304] 

in the early 20th century. Since then, federal regulation under SDWA, discussed in 1.5, and 

advanced treatment methods have further improved drinking water quality [10]. National water 

quality and regulatory compliance assessments do not accurately represent the conditions for 

many communities in the US, however, and mask important regional variability in drinking 

water safety [179]. Clean drinking water is standard in many parts of the US but millions of 

people, predominantly in rural areas, rely on inadequate drinking water from noncompliant 

CWSs and private wells [11, 305, 306]. Rural CWSs have the highest rates of SDWA violations 

and report the worst drinking water quality [11, 307], problems that will likely worsen in the 



 138  

 

future in conjunction with aging infrastructure. In these regions, high rates of diarrheal illness 

linked to environmental variability may still be an urgent, if unacknowledged, public health 

problem.   

Rural CWSs are particularly vulnerable to contamination due to overlapping water 

source, land-use, and flooding risk factors [112, 179, 199]. People in rural areas generally 

receive drinking water from small CWSs that rely on groundwater sources or from private wells 

[185], both of which have been associated with increased contamination after flood events [112, 

308, 309]. As described in Chapter 1, rural flooding is especially harmful because of animal 

waste in the environment and the insufficiency, or absence, of water treatment. Private wells 

present the greatest risk as they are entirely unregulated, but groundwater systems also suffer 

from inadequate treatment and poor enforcement of SDWA rules. It is a challenge for small 

CWSs to comply with monitoring and treatment standards mandated by the GWR; these systems 

typically have limited technical resources and small budgets, which make them dependent on 

securing federal grants for water treatment projects [306]. Given these factors, it is unsurprising 

that waterborne disease outbreaks disproportionately occur in CWSs that rely on groundwater 

[310]. Most are attributed to system failures in water or wastewater treatment [187, 311], but the 

consistent seasonality in drinking and recreational water outbreaks suggests that environmental 

drivers still influence transmission [167, 168, 187]. 

Rural counties experience health disparities with respect to many common chronic 

diseases and have a higher rate of adjusted-mortality compared to non-rural counties [312]. Our 

findings suggest that geographic disparities also exist for waterborne disease hospitalizations, 

which is consistent with the growing body of research on rural health [313, 314]. We found that 

hospitalization rates were higher in rural hospitals for all of the diseases except amebic 
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infections. Cryptosporidiosis, Shigellosis, Campylobacteriosis, and E. coli hospitalization rates 

were also higher in areas that relied on groundwater, which is the dominant source for drinking 

water in rural CWSs. Many rural regions are vulnerable to multiple flood types including 

snowmelt-driven river floods, which generate persistent standing floodwater that can 

contaminate groundwater [3]. Compounding this risk are demographic factors; rural counties 

comprise 85% of the “older-age” counties in the US [314] and age is the greatest risk factor for 

serious waterborne infections. Rural counties generally have fewer physicians per capita and 

weaker healthcare infrastructure, which means that cases are probably under detected and 

underreported [315]. Specific rural areas are extraordinarily vulnerable to waterborne infection 

and are likely hotspots for transmission. In some parts of rural Alabama, for example, straight 

piping sewage is common practice and leads to the discharge of raw waste within several yards 

of residences [316]. Surrounding soil and water is often highly pathogenic and direct 

contamination of drinking water is frequent. Given these overlapping risk factors, focusing on 

flood-disease dynamics in rural areas should be a priority for public health research.  

5.1.3. Growing importance of opportunistic pathogens  

Diarrheal illness has traditionally been the focus of waterborne disease research but the 

emergence of Legionnaires' disease has demonstrated the need for a more expansive framework 

that incorporates respiratory infections caused by waterborne pathogens. Flood-related 

polymicrobial pneumonia has been observed after extreme floods in Southeast Asia [317] and 

tropical cyclones have been associated with increased hospitalization rates for pneumonia in the 

US [234], but few pathogen-specific analyses have been conducted and none over multiple years. 

