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Abstract

Parameter Estimation for Physics-Based Electrochemical Model Parameterization and

Degradation Tracking

Karthik Subbu Mayilvahanan

Physics-based electrochemical models are useful tools for optimizing battery cell and mate-

rial design, managing battery use, and understanding physical phenomena, all of which are key in

enabling adoption of batteries to electrify transportation, grid storage, and other high carbon emis-

sion industries. Fitting these models to experiments can be a useful approach to determine missing

parameters that may be difficult to identify experimentally. In this dissertation, two use cases of

this approach — model parameterization and degradation tracking — are explored.

An introduction to the need for batteries and an overview of challenges in the field is presented

in Chapter 1. Of these challenges, those that can be addressed by battery modeling solutions are

discussed in further detail. An overview of continuum level physics-based electrochemical models

is provided, and the case is made for the utility of parameter estimation.

In Chapter 2, an extension of a published model for lithium trivandate cathodes for lithium-

ion batteries is outlined. While the original model described (de)lithiation and phase change in

the cathode, the new model describes simultaneous lithiation of the original phase, lithiation of

the newly formed phase, and phase change. Parameters associated with the thermodynamics and

kinetics of charge transfer and lithium transport in the second phase are estimated directly from ex-

perimental data. This study serves as an example of using the model fitting approach to determine

model parameters that would be difficult to isolate and measure experimentally.

Chapter 3 explores a similar concept of model parameterization, this time focusing on the

electrode tortuosity. Tortuosity is a hard to quantify parameter that describes how tortuous of a path

lithium ions must travel through an electrode or separator. Because there are several experimental

measurement techniques suggested in the literature that do not always provide consistent results, an

approach to fit the tortuosity to a standard rate capability experiment is introduced. The Bayesian

approach returns uncertainties in tortuosity estimates, which can be used to predict a range of



outcomes for high-rate performance. Covariance between parameters in the model and their impact

on uncertainties in tortuosity is also discussed.

Beyond model parameterization, parameter estimation can also be useful in the context of

tracking degradation by fitting a physics-based model over the course of cycling and interpreting

the evolution of the parameter estimates. In Chapter 4, this idea is explored by fitting the model

developed in Chapter 2 to cycling of an LVO cell. Parameter estimates are interpreted in conjunc-

tion with traditional tear down and electrochemical analysis to identify root causes of degradation

for this cell.

Depending on the number of parameters being simultaneously estimated, it can become an

onerous task to fit model parameters, especially if the physics-based model cannot easily be en-

closed in an efficient optimization algorithm. To this end, machine learning (ML) can be useful. If

a ML model is trained offline on synthetic data generated by a battery model to map the observable

electrochemical data to parameters in the battery model, the ML model can be deployed to estimate

parameters from experiment. These models can be referred to as inverse ML models, since they

perform the inverse task of a "forward" physics based model.

The procedure described above is implemented in Chapter 5. Interpretable ML models are

trained on published synthetic data generated by equivalent circuit models. Pseudo-OCV (slow

charge, C/25) full cell voltage curves are passed into the inverse ML models to estimate degradation

modes in lithium ion batteries and classify which electrode limits cell capacity. These models are

useful in diagnosing the state of the battery at any given time. Accuracies of the inverse ML

models are evaluated on independent test sets also composed of synthetic data and are published to

benchmark future diagnostic studies. The insights derived from the trained ML models in terms of

which features in the full cell voltage curves are predictive of the degradation modes are compared

to expert insights.

In chapter 6, the robustness of the inverse ML approach towards model-experiment disagree-

ment is probed. If the experiment does not directly map onto the protocol used to generate the

synthetic training data for the ML model, or if the model itself is inherently a poor descriptor of



experiment, the inverse ML model will inevitably return inaccurate estimates. In this chapter, a

feed forward neural network (NN) is employed as the inverse ML model. In two case studies

of model-experiment disagreement, the NN returns biased parameter estimates. A simple data

augmentation procedure is introduced to mitigate these biases.

Chapter 7 ties together the understanding developed in the previous chapters by applying more

robust neural networks to estimate parameters for LVO cells cycled at different rates. This study

demonstrates how to interpret parameter estimates in conjunction with cycling data to gain mecha-

nistic insight into degradation. A complex map of coupled degradation hypotheses is reduced to a

smaller subset of possible mechanisms for two exemplary LVO cells, and parameter estimates for

a larger set of LVO cells are discussed. The framework presented in this study synergistically com-

bines experiment, physics-based modeling, and machine learning to better understand degradation

phenomena.
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Chapter 1

Introduction to Batteries and Physics-based

Battery Models
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1.1 Batteries: Motivation and Challenges

As global energy usage increases amidst a pressing need to curtail global temperature increase

and avoid the consequent climate effects, the need to transition energy consumption from high

carbon emission sources to clean, renewable sources is more important than ever. Though en-

ergy consumption from renewable sources has reduced the United States’ dependence on coal,

petroleum and natural gas remain the dominate energy sources.1 According to the Energy Infor-

mation Agency’s 2022 Annual Energy Outlook, the three largest energy consuming sectors in the

United States in 2021 were the electric power, transportation, and industrial sectors at 37, 25,

and 22 quadrillion Btus respectively. Though the transportation sector was the second highest in

energy consumption, it was the largest sector in carbon dioxide emissions, emitting 1.75 billion

metric tons of carbon dioxide annually.1

The transition towards renewable energy sources like wind and solar does not come without

challenges. One notable challenge is their intermittency, or their inability to reliably produce

energy at all times. To this end, they must be paired with energy storage solutions to become more

widely adopted. A range of technologies exist for energy storage, but lithium ion batteries have

experienced the most market penetration due to rapidly falling system-level costs.2

Though grid storage is and will increasingly become a target market for batteries, the demand

for batteries is currently being driven by the transportation sector.2 The EIA projects a tripling of

electric vehicle sales in the United States by 2050.1 Batteries for electric vehicles have different

requirements than those for grid storage applications, including energy density (which translates

to vehicle range), cost, safety, ability to fast charge, power capability, and extended lifetime.3,4

Li-ion batteries consist of a graphite anode, a liquid electrolyte, and a range of cathode materi-

als, including lithium cobalt oxide (LCO), lithium nickel manganese cobalt oxide (NMC), lithium

nickel cobalt aluminum oxide (NCA), lithium manganese oxide (LMO), and lithium iron phos-

phate (LFP).4–6 These chemistries correspond to different trade offs in energy density, power den-

sity, safety, cost, and lifetime.
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For more mature Li-ion batteries, while some optimization can still be done to improve energy

and power density and reduce cost on the cell and pack levels, performance and cost appear to

be plateuing.2,4 An outstanding challenge and active area of research and development for Li-ion

batteries is the diagnosis and prognosis of degradation. The ability to accurately estimate the state

of a battery, predict its lifetime, and manage its use to extend its lifetime is of great interest to

automotive manufacturers especially, since it can be difficult to reproduce the wide range of long-

time stresses that electric vehicle batteries experience in the lab.7

In terms of advancing the materials systems for batteries, in the near term, there is a push

towards removing cobalt from cathodes in favor of nickel for both performance and materials

availability related reasons.3,4 For batteries with these cathodes, optimizing the trade off between

energy density and lifetime is the critical challenge. In a further outlook, advanced anodes like

silicon or lithium metal and advanced cathodes like sulfur can help achieve step changes in energy

density.6,8–10 Advanced electrolytes like solid state electrolytes have the potential to resolve major

safety issues in current lithium ion batteries.4,5,11 In an even further outlook, beyond-lithium sys-

tems like sodium ion batteries could become critical if and when the global lithium supply chain

is strained.9,12 For all of these systems, fundamental understanding of materials and interfaces and

their evolution over use are necessary to realize their full potential.

1.2 Battery Modeling

Models used for battery research and development span length scales from angstroms to meters.

At the smallest length scale, atomistic models that employ density functional theory are useful in

understanding the relationship between molecular structure and material properties. On the other

end of the spectrum, technoeconomic models are useful in comparing candidate technologies on a

systems level.13 The models of interest in this dissertation are continuum level models that describe

physics on the particle and cell level.
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1.2.1 Continuum Level Physics-Based Electrochemical Models

The two most commonly used continuum level physics-based models are the pseudo-2D (P2D)

model and the single particle model (SPM). The P2D model represents each electrode as a one

dimensional array of active material particles on the axis passing through the cell stack (through-

plane). The model can simulate evolution of concentration and potential profiles in the solid and

the electrolyte along this axis, sometimes referred to as the "electrode scale". Intercalated lithium

concentration distributions within each of the representative particles ("particle scale") are solved

for simultaneously. The two length scales are coupled via local electrochemical reaction rates.14

The single particle model simplifies the P2D model by assuming that there are no electrode scale

concentration and potential gradients, which means each electrode need only be represented by

one particle.15,16 Modifications have been made to the SPM to include an analytical solution to

the electrolyte dynamics that are decoupled from the particle scale, referred to in the literature as

SPMe.17–19

In reality, the P2D model itself is a simplification of complex heterogeneity in cells in both

the through plane and in plane directions. Strategies exist to account for in plane heterogeneity.

The P2D or SPMe models can be extended to solve the 1D problem at multiple locations in the

plane of the current collectors.18 Alternatively, these equations can be solved in more realistic

representations of the electrodes derived from x-ray tomography at a much higher computational

cost.20,21 These methods will not be of interest in this work. At the moderately high charging

and discharging currents that are of relevance to electric vehicles (and therefore used in most of

this study), heterogeneity due to concentration distributions in the through plane direction should

dominate the effects of any in plane heterogeneity that exists in the cells. Much of this work focuses

on estimating parameters from data as well. Since parameters in continuum models represent

effective properties, in many cases the effects of in plane heterogeneity can be lumped into effective

properties. Finally, it was determined that more complex representations of the electrodes were not

worth the computational cost required.
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1.2.2 Use cases for Physics-based Electrochemical Models

Fundamentally, physics-based models are useful tools to explore different hypotheses for the

governing physics of a materials or electrochemical system. Many have extended the original P2D

and SPM models to couple the electrochemical model to thermal16,22,23 and mechanical behav-

ior,17,23,24 both of which are known to affect single-cycle performance as well as battery lifetime.

Perhaps the most obvious application of a validated model is to optimize battery design, either

on the material or cell level. Several studies, including Chapter 2 in this dissertation, have explored

optimizing porosity, thickness, and loading of an electrode to maximize a performance metric like

energy or power density14,25–33 Others have explored optimizing advanced electrode architectures

like aligned channels or graded porosity electrodes.34,35

Battery models are also useful in control and management. While most onboard control appli-

cations use equivalent circuit models as simplified representations of batteries, there has been in-

creasing interest in management strategies that incorporate physics-based electrochemical models

as "digital twins".36–39 For instance, many have used electrochemical models to optimize charging

times to achieve extreme fast charge in Li-ion batteries.38,40,41 Insights from physics-based models

can be used to predict the onset of Li plating and thus avoid this phenomena, which is known to

be detrimental to the lifetime of the battery. In less applied but more fundamental studies where

experimental resources may be limited, these models can similarly be used to design experiments

for the most efficient use of resources.42,43

Finally, many have explored simulating degradation phenomena in batteries.44–49 Physics-

based degradation models range from implementations of single degradation mechanisms assumed

to be dominant under a specific set of conditions to highly coupled implementations that attempt

to incorporate feedback loops between mechanisms. Mechanisms are added to P2D or SPM type

models, sometimes coupled with thermal and/or mechanical descriptions as well. These models

can explore how stress factors like time, temperature, current, and voltage affect the degradation

trajectory of a cell. The largest challenge in the use of degradation models that explicitly de-

fine mechanisms is parameterizing the rates of the different mechanisms and properly defining the
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coupling between them.

1.2.3 Parameterizing Physics-based Electrochemical Models

Parameterization of physics-based models can be challenging. Geometric parameters like

thicknesses are typically easy to measure, and some chemical properties like compositions and

densities are known beforehand. The remaining parameters, some of which may be modeled as

dependent on the electrode state of charge, must be measured or estimated.

For some properties there is consensus in the community on the measurement technique. For

example, the electrode open-circuit potentials as functions of state of charge are typically mea-

sured with a very slow charge or discharge, or via a galvanostatic intermittent titration technique

(GITT).50 On the other hand, for some parameters, there are a variety of experimental procedures

in the literature. For instance, several procedures have been explored to estimate the electrode

tortuosity (described in further detail in Chapter 3). Even if there is agreement in the community

on an experimental measurement procedure, the parameters extracted from independent experi-

ments are not necessarily predictive of electrochemical performance. This could indicate either the

independently measured parameter is wrong, or that the model structure itself is incorrect.

In this dissertation, an alternative perspective on parameterization of physics-based electro-

chemical models is adopted. For parameters that are difficult to measure independently, are not

predictive when measured independently, or are not identifiable, we opt to fit the parameters di-

rectly to electrochemical data. Models fit to electrochemical data are validated on independent

measurements, and tend to be more reliably predictive. Throughout the dissertation, special atten-

tion is given to quantifying uncertainty in parameter estimates as well. Uncertainties in parameters

allow for model parameterization while acknowledging the model may be inherently imperfect and

can be used to predict a range of outcomes instead of a single prediction. Examples are provided

of the interpretation of these parameter estimates and how they can be used to better characterize

electrodes to optimize performance and understand degradation phenomena.
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Chapter 2

Design Principles to Govern Electrode

Fabrication for the Lithium Trivanadate

Cathode*

*This chapter has been published: Karthik S. Mayilvahanan, Nicholas W. Brady, Alison H. McCarthy, Lei Wang,
Kenneth J. Takeuchi, Amy C. Marschilok, Esther S. Takeuchi, Alan C. West, “Design Principles to Govern Electrode
Fabrication for the Lithium Trivanadate Cathode,” Journal of the Electrochemical Society., vol. 167, no. 10, p. 100503,
May. 2020.
The thesis writer’s contribution was physics-based model analysis, based off of contributions from Nicholas Brady,
and writing. The electrochemical observations were provided by Alison McCarthy from the Marschilok-Takeuchi
Research Group at Stony Brook University.
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2.1 Introduction

Lithium ion batteries (LIBs) have generated great interest as energy storage solutions for high

power density and high energy density applications, such as portable electronics and electric ve-

hicles.9 Vanadium based materials are appealing active materials for a cathode in a lithium based

battery due to the ability for multiple electron transfers within a desirable voltage range.51 Lithium

trivanadate (𝐿𝑖𝑥𝑉3𝑂8) garners interest as a candidate for a mid-voltage cathode in lithium ion

batteries because of its high theoretical capacity (362 mAh/g), its good rate capability, and the

abundance of its raw materials.52–54

The synthesized 𝐿𝑖1.1𝑉3𝑂8 is composed of layers of 𝑉3𝑂8 sheets separated by Li ions in the

interlayer positions.55 The cathode begins in this layered 𝛼-phase (𝐿𝑖1.1𝑉3𝑂8) and is lithiated up to

𝐿𝑖2.5𝑉3𝑂8, at which point the 𝛼-phase is saturated and phase change occurs to form the rock-salt

like 𝛽-phase (𝐿𝑖4𝑉3𝑂8).52,56 This phase change corresponds to the extended plateau at 2.5 V. At

lower potentials, at the end of discharge, the 𝛽-phase can be lithiated up to 𝐿𝑖5𝑉3𝑂8, at which point

the potential drops off to the cutoff voltage.57,58

Since the structural stability of 𝐿𝑖1.1𝑉3𝑂8 plays an important role in the resulting electrochem-

istry, the understanding of the structural evolution and reaction mechanisms has been a goal of

many prior reports on this topic.55,58,59 Controlling the synthesis of 𝐿𝑖1.1𝑉3𝑂8 has proved promis-

ing in improving electrochemical performance of an electrode. Specifically, sol-gel-based syn-

theses have delivered higher capacities at different annealing temperatures than those achieved

by analogue materials derived from hydrothermal synthesis.55,60,61 With respect to the annealing

temperatures, although higher initial capacities were delivered by the materials annealed at lower

temperatures (300 °C), more stable capacities were maintained over extended cycling using mate-

rials annealed at higher temperature (500 °C).59,62 To probe the phase changes and reaction mech-

anisms of 𝐿𝑖1.1𝑉3𝑂8 as a cathode material, many different techniques have been implemented.

Recently, in situ angle dispersive X-ray diffraction (ADXRD) was able to discern differences in

𝛽-phase formation between different synthesis techniques.58 X-ray and neutron refinement have
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been performed on chemically lithiated samples to determine the Li-rich 𝛼-phase along with the

defected rock salt 𝛽-phase at 𝐿𝑖2.7𝑉3𝑂8 and 𝐿𝑖4.8𝑉3𝑂8, respectively.63 In situ XRD coupled with

DFT calculations have also been used to further understand the structural evolution of the ma-

terial throughout (dis)charge processes.55 Synchrotron based energy dispersive X-ray diffraction

(EDXRD) was used to investigate the spatial phase distribution of the (de)lithiation in situ and

operando.62 To gain greater insights into the phase evolution of 𝐿𝑖1.1𝑉3𝑂8, continuum modeling

of the 𝐿𝑖1.1𝑉3𝑂8 cathode has been utilized in this study, based on experimental data from different

electrode fabrication techniques.

A coupled electrode-scale and crystal-scale continuum model for the trivanadate cathode has

been reported.64 The model includes a single-phase insertion and phase change, assuming domi-

nant transport in the [001] direction based on the crystal dimensions.16 This model shows good

agreement for the first discharge of a trivanadate cathode down to 2.4 V, but cannot simulate the

physics at lower voltages because lithiation of the 𝛽-phase is neglected. The contribution of lithia-

tion of the 𝛽-phase is not negligible, especially at slower specific currents.8 In addition, comparison

of the voltage profiles over the course of cycling show that lithiation of the 𝛽-phase appears to be-

come increasingly important over the course of cycling.9 Here, the previously published model

has been extended to include insertion of lithium into the second phase, enabling electrochemical

behavior of the cathode for the full depth of discharge to be simulated.

The extended model is used in conjunction with published operando Energy-Dispersive X-ray

Diffraction (EDXRD) measurements and electrochemical measurements to understand electrode-

scale transport resistances in a thick electrode.42 The operando EDXRD measurements collect

diffraction patterns in 20 𝜇m increments along the length of the cathode as the cell is (dis)charged.

By tracking peak locations at different depths of discharge, the lithiation of the cathode has been

confirmed to initiate closer to the Li anode and then propagate through the electrode, while the

delithiation appears to be a homogeneous phase transition throughout the cathode.42,62 Simulated

profiles for the volume fraction of the 𝛽-phase are validated by comparing the simulated and ex-

perimental propagation of the phase change front across the length of the electrode during its full
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depth of discharge.

Building on the increasingly thorough understanding of the multi-scale physics of the lithium

trivanadate cathode, there is an interest in developing fabrication methods to further increase per-

formance. The electrode is optimized for cell volumetric energy (𝑊ℎ 𝐿−1) and cell areal energy

density (Wh m-2), with the intention that results can guide electrode fabrication of lithium trivana-

date cathodes. While the cell volumetric energy density is important for space-limited applications

like portable electronics and electric vehicles,6,10 the areal energy density could be more relevant

for cost-driven applications where balance of cell components like current collectors, separators,

and casings make up a significant portion of the cost,65,66 and is therefore considered alongside

the volumetric energy density. Newman and collaborators have demonstrated the utility of math-

ematical models to optimize specific power and specific energy by tuning electrode thicknesses

and porosities.14,25–27 While these studies involved changing one design parameter at a time and

assessing the impact on performance, Subramanian et. al. performed simultaneous optimization

of anode and cathode thicknesses and porosities to improve energy density.29 Subsequent model-

based studies have optimized electrode thickness and porosity for a range of cathodes, including

LiMn2O4,14 LiNiMnCoO2,30 LiNiCoAlO2,67 and LiFePO4.27,28 Yet others have considered opti-

mal distributions of porosity in thick electrodes.34

In all of the aforementioned optimization studies, the focus is on optimizing design parameters

for ionic transport, and sufficient electronic conductivity is assumed. Here, in addition to extend-

ing the published model to account for lithiation of the 𝛽-phase, a functional dependence of the

electronic conductivity on the volume fraction of conductive additive in the electrode is modeled.

Previously published models that have included a more detailed dependence of electronic conduc-

tivity include potential dependent conductivity for a semiconducting polymeric binder used with

LiFePO4,68 and conductivity that accounts for spherical particle to particle interactions between

LiCoO2 and carbon black.69 In this study, the electronic conductivity of electrodes with multi-

walled nanotubes (MWNTs) as conductive additives is modeled based on percolation theory, and

a three-parameter optimization is performed, considering porosity and thickness of the cathode, as
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well as the volume fraction of the conductive additive. This analysis leverages porous electrode

theory, considering both ionic and electronic transport, with the goal of establishing a quantitative

understanding of the tradeoffs between the two in the context of the lithium trivanadate cathode.

Efforts are also made to describe the sensitivity of performance to the three design parameters.

Finally, because formation of the 𝛽-phase has been shown to contribute to capacity fade,58,70 an

optimization is conducted with the constraint of avoiding phase transition in the electrode.

2.2 Experimental

Lithium Vanadate (𝐿𝑖𝑉3𝑂8) was synthesized through a previously reported sol-gel approach.9

Briefly, V2O5 and LiOH·H2O in a stoichiometric ratio of Li:V = 1.1:3 were stirred under nitrogen

atmosphere in aqueous solution at 50°C for 24 h. The resultant material was dried and annealed at

500°C to achieve the final product. To prepare the pellet electrodes for EDXRD measurements, the

LiV3O8 material was mixed with carbon and graphite in a ratio of 90:5:5. The mixture was then

pressed into a pellet with a thickness of 500-600𝜇m. The 3D porous electrodes for galvanostatic

rate capability test were comprised of carbon nanotubes (CNTs) and LiV3O8, in a mass ratio

of 3:7. The resulting porous electrodes had thicknesses ranging from 250 to 500 𝜇m, with a

corresponding LVO loading mass of 5 to 16 mg/cm2. Thicknesses were additionally reduced for

certain electrodes by pressing at 6000 psi. In an argon-filled glove box, coin type cells were

constructed with the prepared electrodes as the cathode, Li metal as the anode, and polypropylene

separator. For both electrode configurations 1 M LiPF6 in ethylene carbonate/ dimethyl carbonate

(at a 3:7 volume ratio) was used as the electrolyte. The pellet electrode cells were discharged

at a current rate of C/18 on a Maccor Cycler while performing operando EDXRD measurements

conducted at the Advanced Photon Light Source at Argon National Laboratory on Beamline 6-

BM-B. This discharge rate was chosen to minimize evolution of the system during an EDXRD

scan. Galvanostatic cycling at various rates were tested on a Maccor Cycler for the 3-dimensional

porous electrode cells.
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2.3 Methods

Models are fit to experiments as outlined by the parameter estimation procedure published by

Brady et. al.71 Different combinations of the unknown parameters are sampled from a uniform

multivariate distribution, where the range of the distribution for each parameter is chosen to be

sufficiently wide to encapsulate physically reasonable values of the parameters. The goodness of

fit of each simulation is quantified by a residual sum of squares between the simulation and the

experiment.

Since the physical model can simulate the results of electrochemical measurements as well as

the spatial variation at different length scales, the model can be fit to both sets of data. This is

done by combining the normalized error from fitting simulations to electrochemical measurements

𝑒𝑉𝑜𝑙𝑡𝑎𝑔𝑒 with the normalized error from fitting to EDXRD measurements 𝑒𝐸𝐷𝑋𝑅𝐷 to form a new

objective function (Equation 2.1) and including an additional fitting parameter 𝜆 that weights the

relative importance of the two measurements.

𝑒𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑒𝑉𝑜𝑙𝑡𝑎𝑔𝑒 + (1 − 𝜆)𝑒𝐸𝐷𝑋𝑅𝐷 (2.1)

For these two sets of data, 𝜆 was chosen to range between 0 and 1, where the former corre-

sponds to effectively fitting to only the electrochemical measurements and the latter corresponds

to effectively fitting to only the EDXRD measurements.

2.4 Theory

2.4.1 Lithiation of 𝛽-phase in lithium trivanadate

A crystal-scale model of a single-phase insertion and phase change, and a coupled electrode-

scale and crystal-scale model of a porous 𝐿𝑖𝑥𝑉3𝑂8 cathode have been published by Brady et.

al.42,64 The model developed here builds on the coupled multiscale model by including physics for

lithium insertion into the 𝛽-phase of 𝐿𝑖𝑥𝑉3𝑂8.

12



Insertion of lithium into the 𝛽-phase is given by the simple reaction

𝐿𝑖+ + 𝑒− + Γ𝛽 → 𝐿𝑖Γ𝛽 (2.2)

where Γ𝛽 is an unoccupied site for insertion of lithium in the 𝛽-phase. The reversible potential

for this reaction is given by

𝑈𝛽 = 𝑈𝑟𝑒 𝑓 ,𝛽 +
𝑅𝑇

𝐹
𝑙𝑛

[(
𝑐0
𝑐𝑏𝑢𝑙𝑘

) ( (1 − 𝑐𝛽)
𝑐𝛽

)]
(2.3)

𝑐𝛽 =
𝑐𝛽 − 𝑐𝛽0

𝑐𝛽,𝑚𝑎𝑥 − 𝑐𝛽,0
(2.4)

where 𝑐𝛽 is a dimensionless form of the concentration of lithium in the 𝛽-phase. The lithium ion

concentration in the bulk electrolyte is given by 𝑐𝑏𝑢𝑙𝑘 and 𝑐0 is the local lithium ion concentration

at different positions along the depth of the electrode.

The charge transfer kinetics are modeled using the Butler-Volmer equation:

𝑖𝑖𝑛,𝛽 = 𝜃𝛽𝑖0,𝛽

(
𝑒𝑥𝑝(𝛼𝑎

𝐹𝜂𝛽

𝑅𝑇
) − 𝑒𝑥𝑝(−𝛼𝑐

𝐹𝜂𝛽

𝑅𝑇
)
)

(2.5)

𝑖0,𝛽 = 𝐹𝑘𝑟𝑥𝑛,𝛽𝑐
𝛼𝑎
0 (𝑐𝛽 − 𝑐𝛽0)𝛼𝑐 (𝑐𝛽,𝑚𝑎𝑥 − 𝑐𝛽)𝛼𝑎 (2.6)

The charge transfer overpotential for this reaction 𝜂𝛽 is the difference between the potential in

the solid state and in solution, and the reversible potential:

𝜂𝛽 = Φ1 −Φ2 −𝑈𝛽 (2.7)

The governing equations for the crystal scale model are given by an overall lithium balance

on the crystal, a lithium balance on the 𝛽-phase, and the rate of 𝛽-phase formation, given in Table

2.1. At the crystal edge, the flux of lithium into each phase is set equal to the local current density
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from the charge transfer kinetics for each reaction. The three dependent variables, concentration of

lithium in the 𝛼-phase (𝑐𝛼), concentration of lithium in the 𝛽-phase (𝑐𝛽), and the volume fraction

of the 𝛽-phase (𝜃𝛽) are solved for simultaneously.

Table 2.1: Governing equations and boundary conditions for mathematical model of lithium
trivanadate crystal on the crystal scale.

Governing Equation Particle Center Particle Edge
Overall

Li Balance
𝜕 (𝑐𝛼𝜃𝛼 + 𝑐𝛽𝜃𝛽)

𝜕𝑡
= 𝜃𝛼𝐷𝛼∇2𝑐𝛼 + 𝜃𝛽𝐷𝛽∇2𝑐𝛽 ∇𝑐𝛼 = 0 −𝜃𝛼𝐷𝛼∇𝑐𝛼 = 𝜃𝛼

𝑖𝑖𝑛,𝛼

𝐹

Li balance
in 𝛽-phase

𝜕 (𝑐𝛽𝜃𝛽)
𝜕𝑡

= 𝜃𝛽𝐷𝛽∇2𝑐𝛽 + 𝑐𝛽0𝑅𝛽 ∇𝑐𝛽 = 0 −𝜃𝛽𝐷𝛽∇𝑐𝛽 = 𝜃𝛽
𝑖𝑖𝑛,𝛽

𝐹

Rate of 𝛽-phase
formation

𝑅𝛽 =
𝜕𝜃𝛽

𝜕𝑡
= 𝑘𝛽 (𝑐𝛼 − 𝑐𝛼,𝑠𝑎𝑡 )𝜃𝑚𝛽 (1 − 𝜃𝛽) 𝑝 Lithiation: m=0, p=1 Delithiation: m=1, p=0

2.4.2 Porous Electrode Model

The coupling between the electrode scale and the crystal scale is at the crystal edge boundary

condition. The local reaction current densities 𝑖𝑖𝑛,𝛼 and 𝑖𝑖𝑛,𝛽 are computed spatially across the

length of the electrode based on the varying concentration of lithium in the electrolyte (𝑐0), solid

state potential (Φ1), and solution potential (Φ2), the three dependent variables on the electrode

scale. The spatial variation on the electrode scale are due to the fact that the electrode is porous, so

there are transport limitations across its length. The governing equations and boundary conditions

for the electrode-scale equations (Table 2.2) are consistent with the previously reported model,

other than the inclusion of a second electrochemical reaction.

2.4.3 Ionic Transport

The effective diffusion coefficient 𝐷0,𝑒 𝑓 𝑓 is defined as

𝐷0,𝑒 𝑓 𝑓 =
𝜖𝐷0
𝜏

(2.8)

where 𝐷0 is the diffusion coefficient of lithium ions in the bulk electrolyte, 𝜖 is the porosity,
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Table 2.2: Governing equations and boundary conditions for electrode-scale model.

Governing Equations Separator Current Collector
Solid State
Current (𝑖1)

(1 − 𝜖)𝜎∇2Φ1 − 𝑎(𝑖𝑖𝑛,𝛼 + 𝑖𝑖𝑛,𝛽) = 0 𝑖1 = 0 𝑖1 = 𝑖𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝑉𝑐𝑐 = Φ1,𝑐𝑐

Electrolyte
Current (𝑖2)

∇ • (𝜅Φ2) + 𝜖𝐹 (𝑍+𝐷+ + 𝑧−𝐷−)∇2𝑐0 + 𝑎(𝑖𝑖𝑛,𝛼 + 𝑖𝑖𝑛,𝛽) = 0 𝑃ℎ𝑖2 = 0 𝑖2 = 0

Electrolyte
Concentration

(𝑐0)

𝜖
𝜕𝑐0
𝜕𝑡

=

𝐷0,𝑒 𝑓 𝑓∇2𝑐0 +
𝐹

𝑅𝑇
(𝑍+𝐷+ + 𝑧−𝐷−)𝑐0∇2Φ2 +

𝑎(𝑖𝑖𝑛,𝛼 + 𝑖𝑖𝑛,𝛽)
𝐹

𝑐0 = 𝑐𝑏𝑢𝑙𝑘 𝑁 = −𝐷0,𝑒 𝑓 𝑓∇𝑐0 = 0

and 𝜏 is the tortuosity. The Bruggeman relationship for spherical particles (equation 2.9) is used to

relate the tortuosity to the porosity.72

𝜏 = 𝜖−0.5 (2.9)

This relationship is known to underestimate tortuosity in porous electrodes, but is used as a

baseline in this study.73,74

2.4.4 Electronic Conductivity

The electronic conductivity of the electrode is modeled using percolation theory, depending on

the volume fraction of conductive additive.75 According to percolation theory, there is a significant

increase in electronic conductivity when a critical volume fraction of the conductive additive is

achieved, creating a connected conduction path through the electrode. This critical volume frac-

tion, 𝑣𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑖𝑜𝑛, has been reported over a wide range of values for different active materials and

conductive additives, and is shown to be highly dependent on the aspect ratio of the conductor, as

high aspect ratio additives can achieve a percolated network at lower volume fractions.75–79 For

this study 𝑣𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑖𝑜𝑛=0.05 is chosen.

