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Abstract

Essays on Skills-Based Routing

Jinsheng Chen

Service systems such as call centers and hospital inpatient wards typically feature multiple

classes of customers and multiple types of servers. Not all customer-server pairs are compatible,

and some types of servers may be more efficient at serving some classes of customers than others.

In the queueing literature, the problem of matching customers and servers is known as

skills-based routing. This thesis consists of two works I have done in this area. The first work,

which is done jointly with Jing Dong and Pengyi Shi, considers the routing problem in the face of

a demand surge such as a pandemic. It shows how future arrival rate information, which is often

available through demand forecast models, can be used to route near-optimally, even when there

may be prediction errors. The methods used involve fluid approximations and optimal control

theory, and the policies obtained are intuitive and easy to implement. The second work, which is

done jointly with Jing Dong, incorporates a staffing element in addition to routing.

Asymptotically optimal staffing and scheduling policies are derived for an M-model, both with

and without demand uncertainty. The methods used involve diffusion approximations and

stochastic-fluid approximations.
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Chapter 1: Introduction

1.1 Introduction

Resource flexibility is a topic that has been much studied over the years in many contexts, such

as in manufacturing systems and in supply chains. In service systems, there are typically multiple

types of customers (or jobs) arriving at the system, and they need to be processed by a server.

There are different types of servers, who may be described by the types of customers they can

serve. Typical examples are call centers, where customers may request different types of services

or services in different languages, and hospitals, where patients may be grouped according to the

type of condition they have. A server who can only serve a single type of customer is said to be

dedicated, while a server who can serve multiple types of customers is said to be flexible. The

processing time of a customer may depend on the type of server he or she is assigned to. For

example, patients at a hospital may be discharged faster if they are sent to a ward that is staffed

with nurses specialized in handling their condition.

Precisely because there are multiple types of customers and servers, it is highly non-trivial to

match customers with servers in real-time. Servers who complete service and find that there are

multiple classes of customers waiting in queue may be assigned new customers to serve, or be left

to idle. Such decisions are subject to the real-time availability of servers and the real-time queue

lengths, and are made to optimize certain performance metrics related to operating cost or service

quality. This problem of matching customers with servers to optimize some performance metric is

referred to as skills-based routing [1]. The recent survey [2] describes many important papers in

the area.

Despite the large and growing body of literature on skills-based routing, there remains much to

study in this area. Due to the complexity of analyzing scheduling decisions, most of the work in
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the literature imposes rather restrictive assumptions to ensure mathematical tractability. However,

many such conditions are unrealistic in practice, and it is important to understand what happens

when they are not met. For example, resources are often assumed to be able to costlessly and

instantaneously switch between different processing activities, and flexible resources may be more

costly to staff than dedicated ones. Such disadvantages of resource flexibility can greatly affect the

structure of a near-optimal scheduling policy.

This thesis consists of two works that each examines how to do near-optimal skills-based rout-

ing when there are certain pitfalls of resource flexibility in service systems. The first work, on

optimal routing under demand surges, studies skills-based routing in the face of demand surges.

It studies how to make use of future arrival rate information when make routing decisions. This

is important because of the growing availability of data and demand forecast models. The second

work, on optimal sizing and scheduling of flexible servers, considers in addition to skills-based

routing the problem of deciding how many of each type of server to staff. It shows that the joint

staffing and scheduling problem can be decomposed into individual problems under certain con-

ditions, and uses that to obtain near-optimal prescriptions. A brief summary of each of these two

works is given below. Even more details on the motivation of each work, as well as a closer review

of the relevant literature, can be found in their respective chapters.

Optimal routing under demand surges: the value of future arrival rates

Demand surges are an operational challenge faced by many service systems. Common exam-

ples are mass casualty incidents or pandemics leading to an influx of patients to a hospital, and

major weather events leading to widespread flight cancellations and a large increase in calls to an

airline call center. When facing demand surges, the key challenge is to do scheduling to return the

system to normality as efficiently as possible.

In recent years, because of the advancement of statistical learning techniques and the increase

in the availability of data, there has been a growing number of demand forecasting models. It is

thus important to know how to make use of such demand forecasts in skills-based routing, and
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account for the fact that forecasts may have errors.

Motivated by the pandemic, we study the problem in a setting that is especially relevant to

healthcare. In a hospital, inpatients are best warded at the ward appropriate for their condition,

because the nurses there are best trained to handle their condition. However, it is possible that the

appropriate ward is full, and the patient therefore may be sent to a different ward. Such a routing

decision is known as overflow, and it may come with costs such as a lower quality of care (e.g. a

longer length-of-stay) or other inconvenience costs for staff [3]. The work thus considers schedul-

ing in a multi-class multi-pool queueing network with the following three important features:

1. Time-varying arrival rates: One or more customer classes may experience demand surge

for certain periods of time. These demand surges are forecasted, and may be subject to

prediction errors.

2. Service slowdown: To capture the potential efficiency loss when customers are served by

servers from the non-primary pool, the service rates are both class- and pool-dependent. For

a particular class of customers, the service rate in the primary pool is higher than the service

rates in other non-primary pools.

3. Overflow cost: Assigning customers to non-primary pools may not only increase the service

duration, but also impose other inconvenience costs or service quality cost. These are mod-

eled through the overflow costs. That is, a penalty is charged for a customer that is placed

with a non-primary server. Overflow costs can be both class-and-pool-dependent, reflecting

the heterogeneous levels of “utility” or inconvenience cost when assigning customers from

different classes to different server pools.

We exploit information about the demand surge (that is, information about the future arrival

rates) to optimally deal with it. The main results and contributions are as follows:

1. Modeling and solution framework: The models incorporate general time-varying arrival

rates, class-and-pool-dependent service rates, and overflow costs. These key features arise
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in many service systems, especially healthcare delivery systems, and are crucial to take into

account when studying demand surge with partial flexibility. Due to the non-stationarity and

high dimensionality, the corresponding routing problem has not been well-studied in the lit-

erature. We leverage fluid approximation and optimal control theory to develop near-optimal

transient controls for these systems.

2. The value of future information: The near-optimal control that we develop is interpretable

and easy to implement. One follows an index that takes into account the holding costs, the

service rates, the overflow costs, and the time it takes to empty each class using primary

resources only. Knowledge of future arrival rates helps us to choose the best time to do

overflow. For example, whereas common policies such as the maximum pressure policy

react to large queue lengths and will only prioritize a class once it is sufficiently congested,

our policy can prioritize a class even when it is lightly congested, if it is about to experience

a demand surge. That is, our policy makes use of future information to proactively initiate

overflow. Importantly, we show that even in the presence of forecast errors, our policy can

perform very well.

3. Pontryagin’s minimum principle: We demonstrate how optimal control theory can be applied

to develop structural insights into the optimal routing policies in transient queueing control

problems. In particular, the index-based policies that utilize future arrival rate information

are derived using the Pontryagin’s minimum principle for the corresponding fluid optimal

control problems. For the main model, we further establish that the optimal control derived

from the fluid control problem is asymptotically optimal for a properly scaled sequence

of transient stochastic queueing control problems. The development involves non-trivial

applications of the Pontryagin’s minimum principle due to the state constraints. These state

constraints are further complicated by the fact that there are multiple customer classes and

general time-varying arrival rates. For example, the queue length of one class can be at zero

while overflow remains in place. More importantly, the obtained optimal controls which are
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highly interpretable and easy to implement.

Optimal sizing and scheduling of flexible servers

In practice, flexible servers are typically more expensive to hire due to their added capabilities.

Also, due to multi-tasking, flexible servers may be less efficient than dedicated servers. For exam-

ple, a multilingual call center agent would typically be paid more than a monolingual one, but may

still have a preferred language to use, and only use other languages when required by operational

demands. In this paper, we study how to jointly staff and schedule service systems when these

shortcomings of resource flexibility are present.

Two demand scenarios are considered. One has deterministic arrival rates, which occurs when

we have a very accurate estimate of customer demand. In this case, the flexible pool can be used

to hedge against stochasticity, i.e., the stochastic fluctuation of interarrival times and service times.

In particular, due to the stochasticity in system dynamics, one queue may incur an above average

load while the other is at or below its normal load from time to time. In such situations, the

flexible pool can be used to help the class with a heavier load, and thus balance the load between

the two classes. The other scenario has random arrival rates, which occurs when there is a high

degree of uncertainty in customer demand. In this case, the flexible pool is mainly used to hedge

against parameter uncertainty. In particular, when the realized arrival rate of one class is higher

than average while the realized arrival rate of the other class is at or below average, the flexible

pool can be used to help the class with a higher realized arrival rate, and thus balance the load.

Because staffing and scheduling decisions interact, the joint optimization problem is very chal-

lenging. The approach we use is to show that the two decisions can be decoupled, and to obtain

the optimal staffing levels through asymptotic analysis when the scheduling policy is fixed. When

arrival rates are deterministic and symmetric, we use a coupling construction to derive the optimal

scheduling policy for any staffing level. The scheduling policy prioritizes the dedicated servers

(faster servers) when routing customers to servers, and prioritizes the class with more customers

in the system when scheduling flexible servers, assuming the abandonment rate is less than the
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service rates. Given the optimal scheduling policy, we then optimize the staffing policy. To derive

structural insights into the size of the flexible pool, we employ a heavy-traffic asymptotic approach,

where we send the arrival rate to infinity and study how the size of the flexible pool scales with the

arrival rate. The result provides necessary and sufficient conditions for staffing rules to be asymp-

totically optimal. The key insight is that when flexibility comes at a cost, the optimal size of the

flexible pool only leads to partial resource pooling: The flexible pool helps with load-balancing,

but the effect is not large enough to equalize the two queues asymptotically.

When arrival rates are random and the magnitude of the parameter uncertainty dominates the

system stochasticity, we use a stochastic-fluid relaxation of the optimal staffing problem. In this

relaxation, we ignore the stochasticity of the queueing dynamics and focus on the parameter un-

certainty only. The stochastic-fluid optimization problem is a special case of the single-period

multi-product inventory problem with demand substitution, for which we can characterize the op-

timal solution explicitly. The relaxation also motivates a simple scheduling rule that essentially

decomposes the M-model into two independent inverted-V models for any realization of the ar-

rival rates. As the arrival rates (demands) increase, we show that the staffing and scheduling rules

derived based on the stochastic-fluid relaxation are asymptotically optimal. The key insight is that

when facing both parameter uncertainty and cost of flexibility, the optimal size of the flexible pool

provides some hedging against the parameter uncertainty, and the cost saving, compared to the

no-flexible resource case, is increasing with the magnitude of the uncertainty.

In addition to providing prescriptive solutions to managing flexibility, our work also makes the

following contributions to the queueing literature.

1. When the arrival rates are symmetric and deterministic, we construct the optimal scheduling

policy for any arrival rates and staffing levels. In contrast to most of the optimal scheduling

literature for multi-class queues, the results do not rely on any asymptotic argument (see,

for example, [4]). Instead, the proof uses a coupling argument that can be of interest when

analyzing other Markovian queueing systems. The coupling technique also allows us to

establish the optimality of a non-standard scheduling policy when the abandonment rate is
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larger than the service rates.

2. When the arrival rates are deterministic and the flexible pool is of the optimal order, we

derive the diffusion limit of the M-model under heavy-traffic. The limit is a two-dimensional

diffusion process. In particular, the complete resource pooling condition is not satisfied

when the flexible pool is optimally sized, i.e., the flexible pool size is not large enough

to instantaneously balance the queue lengths between the two classes. Thus, there is no

state space collapse in the limit, i.e., the two-dimensional queue length process does not

reduce to a one-dimensional process in the limit. This is in contrast to most of the optimal

scheduling literature (see, for example, [5, 6]). On the other hand, the limiting process

cannot be fully decomposed along each dimension, i.e., the drift terms of the two component

diffusion processes are interconnected. Thus, partial resource pooling is achieved.

3. When the arrival rates are random and the parameter uncertainty is of a larger order than the

stochasticity of the queueing dynamics, we quantify the optimality gap for policies derived

based on the stochastic fluid approximation. This extends the results in [7] from a multi-

server queue with a single class of customers and a single pool of servers to a multi-class

queue with multiple server types.

1.2 Organization

This thesis is organized as follows. The first work, on optimal routing under demand surges,

occupies Chapter 2. The second work, on optimal staffing and scheduling of flexible servers,

occupies Chapter 3. To make for easier reading, all proofs appear in the Appendix.
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Chapter 2: Optimal Routing under Demand Surges: The Value of Future

Arrival Rates

2.1 Introduction

In service systems, there are typically multiple classes of customers with different service

needs. It is of critical importance for service operations management to allocate the proper amount

of resources to meet the needs of each class of customers. The resource allocation problem is

particularly relevant and challenging when certain classes of customers experience demand surges,

and yet their dedicated capacity cannot be scaled up quickly. With the recent advancement of

statistical learning tools and the growing availability of data, many advanced demand forecasting

models have been developed to accurately predict demand surges. Take the COVID-19 pandemic

as an example: researchers from different fields have worked together to develop prediction mod-

els for demand surges of different types of hospital resources (e.g., ICU beds and ventilators). Yet,

the majority of these prediction models do not provide prescriptive solutions for effective alloca-

tion of resources. To maximize the practical impact, hospital management needs more concrete

decision support on how to translate the demand forecast to determining whether they have enough

beds to accommodate the COVID-19 patients, and if not, whether they should use beds from other

specialties by cancelling or delaying elective surgeries. In this work, we study how to utilize fu-

ture demand information, even when there are certain prediction errors, to design optimal routing

strategies under demand surges. We explicitly characterize how to incorporate future demand into

routing decisions and quantify the benefit of doing so.

We first elaborate on our modeling framework. In recent years, customer specialization has be-

come increasingly sophisticated with the trend of personalized service. To better serve customers’

different needs, it is common for service systems to have primary server pools, each dedicated to
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serving a specific class of customers, with “servers” in that pool trained in skill sets tailored to

the primary customer class. For example, hospitals usually partition inpatient beds into different

specialty units and assign nurses trained to care for patients in that specialty. Call centers may hire

agents who speak different languages to serve customers with different language needs. In the rest

of the work, we use servers to refer to the critical resources in service systems, such as hospital

beds, call center agents, etc. While specialization for each class of customers has the obvious ben-

efits of delivering high-quality services and improving customer experiences, it is also common

practice for service systems to cross-train servers so that they can serve non-primary customers

when necessary. The primary reason is the presence of uncertainty and variability in demand. In

particular, demand fluctuates quickly over time, but the capacity in each server pool is rather static

since it takes time to train new staff or build new facilities.

We distinguish between two type of variabilities in demand: one is normal stochastic fluctua-

tions due to the randomness in customer arrivals and service requirements; the other is the unusual

increase in demand that can cause prolonged congestion in the system. The latter is often referred

to as demand surge. To deal with the normal range of stochastic fluctuations in demand, a certain

degree of slackness is usually added in the capacity, e.g., employing the square-root staffing rule,

where the staffing level is set to meet the mean demand plus an uncertainty hedging term that is of

the square root order of the mean demand. This staffing principle is shown to be near-optimal for

systems operating in a stationary environment [8].

Demand surges happen infrequently, but can lead to substantial congestion in the system and

service quality deterioration. For example, the ongoing COVID-19 pandemic has put an enormous

amount of stress on healthcare delivery systems. A bad flu season or a mass casualty incident

can cause a sudden increase in certain types of patients arriving at hospitals. Advancements in

technology have significantly increased our ability to forecast such surges. With this future demand

information, system managers may proactively leverage partial flexibility to effectively mitigate

the effect of demand surges. However, concrete decision rules are still lacking, especially when

we have to carefully balance between the benefits and costs associated with partial flexibility. For
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example, in the hospital inpatient flow setting, partial flexibility comes in the form of off-service

placement – sending patients of a particular specialty to a non-primary ward that is designated to

treat a different specialty. While off-service placement can help achieve better resource utilization,

it can also lead to worse patient outcomes, including longer length of stay and higher readmission

rate [3]. In addition, it may generate a greater workload for nurses in the off-service ward due to

multi-tasking [9], and can create a sense of unfairness among staff [10]. Similar tradeoffs between

the benefits and the costs of flexibility are also pervasive in other service systems. Examples

include call centers [11], bike-sharing [12], and emergency departments [13].

In this work, we take an important first step to study how to leverage demand forecasts to deal

with temporary demand surges with (partial) flexibility. The goal is to design routing policies that

optimally balance the benefits and costs of flexibility. To model the typical service setting, we

consider a queueing system with multiple classes of customers and multiple servers pools. Each

class has its own dedicated pool of servers, which we refer to as its primary pool. When the

system is congested, customers can be assigned to non-primary pools. Such routing is referred to

as “overflow.” We consider the following costs of overflow:

1. Service slowdown: To capture the potential efficiency loss when customers are served in a

non-primary pool, the service rates are both class- and pool-dependent. For each class of

customers, the service rates in the non-primary pools are slower than in the primary pool.

2. Overflow cost: Assigning customers to non-primary pools not only increases the service

time, but also imposes other inconvenience costs and/or costs caused by a compromised ser-

vice quality. We model these costs through overflow costs. That is, a penalty is charged for a

customer that is placed in a non-primary pool. We allow the overflow costs to be both class-

and pool-dependent, which can reflect heterogeneous levels of “utility” (or inconvenience

cost) when assigning customers from different classes to different server pools.

The routing policy refers to whether to assign a customer to a non-primary pool or to keep her

waiting to be served by a primary pool server. To capture the demand surge, we allow general
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time-varying arrival rates whereby one or more customer classes may experience one or multiple

demand surges within certain time periods. Scenarios with multiple surges are of particular interest

in light of the recent COVID-19 pandemic. To understand the value of demand forecasts, we focus

on the scenario where we have access to the future arrival rate information, which may potentially

be subject to prediction errors.

Our objective is to minimize the cumulative holding (waiting) costs and overflow costs until

the demand surge is fully absorbed. When facing demand surges, overflow should be utilized

to efficiently reduce congestion that is captured via the holding cost. However, due to the time-

varying arrivals, service slowdowns, and overflow costs, deriving the optimal overflow strategy

faces significant challenges and can render existing well-known routing policies, such as the 𝑐𝜇-

rule or the maximum pressure policy, highly suboptimal. Specifically, these challenges include:

1. The general time-varying arrival rate complicates the decision of when to initiate or stop

overflow: it could be optimal to initiate overflow before the queue builds up in anticipation

of a demand surge; or to end the overflow earlier, before the queue length is depleted, in

anticipation of the end of a surge. The prediction error and multiple surges present further

complications.

2. Because of service slowdowns, a too aggressive overflow strategy may generate more hold-

ing cost than having no overflow.

3. In the presence of overflow costs, the optimal routing policy may not be workload-conserving.

That is, when a class has a positive queue, even when the non-primary pools have extra ca-

pacity, it may be better to keep these non-primary servers idle to avoid overflow costs.

The non-stationarity and high-dimensionality of the problem can render many existing analyt-

ical and numerical tools inapplicable. To derive structural insights on the optimal routing strategy,

we take the fluid approximation approach. In particular, we formulate a transient fluid optimal

control problem and derive closed-form solutions that leverage the future arrival rates. We then

translate the fluid-based policy to the stochastic system and show that the policy achieves near-
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optimal performance even when there are certain prediction errors. Our main contributions are

summarized as follows:

I. Routing with demand forecast. As far as we know, we are one of the first to explicitly prescribe

how to incorporate demand forecast of time-varying arrival rates into real-time routing decisions

in a multi-class, multi-server system. Most existing papers on time-varying queues either assume

that the time-varying arrival rates are known with some periodic pattern [14], or they focus on

capacity planning to hedge against the uncertain arrival rates [15]. On the other hand, most

demand forecasting work focus on the prediction side only (see, for example, [16] for call center

arrivals and [17] for hospital impatient occupancy). Our work bridges demand forecasts with a key

operational decision: customer routing. We explicitly characterize how to incorporate the demand

forecast in the routing policy by solving a corresponding fluid transient control problem. We also

show that the routing policy is asymptotically optimal for a properly scaled sequence of systems.

II. Two-stage index-based policy using future information. The focus of our main development

is the N-model, a two-class model in which the primary pool for class 2 can provide help to class 1

but not the other way around. The near-optimal control policy that we develop can be summarized

as a two-stage index-based look-ahead policy, which is highly interpretable and easy to implement.

In the first stage, we compare the ℎ𝜇 index, where ℎ is the holding cost and 𝜇 is the service rate, to

decide which class can be prioritized. In the second stage, we look at another index that combines

the ℎ𝜇 index, the time it takes to empty the queues with a proper set of resources, and the overflow

costs to decide how long the overflow (if any) should last. The calculation of the time to empty

the queues is where the future arrival rate information is utilized. The actual policy will be made

precise in Section 2.3.

Interpreting our two-stage index-based policy provides insights into the value of future demand

information and how to prioritize different customers under demand surges. In particular, based

on the second-stage index, our policy suggests that other server pools may start prioritizing the

customer class that is about to experience a demand surge, even though this class is not very

congested yet. Similarly, when a customer class has a large queue, but the demand surge is about to
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dissipate, other server pools may stop serving this customer class in anticipation of the upcoming

drop in demand. This proactive nature of our policy is distinct from common non-look-ahead

policies such as the 𝑐𝜇 rule and the maximum pressure policy, and is why our policy outperforms

these benchmark policies.

We stress that although future demand information being beneficial is somewhat expected, it

is highly nontrivial to identify the proper form of incorporating it in the routing decision. Our

results show that one needs to compare the holding cost and overflow cost in proper time-scales

by accounting for the future impact of the overflow action. This is in contrast to comparing the

instantaneous cost reduction, as in the 𝑐𝜇 rule or its adjusted version that accounts the instantaneous

change in overflow cost.