Identifying flood-disease dynamics for respiratory infections is critical given the severity of these 

infections and their disproportionate burden among vulnerable people [17]. In the US, more 
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people are living longer with immunocompromising conditions and the overall population is 

aging [17, 318], which indicates that the number of people susceptible to these opportunistic 

infections will increase in the future. To address this gap, we studied the effect of multiple storm 

exposures on Legionnaires' disease cases and found a substantial increase associated with storm-

related rainfall. This is an important first step and invites further research into possible routes of 

exposure in the aftermath of storms. Transmission due to contaminated plumbing has been well-

established but a critical, and largely unexamined, question remains as to the role of 

environmental exposure; churning floodwater, for example, may aerosolize bacteria in 

waterways and cause direct transmission in the environment. While Legionnaires' disease is the 

most prominent, other biofilm-forming pathogens may be significant contributors to waterborne 

respiratory disease.  

Respiratory pseudomonas and NTM infections are opportunistic pathogens that share 

biological and epidemiological characteristics with Legionnaires' disease but their association 

with environmental variables has not been examined in the US. While primarily considered 

nosocomial pathogens, they are also an established cause of community acquired pneumonia 

(CAP) in immunocompromised people [67]. The bacteria are ubiquitous in treated and 

environmental water, so determining their association with flooding could provide insight into 

periods of high transmission risk for vulnerable groups. As opportunistic pathogens, they may 

also be indirectly related to flooding as sequelae of initial post-flood health effects. Flooding has 

been associated with elevated rates of asthma and COPD [234, 319], which are conditions that 

may increase susceptibility to these pathogens. We found that respiratory Pseudomonas 

hospitalizations had similar, though attenuated, associations with meteorological variables as 

Legionnaires' disease. Further work should focus on better-estimating the role of Pseudomonas 
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as a causative agent for CAP and specifically studying these cases, as non-nosocomial infections 

may be more sensitive to environmental variables.  

5.1.4 Extreme floods and modeling rare events  

The number of major, billion-dollar floods has increased by 5% each year in the US since 

1980 [289, 320], a trend that is likely to continue under future climate scenarios [320]. Warmer 

atmospheric temperatures will affect all of the flood generating processes discussed in Chapter 1; 

earlier snowmelt and intense rainfall will make both river floods and flash floods more severe, 

and increased cyclonic storm severity will worsen coastal flooding [321-323]. These events are 

generally more destructive and generate more expansive floodwater compared to normal 

flooding. As a result, extreme events may facilitate transmission through different pathways; 

direct contact with contaminated water may be a more prominent transmission route after 

cyclonic storms, for example, than it is during a standard flood season. Our intention with 

including several flood-indicator variables and using multiple definitions for extreme events, as 

described in Chapter 1, was to capture the range of flood types that occur in the US. We found 

some support for this approach in our analysis of Legionnaires' disease in Chapter 4. 

Hospitalizations were most strongly associated with soil moisture in the analysis of seasonal 

flood-indicator variables, but anomalously high monthly rainfall had a stronger effect in the 

nonparametric approach. Further research should explicitly study transmission routes during 

extreme and seasonal flooding so as to determine the most effective disaster management 

responses and to identify points for intervention.  

Among flood anomalies, some events are extraordinarily destructive and likely have an 

outsized influence on waterborne disease transmission. Quantifying their effect is a fundamental 

challenge in flood epidemiology, however, as they are rare events. It is difficult to evaluate this 
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subsection of extreme events in most statistical frameworks because their small sample size 

generates large amounts of uncertainty [324]. In our analysis of storm types, we found that high 

rain-high wind storms had no effect on cases except for Cryptosporidiosis with a three-week lag. 

This finding illustrates the limitations inherent in studying extremes; the effect may reflect a 

consistent, delayed association between cases and high rain-high wind storms or it may be driven 

by an unusual occurrence of successive hurricanes and tropical storms in Texas (described in 

Chapter 4). The absence of an effect at any other lag or with other infections is also difficult to 

interpret because it may be a result of the small number of high rain-high wind storms. 