Below this percolation threshold, the electronic conductivity is given by
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𝜎 = 𝜎𝐴𝑀

(
𝑣𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑣𝑐𝑜𝑛𝑑

𝑣𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑖𝑜𝑛

)−𝑠
(2.10)

where 𝜎𝐴𝑀 is the intrinsic electronic conductivity of the active material, lithium trivanadate,

and 𝑣𝑐𝑜𝑛𝑑 is the volume fraction of conductive additive. Previous reports have shown that 𝑠 is

approximately 1, so 𝑠 is chosen as unity here.80,81 Above the percolation threshold, the electronic

conductivity is given by:

𝜎 = 𝜎𝑐𝑜𝑛𝑑

(
𝑣𝑐𝑜𝑛𝑑 − 𝑣𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑖𝑜𝑛

1 − 𝑣𝑝𝑒𝑟𝑐𝑜𝑙𝑎𝑡𝑖𝑜𝑛

) 𝑡
(2.11)

where 𝜎𝑐𝑜𝑛𝑑 is the intrinsic electronic conductivity of the conductive additive, multiwalled

carbon nanotubes. The value of t has been reported between 1 and 3 for different systems.75,77

Here, t=1 is chosen for simplicity. Figure 2.9 shows how the electrode conductivity varies with the

volume fraction of MWNTs.

A summary of the selected model parameters, and a comparison to the parameters in the pre-

viously published model is given in Table 2.3.

2.5 Results

2.5.1 Extended First Cycle Model of the LixV3O8 Cathode

Three parameters needed to be estimated to complete the model development for the lithiation

of the 𝛽-phase: 𝑘𝑟𝑥𝑛,𝛽, associated with the charge transfer kinetics, 𝐷𝛽, the diffusion coefficient of

lithium in the 𝛽-phase, and𝑈𝑟𝑒 𝑓 ,𝛽, the reference potential for the electrochemical reaction.

The model was fit to electrochemical data for a 330 𝜇m electrode with a mass loading of 16

𝑚𝑔 𝑐𝑚−2. This electrode was highly porous (calculated porosity of 𝜖 = 0.74 based on electrode

preparation), and modeling confirmed that electrode-scale transport effects could be ignored. The

parameter estimates are shown in Table 2.4. The diffusion coefficient needed to obtain agreement

is consistent with a previous finding that the diffusion coefficient of lithium in the 𝛽-phase is three
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Table 2.3: Comparison of model parameters in previously developed model64 and current model
for porous LixV3O8 cathode.

Parameter Symbol Units Brady et. al.64 Current study
Electrode Scale

Electronic conductivity
in electrode

𝜎 𝑆 𝑐𝑚−1 1𝑥10−2 -

Electronic conductivity
of LVO

𝜎𝐴𝑀 𝑆 𝑐𝑚−1 - 1𝑥10−5

Electronic conductivity of
conductive additive (MWNT)

𝜎𝑐𝑜𝑛𝑑 𝑆 𝑐𝑚−1 - 1𝑥100

Crystal Scale
Crystal Size 𝐿𝑥 𝑛𝑚 60 60

Li diffusivity in 𝛼-phase 𝐷𝛼 𝑐𝑚2 𝑠−1 1𝑥10−13 1𝑥10−13

Rate constant for Li
insertion in 𝛼-phase

𝑘𝑟 𝑥𝑛,𝛼 𝑐𝑚5/2 𝑚𝑜𝑙−1/2 𝑠−1 3.0𝑥10−8 3.0𝑥10−8

Saturation concentration in
𝛼-phase for phase formation

𝑐𝛼,𝑠𝑎𝑡 𝑥 in 𝐿𝑖𝑥𝑉3𝑂8 2.5 2.5

Reaction rate constant
for phase change

𝑘𝛽 𝑐𝑚3 𝑚𝑜𝑙−1 𝑠−1 1.4𝑥10−1 1.4𝑥10−1

Li concentration in
𝛽-phase as formed

𝑐𝛽,0 𝑥 in 𝐿𝑖𝑥𝑉3𝑂8 4.0 4.0

Li diffusivity in 𝛽-phase 𝐷𝛽 𝑐𝑚2 𝑠−1 - 7.5𝑥10−16

Rate constant for Li
insertion in 𝛽-phase

𝑘𝑟 𝑥𝑛,𝛽 𝑐𝑚5/2 𝑚𝑜𝑙−1/2 𝑠−1 - 2.5𝑥10−8
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orders of magnitude lower than the diffusion coefficient of lithium in the 𝛼-phase.8 Compared

to the previously published model by Brady et. al., the model developed here shows improved

agreement at the end of discharge, where lithiation of the 𝛽-phase is important.

Table 2.4: Parameter Estimates for Lithium insertion into 𝛽-phase.
Model Parameter Value 95% Confidence Interval
𝑈𝑟𝑒 𝑓 ,𝛽 (𝑉) 2.36 [2.34,2.38]

𝑘𝑟 𝑥𝑛,𝛽 (𝑐𝑚5/2 𝑚𝑜𝑙−1/2 𝑠−1) 2.5𝑥10−8 [1.4,4.3] 𝑥10−8

𝐷𝛽 (𝑐𝑚2 𝑠−1) 7.5𝑥10−16 [6.5, 8.6] 𝑥10−16

The fitted model shows good agreement with electrochemical measurements for a 741 𝜇m, 10

𝑚𝑔 𝑐𝑚−2 electrode discharged at three different current rates (1C = 362 𝑚𝐴 𝑔−1) (Figure 2.1). At

the higher current rates, insertion of lithium into the 𝛼-phase outcompetes phase change, causing

the potential to drop rapidly before a significant fraction of the crystal has been converted to the

𝛽-phase. Because less of the crystal undergoes phase change, lithiation of the 𝛽-phase is not as

significant at high rates. Simulations corresponding to the electrodes shown in Figure 1 reveal that

at C/10, the average value of the dimensionless concentration 𝑐𝛽 is 0.31 at the end of discharge,

and at 1C, this number falls to 𝑐𝛽 = 0.02.

Figure 2.1: Agreement between experiments (dashed lines) and simulations (solid lines) for dis-
charge of 3-dimensional porous electrodes at three different current rates.
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Figure 2.2: (a) Electrochemical measurements for C/18 discharge of 561 𝜇m thick cathode. Ex-
perimental potential measurements shown are shown in black. Simulated electrochemical behavior
of the previously published model ignoring lithiation of the 𝛽-phase is shown in in blue, and the
simulated behavior accounting for lithiation of the 𝛽-phase is shown in in green. Points corre-
spond to depths of discharge at which EDXRD measurements were taken. (b) Points correspond
to the measured position of the phase change front, associated by color with the points in (a). The
simulated movement of the front throughout the depth of discharge is shown for the previously
published model and the extended model.
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2.5.2 Operando EDXRD Measurements

Figure 2.2a compares agreement of both the previously published model and the extended

model with an experiment where a thick (561 𝜇m) pellet electrode was discharged at 20.17𝑚𝐴 𝑔−1,

corresponding to a current rate of C/18. In the previous study, the effective diffusion coefficient

for transport of lithium ions through the electrolyte 𝐷𝑒 𝑓 𝑓 ,0 was estimated to be 5.5×10-7 𝑐𝑚2 𝑠−1.

To achieve agreement with the electrochemical and EDXRD measurements using the two-phase

insertion model, the effective diffusion coefficient was refit. Fitting to only the electrochemical

measurements (𝜆 = 0, see Equation 2.1) 𝐷𝑒 𝑓 𝑓 ,0 was determined to be 2.6 ×10-7 𝑐𝑚2 𝑠−1. Fitting

to only the EDXRD measurements (𝜆 = 1), 𝐷𝑒 𝑓 𝑓 ,0 was determined to be 2.7 ×10-7 𝑐𝑚2 𝑠−1.

Therefore, similar diffusivities were determined, bolstering the claim that the model captures the

physics on the electrode scale as well as the crystal scale.

The circles overlaid on the experimental discharge profile in Figure 2.2a indicate the depths

of discharge at which EDXRD measurements were taken. The locations where the phase change

front was detected by the EDXRD at these depths of discharge are shown by the points in Figure

2.2b, where the vertical error bars are 20 𝜇m. A comparison of the movement of the phase change

front across the length of the electrode as measured and as simulated is presented in Figure 2.2b.

A minimum 𝛽-phase volume fraction of 5% is assumed to be the limit of detection,15 and this

value was used to determine the phase change front from the simulations. The extended model

overpredicts the depth of discharge at which the onset of phase formation occurs, but shows good

agreement with the phase change front measured with EDXRD.

In addition to comparing the movement of the front, the model can provide insight into the

spatial variation of the volume fraction of the 𝛽-phase during discharge. Figure 2.10 shows this

volume fraction as a function of position at different depths of discharge, where phase change

occurs preferentially near the separator because lithiation of the 𝛼-phase is slow near the current

collector due to electrode-scale transport limitations. Throughout the duration of the experiment

the reaction front shows an extended region where the volume fraction of the 𝛽-phase changes

gradually.
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2.5.3 Optimization

Performance of various electrode architectures was quantified by volumetric energy density

𝐸𝑉 and the areal density 𝐸𝐴, given in equations 2.12 and 2.13. 𝐸𝐴 is calculated by integrating the

discharge profile V(t) over the total discharge time 𝑡𝑑𝑐ℎ𝑔 given an applied current density 𝑖𝑎𝑝𝑝𝑙𝑖𝑒𝑑 .

The time for discharge 𝑡𝑑𝑐ℎ𝑔 is the time to reach a cutoff voltage of 2.0 V. The volumetric energy

density 𝐸𝑉 is the areal density 𝐸𝐴 divided by the cell thickness, given by 𝐿𝑐𝑎𝑡ℎ𝑜𝑑𝑒 and the thickness

of the balance of the cell (i.e. anode, separator, current collectors) 𝐿𝐵𝑂𝐶 . The anode thickness is

calculated by matching the anode capacity𝑄𝑎 to the simulated cathode capacity𝑄𝑐, given the mass

loading 𝑚𝐿𝑉𝑂 (𝑚𝑔 𝑐𝑚−2) and assuming a graphite anode with a fixed porosity of 𝜖𝑎𝑛𝑜𝑑𝑒 = 0.35.22

The thicknesses of the separator and current collectors, along with other assumed constants, are

shown in Table V.

𝐸𝐴 =

∫ 𝑡𝑑𝑐ℎ𝑔

0
𝑉 (𝑡)𝑖𝑎𝑝𝑝𝑙𝑖𝑒𝑑𝑑𝑡 (2.12)

𝐿𝑎𝑛𝑜𝑑𝑒 =
𝑄𝑐𝑚𝐿𝑉𝑂

𝑄𝑎 (1 − 𝜖𝑎𝑛𝑜𝑑𝑒)𝜌𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒
(2.13)

𝐿𝐵𝑂𝐶 = 𝐿𝑎𝑛𝑜𝑑𝑒 + 𝐿𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟 + 𝐿𝑎𝑛𝑜𝑑𝑒𝑐𝑐 + 𝐿𝑐𝑎𝑡ℎ𝑜𝑑𝑒𝑐𝑐 (2.14)

𝐸𝑉 =
𝐸𝐴

𝐿𝑐𝑎𝑡ℎ𝑜𝑑𝑒 + 𝐿𝐵𝑂𝐶
(2.15)

𝐸𝐴 in equation 2.12 is calculated based on a voltage versus Li metal, and changes in the anode

potential as a function of time are not considered. Though this consideration will marginally

reduce the values of 𝐸𝐴 and 𝐸𝑉 reported, the optimization conducted in this study is on the cathode

fabrication, so the optimal thicknesses, porosities, and volume fractions of conductive additive will

remain the same.

The effective diffusivity for lithium ions in the electrolyte is determined based on the value fit-
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ted to the operando EDXRD experiment 𝐷𝐸𝐷𝑋𝑅𝐷
𝑒 𝑓 𝑓 ,0 , the porosity of the electrode in that experiment

𝜖𝐸𝐷𝑋𝑅𝐷 , and the porosity of the simulated electrode 𝜖 per equations 2.8 and 2.9.

𝐷0,𝑒 𝑓 𝑓 = 𝐷
𝐸𝐷𝑋𝑅𝐷
0,𝑒 𝑓 𝑓

(
𝜖

𝜖𝐸𝐷𝑋𝑅𝐷

)1.5
(2.16)

A comparison of electrode volumetric energy density (𝐸𝐴/𝐿𝑐𝑎𝑡ℎ𝑜𝑑𝑒) for two fabricated elec-

trodes with the maximum achievable 𝐸𝑉 is shown in Figure 2.3. There is room for improvement

in electrode energy density, up to an order of magnitude, by tuning the design parameters during

electrode fabrication.

Figure 2.3: Electrode energy density 𝐸𝑉 over a range of discharge rates from C/10 to 1C. Points
correspond to experimentally measured 𝐸𝑉 from rate capability tests for two electrodes. The corre-
sponding blue and red solid lines are the simulated 𝐸𝑉 for these two electrodes. The blue electrode
corresponds to 𝜖=0.74 and 𝑣𝑐𝑜𝑛𝑑=0.08, and the red electrode corresponds to 𝜖=0.90 and 𝑣𝑐𝑜𝑛𝑑=0.06.
In black, the maximum achievable electrode 𝐸𝑉 by optimizing electrode design at each individual
discharge rate is shown.

Figure 2.4 shows the maximum achievable cell 𝐸𝑉 (4a), as well as the values of the design

parameters required to achieve those maxima (b-d). An energy density of 556 𝑊ℎ 𝐿−1 can be

achieved at a C/10 discharge rate. At 1C, this maximum achievable 𝐸𝑉 falls to 300𝑊ℎ 𝐿−1. From
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low to high C-rate, the optimal electrode thickness decreases from 154 𝜇m to 85 𝜇m, while the

optimal porosity increases from 0.16 to 0.26, and the optimal volume fraction of the conductor

remains just above the percolation threshold at 5.5%. The net effect is a decrease in mass loading

with C-rate from 38 to 18 𝑚𝑔 𝑐𝑚−2 (Figure2.11).

Figure 2.4: The maximum achievable cell energy density 𝐸𝑉 over a range of discharge rates from
C/10 to 1C (a) and the porosity, volume fraction of conductor, and electrode thickness with which
an electrode should be fabricated to achieve that 𝐸𝑉 ( b-d). Shaded contours in (b-d) correspond
to the range of values of the design parameters that will give a certain percentage (see color scale
inset in a) of the maximum achievable 𝐸𝑉 at a given discharge rate.

Because the three design parameters chosen all affect electrode-scale transport, the optimal

design parameters result from minimizing losses due to poor lithium ion transport in the electrolyte,

ensuring that all the material through the length of the electrode is utilized. The reduction in

the energy density despite minimal transport losses indicate that the rate capability of the lithium
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Figure 2.5: The maximum achievable cell energy density𝐸𝐴over a range of discharge rates from
C/10 to 1C (a) and the porosity, volume fraction of conductor, and electrode thickness with which
an electrode should be fabricated to achieve that𝐸𝐴(b-d). Shaded contours in (b-d) correspond to
the range of values of the design parameters that will give a certain percentage (see color scale
inset in a) of the maximum achievable𝐸𝐴at a given discharge rate.
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trivanadate electrode is limited by diffusion of lithium in the crystal itself: at higher discharge rates,

active material within each crystal is underutilized. Figure 2.12 shows uniform utilization of the

electrode optimized for each discharge rate. Further investigation reveals that for crystals near the

separator, in the middle of the electrode, and near the cathode current collector, the concentration

profiles within the crystal are similar, but the average utilization of each crystal decreases with

discharge rate (Figure 2.13).

The maximum possible 𝐸𝐴 ranges from 493 Wh m-2 to 102 Wh m-2 for discharge rates be-

tween C/10 and 1C (Figure 2.5). The range of optimal porosities is higher, between 0.48 and 0.63,

and the optimal electrode length varies significantly as a function of C-rate, from 500 𝜇m at C/10

to 258 𝜇m at 1C. It should be noted that at C/10, the optimum is likely above 500 𝜇m, but 500

𝜇m was the maximum electrode thickness considered in this study. These optimal design param-

eters correspond to mass loadings in the range of 74 to 25 𝑚𝑔 𝑐𝑚−2. Since there is not a volume

penalty when optimizing for 𝐸𝐴, thicker electrodes with higher areal loading are preferred, com-

pared to optimization of 𝐸𝑉 . Again, volume fractions of conductors are always chosen above the

percolation threshold.

The sensitivity of 𝐸𝑉 and 𝐸𝐴 to the various design parameters are shown in the shaded contours

in Figures 4 and 5. For each design parameter, the contour line was chosen by finding the maximum

and minimum value of that design parameter to achieve a certain percentage of the maximum 𝐸𝑉

or 𝐸𝐴 when holding the other design parameters constant at their optimal values. The sensitivity

of 𝐸𝑉 to porosity is highly asymmetric (Figure 2.4b). For example, consider the C/3 discharge

rate in Figure 2.4b. An 𝐸𝑉 that is 50% of the maximum possible 𝐸𝑉 at C/10 can be obtained by

increasing the porosity for a 119 𝜇m thick electrode with 0.055 volume fraction of conductor from

0.26 to 0.74, equivalent to a decrease in mass loading of 18 𝑚𝑔 𝑐𝑚−2. However, to achieve that

same 𝐸𝑉 by decreasing the porosity and increasing the mass loading, the porosity need only be

reduced to 0.18, corresponding to an increase in mass loading of 3 𝑚𝑔 𝑐𝑚−2. This asymmetry in

sensitivity is due to the more rapid change in the effective diffusivity as porosity is increased in

the low porosity regime (Figure 2.6a,b). In this regime, the effect of reducing the active material
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loading by increasing the porosity is minimal compared to the gain in favorable ionic transport as

the effective diffusivity changes (𝐷0,𝑒 𝑓 𝑓 𝜖1.5). Above the optimum porosity, the improvement in

effective diffusivity is marginal, and the reduction energy density is driven by a decrease in active

material loading, which decreases linearly with porosity. These results indicate that the sensitivity

of the energy density to porosity is controlled by the tortuosity’s dependence on the porosity, or

the Bruggeman exponent. Without this dependence, the energy density would be symmetrically

sensitive to changes in porosity about the optimum.

Figure 2.6: Sensitivity of cell energy density to porosity (a,b), volume fraction of conductor (c,d),
and electrode length (e,f). Top row (a,c,e) show how the energy density varies as the design pa-
rameter is changed, holding the other two design parameters fixed. The variation in the effective
diffusivity of lithium ions and active material loading when porosity is changed is shown in (b)
for a 119 𝜇m thick electrode with 𝑣𝑐𝑜𝑛𝑑=0.055. The change in electronic conductivity and active
material loading when the volume fraction of conductor is varied is shown in (d) for a 119 𝜇m
thick electrode with 𝜖=0.26. Finally, the change in electrode utilization and active material loading
as electrode thickness is increased is shown in (f) for an electrode with 𝜖=0.26 and 𝑣𝑐𝑜𝑛𝑑=0.055.

The sensitivity of 𝐸𝐴 to porosity appears to be much more symmetric than in the case of

optimizing for 𝐸𝑉 . This can be explained by the fact that the optimal porosity is near 0.6, as

opposed to 0.2 for 𝐸𝑉 . In the higher porosity regime, 𝐷0,𝑒 𝑓 𝑓 is not as strong a function of porosity
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as it is in the lower porosity regime.

For a given electrode porosity and volume fraction of conductor, the electrode thickness scales

linearly with the mass loading of active material. As the thickness is increased, there is a gain in

volumetric energy density associated with the increase in mass loading (Figure 2.6e). However,

because the optimal electrode has a porosity of 0.26 for a C/3 discharge, the effective diffusivity

of lithium ions is limited, so the length over which the electrode is entirely utilized is also limited.

This is apparent in Figure 2.6f, where until 150 𝜇m, the entire electrode is utilized, but for elec-

trodes thicker than this, the electrode length is greater than the critical diffusion length, and the

electrode utilization falls off, causing the volumetric energy density to fall off as well.

The volume fraction of conductive additive is highly asymmetric in its effects on both 𝐸𝑉 and

𝐸𝐴. There is very little penalty to increasing the fraction of conductive additive above the perco-

lation threshold, since the conductivity is already at a value that is sufficient to avoid electronic

transport resistances ( 5 ×10-3 𝑆 𝑐𝑚−1, Figure 2.9). However, since the conductivity drops off so

rapidly below the percolation threshold, there is an extreme sensitivity to reducing the fraction of

conductor. The sensitivity analysis with respect to volume fraction of conductor for 𝐸𝑉 is presented

in Figure 2.6c and d for a discharge rate of C/3.

Figure 2.7 shows a comparison of the maximum achievable 𝐸𝑉 with a graphite anode with 𝜖

= 0.35 and a lithium metal anode. As expected, the optimal cathode design is independent of the

choice of anode (Figures 7b,c,d). By moving from a graphite anode to a lithium metal anode, the

increase in cell energy density can be up to 71% at C/10, to 55% at 1C. The anode thicknesses

corresponding to the optimize cathode are shown in Figure 2.7d. Because lithium metal has such

a high specific capacity (3860 mAh g-1) compared to graphite (372 mAh g-1), the thickness of

the lithium metal anode is not as strong a function of the cathode mass loading. However, the

graphite anode thickness varies more strongly with cathode mass loading, from 124 𝜇m to 260 𝜇m

between 1C and C/10. This change explains the difference in improvement of cell energy density

by switching out a graphite anode for a lithium metal anode at slower and faster discharge rates.

Since phase change has been shown to contribute to capacity fade in lithium trivanadate cath-
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Figure 2.7: The maximum achievable cell energy density 𝐸𝑉 over a range of discharge rates for
cells with a graphite anode (blue) and a lithium metal anode (yellow) (a) and the porosity, volume
fraction of conductor, and electrode thickness with which an electrode should be fabricated to
achieve that 𝐸𝑉 (b-d). Shaded regions correspond to the range of values of the design parameters
that will give 90% of the maximum achievable 𝐸𝑉 at a given discharge rate. The thicknesses of
both electrodes for each cell are shown in (d).
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Figure 2.8: The maximum achievable cell energy density 𝐸𝑉 over a range of discharge rates with
and without phase change (a) and the porosity, volume fraction of conductor, and electrode thick-
ness with which an electrode should be fabricated to achieve those 𝐸𝑉s (b,d). (c) gives to the cutoff
voltage used for the analysis at each discharge rate.
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odes,9,32 the effect of avoiding the phase change entirely on optimization of 𝐸𝑉 is explored. The

phase transition does not involve an electron transfer and occurs when the local lithium ion con-

centration has exceeded 𝐿𝑖2.5𝑉3𝑂8. At slower discharge rates, the phase change kinetics are fast

compared to the intercalation of lithium ions, and a voltage plateau is observed in the discharge

profile. At higher discharge rates, the rate of intercalation of lithium ions becomes faster than the

rate of conversion, and charge transfer losses are amplified. As a result, phase change begins to

occur at lower voltages for faster discharge rates for a given electrode.

Figure 2.8 gives the maximum achievable values of 𝐸𝑉 with and without phase change as a

function of discharge rate. Since volume fraction of conductor was shown not to make a difference

in the previous analyses, 𝑣𝑐𝑜𝑛𝑑 = 0.06 was chosen. The optimal porosity and electrode length when

discharging to avoid the phase transition (Figures 8b, 8d) do not deviate much from the base case

of the full discharge, and fall on top of the base case optimums at high discharge rates. The voltage

at which to cut off the discharge for these optimal electrodes to prevent 𝛽-phase formation is shown

in Figure 2.8c. At slower discharge rates, a significant portion of the energy density is sacrificed

when avoiding the phase change (50% reduction in 𝐸𝑉 at C/10). However, the energy density

opportunity cost for avoiding phase change to extend cycle life is smaller at higher C-rates. At 1C,

a 36% reduction in 𝐸𝑉 results from avoiding phase change. Therefore, for high rate applications

where cycle life is important, cycling to a cutoff voltage that avoids the formation of the 𝛽-phase

may be highly advantageous.

2.6 Conclusion

A continuum model was developed to describe discharge of the lithium trivanadate cathode for

its full depth of discharge, and validated by both electrochemical data and EDXRD measurements.

The model is then used to guide electrode fabrication to optimize volumetric and areal energy den-

sity by tuning the porosity, length, and volume fraction of the conductive additive. Optimal values

of these design parameters are identified over a range of discharge rates between C/10 and 1C, and

the sensitivity of the volumetric and areal energy density to the three design parameters is quan-
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tified. The optimization analysis is applied to interrogate the differences in electrode fabrication

with the design constraint of avoiding the phase transition to extend cycle life. It was determined

that the energy density penalty with this constraint decreased at faster discharge rates, and that for a

given set of design parameters, the cutoff voltage to avoid phase change decreased with increasing

discharge rate.
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2.7 List of Symbols

Table 2.5: Crystal Scale Symbols
Symbol Definition
𝑐𝛼 Concentration f Li in 𝛼-phase (𝑚𝑜𝑙 𝑐𝑚3)
𝑐𝛼,𝑠𝑎𝑡 Saturation concentration of Li in the 𝛼-phase, above which phase change

occurs (𝑚𝑜𝑙 𝑐𝑚3)
𝑐𝛼,𝑚𝑎𝑥 Maximum concentration of Li in the 𝛼-phase (𝑚𝑜𝑙 𝑐𝑚3)
𝑐𝛽,0 Concentration of Li in the 𝛽-phase upon formation from the 𝛼-phase (𝑚𝑜𝑙

𝑐𝑚3)
𝑐𝛽 Concentration of Li in the 𝛽-phase (𝑚𝑜𝑙 𝑐𝑚3)
𝑐𝛽,𝑚𝑎𝑥 Maximum concentration of Li in the 𝛽 phase (𝑚𝑜𝑙 𝑐𝑚3)
𝐷𝛼 Diffusivity of Li in the 𝛼-phase (𝑚𝑜𝑙 𝑐𝑚3)
𝐷𝛽 Diffusivity of Li in the 𝛽-phase (𝑚𝑜𝑙 𝑐𝑚3)
𝜃𝛼 Volume fraction of 𝛼-phase
𝜃𝛽 Volume fraction of 𝛽-phase
𝑘𝛽 Reaction rate constant for phase change (𝑐𝑚3 mol−1 𝑠−1)
𝑅𝛽 Rate of 𝛽-phase formation (𝑠−1)
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Table 2.6: Reaction Thermodynamics and Charge Transfer Kinetics Symbols
Symbol Definition
𝑘𝑟𝑥𝑛,𝛼 Exchange current reaction rate constant for Li intercalation in the 𝛼-phase

(𝑐𝑚5/2 𝑚𝑜𝑙−1/2 𝑠−1)
𝑘𝑟𝑥𝑛,𝛽 Exchange current reaction rate constant for Li intercalation in the 𝛽-phase

(𝑐𝑚5/2 𝑚𝑜𝑙−1/2 𝑠−1)
𝑖𝑖𝑛,𝛼 Local current density for Li intercalation in 𝛼-phase (𝐴 𝑐𝑚−2)
𝑖𝑖𝑛,𝛽 Local current density for Li intercalation in 𝛽-phase (𝐴 𝑐𝑚−2)
𝑖0,𝛼 Exchange current density for Li intercalation in 𝛼-phase
𝑖0,𝛽 Exchange current density for Li intercalation in 𝛽-phase
𝑈𝛼 Reversible potential for Li intercalation in 𝛼-phase (𝑉)
𝑈𝛽 Reversible potential for Li intercalation in 𝛽-phase (𝑉)
𝛼𝑎 anodic charge transfer coefficient
𝛼𝑐 cathodic charge transfer coefficient
𝑅 Ideal gas constant (8.314 𝐽 𝑚𝑜𝑙−1 𝐾−1)
𝐹 Faraday’s constant (96,485 𝐶 𝑚𝑜𝑙−1)
𝑇 Temperature (𝐾)

Table 2.7: Electrode scale symbols
Symbol Definition
𝑎 Specific surface area (𝑐𝑚2 𝑐𝑚−3)
𝑐0 Li-ion concentration in the electrolyte (𝑚𝑜𝑙 𝑐𝑚−3)
𝑐𝑏𝑢𝑙𝑘 Li-ion concentration in the bulk electrolyte (𝑚𝑜𝑙 𝑐𝑚−3)
𝑖𝑎𝑝𝑝𝑙𝑖𝑒𝑑 Applied current density (𝐴 𝑐𝑚−2)
𝐷0 Diffusivity of Li-ions in the bulk electrolyte (𝑐𝑚2 𝑠−1)
𝐷0,𝑒 𝑓 𝑓 Effective Diffusivity of Li-ions in the electrolyte in the porous electrode

(𝑐𝑚2 𝑠−1)
𝜖 Void fraction of porous electrode (porosity)
𝜏 Tortuosity
𝜎 Electronic conductivity in solid (𝑆 𝑐𝑚−1)
𝜅 Iionic conductivity of bulk electrolyte (𝑆 𝑐𝑚−1)
𝑧𝑖 Species charge
𝑢𝑖 Species mobility (𝑐𝑚2 𝑠 𝑚𝑜𝑙 𝐽−1)
Φ1 Solid state potential (𝑉)
Φ2 Solution potential (𝑉)
c.c. current collector
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Table 2.8: Electrode and Cell Fabrication Symbols
Symbol Definition
𝑚𝐿𝑉𝑂 Active material mass loading (𝑔 𝑐𝑚−2)
𝜌𝐿𝑉𝑂 Density of lithium trivanadate (3.15 𝑔 𝑐𝑚−3)
𝐿𝑐𝑎𝑡ℎ𝑜𝑑𝑒 Cathode thickness (cm)
𝐿𝑎𝑛𝑜𝑑𝑒 Anode thickness (cm)
𝐿𝐵𝑂𝐶 Thickness of the balance of cell components: separator, current collectors

(cm)

Table 2.9: Cell Performance Optimization Symbols
Symbol Definition
𝑡𝑑𝑐ℎ𝑔 Time to complete discharge (ℎ)
𝐸𝐴 Areal energy density (𝑊ℎ 𝑚−2)
𝐸𝑉 Volumetric energy density (𝑊ℎ 𝐿−1)
𝑄𝑐 Cathode specific capacity (𝑚𝐴ℎ 𝑔−1)
𝑄𝑎 Anode specific capacity (𝑚𝐴ℎ 𝑔−1)
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2.8 Supplementary Information

Figure 2.9: Model for electronic conductivity varying with volume fraction of conductive additive.
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Figure 2.10: Spatial variation of the volume fraction of the 𝛽-phase at the depths of discharge
(color bar) at which EDXRD measurements were taken.

Figure 2.11: Volume fraction distribution (a) and mass loading (b) for electrodes that maximize
cell energy density at discharge rates from C/10 to 1C. Orange corresponds to active material
(lithium trivanadate), grey corresponds to conductive additive (multiwalled carbon nanotubes) and
the hashed bars in (a) correspond to pore volume.
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Figure 2.12: Utilization of the crystals along the length of the electrode at the end of discharge
optimized for cell energy density at each discharge rate.