III. Pontryagin’s minimum principle. Due to the time-nonstationarity and high dimensionality of

our model, the corresponding routing problem has not been well-studied in the literature. We derive

structural insights by studying the corresponding fluid transient control problems. In particular,

our index-based policies that utilize future arrival rate information are derived using Pontryagin’s

minimum principle for the corresponding transient fluid control problems. Our derivation of the

optimal scheduling policy involves non-trivial applications of Pontryagin’s minimum principle due

to the state constraints. A main difficulty lies in coming up with the right dual variables satisfying

these constraints. The problem is further complicated by the fact that there are multiple customer

classes and general time-varying arrival rates. We explicitly characterize all the dual variables,

which lead to the closed-form characterization of the optimal control. These developments could

shed light on other transient queueing control problems.

IV. Practical applicability to complex systems. For a routing policy to be useful in practice,

it needs to be adaptable to (i) complicated network structures and (ii) demand forecasts with er-

rors or limited look-ahead time windows. For (i), we extend the fluid-control analysis beyond the

N-model, and study the X-model, the many-help-one extended N-model, and the one-help-many

extended N-model. These extensions provide insights into designing good routing policies for

more general systems. Based on the structure of optimal fluid control in these models, we pro-
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pose a two-stage index-based look-ahead policy for general multi-class, multi-pool systems. We

evaluate the performance of this look-ahead policy in stochastic systems via simulation. We com-

pare the performance of this heuristic policy to other benchmark policies, such as the 𝑐𝜇 rule and

the maximum pressure policy, and show that our policy achieves superior performance for a wide

range of system parameters.

For (ii), we substantiate our theoretical analysis with numerical evaluation in scenarios where

demand forecast has errors of different magnitude and the forecast is restricted to a limited time

window. In these scenarios, our numerical results suggest that the proposed policy continues to

perform well. The adaptiveness of our policy to complex systems, its robustness to noisy arrival

rate information, together with its simplicity, make it very appealing for implementation in real

service systems when demand surges are present. We also identify factors that drive our policy to

perform better than other benchmark policies, providing useful insights on managing systems in

time-nonstationary environments.

2.1.1 Organization

The rest of the chapter is organized as follows. We conclude this section with a brief review of

the literature. In Section 2.2, we introduce our main model, which is the N-model, and our main

problem, which is designing an optimal routing policy under demand surge. To gain structural

insights into the optimal policy, we study a deterministic fluid control problem in Section 2.3. We

start with a single demand surge and perfect future arrival rate information, and then introduce

adaptations for estimation errors, limited look-ahead time windows, and multiple surges. The

fluid control problem can be viewed as an approximation to the original stochastic problem. We

establish the asymptotic optimality of the policy derived from the fluid control for a sequence

of stochastic systems in Section 2.4. To extend the routing strategy to more general network

structures, we study the optimal fluid control problem for several extended models in Section

2.5. Based on the similar policy structure from these model extensions, we propose a two-stage

index-based look-ahead policy for general parallel-server systems. We substantiate our theoretical
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analysis with extensive numerical experiments in Section 2.6. All proofs are left to the Appendix.

2.1.2 Literature Review

Our work is related mainly to four streams of literature: flexibility in service systems; skill-

based routing; optimal control theory in queueing; and scheduling with future demand.

Flexibility in service systems. In the operations management literature, it is well-known that

resource pooling, sometimes through creating flexible resources, can drastically improve system

performance [18, 19, 20, 21, 22]. [23] and [24] show that in a stationary environment, even a little

flexibility can lead to substantial performance gain. However, in recent years, a growing amount of

research has also studied situations in which pooling may not be as beneficial. This can be due to

system architectures [25], different priorities among different classes of jobs [26], efficiency loss

due to multi-tasking [27], and agent incentives [13], to name a few. Our work contributes to this

line of literature by analyzing how resource pooling should be utilized when overflow assignment

is associated with a slowdown effect and overflow costs in a time-nonhomogeneous environment.

Skill-based routing (SBR). There is a rich literature on SBR [28]. An exact analysis of SBR is

usually analytically intractable due to the large state space and policy space. Much of the SBR

literature utilizes a heavy-traffic asymptotic framework to gain analytical tractability. Our work

relates to conventional heavy-traffic scaling. In this regime, [29] studies the scheduling problem

of multi-class 𝐺/𝐺/1 queues with convex holding costs and establishes the asymptotic optimality

of the generalized 𝑐𝜇 rule. In the N-model setting with preemption, [30] show that a threshold-

based priority rule is asymptotically optimal. [31] consider a general service system with multiple

customer classes and multiple types of flexible servers. They show that the generalized 𝑐𝜇-rule is

asymptotically optimal over all scheduling disciplines (preemptive and non-preemptive).

Apart from the 𝑐𝜇 rule, the maximum pressure policy is another commonly used policy in

SBR. The maximum pressure policy takes the same form as the MaxWeight policy in parallel

server systems. [32] and [33] show that the maximum pressure policy is throughput optimal. [34]

further prove that with quadratic holding cost, the maximum pressure policy is asymptotically opti-
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mal under the conventional heavy-traffic scaling for some models. [35] establishes the asymptotic

optimality of a general class of MaxWeight policies with strongly convex holding costs. There

is also a rich literature on SBR in the many-server asymptotic regime; see [2] for a survey. Our

work focuses on optimal routing to deal with demand surge, and our proposed policy is fundamen-

tally different from the policies derived in the literature. In particular, we explicitly characterize

how future arrival rates and overflow costs should be properly considered when making routing

decisions.

Fluid transient control. Fluid approximation, which can capture first-order system dynamics

well [36, 14], is often used to analyze transient queueing behavior. [37] and [38] detail how to

develop effective queueing control policies based on fluid approximations. We employ optimal

control theory to characterize the optimal fluid control policy; see [39] and [40] for an overview

of optimal control theory. In particular, we leverage Pontryagin’s Minimum Principle [41]. [42]

review several applications of optimal control theory to dynamic rate queues. In a recent work,

[43] apply Pontryagin’s Minimum Principle to study the optimal scheduling of proactive service in

systems with customer deterioration. [44] leverage optimal control theory to study the optimal call-

back scheduling policy in call centers. The policy developed in their paper also has a look-ahead

structure that takes the future arrival rate into account. However, they focus on a single class of

customers and, thus, need only a single index. In contrast, we identify a two-stage index structure

when dealing with multiple classes of customers. The work most relevant to ours is [45]. The au-

thors study routing policies in a two-class, single-server system. However, they do not incorporate

the overflow cost, and their analysis is limited to simple time-varying arrival patterns (high/low

constant arrivals). Our analytical framework allows us to study very general time-varying arrival

rates and the tradeoff between holding and overflow costs.

The value of future demand. Our analysis highlights the value of future arrival rate information

in transient control problems. A few recent works demonstrate the value of future demand infor-

mation in developing effective admission control or scheduling policies [46, 44, 47]. These works

require detailed future demand information, including the actual/predicted arrival times and service
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times of customers. In contrast, our policy requires only the average future demand (i.e., arrival

rate), which can be estimated more easily in practice. More importantly, we prove the asymptotic

optimality of the fluid-based policy in the N-model even when there are certain prediction errors.

Predicted demand has been utilized to optimize staffing decisions (see, e.g., [15, 48] for call center

staffing and [49] for emergency department nurse staffing). Our work is different from the above

works in two main aspects. First, the above works study stationary performance metrics while we

focus on transient system dynamics under demand surge. Second, routing decisions are fundamen-

tally different from staffing decisions, and the two can happen at very different time scales.

2.2 Problem Formulation

To demonstrate our methodology and key insights, we use the N-model as our main model;

other network structures are studied in Section 2.5. The N-model consists of two customer classes

and two server pools. Customers in class 𝑖, 𝑖 = 1, 2, arrive at the system according to a time-varying

Poisson process with rate (𝜆𝑖 (𝑡))𝑡≥0. Class 1 customers can be served by both pool 1 and pool 2

servers, while class 2 customers can be served only by pool 2 servers. The number of servers in

pool 𝑖 is 𝑠𝑖, 𝑖 = 1, 2. The service times are exponentially distributed with class-and-pool-dependent

service rates. In particular, if a class 𝑖 customer is served by a server in pool 𝑗 , the service rate

is 𝜇𝑖 𝑗 . We assume that 𝜇11 > 𝜇12 to capture the efficiency loss of non-primary service. We also

define 𝜇21 = 0 to capture the service non-compatibility.

Let 𝑋𝑖 (𝑡) denote the number of class 𝑖 customers in the system at time 𝑡; 𝑍𝑖 𝑗 (𝑡) denote the

number of class 𝑖 customers in service in pool 𝑗 at time 𝑡; and 𝑄𝑖 (𝑡) denote the number of class 𝑖

customers waiting in the queue at time 𝑡. Note that

𝑋1(𝑡) = 𝑄1(𝑡) + 𝑍11(𝑡) + 𝑍12(𝑡) and 𝑋2(𝑡) = 𝑄2(𝑡) + 𝑍22(𝑡).

Let 𝐴𝑖 and 𝑆𝑖 𝑗 denote rate-1 Poisson processes modeling the arrival and service processes, respec-
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tively. Then, the system dynamics can be characterized via

𝑋1(𝑡) = 𝑋1(0) + 𝐴1

(∫ 𝑡

0
𝜆1(𝑠)𝑑𝑠

)
− 𝑆11

(
𝜇11

∫ 𝑡

0
𝑍11(𝑠)𝑑𝑠

)
− 𝑆12

(
𝜇12

∫ 𝑡

0
𝑍12(𝑠)𝑑𝑠

)
,

𝑋2(𝑡) = 𝑋2(0) + 𝐴2

(∫ 𝑡

0
𝜆2(𝑠)𝑑𝑠

)
− 𝑆22

(
𝜇22

∫ 𝑡

0
𝑍22(𝑠)𝑑𝑠

)
,

where 𝑍 (𝑡) = (𝑍11(𝑡), 𝑍12(𝑡), 𝑍22(𝑡)), 𝑡 ≥ 0, is determined by the scheduling policy. We consider

the class of preemptive Markovian policies, which can be viewed as a mapping from 𝑋 (𝑡) =

(𝑋1(𝑡), 𝑋2(𝑡)) to 𝑍 (𝑡) = (𝑍11(𝑡), 𝑍12(𝑡), 𝑍22(𝑡)), where 𝑍 (𝑡) ∈ N3
0 satisfies

𝑍11(𝑡) ≤ 𝑠1, 𝑍12 + 𝑍22(𝑡) ≤ 𝑠2, 𝑍11(𝑡) + 𝑍12(𝑡) ≤ 𝑋1(𝑡), 𝑍22(𝑡) ≤ 𝑋2(𝑡).

We consider non-anticipative policies that do not know realized customer demand in the future,

but we allow the policies to take future arrival rates into account. Note that the arrival rates can be

viewed as part of the system parameters. Let 𝜋 denote a scheduling policy (i.e., a routing policy).

We use the superscript 𝜋 to denote the dependence of the system dynamics on the policy – e.g., 𝑋𝜋

and 𝑍𝜋. We occasionally suppress the superscript when it is clear from the context.

Focusing on planning under demand surges, we consider time-varying arrival rates that can

cause one or more customer classes to experience surge in demand (arrivals). Without loss of

generality, we assume that time 0 is the beginning of the demand surge and the demand surge will

last for a finite amount of time. In addition, the demand surge is sufficiently large such that the

total demand exceeds the total processing capacity during the surge period. (This will be made

precise in Assumption 1 in the following section.) To illustrate the main idea, Figure 2.1 shows the

realized and projected demand for Intensive Care Unit (ICU) beds by COVID-19 patients in the US

[50], where one demand peak is from November 2020 to February 2021. During this peak time,

hospitals had to cancel elective surgeries to accommodate the surge of demand from COVID-19

patients with severe respiratory symptoms.

Our goal is to operate the system in the most cost-effective way so that it returns to the normal

state of operation after the demand surge. For the objective function, we consider two types of
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Figure 2.1: Demand for ICU beds for COVID-19 patients in the US, based on IMHE projection

costs related to the routing decisions: holding cost and overflow cost. We aim to find a scheduling

(routing) policy that minimizes the total cost of holding customers in the queue and overflowing

class 1 customers to pool 2 over a properly defined finite time horizon. Mathematically, we denote

the holding cost for class 𝑖 customers as ℎ𝑖, 𝑖 = 1, 2, and the overflow cost for each class 1 customer

in pool 2 as 𝜙12. The optimal scheduling problem is formulated as finding a policy 𝜋 that minimizes

𝑉𝜋 (𝑥) = E
[∫ 𝑇

0
ℎ1𝑋

𝜋
1 (𝑡) + ℎ2𝑋

𝜋
2 (𝑡) + 𝜙12𝑍

𝜋
12(𝑡)𝑑𝑡

��� 𝑋 (0) = 𝑥] . (2.1)

Here, the planning horizon 𝑇 is a long enough time such that the system can fully absorb the

demand surge by time 𝑇 . (This will be made more precise in Section 2.4.)

Solving (2.1) – i.e., finding a policy 𝜋 to minimize 𝑉𝜋 (𝑥) – analytically is intractable. Even

solving it numerically can be computationally prohibitive due to the large state space and policy

space. Thus, we take the approach of studying a corresponding deterministic fluid control problem,

which serves as a good approximation to (2.1).

2.3 Fluid Optimal Control

We first specify the deterministic fluid model 𝑞(𝑡) = (𝑞1(𝑡), 𝑞2(𝑡)) that corresponds to the

stochastic system described in Section 2.2. The arrival rates and service rates in the fluid model

are the same as the stochastic system introduced in Section 2.2. The dynamics of the fluid model
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are characterized via

¤𝑞1(𝑡) = 𝜆1(𝑡) − 𝜇11𝑧11(𝑡) − 𝜇12𝑧12(𝑡),

¤𝑞2(𝑡) = 𝜆2(𝑡) − 𝜇22𝑧22(𝑡),

where ¤𝑞𝑖 (𝑡) := 𝑑𝑞𝑖 (𝑡)/𝑑𝑡. The scheduling trajectory in the fluid model, 𝑧(𝑡) = (𝑧11(𝑡), 𝑧12(𝑡), 𝑧22(𝑡)),

is determined by a fluid admissible control that satisfies

𝑞1(𝑡) ≥ 0, 𝑞2(𝑡) ≥ 0, 𝑧11(𝑡) ≤ 𝑠1, 𝑧12(𝑡) + 𝑧22(𝑡) ≤ 𝑠2, 𝑧11(𝑡) ≥ 0, 𝑧12(𝑡) ≥ 0, 𝑧22(𝑡) ≥ 0.

We denote the set of admissible controls at time 𝑡 as Z(𝑡). We impose the following assumptions

on the arrival rate functions.

Assumption 1. The arrival rates 𝜆1(𝑡) and 𝜆2(𝑡) satisfy:

1. For 𝑖 = 1, 2, 𝜆𝑖 (𝑡) ≥ 𝑠𝑖𝜇𝑖𝑖 when 𝑡 < 𝜅𝑖 and 𝜆𝑖 (𝑡) < 𝑠𝑖𝜇𝑖𝑖 when 𝑡 ≥ 𝜅𝑖.

2. (𝜆𝑖 (𝑡))0≤𝑡≤𝜅𝑖 ’s are piecewise monotone with a finite number of pieces.

3.
∫ ∞
𝜅𝑖

(𝑠𝑖𝜇𝑖𝑖 − 𝜆𝑖 (𝑡))𝑑𝑡 = ∞.

4. Given 𝑋 (0) = 𝑥, for any 𝑡 ≤ 𝜅1 ∨ 𝜅2, where 𝜅1 ∨ 𝜅2 = max{𝜅1, 𝜅2},𝑊 (𝑥, 𝑡) > 0, where

𝑊 (𝑥, 𝑡) = min
𝑧

𝑞1(𝑡) + 𝑞2(𝑡)

s.t. ¤𝑞1(𝑢) = 𝜆1(𝑢) − 𝜇11𝑧11(𝑢) − 𝜇12𝑧12(𝑢), 𝑞1(0) = 𝑥1

¤𝑞2(𝑢) = 𝜆2(𝑢) − 𝜇22𝑧22(𝑢), 𝑞2(0) = 𝑥2

𝑧(𝑢) ∈ Z(𝑢) for all 𝑢 ∈ [0, 𝑡] .

(2.2)

The last condition in Assumption 1 indicates that the demand surge is large enough such that

the fluid queue can not be emptied by any admissible control before 𝜅1∨ 𝜅2. (Because the objective

function in 𝑊 (𝑥, 𝑡) solely focuses on minimizing the queue length, it leads to policies that aim to
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empty the queue as fast as possible.) In addition, note that Assumption 1 considers a single demand

surge for each class. We relax this assumption in Section 2.3.4 to consider multiple surges.

The fluid control problem corresponding to (2.1) is formulated as

min
𝑧

∫ 𝜎

0
ℎ1𝑞1(𝑡) + ℎ2𝑞2(𝑡) + 𝜙12𝑧12(𝑡)𝑑𝑡

s.t. 𝑞(0) = 𝑥

¤𝑞1(𝑡) = 𝜆1(𝑡) − 𝜇11𝑧11(𝑡) − 𝜇12𝑧12(𝑡)

¤𝑞2(𝑡) = 𝜆2(𝑡) − 𝜇22𝑧22(𝑡)

𝑧(𝑡) ∈ Z(𝑡) for all 𝑡 ≥ 0,

(2.3)

where 𝜎 = inf{𝑡 ≥ 𝜅1 ∧ 𝜅2 : 𝑞1(𝑡) + 𝑞2(𝑡) = 0}. Note that under Assumption 1, with a proper

scheduling policy, the fluid queue will eventually hit zero and stay there. Before presenting the

optimal policy for (2.3), we make some remarks on Assumption 1.

Remark 1 (Future information on arrival rates). In the baseline fluid analysis, we assume the

arrival rates {𝜆𝑖 (𝑡)}𝑡≥0 are known exactly and fully. Later, we show an adaptation of the optimal

policy to scenarios where (i) we only have access to estimated arrival rates that can have prediction

errors (Section 2.3.2), and (ii) we only have access to a limited look-ahead time window (Section

2.3.3). When translating the fluid control policy to the stochastic system, we will show that our

proposed policy is asymptotically optimal even when the arrival rates are estimated with certain

errors (Section 2.4).

For 𝑖 = 1, 2 and 𝑡 ≥ 0, define the function 𝐺 𝑡
𝑖

: R+0 → R+0 as follows. For 𝑥 > 0,

𝐺 𝑡
𝑖 (𝑥) := inf

{
Δ ≥ 0 :

∫ 𝑡+Δ

𝑡

(𝑠𝑖𝜇𝑖𝑖 − 𝜆𝑖 (𝑠)) 𝑑𝑠 = 𝑥
}
, (2.4)

and for 𝑥 = 0,

𝐺 𝑡
𝑖 (0) := lim

𝑥↓0
𝐺 𝑡
𝑖 (𝑥). (2.5)
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We can interpret 𝐺 𝑡
𝑖
(𝑥) as the time it takes to empty queue 𝑖 after time 𝑡 using only primary re-

sources, given that 𝑞𝑖 (𝑡) = 𝑥. For a fixed value of 𝑡, it is continuous and strictly increasing in 𝑥.

Note that under (2.5), 𝐺 𝑡
𝑖
(0) could be positive if there is an upcoming demand surge, and it is the

time until the effects of the demand surge can be fully absorbed using only primary resources. The

next theorem characterizes the optimal routing policy for the fluid control problem.

Theorem 1 (Optimal control policy in N-model). Under Assumption 1, the optimal control for

(2.3) takes the following form. Pool 1 serves as many class 1 customers as possible – i.e.,

𝑧∗11(𝑡) = 𝑠11{𝑞1(𝑡) > 0} +
(
𝑠1 ∧

𝜆1(𝑡)
𝜇11

)
1{𝑞1(𝑡) = 0}.

Moreover,

I. When ℎ1𝜇12 ≥ ℎ2𝜇22, pool 2 gives priority to class 1 when queue 1 is large enough relative

to queue 2. In particular,

a. If ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) > ℎ2𝜇22𝐺

𝑡
2(𝑞2(𝑡)) + 𝜙12, pool 2 gives priority to class 1 – i.e.,

𝑧∗12(𝑡) = 𝑠21{𝑞1(𝑡) > 0} +
(
𝑠2 ∧

𝜆1(𝑡) − 𝑧∗11(𝑡)𝜇11

𝜇12

)
1{𝑞1(𝑡) = 0}, and

𝑧∗22(𝑡) = (𝑠2 − 𝑧∗12(𝑡))1{𝑞2(𝑡) > 0} +
(
(𝑠2 − 𝑧∗12(𝑡)) ∧

𝜆2(𝑡)
𝜇22

)
1{𝑞2(𝑡) = 0}.

b. Otherwise, pool 2 serves class 2 only – i.e.,

𝑧∗12(𝑡) = 0 and 𝑧∗22(𝑡) = 𝑠21{𝑞2(𝑡) > 0} +
(
𝑠2 ∧

𝜆2(𝑡)
𝜇22

)
1{𝑞2(𝑡) = 0}.