Conversely, it could a genuine effect driven by the catastrophic nature of these events. People 

evacuated prior to storm landfall avoid floodwater or contaminated drinking water and some of 

those exposed may be displaced in the aftermath, so surveillance systems close to the flood zone 

would not capture case reports [258]. Healthcare systems are also disrupted, which inhibits case 

detection, reporting, and epidemiological surveillance [325, 326].  

5.2 Next steps for waterborne disease research in the US  

Some of the current challenges and limitations to waterborne disease research in the US 

were outlined in 5.1. Here, we discuss the effect of these limitations and outline the necessary 

steps to address gaps in our understanding of waterborne disease transmission. We also identify 

important areas of research that could inform public health and flood management policies to 

reduce the burden of disease.  

5.2.1 Geographic and temporal resolution of data  

Geographically and temporally resolved epidemiological data are crucial for conducting 

informative analyses of flood-disease dynamics. These data enable more rigorous assessments of 

exposure routes by linking cases to the CWS that provides household water, determining their 
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proximity to environmental or recreational water sources, and specifically characterizing storm 

exposure. State and local health departments conduct surveillance of water- and foodborne 

infections [58, 64, 222, 327] but the data are largely inaccessible to researchers outside these 

organizations and CDC. States report deidentified data on single cases, i.e. non-outbreak cases, 

of notifiable diseases to NNDSS, which publicly releases these data at state resolution (data used 

in Chapter 3) [298, 328]. Through the FoodNet program, health departments and CDC partner to 

perform exemplary epidemiological surveillance for several pathogens that are primarily 

foodborne in 10 participating states (e.g. Salmonella, STEC) [329]. The data are mainly used to 

track outbreaks, however, and access to them is generally limited to CDC and its partner health 

departments. As a result, the majority of studies that use these resolved, individual-level data are 

conducted in several states along the East Coast [32, 205, 264].  

Flood-disease dynamic studies typically lack water quality data, which is necessary for 

establishing mechanistic associations between floods and cases. Many of the pathogens included 

in this analysis are not subject to mandatory sampling or compliance standards, so data collection 

is limited to specific research projects that focus on a single waterbody over a short period of 

time [130, 211]. SDWA requires states to monitor drinking water sources for regulated 

contaminants (e.g. E. coli), but the availability of that data varies within and among states [194]. 

The data are also reported at monthly intervals, which is not useful for assessing the short-term 

effect of flooding on water quality. USGS programs conduct continuous monitoring or 

estimation of environmental water quality that generate datasets with excellent spatial and 

temporal resolution, but do not measure pathogen concentrations [330]. In lieu of adequate time-

series data, many studies rely on SDWA violations to characterize drinking water quality [11, 

305, 331]. CWSs are required to report violations, which SDWIS compiles and makes public, but 



 144  

 

in practice there is variability in compliance monitoring and reporting [311] (Chapter 1). The 

lack of time-series water quality data, especially data with broad geographic coverage, is 

arguably the greatest challenge for flood-disease dynamic research. The cost associated with 

regular, pathogen-specific monitoring is likely prohibitive particularly given the chronic 

underfunding of many CWSs.  

Our work was constrained by the use of monthly hospitalization data (Chapters 2 and 4) 

and the absence of residential location for hospitalized and case patients (Chapters 2-4). We 

tested the sensitivity of our findings with exposure thresholds, and supplemental analyses using 

meteorological data associated with hospital catchment area, but the potential for spatial and 

temporal mismatch persisted. It is unlikely that the data resolution yielded overestimated effects, 

as the misclassification bias would be toward the null [260], but it did prevent modeling 

nonlinear, spatial, or lagged effects (except for the weekly storm data in Chapter 3) [228]. 