Figure 2.13: Concentration profiles of lithium from center of crystal (left) to crystal edge (right) at
the end of discharge for crystals near the separator (𝑥 = 0), in the center of the electrode (𝑥 = 0.5),
and near the cathode current collector (𝑥 = 1), for six discharge rates from C/10 to 1C (a-f).
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Chapter 3

Quantifying Uncertainty in Tortuosity

Estimates for Porous Electrodes*

*This chapter has been published: Karthik S. Mayilvahanan, Zeyu Hui, Kedi Hu, Jason Kuang, Alison H. Mc-
Carthy, John Bernard, Lei Wang, Kenneth J. Takeuchi, Amy C. Marschilok, Esther S. Takeuchi, Alan C. West, “Quan-
tifying Uncertainty in Tortuosity Estimates for Porous Electrodes,” Journal of the Electrochemical Society., vol. 168,
no. 7, p. 070537, Jul. 2021.
The thesis writer’s contribution was physics-based model analysis and experimental design, and writing. The electro-
chemical observations for LVO were provided by Jason Kuang and Alison McCarthy from the Marschilok-Takeuchi
Research Group at Stony Brook University. The electrochemical observations for NMC were provided by Kedi Hu,
Zeyu Hui, and John Bernard from the West Group at Columbia University.
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3.1 Introduction

Understanding and characterizing the limitations to high rate performance of lithium ion bat-

tery (LIB) electrodes is essential in enabling high loading electrodes for high energy density LIBs.

One major limitation to rate performance of high loading LIB electrodes is the transport of lithium

ions through the electrolyte phase. A characteristic property of electrodes that describes the ease

or difficulty of lithium-ion transport through the electrode and the associated ohmic losses is the

electrode tortuosity 𝜏. When quantified accurately and precisely the electrode tortuosity can pa-

rameterize physics-based models that can be used for performance prediction, diagnosis, and opti-

mization.14,82

There are several definitions of tortuosity in the literature, including microscopic definitions

and geometric definitions.83 In this work, we will address tortuosity from the macroscopic view of

a porous medium, as described by the MacMullin Number 𝑁𝑀 :84

𝜏

𝜖𝑒
=

𝐷𝑒,0

𝐷𝑒,𝑒 𝑓 𝑓

=
𝜅𝑒,0

𝜅𝑒,𝑒 𝑓 𝑓
= 𝑁𝑀 (3.1)

where 𝜖𝑒 is the electrode porosity (volume fraction of the electrolyte phase, denoted by subscript

𝑒) and 𝐷 and 𝜅 are electrolyte diffusivities and conductivities, with subscript 0 indicating a bulk

property and subscript 𝑒 𝑓 𝑓 indicating an effective property.

Several methods exist in the literature for quantifying tortuosity in porous electrodes. Tortuos-

ity can be calculated from reconstructed microstructure using X-ray computed tomography (XCT)

and focused-ion beam SEM (FIB-SEM).21,85–87 These techniques suffer from limited resolution, as

representative volumes are much smaller than the electrodes themselves. Observing the conductive

carbon and binder domains, which have been shown to impact tortuosity,88–90 also remains chal-

lenging. Some have worked around this limitation by numerically generating these inert domains

to assess their impact on tortuosity.91,92

Thorat et. al. published a polarization-interrupt method, where an electrode is sandwiched

between two separators in a lithium/lithium cell.93 Polarization of this cell induces a concentration
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gradient in the liquid phase, and the subsequent relaxation of this concentration gradient when

the polarization is interrupted produces a response in the measured solution potential, which can

be mapped to an effective diffusion coefficient and thus a tortuosity via Equation 3.1. A similar

method is used by Gasteiger and coworkers to quantify bulk transport properties in electrolytes.94,95

In terms of practical implementation for cathode materials, this technique can prove challenging

because it requires fabrication of a freestanding electrode that can be placed in the unique electrode

configuration.

The most widely adopted method for estimating tortuosity is the use of electrochemical impedance

spectroscopy (EIS) under blocking conditions.74 A nonreactive electrolyte is chosen to prevent

charge transfer (i.e., blocking), such that a transmission line model (TLM) originally proposed

by de Levie can be applied to interpret the impedance of the porous electrode.96 The TLM treats

porous electrodes as a set of one dimensional, homogeneous parallel pores. The electrode-electrolyte

interface is assumed to be capacitive (modeled with a capacitor), the solid phase is assumed to

have infinitely high electronic conductivity, and ion diffusion due to concentration gradients is ne-

glected.97 In an experiment that satisfies all these assumptions, the ionic resistance 𝑅𝑖𝑜𝑛 can be

simply calculated from the cell resistance 𝑅𝑐𝑒𝑙𝑙 and the high frequency intercept of the spectrum

𝑅𝐻𝐹𝑅 as

𝑅𝑖𝑜𝑛 = 3(𝑅𝑐𝑒𝑙𝑙 − 𝑅𝐻𝐹𝑅) (3.2)

The effective conductivity 𝜅𝑒,𝑒 𝑓 𝑓 can be calculated from 𝑅𝑖𝑜𝑛 and the geometry of the porous elec-

trode, and Equation 3.1 can be used to determine the tortuosity. This measurement, as with the

described approach in this study, is more descriptive than the polarization-interrupt measurement

because the latter addresses the shortest ionic pathway rather than the accessibility of the electro-

chemically active surface area, such as dead-end pores.98

Landesfeind et. al. published a comprehensive study of tortuosities in separators and elec-

trodes using the EIS-TLM method, modifying the de Levie model by generalizing the interfacial

impedance to a constant phase element (CPE).74 Malifarge et. al. relaxed the assumption of in-
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finitely high electronic conductivity in the solid phase.31 Wang et. al. included the impedance of

current collectors in the expression for the full cell impedance under blocking conditions.99

Experimentally observed deviations from the expected TLM response can complicate the sim-

ple extraction of an ionic resistance from the impedance spectra using Equation 3.2. Current

collector impedances can result in semicircles in the intermediate frequency range, necessitating

fitting of the entire spectra.99,100 Nguyen et. al. simulated impedance spectra of electrodes recon-

structed from tomographic data with varying pore morphologies and showed that deviations from

the expected TLM behavior in the high to intermediate frequency region could be explained by

considering pores on multiple length scales, as well as “dead-end” pores.98

Finally, tortuosity can be extracted from discharge curves using physics-based electrochemical

models based on the porous electrode theory developed by Newman.73,101 A recent study that es-

timated tortuosity using a coupled multiscale model based on Newman’s psuedo-2D (P2D) model

showed results consistent with impedance-based measurements and analysis of 3D reconstructed

electrodes.92 This approach has remained relatively unexplored in the literature, likely due to the

complexity and relative difficulty of implementation compared to the transmission line model.

In all the above studies, tortuosity is treated as a model parameter that is optimized to fit the

experimental observations. However, the uncertainty in the tortuosity estimate that should arise

from the fitting of a model to experimental data is rarely reported or discussed in detail. In most

cases where error bars in the tortuosity estimate are provided, the error bars represent the sample-

to-sample variability and not the uncertainty of an individual measurement.21,74 When using a

model to predict the performance, having a good understanding of the uncertainty in the model

parameters, such as tortuosity, is essential in understanding the range of possible outcomes.

In this study, we aim to introduce to the literature a more nuanced attempt to quantify uncer-

tainty in tortuosity estimates for porous electrodes. We describe a procedure to extract tortuosity

estimates from standard rate capability experiments using a P2D model. The procedure is validated

against synthetic experiments, and a dimensionless group for reducing uncertainty in tortuosity es-

timates is derived based on the results. The estimation procedure is applied to experimental data
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for 𝐿𝑖𝑥𝑉3𝑂8 (LVO) and 𝐿𝑖𝑥𝑁𝑖0.33𝑀𝑛0.33𝐶𝑜0.33𝑂2 (NMC) electrodes. We continue to discuss the

limitations of this procedure and motivate further sources of uncertainty to be explored. Finally,

we reexamine published impedance spectra, focusing on quantifying uncertainty in the estimates

using the transmission line model, and compare the results to our P2D-based estimation procedure.

3.2 Experimental

3.2.1 Lithium Vanadate

Li1.1V3O8 (LVO) was synthesized via a sol-gel approach as previously reported.55 Briefly,

𝑉2𝑂5 and 𝐿𝑖𝑂𝐻 were used as precursor materials in a stoichiometric ratio of Li:V=1.1:3. The

resulting solid was annealed at 500◦𝐶. 3D porous electrodes (3PEs) contained carbon nanotubes

(CNTs) and LVO (weight ratios 30:70). The 0.5 inch diameter electrodes were used in coin type

cells with Li metal anodes and polypropylene separators prepared in an argon-filled glove box with

1𝑀 𝐿𝑖𝑃𝐹6 in ethylene carbonate/dimethyl carbonate (volume ratio of 3:7) electrolyte. Rate capa-

bility experiments were conducted using current rates between C/10 and 2C (1C = 362 mAh/g).

Two consecutive cycles were performed at each rate. All cell specifications are listed in Table 3.1.

3.2.2 NMC

NMC Cathodes were cast on 16 𝜇𝑚 Al foil with doctor blades using a mixture of NMC111

(MSESupplies LLC), carbon black (Timcal), and PVDF (Arkema Kynar761) at a mass ratio of

90:5:5, dissolved in N-Methyl-2-Pyrrolidone (NMP) (Sigma-Aldrich). The as-casted electrode

was heated on a hot plate at 80◦𝐶 for 1 hour, then at 110◦𝐶 for 2 hours to evaporate the NMP

solvent.

CR2032 Coin cells were made inside an argon filled glove box. A commercial liquid elec-

trolyte, 1 M 𝐿𝑖𝑃𝐹6 in ethylene carbonate/diethyl carbonate (1:1, w/w) (Gotion Inc.) and 25 𝜇𝑚

separators (Celgard 2325) were used. 250 𝜇𝑚 lithium metal foils were used as the counter elec-

trodes. After assembly, three formation cycles at a C/10 rate were conducted prior to the rate
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capability experiments, which were performed using Landt and Neware battery testers. In the rate

capability experiment, discharge rates ranging from C/5 to 2C were used, with C/5 charge used

between each discharge (1C = 150 mAh/g). The slow charge was used to ensure that instability

due to lithium plating during charge would not impact the subsequent discharge. Two consecutive

cycles were performed at each rate. Cell specifications are listed in Table 3.1.

Table 3.1: Specifications for LVO and NMC cells used in this study.
Electrode Loading (𝑚𝐴ℎ 𝑐𝑚−2) Thickness (𝜇𝑚) Porosity

LVO-1 5.27 441 0.80
LVO-2 5.98 371 0.77
LVO-3 5.79 329 0.75
LVO-4 5.07 156 0.55
LVO-5 9.49 323 0.59
LVO-6 7.82 173 0.37
LVO-7 8.65 230 0.47
NMC-1 3.67 133 0.50
NMC-2 3.91 139 0.50
NMC-3 3.94 131 0.46
NMC-4 4.89 178 0.51
NMC-5 5.17 179 0.48

3.2.3 Bulk Electrolyte Diffusivity Measurements

The electrolyte bulk diffusivity 𝐷𝑒,0 is a model parameter of the P2D models used in this study,

and must be determined to estimate tortuosity (Equation 3.1). A procedure outlined by Gasteiger

and coworkers is followed to determine 𝐷𝑒,0.94,95. A pulse experiment was set up using a Swagelok

cell assembled in an argon-filled glove box. The cell consisted of layers of Celgard 2325 separators

sandwiched between two lithium foil electrodes. The separators were pre-soaked in electrolyte for

12 hours prior to cell assembly.

Two cells were constructed, and six pulse measurements were taken on each cell in a glove box

at 25 ◦𝐶. Each pulse experiment consisted of a 120 second galvanostatic pulse of either +1mA

or -1mA, after which the open circuit potential of the cell was recorded for one hour. For each

cell, three positive current pulses and three negative current pulses were applied in an alternating
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fashion to discourage the growth of lithium dendrites at either of the electrodes. The region of the

recovery used to determine 𝐷𝑒,0 is delineated by selecting the portion of the recovery where the

voltage is between 10 𝑚𝑉 and 1 𝑚𝑉 of the average voltage at the final minute of the recovery. The

slope of the natural log of this region and the distance between the lithium foil electrodes are used

to determine 𝐷0/𝜏. The tortuosity of Celgard 2325, reported as 2.2,102 is then used to determine

𝐷𝑒,0.

For the electrolyte used in the NMC cells, 1 M 𝐿𝑖𝑃𝐹6 in EC/DEC (1:1, w/w), the bulk diffu-

sivity was determined using to be 1.0 × 10−6 𝑐𝑚2 𝑠−1 using this procedure, consistent with results

in the literature for this electrolyte.103 A transference number of 0.3 was used.104–106 For the elec-

trolyte used in the LVO cells, 1 M 𝐿𝑖𝑃𝐹6 in EC/DMC (3:7 v/v), a transference number of 0.25 and

a bulk diffusivity of 2.8× 10−6 𝑐𝑚2 𝑠−1 were used for simulations, calculated from a bulk conduc-

tivity measurement and consistent with previous studies of this electrolyte system, including the

work by Gasteiger described above.95,107

3.3 Methods

Previously published multiscale mathematical models for LVO and NMC were used in this

work32,108. Both models follow the structure of the pseudo-2D (P2D) porous electrode paradigm

pioneered by Newman101. The LVO model couples electrode-scale ion transport to a crystal-

scale model that incorporates simultaneous lithiation of two phases as phase transition occurs32.

The NMC model couples electrode-scale ion transport to an agglomerate-scale model, which has

been shown to be in good agreement with experiments.108. A description of the electrode-scale

equations that are common to both models, and descriptions of the particle-scale equations that are

unique to each model are provided in Table 3.3, with the accompanying parameters in Table 3.3

and notation in Table 3.7.
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Symbol Value Units
NMC parameters
𝐷𝑒,0 1.0 × 10−6 𝑐𝑚2 𝑠−1

𝑡+ 0.3
𝜎 1.0 × 10−2 𝑆 𝑐𝑚−1

𝑅 5 𝜇𝑚

𝐷𝑎𝑔𝑔 12 × 10−10 𝑐𝑚2 𝑠−1

𝑘𝑟𝑥𝑛 1.0 × 10−7 𝑐𝑚5/2 𝑚𝑜𝑙−1/2

𝑠−1

LVO parameters
𝐷𝑒,0 2.8 × 10−6 𝑐𝑚2 𝑠−1

𝑡+ 0.25
𝜎 1.0 × 10−2 𝑆 𝑐𝑚−1

𝑅 60 𝑛𝑚

𝑘𝛼𝑟𝑥𝑛 3.0 × 10−8 𝑐𝑚5/2 𝑚𝑜𝑙−1/2

𝑠−1

𝑘
𝛽
𝑟𝑥𝑛 2.5 × 10−8 𝑐𝑚5/2 𝑚𝑜𝑙−1/2

𝑠−1

𝑘𝛽 1.4 × 10−2 𝑐𝑚3 𝑚𝑜𝑙−1 𝑠−1

𝐷𝛼 1.0 × 10−13 𝑐𝑚2 𝑠−1

𝐷𝛽 7.5 × 10−16 𝑐𝑚2 𝑠−1

Table 3.3: Model parameters corresponding to models in Table 3.3. Notation can be found in Table
3.7.

To estimate tortuosity using a given electrode discharged at a given rate, the discharge is simu-

lated using the exact electrode parameters used to prepare the electrode (electrode length, porosity,

volume fraction of conductive additive, volume fraction of binder, and active material loading).

Both models have been validated against experiments with low-loading electrodes in which per-

formance is dominated by particle-scale effects. This leads to descriptions of electrode kinetic as

well as diffusion coefficient through the smaller length scale, along with estimates of associated

parameters (primarily exchange current densities and diffusion coefficients). These parameters

were not re-estimated, but we explore the impact of their uncertainties on tortuosity estimates in

the discussion section. The tortuosity was fit to the experimental discharge capacity. Analysis was

also performed by fitting the entire voltage profile. Fits to the entire profile normally yielded the

same result, but were sometimes prone to overfitting, returning unreasonable estimates of tortu-

osity that were not predictive of other discharges for the same cell. More predictive results were
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obtained when fitting to the discharge capacity As mentioned in the experimental section, analysis

of discharge data and not charge data was used for estimation because we restricted the charge rate

to C/5 to avoid instabilities that may be caused by lithium plating.

To determine which electrodes and experiments provide confident estimates of tortuosity, syn-

thetic experiments were generated using the validated models. These synthetic experiments were

created by evaluating the model in the forward direction, i.e. inputting known tortuosities, out-

putting voltage curves. Using these synthetic datasets allows us to evaluate the efficacy of the

proposed procedure. The LVO model was used to generate synthetic discharge curves for elec-

trodes with thicknesses between 50 𝜇𝑚 and 500 𝜇𝑚, and porosities between 0.1 and 0.9. Active

material loading was allowed to vary freely, with a conductive additive volume fraction of 5%.

Discharge rates between 0.1C and 2C were explored.

In this work, we look to handle parameter estimation and uncertainty quantification from a

Bayesian perspective.109 According to Bayes theorem, the multivariate probability distribution of

a set of 𝑚 parameters 𝑋 = [𝑝1, 𝑝2, ...𝑝𝑚] from a model that is meant to describe data set 𝐷 is

𝑝𝑟𝑜𝑏(𝑋 | {𝐷}) = 𝑝𝑟𝑜𝑏({𝐷} | 𝑋)𝑝𝑟𝑜𝑏(𝑋)
𝑝𝑟𝑜𝑏({𝐷}) (3.3)

The left hand side of the equation 𝑝𝑟𝑜𝑏(𝑋 | {𝐷}) is referred to as the posterior distribution for

the parameters 𝑋 . On the right hand side, 𝑝𝑟𝑜𝑏({𝐷} | 𝑋) is called the likelihood, describing the

likelihood of observing the data 𝐷 given a parameter set 𝑋 . 𝑝𝑟𝑜𝑏(𝑋) represents the prior knowl-

edge of the distribution of the parameters 𝑋 (called the prior distribution). Finally, 𝑝𝑟𝑜𝑏({𝐷}) is

the evidence, and can be understood as a rescaling factor for the posterior distribution that does not

depend on 𝑋 .

For the P2D-based tortuosity estimation procedure Bayes theorem can be written as

𝑝𝑟𝑜𝑏(𝜏 | {𝑄𝑘 }) =
𝑝𝑟𝑜𝑏({𝑄𝑘 } | 𝜏)𝑝𝑟𝑜𝑏(𝜏)

𝑝𝑟𝑜𝑏({𝑄𝑘 })
(3.4)

where 𝑄𝑘 is a capacity measurement at a given rate for a single electrode, and {𝑄𝑘 } is a set of
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capacity measurements from a rate capability test for that electrode. A uniform prior distribution

for tortuosity 𝑝𝑟𝑜𝑏(𝜏) is assumed, between 1 and 10 (i.e. our prior knowledge is that tortuosities

between 1 and 10 are all equally likely). The likelihood of a tortuosity given an observed capacity

is assumed to be normally distributed, with a standard deviation in capacity 𝜎𝑄𝑘
,

𝑝𝑟𝑜𝑏(𝑄𝑘 | 𝜏) =
1

𝜎𝑄𝑘

√
2𝜋
𝑒𝑥𝑝

(
(𝑄𝑠𝑖𝑚 (𝜏) −𝑄𝑘 )2

−2𝜎2
𝑄𝑘

)
(3.5)

where 𝑄𝑠𝑖𝑚 (𝜏) is the model-predicted capacity for a given tortuosity.

For analysis of synthetic experiments, the experimental uncertainty that characterizes the stan-

dard deviation of the normal distribution used in the likelihood function is assumed to be 1.5% of

the experimental discharge capacity. An investigation of the dependence of the uncertainty in the

tortuosity estimate 𝜎𝜏 on the assumed experimental variance revealed that reducing the experimen-

tal variance by 1% could reduce 𝜎𝜏 by 0.04. While this analysis was performed on one electrode,

the takeaway for the reader is that the uncertainty in the tortuosity estimate can be reduced if the

experimental variance can be reduced (i.e. multiple discharges of the same electrode at the same

rate are more reproducible).

For analysis of experiment, the experimental uncertainty was evaluated based on the variance in

the observed capacity at each rate in the rate capability test, since each rate was done in duplicate.

The percent variance in capacity at each rate was averaged over each electrode presented in Table

3.1 for LVO and NMC, and are presented in Figure 3.1.

Tortuosities were estimated from individual discharges to demonstrate the model-guided de-

sign rule. However, when estimating tortuosities for a given electrode, results from all discharge

rates were used. To this end, each capacity measurement is assumed to be independent, and the

likelihood of a set of 𝑁 capacity measurements {𝑄𝑘 } is given by

𝑝𝑟𝑜𝑏({𝑄𝑘 } | 𝜏) =
𝑁∏
𝑘=1

𝑝𝑟𝑜𝑏(𝑄𝑘 | 𝜏) (3.6)

Though the assumption of consecutive capacity measurements in a rate capability test being inde-
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pendent is not entirely true, we justify this approximation with the use of slow charges between

consecutive discharges.

Figure 3.1: Percent variance in discharge capacity for LVO and NMC, calculated based on the
average percent variance in discharge capacity for the cells in Table 3.1.

When analyzing the experimental data, we found that the LVO model was not able to describe

the experiments well at rates above 1C. The root mean squared error in voltage over the course

of a discharge exceeded 50 mV, indicating that some other model parameters need to be tuned

to accurately describe the high rate data. Therefore, only experimental data generated at rates

below 1C are reported. Further discussion on impact of including other model parameters in the

estimation procedure is provided below.

3.4 Results and Discussion

3.4.1 Analysis of Synthetic Experiments

Three representative synthetic experiments are summarized in Table 3.4 and Figure 3.2. The

black dashed lines in Figure 3.2 represent the simulated discharge profile for each synthetic ex-

periment. The model was used to predict discharge for the same electrode (using the thickness,

porosity, and C-rate), but the tortuosity was allowed to vary between 1 and 10. The predicted

discharge profiles while varying the tortuosity are shown by the colored lines in Figure 3.2. Ex-
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amining each successive panel in Figure 3.2, it is apparent that the sensitivity of the model to

tortuosity varies greatly. In Figure 3.2a, there is no difference in the predicted discharge profile

whether 𝜏 = 1 or 𝜏 = 10. For the electrode in Figure 3.2b, the predicted discharge profile does not

vary for 𝜏 between 1 and 3, but for 𝜏 greater than 3 the predicted discharge profile starts to vary

significantly. For the electrode in Figure 3.2c, the model is highly sensitive to even small changes

in 𝜏.

Figure 3.2: Tortuosity estimation for three representative synthetic experiments. Specific parame-
ters describing each experiment are presented in Table 3.4. Dashed black lines represent simulated
behavior of electrodes at a given discharge rate, and colored lines represent predicted response of
those electrodes while varying the tortuosity in the model (color bar in 1a applies to all). Insets
show probability distribution of estimated tortuosity and the true tortuosity of the synthetic elec-
trode from the parameter estimation.

Table 3.4: Summary of parameters used to generate representative synthetic experiments shown in
Figure 3.2, along with tortuosity estimation results. Uncertainties for 𝜏𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 are one standard
deviation.

L (𝜇𝑚) 𝜖𝑒 C𝑟 (h−1) 𝜏𝑡𝑟𝑢𝑒 𝜏𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

Fig 1a 50 0.84 1 1.08 5.5 ± 2.9
Fig 1b 200 0.45 0.5 1.49 1.7 ± 0.5
Fig 1c 400 0.25 2 2.00 2.0 ± 0.1

These differences in model sensitivity can be leveraged to obtain distributions for 𝜏, shown in

the insets of Figure 3.2. When the model is insensitive to tortuosity, tortuosity cannot be estimated

with any degree of confidence. However, when the model is very sensitive to tortuosity, it can

be estimated with a high degree of confidence. For the electrode shown in Figure 3.2c, 𝜏 can be

estimated to within 0.1. The uncertainties (one standard deviation) are tabulated for each electrode
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in Table 3.4.

Figure 3.3: Uncertainty in estimated tortuosity 𝜎𝜏 versus mass loading for model-generated LVO
experiments as a function of mass loading (a) and dimensionless current (b).

To develop a rule for designing experiments to measure tortuosity with confidence, we consider

a range of LVO electrodes and their simulated discharge at various rates in Figure 3.3. As indicated

by the legend inset in Figure 3.3a, these sets of synthetic experiments contain electrodes with

different thicknesses (size) and porosities (color) whose discharge is simulated at different rates

(shape). The uncertainty in the estimate of tortuosity for the synthetic experiments are plotted

against the loading in Figure 3.3a. Some general trends are observed: higher loading electrodes

(thicker, less porous) give more confident tortuosity estimates, and there appear to be distinct

curves for each C-rate. These results demonstrate that when a higher ion transport impedance

exists on the electrode scale, more can be learned about the tortuosity.

To better summarize results, we turn to porous electrode theory, specifically to the governing
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equation that describes the mass balance for lithium ions in the electrolyte. A simplified form

assuming transport is dominated by diffusion rather than migration is presented.

𝜖𝑒
𝜕𝑐𝑒

𝜕𝑡
=
𝜖𝑒𝐷𝑒,0

𝜏

𝑑2𝑐𝑒

𝑑𝑥2 + 𝑎𝑖𝑛
𝐹

(3.7)

where 𝜖𝑒 is the porosity, 𝑐𝑒 is the salt concentration in the electrolyte, 𝐷𝑒,0 is the bulk salt diffusion

coefficient in the electrolyte, 𝑎 is the active surface area per unit volume, and 𝑖𝑛 is the local reaction

current density. The spatial average of the local current density must equal the applied current

density at the current collector 𝐼𝑎𝑝𝑝, which is related to the C-rate 𝐶𝑟 and the capacity loading 𝑄𝐴

(𝑚𝐴ℎ 𝑐𝑚−2) by

𝑎𝑖𝑛𝐿 = 𝐼𝑎𝑝𝑝 = 𝐶𝑟𝑄𝐴 (3.8)

The salt concentration, time, and length can be nondimensionalized as follows:

𝑐 =
𝑐𝑒

𝑐𝑒,𝑏𝑢𝑙𝑘
(3.9)

𝑡 = 𝑡𝐶𝑟 (3.10)

𝑥 =
𝑥

𝐿
(3.11)

where 𝑐𝑒,𝑏𝑢𝑙𝑘 is the bulk salt concentration in the electrolyte. Substituting equations 3.8-3.11 into

equation 3.7, and assuming a pseudo-steady state, we arrive at the result

𝑑2𝑐

𝑑𝑥2 =
𝐶𝑟𝑄𝐴𝐿𝜏

𝜖𝐷𝑒,0𝑐𝑒,𝑏𝑢𝑙𝑘𝐹
= 𝐼𝑎𝑝𝑝 (3.12)

We denote the dimensionless group here as 𝐼𝑎𝑝𝑝, a dimensionless applied current. This dimen-

sionless current follows a formulation similar to a diffusion-limited C-rate proposed by Heubner
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et. al.110.

To test the applicability of 𝐼𝑎𝑝𝑝 in predicting experiments that will give confident tortuosity

estimates from fitting to discharge curves, we replot the results in Figure 3.3a in Figure 3.3b. As

we do not know the value of the tortuosity 𝜏 beforehand, the Bruggeman relation (𝜏 = 𝜖−0.5
𝑒 ) is

used. All the results collapse onto a common curve, indicating that 𝐼𝑎𝑝𝑝 can be used to guide

design of experiments. Small deviations from the curve are likely due to transport impedances on

the smaller scales that may still be relevant at high rates.

Physically, 𝐼𝑎𝑝𝑝 has multiple relevant interpretations. One interpretation is the ratio of the

applied current at the current collector to the limiting current in the porous electrode, i.e. the

current at which the salt at the current collector is depleted.

𝐼𝑎𝑝𝑝 =
𝐼𝑎𝑝𝑝

𝐼𝑙𝑖𝑚
= 𝐶𝑟𝑄𝐴

(
𝜖𝑒𝐷𝑒,0𝑐𝑒,𝑏𝑢𝑙𝑘𝐹

𝜏𝐿

)−1
(3.13)

In this case, as the applied current approaches and exceeds the limiting current, more confident

estimates of tortuosity can be obtained. Another interpretation is a modification on a dimensionless

number proposed by Doyle et. al. 𝑆𝑒101, which compares the characteristic diffusion time to the

C-rate:

𝑆𝑒 = 𝐶𝑟

(
𝐿2𝜏

𝜖𝑒𝐷𝑒,0

)
(3.14)

By factoring out 𝑆𝑒 from 𝐼𝑎𝑝𝑝, an additional dimensionless group emerges, which describes the

capacity available in the active material relative to the lithium inventory in the electrolyte.

𝐼𝑎𝑝𝑝 = 𝑆𝑒

(
𝑄𝐴

𝑐𝑒,𝑏𝑢𝑙𝑘𝐿𝐹

)
(3.15)

While some analyses of rate performance of electrodes rely on the analysis similar to that presented

by Doyle et. al.111, this result emphasizes the importance of also considering the lithium inventory

in the electrolyte when considering ion transport impedances in porous electrodes110,112.

It is noted that though an assumption is made about the tortuosity to identify experiments that
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will give confident estimates of tortuosity, if the true tortuosity is higher (as is the case for most

active materials), the trend of experiments with high values of 𝐼𝑎𝑝𝑝 giving more confident estimates

will hold.

3.4.2 Analysis of Experiments

Figure 3.4: Uncertainty in estimated tortuosity 𝜎𝜏 versus mass loading for real LVO (a) and NMC
(b) experiments as a function of 𝐼𝑎𝑝𝑝., overlaid on results for model-generated analysis from Figure
3.3b.

When estimating tortuosity of the fabricated electrodes that underwent rate capability tests,

instead of assuming a constant experimental variance in capacity of 1.5% as was done in Figure

3.3, the experimentally derived experimental variance presented in Figure 3.1 was used. Each in-

dividual discharge rate was analyzed separately to evaluate the effectiveness of 𝐼𝑎𝑝𝑝 as a design
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rule (Figure 3.4). As expected, experiments that have a higher value of 𝐼𝑎𝑝𝑝 yield more confident

estimates in tortuosity. Some deviations from the expected trend from Figure 3.3b are observed

in the analysis experimental data. This can be attributed to increasing experimental variance with

discharge rate, which yields less confident estimates than expected at high rates for the same elec-

trode.

The above discussion has been restricted to reducing uncertainty in the tortuosity estimate. We

next examine the values of the tortuosity estimates themselves. When estimating the tortuosity for

an electrode, all the measured capacities from the discharge are used to form a set {𝑄𝑘 }, and the

posterior distribution for tortuosity is evaluated using Equations 3.4-3.6. This is because in some

cases the highest rate may not yield the lowest uncertainty (Figure 3.4) due to higher experimental

error at high rate, and the most probable value of the tortuosity estimate may shift as a function of

c-rate. The estimated tortuosity should describe the observed discharge capacity of an electrode at

all rates.

Tortuosity estimates for the set of LVO electrodes used in this study and plotted in Figure 3.5a.

To analyze the tortuosity dependence on porosity, a Bruggeman-type model is fit to the data, as is

done by Thorat et. al.93

𝜏 = 𝛾𝜖𝛼𝑒 (3.16)

In the literature, a relationship like the one above is often fit to measurements at different

porosities, and values for 𝛾 and 𝛼 are reported.31,74,88,93 However, most electrodes are fabricated

with porosities above 0.3, where this Bruggeman-type model is not distinguishable from a variety

of other correlations.113 To further establish this point, we estimated 𝛾 and 𝛼 in the Bruggeman-

type model given our tortuosity estimates for electrodes with different porosities. The posterior

distribution for 𝛾 and 𝛼 takes the form of a bivariate normal distribution, with a likelihood function

that assumes each tortuosity estimate 𝜏𝑘 follows a normal distribution N(𝜇𝜏𝑘 , 𝜎2
𝜏𝑘
). The values of
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𝜇𝜏𝑘 and 𝜎2
𝜏𝑘

are determined individually from the P2D estimation procedure described above.