II. When ℎ1𝜇12 ≤ ℎ2𝜇22, pool 2 gives priority to class 2 and helps class 1 only when 𝑞2(𝑡) = 0

and 𝑞1(𝑡) is large enough. In particular,
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a. If 𝑞2(𝑡) = 0 and ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) > 𝜙12, pool 2 provides partial help to class 1 – i.e.,

𝑧∗12(𝑡) = (𝑠2 − 𝑧∗22(𝑡))1{𝑞1(𝑡) > 0}

+
(
(𝑠2 − 𝑧∗22(𝑡)) ∧

𝜆1(𝑡) − 𝑧∗11(𝑡)𝜇11

𝜇12

)
1{𝑞1(𝑡) = 0};

𝑧∗22(𝑡) = 𝑠2 ∧
𝜆2(𝑡)
𝜇22

.

b. Otherwise, pool 2 serves class 2 only – i.e.,

𝑧∗12(𝑡) = 0 and 𝑧∗22(𝑡) = 𝑠21{𝑞2(𝑡) > 0} +
(
𝑠2 ∧

𝜆2(𝑡)
𝜇22

)
1{𝑞2(𝑡) = 0}.

The proof for Theorem 1 is in Appendix A.4. It utilizes the Pontryagin’s Minimum Principle.

The indices are derived based on the adjoint vector (i.e., dual function). This optimal control

specified in Theorem 1 can be summarized as a two-stage index-based look-ahead policy. In the

first stage, we compare the ℎ𝜇 index to decide whether pool 2 should fully prioritize class 1, or

only partially help when having spare capacity. In particular, when ℎ1𝜇12 > ℎ2𝜇22, pool 2 may

prioritize class 1; otherwise, pool 2 prioritizes its own class and may provide partial help. Then, in

the second stage, we decide how long pool 2 should help class 1 (either through full prioritization

or partial help), by comparing ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) − 𝜙12 with ℎ2𝜇22𝐺

𝑡
2(𝑞2(𝑡)); help is provided only

when the former index is larger than the latter. The 𝐺 𝑡
𝑖
(·) term is the “look-ahead” component as

it takes the future demand into account. In what follows, we refer to the scenario in which pool 2

prioritizes class 1 as providing full help to class 1, and the scenario in which pool 2 serves class 1

only when there is spare capacity (i.e., when queue is emptied) as providing partial help to class 1.

2.3.1 Interpretation of the Two-Stage Policy

Leveraging future arrival information

The optimal policy depends on 𝐺 𝑡
𝑖
(𝑞𝑖 (𝑡)), the time to empty the queue, which requires one

to look ahead and take the future arrival rate into account. In particular, we note that (a) when
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class 1 is not very congested but is about to experience a demand surge, pool 2 may already start to

prioritize class 1 in anticipation of the upcoming demand surge; (b) when class 1 has a large queue,

but the demand surge is about to dissipate, pool 2 may decide to stop serving class 1 in anticipation

of the upcoming drop in demand. Figure 2.2 provides a demonstration of the role of the future

arrival rate here. In this example, we set 𝜅1 = 20 and 𝜅2 = 10. For 𝑡 ≤ 10, class 1 is experiencing

a moderate demand surge with 𝜆1(𝑡) = 1.5; for 𝑡 ∈ (10, 20], class 1 is experiencing a more severe

demand surge with 𝜆1(𝑡) = 2. We observe that at time 0, even though class 2 is more congested

than class 1 – i.e., 𝑞2(0) = 2 while 𝑞1(0) = 0 – we still choose to prioritize class 1 in pool 2 – i.e.,

𝑧12(0) = 4. This corresponds to scenario (a) as we are anticipating a demand surge for class 1. We

also observe scenario (b), that is, even though the demand surge for class 1 ends at time 20, pool 2

stops prioritizing class 1 at time 15.8 – i.e., 𝑧12(𝑡) = 0 for 𝑡 ≥ 15.8. We discuss how to modify this

look-ahead component when we only have estimated arrival rates with potential prediction errors

in Section 2.3.2.
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Figure 2.2: Optimal trajectory of the N-model. (Parameter setting: 𝑠1 = 3, 𝑠2 = 4, 𝜇11 = 𝜇22 =

0.25, 𝜇12 = 0.18, ℎ1 = 1.5, ℎ2 = 1, 𝜙12 = 1, 𝜆1(𝑡) = 1.5 × 1{0 ≤ 𝑡 ≤ 10} + 2 × 1{10 < 𝑡 ≤
20} + 0.5 × 1{𝑡 > 20}, 𝜆2(𝑡) = 1 × 1{0 ≤ 𝑡 ≤ 10} + 0.6 × 1{𝑡 > 10}, 𝑞1(0) = 0 and 𝑞2(0) = 2).

Even in the case of constant arrival rates, our policy takes the arrival rates into account by

considering the difference between the arrival rate and the service capacity. In this case, 𝐺 𝑡
𝑖
(𝑥𝑖) =

𝑥𝑖
𝑠𝑖𝜇𝑖𝑖−𝜆𝑖 for 𝑥𝑖 ≥ 0. The optimal scheduling policy is similar to the maximum pressure policy but

takes the slack capacity 𝑠𝑖𝜇𝑖𝑖 − 𝜆𝑖 into account.
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The effect of overflow costs

As discussed in the introduction, though it seems intuitive that one should use future arrival

information when available, it is nontrivial to identify the proper form of incorporating this in-

formation, especially when there are costs associated with flexibility. We discuss in this section

the importance of comparing the overflow cost and the holding cost at the right scale in routing

decisions.

Our fluid-control policy shows that, when having a positive overflow cost, we should compare

the per customer overflow cost to the holding cost over a time interval that is determined by the

time it takes to empty the queue. To see this, we rewrite the condition for Case I in the following

equivalent form:

ℎ1𝐺
𝑡
1(𝑞1(𝑡)) −

𝜙12
𝜇12

> ℎ2𝐺
𝑡
2(𝑞2(𝑡))

𝜇22
𝜇12

. (2.6)

Similarly, in Case II, we check whether

ℎ1𝐺
𝑡
1(𝑞1(𝑡)) >

𝜙12
𝜇12

(2.7)

to decide whether pool 2 should provide partial help to class 1. Here, 𝜙𝑖 𝑗/𝜇𝑖 𝑗 corresponds to

the expected amount of overflow cost for a class 𝑖 customer completing service in pool 𝑗 (with

1/𝜇𝑖 𝑗 being the average service time), while ℎ𝑖𝐺 𝑡
𝑖
(𝑞𝑖 (𝑡)) corresponds to the expected holding cost

accumulated till the queue is depleted using primary resources only. In other words, the cost com-

parison needs to account for the future impact of the routing action via the accumulated overflow

cost and the accumulated holding cost over a look-ahead time window. Note that for a (virtual)

customer joining the queue at time 𝑡, ℎ𝑖𝐺 𝑡
𝑖
(𝑞𝑖 (𝑡)) also measures the queueing externality cost of

this customer – i.e., the additional holding cost it imposes on the entire system; see [44] for an

interpretation using the Last-in-First-out discipline.

We note that this cost comparison is in contrast to comparing both costs (overflow and holding)

at the myopic cost-rate scale. For the cost rate, when using pool 2 to serve class 𝑖 customers, the
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holding cost decreases at rate ℎ𝑖𝜇𝑖2, while the overflow cost increases at rate 𝜙𝑖2𝜇𝑖2. If we compare

the instantaneous cost rate to determine which class should have priority, then we should check

whether

ℎ1𝜇12 − 𝜙12𝜇12 > ℎ2𝜇22

to decide if pool 2 should prioritize class 1. This myopic rule corresponds to the modified 𝑐𝜇

rule that we consider in the numerical experiments in Section 2.6, which can result in significantly

worse performance than our proposed policy in many settings. Our policy suggests that we should

look beyond the instantaneous cost reduction rate and consider overflow versus holding cost from

the system perspective, i.e., how the overflow decision impacts the future system congestion.

Simple priority switching structure

Our policy can be characterized via a time-and-state-dependent switching curve, which is de-

fined as

𝜓(𝑡) = ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) − 𝜙12 − ℎ2𝜇22𝐺

𝑡
2(𝑞2(𝑡)).

In Case I, when 𝜓(𝑡) > 0, pool 2 gives priority to class 1; otherwise, pool 2 serves class 2 only.

Furthermore, we can establish the following property for the switching curve.

Lemma 1. Under Assumption 1 and the control characterized by Theorem 1, let 𝜏1 = inf{𝑡 ≥ 0 :

𝐺 𝑡
1(𝑞1(𝑡)) = 0}. 𝜓(𝑡) is monotonically decreasing in 𝑡 for 𝑡 ≤ 𝜏1 and 𝜓(𝑡) < 0 for 𝑡 > 𝜏1.

Lemma 1 indicates that in Case I, pool 2 switches priority at most once throughout the planning

horizon. If it switches priority, it is from class 1 to class 2. If it does not switch priority, it

serves class 2 only throughout the planning horizon. This is a highly desirable feature for policy

implementation, since frequent priority switching can impose additional administrative burdens.

In the case of constant arrival rates, the switching curve reduces to a simple threshold policy.

In particular, the switching curve partitions the state space of (𝑞1(𝑡), 𝑞2(𝑡)) into two regions. In

one region, pool 2 gives priority to class 1; in the other region, pool 2 serves class 2 only. To

demonstrate this, Figure 2.3 (a) plots the optimal fluid trajectory (𝑞1(𝑡), 𝑞2(𝑡)) for different initial
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queue lengths. The switching curve is the grey line in the figure. When (𝑞1(𝑡), 𝑞2(𝑡)) is below the

curve (i.e., when 𝑞1(𝑡) is sufficiently larger than 𝑞2(𝑡)), pool 2 prioritizes class 1; otherwise, pool

2 serves class 2 only.

The switching curve structure also allows us to conduct sensitivity analyses to visualize the

impact of different system parameters. For example, Figure 2.3 (b) compares the fluid trajectories

when 𝜙12 = 1 (solid) to the fluid trajectories when 𝜙12 = 5 (dashed). As the overflow cost increases,

the optimal policy switches priority from class 1 to class 2 “earlier".
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Figure 2.3: Optimal trajectory of the N-model with different initial queues and overflow costs.
(Parameter setting: 𝑠1 = 𝑠2 = 2, 𝜇11 = 𝜇22 = 0.25, 𝜇12 = 0.2, 𝜆1 = 𝜆2 = 0.3, ℎ1 = 1.5, ℎ2 = 1.)

2.3.2 Adaptivity to Estimation Errors

In this section, we consider the case where we only have access to estimated arrival rates. In

particular, the estimated arrival rate for class 𝑖 takes the form 𝜆̃𝑖 (𝑡) = 𝜆𝑖 (𝑡) + 𝜖𝑖 (𝑡) where 𝜆𝑖 (𝑡) is

the true arrival rate and 𝜖𝑖 (𝑡) is the prediction error.

We propose to use the same two-stage policy even when the estimation is inaccurate. The

estimation error affects the performance of the policy because the look-ahead function is now

calculated based on the estimated arrival rate:

𝐺̃ 𝑡
𝑖 (𝑥) = inf

{
Δ ≥ 0 :

∫ 𝑡+Δ

𝑡

(𝑠𝑖𝜇𝑖𝑖 − 𝜆̃𝑖 (𝑠)) 𝑑𝑠 = 𝑥
}
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for 𝑥 > 0. In this case, pool 2 decides whether to help class 1 by checking whether ℎ1𝜇12𝐺̃
𝑡
1(𝑞1(𝑡))−

𝜙12 > ℎ2𝜇22𝐺̃
𝑡
2(𝑞2(𝑡)).

When 𝜖𝑖 (𝑡) is small, we expect 𝐺̃ 𝑡
𝑖
(𝑥) to be close to 𝐺 𝑡

𝑖
(𝑥), and our policy should perform

well. This intuition will be made rigorous when translating the fluid policy back to the stochastic

system. In particular, we will show in Section 2.4 that under suitable conditions on the estimation

error 𝜖𝑖 (𝑡), the policy based on 𝐺̃ 𝑡
𝑖
(𝑥) is asymptotically optimal in the stochastic systems.

2.3.3 Adaptivity to Limited Look-ahead Windows

In this subsection, we consider the restriction of having only a limited look-ahead time window.

Specifically, we assume that at time 𝑡, only the future arrival rate up to time 𝑡 +𝑊 is known. The

constant 𝑊 ≥ 0 controls the amount of future information available: 𝑊 = 0 corresponds to case

with no future arrival rate information;𝑊 = ∞ corresponds to knowing the full future information.

With a limited look-ahead window, we adapt our policy as follows. We can calculate 𝐺̃ 𝑡
𝑖
’s using

the nominal arrival rates outside the available time window. For example, when 𝑊 = 0, we use

𝐺̃ 𝑡
𝑖
(𝑞𝑖 (𝑡)) = 𝑞𝑖 (𝑡)/(𝑠𝑖𝜇𝑖𝑖 − 𝜆𝑖), where 𝜆𝑖 is the nominal arrival rate (i.e., the arrival rate before or

after the demand surge).

Beyond this adaptation, we also note that the policy characterized in Theorem 1 actually does

not require 𝑊 = ∞. For example, consider the case where ℎ1𝜇12 ≥ ℎ2𝜇22, i.e., Case I in Theorem

1. In this case, pool 2 prioritizes class 1 if

𝐺 𝑡
1(𝑞1(𝑡)) >

ℎ2𝜇22𝐺
𝑡
2(𝑞2(𝑡)) + 𝜙12

ℎ1𝜇12
. (2.8)

Suppose that the class 2 arrival rate is known, so that 𝐺 𝑡
2(𝑞2(𝑡)) is known. Then, we only need

to know the arrival rate of class 1 up to 𝑊 = (ℎ2𝜇22𝐺
𝑡
2(𝑞2(𝑡)) + 𝜙12)/(ℎ1𝜇12), which is sufficient

to determine whether (2.8) is satisfied. For the case where ℎ1𝜇12 ≤ ℎ2𝜇22, i.e., Case II in Theo-

rem 1, because pool 2 gives priority to class 2, no future arrival rate information is needed when

𝑞2(𝑡) > 0. When 𝑞2(𝑡) = 0, it is sufficient to know the arrival rate of class 1 up to𝑊 = 𝜙12/(ℎ1𝜇12)
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to determine whether pool 2 should help class 1. Furthermore, in Section 2.6.3, we conduct simu-

lation experiments to test the performance of our policy with varying values of𝑊 in the stochastic

systems. We observe that our proposed policy achieves a good performance even with a relatively

small look-ahead time window.

2.3.4 Adaptivity to Multiple Surges

Our analytical framework applies to very general arrival rates, including scenarios with multi-

ple demand surges. In this section, we show an example in which class 1 experiences two demand

surges, as characterized in Assumption 2.

Assumption 2. The arrival rates 𝜆1(𝑡) and 𝜆2(𝑡) satisfy:

1. For class 1, there exist constants 0 < 𝜅𝑎 < 𝜅𝑏 < 𝜅𝑐 such that 𝜆1(𝑡) ≥ 𝑠1𝜇11 for 𝑡 ∈

[0, 𝜅𝑎]
⋃[𝜅𝑏, 𝜅𝑐] and 𝜆1(𝑡) < 𝑠1𝜇11 otherwise. For class 2, 𝜆2(𝑡) < 𝑠2𝜇22 for all 𝑡 ≥ 0.

2. (𝜆1(𝑡))0≤𝑡≤𝜅𝑐 is piecewise monotone with a finite number of pieces.

3.
∫ ∞

0 (𝑠1𝜇11 − 𝜆1(𝑡)) 𝑑𝑡 = ∞.

4. Given 𝑋 (0) = 𝑥, for any 𝑡 ∈ [0, 𝜅𝑎)
⋃(𝜅𝑏, 𝜅𝑐),𝑊 (𝑥, 𝑡) > 0, where𝑊 (𝑥, 𝑡) is defined in (2.2).

We redefine 𝜎 = inf{𝑡 > 𝜅𝑐 : 𝑞1(𝑡) +𝑞2(𝑡) = 0}. The following theorem shows that the optimal

control in this two-surge setting takes exactly the same form as before, with the look-ahead function

𝐺 𝑡
𝑖

defined in (2.4).

Theorem 2 (Optimal control under two demand surges). Under Assumption 2, the optimal control

for (2.3) takes the following form. Pool 1 serves as many class 1 customers as possible. Moreover:

I. When ℎ1𝜇12 ≥ ℎ2𝜇22, pool 2 gives priority to class 1 when

ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) > ℎ2𝜇22𝐺

𝑡
2(𝑞2(𝑡)) + 𝜙12;

otherwise, pool 2 serves class 2 only.
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II. When ℎ1𝜇12 ≤ ℎ2𝜇22, pool 2 gives priority to class 2 and will help class 1 when 𝑞2(𝑡) = 0

and ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) > 𝜙12; otherwise, pool 2 serves class 2 only.

The proof of Theorem 2 is in the Appendix, and follows a similar framework as that of Theo-

rem 1. The behavior of the system under the control characterized in Theorem 2 depends on the

length of the interval between the two demand surges. We demonstrate the basic idea through a

numerical example: Class 2 has a constant arrival rate 𝜆2(𝑡) ≡ 0.6, while the arrival rate for class

1 takes the form

𝜆1(𝑡) =



2, 0 ≤ 𝑡 < 30,

0.5, 30 ≤ 𝑡 < 30 + 𝐾,

2, 30 + 𝐾 ≤ 𝑡 < 60 + 𝐾,

0.5, 𝑡 ≥ 60 + 𝐾.

In particular, there are two demand surges for class 1, and the length of the interval between the

two surges is 𝐾 , which we vary in the experiments plotted in Figure 2.4. When 𝐾 is small – i.e.,

𝐾 = 10 in case (a) – the two demand surges are so close to each other that neither queue can be

emptied before the beginning of the second demand surge, and we observe a single helping interval

as in the single demand surge setting. When 𝐾 is moderate – i.e., 𝐾 = 30 in case (b) – the two

demand surges are far enough apart for the class 1 queue to be emptied by the time the second

demand surge begins, but not far enough apart for the class 2 queue to be emptied then. In this

case, there are two helping intervals. Finally, when 𝐾 is large – i.e., 𝐾 = 60 in case (c) – both

queues can be emptied before the start of the second demand surge. In this case, the two demand

surges can be decomposed into two single-demand surge planning, and there are again two helping

intervals.

We conclude this section by remarking that our optimal control policy has the same structure in

both the single-surge and multi-surge settings. This is very appealing for practical implementations

because one can implement the same policy but adjust the estimation of the 𝐺 values as more

information about the future arrival rates becomes available. We also note that even if the second
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(c) 𝐾 = 60

Figure 2.4: Optimal trajectory of the N-model when the duration between the two demand surges
changes. (ℎ1 = 1.5, ℎ2 = 1, 𝜙12 = 1, 𝑠1 = 3, 𝑠2 = 4, 𝜇11 = 𝜇22 = 0.25, 𝜇12 = 0.18, 𝑞1(0) = 𝑞2(0) =
0, 𝜆1(𝑡) = 2×1{0 ≤ 𝑡 < 30} +0.5×1{30 ≤ 𝑡 < 30+𝐾} +2×1{30+𝐾 ≤ 𝑡 < 60+𝐾} +0.5×1{𝑡 ≥
60 + 𝐾}, 𝜆2(𝑡) = 0.6.)

surge was not foreseen at the time of the first surge (i.e., the initial policy calculation assumes a

single surge), our policy can quickly adapt to the information on the second surge when it becomes

available. We substantiate this point with more numerical results in Section 2.6.3 when dealing

with two demand surges and limited look-ahead windows.

2.4 Asymptotic Optimality

In this section, we translate the optimal control defined in Theorem 1 to the original stochastic

system introduced in Section 2.2. We prove that the translated control is asymptotically optimal

along a properly scaled sequence of stochastic systems even when there are prediction errors.

To specify the sequence of stochastic systems, we first elaborate on the planning horizon 𝑇

in (2.1). Recall the planning horizon 𝜎 in the fluid control problem (2.3). The idea is to have a

long enough time such that the system can get back to the normal state of operation by then. For

tractability reasons, we adopt a deterministic planning horizon for the stochastic system. Given the

initial state 𝑋 (0) = 𝑥, we define the planning horizon 𝑇 (𝑥) based on the fluid dynamic. Consider

a fluid system in which pool 2 fully prioritizes class 1 as long as the class 1 queue is non-empty.
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Specifically, we define 𝑞𝑜 (𝑡) = (𝑞𝑜1 (𝑡), 𝑞
𝑜
2 (𝑡)) with 𝑞𝑜 (0) = 𝑥 that satisfies

¤𝑞𝑜1 (𝑡) = (𝜆1(𝑡) − 𝑠1𝜇11 − 𝑠2𝜇12)1{𝑞𝑜1 (𝑡) > 0} + (𝜆1(𝑡) − 𝑠1𝜇11 − 𝑠2𝜇12)+1{𝑞𝑜1 (𝑡) = 0},

¤𝑞𝑜2 (𝑡) = 𝜆2(𝑡) −
(
𝑠2 −

(𝜆1(𝑡) − 𝑠1𝜇11)+
𝜇12

)+
𝜇221{𝑞𝑜1 (𝑡) = 0}.

(2.9)

Define

𝜏𝑜1 (𝑥) = inf
{
𝑡 ≥ 𝜅1 : 𝑞𝑜1 (𝑡) = 0

}
and 𝜏𝑜2 (𝑥) = inf

{
𝑡 ≥ 𝜅2 : 𝑞𝑜2 (𝑡) = 0

}
,

which corresponds to the time by which the class 𝑖 queue should be emptied if pool 2 prioritizes

class 1 all the time. Then, we can define

𝑇 (𝑥) = max{𝐺0
1(𝑥1), 𝐺0

2(𝑥2), 𝜏𝑜1 (𝑥), 𝜏
𝑜
2 (𝑥)} = max{𝐺0

1(𝑥1), 𝜏𝑜2 (𝑥)}.