Hospitalization data only capture the most severe cases, which are a small fraction of overall 

waterborne infections and disproportionately occur among older people. Hospitals also vary in 

their policies with respect to diagnostic testing and admissions, which could affect the ICD-9 

codes reported and admission or discharge dates. To address this limitation, we included random 

effect terms for hospitals throughout our statistical analyses; this approach controls for hospital-

specific differences in diagnostic testing, admission policies, and reporting of ICD-9 codes.  

Improving the quality and availability of epidemiological surveillance and drinking water 

quality data is central for addressing the most urgent public health challenges related to 

waterborne disease.  
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5.2.2. Health disparities related to waterborne disease  

One of the most harmful consequences of data limitations is the inability to rigorously 

examine health disparities related to waterborne infections. For decades public health institutions 

have been ostensibly committed to eliminating health disparities but they have persisted, and in 

some cases worsened, across most health outcomes [332, 333]. Few studies in the US have 

examined waterborne infections by sociodemographic or socioeconomic variables and none 

across broad geographic ranges. Case rates for waterborne infections have been associated with 

county-level socioeconomic and sociodemographic variables, but the underlying mechanisms 

have not been evaluated. Counties with populations that are primarily low-income, racial or 

ethnic minorities, or foreign-born report higher rates of waterborne infections [32, 334-337]. 

These studies do not consider systemic factors that could influence risk, however, and instead 

attribute differences to individual-level behavioral factors (e.g. food preparation, dietary habits). 

The FoodNet surveillance system discussed in 5.2.1 collects individual-level data on occupation, 

household water source, and exposure to recreational water sources; expanding the program to 

include all waterborne pathogens would be transformative for flood-disease dynamic and health 

disparities research. Rather than solely documenting differences by sociodemographic variables, 

it would provide insight into the source of health disparities. With geographically resolved 

epidemiological data, location-specific factors related to transmission, including proximity to 

WWTPs and land-use categories, could be assessed in conjunction with sociodemographic data.  

While informative pathogen-specific analyses are limited, disparities related to drinking 

water infrastructure have been more thoroughly examined. Higher rates of SDWA violations 

have been documented in CWSs that serve communities with lower average socioeconomic 

status (SES), lower insurance rates, and higher proportions of non-Hispanic Black and Hispanic 
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residents [305, 331, 338, 339]. This has been attributed to people with lower SES living in areas 

with older infrastructure and relying on CWSs that use groundwater [305]; as discussed in 

Chapter 1, groundwater CWSs are vulnerable to contamination because water is often 

undertreated. Consistent with this analysis, small ( 10,000 people served) and rural CWSs were 

also at greater risk for SDWA violations [305, 340]. The data used in these studies are not 

specific to bacterial contamination, however, and associations may differ by violation type. For 

example, increased SDWA violations have been associated with counties in the Southwestern 

US and on tribal land, but these are also regions with high levels of arsenic in soil that may cause 

frequent violations unassociated with biological contamination [340, 341]. Future research 

should assess CWS-level SES variables and violations stratified by type.  

SDWA violations identify CWSs at risk for contamination, but they do not capture the 

groups most vulnerable to waterborne disease. An estimated 1.1 million people in 471,000 

households do not have access to piped water and areas where this is common may represent 

hotspots for transmission [340, 342]. Unlike the CWS disparities associated with rurality, lack of 

piped water is more common in densely populated urban areas. People in these households are 

more likely to be from racial or ethnic minority groups and to be renters [342]. Numerous health 

effects including respiratory infections, diarrheal illness, and malnutrition are associated with the 

absence of household water, though these studies are typically conducted in low- and middle-

income countries [343]. Implementing interventions in areas of extreme health disparity and risk, 

including the rural households that lack sewage infrastructure discussed in 5.1.2, should be a 

public health priority for local and state governments.   