𝑝𝑟𝑜𝑏(𝛾, 𝛼 | {𝜏𝑘 }) =
𝑝𝑟𝑜𝑏({𝜏𝑘 } | 𝛾, 𝛼)𝑝𝑟𝑜𝑏(𝛾, 𝛼)

𝑝𝑟𝑜𝑏({𝜏𝑘 })
(3.17)

𝑝𝑟𝑜𝑏({𝜏𝑘 } | 𝛾, 𝛼) = 1
𝜎𝜏𝑘

√
2𝜋
𝑒𝑥𝑝

(
(𝛾𝜖𝛼

𝑘
− 𝜇𝜏𝑘 )2

−2𝜎2
𝜏𝑘

)
(3.18)

The prior 𝑝𝑟𝑜𝑏(𝛾, 𝛼) is chosen to be uniform, in the ranges [1,10] and [0,-1] for 𝛾 and 𝛼 respec-

tively, and each measurement is independent, such that 𝑝𝑟𝑜𝑏({𝜏𝑘 } | 𝛾, 𝛼) is merely the product of

the likelihood for each measurement, similar to Equation 3.6.

The results are presented in Figure 3.5b. It appears that for LVO the Bruggeman relationship

underestimates tortuosity for LVO, as has been found for a variety of other materials.73,74,88,91–93

The solution for the posterior distribution (Equation 17) is presented in Figure 5b. Since it is a

bivariate normal distribution, each variable is shown on the x and y axis and the probabilities of

observing combinations of the two variables is shown using a contour map. Given the measure-

ments made for the electrodes in this study, the exponent 𝛼 cannot be known with much certainty

(relative to the chosen priors) compared to the prefactor 𝛾. Measurements would need to be made

at much lower porosities to pin this exponent down. Even if this is done, electrodes of simi-

lar porosities yield different tortuosities due to sample-to-sample variance, indicating that a large

number of electrodes would need to be prepared and measured to extract any meaningful tortuosity

porosity relationship. We emphasize that the focus of this study is to quantify and systematically

reduce the measurement uncertainty for a given electrode, and not to establish a tortuosity-porosity

relationship.

The tortuosity estimates for the NMC electrodes in this study are shown in Figure 3.6a, along-

side estimates for NMC electrodes in the literature for context. Measurements using the EIS-TLM

method are shown in yellow, measurements from XCT are shown in red, and measurements using

the P2D model-fitting approach are shown in cyan. Results analyzed in this paper are outlined

in black. Each of these studies used electrodes with different materials, recipes, and fabrication

processes, all of which will influence tortuosity. Details for each of the measurements shown in
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Figure 3.5: Tortuosity estimates for LVO electrodes at different porosities, compared to the
Bruggeman relation (a). Contour map of the bivariate distribution for the two parameters 𝛾 and 𝛼
in the Bruggemean-type model (b). Contours correspond to 10%, 30%, 50%, 70%, and 90% of the
peak of the joint distribution (red).

the plot are included in Table 3.5.

Electrodes prepared in this study for measurement all have porosities between 0.45 and 0.55.

Though less porous electrodes were not fabricated, we applied our tortuosity estimation procedure

to data from another study where rate capability results were published for a high loading (72

𝑚𝑔 𝑐𝑚−2) NMC111 electrode, and the result is included in Figure 6 as well.114 Possible reasons

for the difference between the results reported here and those reported in the literature include

the different electrode compositions,90 heterogeneity in cell fabrication,115 and sample to sample

variance. In addition, the accuracy of our estimates is subject to some assumptions made in the

model development, which are discussed further in the next section.

The results of the parameter estimation for the Bruggeman-type relationship for the NMC

tortuosity estimates are shown in 3.6b. In evaluating the joint posterior distribution for 𝛾 and 𝛼,

only estimates with an uncertainty reported were used. The results reveal a stronger covariance of

𝛼 with 𝛾, and given the variation in the different measurements, the prefactor 𝛾 can be known with

even less confidence compared to LVO. These attributes of the joint distribution are not properties

of the materials themselves, but rather artifacts of the data available.

Figures 3.5b and 3.6b indicate that the community should exercise caution in using Bruggeman-

type models for tortuosity, since these models are not very identifiable (that is, 𝛾 and 𝛼 cannot
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be identified with certainty). A more fundamental understanding of tortuosity’s dependence on

microstructural properties of an electrode may arise from studies that derive tortuosity from the

microstructure itself (i.e. XCT, FIB-SEM), and consider factors like particle anisotropy and elon-

gation effects.21 Methods like the one discussed here or the EIS-TLM method may require many

more experiments than are currently done in the literature to overcome the sample-to-sample vari-

ance problem and tease out such a fundamental understanding of tortuosity’s dependence on mi-

crostructure.

Figure 3.6: Tortuosity estimates for NMC electrodes in this study (bold outline) and studies in
the literature (a). Contour map of the bivariate distribution for the two parameters 𝛾 and 𝛼 in the
Bruggemean-type model (b). Contours correspond to 10%, 30%, 50%, 70%, and 90% of the peak
of the joint distribution (red).

3.4.3 Consideration of Other Model Uncertainties

The procedure described above for extracting tortuosities from experiments using a P2D model

relies on the existence of a validated physics-based model on the particle scale. Though only one

model parameter - the tortuosity - is being fitted, the uncertainties being reported assume other

model parameters are known exactly, which is of course not the case. Our previous studies quan-

tified the uncertainties associated with kinetic and transport related parameters (reaction rate con-

stants for lithium insertion, lithium diffusion in the active material) for particle-scale models.32,108
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Table 3.5: Specifications for various studies measuring tortuosity for NMC electrodes. Results of
the studies are shown in Figure 3.6.

Ref. Author Method Active Material Electrode Recipe Uncertainty
Source

[74] Landesfiend EIS-TLM NMC111 96:2:2 AM:PVDF:C65 Thickness Mea-
surement

[92] Usseglio-Viretta EIS-TLM NMC532 96:2:2 AM:PVDF:C65 Measurement
to measurement
variance

[92] Usseglio-Viretta XCT NMC532 90:5:5 AM:PVDF:C65 CBD distribution,
numerical error, 𝜖
error

[92] Usseglio-Viretta P2D fiting NMC532 90:5:5 AM:PVDF:C65 Model sensitivity
[99] Wang EIS-TLM NMC111 90:5:5 AM:PVDF:C65 not reported

This paper P2D fiting NMC111 90:5:5 AM:PVDF:C65 Model sensitivity
[114] Singh P2D fiting NMC111 90:3:3:4 AM:PVDF:C65: graphite Model sensitivity

In this section, we provide an example of an analysis that incorporates uncertainty in other model

parameters by considering the effects of charge transfer kinetics and particle-scale transport pa-

rameters on the reported tortuosity uncertainties. We proceed to discuss other model parameters

and assumptions that could impact both the precision and accuracy of estimates using the method

described here.

Let us consider the active surface area per unit volume for charge transfer reaction. In many

P2D models where the active material is assumed to be spherical in shape, the surface area per

volume is defined as

𝑎𝑡 =
3𝜖 𝐴𝑀
𝑅

(3.19)

where 𝑎𝑡 denotes the theoretical relationship, 𝜖 𝐴𝑀 is the volume fraction of active material, and 𝑅

is the particle radius. This relation, developed for non-overlapping spheres, overestimates the true

active surface area when spherical particles overlap.69,91. Conductive additives and binders further

reduce the active surface area.116,117 In P2D models, the active area per volume 𝑎 always appears

alongside an exchange current density (Table 3.3). Uncertainty in the active surface area available

for charge transfer can therefore can also be interpreted as uncertainty in exchange current density.

Ultimately, both represent uncertainty surrounding the charge transfer resistance.
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Figure 3.7: Analysis of a 2C discharge of electrode NMC-5. Tortuosity estimates with different
assumptions about the amount of active surface area available for charge transfer (a). Tortuosity
estimates for different assumptions about the value of 𝐷𝑎𝑔𝑔 (b).
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To understand sensitivity of the tortuosity estimate to the charge transfer resistance, the estima-

tion was repeated for different values of 𝑎/𝑎𝑡 , a normalized modification factor to the surface area

as determined by equation 3.19 (Figure 3.7a). As the surface area is reduced, the charge transfer

resistance increases and the average voltage during a 2C discharge changes, but the absolute ca-

pacity used to fit the tortuosity remains unchanged. Over one order of magnitude, the estimate is

not sensitive to the surface area, indicating that this uncertainty does not impact the uncertainty in

the tortuosity estimate.

A second source of uncertainty in the model is the particle-scale diffusivity. In the context of

NMC, this is the diffusivity of lithium ions through spherical NMC agglomerates. The notation

from Table 3.3, 𝐷𝑎𝑔𝑔

𝑒,0 , is translated to 𝐷𝑎𝑔𝑔 here for simplicity. Based on the results in our previous

study of NMC, the 𝐷𝑎𝑔𝑔 is known to within ±30%.108 The mean value 𝐷𝑎𝑔𝑔,𝜇 is 12 ×10−10 𝑐𝑚2𝑠−1.

Values from 8 to 16 ×10−10 𝑐𝑚2𝑠−1 are considered here, and the analysis is presented in Figure

3.7b. A covariance is observed between tortuosity and 𝐷𝑎𝑔𝑔. As 𝐷𝑎𝑔𝑔 increases, the model predicts

better utilization of the active material. As a result, a higher tortuosity must exist in the porous

electrode to explain the lower delivered capacity at the end of discharge.

Given this covariance, one would expect the uncertainty in tortuosity to increase if the as-

sumption of an exactly known value of 𝐷𝑎𝑔𝑔 is relaxed. Figures 3.8a and b compare the con-

ditional distribution for tortuosity prob(𝜏 | {𝑄𝑘 }, 𝐷𝑎𝑔𝑔,𝜇), which assumes exact knowledge that

𝐷𝑎𝑔𝑔 = 𝐷𝑎𝑔𝑔,𝜇, and the marginal distribution prob(𝜏 | {𝑄𝑘 }), which assumes 𝐷𝑎𝑔𝑔 is onlu known

to within ±30% by marginalizing the multivariate posterior distribution over 𝐷𝑎𝑔𝑔. This compar-

ison is made for results at both 1C and 2C. At 1C, we see a slight widening of the distribution

when marginalizing over 𝐷𝑎𝑔𝑔. At 2C, we see that the marginal distribution spreads significantly,

and confidence in the estimate is lost. This result serves as an important caution to the design

rule of reducing 𝐼𝑎𝑝𝑝 presented earlier. Though electrode-scale ion transport impedance becomes

more dominant at high rate, particle-scale diffusion impedance also becomes more important. As

a result, analyzing the 2C discharge proves less valuable than analyzing the 1C result. This result

emphasizes the importance of analyzing multiple rates simultaneously for a given electrode when
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estimating tortuosity using this method. The marginal and conditional distribution as determined

by analyzing all rates for a rate capability test for NMC-5 is presented in Figure 3.8c. Similar

uncertainties are obtained, but the means of the distributions are different.

The model predicted rate capability is compared to the experimental rate capability in 3.8d to

confirm that the fitted models predict the rate performance well. The distributions for 𝜏 and 𝐷𝑎𝑔𝑔

can be translated to a range of model predictions for rate performance, shown in the shading in

3.8b. As discussed previously, the range of model predictions increases at higher rates, since ion

transport on the electrode scale and the agglomerate scale become more limiting at higher rates.

While we motivate the need for detailed uncertainty analysis using the two examples described

above, the impact of several other model parameters and assumptions remains unexplored. For

instance, concentration dependence of 𝐷𝑒,0, 𝑡+, and 𝜅𝑒,0 is not considered in the model described

in Table 3.3. Since the proposed procedure intentionally induces concentration gradients, the ex-

clusion of concentration dependence of these parameters will affect the accuracy of the results. A

more thorough analysis should incorporate functions for these properties as a function of concen-

tration, as has been reported by Valoens and Reimer,107 but would require uncertainties in these

functions as well, which were not reported. Future work could incorporate these functions and their

associated uncertainties into the analysis. In addition, uncertainties in the other model parameters

in Table 3.3 could be explored.

Though our estimates may suffer from some inaccuracy because of the aforementioned model

simplifications, the systematic improvement of precision through design of experiments still holds.

Inclusion of other model complexity and parameter uncertainties may cause the results in Figures

3 and 4 to shift upwards to higher values, but the reduction in uncertainty with 𝐼𝑎𝑝𝑝 will remain.

3.5 Uncertainty Analysis for EIS

Electrochemical impedance spectra were taken from Wang et. al.’s study of various porous

electrodes to perform an uncertainty analysis on the values of tortuosity extracted.99 Wang et. al.

study a variety of electrodes, including NMC, LCO, LFP, LTO, and graphite. Both Nyquist and
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Figure 3.8: Analysis of electrode NMC-5, comparing tortuosity estimates conditioned on 𝐷𝑎𝑔𝑔 =

𝐷𝑎𝑔𝑔,𝜇 (red) to estimates that marginalize over a 30% range of 𝐷𝑎𝑔𝑔 (blue). All c-rates were used
to fit tortuosity. Results are presented for an analysis of the 1C discharge capacity (a), the 2C
discharge capacity (b), and all discharge capacities between 0.1C and 2C (c). The model predic-
tions for capacity at various rates considering both cases are compared to the experimental rate
capability in (b). The shaded region correspond to model predictions for two standard deviations
above and below the mean parameter estimates, and the error bars on the experimental points are
the assumed experimental variance.
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Bode plots were provided for select NMC, LCO, LFP, and LTO electrodes in the appendix of

Reference99. Only the NMC and LCO electrodes were included in our analysis because only those

electrodes met all the assumptions of the TLM used by Landesfiend et al. (namely that electronic

resistance was negligible relative to ionic resistance). Data from the Bode plots were extracted

using WebPlotDigitizer118 and converted to complex numbers to get the complex impedance.

The equivalent circuit model (ECM) used to fit the impedance spectra is shown in Figure 9.

The impedance of the cell (𝑍𝑐𝑒𝑙𝑙 , Equation 3.20 is the summation of the high frequency resistance

(𝑅𝐻𝑅𝐹), the impedance of the porous electrode, and the impedance of the current collector (sub-

script cc). The reader is referred to Reference99 for further details on the definition of the ECM.

𝑍𝑐𝑒𝑙𝑙 = 𝑅𝐻𝐹𝑅 + 𝑍𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 (𝑅𝑖𝑜𝑛, 𝑄𝐶𝑇 , 𝛾𝐶𝑇 ) + 𝑍𝑐𝑐 (𝑅𝑐𝑐, 𝑄𝑐𝑐, 𝛾𝑐𝑐) (3.20)

Figure 3.9: Equivalent circuit model used to interpret impedance spectra from Reference99.

In total the equivalent circuit model in Figure 3.9 contains 7 parameters, listen in Table 6. The

value of the ionic resistance in the electrode 𝑅𝑖𝑜𝑛 can be mapped to a tortuosity by

𝜏 =
𝑅𝑖𝑜𝑛𝐴𝜅𝑒,0𝜖𝑒

2𝐿
(3.21)

where 𝐴 is the electrode cross sectional area and 𝐿 is the electrode length, with a factor of two

present because a symmetric cell was assembled.

Quantifying uncertainty in the parameter estimates for the transmission line model can be

framed using Bayes Theorem, as was done for the P2D-based estimation procedure (Equation
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3.4). Here, the 7 parameters of the model are represented by 𝑋 , and the posterior distribution for

𝑋 is a multivariate distribution given by Equation 3.23.

𝑋 = [𝑅𝐻𝐹𝑅, 𝑅𝑐𝑐, 𝑄𝑐𝑐, 𝛾𝑐𝑐, 𝑅𝑖𝑜𝑛, 𝑄𝐶𝑇 , 𝛾𝐶𝑇 ] (3.22)

𝑝𝑟𝑜𝑏(𝑋 | 𝑍𝑐𝑒𝑙𝑙) =
𝑝𝑟𝑜𝑏(𝑍𝑐𝑒𝑙𝑙 | 𝑋)𝑝𝑟𝑜𝑏(𝑋)

𝑝𝑟𝑜𝑏(𝑍𝑐𝑒𝑙𝑙)
(3.23)

Analogous to Equations 3.5 and 3.6, the likelihood of observing the impedance spectrum 𝑍𝑐𝑒𝑙𝑙

given a set of parameters 𝑋 is given by

𝑝𝑟𝑜𝑏(𝑍𝑐𝑒𝑙𝑙 | 𝑋) =
𝑁𝜔∏
𝑘=1

𝑝𝑟𝑜𝑏(𝑅𝑒𝑍𝑐𝑒𝑙𝑙 (𝜔𝑘 ) | 𝑋)𝑝𝑟𝑜𝑏(𝐼𝑚𝑍𝑐𝑒𝑙𝑙 (𝜔𝑘 ) | 𝑋) (3.24)

𝑝𝑟𝑜𝑏(𝑅𝑒𝑍𝑐𝑒𝑙𝑙 (𝜔𝑘 ) | 𝑋) =
1

𝜎𝑅𝑒𝑍𝑐𝑒𝑙𝑙

√
2𝜋
𝑒𝑥𝑝

(
(𝑅𝑒𝑍 𝑠𝑖𝑚

𝑐𝑒𝑙𝑙
(𝑋, 𝜔𝑘 ) − 𝑅𝑒𝑍𝑐𝑒𝑙𝑙 (𝑋, 𝜔𝑘 ))2

−2𝜎𝑅𝑒𝑍𝑐𝑒𝑙𝑙

)
(3.25)

𝑝𝑟𝑜𝑏(𝐼𝑚𝑍𝑐𝑒𝑙𝑙 (𝜔𝑘 ) | 𝑋) =
1

𝜎𝐼𝑚𝑍𝑐𝑒𝑙𝑙

√
2𝜋
𝑒𝑥𝑝

(
(𝐼𝑚𝑍 𝑠𝑖𝑚

𝑐𝑒𝑙𝑙
(𝑋, 𝜔𝑘 ) − 𝐼𝑚𝑍𝑐𝑒𝑙𝑙 (𝑋, 𝜔𝑘 ))2

−2𝜎𝐼𝑚𝑍𝑐𝑒𝑙𝑙

)
(3.26)

where 𝑍 𝑠𝑖𝑚
𝑐𝑒𝑙𝑙

(𝑋, 𝜔𝑘 ) is the model-predicted impedance at frequency 𝜔𝑘 given 𝑋 , 𝜎𝑍𝑐𝑒𝑙𝑙 is the experi-

mental variance of the observed spectrum, 𝑅𝑒 and 𝐼𝑚 denote the real and imaginary components of

𝑍 , and 𝑁𝜔 is the number of frequencies over which the impedance spectrum was collected. Since

the experimental variance could not be calculated from the given data, a value of 5 Ω is assumed

for both 𝜎𝑅𝑒𝑍𝑐𝑒𝑙𝑙 and 𝜎𝐼𝑚𝑍𝑐𝑒𝑙𝑙 . As mentioned previously, increasing this value will have the effect

of widening the posterior distribution.

The posterior distribution is evaluated by using the open-source python package impedance.py,119

which allows the user to build custom circuits with common circuit elements, including the TLM
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Table 3.6: Parameter estimation results for ECM in Figure 3.9, including uncertainties. The final
row shows the tortuosity estimate. Results are compared to those reported in Reference99.

NMC LCO
Parameter estimate Wang et. al. Parameter estimate Wang et. al.

𝑅𝐻𝐹𝑅 60.8 ± 1.5 43.5 81.4 ± 1.7 36.9
𝑅𝑐𝑐 63.3 ± 2.6 70.2 89.9 ± 2.6 95.3
𝑄𝑐𝑐 23.1 ± 5.5 31.3 17.8 ± 3.3 21.3
𝛾𝑐𝑐 0.74 ± 0.03 0.7 0.68 ± 0.02 0.66
𝑅𝑖𝑜𝑛 158.2 ± 5.7 177.5 302.0 ± 6.1 365.9
𝑄𝐶𝑇 0.66 ± 0.07 0.6 0.70 ± 0.02 0.7
𝛾𝐶𝑇 0.92 ± 0.001 0.92 0.95 ± 0.002 0.94

𝜏𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 3.18 ± 0.11 3.37 3.17 ± 0.06 3.66

in Reference74. Though we did not simulate impedance spectra using sets of X that spanned a 7-

dimensional prior, the distributions that are output from the curve fitting function in impedance.py

(built on scipy’s curve fit) can be interpreted as the posterior distribution. Code for reproducing

this parameter estimation is available on github.com/karthikmayil/EIS-uncertainty-analysis.

A distribution can be obtained for each individual parameter by marginalizing over the other

6 parameters. The mean values and uncertainties for each of these distributions (taken from the

diagonal of the covariance matrix of the multivariate posterior distribution) are reported in Table

3.6, alongside the estimates by Wang et al., where uncertainties are not provided. The uncertainty

in the tortuosity is calculated directly from the percentage uncertainty in 𝑅𝑖𝑜𝑛, since the two are

linearly related via Equation 3.21. Some discrepancy can be expected because of error in the data

extraction and because the fitting by Wang et. al. included an extra parameter, the electronic

resistance, which is neglected in our simplified model. Still, our results are close to those obtained

by Wang et al., with the added benefit of quantifying the uncertainty associated with the tortuosity.

Based on this analysis, it appears that interpretation of EIS spectra collected under blocking

conditions and interpreted with an equivalent circuit model that includes a TLM circuit element

can obtain estimates of tortuosity that are as confident as, if not more confident than, those obtained

by the P2D-based method described in this paper. The difference between the methods may be

amplified if the limitations outlined in the previous section are addressed.
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3.6 Conclusion

In this study, we have presented a comprehensive analysis of model-guided design of experi-

ments and limitations of using a P2D physics-based model to estimate tortuosities from constant

current discharge curves. A dimensionless current derived from porous electrode theory is used to

guide the design of experiment to reduce uncertainty in tortuosity estimates by identifying when

P2D models are sensitive to the tortuosity model parameter. Tortuosity estimates are reported for

LVO and NMC electrodes. Analysis of the Bruggeman-type model for tortuosity dependence on

porosity reveal that the prefactor and exponent in this model are not identifiable, indicating that

they should be used with caution. A detailed discussion is provided on assumptions and limita-

tions of the method, motivating the consideration of uncertainty in other model parameters when

estimating tortuosity. Finally, an uncertainty analysis on an ECM for standard EIS spectra under

blocking conditions is performed, resulting in comparable values of uncertainty to those obtained

by our P2D method. We hope this study motivates others to consider reporting uncertainties in

their estimates of tortuosity.
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3.7 Supplementary Information

Table 3.7: List of symbols and notation.
Symbol Description Units
𝑎 Electrochemically active surface area cm2 cm-3

𝑐 Concentration mol cm-3

𝐶𝑟 C-rate h-1

𝐷 Diffusivity cm2 s-1

𝜖 Volume fraction
𝜂 Overpotential V
𝐹 Faraday’s Constant 96485 C mol-1

$i$ Current Density A cm-2

𝑘 Rate constant varies
𝜅 Ionic conductivity S cm-1

𝑛 Flux mol cm-2 s-1

Φ Potential V
𝜎 Electronic conductivity S cm-1

𝑡 Time s
𝜃 Phase volume fraction
𝑈 Reversible Potential V

Superscripts and Subscripts
AM Active material
agg Agglomerate (NMC)
𝛼 𝛼-phase (LVO)
𝛽 𝛽-phase (LVO)
e Electrolyte
max Maximum concentration
min Minimum concentration
rxn Electrochemical reaction
s Solid phase
sat Saturation concentration
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Chapter 4

Understanding Evolution of 𝐿𝑖𝑥𝑉3𝑂8 Cathodes

During Cycling via Reformulated

Physics-Based Models and Experiments*

*This chapter has been published: Karthik S. Mayilvahanan, Jason Kuang, Alison H. McCarthy, Lei Wang,
Kenneth J. Takeuchi, Amy C. Marschilok, Esther S. Takeuchi, Alan C. West, “Understanding Evolution of Lithium
Trivanadate Cathodes During Cycling via Reformulated Physics-Based Models and Experiments,” Journal of the Elec-
trochemical Society., vol. 168, no. 5, p. 050525, May 2021.
The thesis writer’s contribution was physics-based model analysis, experimental design, and writing. The electro-
chemical observations and characterization were provided by Jason Kuang and Alison McCarthy from the Marschilok-
Takeuchi Research Group at Stony Brook University.
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4.1 Introduction

Vanadium based materials have garnered interest as active material candidates for cathodes in

Li-ion batteries due to their capability for multiple electron transfers within a desirable voltage

range.51 Of these materials, monoclinic lithium trivanadate (𝐿𝑖𝑥𝑉3𝑂8, referred to as LVO) has a

relatively high theoretical capacity (362 𝑚𝐴ℎ 𝑔−1) and has demonstrated good rate capability.52,53

The mechanism of the initial lithiation and delithiation in LVO is well understood.55–57,120 As-

prepared LVO begins in the layered 𝛼-phase (𝐿𝑖1.1𝑉3𝑂8), with layers of 𝑉3𝑂8 sheets between

which Lithium can be intercalated. Upon lithiation to 𝐿𝑖2.5𝑉3𝑂8, the 𝛼-phase is saturated and

a phase transition occurs to the rock-salt like 𝛽-phase (𝐿𝑖4𝑉3𝑂8), which can be lithiated up to

𝐿𝑖5𝑉3𝑂8.

Many have reported the dependence of capacity fade over extended cycling of LVO for mate-

rials prepared through an array of synthesis routes, including sol-gel based synthesis55,58,70,121–125,

solvothermal synthesis58,59, flame spray pyrolysis126, and freeze drying.127 Zhang et. al. report

LVO prepared by the sol-gel and solvothermal methods that were annealed at 500 ◦C that exhibit

15 to 20% loss in capacity over 100 cycles when cycled at a C/10 discharge rate.58 Similarly

prepared electrodes that were annealed at lower temperatures showed a 43% capacity loss when

cycled at the same discharge rate for the same duration.123 LVO prepared by freeze drying shows

between 17 and 27% capacity fade over 50 cycles at a moderate C/6 discharge rate, depending on

the annealing temperature.127

In addition to the annealing temperature and duration, the morphology of the active material

is known to play an important role in its cycling stability. For instance, topotactically synthesized

LVO nanowires demonstrated impressive cycling ability at very high discharge rates (88 % capacity

retention at 4C for 1500 cycles).128 Jouanneau et. al. determined that LVO crystals offer better

cycling behavior compared to amorphous LVO.121

A widely cited cause of capacity fade in the literature is that the active material undergoes

structural deformation due to the phase change from the layered 𝛼 to rock-salt like 𝛽 phase, which
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involves a significant expansion of the a axis and contraction of the b and c axes.55 Experiments

to support this claim are those where the formation of the 𝛽 phase is avoided by cycling above 2.6

V70 or galvanostatic cycling up to 𝐿𝑖2.5𝑉3𝑂8 to avoid the phase change.58 Zhang et. al. observed a

shortening of the plateau in the voltage profile at 2.5 V (attributed to the 𝛼 to 𝛽 transition) and an

elongation of the shoulder in the voltage profile corresponding to lithiation of the 𝛽-phase during

cycling at C/10, and suggest that their observations are indicative of irreversible 𝛽-phase formation.

Tanguy et. al. investigated capacity fade in LVO prepared by the common sol-gel method.

They demonstrated that fade is observed in cells with different electrolytes, different amounts of

conductive additives, and active materials annealed at different temperatures. Then, several possi-

ble explanations for capacity fade were systematically eliminated, including vanadium dissolution

and water contamination, and it was conclusively shown that evolution of the cathode was pri-

marily responsible for the fade observed in Li//LVO cells. Two (possibly related) mechanisms

were identified: the formation of a surface film below 2.6 V, and the appearance of an additional

electrochemical phenomena at 2.1 V.124

A more recent study by the authors employed operando energy dispersive X-ray diffraction

(EDXRD) to compare thick porous LVO electrodes before and after cycling at 1C.129 It was found

that the utilization of these thick porous electrodes was uniform across the length of the electrode

both before and after cycling despite significant capacity fade, ruling out electrode-scale effects

as the dominant fading mechanism. EDXRD revealed that no 𝛽-phase was formed at the end of

discharge after 95 cycles, qualitatively consistent with a model where the amount of active material

after 95 cycles was reduced.

Whereas the previous experimental studies have relied on analysis of electrochemical measure-

ments and characterization, the use of physics-based modeling in conjunction with these methods

provides a powerful platform to draw conclusions about the evolution of LVO during cycling.

Approaches for understanding capacity fade using physics-based models have been employed

in the literature. While many have taken the approach of implementing phenomenological mod-

els for different capacity fade mechanisms48, this approach can prove complex when considering
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multiple phenomena occurring simultaneously. A simpler, easily implementable approach to un-

derstanding how the system is evolving is to reformulate a validated model by estimating model

parameters relevant to physical phenomena at different cycles. Zhang et. al. used this approach to

estimate electrode states of charge and cathode porosity for a graphite/NCO system using a pseudo

2-dimensional (P2D) model.130 Similar work has been done for the LMO system.131 Ramadesi-

gan et. al. extended this approach to tracking changes in model parameters such as solid-state

diffusion coefficients, reaction rate constants, and the Li ion diffusion coefficient in a P2D model,

and included an analysis of uncertainties in the estimates of these parameters using an MCMC

algorithm.132 Li et. al. estimated 10 parameters in an extended single particle model (SPM) to

determine model parameters that are most correlated with state of health for rapid health predic-

tion.133

We have previously reported a full depth of discharge model for lithiation of the lithium trivan-

date cathode,32 extending single particle and pseudo-2D (P2D) models developed by Brady et.

al.42,64 In this study, the reformulated physics-based model approach is employed in conjunction

with the reported full depth of discharge model to understand how highly porous electrodes con-

taining LVO prepared via the sol-gel method evolve with cycling at a current rate of C/5. Model

results are used to design experiments to test the hypotheses generated by this parameter estimation

approach, with the ultimate goal of identifying the physical mechanisms associated with the model

parameters that are evolving.

4.2 Experimental

𝐿𝑖1.1𝑉3𝑂8 (LVO) was synthesized via a sol-gel approach as previously reported.55 Briefly,𝑉2𝑂5

and 𝐿𝑖𝑂𝐻 were used as precursor materials in a stoichiometric ratio of 𝐿𝑖 : 𝑉 = 1.1 : 3. The

resulting solid was annealed at 500◦C.

3D porous electrodes (3PEs) contained carbon nanotubes (CNTs) and LVO (weight ratios

30:70). The 0.5 inch diameter electrodes were used in a coin type cells with Li metal anodes

and polypropylene separators in an argon-filled glove box. with 1 𝑀 𝐿𝑖𝑃𝐹6 in ethylene carbon-
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ate/dimethyl carbonate (volume ratio of 3:7) electrolyte. Cycling is done at a C/5 rate, where 1C

corresponds to 362 mA/g. All the electrochemical measurements were performed at 30 °C. A table

of all the cells prepared and analyzed for this study is given in the Supporting Information.

For ex situ measurements, the cathodes were recovered in an argon filled glove box. The mor-

phology characterization of pristine and cycled electrodes was obtained using a scanning electron

microscope (SEM) (JEOL 7600F) operating at 10kV.

4.3 Parameter Estimation

The P2D model developed by Mayilvahanan et. al. has several model parameters because

it couples the electrode scale with the particle scale, and models a mixed phase lithiation on the

particle scale.32 Re-estimating all these model parameters at different cycles is an onerous task. To

narrow the parameter space, some preliminary analysis was performed.