Note that 𝑇 (𝑥) can be interpreted as the time by which the fluid queue will be emptied under any

reasonable scheduling policy. This is because the class 1 queue should be emptied by time 𝐺0
1(𝑥1)

even if pool 2 does not serve class 1, and the class 2 queue should be emptied by time 𝜏𝑜2 (𝑥) even

if pool 2 prioritizes class 1 all the time.

We now specify the setup to establish asymptotic optimality. Consider a sequence of systems

indexed by 𝑛. The number of servers are fixed along the sequence. We speed up the time and scale

down the space by 𝑛. Specifically, for the 𝑛-th system, the arrival rate at time 𝑡 is 𝜆𝑛 (𝑡) := 𝑛𝜆(𝑡),

and the service rate is 𝑛𝜇𝑖 𝑗 . We use the superscript 𝑛 to denote quantities related to the 𝑛-th

system. For example, 𝑋𝑛 (𝑡) = (𝑋𝑛1 (𝑡), 𝑋
𝑛
2 (𝑡)) denotes the number of customers in the 𝑛-th system;

𝑄𝑛 (𝑡) = (𝑄𝑛1 (𝑡), 𝑄
𝑛
2 (𝑡)) denotes the queue length; and 𝑍𝑛 (𝑡) = (𝑍𝑛11(𝑡), 𝑍

𝑛
12(𝑡), 𝑍

𝑛
22(𝑡)) denotes the

number of customers in service from each class in each pool at time 𝑡. For a given “base” starting

state 𝑥, we assume that 𝑋𝑛 (0) = 𝑛𝑥. We also define the fluid-scaled queue length process as

𝑋̄𝑛 (𝑡) = 1
𝑛
𝑋𝑛 (𝑡).

A scheduling policy 𝜋𝑛 = {𝜋𝑛𝑡 : 𝑡 ≥ 0} for the 𝑛-th system maps the state of the system to
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the allocation of servers – i.e., 𝑍𝑛 (𝑡) = 𝜋𝑛𝑡 (𝑋𝑛 (𝑡)). The admissible controls are non-anticipative,

but we have access to some estimated arrival rate Λ𝑛 (𝑡). The server allocation policies satisfy the

following conditions:

𝑍𝑛11(𝑡) + 𝑍
𝑛
12(𝑡) ≤ 𝑋𝑛1 (𝑡), 𝑍

𝑛
22(𝑡) ≤ 𝑋𝑛2 (𝑡),

𝑍𝑛11(𝑡) ≤ 𝑠1, 𝑍
𝑛
12(𝑡) + 𝑍

𝑛
22(𝑡) ≤ 𝑠2, 𝑍

𝑛 (𝑡) ∈ N3
0.

Let 𝑌 𝑛
𝑖 𝑗
(𝑡) =

∫ 𝑡

0 𝑍
𝑛
𝑖 𝑗
(𝑠) 𝑑𝑠 be the total amount of time spent by pool 𝑗 servers on class 𝑖 customers

up to time 𝑡. We add the scheduling policy as a superscript to the related processes when we want

to emphasize the dependence of the system dynamics on the scheduling policy explicitly, e.g.,

𝑋𝑛,𝜋
𝑛 (𝑡) and 𝑍𝑛,𝜋

𝑛 (𝑡).

For the 𝑛-th system, the optimal scheduling problem is formulated as finding a policy that

minimizes the cumulative holding and overflow costs over [0, 𝑇 (𝑥)]. In particular, we want to find

a policy 𝜋𝑛 that minimizes the following fluid-scaled objective:

min
𝜋𝑛
𝑉̄𝑛,𝜋

𝑛 (𝑥) = E
[∫ 𝑇 (𝑥)

0

(
ℎ1
𝑛
𝑋
𝑛,𝜋𝑛

1 (𝑡) + ℎ2
𝑛
𝑋
𝑛,𝜋𝑛

2 (𝑡) + 𝜙12𝑍
𝑛,𝜋𝑛

12 (𝑡)
)
𝑑𝑡

���𝑋𝑛 (0) = 𝑛𝑥]
= E

[∫ 𝑇 (𝑥)

0

(
ℎ1 𝑋̄

𝑛,𝜋𝑛

1 (𝑡) + ℎ2 𝑋̄
𝑛,𝜋𝑛

2 (𝑡)
)
𝑑𝑡 + 𝜙12𝑌

𝑛,𝜋𝑛

12 (𝑇 (𝑥))
���𝑋𝑛 (0) = 𝑛𝑥] .

Note that the holding costs and the overflow cost are scaled differently in 𝑉̄𝑛,𝜋
𝑛 (𝑥) to have a mean-

ingful comparison. Specifically, the holding costs are scaled by 𝑛 – i.e., ℎ𝑛
𝑖
= ℎ𝑖/𝑛 – while the

overflow cost is unscaled. A similar scaling is used in [51].

We next translate the optimal fluid policy to a sequence of policies for the corresponding

stochastic systems. Recall that for the 𝑛-th system, the true arrival rate for class 𝑖 follows 𝜆𝑛
𝑖
(𝑡) =

𝑛𝜆𝑖 (𝑡). We assume the corresponding estimated arrival rate takes the form Λ𝑛
𝑖
(𝑡) = 𝑛𝜆𝑖 (𝑡) + 𝐸𝑛𝑖 (𝑡),

where 𝐸𝑛
𝑖
(·) is the estimation error term. We impose the following assumptions on 𝐸𝑛

𝑖
(·):

Assumption 3. 𝐸𝑛
𝑖
(·) is a stochastic process satisfying 𝐸𝑛

𝑖
(·)/𝑛 → 0 u.o.c. almost surely as
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𝑛→ ∞, i.e.,

P(𝐸𝑛𝑖 (·)/𝑛→ 0 u.o.c. as 𝑛→ ∞) = 1.

In addition, for large enough 𝑛, Λ𝑛
𝑖
(·) satisfies items 1 and 3 in Assumption 1.

Under Assumption 3, the uncertainty of the arrival rate is of a smaller order than the arrival rate

itself. This is a common assumption in the literature, see, for example, [52, 7].

For the 𝑛-th system, we use the look-ahead function based on the estimated arrival rate:

𝐺̃ 𝑡
𝑖,𝑛 (𝑥) = inf

{
Δ ≥ 0 :

∫ 𝑡+Δ

𝑡

(𝑠𝑖𝑛𝜇𝑖𝑖 − Λ𝑛𝑖 (𝑠)) 𝑑𝑠 = 𝑥
}

for 𝑥 > 0. The scheduling policy {𝜈̃𝑛}𝑛≥1 is defined as follows. For the 𝑛-th system: pool 1 serves

class 1 customers as much as possible. When ℎ1𝜇12 > ℎ2𝜇22, at time 𝑡, if

ℎ1𝜇12𝐺̃
𝑡
1,𝑛 (𝑋

𝑛
1 (𝑡)) − 𝜙12 > ℎ2𝜇22𝐺̃

𝑡
2,𝑛 (𝑋

𝑛
2 (𝑡)),

pool 2 gives preemptive priority to class 1; otherwise, pool 2 serves class 2 only. When ℎ1𝜇12 ≤

ℎ2𝜇22, at time 𝑡, if

ℎ1𝜇12𝐺̃
𝑡
1,𝑛 (𝑋

𝑛
1 (𝑡)) − 𝜙12 > 0,

pool 2 serves both classes but gives preemptive priority to class 2; otherwise, pool 2 serves class 2

only. The following theorem shows that {𝜈̃𝑛}𝑛≥1 is asymptotically optimal. Let 𝑉̄∗(𝑥) denote the

optimal objective value of the corresponding fluid control problem (2.3).

Theorem 3 (Asymptotic optimality). Under Assumptions 1 and 3, for any sequence of admissible

controls {𝜋𝑛}𝑛≥1,

lim inf
𝑛→∞

𝑉̄𝑛,𝜋
𝑛 (𝑥) ≥ 𝑉̄∗(𝑥).

For the sequence of systems under policy {𝜈̃𝑛}𝑛≥1,

lim
𝑛→∞

𝑉̄𝑛,𝜈̃
𝑛 (𝑥) = 𝑉̄∗(𝑥).
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The proof of Theorem 3 is in Appendix A.5. To incorporate the prediction error in the asymp-

totic optimality result, we leverage the continuity properties of the look-ahead function 𝐺 𝑡
𝑖
. This

theorem suggests that when applied to the stochastic systems, the two-stage index-based look-

ahead policy achieves near-optimal performance when the initial queue and/or the demand surge is

large. Note that our asymptotic optimality result requires the estimation error to be of a smaller or-

der than the arrival rate (Assumption 3). This indicates that if the estimation error is small relative

to the actual arrival rate, the proposed policy achieves near-optimal performance. In Section 2.6.3,

we go beyond this theoretical result and numerically investigate the performance of our policy with

more general forms of prediction errors, e.g., when the estimation error is relatively large or when

we only have access to a limited look-head time window. Numerical results show that even though

the performance of our algorithm deteriorates as the prediction accuracy decays, it performs com-

petitively compared to benchmark policies that are agnostic to future arrival information. We note

that the index structure of our policy has some built-in resilience to perturbations. In particular, as

long as the estimation errors do not reverse the order of the second-stage indices, the same policy

will be implemented in the stochastic system at given time 𝑡.

2.5 Beyond the N-Model: Heuristics for General Systems

In this section, we study three more general models beyond the N-model, which helps us design

a heuristic policy for general multi-class multi-pool systems. The three models are i) the X-model;

ii) the many-help-one extended N-model (exN1); and iii) the one-helps-many extended N-model

(exN2). See Figure 2.5 for a pictorial illustration of these models together with the N-model. Note

that the exN2-model also covers the commonly-studied M-model as a special case when we set the

holding cost ℎ1 = 0.

For the three models, we focus on the fluid optimal control analysis. Moreover, when present-

ing the results, we focus on emphasizing the key difference between these models and the N-model.

In particular, by comparing the X-model with the N-model, we highlight the “unexpected” ben-

efit from cross-training. By comparing the extended N-models with the two-class N-model, we
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generate insights into how the policy changes when facing multiple classes of customers and mul-

tiple pools of servers. These insights lead us propose a heuristic policy for general multi-class

multi-pool systems presented in Section 2.5.3.

(a) N-model (b) X-model (c) exN1-model (d) exN2-model

Figure 2.5: Queueing models with partial flexibility

General notation for fluid control. Consider 𝐼 classes of customers and 𝐼 server pools. We

assume class 𝑖 fluid flows into the system at rate 𝜆𝑖 (𝑡) and flows out of service at rate
∑
𝑗 𝜇𝑖 𝑗 𝑧𝑖 𝑗 (𝑡),

where 𝜇𝑖 𝑗 is the service rate of pool 𝑗 servers working on class 𝑖 jobs, and 𝑧𝑖 𝑗 (𝑡) is a positive real

number denoting the service capacity from pool 𝑗 allocated to serve class 𝑖 fluid at time 𝑡. Note

that if 𝜇𝑖 𝑗 = 0, class 𝑖 customers and pool 𝑗 servers are not compatible. Let 𝑞𝑖 (𝑡) ∈ [0,∞) denote

the fluid amount of class 𝑖 customers in the system at time 𝑡. Then,

¤𝑞𝑖 (𝑡) = 𝜆𝑖 (𝑡) −
𝐼∑︁
𝑗=1

𝜇𝑖 𝑗 𝑧𝑖 𝑗 (𝑡).

A fluid scheduling policy 𝜋 specifies the service capacity allocation

𝑧(𝑡) = (𝑧𝑖 𝑗 (𝑡) : 𝑖, 𝑗 = 1, · · · , 𝐼).

We require the control to satisfy the following capacity constraints:

𝑧𝑖 𝑗 (𝑡) ≥ 0, 𝑖, 𝑗 = 1, · · · , 𝐼,
∑︁
𝑖

𝑧𝑖 𝑗 (𝑡) ≤ 𝑠 𝑗 , 𝑗 = 1, · · · , 𝐼
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and state constraints:

¤𝑞𝑖 (𝑡) ≥ 0 whenever 𝑞𝑖 (𝑡) = 0, 𝑖 = 1, · · · , 𝐼 .

Similar as the N-model, we allow the policies to utilize future arrival rates.

For arrival rates, we consider the scenario in which each class may experience an initial demand

surge that lasts for a certain amount of time before the demand returns to normal; the extension to

multiple surges can be done similarly as in Section 2.3.4. Let 𝜅𝑖 denote the demand surge period

for class 𝑖 and 𝜅 = max1≤𝑖≤𝐼 𝜅𝑖. Based on a set of assumptions that are similar to Assumption 1 (see

Assumption 5 in Appendix A.1 for a full specification of the assumptions for general multi-class

multi-pool systems), we define

𝜎 = inf

{
𝑡 ≥ 𝜅 :

∑︁
𝑖

𝑞𝑖 (𝑡) = 0

}
,

which can be interpreted as the time to fully absorb the demand surge. Fluid waiting in the system

incurs a cost of ℎ𝑖 per unit job per unit time. In addition, routing fluid from class 𝑖 to pool 𝑗 incurs

an overflow cost of 𝜙𝑖 𝑗 per unit job per unit time, with 𝜙𝑖𝑖 = 0 by convention. Then, the fluid

optimal control problem takes the form:

min
𝑧

∫ 𝜎

0

𝐼∑︁
𝑖=1

ℎ𝑖𝑞𝑖 (𝑡) +
𝐼∑︁
𝑖=1

𝐼∑︁
𝑗=1

𝜙𝑖 𝑗 𝑧𝑖 𝑗 (𝑡)𝑑𝑡

s.t. ¤𝑞𝑖 (𝑡) = 𝜆𝑖 (𝑡) −
𝐼∑︁
𝑗=1

𝜇𝑖 𝑗 𝑧𝑖 𝑗 (𝑡), 𝑖 = 1, · · · , 𝐼

𝑞𝑖 (𝑡) ≥ 0, 𝑖 = 1, · · · , 𝐼

𝑧𝑖 𝑗 (𝑡) ≥ 0, 𝑖, 𝑗 = 1, · · · , 𝐼,
𝐼∑︁
𝑖=1

𝑧𝑖 𝑗 (𝑡) ≤ 𝑠 𝑗 , 𝑗 = 1, · · · , 𝐼 .

(2.10)

Similar to before, we also define the function 𝐺 𝑡
𝑖

: R+0 → R+0 as

𝐺 𝑡
𝑖 (𝑥) = inf

{
𝑢 ≥ 0 :

∫ 𝑢

0
(𝑠𝑖𝜇𝑖𝑖 − 𝜆𝑖 (𝑠)) 𝑑𝑠 = 𝑥

}
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for 𝑖 = 1, . . . , 𝐼, for 𝑥 > 0, and 𝐺 𝑡
𝑖
(0) = lim𝑥↓0𝐺

𝑡
𝑖
(𝑥). Note that if 𝜆𝑖 (𝑡) ≡ 𝜆𝑖, 𝐺 𝑡

𝑖
(𝑥) = 𝑥

𝑠𝑖𝜇𝑖𝑖−𝜆𝑖 for

all 𝑡 ≥ 0. For a fixed 𝑡, the function 𝐺 𝑡
𝑖
(𝑥) is continuous and strictly increasing in 𝑥.

Summary of the optimal policy structure. When dealing with more-general models, the optimal

policy follows a similar two-stage structure as in the N-model. That is, in the first stage we decide

whether a certain pool is going to fully prioritize another non-primary class or just provide partial

help based on the ℎ𝜇 index. In the second stage we decide how long the full- or partial-help lasts.

The main difference from the N-model is that, when deciding how long the “help” will last in

the second stage, we compare the time it takes to empty the queues not only using their primary

resources, but also taking into account the help they may receive from other pools or the help their

primary pools may provide to other classes. This idea will be made more precise in the subsequent

sections.

2.5.1 X-Model

The X-model has a similar network structure except that helping can happen in both ways. In

particular, pool 1 can serve class 2 at rate 𝜇21 > 0 while pool 2 can serve class 1 at rate 𝜇12 > 0.

We assume that 𝜇11 > 𝜇12 and 𝜇22 > 𝜇21, i.e., primary pool servers are preferred. Following

the development of the N-model, we first compare the ℎ𝜇 index. Without loss of generality, we

consider two possible cases:

I. ℎ1𝜇12 > ℎ2𝜇22, which implies that ℎ2𝜇21 < ℎ1𝜇11. In this case, pool 2 gives priority to class

1 when class 1 has a large enough backlog compared to class 2. When pool 1 empties the

class 1 queue, it may provide partial help to class 2 if class 2 has a large enough backlog.

II. ℎ1𝜇12 < ℎ2𝜇22 and ℎ2𝜇21 < ℎ1𝜇11. In this case, when pool 𝑖, 𝑖 = 1, 2, empties its own class,

it may provide partial help to the other class if the other class has a large enough backlog.

The key difference between the X-model and the N-model comes up in Case I when deciding

how long pool 2 will help class 1. In the X-model, because pool 1 can later help back class 2 –

i.e., pool 1 can provide partial help to class 2 when the class 1 queue empties – the period during
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which pool 2 prioritizes class 1 can be longer than the full helping period in an otherwise identical

N-model.

Optimal policy.

To fully characterize the full helping period in Case I for the X-model, we define 𝑃𝑡 (𝑞(𝑡)) as

the length of the partial helping period for pool 1 to class 2:

𝑃𝑡 (𝑞) = inf
{
𝑢 ≥ 0 : ℎ2𝜇21𝐺

𝑡+𝐺𝑡
1 (𝑞1)+𝑢

2 (𝑞2(𝑡 + 𝐺 𝑡
1(𝑞1) + 𝑢)) ≤ 𝜙21

}
,

where for 𝑞, its dynamic follows: 𝑞(𝑡) = 𝑞; for 𝑠 ∈ (𝑡, 𝑡 + 𝐺 𝑡
1(𝑞1(𝑡))), pool 1 serves class 1 only;

for 𝑠 ≥ 𝑡 + 𝐺 𝑡
1(𝑞1(𝑡)), pool 1 provides partial help to class 2. We also define 𝐺̄ 𝑡

𝑋,2(𝑡, 𝑞(𝑡)) as the

time it takes to empty queue 2 when taking the partial help from pool 1 into account:

𝐺̄ 𝑡
𝑋,2(𝑞(𝑡)) = 𝐺

𝑡
2(𝑞2(𝑡))1{𝑃𝑡 (𝑞(𝑡)) = 0} +

(
𝐺 𝑡

1(𝑞1(𝑡)) + 𝑃𝑡 (𝑞(𝑡)) +
𝜙21
ℎ2𝜇21

)
1{𝑃𝑡 (𝑞(𝑡)) > 0}.

The following theorem characterizes the optimal scheduling policy for the X-model.

Theorem 4 (Optimal control policy in X-model). For the X-model, under Assumption 5, the opti-

mal control for (2.10) takes the following form.

I. When ℎ1𝜇12 > ℎ2𝜇22, pool 1 prioritizes class 1.

ia. If

𝐺 𝑡
1(𝑞1(𝑡)) = 0 and ℎ2𝜇21𝐺

𝑡
2(𝑞2(𝑡)) > 𝜙21,

pool 1 provides partial help to class 2.

ib. Otherwise, pool 1 serves class 1 only.

For pool 2,
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iia. If

ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) > ℎ2𝜇22𝐺̄

𝑡
𝑋,2(𝑞(𝑡)) − ℎ2𝜇22

𝜇12𝜇21
𝜇11𝜇22

𝑃𝑡 (𝑞(𝑡)) + 𝜙12, (2.11)

pool 2 gives priority to class 1.

iib. Otherwise, pool 2 serves class 2 only.

II. When ℎ1𝜇12 < ℎ2𝜇22 and ℎ2𝜇21 < ℎ1𝜇11, pool 𝑖 prioritizes class 𝑖. If

𝐺 𝑡
𝑖 (𝑞𝑖 (𝑡)) = 0 and ℎ 𝑗𝜇 𝑗𝑖𝐺 𝑡

𝑗 (𝑞 𝑗 (𝑡)) > 𝜙 𝑗𝑖, 𝑗 ≠ 𝑖,

pool 𝑖 provides partial help to class 𝑗; otherwise, pool 𝑖 serves class 𝑖 only.

Similar to the optimal policy for the N-model, the optimal control for the X-model charac-

terized in Theorem 4 also takes the future arrival rate information into account, and the policy

has a two-stage index structure. The main difference, though, is in Case I.iia. As 𝐺̄ 𝑡
𝑋,2(𝑞(𝑡)) ≤

𝐺 𝑡
2(𝑞2(𝑡)),

ℎ2𝜇22𝐺̄
𝑡
𝑋,2(𝑞(𝑡)) − ℎ2𝜇22

𝜇12𝜇21
𝜇11𝜇22

𝑃𝑡 (𝑞(𝑡)) + 𝜙12 ≤ ℎ2𝜇22𝐺
𝑡
2(𝑞2(𝑡)) + 𝜙12.

This implies that in the X-model, because pool 1 can help back class 2 later, pool 2 may provide

more help to class 1 initially than in the N-model.

To further illustrate this point, we provide some numerical examples with time-homogeneous

arrival rates in Figure 2.6. In Figure 2.6(a), we consider an N-model and an X-model with the same

parameters and compare the optimal fluid trajectories (𝑞1(𝑡), 𝑞2(𝑡)) with different initial values.