The clearest and most consistent identified health disparities relevant to flood-disease 

dynamics are driven by cyclonic storm exposure. Vulnerability to flooding mirrors other 
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indicators of social inequity; people who are racial or ethnic minorities, recent immigrants, or 

have physical disabilities are disproportionately affected by extreme events [344, 345]. Low 

income families are more likely to have their homes destroyed during natural disasters [346] and 

federally-subsidized housing is overly represented among properties in floodplains [347]. There 

is spatial heterogeneity in vulnerability to natural disasters across the US that has changed over 

time in conjunction with shifting demographics [348]. Vulnerability has increased in 

communities with aging populations, especially in small towns in the Upper Midwest, compared 

to earlier decades. It has also increased in predominantly Hispanic and low-income communities 

along the Mexico border, where risk is associated with language barriers, and in the deep south 

[348, 349].  

Health disparities related to storm exposure are a result of overlapping risk factors; 

people who are most vulnerable to exposure are also those who have fewer resources to evacuate 

and recover from them [347]. Susceptibility to waterborne disease may be associated with both 

of these factors, but assessing these interactions requires comprehensive epidemiological 

surveillance to establish baseline risk as well as post-storm epidemiological studies.  

5.2.3 Preparing for the effect of climate change on burden of disease  

Climate change will likely have a profound influence on flood-disease dynamics as its 

effects will alter the severity of seasonal and extreme flooding. The ability to anticipate the 

consequences for specific health outcomes is hampered, however, but our limited understanding 

of current dynamics [350, 351]. The effect of warmer atmospheric temperatures on river floods, 

flash floods, and cyclonic storms is established (and discussed in 1.3); extreme rainfall and flood 

severity, in some regions, have already increased in the US [352-354]. There is considerable 

uncertainty, however, surrounding the effects of climate change on disease dynamics; 
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temperature, rainfall, and humidity changes may influence the ability of pathogens to persist in 

the environment [65, 237] and the seasonality of infections in animals [355]. This may be 

particularly important for biofilm-forming bacteria because they actively grow, rather than 

merely persist, in the environment and are sensitive to meteorological conditions. The effect of 

extreme storms and floods on most health outcomes is also uncertain; recent work has focused 

on characterizing a range of health effects [234], but the field is developing and constrained by 

data availability.  

The effects of cyclonic storms are often hyperlocal and epidemiological analyses tailored 

to specific locations may best describe flood-associated risks. As a result, however, it is difficult 

to establish a comprehensive understanding of flood-disease dynamics that has adequate external 

validity [356]. Post-storm analyses vary by data collection, methodological approaches, and 

outcomes, which generates distinct post-storm surveillance data. The work presented in Chapter 

3 aims to address this gap in flood epidemiology by applying consistent exposure and outcome 

definitions over 23 years of extreme storms. Future research should adapt this approach with 

more geographically resolved data to better characterize exposure and to incorporate community-

level information that could provide insight into possible drivers of health disparities. The most 

glaring source of uncertainty concerns the effects of climate change, and flooding specifically, 

on sociodemographic trends [357]. The effects of climate change may lead to temporary [358, 

359] and permanent displacement [360], which affects disease transmission, drinking water 

infrastructure, and healthcare systems in addition to innumerable social effects.  

5.3 Conclusion   
 

Decades of public policy designed to improve drinking water quality and sanitation 

infrastructure led to dramatic reductions in the burden of waterborne disease throughout the 20th 
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century. In some regions and communities, however, contamination persists and may lead to 

disease transmission that is not captured by epidemiological surveillance or healthcare systems. 

Vulnerability to inadequate infrastructure and waterborne disease is concentrated among groups 

within the population that often experience multiple sources of health and social inequity. The 

effects of climate change will likely exacerbate these disparities. Determining how climate-

driven processes influence health, and identifying who is most at risk, is therefore central to 

environmental justice work. The goal of this dissertation work was to provide some insight into 

flood-disease dynamics and to develop a framework for approaching waterborne disease 

research. The ability to examine sociodemographic and socioeconomic risk factors will require a 

more nuanced understanding of these dynamics, which in turn depends on improved infectious 

disease and water quality surveillance. In the face of aging water infrastructure and more 

extreme floods, this should be a priority for public health researchers and policymakers.  
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