Using the thickness, active material mass loading, and CNT mass loading, simulations reveal

that heterogeneity across the length of the electrode can be neglected (Figure 4.11). This conclu-

sion is supported by operando EDXRD results, which showed uniformity in three measurements

across the length of a similarly prepared porous electrode.129 Therefore, the analysis in this study

is restricted to model parameters on the crystal scale, including the relative amount of active ma-

terial %𝐴𝑀 , normalized to the active material with which the cell was assembled (here, inactive

material refers to material that cannot participate in charge transfer), the solid phase diffusion coef-

ficients in both phases 𝐷𝑖 and the reaction rate constants for lithium insertion in both phases 𝑘𝑟𝑥𝑛,𝑖

(closely related to exchange current densities, see reference32) where 𝑖 refers to the phase 𝛼 or 𝛽.

It is important to note that when %𝐴𝑀 is varied, the volume fraction of active material and the

active surface area are reduced by 100 − %𝐴𝑀 , but the porosity remains unchanged. Changes in

the rate constant for phase change 𝑘𝛽 were also initially considered, but the change in shape of the

discharge profiles when varying this parameter did not match any observed profiles. It is important

to note that, while 5 parameters are considered, the statistical treatment, discussed next, shows that

only a subset appears to vary significantly during cycling.
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The reformulated models are fit to discharge data at each cycle as outlined by the parameter

estimation procedure published by Brady et. al.71 In short, parameters are determined at each cycle

by minimizing

𝑅𝑆𝑆 =

𝑛∑︁
𝑗=1

(𝑉𝑠𝑖𝑚, 𝑗 −𝑉𝑒𝑥𝑝, 𝑗 )2 (4.1)

where 𝑛 is the number of simulated data points for a discharge, 𝑉𝑠𝑖𝑚, 𝑗 is the simulated voltage at

point 𝑗 , and𝑉𝑒𝑥𝑝, 𝑗 is the experimental voltage at point 𝑗 . The fit of each simulation is quantified by

this residual sum of squares (𝑅𝑆𝑆) and the likelihood of a parameter set is evaluated based on an

assumption of 50 mV experimental uncertainty in voltage measurements. The SciPy interpolation

function interp1d is used to map the simulated voltages in a discharge to the exact time points

of the experimentally measured voltages in a discharge. If a simulation reaches the lower cutoff

voltage of 2.0 V at an earlier time compared to the discharge profile of the cycle being analyzed, the

remainder of the simulation-predicted voltages are filled to 2.0 V. Error for a simulated discharge

relative to an experimental discharge can be summarized by a root mean squared error, or 𝑅𝑀𝑆𝐸 ,

reported in mV.

𝑅𝑀𝑆𝐸 =

√︂
𝑅𝑆𝑆

𝑛
(4.2)

In addition to minimization of 𝑅𝑆𝑆, an approach adopted from the least absolute shrinkage

and selection operator (LASSO) algorithm, was used to determine the relative importance of each

parameter in improving the fit between the reformulated model and experiment.134 This approach

is akin to a sensitivity analysis, but it achievable with minimal computational cost. In short the

same simulated results from the sampling study used to minimize a new objective function

𝐿𝑎𝑠𝑠𝑜 = 𝑅𝑆𝑆 + 𝜆
𝑁𝑝∑︁
𝑖

|𝛾𝑖 | (4.3)

where 𝛾𝑖 is a transformation of parameter 𝑖 (𝑖 of 𝑁𝑝 parameters) based on the first-cycle parameter

estimate 𝑝0
𝑖

and the first-cycle parameter estimate uncertainty 𝜎0
𝑝,𝑖

:
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Table 4.1: Model parameters considered and the range of sampling.
Model Parameter Symbol Range Units 𝑝0 𝜎0
Relative active material %𝐴𝑀 [75, 100] % 1 0.016
Solid phase diffusion co-
efficient in 𝛼 phase

𝑙𝑜𝑔10𝐷𝛼 [−13.0,−12.5] 𝑐𝑚2 𝑠−1 −12.63 0.07

Rate constant for Li inser-
tion in 𝛼 phase

𝑙𝑜𝑔10𝑘𝑟 𝑥𝑛,𝛼 [−8.0,−7.0] 𝑐𝑚5/2 𝑚𝑜𝑙−1/2 𝑠−1 −7.00 0.06

Solid phase diffusion co-
efficient in 𝛽 phase

𝑙𝑜𝑔10𝐷𝛽 [−15.2. −
14.5]

𝑐𝑚2 𝑠−1 −15.09 0.03

Rate constant for Li inser-
tion in 𝛽 phase

𝑙𝑜𝑔10𝑘𝑟 𝑥𝑛,𝛽 [−9.0,−7.5] 𝑐𝑚5/2 𝑚𝑜𝑙−1/2 𝑠−1 −8.75 0.25

𝛾𝑖 =
𝑝𝑖 − 𝑝0

𝑖

𝜎0
𝑝,𝑖

(4.4)

The second term 𝜆 on the right hand side of equation 4.3 is an additional penalty (referred to as

a shrinkage penalty) that favors 𝛾𝑖 values equal to zero,135 corresponding to a parameter remaining

unchanged from its first cycle estimate (𝑝𝑖 = 𝑝0
𝑖
). The tuning parameter 𝜆 sets the weight of the

penalty for a parameter changing from it’s first cycle estimate. Minimization of equation 4.3 for

different values of 𝜆 allows one to identify the parameters that most improve the fit and quantify

the improvement in the fit resulting from changes in each parameter.

Parameters are sampled from uniform prior distributions in the ranges specified in Table 7.1,

where the range of the distribution for each parameter is chosen to be sufficiently wide to encapsu-

late physically reasonable values of the parameters. Because results are somewhat limited by the

density of sampling in the parameter space, when showing trends in parameters over the course of

cycling, results are presented as 5 cycle rolling averages.

4.4 Results

4.4.1 Cycling Data

The cycling stability and discharge profiles are shown in Figure 4.1. The cell exhibits a more

constant rate of fade initially. After 70 cycles, the rate of fade starts to accelerate. Upon cycling,
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Figure 4.1: Discharge capacity fade (a) and voltage profiles for discharge for every 10 cycles (b).

an extended low-slope region is observed at approximately 2.1 V, as Tanguy et. al. observed.124

To tease apart how the system is evolving in more detail, the parameter estimation procedure is

applied.

4.4.2 Reformulated Model Analysis

The results of the parameter estimation are presented in Figure 4.2. The shaded regions about

the solid lines describe the confidence of the parameter estimate, quantified by two standard de-

viations from the mean estimated parameter. Several important indicators of the evolution of the

system are contained in these plots.

The estimate of active material decreases with cycle number, as concluded in the previous

study.129 The estimated rate constant for Li insertion in 𝛼 phase 𝑘𝑟𝑥𝑛,𝛼 decreases by approximately

an order of magnitude over the course of cycling. Since the applied current is set based on the mass

of LVO with which the cell was assembled, less active material corresponds to higher local current

densities for the material that is active. This, combined with a lower exchange current density for

Li insertion in the 𝛼 phase, results in an increased charge transfer overpotential. Diffusion in the 𝛼

phase appears to be evolving as evidenced by the increase in estimated 𝐷𝛼.

The parameter estimation applied to the 𝛽 phase presents insights into the evolution of the 𝛽

phase with cycling (Figure 4.2d,e). 𝐷𝛽 increases by half an order of magnitude over the course of

30 cycles, whereas the rate constant for Li insertion in the 𝛽 phase drops to a value of approximately
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Figure 4.2: Parameter estimates for five parameters presented in Table 7.1 (a-e). Shaded regions
show 2 standard deviations above and below the maximum likelihood parameter estimate. Root
mean squared error (RMSE) for the maximum likelihood parameter estimates compared to exper-
iments (f).

10−8.7 in the first 10 cycles. Given the parameters considered in this study, the increase in estimated

𝐷𝛽 and decrease in estimated 𝑘𝑟𝑥𝑛,𝛽 represent the emergence of the plateau at 2.1 V. Because the 𝛽

phase is formed towards the end of discharge, changing these two parameters do not have as much

of an impact on the simulated voltage profile compared to %𝐴𝑀 , 𝐷𝛼, and 𝑘𝑟𝑥𝑛,𝛼. Therefore, the

uncertainties in these parameters are larger.

Though in Figure 4.2b and d the results are presented as increasing diffusion coefficients,

it is important to note that these results assume a fixed crystal size. An alternative conclusion

from these results is that the length scale for diffusion is decreasing (smaller particles). A

hypothesis that ties this in with the observation of loss of active material is particle fracture, which

has been observed in other transition metal oxide cathodes.136–138 As the active particles fracture,

fragments could become disconnected from the conductive matrix, rendering them inactive.

Though Figure 4.2 provides some insights on which parameters are evolving over the course

of cycling and by how much, it does not tell us about which parameters have the biggest impact

on explaining the change in the voltage profile over the course of cycling. The LASSO framework

provides a means to discuss this type of model sensitivity. An example of this analysis is presented

77



in Figure 4.3, where one cycle (cycle 31) is analyzed.

In Figure 4.3a and b, the results of minimization of the LASSO objective function (equations

4.3) is presented for different values of the shrinkage penalty 𝜆. For high values of 𝜆 on the right

side of the plot, all the model parameters remain the same as their first cycle values (see equation

4.4 and Table 7.1). As the shrinkage penalty is lowered, parameters are allowed to vary from their

first cycle values and are effectively added to the model, and the corresponding reduction in fitting

error can be traced in Figure 4.3b. Inclusion of only the %𝐴𝑀 model parameter can reduce the

𝑅𝑀𝑆𝐸 by 47 mV. Subsequent inclusion of 𝑘𝑟𝑥𝑛,𝛽 reduces the error by another 5 mV, and inclusion

of 𝐷𝛽 then reduces the error by another 6 mV. Finally, inclusion of 𝑘𝑟𝑥𝑛,𝛼 only reduces the error by

less than 0.2 mV.

While the 𝑅𝑀𝑆𝐸 for a model’s prediction of an experimental voltage profile is a useful sum-

mary statistic, a more detailed analysis is needed to understand what portions of the voltage profile

are controlled by each model parameter. In Figure 4.3c, the experimental voltage profile for cycle

31 is shown alongside the cycle 1 model prediction, referred to as the base model, and the subse-

quent models that arise from including each additional parameter as 𝜆 is lowered. For example, the

model labeled +𝐷𝛽 is the base model with %𝐴𝑀 reduced by 8 standard deviations from its first

cycle estimate and 𝑘𝑟𝑥𝑛,𝛽 reduced by 5 standard deviation from its first cycle estimate, given by

𝛽%𝐴𝑀 = -8 and 𝛽𝑘𝑟 𝑥𝑛,𝛽 = -5 in Figure 4.3a, respectively. All the models predict the voltage profile

well until about 170 𝑚𝐴ℎ 𝑔−1. To emphasize the differences at the end of discharge, the results

in Figure 4.3c are presented as differences between model predictions and experiments in Figure

4.3d. Here, the value of the inclusion of each subsequent parameter is made clear. The base model

overpredicts the voltage of the cycle 31 discharge starting at approximately 50 𝑚𝐴ℎ 𝑔−1. Inclusion

of %𝐴𝑀 fixes this, but still overpredicts the voltage at 200 𝑚𝐴ℎ 𝑔−1 and underpredicts the voltage

and final capacity afterwards. Inclusion of 𝑘𝑟𝑥𝑛,𝛽 improves the fit at 200 𝑚𝐴ℎ 𝑔−1, but still suffers

from underprediction of voltage and capacity at the very end of discharge. Inclusion of 𝐷𝛽 results

in good agreement at at 200 𝑚𝐴ℎ 𝑔−1 and beyond, to the end of discharge. Finally, inclusion of

𝑘𝑟𝑥𝑛,𝛼 offers minimal improvement.
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Figure 4.3: An example of the LASSO analysis is presented for the cycle 31 discharge. Change in
transformed parameter values that minimize the 𝐿𝐴𝑆𝑆𝑂 objective function (see equations 4.3,4.4)
for different LASSO shrinkage penalties (a). The corresponding change in 𝑅𝑀𝑆𝐸 for the param-
eter set that minimizes the 𝐿𝐴𝑆𝑆𝑂 objective function (b). Model predictions as each additional
parameter is added, starting with the base (cycle 1) model (c). The difference between the pre-
dicted voltage and the experimental voltage for the models in c as a function of lithiated capacity
(d)
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This LASSO inspired framework provides a systematic approach to understanding the impact

of each parameter on the voltage profile. As opposed to doing a one-by-one sensitivity analysis

varying each parameter individually and then in conjunction, it allows for extraction of model

sensitivity from already generated simulations in the parameter estimation. By considering varying

shrinkage penalties, a series of models with a different number of free parameters (i.e. parameters

different from their cycle 1 values) are generated, and the marginal contribution of each additional

parameter added to the model can be evaluated.

The procedure discussed above is applied to several cycles over the course of cycling to un-

derstand how the contribution of different model parameters to improving the fit from the base

model depends on the cycles completed. The analysis is presented in Figure 4.4. The improve-

ment in 𝑅𝑀𝑆𝐸 from the base model is evaluated by considering the drop in 𝑅𝑀𝑆𝐸 when a model

parameter is allowed to vary (see Figures 4.3a and b). The total height of the bar corresponds to

the difference between the 𝑅𝑀𝑆𝐸 of the five parameter model and the 𝑅𝑀𝑆𝐸 of the base model.

In Figure 4.4a, the 𝑅𝑀𝑆𝐸 is calculated over the whole discharge, between 3.6 V and 2.0 V. It is

clear that the %𝐴𝑀 is the parameter that explains most of the evolution of the voltage profile at all

cycles.

As discussed in the above analysis of cycle 31, the inclusion of parameters after %𝐴𝑀 serve to

improve agreement at the end of the discharge. To better assess the impact of these additional pa-

rameters, the 𝑅𝑀𝑆𝐸 is calculated below 2.45 V in Figure 4.4b. The contribution of the parameters

associated with the 𝛽-phase - 𝐷𝛽 and 𝑘𝑟𝑥𝑛,𝛽 - appear to become negligible after cycle 76. This may

explain why the uncertainty in 𝐷𝛽 increases drastically in Figure 4.2d after this cycle number. The

rapid increase in uncertainty, combined with the lack of model sensitivity to this parameter indicate

that changes in this parameter after cycle 75 should not be considered meaningful. In short, the

statistical analyses suggest that a decline in 𝐷𝛽 after 75 cycles is not likely to be physical.
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Figure 4.4: Results of the LASSO procedure applied to experimental data from every five cycles
over the course of 100 cycles. Improvement in the 𝑅𝑀𝑆𝐸 from the base model (parameters fitted
to cycle 1) is shown for the entire discharge (a) and for the portion of the discharge below 2.45 V
(b).
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4.4.3 Current Interrupt Experiments

To validate the conclusion of an increasing amount of LVO becoming inaccessible for charge

transfer based on the parameter estimation results, the galvanostatic interrupt titration technique

(GITT) was performed before and after cycling for 40 cycles (Figure 4.5a). The number of cycles

was chosen based on the parameter estimation results, which show the system appears to have

evolved significantly by 40 cycles. After cycling, recoveries occur at lower voltages, and the

recovery portions of the response appear to have larger voltage recoveries to open circuit in earlier

interrupts, compared to the response before cycling. The recovery time at each current interrupt

portion of the experiment is calculated as the time required for the measured voltage to reach within

1 mV of the final voltage at rest. The results of this analysis are shown in Figure 4.5b, where the

recovery time at a given interrupt is plotted as a function of the cumulative capacity lithiated

before that interrupt. Faster recovery times are observed after cycling when up to approximately

120 mAh/g has been lithiated in the current interrupt experiment. We note that in Figure 4.5a it

appears that the relaxations in the 𝛽-phase regime do not reach equilibrium in the 1 hour allowed

for recovery.Therefore, recovery times calculated in these regions should not be used to draw any

conclusions.

By taking the parameter estimates after 40 cycles and using those as inputs into the model, the

GITT experiment before and after cycling were simulated to explain the experimental observations.

The simulation results are shown in Figure 4.6. The model predictions agree qualitatively with the

observed GITT responses. Some disagreement is expected since the cell cycled and shown in

Figure 4.5 is different than the cell from which parameter estimates were obtained. In both, lower

voltages are reached at earlier interrupts. This can be explained by the deactivation of LVO. As

material becomes inactive, the particles that are active must take on a higher current and thus a

higher degree of lithiation, corresponding to lower voltages.

The model predicts that the cycled cell undergoes a greater degree of phase transformation (𝛼 to

𝛽) at earlier times (Figure 4.6b). Higher local currents after cycling cause a more rapid lithiation of

the active particles. The saturation concentration 𝐿𝑖2.5𝑉3𝑂8 is reached, and the material undergoes
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phase transformation at earlier times. This can explain some of the differences between measured

voltage response to the GITT experiment before and after cycling. Previous results have shown

that the kinetics for lithium insertion into the 𝛽-phase are slower than the kinetics for lithium

insertion into the 𝛼-phase.32 Therefore, the larger voltage recoveries appearing at earlier times after

cycling are likely associated with the disappearance of larger charge transfer overpotentials when

the current is interrupted, because the lithium being inserted into the active material is entering the

𝛽-phase.

Figure 4.5: GITT response for a pristine cell and the response after cycling that cell for 40 cycles
to 2.0 V at 0.2 𝐶. A 0.05 𝐶 pulse is applied for 30 minutes, followed by a 1 hour recovery (a).
Recovery time (i.e. time to reach within 1 mV of final potential in recovery) for each interrupt (b).

Obtaining a better understanding of the state of the material at each interrupt in Figure 4.5

can also provide insight into the conclusions from parameter estimation about diffusion processes

becoming faster as the material is cycled (Figure 4.2b,d). Figure 4.6b shows the simulated volume

fraction of 𝛽-phase as a function of the capacity lithiated in the GITT experiment. In the first 5

interrupts (up to 50 mAh/g lithiated), where the material is expected to be entirely in the 𝛼-phase,

it is clear from Figure 4.5b that the diffusion process in the 𝛼 phase is faster after cycling. After

cycling, the material is expected to have a higher volume fraction of 𝛽-phase when more than 50

mAh/g has been lithiated. Since 𝐷𝛽 << 𝐷𝛼,32,57 all else equal, one would expect a longer recovery

times after cycling. That the opposite is observed indicates that the material has evolved, and the
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Figure 4.6: Simulated GITT response before and after cycling for 40 cycles to 2.0 V at 0.2 𝐶.
Simulations shown for a 0.05 𝐶 pulse is applied for 30 minutes, followed by a 1 hour recovery (a).
Model-predicted volume fraction of 𝛽-phase 𝜃𝛽 over the course of both simulated experiments, as
a function of the capacity lithiated before each interrupt (b). Each interrupt in (a) is highlighted by
a given color to match 𝜃𝛽 at a given interrupt in (b).

experiment is probing a meaningful change in lithium diffusion in both phases induced by cycling.

We note that though the simulated recoveries appear to be faster compared to the experiments, it is

meaningful that the model is able to reproduce the slow recoveries after cycling compared to before

cycling, as well as the shift down of the whole voltage profile for the experiment after cycling.

4.4.4 Evidence of Particle Cracking

The parameter estimation results pointed to faster diffusion processes in both phases, a result

that was further supported by the GITT experiment. To address whether these results were due to

shorter length scales for diffusion, the dimensions and morphology of the LVO crystals before and

after cycling were investigated via SEM. The micrographs are shown in Figure 4.7.

Before cycling, there appear to be large rectangular particles and smaller fragments (Figure

4.7a,b), which are not observed after cycling (Figure 4.7c,d). Particle size distributions were ex-

tracted from the micrographs, and results are shown for the length and width of the larger particles

before and after cycling in Figure 4.8. Clear reductions in particle size are observed. Smaller

(sub-micron) particles are also observed in the SEM, but their sizes were difficult to quantify.
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Figure 4.7: SEM characterization of the morphology evolution of LVO-CNT electrodes: pristine
(a, b) and after aging (c, d).

Figure 4.8: Particle size distribution for LVO crystals before and after cycling, shown as box
and whisker plots. Distributions shown for the longer dimension (length) and shorter dimension
(width) of rectangular LVO crystals. Boxes show the interquartile range of the measurements, and
whiskers extend to 1.5 times the interquartile range. Observations outside this limit are identified
as outliers and denoted by diamonds.
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4.4.5 Partial Cycling

The findings from the parameter estimation, current interrupt experiments, and SEM suggest

that as cycling occurs, capacity fade is the result of particle cracking and subsequent loss of ac-

tive material. The question remains as to the root cause of these phenomena, and two competing

hypotheses in the literature, phase change induced capacity fade55,58,70 or a low-voltage electro-

chemical reaction124, are considered. To test these hypotheses, two modified cycling protocols

were designed and compared to the original cycling protocol used for the data in Figure 4.1. The

protocols are summarized in Table 4.2.

Table 4.2: Description of cycling protocols for extended cycling experiments. For all experiments,
discharge and charge currents are at 0.2 C, and at the top of charge the voltage is held at 3.6 V until
current falls below 0.1 C.

Protocol Discharge voltage window Constant voltage hold
CC-full 3.6 to 2.0 V -
CC-partial 3.6 to 2.6 V -
CC-CV-partial 3.6 to 2.5 V at 2.5 V until current falls below 0.1 C

Figure 4.9: Volume fraction of 𝛽-phase (𝜃𝛽) through the duration of the discharge for three different
cycling protocols, described in Table 4.2. Corresponding simulated voltage profiles shown in inset.

The first protocol, referred to as CC-partial, reproduces an experiment in the literature where

cycling is performed between 3.7 𝑉 and 2.6 𝑉 , but at a higher rate (0.2 𝐶) compared to what has

been reported (0.1C, 0.05 𝐶).70 The choice of the lower bound of this cycling window ensures that
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Figure 4.10: Loss in capacity for each cycling protocol in Table 4.2. Second cycle capacity was
chosen as a normalization to better visualize long-term evolution due to cycling as opposed to the
first-cycle drop in capacity.

no 𝛽-phase is formed (Figure 4.9) and avoids a possible electrochemical phenomena around 2.1 𝑉 .

The results of the experiment are shown in green in Figure 4.10, where results are plotted as the

difference between the delivered capacity and the capacity at cycle 2. The capacity is more stable

than the full depth of discharge protocol (CC-full) over 100 cycles, but some fade is still observed.

Closer examination of the voltage profiles (Figure 4.12e) reveals non-negligible material loss, as

evidenced by the shift back in the voltage profile. That capacity fade is still observed indicates

that there is still a fade mechanism that is not related to phase change with a small effect. This

mechanism is likely similar to the mechanism in play when cycling at 1C, where less than 20% of

the crystal is expected to undergo phase transformation at the end of discharge.129

While it has been established that there is a greater degree of capacity fade when cycling to 2.0

V compared to restricting the voltage window to above 2.6 V with the CC-partial protocol, it is still

unclear whether this result is due to avoiding phase change or avoiding an emerging reaction at 2.1

V. This is because as the material is discharged to lower voltages, the material is simultaneously

undergoing phase change, as seen in the pink curve (CC-full) in Figure 4.9. To decouple the

phase change from the low voltage region where there may be a side reaction present, a second

cycling protocol was designed. In this protocol, referred to as CC-CV-partial, the discharge cutoff
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voltage is set to 2.5 V, and when this condition is reached, a constant voltage hold is applied

until the current falls below a value equivalent to 0.1 C. The simulations reveal that an extent of

phase transformation similar to that at the end of discharge for the CC-full experiment (pink) can

be achieved in the CC-CV-partial experiment (blue), all while avoiding voltages below 2.5 V. The

cycling stability results in Figure 4.10 (blue) show that there is a greater rate of normalized capacity

fade than the CC-full cycling experiment. The signature of active material loss, the shift back in

the voltage profile, is also seen (Figure 4.12f) These results support the hypothesis that phase

change drives the particle cracking and subsequent material loss in LVO particles when cycling

at 0.2 𝐶. Though this does not definitively rule out Tanguy et. al.’s hypothesis of a low voltage

side reaction, it confirms that phase change does play a significant role, and that their differential

capacity analysis could be mistaking a faster diffusion process in the 𝛽-phase for a side reaction.

4.5 Conclusions

A reformulated model approach is applied to analyze cycling of LVO at a current rate of 0.2 𝐶.

Parameters in a validated LVO model are re-estimated over the course of 100 cycles, and evolution

of the electrode is identified in terms of deactivation of LVO and faster diffusion processes in the

LVO particles. A framework is provided to assess the impact of model parameters in explaining

the changes in the voltage profiles, and the percent active material parameter is shown to explain

a majority of the evolution in the observed voltage profile. The hypotheses from the parameter

estimation are supported by a current-interrupt experiment. SEM reveals fractured particles after

cycling, consistent with the observations about transport and material loss, since fractured parti-

cles are more susceptible to lose connectivity with the electronically conductive network. Finally,

partial cycling experiments confirm that formation of the 𝛽-phase does in fact play a significant

role in capacity fade when cycling at 0.2 𝐶, but that non-negligible capacity fade is also observed

even when no 𝛽-phase is formed, in line with observations of fade at high-rate cycling.

This paper also can serve as a general framework for understanding capacity fade in various

electrode materials. While estimating parameters of a validated model at later cycles can generate
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hypotheses about what may be evolving in the system, further experimentation designed by models

and informed by these results can be insightful in testing these hypotheses and understanding their

root causes.
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4.6 Supporting Information

Table 4.3: Electrode fabrication details for the five electrodes shown in this study. Refer to Table
4.2 for definitions of cycling protocols.
Figure Cycling Protocol LVO (mg/cm2) CNT (mg/cm2) Thickness (um)

1,8 CC-full 13.5 5.8 307
3 GITT, CC-full, GITT 15.3 6.6 241

5,6 CC-full 18.3 7.8 344
8 CC-partial 18.1 7.8 303
8 CC-CV-partial 17.1 7.3 307

Figure 4.11: Simulated lithiation state at the end of first discharge for crystals at different locations
along the lengths of the electrode considered in this study. Each family of profiles of a given
color correspond to an electrode discharged at the indicated current rate. The opacity of the line
corresponds to the position of the crystal for which the profile is shown, going from crystals near
the separator (darkest) to crystals near the current collector (lightest).
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Figure 4.12: Results for each of the three cycling protocols described in this paper. The first
column (a,d,g) corresponds to the full depth of discharge experiment CC-full. The second column
(b,c,h) corresponds to the partial depth of discharge experiment CC-partial. The first column (c,f,i)
corresponds to the partial depth of discharge experiment with a constant voltage hold CC-CV-
partial. Top row shows delivered capacities, second row shows discharge profiles, and thrid row
shows charge profiles. The capacity from the set current and constant voltage portions of the
discharge for the CC-CV-partial as well as their sum is shown in (c).
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Chapter 5

Supervised Learning of Synthetic Big Data for

Li-ion Battery Degradation Diagnosis*

*This Chapter has been published: Karthik. S. Mayilvahanan, Kenneth. J. Takeuchi, Esther. S. Takeuchi, Amy. C.
Marschilok, and Alan. West, “Supervised Learning of Synthetic Big Data for Li-ion Battery Degradation Diagnosis,”
Batteries & Supercaps, p. batt.202100166, Aug. 2021.
The thesis writer’s contribution was ideation, implementation of ML models, analysis and writing.
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5.1 Introduction

Li-ion batteries can undergo significant degradation during use and storage, which result in

capacity fade and power fade. Models to understand, diagnose, and predict degradation are neces-

sary in management of commercialized batteries and development of new batteries. The existing

models for diagnosis and prognosis of the state of Li-ion batteries include empirical, mechanis-

tic, and physics based models. Physics based models describe physical phenomena inside the

battery using coupled partial differential equations.48,82 These models allow for description of a

wide variety of degradation processes in Li-ion batteries, such as solid electrolyte interphase (SEI)

formation45,46,139 and particle cracking.47 Mechanistic models do not explore the root causes of

degradation, but model the evolution of the system using the net effect of the degradation pro-

cesses, such as loss of active material, loss of lithium inventory, and resistance increase.48,140

While these models encode physically relevant information, their applicability may be limited by

more cumbersome evaluation and the large number of parameters that must be identified.

Empirical models include algebraic equations for capacity prediction141 as well as more flexible

data-driven machine learning (ML) models.142 These models have been reported extensively in the

literature for both state of health (SOH) estimation143–147 and remaining useful lifetime (RUL)

prediction.148–153 While they are easy to evaluate, the lack of incorporated physics, and relatively

small data sets make them limited in scope, often to the specific data set, chemistry, and cycling

conditions of the data on which they were trained.

Recently, there has been interest in the community in combining the physical grounding and

interpretability of mechanistic models with the adaptability and ease of evaluation of empirical ML

models.13,154 Specifically, supplementing or replacing experimental training data for ML models

with synthetic training data generated by a physics based or mechanistic model has been proposed

as a solution to the data limitation problem.155

In this study, supervised learning models are trained on low rate charge curves generated by

a mechanistic model published by Dubarry et al.156–158 C/25 charge curves are provided for three
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different cells (graphite-LFP, graphite-NCA, and graphite-NMC811), and full-cell voltage vs. ca-

pacity curves are provided for varying degrees of loss of lithium inventory (𝐿𝐿𝐼) loss of active

material (LAM) in either electrode with extremely high resolution, creating a big-data training set

for the development of ML algorithms. The authors of this data set have published an analysis

alongside a model that uses predefined predictive features from the voltage curves and a lookup

table to predict the values of the degradation modes with very high accuracy ( 1 %).159 Others

have trained ML models on similar, smaller data sets to regress values of the degradation modes as

well.160

The goal of this study is to provide a detailed implementation and comparison of supervised

machine learning models to diagnose battery degradation. We take some common transformations

of the low rate charge curves that are known to contain information relevant for diagnosis, includ-

ing incremental capacity and differential voltage curves, and use these curves to train machine

learning models to diagnose battery degradation. We first train models to regress values of the

common degradation modes and compare model accuracies to the state of the art. Results indi-

cate that random forest regressors trained on features from incremental capacity curves perform

the best, with root mean squared errors of about 5 %. Next, we train classifiers to identify the

limiting electrode during charge and discharge, which can be identified to 97 % accuracy. In delib-

erately choosing interpretable models in this study, we aim to make two main contributions. First,

we quantify interpretable models’ performance, i.e. the ability to learn the relationship between

the voltage curves and the degradation modes. Knowing these values are important when bench-

marking more complex deep learning algorithms, as a simpler model should be chosen if it gives

comparable performance to a more complex model. Second, we explore the ability of interpretable

models to understand what features are indicators of degradation, since models that are able to

perform well and provide same physical understanding at the same time are of great value to the

community. We find that with large synthetic training sets, these simple, interpretable machine

learning approaches can achieve high accuracy while simultaneously offering interpretability after

fitting.
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5.2 Degradation Modes and Limiting Electrodes

A helpful framework provided by Birkl et al.161 categorizes degradation into causes, mecha-

nisms, modes, and effects. Causes include factors such as temperature, voltage cutoffs, current,

and mechanical stress that can affect the extent of degradation. Mechanisms include physical phe-

nomena such as SEI growth, particle cracking, Li plating, etc. that are influenced in a highly cou-

pled way by the causes. Mechanisms manifest in degradation modes, which are broad categories

including loss of lithium inventory (𝐿𝐿𝐼), loss of active material (LAM), and ohmic resistance

increase (ORI). The degradation modes are also coupled to various combinations of degradation

mechanisms. The final category, effects, provides the observable results of the degradation, namely

capacity fade and power fade.

Studies understanding the relationships between causes and effects of degradation are being

conducted on commercial cells.162–164 Such data sets are well positioned for data driven studies

because the training data can be generated under different cycling conditions to observe the result-

ing power and capacity fade, but generating large enough data sets that explore all the causes and

combinations of causes remains challenging.