Since we start the system with 𝑞1(0) ≫ 𝑞2(0), at the beginning, pool 2 prioritizes class 1. In

particular, we note that, initially, 𝑞1(𝑡) is decreasing and 𝑞2(𝑡) is increasing. At some points (the

wedges in the figure), pool 2 switches priority from class 1 to class 2. Comparing the optimal

trajectory of the N-model (dashed) to the optimal trajectory of the X-model (solid), pool 2 in the

X-model provides more help to class 1 than in the N-model, i.e., the solid line switches priority
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to class 2 later than the dashed line when 𝑞(0) = (20, 15) or (15, 10). Figure 2.6(b) plots the

optimal fluid trajectory of the X-model starting from (20, 15). We note that at the beginning, pool

2 prioritizes class 1 – i.e., 𝑧12(𝑡) = 2 for 𝑡 ≤ 11.5, while later, after 𝑞1(𝑡) hits zero, pool 1 provides

partial help back to class 2 – i.e., 𝑧21(𝑡) = 0.8 for 𝑡 ∈ [77.4, 89.0].
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Figure 2.6: Optimal trajectory of the N-model versus the X-model. (𝑠1 = 𝑠2 = 2, 𝜇11 = 𝜇22 = 0.25,
𝜇12 = 0.2, 𝜙12 = 1, 𝜆1 = 𝜆2 = 0.3, ℎ1 = 1.5, ℎ2 = 1. For the X-model, 𝜇21 = 0.2, 𝜙21 = 1.)

Managerial implication: value of cross-training.

The N-model and the X-model differ in whether pool 1 is cross-trained to help class 2 (pool

2 can help class 1 in both models). The X-model has the obvious advantage that when class 2 is

overloaded, pool 1 can help class 2 to alleviate the demand surge and bring the system back to

normal faster than in the N-model. Meanwhile, somewhat surprisingly, even when only class 1 is

experiencing a demand surge, the extra flexibility in the X-model is beneficial. In particular, as we

explained in Section 2.5.1, because pool 1 can later help back class 2 in the X-model, pool 2 can

provide more help to class 1 (prioritize class 1 for a longer period of time) in the initial stage. This

helps reduce the class 1 congestion faster in the X-model than in the N-model. To demonstrate

the latter point, Table 2.1 compares the time to empty queue 1 and the time to empty queue 2

(which is also the time to empty the whole system) under the optimal control for the X-model

versus the N-model. We vary the level of demand surge experienced by class 1, while class 2 does

not experience any demand surge. Note that in all cases, not only is the X-model able to empty
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the class 1 queue faster than an otherwise identical N-model, but also it empties the system (both

queues) faster than the N-model does.

𝜆𝐻 2 4 6
Time to empty queue 1

X-model 50.0 108.1 166.4
N-model 51.4 117.8 184.2

Time to empty queue 2
X-model 59.2 138.2 217.2
N-model 59.6 140.8 222.1

Table 2.1: Compare the N-model and the X-model under different levels of demand surge for class
1 (𝑠1 = 3, 𝑠2 = 4, 𝜇11 = 𝜇22 = 0.25, 𝜇12 = 0.18, ℎ1 = 2, ℎ2 = 1, 𝜙12 = 1, 𝜆1(𝑡) = 𝜆𝐻 × 1{0 ≤
𝑡 ≤ 20} + 0.5 × 1{𝑡 > 20}, 𝜆2(𝑡) = 0.6, 𝑞1(0) = 10, 𝑞2(0) = 0. For the X-model, 𝜇21 = 0.18 and
𝜙21 = 1.)

2.5.2 Extended N-models

In this section, we discuss the main insights from the optimal policies for the two extended

N-models: many-help-one (exN1) and one-helps-many (exN2) models. To keep the discussion

concise, we delay the full characterization of the optimal policies to Appendix A.1.

For the exN1 model, the optimal policy still has a two-stage index-based look-ahead structure

(see Theorem 9 in Appendix A.1). In the first stage, we decide which class to prioritize based on

the ℎ𝜇 index. In the second stage, we decide how long the full or partial help will last by taking

future arrival rate information into account. The main difference between the exN1 model and the

N model lies in the second stage. Consider the scenario where ℎ1𝜇12 > ℎ2𝜇22 and ℎ1𝜇13 > ℎ3𝜇33,

i.e., both pool 2 and pool 3 will give strict priority to class 1 if the class 1 queue is large enough.

When pool 2 determines how long it will help class 1, it also needs to take into account the help

that class 1 can receive from pool 3, in which case pool 2 may provide less help to class 1 than

in a similar N-model. To demonstrate this, Figure 2.7 compares the optimal trajectory of an exN1

model (a) with the optimal trajectory of a similar N-model (b). In particular, the two models share

the same parameters for the first two classes. The only difference is that the exN1 model has an

extra class, class 3, and an extra server pool, pool 3 (see the caption of Figure 2.7 for more details).
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For the exN1 model, we observe that both pools provide full help to class 1 at the beginning. Pool

2 stops helping class 1 at 𝑡 = 3.5 in the exN1 model. In contrast, pool 2 stops helping class 1 at

𝑡 = 6.1 in the N-model. This is because in the exN1 model, class 1 can also get help from pool

3, and when pool 2 decides how much to help class 1, it also takes the extra help from pool 3 into

account. Lastly, we note that with the extra help from pool 3, the exN1 model is able to empty the

class 1 queue faster than the N-model can.
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Figure 2.7: Optimal trajectory of the exN1 model versus the N-model. (𝑠1 = 𝑠2 = 2, 𝜆1 = 𝜆2 = 0.3,
𝜇11 = 𝜇22 = 0.25, 𝜇12 = 0.2, 𝜙12 = 1, ℎ1 = 1.5, ℎ2 = 1, 𝑞1(0) = 10, 𝑞2(0) = 5. For the exN1
model, 𝑠3 = 2, 𝜆3 = 0.3, 𝜇33 = 0.25, 𝜇13 = 0.18 ,𝜙13 = 1, ℎ3 = 1, and 𝑞3(0) = 3.)

For the exN2 model, the optimal policy again has a two-stage index-based look-ahead structure

(see Theorem 10 in Appendix A.1). The key difference between the exN2 model and the N-

model lies in the second stage. Consider the scenario where ℎ2𝜇21 > ℎ3𝜇31 > ℎ1𝜇11, i.e., pool 1

prioritizes classes 2 and 3 when there are large enough backlogs in these two classes compared to

class 1. When deciding between classes 2 and 3, class 2 enjoys a higher priority. In the second

stage, when pool 1 determines how long it will help class 2, it also needs to consider the help it can

provide to class 3, in which case pool 1 may provide less help to class 2 than in a similar N-model.

2.5.3 A Heuristic Two-Stage Index-Based Policy for Multi-class Multi-pool Systems

Based on the results from the X-model and the two extended N-models, we observe that the

structure of the optimal policy remains similar to that of the N-model. Based on this observa-
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tion, we propose the following two-stage index-based look-ahead policy for more-general 𝐼-by-𝐼

networks.

First stage. Denote the set of classes that pool 𝑗 can serve as I𝑗 , which is sorted by the ℎ𝜇-index.

That is, for class 𝑘 (𝑖) in the 𝑖th position in set I𝑗 , its ℎ𝜇-index is larger than that of class 𝑘 (𝑖 + 1) in

the (𝑖 + 1)th position – i.e., ℎ𝑘 (𝑖)𝜇𝑘 (𝑖), 𝑗 > ℎ𝑘 (𝑖+1)𝜇𝑘 (𝑖+1), 𝑗 . The primary class 𝑗 is in the set I𝑗 , and

we denote its position as ℓ 𝑗 .

• For class 𝑘 (𝑖) ∈ I𝑗 with 𝑖 < ℓ 𝑗 , pool 𝑗 provides full help (strict priority) to class 𝑘 (𝑖) if the

help is initiated according to the second-stage criteria.

• For class 𝑘 (𝑖) ∈ I𝑗 with 𝑖 > ℓ 𝑗 , pool 𝑗 provides partial help (help only when there is extra

capacity after serving its own class) if the help is initiated according to the second-stage

criteria.

Second stage. At any time 𝑡, for each pool 𝑗 , we decide which class in I𝑗 it should help according

to the following criteria. Set a tuning parameter 𝜃 > 0.

• For classes 𝑘 (𝑖)’s with 𝑖 < ℓ 𝑗 , let class 𝑘 (𝑖∗) be the first class for which

𝜃ℎ𝑘 (𝑖∗)𝜇𝑘 (𝑖∗), 𝑗𝐺
𝑡
𝑘 (𝑖∗) (𝑞𝑘 (𝑖∗) (𝑡)) − 𝜙𝑘 (𝑖∗), 𝑗 > ℎ 𝑗𝜇 𝑗 𝑗𝐺

𝑡
𝑗 (𝑞 𝑗 (𝑡)). (2.12)

Pool 𝑗 provides full help to class 𝑘 (𝑖∗) if there exists such 𝑘 (𝑖∗).

• If none of the full helping is initiated and 𝑞 𝑗 (𝑡) > 0, pool 𝑗 serves class 𝑗 only;

• If none of the full helping is initiated and 𝑞 𝑗 (𝑡) = 0, for classes 𝑘 (𝑖)’s with 𝑖 > ℓ 𝑗 , let 𝑘 (𝑖∗)

be the first class for which

𝜃ℎ𝑘 (𝑖∗)𝜇𝑘 (𝑖∗), 𝑗𝐺
𝑡
𝑘 (𝑖∗) (𝑞𝑘 (𝑖∗) (𝑡)) > 𝜙𝑘 (𝑖), 𝑗 . (2.13)

Pool 𝑗 provides partial help to class 𝑘 (𝑖∗) if there exists such 𝑘 (𝑖∗).
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To explain the rationale of the tuning parameter 𝜃, we note that from the analysis of the X-

model and the extended N-models, depending on the system architecture, we may need to modify

𝐺 𝑡
𝑖
(𝑞𝑖 (𝑡))’s to take into account the help that pool 𝑖 can provide to other classes or the help class

𝑖 can receive from other pools. This can be partially captured by the tuning parameter 𝜃. When

𝜃 > 1, we are doing more aggressive overflow than in the N-model; when 𝜃 = 1, it is equivalent

to the optimal N-model policy; when 𝜃 < 1, we are doing more conservative overflow than in the

N-model. We show, via extensive numerical experiments in Section 2.6, that the performance of

the heuristic policy is robust for 𝜃 close to 1, while a slight tuning down – i.e., setting 𝜃 = 0.8 –

leads to comparable or, in some cases, better performance than 𝜃 = 1. Also note that the robust

performance for 𝜃 near 1 suggests that our policy is resilient to prediction errors and limited look-

ahead windows, which essentially add small perturbations to 𝐺 𝑡
𝑖
(𝑞𝑖 (𝑡))’s.

2.6 Numerical Experiments for General Stochastic Networks

The optimal control policies that we derived in prior sections are based on deterministic fluid

models. In this section, we study the performance of our derived policy – namely, the two-stage

index-based heuristic policy specified in Section 2.5.3, in the original stochastic systems via sim-

ulation. We refer to our derived policy as the look-ahead policy, and we compare its performance

to that of several well-established benchmark policies.

Through numerical experiments, we demonstrate that, in the face of demand surges and time-

nonstationary arrival rates, the performance of our look-ahead policy, even using estimated arrival

rates that have prediction errors or with a limited look-ahead time window, is superior to that of

the 𝑐𝜇 rule or the maximum pressure policy or their adapted versions that account for the overflow

costs. In particular, we show that without considering future arrival rates, the adapted 𝑐𝜇 rule or

maximum pressure policy can perform significantly worse than our policy with up to 50% relative

cost difference. In addition, the actual format to incorporate the overflow costs is highly nontrivial

as we experiment with different adapted version of the modified 𝑐𝜇 rule or the maximum pressure

policy: the cost can be arbitrarily bad when using the wrong format, which confirms the necessity
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of rigorously deriving optimal routing polices in the presence of demand surge and overflow cost.

Moreover, we go beyond the models studied analytically and substantiate our theoretical devel-

opment with simulation results in more-general networks. In Section 2.6.2, we consider 5-by-5

networks, and the simulation results show that our policy still performs remarkably well in these

more-general networks. The numerical results suggest that the insights generated from our fluid

analysis of parsimonious models are robust and useful when designing routing policies in more

complex systems.

To calibrate the simulation model, we consider settings motivated by hospital inpatient flow

management [53]. That is, in the multi-class, multi-pool parallel processing network, each class

corresponds to patients from a medical specialty, and each server pool corresponds to an inpatient

ward or several wards that are dedicated to a medical specialty. Unless otherwise specified, we

assume that each pool has a capacity of 20 – i.e., 𝑠𝑖 = 20 for pool 𝑖, corresponding to 20 inpatient

beds. The primary service rates are 𝜇𝑖𝑖 = 0.25 for each class 𝑖, corresponding to an average

service time (length-of-stay) of four days. Moreover, we incorporate service slowdown – i.e.,

longer length-of-stay when the patient is placed in a bed in a non-primary ward [54, 55]. We

assume that the overflow service rate is 𝜇𝑖 𝑗 = 0.2 for 𝑖 ≠ 𝑗 , corresponding to an average service

time of five days. In subsequent sections, we start by presenting results for our main model – the

N-model – and then results in more complicated networks.

2.6.1 Performance comparison in N-model: Value of proactive routing

The baseline arrival rate setting that we test in the N-model follows

𝜆1(𝑡) =


8, 𝑡 < 40

4, 𝑡 ≥ 40,

and the arrival rate for class 2 is 𝜆2 = 3 patients per day. That is, class 1 experiences a demand

surge lasting 𝜅1 = 40 days, while class 2 does not experience a demand surge. The initial state is

set as
(
𝑋1(0), 𝑋2(0)

)
= (60, 70).
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Beyond this baseline setting, we also test a large combination of arrival rate settings by varying

the following parameters: (i) the peak arrival rate of class 1 (max 𝜆1(𝑡)) takes values of 6, 8, and

10; (ii) the arrival rate of class 2 (the constant 𝜆2) takes values of 3, 3.5, 4, and 4.5; (iii) the surge

duration 𝜅 varies between 20 and 100; (iv) the initial state for class 1, 𝑋1(0), takes values of 40,

60, and 80; and (v) the initial state for class 2, 𝑋2(0), takes values of 70, 90, 110 and 130. These

parameter combinations lead to different levels of system congestion levels. In general, the system

dynamics are closer to the fluid limit when the system is more congested.

Under a given arrival setting, we fix the holding costs ℎ1 = 1.5, ℎ2 = 1 and vary the overflow

cost – namely, (i) 𝜙12 = 2; (ii) 𝜙12 = 10; and (iii) 𝜙12 = 25. The holding costs correspond to

Case I of Theorem 1, where pool 2 may provide full help to class 1. We choose to focus on this

case since the resulting policy is less trivial than the partial helping case. In particular, if the help

is not exercised properly, it can lead to both a high overflow cost and a high holding cost. We

simulate 104 replications for each scenario (policy and system) to estimate the expected cost and

the corresponding standard error. Each replication contains 250 days. A common sequence of

random numbers is used when comparing different policies.

Benchmark policies

We compare five policies in the stochastic N-model: (i) our look-ahead policy (Look-ahead);

(ii) the classic 𝑐𝜇-rule (Cmu); (iii) the classic maximum pressure policy (MaxPres); (iv) the modi-

fied 𝑐𝜇-rule which takes the overflow cost into account (ModCmu); and (v) the modified maximum

pressure policy which takes the overflow cost into account (ModMaxP). We provide more details

about policies (iv)-(v) next.

For the modified 𝑐𝜇 rule, we prioritize different classes according to the following index (from

high to low): ℎ𝑖𝜇𝑖 𝑗 − 𝜙𝑖 𝑗𝜇𝑖 𝑗 . This index adjusts the original 𝑐𝜇-index, ℎ𝑖𝜇𝑖 𝑗 , by subtracting the

weighted overflow cost 𝜙𝑖 𝑗𝜇𝑖 𝑗 . The intuition here is to maximize the instantaneous cost reduction

rate under the preemptive service setting (with 𝜇𝑖 𝑗 being the chance of clearing a customer).

Similarly, for the modified maximum pressure policy, we prioritize different classes accord-
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ing to the following index (from high to low): ℎ𝑖𝑋𝑖 (𝑡)𝜇𝑖 𝑗 − 𝜙𝑖 𝑗𝜇𝑖 𝑗 , where 𝑋𝑖 (𝑡) is the number of

class 𝑖 customers in the system at time 𝑡. Compared to the original maximum pressure policy, we

adjust the index ℎ𝑖𝑋𝑖 (𝑡)𝜇𝑖 𝑗 with the weighted overflow cost 𝜙𝑖 𝑗𝜇𝑖 𝑗 . As discussed in Section 2.3,

comparing our proposed policy with this modified maximum pressure policy, the main difference

is that the modified maximum pressure policy weights ℎ𝑖𝜇𝑖 𝑗 by 𝑋𝑖 (𝑡), while our policy weights

ℎ𝑖𝜇𝑖 𝑗 by 𝐺 𝑡
𝑖
(𝑋𝑖 (𝑡)), which takes future arrival rate information into account.

It is worth noting that the adjustment to the 𝑐𝜇 and maximum pressure policies is heuristic. It is

possible to motivate other heuristics such as subtracting 𝜙𝑖 𝑗 or 𝜙𝑖 𝑗/𝜇𝑖 𝑗 instead of 𝜙𝑖 𝑗𝜇𝑖 𝑗 . However,

if we use 𝜙𝑖 𝑗 or 𝜙𝑖 𝑗/𝜇𝑖 𝑗 , the index would be sensitive to the time unit we choose, because these

terms will scale differently with 𝜇𝑖 𝑗 than ℎ𝑖𝜇𝑖 𝑗 . In this case, by either choosing seconds or hours to

be the time unit, the resulting policy could vary drastically from no overflow at all to full-sharing.

This highlights the necessity of properly comparing the overflow cost with the holding cost when

routing in the face of demand surges – which is the main goal of this work.

Robust performance

Table 2.2 shows the cost comparison among the five policies in the baseline setting. Our pro-

posed look-ahead policy performs significantly better than the 𝑐𝜇 and the modified 𝑐𝜇 rules. The

maximum pressure policy and its modified version perform better than the 𝑐𝜇 rules but have a

larger gap from our policy when 𝜙 is large, e.g., the gap is 15% when 𝜙 = 25.

To have a more complete picture of the our policy’s performance versus that of other bench-

marks beyond just the baseline setting, Figure 2.8 plots a histogram of the optimality gap among

all the tested combinations of arrival rates, initial states, and overflow costs, as described above.

The optimality gap is defined as the relative cost difference between the investigated policy and

the best-performed policy in the corresponding parameter setting. It is clear from the figure that

our policy always performs best or near-best (the optimality gap is within 5%) among all tested

parameter combinations. This demonstrates the robustness of our policy, which is an appealing

feature in application. In contrast, other policies can perform well in some settings but poorly in
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Look-ahead MaxPres ModMaxP Cmu ModCmu

𝜙 = 2 Holding 1.09 1.10 1.10 1.28 2.75
Overflow 0.14 0.13 0.13 0.17 0.00

Total 1.23 1.23 1.23 1.45 2.75
SE 0.003 0.003 0.003 0.004 0.008

𝜙 = 10 Holding 1.10 1.10 1.11 1.28 2.75
Overflow 0.56 0.63 0.62 0.86 0.00

Total 1.67 1.74 1.73 2.14 2.75
SE 0.004 0.004 0.004 0.005 0.008

𝜙 = 25 Holding 1.28 1.10 1.12 1.28 2.75
Overflow 1.00 1.58 1.50 2.14 0.00

Total 2.28 2.68 2.62 3.42 2.75
SE 0.005 0.005 0.005 0.007 0.008

Table 2.2: Expected total cost for the baseline N-model under different routing policies. The costs
shown in the table are in units of 104. “SE” stands for the standard error for the corresponding
average total cost (holding + overflow). (Parameter setting: ℎ = (1.5, 1), 𝑠𝑖 = 20 and 𝜇𝑖𝑖 = 0.25,
for 𝑖 = 1, 2, 𝜇12 = 0.2, 𝜙12 = 𝜙, 𝜆2(𝑡) = 3, 𝜆1(𝑡) = 8 × 1{𝑡 < 40} + 4 × 1{𝑡 ≥ 40} and
𝑋 (0) = (60, 70).)

others. For example, the modified 𝑐𝜇 policy tends to perform well when the surge arrival rate of

class 1 is smaller (e.g., 6) and not much overflow is needed; however, it results in significantly

worse performance when the surge arrival rate is large, and/or the initial queue length of class 1 is

large. Similarly, the two maximum pressure policies tend to have a better performance than the two

𝑐𝜇-based policies when the system is congested. However, their performance deteriorates when (i)

the surge period is short (e.g., 20), but the initial queue length is high, (ii) the surge period is long,

but the initial queue length is low, or (iii) pool 2 has less slackness in general. This is because the

maximum pressure policy will help class 1 when its current queue length is large enough compared

to the class 2 queue without looking into the future – this could be unnecessary (as in (i)), or too

late (as in (ii)), or hurting class 2 too much (as in (iii)). Overall, the maximum pressure policies are

reactive, while our policy is more proactive; that is, our policy can provide help to class 1 before

the queue builds up in anticipation of the demand surge and can also end help earlier in anticipation

of the drop in demand when the surge is over. Given the modified maximum pressure policy is the

most competitive benchmark, we next take a further investigation into it.
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Figure 2.8: Histogram of the optimality gap. Parameter setting combinations are described in the
main text.