Mapping causes to mechanisms or mechanisms to effects is more challenging, because there

are several possible mechanisms for a given cell with specific active materials, electrolyte, binders,

conductors, etc. under different cycling conditions. Physics-based models for different mecha-

nisms and their relation to the causes have been proposed and used to some extent48,132,165 but

the resulting parameter space is large unless some cell-specific expert knowledge is applied for

reduction.

Degradation modes represent the collective effects of the degradation mechanisms on the ca-

pacity and voltage. Since the degradation modes can fall into a few broad categories, it is a more

achievable task to identify them.140 In this study, we examine slow rate diagnostic cycles. Be-

cause of the current rate, thermodynamic degradation modes (𝐿𝐿𝐼, LAM) are probed , and ORI

from slower charge transfer kinetics or slower transport will not appear. Future work could include
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analysis of voltage curves at different current rates, which would allow for ORI diagnosis as well.

The data sets from Dubarry et al. analyzed here consider three degradation modes: loss of

lithium inventory (𝐿𝐿𝐼), loss of active material in the positive electrode (𝐿𝐴𝑀𝑃𝐸 ), and loss of

active material in the negative electrode (𝐿𝐴𝑀𝑁𝐸 ). 𝐿𝐴𝑀𝑃𝐸 and 𝐿𝐴𝑀𝑁𝐸 can occur in the lithiated

or delithiated state. In this case, 𝐿𝐴𝑀𝑃𝐸 and 𝐿𝐴𝑀𝑁𝐸 are assumed to occur in the delithiated state.

Any loss of lithiated active material is counted in both 𝐿𝐴𝑀 and 𝐿𝐿𝐼.

Figure 5.1: Exemplary low rate charge curves for an LFP cell. The half cell voltages and resulting
full cell voltage for the case of no degradation (a), 15% 𝐿𝐿𝐼, (b), 45% 𝐿𝐴𝑀𝑁𝐸 , (c), 25% 𝐿𝐴𝑀𝑃𝐸 ,
(d). The hashed bar in the center of each plot represents the cyclable lithium (usable capacity). The
grey regions in the bars in (b-d) show the amount of capacity lost relative to the no degradation
case in (a). Figure is adapted from Reference161.

The effects of these three modes on the low rate charge curves are well documented.140,161

Figure 5.1, adapted from reference161, shows examples of the effects of these modes on the low

rate charge curves. In Figure 5.1a, the case for no degradation is shown. The x-axis is normalized

to the capacity of the positive electrode. Two characteristic parameters of the half cell and full

cell low rate charge curves are defined by Dubarry et al.140: the loading ratio 𝐿𝑅 and the offset

𝑂𝐹𝑆. 𝐿𝑅 is simply the ratio of capacities of the anode to the cathode, i.e. 𝐿𝑅 = 𝑄𝑁𝐸/𝑄𝑃𝐸 . 𝑂𝐹𝑆

represents the offset, or slippage, between the cathode and the anode. When a cell is assembled,

the fully lithiated cathode is aligned with the fully delithiated anode at 0% 𝑆𝑂𝐶𝑃𝐸 . Typically, after

some formation cycles where an SEI is formed and there is loss of lithiated anode, the anode curve
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(red, Figure 5.1a) shrinks to the left such that an offset 𝑂𝐹𝑆 between the two electrodes is formed,

reducing the amount of lithium that can be cycled in the full cell.

As demonstrated in Figure 5.1b, 𝐿𝐿𝐼 causes an increase in the 𝑂𝐹𝑆 between the two elec-

trodes. This can be simply explained by considering the fact that if the anode and cathode both

do not lose sites that can intercalate lithium, the width of the PE and NE curves cannot change.

Therefore, the decrease in capacity due to lost lithium inventory must result from a shift in the

curves relative to each other, resulting in a lower full cell capacity. 𝐿𝐴𝑀𝑁𝐸 (Figure 5.1c) results

in a reduction in the width of the NE half cell curve, whereas 𝐿𝐴𝑀𝑃𝐸 (Figure 5.1d) results in a

reduction in the width of the PE half cell curve.

Based on Figure 5.1a, when the cell is discharged, the sharp drop in cell voltage to reach the

lower cutoff voltage at the bottom of discharge can be attributed to the sharp rise in the anode

potential. Conversely, during charge, the sharp increase in cell voltage to reach the upper cutoff

voltage at the top of charge can be attributed to the sharp rise in cathode potential. Thus, even from

the low rate charge curves, we can determine which electrode limits the capacity on both charge and

discharge. When there is sufficient 𝐿𝐴𝑀𝑃𝐸 , the limiting electrode for discharge switches from the

anode to the cathode, as seen in Figure 5.1d. On charge, when there is sufficient 𝐿𝐴𝑀𝑁𝐸 , because

the anode reversible potential is flat at high states of lithiation, the upper cutoff voltage will not

be reached when the available active material in the anode is fully lithiated (Figure 5.1c). Instead,

lithium plating will occur. While this may not immediately lower the capacity under ordinary

cycling conditions, after some cycles the adverse effects of lithium plating may accelerate capacity

fade.166,167

The onset of these phenomena can be described by the following, adapted from References140

and168:

𝑂𝐹𝑆 = 𝑂𝐹𝑆𝑖𝑛𝑖𝑡 + 𝐿𝐿𝐼 − 𝐿𝐴𝑀𝑃𝐸 (5.1)
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𝐿𝐴𝑀𝑁𝐸,𝑃𝑇 = 1 − 1 −𝑂𝐹𝑆𝑖𝑛𝑖𝑡 − 𝐿𝐿𝐼
𝐿𝑅𝑖𝑛𝑖𝑡

(5.2)

where 𝐿𝑅𝑖𝑛𝑖𝑡 and 𝑂𝐹𝑆𝑖𝑛𝑖𝑡 are the initial loading ratio and offset of the electrodes after formation,

before degradation, as in Figure 5.1a. These values are scaled to the initial 𝑆𝑂𝐶𝑃𝐸 , such that

Figures 5.1b-d can be compared against Figure 5.1a to verify the applicability of equations 5.1

and 5.2. 𝐿𝐴𝑀𝑁𝐸,𝑃𝑇 refers to a reversible plating threshold. The limiting electrodes on charge and

discharge can then be determined based on the values of 𝑂𝐹𝑆 and 𝐿𝐴𝑀𝑁𝐸,𝑃𝑇 .

Discharge:


PE limiting if 𝑂𝐹𝑆 ≤ 0

NE limiting otherwise
(5.3)

Charge:


NE limiting if 𝐿𝐴𝑀𝑁𝐸 ≥ 𝐿𝐴𝑀𝑁𝐸,𝑃𝑇

PE limiting otherwise
(5.4)

Changes in the limiting electrode that occur over the course of cycling, especially the onset of

lithium plating, have been linked to "knee-points" behavior in capacity retention,166,167 so identifi-

cation of these shifts could serve as valuable information during diagnosis.

In this study, we compare supervised machine learning models and voltage curve transfor-

mations for the following tasks: (1) regression of the values of 𝐿𝐿𝐼, 𝐿𝐴𝑀𝑃𝐸 , and 𝐿𝐴𝑀𝑁𝐸 and

(2) classification of the limiting electrode on charge and discharge. The details of the supervised

learning approach, including the selection of the training and testing sets, processing of the low

rate charge curves, and choice of models are outlined in the following section.

5.3 Supervised Learning Approach

Figure 5.2 provides an overview of the workflow for the trained models in this study. For a

given input low rate charge curve, a series of processing steps is taken to extract features. These

features are passed to models for prediction of two different kinds of targets. The first target is the
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simultaneous quantitative prediction of the values of 𝐿𝐴𝑀𝑃𝐸 , 𝐿𝐴𝑀𝑁𝐸 , and 𝐿𝐿𝐼 that correspond

to the low rate charge curve input. The second target is the label for which electrode will limit

capacity when the cell is subsequently charged and discharged at higher rates. The correct labels

for each low rate charge curve are identified using equations 5.1-5.4 with the values of 𝑂𝐹𝑆𝑖𝑛𝑖𝑡

and 𝐿𝑅𝑖𝑛𝑖𝑡 provided in Reference159. The following subsections outline how subsets of the pub-

lished data by Dubarry et al. were selected to train these models and subsequently test them, the

featurization steps, and the selection of candidate models for the regression and classification tasks.

Figure 5.2: An overview of the two prediction tasks for trained models explored in this study.
Low rate charge curves are taken as inputs, features are extracted, and predictions are made on the
values of the three degradation modes and the limiting electrodes on charge and discharge.

5.3.1 Train and Test Set Selection

The data sets provided by Dubarry et al. include low rate charge curves generated with com-

binations of 𝐿𝐿𝐼, 𝐿𝐴𝑀𝑁𝐸 , and 𝐿𝐴𝑀𝑃𝐸 at a resolution of 0.85 % between 0 and 85 % for LFP,

NMC, and NCA.156–158 In total, the number of voltage curves provided exceeded 500,000 for each

cell. To reduce times for training and testing, a more sparse subset of the provided data was chosen.

The training set was chosen with a resolution of 5 % between 0 and 80 % for each degradation

mode, resulting in a training set size of 𝑁𝑡𝑟𝑎𝑖𝑛 = 4,096. This corresponds to 4,096 low rate charge

curves and the corresponding 4,096 vectors of [𝐿𝐴𝑀𝑃𝐸 ,𝐿𝐴𝑀𝑁𝐸 ,𝐿𝐿𝐼]. The testing set was chosen

to test the interpolative ability of the models, and therefore was chosen to have a resolution of 2.5

% between 0 and 80 % for each degradation mode, resulting in a testing set size of 𝑁𝑡𝑒𝑠𝑡 = 32,768.
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As exact values of the three degradation modes may not be represented in these sets, the SciPy

Spatial KDTree function was used to look up the nearest neighbors for the chosen grid.169 These

samples were used to represent the training and testing sets.

Notably, a validation set was not separately chosen here. These data sets are highly structured,

and the training set was designed to span the whole parameter space of interest such that the

trained models would be used only for interpolation and not extrapolation. As a result, we allowed

our models to learn the dataset without any regularization that may require some hyperparameter

tuning. This is discussed further in the model development section.

5.3.2 Featurizing low rate charge Curves

At the low rate charge condition, differential analysis of the voltage curve is known to contain

signatures of degradation. Incremental capacity (IC) analysis takes the derivative of the capacity

with respect to voltage, emphasizing the voltages at which phase equilibria exist.170–175 Differential

voltage (DV) analysis is the inverse of IC, taking the derivative of voltage with respect to capacity,

featuring the transitions between phase equilibria.172,176–178 Peak intensities, areas, locations can

all be use as features to track degradation and for state estimation.140,142,159,179

Experimentally, IC/DV analyses may be complicated due to the presence of noise in the data.161

In addition, some peaks may disappear over the course of aging.160 An alternative approach that

still emphasizes changes in the profile due to degradation was employed by Severson and Attia,

calculating the difference in capacity Δ𝑄 as a function of voltage for a degraded voltage profile

and the voltage profile before degradation.149,153

All three approaches were employed to featurize low rate charge curves, and are shown in

Figure 5.3. Figure 5.3a shows the no degradation curve and a degraded low rate charge curve. In

Figure 5.3b, the Δ𝑄 curve is extracted by subtracting the two curves in Figure 5.3a at each voltage.

Figure 5.3c and 5.3d show the IC and DV curves, respectively.

To translate these curves into a set of features that can be used for machine learning models,

20 evenly spaced points are taken from each curve. For the IC and Δ𝑄 curves, the 20 points are
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Figure 5.3: Low rate charge curves before and after degradation (a). The processing steps calculat-
ing Δ𝑄, IC, and DV are shown in b, c, and d, respectively. In c and d, the transformations shown
are for the low rate charge curve after degradation. The open circles in b-d correspond to the 20
evenly spaced points chosen as features from each curve.
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chosen at evenly spaced voltages between the lower and upper cutoff voltages. For the DV curve,

the 20 points are chosen at 5 % SOC increments, where the SOC scale goes from 0 to 100 (the

maximum capacity delivered before any degradation). One challenge with the DV curve is that

when capacity is lost due to degradation, the value of the DV curve at high SOC is undefined.

These features are set to 0. Some information is clearly lost in choosing these 20 points, especially

in the IC curve in Figure 5.3c.

One key advantage to the approach described here is the automation of discovery of important

features from the IC, DV, and Δ𝑄 curves. Expert identification of features from these curves have

shown highly accurate results in terms of regressing values of the three degradation modes and

for estimating state of health.159,179 However, extracting these features requires some subjectivity,

such as choice of a voltage window to detect a specific peak from which an intensity is extracted. In

the present study, if the voltage window is too small, significant degradation may cause the peak to

move out of the chosen window. If the window is too large, it may capture multiple peaks. While

some have automated peak identification from these differential analyses,175 allowing the most

important features to be determined from the values of these three curves by fitting to the training

data offers a simple alternative that removes the need for predefined featurization. An example of

this is shown in Figure 5.9, where one peak in the IC curve after degradation disappears entirely,

and significant shifts of the other peaks are observed.

Each of these three processing steps was explored individually to determine which gave the

most accurate results. In addition to three different types of processing steps, a fourth was included

that combines the 20 features from each curve to yield 60 features. This was done by joining the

three 20x1 vectors of features into a new 60x1 feature vector. The feature normalization step was

done before this concatenation. This was included since a sensitivity analysis on the Dubarry

data sets revealed that both IC and DV peaks were correlated with degradation.159 Discussion on

potential overfitting is provided in the results section.

To ensure all features were on the same order of magnitude, the features were rescaled based

on the distribution of the feature across all the training samples, a standard practice in feature
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processing for machine learning. In this case, the MinMaxScaler from the preprocessing module

in scikit-learn was used.180

5.3.3 Interpretable Models

In the choice of a data-driven model for a supervised learning task, there is often a trade off

between model performance and model interpretability.181 Many machine learning models, such as

neural networks, are able to achieve excellent accuracies in regression and classification, but lack

the ability to explain the relationship between the input features and the target being predicted.

To this end, we specifically consider machine learning models that are inherently interpretable,

and look to establish the baseline performance of these models relative to the state of the art. As

pointed out by Attia et al., who applied interpretability-focused statistical learning approaches to

remaining useful lifetime prediction, these simpler models can serve as a baseline to more powerful

but less interpretable techniques like deep learning.153

In order to regress values of the three degradation modes, we employ linear regression and two

tree-based models - decision tree and random forest regressors. In linear regression, a weight is

assigned to each feature such that the linear sum of the products of each feature and corresponding

weight predicts the target. The weight for each of the features is readily interpreted to provide

information about the degree of correlation of its feature with the target.

Tree-based methods often outperform linear models when features are highly correlated and

the relationship between features and the target is nonlinear.181 Decision trees take the approach of

segmenting the feature space into regions based on threshold values, an approach that is analogous

to human decision making and is therefore useful for interpretation. Feature importances can be

assigned during fitting based on the improvement in predictive performance for a segmentation

of the features. Random forests take subsets of the available features and subsets of the training

samples, fit individual decision trees to each subset, and average the results. This process, known

as bagging, reduces the high variance of an individual decision tree.135

Classification of the limiting electrode is a multilabel task, with two labels that have two classes
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each (discharge and charge, positive or negative electrode limiting). The same tree-based models

that are used for regression are capable of multilabel classification as well, and are used. In addi-

tion, several other interpretable classification models are used, including logistic regression, linear

discriminant analysis, and Naive Bayes.181 The reader is referred to references135 and180 for more

detailed descriptions of these models.

We do not include regularization in these models. Regularization, or shrinkage, involves in-

cluding a penalty during the fitting of a model that excludes or reduces the effect of redundant

features. Regularization helps ensure that models do not overfit to the training data, especially

when there are many features of the model. Regularization can also help with interpretability by

identifying the most important features. However, because of the highly structured nature of the

synthetic data set and the interpolation-only objective, we did not include any regularization in our

models. For linear models such as linear regression, logistic regression, and LDA, L1/L2-norm

penalties were not applied. For the tree-based methods, minimum depth or tree pruning were not

considered.135

All models in this study were implemented via scikit-learn in python.180 A full table of the

models used in this study is provided in Table 5.1. For the random forests, the default settings in

the scikit-learn implementation (e.g., 100 trees) were used. For the interpretation of model weights

in linear regression and logistic regression, standard errors for the feature weights are not returned

by scikit-learn. These standard errors are required for determination of feature importance, and

are calculated using the linear and logistic regression implementations in statsmodels python mod-

ule.182

5.4 Results

5.4.1 Degradation Mode Regression

The results of the regression using the different models and processing conditions are shown

for each degradation mode and material in Figure 5.4. The results are provided as root mean

104



Table 5.1: Summary of regression and classification models used. All models were implemented
using scikit-learn.180

Algorithm Abbreviation Notes
Linear Regression LinReg Multioutput Regression
Decision Tree Regressor DTR Regression
Random forest Regressor RFR Regression
Decision Tree Classifier DTC Multilabel Classification
Random forest Classifier RFC Multilabel Classification
Logistic Regression LogReg Multilabel Classification via Binary Relevance
Linear Discriminant Analysis LDA Multilabel Classification via Binary Relevance
Naive Bayes NB Multilabel Classification via Binary Relevance

square errors (RMSE), in units of %. RMSE is chosen here as a more conservative metric since it

penalizes larger errors more.

The model-processing combination that yields the lowest RMSE in each heatmap in Figure 5.4

is outlined in red. Across the board, linear regression models appear to underperform relative to

the tree-based models, likely because the latter are better suited to handle the nonlinear relationship

between the features and the degradation modes.135,181 For most cases, random forests trained on

IC features perform the best. These results indicate that random forests improve on the generalize-

ability of the decision trees. This can be seen in Figure 5.10, which compare testing and training

errors. The random forest results consistently have slightly higher training error but a lower test

error. Amongst the linear models, the inclusion of DV features leads to overfitting in LFP, but for

the other materials and featurization steps, the poor performance can be attributed to the use of a

linear model itself. Regularization would likely not improve performance.

Other than the case described above, models trained on DV features tend to not perform as well.

This is because the valuable information in DV curves include features like the distance between

peaks,159,176,183 which cannot be captured in our simple featurization methodology. As discussed

in the example of incremental capacity analysis, knowledge of which peaks to choose to calculate

peak differences requires some knowledge of which peaks are informative a priori, as many local

maxima can be found (see Figure 1 in Reference159). Our approach forgoes this process entirely

by taking 20 evenly spaced features from each DV curve, and is able to achieve accuracies on

the order of 10% RMSE. A more nuanced featurization approach that takes into account distance
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Figure 5.4: RMSE results, in units of %, for each degradation mode (columns) and each active
material (rows). Within each heatmap, regression results are compared for each model (y-axis) and
processing condition (x-axis). The model-processing combination that yields the lowest RMSE in
each heatmap is outlined in red.
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between DV peaks will achieve better accuracies at the cost of more expert knowledge. Also of

note is the performance of models trained on ΔQ features, which are often second best to the IC

features. While some accuracy is forfeited, the avoidance of having to calculate derivatives and

deal with disappearing peaks may render this approach useful in practice.

Compared to the results from the models and features proposed by Dubarry et al.,159,179 which

are able to diagnose the degradation modes to within 1 % using a lookup table, the best interpretable

models used here can only diagnose degradation modes to within 2 to 7 %, depending on the

degradation mode and material. While the expert-defined features predetermined to be correlated

with the degradation modes can be expected to be more predictive, a direct comparison cannot be

made because a much larger training set was used to build the lookup table used for diagnosis in

Ref.159. The accuracies achieved here without having to calculate peak areas of convoluted peaks

or specify voltage or capacity ranges for identifying peaks are notable.

5.4.2 Limiting Electrode Classification

The results of the evaluation of the various classification models and the processing conditions

for the detection of the limiting electrode on (dis)charge in the test set are shown in Figure 5.5. The

x-axis shows the accuracy for predicting the limiting electrode on charge, and the y-axis shows the

accuracy for predicting the limiting electrode for discharge.

Some key takeaways emerge from Figure 5.5. It appears that most of the models and processing

conditions can achieve accuracies as high as 90 %. Because the training set spanned such a wide

space of low rate charge curves and extrapolation was not a concern on the test set, it appears that

with enough training data, several models will perform well. The results for all the models are

provided in Figure 5.11.

As with regression of the degradation modes, the best performing model-processing combina-

tion across all materials is the random forest trained on the IC features. The results for this model

for each cell is shown in Table 5.2. In addition to the classification models considered, classifi-

cation based on the regression estimates were also performed, as a baseline to test the need for
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Figure 5.5: Limiting electrode classification accuracies for charge and discharge for LFP (a), NCA
(b), and NMC (c).

classification at all. If 𝐿𝐴𝑀𝑃𝐸 , 𝐿𝐴𝑀𝑁𝐸 , and 𝐿𝐿𝐼 can be estimated with high accuracy, Equations

5.1-5.4 can be used to classify the limiting electrodes. The random forest classifier trained on the

IC features slightly outperforms the regression models for the limiting electrode classification task.

Table 5.2: Classification results for the Random Forest Classifier trained on incremental capacity
features.

Discharge Charge
LFP 99.1% 98.6%
NCA 98.4% 97.6%
NMC 99.6% 98.3%

5.4.3 Interpretation of Trained Models

In this section, we look to interpret the trained models to gain some understanding of the

learnings of these models.

First, we look at the weights from linear regression, as they are the easiest to understand. Since

the linear regression models do not perform very well compared to the tree-based methods, the

identified features should be taken with caution. To illustrate an example of feature importance
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Figure 5.6: Coefficients and feature importances for a linear regression model trained on IC fea-
tures to predict 𝐿𝐴𝑀𝑃𝐸 in NCA, which yielded an RMSE of 7.35 % on the test set. The shaded
regions indicate the specified voltage window over which features were calculated from the IC
curve in reference159. The legend indicates what feature was calculated in that voltage window,
e.g. area under the IC curve (Area) in the voltage window, intensity of the IC peak in the voltage
window (Peak I), or the voltage at which an IC peak is observed in the voltage window (Peak V).
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from linear regression, we look at the linear model used to regress 𝐿𝐴𝑀𝑃𝐸 in NCA using IC

features, which yielded an RMSE of 7.35 %.

Figure 5.6a shows the weights of each feature in the linear model, which indicates the corre-

lation of the IC value at each of the 20 voltages to the value of 𝐿𝐴𝑀𝑃𝐸 in NCA. Each estimated

weight also has an associated standard error, given by the error bars. The feature importance of

a linear model can be calculated by dividing the magnitude of the weight by its standard error.

Therefore, weights that are known more precisely are given more importance while weights that

are not known precisely are rendered less important. The results of this transformation are shown

in Figure 5.6b.

Also on Figure 5.6 are the features from the IC curve used by Dubarry et al., delineated in Ref-

erence159. These features include peak locations, peak intensities, valley (local minima) locations,

valley intensities, and peak areas in predefined voltage windows. Specifically, the authors find that

three features are predictive of 𝐿𝐴𝑀𝑃𝐸 in NCA: (1) the intensity and voltage location of the IC

peak between 3.0 and 3.6 V (Peak V + Peak I, pink), (2) the area underneath the IC peak between

4.02 and 4.05 V (area, green), and the area underneath the IC peak between 4.15 and 4.225 V (area,

blue). These voltage windows and quantities are shown in the background of Figure 5.6.

The direct comparison between the feature importance identified here and by Dubarry et al.

can only be made qualitatively, since these features are merely intensity values at discrete volt-

ages. Some notable alignments are observed with the peak intensity features above 4 V. The two

corresponding area features in Dubarry et al.’s approach are the two most correlated to 𝐿𝐴𝑀𝑃𝐸 . In-

stead of the peak intensity and location between 3 and 3.6V, our analysis identifies peak intensities

between 3.5 and 3.8 V as predictive features for 𝐿𝐴𝑀𝑃𝐸 .

Next, we examine feature importance from the random forest regressors trained on IC features,

which performed the best at regressing the three degradation modes. Feature importance is de-

termined by the total improvement in training error due to segmentation of each feature averaged

over each tree in the random forest.135

The feature importances for the best trained model for each cell are shown in Figure 5.7. As
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Figure 5.7: Feature importance for random forest regressors trained on IC curves for LFP (a), NCA
(b), and NMC (c).The shaded regions indicate the specified voltage window over which features
were calculated from the IC curve in reference159. The legend indicates what feature was calculated
in that voltage window, e.g. area under the IC curve (Area) in the voltage window, intensity of the
IC peak or minimum in the voltage window (Peak I, Valley I), or the voltage at which an IC peak
or minimum is observed in the voltage window (Peak V, Valley V).
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with the linear regression results, the voltage windows and IC curve features in those voltage win-

dows as defined by Dubarry et al. are shaded in the background of Figures 5.7a-c and labeled to

the side of each subplot. Unlike linear regression, random forest regression allows for simultane-

ous prediction of all three degradation modes, so we cannot correlate a feature with a degradation

mode. Rather, we can see which features are most important in determining the specific combi-

nation of [𝐿𝐿𝐼,𝐿𝐴𝑀𝑃𝐸 ,𝐿𝐴𝑀𝑁𝐸 ]. In some cases, the features determined to be important in this

analysis are consistent with the expert analysis. For example, the IC features at the higher voltages

are most important in our analysis, and the peak area at these voltages were chosen as features by

Dubarry et al. However, at voltages where the published analyses identified IC valley intensities

and locations as important features (i.e. between 3.6 and 3.98 V for NMC), our analyses did not

identify important features.

Finally, we look at an example of feature importance from the classification task. We take the

example of detection of the limiting electrode on charge. This task is related to the detection of

reversible plating as described in Reference159. The results of the logistic regression model trained

on IC features to predict the limiting electrode on charge in NMC are shown in Figure 5.8 as an

example. The logistic regression model achieved an accuracy of 94 % for this classification task

(Figure 5.11f).

As with the linear regression example in Figure 5.6, we have the feature weights in panel a

and the importances, calculated by dividing the magnitude of the weight by its standard error, in

panel b. The shading corresponds to the voltage window in which the IC peak area is expected

to correlate with reversible lithium plating in Reference159. The logistic regression model also

identifies the IC intensity features in this voltage window as important, along with some other

features in the lower voltages. Figure 5.6 also offers an example of an important caution when

interpreting weights in linear models. A larger weight does not necessarily mean a larger feature

importance. In Figure 5.6a we see a large negative weight followed by two smaller positive weights

at higher voltages. However, the standard error on the positive weights are much smaller than that

of the negative weight, so their feature importance is much more.
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Figure 5.8: Weights and feature importances for a logistic regression model trained on IC features
to predict the limiting electrode on charge in NMC. The shading corresponds to the voltage window
in which the IC peak area is expected to correlate with reversible lithium plating in Reference159.

5.5 Outlook

The results presented here, while promising, can likely be improved through method optimiza-

tion. A larger training set could be used, and preliminary analysis shows that the featurization of IC,

DV, and ΔQ curves into more than 20 features can provide some marginal improvements as well.

However, results seem to indicate that the random forests trained on IC show the most promise for

both regression of the degradation modes and the limiting electrode classification problem.

The utility of the methodology presented in this study will depend on knowledge of the cell

specifications, the variability in cell-to-cell behavior, and experience with certain active materi-

als. For example, if the offset and loading ratio are known initially, fitting an OCV model that

is parameterized by the three degradation modes may be sufficient.161 If the expected voltage or

capacity windows for IC or DV peaks are well known, then more nuanced features can be de-

fined and selected to give better predictive performance than is shown here.159,179 The value of the
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approach presented here is that without any knowledge of the behavior of the system other than

the post-formation loading ratio and offset, decent performance can be achieved alongside some

interpretability of the features that are most predictive of changes in the cell.

One limitation of this approach and other similar near OCV estimation approaches is that the

results are highly dependent on the initial loading ratio and offset value being known. To make

these approaches more robust from a cell-to-cell variance perspective (all cells will of course not

lose the same amount of material and lithium inventory during formation, for example) some of this

sample to sample variance could be incorporated into the training data by including a distribution

of 𝑂𝐹𝑆𝑖𝑛𝑖𝑡 and 𝐿𝑅𝑖𝑛𝑖𝑡 values from which to choose for a specific simulated low rate charge curve.

This would then better replicate cell to cell variance, and with some regularization, important

features that stand out over this variation could be identified.

Finally, only thermodynamic degradation modes are explored in the data set used for model

development here, but increase of resistances in cells can also be explored using this type of anal-

ysis.140 Expanding the design space for synthetic voltage curves to include different experimental

conditions that go beyond the C/25 charge will be informative in diagnosing resistance increase in

addition to loss of active material and loss of lithium inventory.

5.6 Conclusions

The above study provides the detailed implementation of a machine learning analysis of a

synthetic big data set containing low rate charge curves generated from different combinations

of thermodynamic degradation modes. Synthetic voltage curves allow for a faster exploration

of the entire range of outcomes due to all the different combinations of degradation modes, a

space that may be too large to explore experimentally. Training machine learning models to learn

the relationships between the outputs from a physics based or mechanistic model, which mirror

experimental observations, and the physical parameters used to generate that synthetic data can

enable more physically relevant state estimators that provide a better understanding of the evolution

of the system.
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Here, we report performance of interpretable machine learning models for regression of degra-

dation modes and classification of the limiting electrode on charge and discharge. Random forests

are shown to outperform linear regression for estimation of the degradation modes. Based on the

comparison of different featurizations of the low rate charge curves, we find intensities of incre-

mental capacity analysis to be informative. The performance of the models reported here can serve

as benchmarks for more complex machine learning models such as neural networks. Finally, the

understanding gained from the trained models is analyzed, and compared to expert-identified fea-

tures, some of which are recovered in our machine learning analysis. The code to reproduce the

results of this study is available in a github repository online.
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5.7 Supporting Information

Figure 5.9: Exemplary low rate charge curves before and after degradation (a). The processing
steps calculating ΔQ, IC (dQ/dV), and DV (dV/dQ) are shown in b, c, and d, respectively.
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Figure 5.10: RMSE, in units of %, for each degradation mode (columns) and each active material
(rows). Within each plot, the test set results are plotted against the training set results, with a
diagonal line indicating equal performance.
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Figure 5.11: Classification accuracies for limiting electrode detection. The columns represent
limiting electrode detection results for discharge (left, greens) and charge (right, yellows), and each
of the three rows is for a specific cell. Within each heatmap, classification accuracies are compared
for each model (y-axis) and processing condition (x-axis). The model-processing combination that
yields the lowest MAE in each heatmap is outlined in red.

118



Chapter 6

Parameter Estimation for Electrode

Degradation: Learning in the Face of

Model-Experiment Discrepancies*

*This Chapter has been published: Karthik. S. Mayilvahanan, Jwal. R. Soni, Kenneth. J. Takeuchi, Esther. S.
Takeuchi, Amy. C. Marschilok, and Alan. C. West, “Parameter Estimation for Electrode Degradation: Learning in the
Face of Model-Experiment Discrepancies,” Journal of the Electrochemical Society, vol. 169, no. 5, p. 050517, May
2022.
The thesis writer’s contribution was ideation, implementation of ML models, analysis and writing.

119



6.1 Introduction

Developing an understanding of degradation in Li-ion batteries is essential for diagnosing poor

cells before catastrophic failure, developing safer usage protocols, and designing materials with

the aim to minimize degradation rates. Approaches to gain this understanding vary widely in

both physical insight and ease of implementation. Those focused on state of health estimation in

onboard applications prioritize fast algorithms to estimate capacity and internal resistance.184 Re-

search and development teams less concerned with speed and more interested in detailed physical

insight may turn to operando materials characterization or even destructive postmortem cell tear

downs.163,185,186

One approach presented in the literature that balances these two ends of the spectrum is to fit

physics-based electrochemical models, such as the single particle model (SPM) or the pseudo-2D

model (P2D), to cycling data. This is done by refitting parameters in a model that describes the

physics of a battery before any cycling to describe the physics at later cycles. This approach has

been used to estimate the evolution of the initial states of charge of the cathode and anode over

the course of cycling from discharge curves.130,131 Similar analyses have been reported that also

track the change in parameters describing transport in the active material and electrolyte domains

as well as those describing the kinetics of charge transfer.132,133 A criticism of this approach may

focus on an over-reliance of imperfect models to extract information from simple but nonideal

measurements.

In efforts to make these analyses more useful in terms of speed and ease of implementation,

the combination of physics-based models with machine learning (ML) has been proposed.154 One

approach could be to replace a physics-based model with a faster surrogate ML model that can

take inputs and generate the same outputs as a traditional physics-based model like voltage and

concentration distributions. If the forward surrogate ML model is fast enough, it can be wrapped

in traditional optimization algorithms to return parameter estimates quickly. However, this type

of model can be challenging because it may be difficult to ensure constraints like monotonically
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changing outputs.187 Instead, inverse surrogate ML models, which map a physics-based model

output like voltage to parameters used to generate those outputs, offer an approach to leverage

the power of ML in fitting physics-based models.187–189 These inverse ML models are trained on

synthetic, physics-based model-generated data offline and then used to optimize parameters of the

model for new sets of experimental data.159,160,190 A schematic of the inverse surrogate ML model

approach is shown in Figure 6.1.

However, the performance of these ML models is constrained by the training data. While some

ML models have better extrapolative ability (i.e. the ability to make predictions outside the scope

of the training data), most models are most effective at interpolating between the training data.13

To ensure that inverse surrogate ML models are interpolating, an expansive training set that covers

a wide parameter space is best.155 Still, if the underlying physics-based model itself is not able

to explain the experimental data, the ML models trained offline on synthetic data may remain

inaccurate when applied to experimental data.

In this paper, we explore the degree to which ML approaches can reduce the impact of dis-

crepancies between physics-based models and experiments in the context of physical state estima-

tion. We build on our previous model development and degradation analysis of lithium trivandate

(LVO), a mid-voltage cathode that incorporates a phase change and simultaneous Li-ion interca-

lation into both phases.32,42,64,165 Featurization of synthetic data, training of neural networks as

inverse surrogate ML models, and a data augmentation strategy to improve the robustness of these

neural networks are discussed. Two cases of model-experiment discrepancy show how ML models

perform relative to a maximum likelihood approach in the face of these discrepancies.

6.2 Methods

6.2.1 Generating and Featurizing Synthetic Training Data

This study follows a previous study on degradation of half cells with LVO cathodes cycling

at 0.2C. Based on published studies of LVO cathodes, the space of parameters that evolve with

121



Figure 6.1: Schematic of an inverse surrogate ML model trained on synthetic voltage curves gen-
erated by a physics-based model.

Table 6.1: Model parameters considered and the range of sampling.
Model Parameter Symbol Range Units

% of nominal amount of active LVO %AM [0.5,1.0] %
Li diffusivity in 𝛼 phase 𝑙𝑜𝑔10𝐷𝛼 [-14.0,-11.0] 𝑐𝑚2𝑠−1

Li insertion rate constant in 𝛼 phase 𝑙𝑜𝑔10𝑘𝑟 𝑥𝑛,𝛼 [-8.0,-6.0] 𝑐𝑚−5/2𝑚𝑜𝑙−1/2𝑠−1

Li diffusivity in 𝛽 phase 𝑙𝑜𝑔10𝐷𝛽 [-15.5, -13.0] 𝑐𝑚2𝑠−1

Li insertion rate constant in 𝛽 phase 𝑙𝑜𝑔10𝑘𝑟 𝑥𝑛,𝛽 [-9.5, -7.0] 𝑐𝑚−5/2𝑚𝑜𝑙−1/2𝑠−1

cycling at this rate was narrowed to five parameters, summarized in Table 7.1.55,58,70,124,129,165

These parameters are known to be identifiable at this discharge rate and within these bounds.165

Sobol sampling was used to efficiently sample the five dimensional parameter space, imple-

mented using Scipy.191 A total of 1,024 unique combinations of the five parameters were created

and passed to the physics based model to create the corresponding discharge voltage curves. The

1,024 simulations were filtered for simulations that did not run into numerical issues and were

lithiated to at least 10 % depth of discharge by the time the lower cutoff voltage was hit, yield-

ing 710 simulations. It should be noted that this is a relatively small training set size compared

to our previous work and the amount of synthetic data generated by others for inverse surrogate

model training.155,159 The resulting accuracy metrics are not an upper bound, but rather should be
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considered in relation to different estimation approaches using the same data set.

To convert a continuous curve to a set of features that can be passed into a ML model, we

take an approach used by Severson and Attia.149,153 Most curve-fitting studies fit voltage curves to

minimize the error in voltage. However, in this study, curves are fit to minimize error on the x-axis

(i.e. time, state of charge, or capacity). In standard experiments within the scope of this study, the

voltage window for cycling is fixed. We can take advantage of this by discretizing a voltage curve

using values of the time at voltages evenly spaced by 1 mV between the upper and lower voltage

cutoff limits. The time values are multiplied by the c-rate (𝐶𝑟), resulting in feature values (𝑡𝐶𝑟) on

the order unity. This transformation is done for simplicity, in preparation for future work extending

this approach to multiple c-rates, and because features of order unity are preferred in certain ML

models.192 The impact of the feature resolution on the model accuracy was also considered,153

since lower feature resolution (i.e. features spaced out by 100 mV as opposed to 1mV) could be a

way of acknowledging some nuance in the experiments is not captured by a physics based model.

This feature resolution did not significantly impact results when testing against the synthetic data

in this study. Details of this analysis are provided in the Supporting information (Figure 6.10 and

Figure 6.11).

6.2.2 ML Model Training

A deep neural network (NN) was used as the inverse surrogate ML model. Other ML models

such as multi-output linear regression and random forest regression have been used as inverse

models and can be trained much faster than NNs.187,190 NNs were chosen for their superior ability

to learn the training data and interpolate between them.192 Training of NNs was implemented

using keras, a python-based deep learning interface.193 Features passed into the NNs were already

on the order of one, but as the parameters being regressed were not, the MinMaxScaler from

scikitlearn was used to scale these parameters.scikit-learn The KerasTuner tool was used to optimize

the number of hidden layers and the number of nodes per layer in the NN. The optimized network

was then trained for 1200 epochs with a batch size of 128, with a 20% validation split. An adaptive
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learning rate was also applied such that when learning stagnated during training, the learning rate

was reduced to further improve model performance. The NN trained on the original training set

with no feature engineering is referred to throughout the text as 𝑁𝑁𝑏𝑎𝑠𝑒. Further details about the

implementation can be found in the accompanying code on github.

In some case studies, we found that 𝑁𝑁𝑏𝑎𝑠𝑒 would output physical parameters with unrealistic

values. An example of this is shown in Figure 6.2, where the 𝑁𝑁𝑏𝑎𝑠𝑒 trained on an imperfect

physics-based model is used to estimate physical parameters from a synthetic experimental volt-

age curve. The parameter predictions are passed back through the physics-based model and the

resulting voltage curve (gold) clearly differs significantly from the synthetic experiment. Examples

like the one in Figure 6.2 motivated us to pursue strategies to improve the robustness of NNs for

parameter estimation, namely data augmentation.

Figure 6.2: Voltage curves for an exemplary synthetic experiment and the resultant voltage curves
that correspond to parameter estimates from estimators that are trained on an imperfect physics-
based model (see Simulating Experiments with Discrepancies and Figure 6.4).

Data augmentation is the addition of different amounts of noise to the training data to increase

the size of the training set, and is illustrated graphically in Figure 6.3. In most use cases, data

augmentation is implemented by adding random noise to the features, combatting overlearning

of the training data. However, adding random noise to the current set of features would create
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unrealistic discharge curves that would not decrease monotonically. Instead, a systematic shift is

introduced. A random value of 𝑡𝐶𝑟 is sampled from a uniform distribution between 0 and 0.15.

This number is added to all the features in the curve, effectively shifting the curve forward in time

by some amount. This type of shift could replicate cases where the model is unable to capture

physics at the beginning of a discharge.

For a set of training data that includes 𝑀 discharge curves, 𝑀 different numbers are sampled

from the uniform distribution and are added to the 𝑀 discharge curves. This procedure can be

repeated multiple times, choosing a new set of 𝑀 random shifts each time and thus multiplying the

training set size. By adding this systematic noise, NNs are taught not to overly rely on the absolute

value of the features in predicting the output parameters, but rather to use relative values of the

features (i.e. the shape of the discharge curve). By adding different shifts to the same original

discharge curve, the training set size can be inflated to much larger sizes without having to do any

more evaluations of the physics based model. Both benefits improve the robustness of the NNs.

In our results, we compare the performance of NNs trained on the original synthetic data set

(𝑁𝑁𝑏𝑎𝑠𝑒) to NNs trained on an augmented synthetic data set (𝑁𝑁𝐷𝐴). We also quantify the per-

formance improvement for different degrees of data augmentation in the Supporting Information

(Figure 6.12). In the main text of this paper, we present results for a training set that has been

increased to 8x the original size using the data augmentation approach. A feature resolution of 100

mV is used for this model to reduce training time. For the specific synthetic experiment in Figure

6.2, it is clear that the estimated parameters by 𝑁𝑁𝐷𝐴 are more accurate than that of 𝑁𝑁𝑏𝑎𝑠𝑒, as

the resulting voltage curve falls on top of the synthetic experiment voltage curve. While this is

only one specific example chosen to illustrate the potential of inaccuracy of 𝑁𝑁𝑏𝑎𝑠𝑒, results are

presented that show that over a large and diverse set of testing data, 𝑁𝑁𝐷𝐴 is more accurate than

𝑁𝑁𝑏𝑎𝑠𝑒 (Figure 6.8).

In addition to this comparison, both models are compared to a baseline maximum likelihood

analysis using the training data, the details of which are provided in the Supporting Information.71

It is important to note that while the physics based model could have been wrapped in an opti-
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mization algorithm which would yield more accurate estimates than those reported in the Results

section for this maximum likelihood analysis, it would involve several evaluations of the physics-

based model for each new set of experimental data for which parameters need to be estimated.

Instead, we provide a baseline that uses the exact same set of data used to train ML to estimate pa-

rameters, and aim to show that the ML models are able to make better use of simulations generated

by a fixed number of evaluations of a physics-based model.

An independent test set was used to test accuracies of the ML models. The simulations were

in the same parameter bounds listed in Table 7.1, and therefore specifically tested the interpolative

ability of the models.

Figure 6.3: Graphic illustrating data augmentation implementation in this study. Each voltage
curve is represented by a value in a table, where the columns correspond to the voltage at which
the feature value is tabulated. A systematic shift, the value of which is chosen randomly, is applied
to each curve. This process is repeated with different values of shifts for each curve (i.e., row in
the training set table) to triple the training set size.

6.2.3 Simulating Experiments with Discrepancies

We consider two possible cases of discrepancies between experiment and physics-based model.

The first is a situation where the assumptions required for the model analysis are not met by the
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experimental protocol. In the current analysis, we look at discharge curves to estimate parame-

ters that describe the physical state of the system. Ideally, all other parameters in the system are

known and remain unchanged. While some experimentation and dimensional analysis can iden-

tify these parameters precisely and render other parameters insensitive to the experiment,189 others

may meaningfully impact the discharge voltage curve, and assuming incorrect values for them

could lead to inaccurate estimates of the desired parameters.

The state of lithiation in the cathode at the beginning of a discharge is explored as one of

these parameters. In standard cycling experiments, it is often practice to include a constant voltage

hold at the top of charge to fully delithiate the cathode before the subsequent discharge. A rest

(current turned off) step after this constant voltage hold can be used to track the open circuit

voltage of the cathode before each discharge, which can be mapped to a state of lithiation (𝑆𝑜𝐿)

using the equilibrium voltage curve. However, these steps will extend the time required for the

testing procedure, which may be detrimental in resource limited settings, and could also alter the

degradation trajectory by causing the cell to spend more time at a higher voltage.194 Therefore, in

experiments where these measures are not taken, uncertainty in the initial state of lithiation of the

cathode could impact estimates of the physical state parameters of interest. To simulate this case,

722 simulations where the five parameters in Table 1 are varied simultaneously with the initial state

of lithiation (𝑆𝑜𝐿0) in the cathode were used. 𝑆𝑜𝐿0 was varied from 0 to 10% in this data set.

The second case of model-experiment disagreement arises from the model itself being an in-

correct descriptor of the cathode material’s inherent properties. We consider a case where the open

circuit voltage curve, a requirement for any physics-based battery model, differs from that of the

material being analyzed. To do this, we modified the curve from that used in the physics based

model that generated the synthetic training set for the NNs. A 50 mV shift upwards was applied to

the original curve in the high-slope region, above 2.9V. The original and modified curve are shown

in Figure 6.4.

In both of the above case studies, the simulated voltage curves were passed into the pre-trained

ML models, and the predictions of the physical parameters were compared to the true values. We
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Figure 6.4: Original OCV-SoL (state of lithiation) curve used to generate the training set for the
inverse ML models in this study, and the modified curve used to evaluate the ML models’ perfor-
mance in the face of an inherent discrepancy between the data used to train the ML and the data
being evaluated by the ML.

explore the accuracy and precision of the estimates to evaluate the robustness of the maximum

likelihood analysis and two ML models towards these two different kinds of discrepancies.

6.3 Results

The accuracies of the three estimation procedures for the five parameters are presented in Figure

6.5, evaluated on an independent test set and presented as mean absolute percent errors (MAPEs).

The Maximum Likelihood analysis was performed using the same data that were used to train

𝑁𝑁𝑏𝑎𝑠𝑒 and 𝑁𝑁𝐷𝐴. The comparatively poor accuracy can be attributed to sparse samples in a

five dimensional parameter space. The 𝑁𝑁𝑏𝑎𝑠𝑒 model is able to take better advantage of the train-

ing data to return more accurate predictions. The 𝑁𝑁𝐷𝐴 model leverages the data augmentation

procedure to improve on the accuracy of the 𝑁𝑁𝑏𝑎𝑠𝑒 model. Parameters that are more accurately

estimated in the Maximum likelihood analysis are also more accurately estimated by the two NNs.

Scatter plots of the predictions plotted against the true values for this test set (Figure 6.13), show

that the estimates are not systematically overestimates or underestimates for any of the parameters.
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Figure 6.5: Mean absolute percent error (MAPE) for each of the five parameters, designated by
color for each estimation approach.

6.3.1 Nonideal Experiments: Initial State of Lithiation

Next, we consider the case of discrepancy between physics based model and experiment where

the experiment does not meet the assumptions of the training set used to train the ML offline. The

NNs, trained on simulations where the initial state of lithiation (SoL) is always assumed to be 0 at

the beginning of a discharge, are evaluated on a data set where SoL is varied from 0 to 10%, along

with the five other parameters. The results for all three estimation approaches are shown in Figure

6.6. Scatter plots show the estimates compared to the true values, with a dashed black line that

indicates a perfectly accurate estimate. The color of the points on the plots indicate the initial state

of lithiation, and can be used to gauge whether inaccuracy can be attributed to a higher initial state

of lithiation.

The Maximum Likelihood estimates lose accuracy compared to the base test set in which 𝑆𝑂𝐿0

was maintained at 0 (Table 6.15). The 𝑁𝑁𝑏𝑎𝑠𝑒 model, which had improved on the accuracy of

the Maximum Likelihood estimates in the case of 𝑆𝑂𝐿0 = 0 (Figure 6.5), now returns highly

biased estimates. As 𝑆𝑂𝐿0 increases from 0 towards 10% (from indigo points to yellow points

in Figure 6.6), the parameters are systematically overestimated or underestimated. For %𝐴𝑀 and

𝐷𝛽, the inaccuracies are modest, whereas for the other parameters, a higher initial state of lithiation

exacerbates the inaccuracy. These results indicate that the predictions of certain physical states are
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sensitive to the initial state of lithiation, and failure to include a constant voltage hold at the top of

charge in experiments may lead to inaccurate estimates using a neural network trained on physics-

based model simulations that do not account for this nonideality.

However, the results in the bottom row of Figure 6.6 indicate that the data augmentation pro-

cedure can mitigate these inaccuracies to some degree. Though the same trends of higher 𝑆𝑜𝐿0

leading to more inaccuracy are maintained for all parameters, the degree of the inaccuracy is re-

duced when data augmentation is applied. The only exception is that when 𝑆𝑜𝐿0 exceeds 6%,

𝐷𝛼 is overestimated by up to three orders of magnitude. Based on these results, on average, data

augmentation can be seen as a strategy to improve robustness of surrogate inverse neural networks

towards nonideal charge.

Figure 6.6: Estimates versus true values of parameters (columns) using different estimation ap-
proaches (rows), colored by the initial state of lithiation 𝑆𝑜𝐿0 (%). This is quantified by the mean
absolute percent errors in Figure 6.15.

6.3.2 Imperfect Physics-based Model: OCV

We next examine the case where the physics based model is an imperfect descriptor of the cath-

ode, described in the last portion of the Methods section. The results of the Maximum Likelihood
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estimates and the two neural network predictions are shown in the form of residual histograms in

Figure 6.7. The residual (difference between estimate and truth) is calculated for each sample in

the test set. Visualization of the residual distribution clarifies both the accuracy (how close the

peak of the distribution is to 0, dashed vertical line) as well as the precision, i.e. the width of the

distribution. Scatter plots of the predictions as a function of the true values, which contain more

detailed information like the dependency of accuracy on the true value, are provided in Figure 6.14.

We again find that the Maximum Likelihood estimates are less accurate than the case where

the model is a perfect descriptor of the experiments (Table 6.15), which is of course expected.

However, there does not appear to be any bias to the estimates, unlike the predictions from the

𝑁𝑁𝑏𝑎𝑠𝑒 model, which are clearly biased. The %𝐴𝑀 is underestimated, and all other parameters

are overestimated, as evidenced by predictions falling to the right of the dashed line indicating

a perfect estimate. However, moving to the neural network trained on the simulations with data

augmentation, these biases are rectified to some extent. The residuals move closer to zero and are

also less spread out, meaning that the estimates are both more accurate and more precise.

This cast study indicates the danger in using neural networks for parameter estimation with

an imperfect physics-based model. If the physics-based model does not adequately describe the

experiments, predictions from an inverse surrogate ML model trained on this physics-based model

could lead to highly inaccurate results. Strategies like data augmentation may be required to miti-

gate this kind of bias.

Figure 6.8 summarizes the results presented above, comparing performance of each of the

estimators for the base test set and for the cases of nonideal experiment and imperfect model.

Results are shown for three of the five parameters that describe the thermodynamics, transport,

and kinetics in LVO particles. For each of the estimators, model-experiment discrepancy leads to

a larger inaccuracy in the estimate. Comparing the 𝑁𝑁𝐷𝐴 to the 𝑁𝑁𝑏𝑎𝑠𝑒, it is clear that in both

cases of model-experiment discrepancy, data augmentation limits the loss in accuracy relative to

the base case.
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Figure 6.7: Histograms of the residuals of the predictions using different estimation approaches
(rows) for the data set using the modified (orange) OCV curve from Figure 6.4, where 𝑁𝑁𝑏𝑎𝑠𝑒 and
𝑁𝑁𝐷𝐴 were trained on a data set using the original (blue) curve from Figure 6.4.

Figure 6.8: Root mean squared errors (RMSEs) for three of the five parameters of interest, grouped
by the estimator and colored by the evaluation set.
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6.3.3 Evaluation on Experiments

Given the above analysis that compares the robustness of the maximum likelihood estimation

to that of the two neural networks, we take each of these estimators and apply them to experimental

cycling data, published previously.165 The results are shown in Figure 6.9. Estimates are provided

as points for each cycle, with a line representing the five cycle rolling average passing through

the points. The reader is referred to Ref.165 for more discussion on the physical meaning of the

evolution of these parameters.

Maximum Likelihood estimates are qualitatively consistent with the results that were fit to

voltage as opposed to time in our previous work.165 Discontinuous predictions from the Maximum

Likelihood analysis are present because the estimate accuracy is limited by the sparsity of the data

set used to perform the maximum likelihood analysis. As mentioned earlier, if a larger number of

parameter combinations in the five parameter space were simulated (as was done in Ref.165), the

maximum likelihood estimates would be more accurate and the estimates on the experimental data

would thus be more continuous.

Based on the conclusion that the 𝑁𝑁𝐷𝐴 model is the most robust, we put the most faith in these

estimates. For 𝐷𝛼, 𝑘𝑟𝑥𝑛,𝛼, and 𝐷𝛽, we see that the 𝑁𝑁𝑏𝑎𝑠𝑒 model, while predicting similar trends in

evolution of the parameter to the 𝑁𝑁𝐷𝐴 model, returns values that are orders of magnitude above

the 𝑁𝑁𝐷𝐴 estimates and are outside of the expected parameter range based on the training data

(Table 7.1). These results indicate that the 𝑁𝑁𝐷𝐴 model is able to interpolate between the training

data effectively, without succumbing to the significant bias that the 𝑁𝑁𝑏𝑎𝑠𝑒 model suffers from in

the face of discrepancies between the physics-based model and experiment.

6.4 Conclusions

A detailed procedure for implementing robust neural networks to estimate parameters from dis-

charge curves is presented. Neural networks show strong interpolative ability in a five dimensional

parameter space when trained on fewer than 1000 simulations, returning more accurate estimates
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Figure 6.9: Predicted values of five parameters in Table 7.1 for experimental data published in
Reference165 using different estimation approaches. Estimates are shown as points, and the line
passing through the points represents a five cycle rolling average.
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than a maximum likelihood analysis using the same number of simulations. Neural networks

trained on the same set of simulations but augmented with random shifts that increase the num-

ber of curves for training to eight times the original amount show even better performance. Data

augmented neural networks are more robust when trained on an imperfect physics-based model or

when estimating parameters for nonideal experiments. The application of a neural network without

data augmentation can lead to highly biased, inaccurate parameter estimates.

Though presented in the context of tracking degradation, this approach is relevant to parameter

optimization of physics-based models more generally. The choice of optimization approach will

depend on the complexity of the physics-based model, the number of parameters to optimize, and

the data being fit.189 If one chooses the inverse ML surrogate model approach, the implementation

details and discussion on robustness presented in this paper are all relevant. The two case stud-

ies testing the robustness of neural networks are specific examples of possible model-experiment

discrepancy relevant to the use case of physics-based models to track degradation.
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6.5 Supporting Information

6.5.1 Maximum Likelihood Estimation

The maximum likelihood estimate are derived from Bayes Theorem. Consider a vector of 𝑘

parameters 𝑋 .

𝑋 = [𝑝1, 𝑝2, ...𝑝𝑘 ]

Given a set of observations, in this case a set of features {𝑡𝐶𝑒𝑥𝑝𝑟 } representing a discharge

profile (see Methods in main text for a detailed description of converting a voltage curve to 𝑡𝐶𝑟

features), the posterior distribution for the parameters in 𝑋 that best describe the data can be written

as follows.

𝑝𝑟𝑜𝑏(𝑋 |{𝑡𝐶𝑒𝑥𝑝𝑟 }) = 𝑝𝑟𝑜𝑏({𝑡𝐶𝑒𝑥𝑝𝑟 }|𝑋)𝑝𝑟𝑜𝑏(𝑋)
𝑝𝑟𝑜𝑏({𝑡𝐶𝑒𝑥𝑝𝑟 })

The first term in the numerator is the likelihood of observing the voltage curve represented by

{𝑡𝐶𝑒𝑥𝑝𝑟 } given the parameters 𝑋 . The second term in the numerator contains prior knowledge of

the parameters 𝑋 . In this study, we use uniform priors for the five parameters, listed in Table 7.1.

The denominator is referred to as the evidence, and can be taken as a scaling factor independent of

the parameters 𝑋 . Therefore, the posterior distribution is proportional to the likelihood function.

𝑝𝑟𝑜𝑏(𝑋 |{𝑡𝐶𝑒𝑥𝑝𝑟 }) ∼ 𝑝𝑟𝑜𝑏({𝑡𝐶𝑒𝑥𝑝𝑟 }|𝑋)

If the voltage curve is discretized into 𝑁 features (see Methods), the right hand side can be

expanded as

𝑝𝑟𝑜𝑏(𝑋 |{𝑡𝐶𝑟}) ∼
𝑁∏
𝑗

1
𝜎𝑒𝑥𝑝

√
2𝜋
𝑒𝑥𝑝

(
(𝑡𝐶𝑠𝑖𝑚

𝑟, 𝑗
(𝑋) − 𝑡𝐶𝑒𝑥𝑝

𝑟, 𝑗
)2

−2𝜎2
𝑒𝑥𝑝

)
which can be simplified to
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𝑝𝑟𝑜𝑏(𝑋 |{𝑡𝐶𝑟}) ∼
(

1
𝜎𝑒𝑥𝑝

√
2𝜋

)𝑁
𝑒𝑥𝑝

(∑𝑁
𝑗 (𝑡𝐶𝑠𝑖𝑚𝑟, 𝑗 (𝑋) − 𝑡𝐶

𝑒𝑥𝑝

𝑟, 𝑗
)2

−2𝜎2
𝑒𝑥𝑝

)
The feature values simulated by the physics based model for a set of parameters 𝑋 are indicated

by superscript 𝑠𝑖𝑚. The term multiplying the exponential is a constant. The summation in the

numerator of th exponential is the residual sum of squares, or 𝑅𝑆𝑆, describing the goodness of fit

of a simulation with the experimental data. Written simply, the posterior distribution is related to

the 𝑅𝑆𝑆 by

𝑝𝑟𝑜𝑏(𝑋 |{𝑡𝐶𝑟}) ∼ 𝑒𝑥𝑝
(
𝑅𝑆𝑆

−2𝜎2
𝑒𝑥𝑝

)
The experimental uncertainty 𝜎𝑒𝑥𝑝 is assumed to be 0.02, or a two percent state of lithiation.

This assumption does not impact the mean predicted estimates. After performing 𝑀 simulations

for a set of 𝑀 Sobol points in the parameter space of 𝑋 (see Methods), the relative probabilities of

each set of parameters is given by the above equation, and can be used to calculate the maximum

likelihood estimate 𝜇𝑝 for a parameter 𝑝, given below.

𝜇𝑝 =

∑𝑀
𝑖 𝑝𝑖𝑒𝑥𝑝

(
𝑅𝑆𝑆𝑖

−2𝜎2
𝑒𝑥𝑝

)
∑𝑀
𝑖 𝑒𝑥𝑝

(
𝑅𝑆𝑆𝑖

−2𝜎2
𝑒𝑥𝑝

)
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6.5.2 Feature Resolution

Voltage versus time discharge curves are converted to a vector of features. The time values

at a set of voltages spanning the upper and lower cutoff voltage (3.6V and 2.0V for LVO) are

scaled by the C-rate (𝐶𝑟) to create a set of 𝑡𝐶𝑟 values. The voltages at which these features are

taken is determined by the feature resolution. For example, a 10 mV resolution results in 160 𝑡𝐶𝑟

features to represent a curve. The figures presented below analyze the effect of feature resolution

on Maximum Likelihood estimates as well as estimates from a neural network.

Figure 6.10: Accuracies of the Maximum Likelihood estimates, given as mean absolute percent
errors (MAPEs), for voltage curves featurized at different resolutions. There appears to be a drop
in accuracy above 50 mV resolution.
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Figure 6.11: Accuracies of the 𝑁𝑁𝑏𝑎𝑠𝑒 model estimates, given as mean absolute percent errors
(MAPEs), for voltage curves featurized at different resolutions. The accuracy does not appear to
follow any trend with resolution.
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6.5.3 Data Augmentation

This section is provided to demonstrate the impact of increasing degrees of data augmentation

on prediction accuracy. The data augmentation procedure is outlined in the Methods section in the

main text.

Figure 6.12: Accuracies of 𝑁𝑁𝐷𝐴 models trained on different amounts of augmented training data,
given as mean absolute percent errors (MAPEs). 1x refers to a single set of random shifts added
to the original training set, whereas 8x refers to 8 different sets of random shifts added to the same
original training set to create 8 different data sets that can be combined into one large training set.
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6.5.4 Estimation Accuracy

In this section, we provide scatter plots of predictions versus truth for the Maximum likelihood

estimates accuracies in Figure 6.5 and for the residual histograms in Figure 6.7. In addition to these,

mean absolute percent errors (MAPEs) for all three estimators applied to the three evaluation sets

(base test set, case of imperfect experiments, and case of imperfect model) are provided.

Figure 6.13: Predicted versus true values of parameters (columns) using different estimation ap-
proaches (rows) for the base test set that contained no model-experiment discrepancies were intro-
duced.
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Figure 6.14: Predicted versus true values of parameters (columns) using different estimation ap-
proaches (rows) for the data set using the modified (orange) OCV curve from Figure 6.4, where
𝑁𝑁𝑏𝑎𝑠𝑒 and 𝑁𝑁𝐷𝐴 were trained on a data set using the original (blue) curve from Figure 6.4.

142



Figure 6.15: Table of mean absolute percent errors (MAPEs, units of %) for each parameter (a-
e), with rows containing results for the three estimators applied to three different evaluation sets
(columns).
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Chapter 7

Physics-based Models, Machine Learning, and

Experiment: Towards Understanding Complex

Electrode Degradation*

*This Chapter is in preparation to be submitted for publication: Karthik. S. Mayilvahanan, Andrew Nicoll, Jwal.
R. Soni, Kenneth. J. Takeuchi, Esther. S. Takeuchi, Amy. C. Marschilok, and Alan. C. West, “Physics-based Models,
Machine Learning, and Experiment: Towards Understanding Complex Electrode Degradation.”
The thesis writer’s contribution was ideation, implementation of ML models, analysis and writing. The electrochemi-
cal observations and characterization were provided by Andrew Nicoll from the Marschilok-Takeuchi Research Group
at Stony Brook University.

144



7.1 Introduction

Understanding degradation for a battery chemistry can be essential in both the cell and materi-

als design process as well as diagnosis and prognosis over the course of the battery’s use. Current

approaches to develop mechanistic understanding span a range of length and time scales, including

everything from highly accessible materials and electrochemical characterization to more powerful

but less accessible synchotron characterization.

Model-based approaches to understanding degradation offer a rapid alternative to experiment

for diagnosis and mechanistic hypothesis testing. Many have used physics-based models to simu-

late cycling and consequent degradation behavior, such as parasitic reactions, surface layer growth,

Li plating, or particle cracking.44–49,139,195,196 This approach can be powerful in exploring how

different degradation mechanisms depend on conditions and usage, and in predicting future per-

formance. However, this approach of explicitly defining degradation mechanisms and simulating

long-term usage can be difficult because there are multiple possible ways of coupling mecha-

nisms, and models for these mechanisms often include rate constants or fitting parameters that

must be calibrated to experiments.48,49 More work is required to parameterize models for degrada-

tion mechanisms and select between competing models for the same phenomena.