Reactive versus proactive: value of future information

The modified maximum pressure policy is the best-performing benchmark policy of Table 2.2,

i.e., it performs better than other benchmark policies in most tested scenarios in Figure 2.8. Hence,

it may appear that knowing the future arrival information is not as beneficial as one would expect,

and that policies that do not take that information into account, such as the maximum pressure

policy, may be sufficient. However, a closer investigation into different arrival settings reveals

that this is not true – not considering future arrival information in a time-nonstationary setting can

result in much worse performance. For illustration, consider the following arrival rate setting as an

example:

𝜆1(𝑡) =


8, 𝑡 < 40

1, 𝑡 ≥ 40
and 𝜆2(𝑡) =


3, 𝑡 < 40

4.5, 𝑡 ≥ 40.

That is, the arrival rate of class 1 drops sharply once the demand surge is over, while the arrival rate

of class 2 increases slightly at the same time. All other parameters are the same as in the baseline

setting. In Figure 2.9 we compare two sample paths when 𝜙 = 2, one under our policy and the

other under the modified maximum pressure policy.

We see that under the modified maximum pressure policy, pool 2 helps class 1 throughout the

demand surge (till 𝑡 = 40). This is because class 1 has a large queue and the policy is reacting to
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Figure 2.9: Sample path comparison between our proposed policy (left) and the modified max-
imum pressure policy (right). (𝜆1(𝑡) = 8 × 1{𝑡 < 40} + 1 × 1{𝑡 ≥ 40}, 𝜆2(𝑡) = 3 × 1{𝑡 <
40} + 4.5 × 1{𝑡 ≥ 40}. Other parameters are the same as the baseline with 𝜙 = 2.)

this. In contrast, under our policy, pool 2 proactively stops helping class 1 much sooner (around

𝑡 = 8). This is because our policy anticipates that the class 1 arrival rate will soon drop to 1, so

that not much help is necessary. This early-stopping also takes into account the fact that the class

2 arrival rate will soon increase to 4.5. We see from the rest of the trajectories that our policy

achieves a much lower holding cost for class 2, while having only a slightly higher holding cost for

class 1. On the other hand, the modified maximum pressure policy provides too much unnecessary

help (from pool 2 to class 1), which results in the class 2 queue building up to a high value (around

100) at 𝑡 = 40; from then on pool 2 has little slackness and it takes a long time to reduce the class

2 queue.

Table 2.3 reports the average costs under our policy as well as under the benchmark policies in

this arrival rate setting. The costs for the two policies in Figure 2.9 are in the first panel (𝜙 = 2):

1.11×104 for our policy versus 1.68×104 for the modified maximum pressure policy – 50% higher

than ours. This performance gap further enlarges when 𝜙 increases. The cost under maximum

pressure policy is more than twice the cost under our policy when 𝜙 = 25. More generally, the

two maximum pressure policies can perform arbitrarily worse than our policy as the arrival rate of

class 2, after the demand surge of class 1 is over, gets closer to 5 (while remaining stable). This is

because the unnecessary helping in the demand surge period will result in the class 2 queue taking
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an extremely long time to deplete when the slackness of pool 2 approaches 0. On the other hand,

the modified 𝑐𝜇 policy performs well in this case, since it is a no-overflow policy. However, the

modified 𝑐𝜇 policy doubles the cost of our policy in the baseline setting (Table 2.2). This indicates

that, the performance of policies that do not use future arrival rate can vary a lot depending on

the arrival rate patterns, which highlights the value of our look-ahead policy in time-nonstationary

environment.

Look-ahead MaxPres ModMaxP Cmu ModCmu

𝜙 = 2 Holding 1.07 1.60 1.59 2.91 1.28
Overflow 0.03 0.09 0.09 0.14 0.00

Total 1.11 1.69 1.68 3.05 1.28
SE 0.002 0.006 0.006 0.010 0.002

𝜙 = 10 Holding 1.11 1.60 1.54 2.91 1.28
Overflow 0.11 0.46 0.44 0.73 0.00

Total 1.22 2.06 1.99 3.64 1.28
SE 0.002 0.006 0.006 0.010 0.002

𝜙 = 25 Holding 1.28 1.60 1.46 2.91 1.28
Overflow 0.00 1.16 1.06 1.84 0.00

Total 1.28 2.76 2.52 4.75 1.28
SE 0.002 0.007 0.006 0.012 0.002

Table 2.3: Expected total cost for the N-model under different routing policies. The costs shown
in the table are in units of 104. “SE” stands for the standard error for the corresponding average
total cost (holding + overflow). (𝜆1(𝑡) = 8 × 1{𝑡 < 40} + 1 × 1{𝑡 ≥ 40}, 𝜆2(𝑡) = 3 × 1{𝑡 <
40} + 4.5 × 1{𝑡 ≥ 40}. Other parameters are the same as the baseline.)

2.6.2 Extensions to General Multi-class Multi-pool Systems

In this section, we test our proposed heuristic policy as given in Section 2.5.3 on (1) the X-

model and (2) two networks with five classes of customers and five pools of servers (5-by-5). In

the interest of space, we focus on the results for the 5-by-5 networks. Appendix A.2 details the

results for the X-model. Because we already know the optimal fluid control for the X-model,

we can compare the performance of the optimal fluid-translated control to the heuristic policy.

The results for the X-model show that our heuristic policy has performance comparable to that of

the fluid-optimal policy. This provides some evidence that our heuristic policy would work well
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for systems beyond the N-model. For the 5-by-5 networks, we compare the performance of the

heuristic look-ahead policy with that of other modified benchmark policies since the optimal policy

is unknown (prohibitive to get) in this setting.

In the 5-by-5 networks, the holding costs are set to be (1.5, 1, 1, 1.5, 1), and the overflow costs

𝜙 are the same for all overflow assignments. We consider two arrival rate settings. For the first

setting, the arrival rates for class 1 and class 4 are

𝜆1(𝑡) =


12, 𝑡 < 40

4.5, 𝑡 ≥ 40
and 𝜆4(𝑡) =


8, 𝑡 < 40

4, 𝑡 ≥ 40
,

and the arrival rates for other classes are constants: 𝜆2(𝑡) = 3, 𝜆3(𝑡) = 4, 𝜆5(𝑡) = 3. Classes 1 and

4 experience demand surges while the others do not. For the second setting, the arrival rates for

class 1 and class 2 are

𝜆1(𝑡) =


12, 𝑡 < 40

2, 𝑡 ≥ 40
and 𝜆2(𝑡) =


3, 𝑡 < 40

4.5, 𝑡 ≥ 40
,

while the arrival rates for the other classes are the same as in the first setting, including the surge

for class 4. The two arrival rate settings are chosen to be consistent with those used in the N-model

experiments.

We consider two network structures as depicted in Figure 2.10. The first network has a closed-

chain structure, which is a commonly advocated flexibility architecture in supply chain and manu-

facturing applications [21, 56].

Tables 2.4 and 2.5 compare the cost under the five policies for the two network structures. The

look-ahead policy is our proposed heuristic policy with 𝜃 = 0.8 – a 20% tuning down on 𝐺. We

find that this tuning parameter performs very well across all experiments. Thus, we recommend

this policy for practical use.1 We observe that our proposed policy again performs the best in both

1Tuning, in general, improves the cost from the untuned version by 0.5% to 4%; see Appendix A.2.2 for the
detailed results for the X-model and 5-by-5 network. Meanwhile, even using the untuned version, our heuristic policy
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(a) Network I (b) Network II

Figure 2.10: Two network structures. Classes 1 and 4 have demand surge in both arrival rate
settings. In the second setting, class 2 also has a demand surge.

network structures and the two arrival rate settings. The modified 𝑐𝜇 rule does not overflow, and

thus performs the worse in the first arrival rate setting. The modified maximum pressure policy

tends to perform better in the first arrival rate setting, showing a similar performance to that of our

policy when 𝜙 = 2; however, when 𝜙 = 10 or 25, the modified maximum pressure policy results

in a much higher overflow cost than our policy does. This is despite the fact that it incorporates

overflow costs. The modified maximum pressure policy shows an even larger performance gap

from our policy in the second arrival setting. Similar to what we explained in Section 2.6.1, this is

because the maximum pressure policy does not account for the future arrival rate information, and

ends up providing too much help during the demand surge, which hurts the class 2 queue.

2.6.3 Impact of Prediction Error in Arrival Rates

In Sections 2.3.2, 2.3.3, and 2.4, we have analyzed the effects of prediction errors and limited

look-ahead time window in the N-model. In this section, we numerically investigate these effects

in the original stochastic N-model system. We show that our look-ahead policy still performs sig-

nificantly better than the benchmark policies even when the prediction errors are large (compared

to the mean arrival rate) and when the look-ahead time window is small (even 0). These results

show that our policy is appealing in practice since it is robust to various prediction imperfections.

performs reasonably well.
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Look-ahead ModMaxP ModCmu
Arrival Rate Setting I

𝜙 = 2 Holding 3.21 3.27 11.08
Overflow 0.52 0.59 0.00

Total 3.73 3.87 11.08
SE 0.007 0.007 0.014

𝜙 = 10 Holding 3.45 3.27 11.08
Overflow 2.05 2.75 0.00

Total 5.50 6.03 11.08
SE 0.008 0.009 0.014

𝜙 = 25 Holding 4.29 3.31 11.08
Overflow 3.57 6.27 0.00

Total 7.86 9.58 11.08
SE 0.012 0.013 0.014

Arrival Rate Setting II

𝜙 = 2 Holding 3.00 3.27 11.08
Overflow 0.48 0.42 0.00

Total 3.48 3.69 11.08
SE 0.005 0.007 0.014

𝜙 = 10 Holding 3.07 3.27 11.08
Overflow 1.98 2.06 0.00

Total 5.05 5.34 11.08
SE 0.007 0.008 0.014

𝜙 = 25 Holding 3.57 3.27 11.08
Overflow 3.77 5.03 0.00

Total 7.34 8.31 11.08
SE 0.009 0.010 0.014

Table 2.4: Simulation costs for the 5-by-5 model under Network Structure I. The costs shown in
the table are in units of 104. “SE” stands for the standard error for the corresponding total cost.
(Parameter setting: ℎ = (1.5, 1, 1, 1.5, 1), 𝑠𝑖 = 20, 𝜇𝑖𝑖 = 0.25, 𝜇𝑖 𝑗 = 0.2 and 𝜙𝑖 𝑗 = 𝜙 for 𝑖 ≠ 𝑗 and
𝑋 (0) = (30, 40, 50, 60, 70). For arrival rate setting I, 𝜆1(𝑡) = 12 × 1{𝑡 < 40} + 4.5 × 1{𝑡 ≥ 40},
𝜆2(𝑡) = 3, 𝜆3(𝑡) = 4, 𝜆4(𝑡) = 8 × 1{𝑡 < 40} + 4 × 1{𝑡 ≥ 40}, 𝜆5(𝑡) = 3. For arrival rate setting
II, 𝜆1(𝑡) = 12 × 1{𝑡 < 40} + 2 × 1{𝑡 ≥ 40}, 𝜆2(𝑡) = 3 × 1{𝑡 < 40} + 4.5 × 1{𝑡 ≥ 40}, 𝜆3(𝑡) = 4,
𝜆4(𝑡) = 8 × 1{𝑡 < 40} + 4 × 1{𝑡 ≥ 40}, 𝜆5(𝑡) = 3.)
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Look-ahead ModMaxP ModCmu
Arrival Rate Setting I

𝜙 = 2 Holding 3.00 4.26 5.94
Overflow 0.29 0.29 0.00

Total 3.29 4.55 5.94
SE 0.005 0.008 0.010

𝜙 = 10 Holding 3.36 4.22 5.94
Overflow 0.89 1.42 0.00

Total 4.25 5.64 5.94
SE 0.006 0.009 0.010

𝜙 = 25 Holding 4.20 4.14 5.94
Overflow 1.10 3.46 0.00

Total 5.31 7.61 5.94
SE 0.007 0.010 0.010

Arrival Rate Setting II

𝜙 = 2 Holding 2.93 3.69 5.94
Overflow 0.25 0.34 0.00

Total 3.18 4.03 5.94
SE 0.005 0.008 0.010

𝜙 = 10 Holding 3.15 3.64 5.94
Overflow 0.93 1.68 0.00

Total 4.09 5.33 5.94
SE 0.006 0.009 0.010

𝜙 = 25 Holding 4.19 3.55 5.94
Overflow 1.11 4.05 0.00

Total 5.30 7.61 5.94
SE 0.007 0.010 0.010

Table 2.5: Simulation costs for the 5-by-5 model under Network Structure II. The costs shown in
the table are in units of 104. “SE” stands for the standard error for the corresponding total cost.
(Parameter setting: ℎ = (1.5, 1, 1, 1.5, 1), 𝑠𝑖 = 20, 𝜇𝑖𝑖 = 0.25, 𝜇𝑖 𝑗 = 0.2 and 𝜙𝑖 𝑗 = 𝜙 for 𝑖 ≠ 𝑗 and
𝑋 (0) = (30, 40, 50, 60, 70). For arrival rate setting I, 𝜆1(𝑡) = 12 × 1{𝑡 < 40} + 4.5 × 1{𝑡 ≥ 40},
𝜆2(𝑡) = 3, 𝜆3(𝑡) = 4, 𝜆4(𝑡) = 8 × 1{𝑡 < 40} + 4 × 1{𝑡 ≥ 40}, 𝜆5(𝑡) = 3. For arrival rate setting
II, 𝜆1(𝑡) = 12 × 1{𝑡 < 40} + 2 × 1{𝑡 ≥ 40}, 𝜆2(𝑡) = 3 × 1{𝑡 < 40} + 4.5 × 1{𝑡 ≥ 40}, 𝜆3(𝑡) = 4,
𝜆4(𝑡) = 8 × 1{𝑡 < 40} + 4 × 1{𝑡 ≥ 40}, 𝜆5(𝑡) = 3.)
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Error in the arrival rate estimate

For simplicity, we assume that the estimated arrival rate takes the form 𝜆̃1(𝑡) = 𝜆1(𝑡) +𝜖 , where

𝜖 is a random variable. We draw 25 different realizations of 𝜖 in the simulation experiments and

report the average cost over these realizations. We use the baseline parameter setting as specified

in Section 2.6.1 as well as the second arrival rate setting of Section 2.6.1.

We consider three scenarios: (i) no prediction error, (ii) small error: 𝜖 follows a standard

normal random variable 𝑁 (0, 1); and iii) large error: a normal random variable of mean 0 and

variance 4, 𝑁 (0, 4). Recall that 𝜆1(𝑡) takes the value of 8 during the surge and value of 4 or

1 after the surge, so this variance of 4 is large compared to the mean. The results are shown

in Table 2.6, which compares the costs under our look-ahead policy in these three scenarios. In

addition, we also show the costs under the modified maximum pressure policy and modified 𝑐𝜇

policy. We observe that our look-ahead policy achieves consistently good performance in all three

estimation error scenarios and both arrival rate settings. For example, even when 𝜙 = 25 and

𝜖 ∼ 𝑁 (0, 4), the total cost incurred is 2.336 × 104 (1.297 × 104) in the first (second) arrival rate

setting, which is only 2.6% (1.2%) higher than the total cost with perfect arrival rate information

(i.e., 𝜖 = 0). Moreover, our policy performs consistently good comparing to the benchmarks. It

performs similarly to or better than the modified maximum pressure policy in the first setting, and

similarly to or better than the modified 𝑐𝜇 policy in the second setting, even when the prediction

error is large (𝜖 ∼ 𝑁 (0, 4)). This robust performance of our policy is in contrast to the swaying

performance of the modified maximum pressure or modified 𝑐𝜇 policy: they could have good

performance in one setting but perform much worse in another setting. This difference in the robust

versus non-robust performance is consistent with what we observed in Figure 2.8 and discussed in

Section 2.6.1.

To further investigate the effect of over- and under-estimation on our policy performance, we

consider scenarios where 𝜖 equals a fixed value that ranges from −4 to 4. In other words, there

is a persistent estimation bias. Note that a bias of 4 is large when compared to the surge arrival

rate of 8. The results are summarized in Table 2.7. We observe that even large values of |𝜖 | cause

57



0 𝑁 (0, 1) 𝑁 (0, 4) ModMaxP ModCmu
Arrival Rate Setting I

𝜙 = 2 Holding 1.092 1.094 1.098 1.104 2.754
Overflow 0.141 0.142 0.142 0.126 0.000

Total 1.232 1.236 1.240 1.230 2.754
SE 0.003 0.001 0.002 0.003 0.008

𝜙 = 10 Holding 1.099 1.104 1.107 1.108 2.754
Overflow 0.562 0.571 0.579 0.619 0.000

Total 1.661 1.675 1.686 1.727 2.754
SE 0.004 0.002 0.005 0.004 0.008

𝜙 = 25 Holding 1.276 1.249 1.230 1.118 2.754
Overflow 0.994 1.054 1.106 1.504 0.000

Total 2.276 2.303 2.336 2.622 2.754
SE 0.005 0.007 0.014 0.005 0.008

Arrival Rate Setting II

𝜙 = 2 Holding 1.071 1.071 1.074 1.590 1.282
Overflow 0.035 0.035 0.037 0.092 0.000

Total 1.106 1.107 1.111 1.682 1.282
SE 0.002 0.003 0.003 0.006 0.002

𝜙 = 10 Holding 1.116 1.110 1.110 1.543 1.282
Overflow 0.112 0.119 0.126 0.449 0.000

Total 1.228 1.230 1.236 1.992 1.282
SE 0.002 0.003 0.003 0.006 0.002

𝜙 = 25 Holding 1.282 1.277 1.256 1.466 1.282
Overflow 0.000 0.007 0.040 1.061 0.000

Total 1.282 1.284 1.297 2.527 1.282
SE 0.002 0.004 0.011 0.006 0.002

Table 2.6: Simulation costs for the N-model when 𝜖 is random with distribution standard normal
and normal with mean zero and variance 4. Costs under the modified maximum pressure policy
and modified 𝑐𝜇 policy are also shown. The costs shown in the table are in units of 104. “SE”
stands for the standard error for the corresponding total cost. (Parameter setting: ℎ = (1.5, 1),
𝑠𝑖 = 20 and 𝜇𝑖𝑖 = 0.25, for 𝑖 = 1, 2, 𝜇12 = 0.2, 𝜙12 = 𝜙, and 𝑋 (0) = (60, 70). For the first arrival
rate setting, 𝜆1(𝑡) = 8 × 1{𝑡 < 40} + 4 × 1{𝑡 ≥ 40} and 𝜆2(𝑡) = 3. For the second arrival rate
setting, 𝜆1(𝑡) = 8 × 1{𝑡 < 40} + 1 × 1{𝑡 ≥ 40} and 𝜆2(𝑡) = 3 × 1{𝑡 < 40} + 4.5 × 1{𝑡 ≥ 40}.)
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-4 -2 0 2 4
Arrival Rate Setting I

𝜙 = 2 Holding 1.096 1.089 1.092 1.099 1.106
Overflow 0.139 0.140 0.141 0.143 0.145

Total 1.235 1.228 1.232 1.242 1.251
SE 0.003 0.003 0.003 0.003 0.003

𝜙 = 10 Holding 1.126 1.111 1.104 1.103 1.107
Overflow 0.548 0.551 0.562 0.586 0.607

Total 1.674 1.661 1.666 1.689 1.714
SE 0.004 0.004 0.004 0.004 0.004

𝜙 = 25 Holding 1.354 1.329 1.276 1.194 1.147
Overflow 0.934 0.939 0.999 1.148 1.272

Total 2.287 2.268 2.276 2.342 2.419
SE 0.005 0.005 0.005 0.005 0.005

Arrival Rate Setting II

𝜙 = 2 Holding 1.079 1.074 1.071 1.071 1.076
Overflow 0.030 0.032 0.035 0.038 0.042

Total 1.109 1.106 1.106 1.109 1.118
SE 0.002 0.002 0.002 0.003 0.003

𝜙 = 10 Holding 1.183 1.145 1.116 1.096 1.084
Overflow 0.061 0.087 0.112 0.135 0.160

Total 1.244 1.232 1.228 1.232 1.244
SE 0.002 0.002 0.002 0.002 0.002

𝜙 = 25 Holding 1.282 1.282 1.282 1.282 1.189
Overflow 0.000 0.000 0.000 0.000 0.142

Total 1.282 1.282 1.282 1.282 1.330
SE 0.002 0.002 0.002 0.002 0.002

Table 2.7: Simulation costs for the N-model when 𝜖 is equal to a fixed value ranging from -4 to
4. The costs shown in the table are in units of 104. “SE” stands for the standard error for the
corresponding total cost. (Parameter setting: ℎ = (1.5, 1), 𝑠𝑖 = 20 and 𝜇𝑖𝑖 = 0.25, for 𝑖 = 1, 2,
𝜇12 = 0.2, 𝜙12 = 𝜙, and 𝑋 (0) = (60, 70). For the first arrival rate setting, 𝜆1(𝑡) = 8×1{𝑡 < 40}+4×
1{𝑡 ≥ 40} and 𝜆2(𝑡) = 3. For the second arrival rate setting, 𝜆1(𝑡) = 8× 1{𝑡 < 40} + 1× 1{𝑡 ≥ 40}
and 𝜆2(𝑡) = 3 × 1{𝑡 < 40} + 4.5 × 1{𝑡 ≥ 40}.)
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relatively small changes in the performance of our policy. In the scenarios tested, over-estimation

tends to lead to a higher cost than underestimation. This is because over-estimation leads to extra

overflow, which results in a higher overflow cost (especially when 𝜙 is large) and sometimes also

a higher holding cost (due to service slowdown).

Limited future arrival rate information

We next study the impact of a limited look-ahead time window. Using the same notation

introduced in Section 2.3.3, we assume only the future arrival rate up to time 𝑡 +𝑊 is known for a

given time window 𝑊 . We consider two arrival rate settings that each feature two demand surges.

When there are two surges, a limited look-ahead time may have a larger effect on performance,

because the policy might not be able to anticipate the second demand surge when planning during

the first demand surge.

The two arrival rate settings are derived from the two arrival rate settings studied earlier for the

N-model, except that we break the initial demand surge into two separate surges. The first arrival

rate setting is the same as the baseline, except that the class 1 arrival rate is now

𝜆1(𝑡) =



8, 𝑡 < 20

4, 20 ≤ 𝑡 < 30

8, 30 ≤ 𝑡 < 50

4, 𝑡 ≥ 50.

The policy implemented under the two-demand surges is specified in Section 2.3.4 and is adapted

to the limited time-window. For example, if 𝑊 = 0, we implement the look-ahead policy with

𝐺̃ 𝑡
1(𝑋1(𝑡)) = 𝑋1(𝑡)/(20 × 0.25 − 4), because it is believed that the class 1 arrival rate is constant

and equal to 4.

The second arrival rate setting is the same as that in Section 2.6.1, except that the class 1 and 2
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arrival rates are

𝜆1(𝑡) =



8, 𝑡 < 20

1, 20 ≤ 𝑡 < 30

8, 30 ≤ 𝑡 < 50

1, 𝑡 ≥ 50

and 𝜆2(𝑡) =



3, 𝑡 < 20

4.5, 20 ≤ 𝑡 < 30

3, 30 ≤ 𝑡 < 50

4.5, 𝑡 ≥ 50.

For the numerical experiments, we test three different values of 𝑊 : 0, 5, and 10. Note that

these time windows are smaller than or equal to the length of the interval between the two de-

mand surges, so that the policy does not ‘know’ about the second demand surge during the first.

Table 2.8 summarizes the simulation results under these two arrival rate settings. As 𝑊 increases,

more of the demand surge rate is revealed at the beginning, and, hence, the value of 𝐺̃ 𝑡
1(𝑞1(𝑡)) in-

creases. Consequently, more help is offered following (2.8), which explains why the overflow cost

increases while the holding cost decreases. As expected, the total cost generally decreases with

𝑊 , but the performance change is quite small. Our policy, even with a small value of𝑊 , generally

performs much better than the two look-ahead policies. The modified maximum pressure policy

performs close to our policy in the first arrival rate setting when 𝜙 is small (2 or 10), but other-

wise performs significantly worse, even compared to the case 𝑊 = 0. Meanwhile, the modified

maximum 𝑐𝜇 performs well in the second arrival rate setting, but performs extremely poorly in the

first arrival rate setting. The numerical results indicate that our policy is robust to limited future

arrival rate information regardless of the parameter setting, which is very desirable for practical

implementations.

2.7 Conclusion

In this work, we study the value of future arrival rate information in designing the optimal

routing policy for systems with partial flexibility when facing demand surges. Our model incorpo-

rates salient features of service systems, such as efficiency loss and inconvenience costs associated
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0 5 10 ModMaxP ModCmu
Arrival Rate Setting I

𝜙 = 2 Holding 0.981 0.979 0.980 0.992 2.632
Overflow 0.133 0.134 0.135 0.122 0.000

Total 1.114 1.113 1.115 1.114 2.632
SE 0.003 0.003 0.003 0.003 0.008

𝜙 = 10 Holding 1.011 0.999 0.992 0.995 2.632
Overflow 0.537 0.543 0.549 0.598 0.000

Total 1.549 1.543 1.542 1.593 2.632
SE 0.004 0.004 0.004 0.004 0.008

𝜙 = 25 Holding 1.270 1.237 1.215 1.006 2.632
Overflow 0.896 0.920 0.939 1.452 0.000

Total 2.166 2.158 2.154 2.458 2.632
SE 0.005 0.005 0.005 0.005 0.008

Arrival Rate Setting II

𝜙 = 2 Holding 1.027 0.960 0.915 1.112 1.049
Overflow 0.004 0.021 0.027 0.075 0.000

Total 1.032 0.981 0.943 1.187 1.049
SE 0.002 0.002 0.002 0.004 0.002

𝜙 = 10 Holding 1.049 1.045 1.004 1.080 1.049
Overflow 0.000 0.003 0.035 0.361 0.000

Total 1.049 1.049 1.040 1.442 1.049
SE 0.002 0.002 0.004 0.000 0.002

𝜙 = 25 Holding 1.049 1.049 1.049 1.030 1.049
Overflow 0.000 0.000 0.000 0.841 0.000

Total 1.049 1.049 1.049 1.871 1.049
SE 0.002 0.002 0.002 0.005 0.002

Table 2.8: Simulation costs for the N-model with time window 𝑊 = 0, 5, and 10. Costs under the
modified maximum pressure policy and modified 𝑐𝜇 policy are also shown. The costs shown in
the table are in units of 104. “SE” stands for the standard error for the corresponding total cost.
(Parameter setting: ℎ = (1.5, 1), 𝑠𝑖 = 20 and 𝜇𝑖𝑖 = 0.25, for 𝑖 = 1, 2, 𝜇12 = 0.2, 𝜙12 = 𝜙, and
𝑋 (0) = (60, 70). For the first arrival rate setting, 𝜆1(𝑡) = 8 × 1{𝑡 < 20} + 4 × 1{20 ≤ 𝑡 <

30} + 8 × 1{30 ≤ 𝑡 < 50} + 4 × 1{𝑡 ≥ 50} and 𝜆2(𝑡) = 3. For the second arrival rate setting,
𝜆1(𝑡) = 8 × 1{𝑡 < 20} + 1 × 1{20 ≤ 𝑡 < 30} + 8 × 1{30 ≤ 𝑡 < 50} + 1 × 1{𝑡 ≥ 50} and
𝜆2(𝑡) = 3 × 1{𝑡 < 20} + 4.5 × 1{20 ≤ 𝑡 < 30} + 3 × 1{30 ≤ 𝑡 < 50} + 4.5 × 1{𝑡 ≥ 50}.)
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with overflow, general time-varying demand (arrival rates), and various service compatibility ar-

chitectures (e.g., the N- and X-models). We study the fluid control problems for the N-model, the

X-model, and two extensions of the N-model, and explicitly characterize the optimal control. All

of these policies have a two-stage index-based structure and take future arrival rates into account.

Based on the insights from the the fluid analysis, we propose a two-stage index-based look-ahead

policy for general stochastic systems. Our proposed policy is interpretable, easy to implement, and

able to achieve superior performance in various multi-class multi-pool networks, even when there

are prediction errors or limited future arrival rate information.

Several future extensions may be considered. One is to jointly optimize the system’s archi-

tectural design and the real-time routing policy (see, for example, [57]). Our analysis reveals the

potential benefit of cross-training when, for example, comparing the N-model with the X-model

under demand surge for class 1. In the N-model, pool 1 can only serve class 1, while in the X-

model, pool 1 is cross-trained to serve class 2. The X-model is able to absorb the demand surge

faster and at a lower cost than the N-model. This is because, due to cross-training, pool 2 can pro-

vide more help to class 1 since pool 1 can “pay back" the help later. Another extension is to study

the effect of more general prediction errors. Our current analysis assumes the prediction error is

of a smaller order than the arrival rate. In this case, our policy performs well even with prediction

errors. When the prediction error and the arrival rate are of similar orders, it would be interesting

to study how to adjust the routing policy to properly account for the prediction error. Lastly, it

would be interesting to see how our analytical framework, which leverages optimal control theory

(Pontryagin’s minimum principle) and fluid-scale convergence analysis, can be applied to solve

other transient queueing control problems.
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Chapter 3: Optimal sizing and scheduling of flexible servers

3.1 Introduction

In multi-class service systems, servers can either be dedicated (only able to serve one class)

or flexible (able to serve multiple classes). Increasing the size of the flexible server pool can help

balance the workload between different classes of customers, and improve system performance.

Specifically, when managing queues with multiple classes of jobs, the benefit of load-balancing

and capacity flexibility have been studied and demonstrated in various settings (see, for example,

[58, 24]).

However, as noted in Chapter 1, flexibility may come at a cost, such as less efficient service or

more expensive staffing. Given the cost and benefit of flexible capacity, it is important to under-

stand how to strike a balance in resource management.

When designing the service system, the service provider has to make multiple decisions. Chief

among them are how many of each type of server to staff and how to match customers with servers.

These problems are often referred to as the staffing and scheduling problems in the literature. In

this work, we study the joint staffing and scheduling problem in multi-class queues with both

dedicated and flexible servers. In particular, to highlight the key tradeoff, we consider a stylized

M-model with two classes of customers and three potential pools of servers: two dedicated pools

and one flexible pool that can serve both classes of customers. To capture the cost of flexibility,

we assume that the flexible servers may be more costly to staff and may serve at a slower rate

than dedicated servers. The objective is to find the optimal staffing and scheduling policies that

minimize the sum of the staffing cost, holding cost, and abandonment cost.

We consider two demand scenarios. One has deterministic arrival rates, which is the case when

we have a very accurate estimate of customer demand. In this case, the flexible pool can be used to
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hedge against stochasticity, i.e., the stochastic fluctuation of interarrival times and service times. In

particular, due to the stochasticity in system dynamics, one queue may incur a higher than average

load while the other is at or below its normal load from time to time. In such situations, the flexible

pool can be used to help the class with a heavier load, and thus balance the load between the

two classes. The other scenario has random arrival rates, which is the case when there is a high

degree of uncertainty in customer demand. In this case, the flexible pool is mainly used to hedge

against parameter uncertainty. In particular, when the realized arrival rate of one class is higher

than average while the realized arrival rate of the other class is at or below average, the flexible

pool can be used to help the class with a higher realized arrival rate, and thus balance the load. The

differences between the two scenarios described above give rise to different hedging mechanisms,

which in turn lead to different sizes of the flexible pool in optimality. To see this, let 𝜆 denote

the average arrival rate. When 𝜆 is large, the stochastic fluctuation of the system with a given

arrival rate is in general of order
√
𝜆 [59]. The parameter uncertainty, on the other hand, can be

of a different order than
√
𝜆 [7]. Indeed, the case we are interested in is one where the standard

deviation of the random arrival rate is of a larger order than
√
𝜆. Lastly, the different hedging

mechanisms also lead to different scheduling policies in our developments.

Because staffing and scheduling decisions interact, the joint optimization problem can be very

challenging. When arrival rates are deterministic and symmetric, we use a coupling construction

to derive the optimal scheduling policy for any staffing level. The scheduling policy prioritizes the

dedicated servers (faster servers) when routing customers to servers, and prioritizes the class with

more customers in the system when scheduling flexible servers, assuming the abandonment rate

is less than the service rates. Given the optimal scheduling policy, we then optimize the staffing

policy. To derive structural insights into the size of the flexible pool, we employ a heavy-traffic

asymptotic approach, where we send the arrival rate to infinity and study how the size of the

flexible pool scales with the arrival rate. Our result provides necessary and sufficient conditions

for staffing rules to be asymptotically optimal. The key insight is that when flexibility comes at a

cost, the optimal size of the flexible pool only leads to partial resource pooling. In particular, the
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flexible pool helps create some load-balancing, but the effect is not large enough to equalize the

two queues asymptotically.

When arrival rates are random and the magnitude of the parameter uncertainty dominates the

system stochasticity, we employ a stochastic-fluid relaxation of the optimal staffing problem. In

this relaxation, we ignore the stochasticity of the queueing dynamics and focus on the parameter

uncertainty only. The stochastic-fluid optimization problem is a special case of the single-period

multi-product inventory problem with demand substitution, for which we can characterize the op-

timal solution explicitly. The relaxation also motivates a simple scheduling rule that essentially

decomposes the M-model into two independent inverted-V models for any realization of the ar-

rival rates. When the average arrival rates grow to infinity, we show that the staffing and scheduling

rules derived based on the stochastic-fluid relaxation are asymptotically optimal. The key insight is

that when facing both parameter uncertainty and cost of flexibility, the optimal size of the flexible

pool provides some hedging against the parameter uncertainty, and the cost saving, compared to

the no-flexible resource case, is increasing with the magnitude of the uncertainty.

In addition to providing prescriptive solutions to managing flexibility, we also highlight the

following contributions of our work.

1. When the arrival rates are symmetric and deterministic, we construct the optimal scheduling

policy for any arrival rates and staffing levels. In contrast to most of the optimal scheduling

literature for multi-server queues, our results do not rely on any asymptotic argument (for

development on asymptotically optimal scheduling policies, see, for example, [4]). Instead,

the proof uses a coupling argument that can be of interest to the analysis of other Markovian

queueing systems. Our coupling technique also allows us to establish the optimality of a

non-standard scheduling policy when the abandonment rate is larger than the service rates,

see Theorem 14.

2. When the arrival rates are deterministic and the flexible pool is of the optimal order, we

derive the diffusion limit of the M-model under heavy-traffic. The limit is a two-dimensional

diffusion process. In particular, the complete resource pooling condition is not satisfied
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when the flexible pool is optimally sized, i.e., the flexible pool size is not large enough to

instantaneously balance the queue lengths between the two classes. Thus, we do not have

state space collapse in the limit, i.e., the two-dimensional queue length process does not

reduce to a one-dimensional process in the limit. This is in contrast to most of the optimal

scheduling literature (see, for example, [5, 6]). On the other hand, the limiting process

cannot be fully decomposed along each dimension, i.e., the drift terms of the two component

diffusion processes are interconnected. Thus, we achieve partial resource pooling.

3. When the arrival rates are random and the parameter uncertainty is of a larger order than the

stochasticity of the queueing dynamics, we quantify the optimality gap for policies derived

based on the stochastic fluid approximation. This extends the results in [7] from a multi-

server queue with a single class of customers and a single pool of servers to a multi-class

queue with multiple server types. We also allow the arrival rate distributions of the two

classes to be asymmetric, i.e., they can have different means and different levels of uncer-

tainty.

3.1.1 Literature review

We first review related works on queues with deterministic arrival rates. The M-model studied

in this work is a special case of parallel server systems (PSSs). Due to the interplay between

staffing and scheduling decisions, the joint staffing and scheduling problem can be highly nontrivial

for general PSSs. In the literature, most works only look at one of the two problems in isolation.

However, there are a few exceptions. Noticeably, [60] consider the joint optimization problem for

an inverted-V model where there is a single class of customers and multiple types of servers. Using

a coupling argument, they establish the optimality of the fastest-server-first policy. [61] study

the problem of staffing and scheduling PSSs to minimize total staffing costs subject to quality-

of-service constraints. They establish that the queue-and-idleness-ratio control is asymptotically

optimal in heavy-traffic. When dealing with a single class of customers and a single pool of

servers, [8] study the optimal staffing problem in an 𝑀/𝑀/𝑛 queue. They find that the quality-
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and-efficiency-driven (QED) regime, which is also known as the Halfin-Whitt regime [62], arises

naturally when staffing is set to balance the staffing cost and the system performance. The work is

then extended by [63] to allow for customer abandonment.

The work that is most related to ours is [23], which studies the sizing of flexible resources

when service rates can be continuously chosen. They find that the linear staffing and holding costs

often lead to an 𝑂 (
√
𝜆) flexibility when flexible capacity is more expensive. The main difference

between our work and theirs is the modeling of the service resources. They use a single-server

mode of analysis and assume the service rate can be optimally chosen. This modeling approach is

reasonable for computer or manufacturing systems. Motivated mostly by large-scale service sys-

tems, our work adopts a many-server mode of analysis. As [23] point out, the many-server regime

that we consider introduces substantial complexity to the analysis, and they leave this extension

as a potential future research direction. In addition, [23] assumes a longest-queue-first scheduling

and hypothesize that it is likely to be optimal. We establish the optimality of a scheduling policy

that prioritizes the class with more customers in the system.

More broadly, optimal scheduling of various PSSs has been extensively studied in the literature.

For example, [64] study the optimal scheduling of the N-model. They show that a 𝑐𝜇-type of

greedy policy is asymptotically optimal in the many-server QED regime. [4] studies the optimal

scheduling problem of general PSSs, i.e., with multiple classes of customers and multiple pool of

servers, and customer abandonment. The work establishes the asymptotical optimality of policies

derived based on the corresponding optimal diffusion control problem in the many-server QED

regime. [65] study the optimal scheduling of V-model with general patience-time distributions.

The main feature that distinguishes our work from the stream of works on PSSs in the QED regime

is the size of our flexible server pool. In our analysis, the size of the flexible pool is asymptotically

negligible in the fluid scale, whereas in the literature, it is almost universally assumed that the

fluid-scaled pool sizes are non-negligible (see, for example, Assumption 1 in [4], Assumption 2.1

in [6], and equation (20) in [5]). Due to the difference in the size of our server pools, the asymptotic

behavior (diffusion limit) of our system can be qualitatively different from what is observed in the
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literature.

When the arrival rates are random, our work is related to works that look at staffing queues

when facing parameter uncertainty. The stochastic-fluid relaxation was first proposed in [66]. Its

efficacy has been studied in several subsequent works. [67] show that it leads to an asymptotically

optimal staffing policy under a non-conventional asymptotic regime that features large arrival rates

and short service times. The asymptotic framework is then extended in [15], who consider the case

when the arrival rate distribution is unknown and has to be estimated from data. Compared to these

works, the analysis in this work takes a different asymptotic approach. In particular, we increase

the system demand, i.e., arrival rates, but do not scale other system parameters such as service rates

and abandonment rates. The paper [7] takes a similar heavy-traffic asymptotic approach as ours

and establishes the optimality gap of the staffing policy derived from the stochastic-fluid relaxation

for an Erlang-A model with a random arrival rate. We extend their results to a multi-class network

setting, where in addition to the staffing decision, we also have to decide on the scheduling policy.

[68] develops a different stochastic-fluid model that allows non-exponential service times and

patience times, and studies the staffing problem with both random arrival rates and staffing levels

(due to employee absenteeism). When facing demand uncertainty, [69] study the staffing problem

with a chance constraint for the quality of service. They first use mixed integer programming to

obtain a first-order staffing solution, and then refine the staffing level using simulation. [70] study

the staffing and outsourcing problem when demand is random.

Our work contributes to this stream of literature in two key ways. First, we show that when

dealing with random demand, it is the staffing, not the scheduling decision, that is of paramount

importance. This supports why many papers tend to focus on the staffing instead of the scheduling

decision in this setting (see, for example [69, 71]). Second, we quantify the benefit of flexibility.

Specifically, we extend the notion that the order of flexibility should match the order of system

stochasticity in [23] to the case where the order of flexibility should match the order of demand

uncertainty. In general, the notion that just a small degree of flexibility is enough has been much in-

vestigated over the years in various different contexts (see, for example, [21, 72] for manufacturing
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systems, [24, 73] for PSSs, etc.) Our work contributes to this literature as well.

3.1.2 Structure and Notation

In Section 3.2, we introduce the queueing model and the optimization problem. In Section 3.3,

we study the optimal scheduling and staffing policy for a symmetric M-model with deterministic

arrival rates. The goal is to highlight the cost and benefit of flexibility in a classical setting with no

parameter uncertainty. In Section 3.4, we study the staffing and scheduling problem for systems

with random arrival rates. To highlight the effect of demand uncertainty, we focus on the regime

where the demand uncertainty dominates the system stochasticity. We complement our theoretical

analysis with numerical experiments in Section 3.5. In particular, the numerical analysis focuses

on the pre-limit performance of our proposed staffing and scheduling rules. The proofs of all the

theoretical results are delayed until the Appendix.

We next introduce some notation that is used throughout the work. The set of non-negative

integers is denoted by N0, and the set of real numbers is denoted by R. We define 𝜂(𝑡) = 0,

𝜒(𝑡) = 𝑡, and 𝐼 (𝑡) = 1, for 𝑡 ≥ 0. Let 𝐷 denote the space of functions from [0,∞) to R that are

right-continuous with left limits and is endowed with Skorohod 𝐽1 topology. Let 𝑒𝑖 be a unit vector

with the 𝑖-th element equal to 1. The dimension of 𝑒𝑖 depends on the context. We write 1{·} for the

indicator function. A random variable 𝐴 is said to be stochastically larger than a random variable

𝐵, 𝐴 ≥𝑠𝑡 𝐵, if P(𝐴 > 𝑥) ≥ P(𝐵 > 𝑥) for any 𝑥 ∈ R. For real sequences {𝑎𝑛} and {𝑏𝑛}, we say that

𝑎𝑛 = 𝑂 (𝑏𝑛) if lim sup𝑛→∞ |𝑎𝑛 |/𝑏𝑛 < ∞, 𝑎𝑛 = 𝑜(𝑏𝑛) if lim sup𝑛→∞ |𝑎𝑛 |/𝑏𝑛 = 0, and 𝑎𝑛 = Θ(𝑏𝑛) if

lim inf𝑛→∞ |𝑎𝑛 |/𝑏𝑛 > 0. For 𝑎 ∈ R, write 𝑎+ = max(𝑎, 0) and 𝑎− = max(−𝑎, 0).

3.2 The Model

We consider a classical M-model with possible demand uncertainty as depicted in Figure 3.1.

In particular, the model has two customer classes, Class 1 and Class 2, and three pools of servers:

two dedicated pools for the two customer classes and one flexible pool that can serve both classes.