Models can also be useful in the context of diagnosis, i.e. estimating the state of the system. In

real-time applications, this is often referred to as state of health estimation, and involves estimating

the available capacity of a cell and its internal resistance. The models best suited for these appli-

cations tend to be reduced order representations of cells, such as equivalent circuit models or even

data driven state estimators.184 When speed, resource efficiency, and accuracy are less of a priority

than mechanistic understanding, models that are more detailed in their description of cell and par-

ticle level physics may be of interest. Physics-based, continuum level electrochemical models can

be used to describe the state of a cell over the course of cycling by refitting model parameters to

data over the lifetime of the cell. Tracking the changes in model parameters describing transport

in the active material and electrolyte domains as well as those describing the kinetics of charge
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transfer can provide insight into the evolution of different kinds of internal impedances in the

cell.132,133,165,197 Similarly, tracking evolution of the amount of active material in each electrode,

or the lithium inventory in the cell is essential to quantify sources of capacity loss.131,133,197

In this paper, we apply the parameter estimation approach to lithium trivandate (LVO) cathodes

cycling at different current rates. Electrodes are cycled under currents much higher than typically

reported in the literature, activating degradation mechanisms that lead to different observed degra-

dation trajectories. We track parameter evolution over the course of cycling at these different rates

using an ML model trained offline on synthetic data (i.e., data derived from validated physics-

based models that have been reformulated to account for model parameter changes representative

of degradation), and provide commentary on how to enhance the analysis of capacity fade curves

with this procedure. Through analysis of exemplary cells and their parameter estimates, we show

how insights from this type of analysis can be used to narrow the scope of possible mechanisms.

We proceed to provide parameter estimates for a larger data set of LVO cells, and conclude with

thoughts on the value of this approach in the context of degradation analysis.

7.2 Methods

7.2.1 Experimental

LVO electrodes were prepared according to procedure outlined in Reference129. The electrodes

are composed 𝐿𝑖1.1𝑉3𝑂8 and carbon nanotubes (CNTs) in a weight ratio of 7:3, and are punched

into 0.5 inch diameter electrodes. Cells were assembled with Li metal anodes, polypropylene sep-

arators, and 1M 𝐿𝑖𝑃𝐹6 in ethylene carbonate/ dimethyl carbonate (volume ratio of 3:7) electrolyte.

It has been verified via modeling that these electrodes contain sufficient porosity that electrode-

scale concentration gradients under the experimental conditions considered are not important.129

Cells were cycled under constant current, at C-rates between 0.2C and 2C (1C = 362 mAh/g)

and between 3.75V and 2.0V at a fixed temperature of 30degC. Some cells underwent a "revival"

procedure, where the cycled cell was disassembled and the cathode was reassembled into a new
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cell with a fresh Li metal anode, separator, and electrolyte.

7.2.2 Physics-Based Model and Parameter Estimation

The model being fit to experiments is outlined in Reference32. The model describes simultane-

ous phase change and lithiation of the layered 𝛼-phase and rock-salt type 𝛽-phase on the particle

scale. This model, like most physics-based electrochemical models, has several parameters that

could evolve, and some domain knowledge was used to reduce the parameter space. McCarthy

et. al. showed via location-dependent energy dispersive x-ray diffraction (EDXRD) experiments

before and after cycling that degradation is not a heterogeneous effect along the length of the

electrode.129 Based on this result, model parameters describing physics on the particle scale were

estimated. These parameters include those describing intercalation kinetics in each phase, Li trans-

port within each phase, and the amount of ionically and electronically connected active material in

the cathode.

It is important to note that the parameters being estimated are representations of multiple phys-

ical processes. For instance, evolution of an estimated diffusion coefficient does not necessarily

mean that the true diffusivity is changing. Rather, it is an indication that the time scale for the dif-

fusion process is changing. This nuance is important because the diffusivity cannot be decoupled

from the length scale for diffusion. Therefore, a change in an effective length scale for diffusion

could explain a change in the estimated diffusivity.189,198 Similarly, changes in kinetic parameters

result in state of charge independent shifts of the voltage curve in the model. Therefore, decreases

in these parameters are proxies for increases in electronic resistances in the cell. The kinetic pa-

rameters such as exchange current density cannot be decoupled from surface area, so increases in

surface area will appear as increases in the kinetic parameter.

The parameter estimation procedure follows the development outlined in Reference199, with

some slight modifications. The general framework is to generate a training set of pairs of parame-

ters, pass these parameters through a validated physics-based model to generate the corresponding

electrochemical data, and train a machine learning model to map the electrochemical data to the

147



parameters.154,159,187,188,190,199

Samples were taken using Sobol sampling in a seven parameter space, including the five pa-

rameters described above, C-rate, and initial state of lithiation. The bounds for the parameters are

provided in Table 7.1. The initial state of lithiation at the start of a discharge half-cycle could be

nonzero if the previous charge did not remove all the Li in the particle, and was included to intro-

duce some physically motivated noise into the training set. These samples were passed through the

physics-based model to create discharge curves for training.

A feed forward neural network (NN) was trained to take a discharge curve and the operating C-

rate as an input and regress a vector of five parameters that correspond to that discharge curve. The

data augmentation procedure outlined in Reference199 was employed prior to training, leading to

an 8x increase in training set size. During the training, samples in the training set that have C-rates

closer to C-rates used in experiment are weighted more when computing the loss. Uncertainties

in the parameter estimates are calculated using Monte Carlo dropout. Full details of the data gen-

eration, featurization, data augmentation, network specifications, training procedure, uncertainty

quantification, and model accuracy are outlined in the Supplementary section 7.5.2.

The RMSEs are provided in Table 7.1. The reported RMSEs of the transport and kinetic pa-

rameters in the 𝛽-phase are higher than their 𝛼-phase counterparts. This is because, at higher

C-rates, little to no phase transformation occurs, so the discharge curves are relatively insensitive

to the 𝛽-phase parameters. This is made clear in Supplementary Figure 7.9, where the predictions

are colored by C-rate. The larger RMSEs of the 𝛽-phase parameters is driven by errors at higher

rates. Also of note is that the reported uncertainties reflect the physical sensitivity of the system

to the model parameters. At higher C-rates, 𝛼-phase parameters can be determined with greater

certainty because the model is more sensitive to transport and kinetics at higher rate. The 𝛽-phase

parameters go through a minima due to competition between this effect and the phenomena where

less 𝛽-phase is formed at higher rates.
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Table 7.1: Model parameters and test set estimation accuracies.
Model Parameter Symbol Range Units RMSE

% of nominal amount of active LVO %AM [0.5,1.0] % 0.023
Li diffusivity in 𝛼 phase 𝑙𝑜𝑔10𝐷𝛼 [-14.0,-11.0] 𝑐𝑚2𝑠−1 0.131

Li insertion rate constant in 𝛼 phase 𝑙𝑜𝑔10𝑘𝑟 𝑥𝑛,𝛼 [-8.0,-6.0] 𝑐𝑚−5/2𝑚𝑜𝑙−1/2𝑠−1 0.057
Li diffusivity in 𝛽 phase 𝑙𝑜𝑔10𝐷𝛽 [-15.5, -13.0] 𝑐𝑚2𝑠−1 0.380

Li insertion rate constant in 𝛽 phase 𝑙𝑜𝑔10𝑘𝑟 𝑥𝑛,𝛽 [-9.5, -7.0] 𝑐𝑚−5/2𝑚𝑜𝑙−1/2𝑠−1 0.371
C-rate 𝐶𝑟 [0.2, 2] ℎ−1 -

Initial state of lithiation 𝑆𝑜𝐿0 [0, 0.25] - -

7.3 Results and Discussion

7.3.1 Degradation hypotheses for LVO

As with most chemistries, degradation of LVO is highly dependent on choices made through

each step from materials synthesis to cell assembly and experimentation. Even when considering

cathodes prepared using a sol-gel synthesis, there is a wide range of reported outcomes due to

sintering temperature and time, cutoff voltages, C-rates, and carbon and binder content in the

electrode, not to mention the expected sample-to-sample variation on the lab scale.55,58,70,121–125

A map of hypothesized degradation mechanisms, the stress factors that influence them, and

the resulting degradation modes is presented in Figure 7.1,55,58,70 inspired by a similar framework

presented by Birkl et. al. for a Li-ion full cell’s thermodynamic behavior.161 This diagram is

helpful in framing how different mechanisms respond to different stress factors, how mechanisms

may be coupled, and how these mechanisms present themselves in the parameters we estimate

(emphasized in blue). This map is not an exhaustive list of all possible mechanisms, as one could

supplement it with more detailed hypotheses. It is a reflection of current hypotheses in the literature

as well as our knowledge of the materials system.

Degradation modes in full cells can be bucketed into loss of active material in either electrode,

loss of lithium inventory, and resistance increase.140 The latter describes the kinetic evolution of

the cell, while the others describe changes in the thermodynamic quantities. Two key differences

are presented due to our cell structure and our framework. First, because we are considering half

cells with lithium metal anodes, we need only consider loss of active material in the cathode, and
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can assume there is enough excess Li in the cell to neglect loss of lithium inventory and loss of

anode active material. The loss of active material in the cathode is therefore directly represented by

𝐴𝑀%. Second, we make a delineation in the cell resistance increase between resistance increase

associated with ions and resistance increase associated with electrons. These two phenomena

correspond to 𝐷 and 𝑘𝑟𝑥𝑛, and have different implications based on the time and length scales

being considered. Knowledge of which of these phenomena is responsible for cell impedance

increase could be valuable from both a battery management and material design perspective.

Figure 7.1: Map of stress factors, hypothesized degradation mechanisms, and degradation modes
for the LVO system, similar to the framework presented by Birkl et. al.161 The parameters that
are estimated over the course of cycling correspond to the boxes highlighted in blue. Solid lines
indicate expected connections, whereas dashed lines represent possible connections.

7.3.2 Parameter Estimation Results

Before looking at the entire data set and commenting on degradation mechanisms across mul-

tiple C-rates, we will walk through the parameter estimation results and their interpretation for two

exemplary cells.
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Figure 7.2 shows the experimentally observed capacity fade and corresponding parameter esti-

mates for a cell cycled at 0.5C. The capacity is reported as specific discharge capacity normalized

by specific theoretical capacity in subplot a, and parameter estimates are reported in subplots b-f.

After 100 cycles, the cathode undergoes revival where it is placed in a new cell with fresh Li metal

anode and electrolyte, as described in the Methods section.

In the first 100 cycles, we observe loss of active material up to 50% and impedance increase

for Li diffusion and for electrons, as evidenced by degradation of the 𝛼-phase parameters. There

appears to be a "breaking in" effect in the first five cycles, as the 𝛼-phase parameters go through a

maximum. Since these cells did not undergo a formation process, this evolution could be associated

with formation of surface layers on either electrode, or some reduction in particle size that slows.

Figure 7.2: (a) Capacity fade of an LVO cell cycled at 0.5C for 100 cycles, followed by a cell revival
and cycling for another 100 cycles. Capacity is reported as a specific capacity normalized by the
theoretical specific capacity (𝑄/𝑄𝑡ℎ). (b-f) Parameter estimates based on discharge curve at each
cycle, presented as a 3 cycle rolling average. Shaded regions show 90% confidence interval in the
estimate. (g) Based on the parameter estimates in (b-f), the model-predicted volume fraction of the
𝛽-phase at end of discharge (Θ𝛽 EoD) is presented. Dashed black lines indicate model-predictions
for discharge capacity (a) and Θ𝛽 EoD (g) if all LVO particles are ionically and electronically
accessible (i.e. no active material loss).

The dotted line in Figure 7.2a shows the expected capacity fade when assuming there is no

loss in active material, which can be determined by passing the parameter estimates back into the

physics-based model and turning off active material loss (%𝐴𝑀 = 1). An increase in capacity is

predicted in the first 20 cycles before decreasing. This can be explained by the competing effects
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between accumulation of 𝛼-phase impedances and reduction of 𝛽-phase impedances. Diffusion of

Li in the 𝛽-phase is a key limiting factor in the inability of LVO to achieve its theoretical specific

capacity, and an order of magnitude improvement in Li diffusion can unlock inaccessible capacity.

After cycle 20, the impedance increase in the 𝛼-phase out competes gains from improvement of

𝛽-phase transport, resulting in a capacity drop even in the absence of active material loss.

As the cathode is cycled and material becomes inaccessible for lithiation, the same current

density is being passed to the cell, so the active particles effectively experience a higher C-rate. By

the end of cycling, where there is roughly half the material lost, the active particles are experiencing

a current density that is approximately 1C. This effect, combined with the build up of 𝛼-phase

impedances, results in the lower cutoff voltage being reached sooner, preventing the material from

undergoing as much phase change at the end of discharge as was achieved in the earlier cycles

(Figure 7.2g).

These parameter estimates serve as an example of why, for the purposes of understanding

degradation, it is more meaningful to look at loss of accessible active material as opposed to just

the discharge capacity. When just looking at the discharge capacity, there is only an 8% loss

over the first 20 cycles. However, there is a 20% loss in active material in these 20 cycles. This

difference is explained by more capacity becoming accessible as 𝛽-phase transport improves in

these first 20 cycles.

The amount of "bounce back" in %𝐴𝑀 when the cell undergoes revival is an important metric

in understanding the cause of active material loss. In this cell the %𝐴𝑀 returns to 100% after re-

vival (Figure 7.2b). This indicates that the estimated active material loss in the first 100 cycles can

be further specified as active material loss due to ionic isolation of LVO particles from poor elec-

trolyte wetting. If the %𝐴𝑀 had not returned to 100%, the active material loss would be attributed

to electronic isolation of particles, or ionic isolation not due to wetting (e.g. an ionically blocking

CEI). Poor wetting could be traced back to parasitic reactions that consume the electrolyte.

On revival, the estimated 𝐷𝛼 does not recover to its initial value, indicating that some irre-

versible change to diffusion of Li in the particles occurred in the first 100 cycles. The immediate
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increase in 𝐷𝛼 on revival could be explained by shorter length scales for diffusion if LVO particles

are fully wetted by electrolyte as opposed to partially wetted. The fact that both 𝐷𝛼 and 𝑘𝑟𝑥𝑛,𝛼

appear to have the same "breaking in" on revival and then degrade further indicate that they may

represent a superposition of cathode side effects and some anode/electrolyte interphase formation.

Based on the analysis of the capacity fade curves and parameter estimates in the first 100 cycles

and after revival, some mechanisms delineated in Figure 7.1 can be eliminated. A reduced version

of this diagram is shown in Figure 7.3. The stress factors are removed from the diagram because

we are interpreting results from only one cell uner one set of conditions. Based on the observations

of fully recoverable material loss on cell revival, all pathways leading to active material loss that

do not pass through ionic isolation due to poor wetting can be eliminated. We observe some

degree of solid phase ionic impedance increase and electronic impedance increase that cannot be

recovered on revival, indicating some irreversible evolution of the cathode. The root cause of these

impedance growths cannot be specified without further experimentation. Still, the space of possible

degradation mechanisms is greatly reduced and can guide further resources towards distinguishing

between the remaining possible pathways.

Figure 7.3: A map of possible degradation mechanisms, eliminating some and placing more con-
fidence in others, based on the original space of hypothesized mechanisms in Figure 7.1 and inter-
pretation of parameter estimates in Figure 7.2.
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Figure 7.4: (a) Capacity fade of an LVO cell cycled at 2C for 100 cycles, followed by a cell revival
and cycling for another 100 cycles. Capacity is reported as a specific capacity normalized by the
theoretical specific capacity (𝑄/𝑄𝑡ℎ). (b-f) Parameter estimates based on discharge curve at each
cycle, presented as a 3 cycle rolling average. Shaded regions show 90% confidence interval in the
estimate. (g) Based on the parameter estimates in (b-f), the model-predicted volume fraction of the
𝛽-phase at end of discharge (Θ𝛽 EoD) is presented. Dashed black lines indicate model-predictions
for discharge capacity (a) and Θ𝛽 EoD (g) if all LVO particles are ionically and electronically
accessible (i.e. no active material loss).

Figure 7.4 shows a similar analysis for an exemplary cell cycled at 2C. After 100 cycles,

roughly 35% of the particles have lost ionic and/or electronic contact, since %𝐴𝑀 is estimated

to be 65%. After a large estimated drop in the first cycle, 𝐷𝛼 appears to remain the same until

about cycle 60, where it starts to decrease. 𝐷𝛼 remains the same as its estimated cycle 100 value

after revival, indicating that on the particle level something has changed that is slowing the dif-

fusion process. 𝑘𝑟𝑥𝑛,𝛼 appears to slightly increase with cycling, resets after revival, and increases

again. This effect could be attributed to electrolyte and/or anode effects. The 𝛽-phase parame-

ters are estimated to be constant with large uncertainties, consistent with the expectation that little

𝛽-phase is formed at 2C (Figure 7.4g).

The predicted degradation in the absence of material loss follows the trajectory of decreasing

𝐷𝛼 (dashed line, Figure 7.4a), and predicts that 40% of the theoretical capacity would be delivered

if all the particles were connected. However, on revival, we see that the %𝐴𝑀 does not return

to 100%, as was observed in the 0.5C cell in Figure 7.2b. This means that not all of the active

material loss can be explained by poor wetting that would be resolved when the cell was revived.
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Since the %𝐴𝑀 returns to 80% on revival, of the estimated 35% active material loss after 100

cycles, 15% can be explained by the wetting effect. In this case, one must consider electronic

isolation of particles or ionic isolation not due to electrolyte contact with particles.

The reduced degradation diagram for this cell is presented in Figure 7.5. 𝛽-phase formation is

eliminated as a possible mechanism because little 𝛽-phase formation occurs at this rate. Unlike the

cell cycled at 0.5C in Figure 7.2, the estimated active material loss in the first 100 cycles cannot be

entirely attributed to poor wetting, so other sources of active material loss remain in the diagram.

We do know based on the revival experiment that some material becomes inaccessible due to the

wetting issue, so that pathway is highlighted. We see evidence of slower Li diffusion processes in

the particles that is not recoverable upon cell revival, so the solid phase ionic impedance increase

leading to a cell impedance increase is highlighted as well.

Figure 7.5: A map of possible degradation mechanisms, eliminating some and placing more con-
fidence in others, based on the original space of hypothesized mechanisms in Figure 7.1 and inter-
pretation of parameter estimates in Figure 7.4.

Table 7.2 provides a more general framework for interpreting parameter estimates as it per-

tains to various hypothesized degradation mechanisms in these cells. For each mechanism, the

expectation for the estimated %𝐴𝑀 , as well as an estimated particle diffusivity 𝐷 and reaction rate

constant 𝑘𝑟𝑥𝑛 is suggested both over the course of cycling and on cell revival. However, since these
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mechanisms are not mutually exclusive and we have not yet quantified, for example, how much

of a decrease in 𝑘𝑟𝑥𝑛 corresponds to a given CEI thickness, further experimentation is needed to

extract more quantitative insight out of the analysis.

Mechanism %𝐴𝑀 𝐷 𝑘𝑟 𝑥𝑛
Electrolyte
consumption
and poor wet-
ting

Decrease when electrolyte
volume falls below pore vol-
ume. Bounce back on revival.

Decrease if particles are not
uniformly wetted because of
longer diffusion length scale,
and subsequent increase if
particles are re-wetted on re-
vival.

Possible changes that would
reset on revival if electrolyte
composition changes.

SEI Decrease due to anode side
impedance increase that
should recover on revival.

CEI Decrease if particles become
ionically isolated by CEI
which cannot be recovered on
revival.

Increase if CEI limits Li dif-
fusion.

Change if CEI affects elec-
tronic (charge transfer)
impedance.

Lattice rear-
rangement

Irreversible decrease if Li is
trapped in regions of the par-
ticle.

Change (decrease or in-
crease) that would be
unaffected by revival.

Possible effect if occuring on
particle surfaces. Coupled
with CEI.

Particle Frac-
ture

Decrease from electronic iso-
lation that likely would not be
able to be recovered on re-
vival.

Increase in effective diffu-
sivity because of decrease
in length scale if cracking
occurs in a way that ex-
poses more surface area for
(de)lithiation.

Decrease if cracking occurs
in a way that exposes more
surface area.

Table 7.2: Qualitative description of expectations for different parameter estimates if different
degradation mechanisms are active. The mechanisms are, however, not mutually exclusive so a
superposition of these expectations is likely observed.

Figure 7.6 shows the parameter estimates for all the cells explored in our study. Some cells

underwent the revival process, while others did not. No cells cycled at 0.2C underwent revival.

The first row shows the discharge capacity measurements as well as the model-predicted capacity

measurements based on the parameter estimates but in the absence of any active material loss.

Examining the entire data set, what is immediately apparent is that cell-to-cell variation is

non-negligible. Though the trajectory of capacity fade and the parameter estimates is repeatable

for cells cycled at each C-rate, the absolute values of the parameter estimates (e.g. the cycle 1

starting value, the peak value in the first 100 cycles, or the cycle at which a parameter passes

through a minima or maxima) vary. The variation in cell performance, and subsequent variation

in parameter estimates on cell revival makes commenting on degradation mechanisms from Figure
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7.1 and Table 7.2 at a specific C-rate especially difficult. For instance, in the three cells cycled

at 1C that underwent a cell revival (third column in Figure 7.6), we see one cell that improves

its capacity on revival, while two others appear to lose capacity after the revival process. When

examining the %𝐴𝑀 parameter estimates for these three cells, we see that the blue colored cell

that recovered some capacity recovers some of the active material, while the green colored cell

maintains the same value and the pink colored cell is estimated to have less active material on

revival. Based on these results, a much larger data set would be required to overcome the lab-scale

cell to cell variation and comment on degradation mechanisms at different C-rates. This type of

analysis on a larger data set could provide meaningful insight on how manufacturing variation

impacts variation in degradation behavior.

The extent of active material loss does not appear to depend too strongly on C-rate given the

variance in the data. Cells at all the rates appear to contain between 60% and 80% of their active

material still ionically and electronically accessible after 100 cycles.

When considering 𝐷 𝑗 and 𝑘𝑟𝑥𝑛, 𝑗 , there seems to be a clear delineation between cells cycled at

1C and above and cells cycled at 0.5C and below. These parameter estimates for the cells cycled

at the higher rates appear not to change significantly over the course of cycling, though even small

changes will have a larger impact in observed capacity at these rates. However, the cells cycled

at lower rates undergo much more drastic changes in these parameters. The 𝛼-phase parameters

degrade anywhere from one to two orders of magnitude, while the 𝛽-phase parameters improve by

roughly the same amount. In the case of the two 0.5C cells that underwent revival, the changes

in the 𝛼-phase parameters are not entirely reversible when new electrolyte and anode are added,

indicated that some structural rearrangement could be occurring in the particles. That the 𝛼 and

𝛽-phase diffusivities seem to converge on a similar value (10−14 𝑐𝑚2 𝑠−1) could be indicative of

lattice rearrangement and convergence of transport pathways for Li in either phase.
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Figure 7.6: Parameter estimates for cells cycled at rates between 0.2C and 2C. Each column repre-
sents a group of cells cycled under the same conditions. The top row (a-d) show the experimentally
observed discharge capacity as points and the model-predicted discharge capacity in the absence of
active material loss as a dotted line, as was done in Figures 7.2 and 7.4. (e-x) Parameter estimates
based on discharge curve at each cycle, presented as a 3 cycle rolling average. Shaded regions
show 90% confidence interval in the estimate.
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7.4 Conclusions

In this paper, we introduce an example of degradation analysis by refitting a physics-based

electrochemical model to experimental data over the course of cycling. We show how to interpret

parameter estimates, which are connected to degradation modes, in the context of different hy-

potheses for degradation mechanisms. By passing the parameter estimates back into the physics-

based model, the amount of capacity fade that is attributed to inaccessibility of active material

versus ionic or electronic impedance increase can be quantified. We also demonstrate that a simple

cell revival procedure can be helpful in attributing the amount of active material loss that is due

to electrolyte consumption and consequent poor wetting, and can separate observed impedance

increases in the original cell between the anode and cathode. Based on all this information, a large

space of possible degradation mechanisms can be narrowed, helping further focus resource utiliza-

tion to better understand degradation. Though the variation in this data set was too large to be able

to definitively describe degradation mechanisms for LVO under the C-rates studied, the insights

derived from this study will be useful towards understanding the complex degradation behavior of

these cathodes in future studies.
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7.5 Supporting Information

7.5.1 Data Generation

A validated physics-based model,32,165 was used to generate training data for the neural net-

work that is described in this study. 3072 samples were chosen in a seven parameter space, with

the bounds described in Table 7.1. These parameter samples were each used to parameterize the

physics-based model and simulate a discharge. Of these simulations, 2170 simulations returned

physically representative discharge curves (i.e. simulations ran without numerical issues). 80% of

this data was used for training and 20% was held as an independent test set.

7.5.2 NN training

Featurization

The discharge curves were converted into a vector of features using an approach similar to that

of Attia and Severson.149,153. Since each discharge is always between the same upper and lower

voltage limits, we take the time at a specified grid of voltages between the upper and lower cutoff

voltages as the feature representation of the discharge curve. The time values are multiplied by

the C-rate (𝐶𝑟), resulting in feature values (𝑡𝐶𝑟) on the order unity. This transformation is done

for simplicity, and because features of order unity are preferred in certain ML models.192 Features

were chosen every 50 mV between 3.75 V and 2.0 V. The C-rate was appended as a feature at the

end of the vector of features representing the discharge curve.

Data Augmentation

Data augmentation is a strategy common in machine learning data preparation that adds noise

to the training data to improve ML model robustness and increase the training set size. In our

approach, we perform a simple data augmentation approach of shifting voltage curves by random

values of 𝑡𝐶𝑟 , maintaining the curvature of the discharge curve but adding more training data

without performing any more simulations.199 A random value of 𝑡𝐶𝑟 is chosen between 0 and 0.25
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eight times for each discharge curve, resulting in a data set that is 8x the size of the original data

set.

Sample Weighting

Because a continuous range of C-rates was chosen in the data generation step (Section 7.5.1)

but the experiments were performed on a discrete set of four C-rates which are of course known

prior to experimentation, we wanted to emphasize accuracy at the C-rates that would be tested. To

do this, some samples closer to 0.2C, 0.5C, 1C and 2C were valued more than others during the

training. The sample weighting as a function of C-rate chosen during the NN training is shown

in Figure 7.7. When calculating the loss function, a weighted average using these weights is

employed.

Figure 7.7: Sample weight as a function of sample C-rate for calculating a weighted average loss
during training.

Training Specifics

A four layer neural network was used based on network size optimization in our previous

results,199 implemented using keras.193 The input layer has 37 nodes (see featurization description
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in Section 7.5.2. There are two hidden layers with 130 nodes and 160 nodes respectively. The

output layer is of size 5.

Training is performed with the Adam optimizer, relu activation functions, batch size of 64,

and a mean squared error loss, weighted as described in Section 7.5.2 for 1500 epochs. 20 %

of the training set is used for validation. The learning curve is shown in Figure 7.8. During

training, the learning rate is reduced by a factor of two if the loss does not improve by 0.0005 in

50 epochs, implemented using ReduceLROnPleateau in Keras.193 The learning rate starts at 0.01

and the minimum learning rate is set to 0.0001. The epochs at which the learning rate is reduced

can be seen in the step changes in the loss in Figure 7.8.

Figure 7.8: Learning curve during NN training, with mean squared error loss presented on a log
scale.

To model an uncertainty in each parameter estimate, Monte Carlo dropout was applied.200 A

dropout ratio of 0.1 is applied after each hidden layer. When evaluating the trained neural network,

for each test discharge curve (or experimental discharge curve), a distribution of outcomes can

be predicted for the outputs based on multiple evaluations. Reported estimates in this paper are

reported as representations of distributions based on 50 evaluations of the trained neural network,

randomly dropping out 10% of the nodes after each hidden layer on each evaluation.
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Uncertainty Calibration

We employ a post-training calibration algorithm proposed by Kuleshov et al., that essentially

ensures that the 90% confidence interval of an estimate contains the true value 90% of the time (i.e.

in 90% of the training set).201 In this approach, an isotonic regression is used to map the desired

empirical cumulative distribution function to the predicted cumulative distribution function. Then,

if a 90% confidence interval is desired based on the 5% and 95% quantiles, the corresponding

quantiles in the predicted distribution function can be determined.

Accuracy Results
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Figure 7.9: Accuracy results for the trained neural network with calibrated uncertainty as applied to
the test set is shown in Figure 7.5.2. The top row shows prediction versus truth, with uncertainties
(90% confidence interval). The second row shows the same information without uncertainties but
colored by the C-rate. It is apparent that above 1C, estimates of the 𝛽-phase parameters are highly
inaccurate. The third row shows the residuals as a function of C-rate, and the fourth row shows the
uncertainty as a function of C-rate.
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Chapter 8

Conclusions and Outlook
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8.1 Utility of physics-based electrochemical models

This dissertation has provided multiple examples of the utility of physics-based electrochemical

models in understanding the underlying physics batteries. The ability to "look under the hood"

and understand how concentration and potential distributions affect observable electrochemical

behavior affords scientists deeper physical insight than is readily available via experiment. Chapter

2 showed how a model could be used to probe complex particle-scale physics in LVO cathodes.

Chapter 3 used physics-based models to explore the effects of tortuosity on high-rate discharge

performance of LVO and NMC cathodes. Chapters 4, 6, and 7 discussed insights into degradation

of the lithium trivandate cathode derived from a model-based analysis. Models are also useful

for optimization of design (Chapter 2), design of experiments (Chapters 3 and 4), and parameter

estimation (all chapters).

8.2 Estimating parameters directly from experiment

When model parameters can be isolated and measured independently with a high degree of con-

fidence, good predictive ability, and low resource utilization, this approach should always be taken.

However, if any of these challenges become a roadblock to model parameterization, fitting a model

directly to experiment and estimating parameters is a viable alternative. Thermodynamic, kinetic,

and transport parameters for lithiation of the 𝛽-phase of LVO were fit in Chapter 2. Similarly,

the inconsistently measured and ambiguously defined effective electrode scale transport property,

tortuosity, was fit directly to rate capability experiments in Chapter 3. When fitting parameters, it

is important to independently validate fits with independent data sets if the parameterized model

will be used for prediction.

Some model parameters cannot be decoupled in the model, i.e. the parameters are not struc-

turally identifiable. This must be noted before any parameter estimation task is undertaken. Ex-

amples of this consideration were provided in Chapters 3, 5, and 7. The other important aspect

of parameter estimation is to ensure that the model is sensitive to the parameter before proceed-
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ing with estimation. Higher model sensitivity will generally translate to more precise (i.e. low

uncertainty) estimates. Chapters 3 and 7 explored the idea of model sensitivity and its impact on

parameter uncertainty in further detail.

In general, this dissertation places more emphasis on parameter uncertainty than has typically

been done in the battery modeling literature. Quantifying parameter uncertainty is helpful in inter-

pretation and useful in prediction. The ability to predict a range of possible outcomes for electro-

chemical performance is valuable along all parts of the decision making processes when designing

and using batteries.

8.3 Machine Learning to accelerate parameter estimation

The concept of training inverse machine learning models that map electrochemical perfor-

mance to physics-based model parameters was explored extensively in Chapters 5-7. While the

examples in these chapters were presented in the context of fitting parameters for degradation

tracking, the concepts are more generally applicable to any parameter estimation task. It is, how-

ever, important to know the constraints of a machine learning model. These constraints were

documented and explored in the relevant chapters.

Of particular interest was the susceptibility of ML models to disagreement between the physics-

based model used to generate the training data and the experimental data of interest. Two case

studies for these discrepancies, their impact on ML model accuracy, and strategies to mitigate

inaccuracy were provided in Chapter 6. We hope this type of analysis is adopted more widely in

the community as others look to implement ML solutions trained on synthetic data.

8.4 Physics-based models for degradation tracking

The largest contribution of the work in this dissertation was outlining a workflow for using

physics-based models to track degradation in batteries. Through the model system of LVO cath-

odes in half cells, a detailed framework is provided in Chapters 4 and 7 for parameter estimation
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over the course of cycling and interpretation of parameter estimates to test degradation mechanism

hypotheses. Chapter 7 discussed in further detail the synergistic benefit of experimental design

and parameter estimation analysis in eliminating possible degradation mechanisms. Future direc-

tions for this research include more combinations of unique experimental design to isolate different

degradation phenomena beyond what was done in Chapter 7.
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