We allow the arrival rate for Class 𝑖, Λ𝑖, 𝑖 = 1, 2, to be a random variable. For a given realization of
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Λ𝑖, i.e., Λ𝑖 = 𝜆𝑖, Class 𝑖 arrivals follow a Poisson process with rate 𝜆𝑖. Each server pool can have

multiple servers. We write 𝑛𝑖 for the number of servers in the dedicated pool for Class 𝑖, and 𝑛𝐹

for the number of servers in the flexible pool. If a customer is served by the dedicated server, its

service time follows an exponential distribution with rate 𝜇. If a customer is served by the flexible

server, its service time follows an exponential distribution with rate 𝜇𝐹 . We assume 𝜇𝐹 ≤ 𝜇 to

account for the potential efficiency loss of flexible servers. Each customer has a patience time that

follows an exponential distribution with rate 𝜃. Once a customer’s waiting time (in the queue)

exceeds its patience time, it abandons the system.

… … …µ µ µ µ µ µµF µF

nFn1 n2

Λ1 Λ2

θ θ

Figure 3.1: The M-model

For 𝑖 = 1, 2, let 𝑋𝑖 (𝑡) denote the number of Class 𝑖 customers in the system at time 𝑡. We denote

𝑍𝑖 (𝑡) and 𝑍𝐹𝑖 (𝑡) as the number of dedicated servers and flexible servers serving Class 𝑖 customers

at time 𝑡 respectively. Note that

𝑍𝑖 (𝑡) ≤ 𝑛𝑖, 𝑍𝐹 (𝑡) := 𝑍𝐹1(𝑡) + 𝑍𝐹2(𝑡) ≤ 𝑛𝐹 , and 𝑍𝑖 (𝑡) + 𝑍𝐹𝑖 (𝑡) ≤ 𝑋𝑖 (𝑡). (3.1)

Let 𝑄𝑖 (𝑡) denote the number of Class 𝑖 customers waiting in the queue at time 𝑡. Then 𝑄𝑖 (𝑡) =

𝑋𝑖 (𝑡) − 𝑍𝑖 (𝑡) − 𝑍𝐹𝑖 (𝑡). Let 𝑋 (𝑡) := (𝑋1(𝑡), 𝑋2(𝑡)), 𝑍 (𝑡) := (𝑍1(𝑡), 𝑍2(𝑡), 𝑍𝐹1(𝑡), 𝑍𝐹2(𝑡)), and

𝑄(𝑡) := (𝑄1(𝑡), 𝑄2(𝑡)). We also define the total number of customers in the system and the

total queue length processes as 𝑋Σ (𝑡) = 𝑋1(𝑡) + 𝑋2(𝑡) and 𝑄Σ (𝑡) = 𝑄1(𝑡) + 𝑄2(𝑡) respectively.

Let 𝐴𝑖, 𝑆𝑖, 𝑆𝐹𝑖, 𝐺𝑖 be independent unit-rate Poisson processes, which will be used to represent the
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arrival, departure, and abandonment events respectively. At the beginning of the planning horizon

Λ𝑖 is realized. Given Λ𝑖 = 𝜆𝑖, 𝑋𝑖 (𝑡) satisfies the following dynamics:

𝑋𝑖 (𝑡) = 𝑋𝑖 (0) + 𝐴𝑖 (𝜆𝑖𝑡) − 𝐺𝑖
(
𝜃

∫ 𝑡

0
𝑄𝑖 (𝑠) 𝑑𝑠

)
− 𝑆𝑖

(
𝜇

∫ 𝑡

0
𝑍𝑖 (𝑠) 𝑑𝑠

)
− 𝑆𝐹𝑖

(
𝜇𝐹

∫ 𝑡

0
𝑍𝐹𝑖 (𝑠) 𝑑𝑠

)
.

To fully describe dynamics of the system, we need to specify the scheduling policy – how to

allocate the servers. We restrict ourselves to preemptive deterministic Markovian policies, where

the allocation of servers 𝑍 (𝑡) can be viewed as a function of the current state of the system 𝑋 (𝑡)

[74]. Let 𝜈 denote such a policy (mapping), i.e., 𝑍 (𝑡) = 𝜈(𝑋𝜆 (𝑡)) and it satisfies the feasibility

conditions listed in (3.1).

Let 𝑄Σ (∞; 𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈) be the steady-state total queue length given staffing level (𝑛1, 𝑛2, 𝑛𝐹)

and scheduling policy 𝜈. If the system is not stable under a certain staffing and scheduling rule,

we define 𝑄Σ (∞; 𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈) ≡ ∞. Our goal is to jointly choose the staffing levels for each pool

and the scheduling policy to minimize the sum of the staffing costs and the steady-state average

holding and abandonment costs:

min
𝑛1,𝑛2,𝑛𝐹 ,𝜈

Π(𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈) := 𝑐(𝑛1 + 𝑛2) + 𝑐𝐹𝑛𝐹 + (ℎ + 𝑎𝜃)E[𝑄Σ (∞; 𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈)], (3.2)

where 𝑐 > 0 is the per server per unit time staffing cost for the dedicated pools, 𝑐𝐹 > 0 is the

per server per unit time staffing cost for the flexible pool, ℎ > 0 is the per customer per unit

time holding cost, and 𝑎 > 0 is the per customer abandonment cost. Note that the abandonment

cost is 𝑎𝜃E[𝑄Σ (∞; 𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈)] because 𝜃E[𝑄Σ (∞; 𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈)] is the rate at which customers

abandon in stationarity. We also note that

E[𝑄Σ (∞; 𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈)] = E[E[𝑄Σ (∞; 𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈) |Λ]],

where E[𝑄Σ (∞; 𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈) |Λ = (𝜆1, 𝜆2)] is the steady-state average queue length of an M-

model with arrival rates (𝜆1, 𝜆2), and the outer expectation is taken with respect to the random
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arrival rates Λ, i.e., the demand uncertainty.

In order to avoid trivial situations, we impose the following condition on the rates and cost

parameters:

𝑐/𝜇 < 𝑐𝐹/𝜇𝐹 < ℎ/𝜃 + 𝑎. (3.3)

The first inequality ensures that flexible servers have some disadvantage over dedicated servers.

Otherwise, we would never staff dedicated servers. The second inequality ensures that the cost

of serving a customer using a flexible server is less than the cost of letting the customer wait and

abandon. Otherwise, we would never staff flexible servers.

We highlight two challenges in solving (3.2). First, even for a given staffing level, character-

izing the optimal scheduling policy can be highly nontrivial. Second, even after pinning down the

optimal scheduling policy, it remains difficult to solve for the optimal staffing level due to the lack

of an analytical characterization of E[𝑄Σ (∞; 𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈)]. We will address these challenges in

subsequent sections. In particular, a lot of our developments rely on a heavy-traffic asymptotic

mode of analysis, in which our goal is to characterize how the optimal decisions scale with the

arrival rate (average arrival rate) 𝜆 as 𝜆 → ∞. To explicitly mark the dependence of the policies

and system dynamics on 𝜆, we use the superscript 𝜆. For example, 𝜈𝜆 and (𝑛𝜆1, 𝑛
𝜆
2, 𝑛

𝜆
𝐹
) are the

scheduling policy and staffing levels for the system with the arrival rate parameter 𝜆 (i.e., the 𝜆-th

system). Similarly, 𝑋𝜆, 𝑍𝜆, and 𝑄𝜆 are the number-in-system, number-in-service, and number-in-

queue processes of the 𝜆-th system.

3.3 The Case with Deterministic Arrival Rate

In this section, we study a special case of the system where the arrival rate is deterministic. In

particular, we assume Λ1 = Λ2 = 𝜆 with probability 1. In this case, we have a symmetric M-model.

The goal is to highlight how to strike a balance between the cost and benefit of flexibility.

We start by providing an overview of how we address the two challenges listed in Section 3.2

to derive the optimal staffing and scheduling rules jointly. In Section 3.3.1, we use a coupling argu-
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ment to derive the optimal scheduling policy for any given staffing level. This optimal scheduling

rule turns out to have a very neat and intuitive structure. In particular, the policy prioritizes the

faster servers (the dedicated servers) when routing customers to servers, and the flexible servers

prioritize the class with more customers in the system (the larger 𝑋𝑖 (𝑡)). This is similar in structure

to the queue-idleness ratio policy [6], the fastest server first policy [60], and the max-pressure pol-

icy [34]. However, we emphasize that using the coupling argument, we are able to establish exact

optimality instead of asymptotic optimality. Moreover, in the staffing regime we are interested

in, there is no state-space collapse. Thus, the asymptotic optimality framework leveraged in the

literature can no longer be applied.

Next, in Section 3.3.2, we take a heavy-traffic asymptotic approach to derive a necessary and

sufficient characterization of the optimal staffing rules. In particular, we gradually send the arrival

rate 𝜆 to infinity and study how the optimal staffing level scales with 𝜆. Our analysis shows that

the optimal staffing rule leads the system to operate in the QED regime, and the optimal size of the

flexible pool is 𝑂 (
√
𝜆). This extends the insights developed in [23] to the many-server setting.

Due to the symmetry of the system, we assume, without loss of optimality, that 𝑛𝜆1 = 𝑛𝜆2 = 𝑛𝜆.

Thus, our decision variables for the staffing rule reduce to 𝑛𝜆 and 𝑛𝜆
𝐹

. For the model analyzed in

this section, we allow 𝜃 = 0, i.e., no abandonment. When 𝜃 = 0, we need to put more restrictions

on the staffing levels to ensure system stability. In particular, we define

Ω𝜆 (0) :=
{
(𝑛𝜆, 𝑛𝜆𝐹) ∈ N

2
0 : 2𝜆 < 2𝑛𝜆𝜇 + 𝑛𝜆𝐹𝜇𝐹

}
.

The following lemma show that when 𝜃 = 0, having (𝑛𝜆, 𝑛𝜆
𝐹
) ∈ Ω𝜆 (0) ensures that the system is

stable under the optimal scheduling rule.

Lemma 2. If 𝜃 = 0, for any (𝑛𝜆, 𝑛𝜆
𝐹
) ∈ Ω𝜆 (0) there exists a scheduling policy 𝜈𝜆, under which the

stochastic process 𝑋𝜆 has a unique stationary distribution.
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To ensure consistent notation, for 𝜃 > 0 we define

Ω𝜆 (𝜃) = {(𝑛𝜆, 𝑛𝜆𝐹) ∈ N
2
0}.

3.3.1 Optimal Scheduling Rule

Intuitively, a good scheduling policy should reduce the queues as fast as possible and balance

the queues of the two classes. This motivates the following scheduling rule. For the dedicated pool

of servers,

𝑍𝜆𝑖 (𝑡) = min{𝑛𝜆, 𝑋𝜆𝑖 (𝑡)} for 𝑖 = 1, 2; (3.4)

and for the flexible pool of servers, if 𝑋𝜆1 (𝑡) ≥ 𝑋𝜆2 (𝑡),

𝑍𝜆𝐹1(𝑡) = min{𝑛𝜆𝐹 , (𝑋
𝜆
1 (𝑡) − 𝑛

𝜆)+}, 𝑍𝜆𝐹2(𝑡) = min{𝑛𝜆𝐹 − 𝑍𝜆𝐹1(𝑡), (𝑋
𝜆
2 (𝑡) − 𝑛

𝜆)+}; (3.5)

otherwise,

𝑍𝜆𝐹1(𝑡) = min{𝑛𝜆𝐹 − 𝑍𝜆𝐹2(𝑡), (𝑋
𝜆
1 (𝑡) − 𝑛

𝜆)+}, 𝑍𝜆𝐹2(𝑡) = min{𝑛𝜆𝐹 , (𝑋
𝜆
2 (𝑡) − 𝑛

𝜆)+}. (3.6)

Note that under this policy, we first try to assign as many customers to the dedicated pools as

possible, i.e., (3.4). Then, for the flexible pool, we give priority to the class with more customers

in the system, i.e., (3.5) and (3.6). We comment that for our scheduling policy, ties can be broken

in an arbitrary way. For simplicity of exposition, we assume that when 𝑋𝜆1 (𝑡) = 𝑋
𝜆
2 (𝑡), the flexible

pool gives priority to Class 1. We denote the policy defined in (3.4) - (3.6) as 𝜈𝜆,∗.

The next theorem shows that when 𝜃 ≤ 𝜇𝐹 , for any fixed staffing level (𝑛𝜆, 𝑛𝜆
𝐹
), 𝜈𝜆,∗ is optimal.

Theorem 5. Suppose 𝜃 ≤ 𝜇𝐹 . For any Markovian scheduling policy 𝜈𝜆,

E[𝑄𝜆Σ (∞; 𝑛𝜆, 𝑛𝜆𝐹 ; 𝜈𝜆)] ≥ E[𝑄𝜆Σ (∞; 𝑛𝜆, 𝑛𝜆𝐹 ; 𝜈𝜆,∗)],

which implies that Π𝜆 (𝑛𝜆, 𝑛𝜆
𝐹

; 𝜈𝜆) ≥ Π𝜆 (𝑛𝜆, 𝑛𝜆
𝐹

; 𝜈𝜆,∗).
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Note that for 𝜃 ≤ 𝜇𝐹 , the policy 𝜈𝜆,∗ tries to equalize 𝑋𝜆1 and 𝑋𝜆2 at the maximum rate. Due to

the symmetry in the system structure, we expect this policy to perform well. We prove the theorem

by developing a coupling construction based on the transition rates of the underlying Markov

processes (see Appendix B.2.2 for more details). We also comment that the condition 𝜃 ≤ 𝜇𝐹 is

necessary for 𝜈𝜆,∗ to be optimal. If 𝜃 > 𝜇𝐹 , 𝜈𝜆,∗ no longer equalizes 𝑋𝜆1 and 𝑋𝜆2 at the maximum

rate, because a larger rate can be attained by keeping customers waiting in the queue instead of

sending them to the flexible severs. Indeed, when 𝜃 ≥ 𝜇𝐹 = 𝜇, we can show that a scheduling

rule that prioritizes the class with fewer customers in the system is optimal (see Theorem 14 in

Appendix B.2.3).

3.3.2 Asymptotically Optimal Staffing Rule

Based on the analysis in Section 3.3.1, the scheduling policy 𝜈𝜆,∗ is optimal for any 𝜆 and

(𝑛𝜆, 𝑛𝜆
𝐹
) when 𝜃 ≤ 𝜇𝐹 . In subsequent analysis, we assume without loss of optimality that the

policy 𝜈𝜆,∗ is employed. When there is no confusion, we will omit the scheduling policy from the

notation of the corresponding stochastic processes. Now, the problem of jointly optimizing staffing

and scheduling rules, i.e., (3.2), reduces to optimizing the staffing levels only:

min
(𝑛𝜆,𝑛𝜆

𝐹
)∈Ω𝜆 (𝜃)

Π𝜆 (𝑛𝜆, 𝑛𝜆𝐹) := 2𝑐𝑛𝜆 + 𝑐𝐹𝑛𝜆𝐹 + (ℎ + 𝑎𝜃)E[𝑄𝜆Σ (∞; 𝑛𝜆, 𝑛𝜆𝐹)] . (3.7)

Solving (3.7) analytically is still challenging due to the lack of a closed-form expression for

E[𝑄𝜆
Σ
(∞; 𝑛𝜆, 𝑛𝜆

𝐹
)]. In this section, we study the structure of the optimal staffing levels under heavy

traffic. In particular, we send 𝜆 → ∞ while keeping the service rates and abandonment rates fixed.

Our analysis reveals how the optimal sizes of the dedicated pool and flexible pool scale with the

arrival rate 𝜆.

Let

Π𝜆,∗ := min
(𝑛𝜆,𝑛𝜆

𝐹
)∈Ω𝜆 (𝜃)

Π𝜆 (𝑛𝜆, 𝑛𝜆𝐹) and (𝑛𝜆,∗, 𝑛𝜆,∗
𝐹
) ∈ arg min

(𝑛𝜆,𝑛𝜆
𝐹
)∈Ω𝜆 (𝜃)

Π𝜆 (𝑛𝜆, 𝑛𝜆𝐹).

Define 𝑅𝜆 := 𝜆/𝜇, which is the offered load of Class 𝑖, 𝑖 = 1, 2.
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Lemma 3. Suppose (3.3) holds. Then, Π𝜆,∗ = 2𝑐𝑅𝜆 +𝑂 (
√
𝜆). Moreover, for (𝑛𝜆,∗, 𝑛𝜆,∗

𝐹
),

−∞ < lim inf
𝜆→∞

𝑛𝜆,∗ − 𝑅𝜆
√
𝜆

≤ lim sup
𝜆→∞

𝑛𝜆,∗ − 𝑅𝜆
√
𝜆

< ∞

and

lim sup
𝜆→∞

𝑛
𝜆,∗
𝐹√
𝜆
< ∞.

Motivated by Lemma 3, our goal in subsequent analysis is to close the 𝑂 (
√
𝜆) optimality gap.

In particular, we employ the following notion of asymptotic optimality.

Definition 1. A sequence of staffing levels (𝑛𝜆, 𝑛𝜆
𝐹
) (indexed by 𝜆) is asymptotically optimal if

Π𝜆 (𝑛𝜆, 𝑛𝜆𝐹) = Π𝜆,∗ + 𝑜(
√
𝜆).

The key question we would like to address is how much flexibility is optimal. We first note

that if there is no ‘cost’ of flexibility, then we would want as much flexibility as possible. This is

because flexible servers create resource pooling in the system. To be more precise, we have the

following result:

Lemma 4. When 𝜇 = 𝜇𝐹 ≥ 𝜃, we have

E[𝑄𝜆Σ (∞; 𝑛𝜆, 𝑛𝜆𝐹)] ≥ E[𝑄
𝜆
Σ (∞; 0, 2𝑛𝜆 + 𝑛𝜆𝐹)] .

In practice, flexibility often comes at a cost. Here, we consider two forms of cost: a higher

staffing cost, i.e., 𝑐𝐹 ≥ 𝑐, and an efficiency cost, i.e., 𝜇𝐹 ≤ 𝜇. In this case, Lemma 3 indicates that,

overall, it is optimal to follow the square-root staffing rule, i.e., 2𝑛𝜆,∗ + 𝑛𝜆,∗
𝐹

= 2𝑅𝜆 +𝑂 (
√
𝜆). More

importantly, 𝑛𝜆,∗
𝐹

cannot be too large, i.e., 𝑛𝜆,∗
𝐹

= 𝑂 (
√
𝜆).

To derive an asymptotically optimal staffing rule, we need to have a good approximation of

E[𝑄𝜆
Σ
(∞; 𝑛𝜆, 𝑛𝜆

𝐹
)] in (3.7). In the many-server heavy-traffic analysis, there are two commonly

used approximations: the fluid approximation and the diffusion approximation. To achieve 𝑜(
√
𝜆)

77



optimality, we need to use the finer-scale diffusion approximation. We next define some diffusion-

scaled processes. Let

𝑋̂𝜆𝑖 (𝑡) =
𝑋𝜆
𝑖
(𝑡) − 𝑛𝜆
√
𝜆

, 𝑄̂𝜆𝑖 (𝑡) =
𝑄𝜆
𝑖
(𝑡)

√
𝜆
, and 𝑍̂𝜆𝑖 (𝑡) =

𝑍𝜆
𝑖
(𝑡) − 𝑛𝜆
√
𝜆

for 𝑖 = 1, 2.

We also write 𝑋̂𝜆 = ( 𝑋̂𝜆1 , 𝑋̂
𝜆
2 ), and define

𝑋̂𝜆Σ (𝑡) =
𝑋𝜆
Σ
(𝑡) − 2𝑛𝜆 − 𝑛𝜆

𝐹√
𝜆

and 𝑄̂𝜆Σ (𝑡) =
𝑄𝜆

Σ
(𝑡)

√
𝜆
.

In our subsequent development, for any stochastic process 𝑌 (𝑡), we write 𝑌 (∞) as its stationary

distribution.

Recall that 𝑛𝜆,∗
𝐹

= 𝑂 (
√
𝜆). The following theorem characterizes the diffusion limit of the

number-in-system processes in this case.

Theorem 6. For (𝑛𝜆, 𝑛𝜆
𝐹
) ∈ Ω𝜆 (𝜃), suppose 𝑛𝜆 = 𝑅𝜆+𝛽

√
𝑅𝜆+𝑜(

√
𝑅𝜆) and 𝑛𝜆

𝐹
= 𝛽𝐹

√
𝑅𝜆+𝑜(

√
𝑅𝜆),

where 𝛽 ∈ R, 𝛽𝐹 ≥ 0, and if 𝜃 = 0, 2𝛽𝜇 + 𝛽𝐹𝜇𝐹 > 0. Then, if 𝑋̂𝜆 (0) ⇒ 𝑋̂ (0) as 𝜆 → ∞,

𝑋̂𝜆 ⇒ 𝑋̂ in 𝐷2 as 𝜆 → ∞,

where 𝑋̂ is a two-dimensional diffusion process with

𝑑𝑋̂𝑖 (𝑡) =
(
−𝛽√𝜇 + 𝜇𝑋̂𝑖 (𝑡)− − (𝜇𝐹 − 𝜃) 𝑓𝑖

(
𝑋̂1(𝑡), 𝑋̂2(𝑡)

)
− 𝜃𝑋̂𝑖 (𝑡)+

)
𝑑𝑡 +

√
2 𝑑𝐵𝑖 (𝑡),

for 𝑖 = 1, 2, 𝐵1 and 𝐵2 are independent standard Brownian motions, and

𝑓1(𝑥1, 𝑥2) =


𝑥+1 ∧ 𝛽𝐹√

𝜇
if 𝑥1 ≥ 𝑥2,

𝑥+1 ∧
(
𝛽𝐹√
𝜇
− 𝑥+2

)+
if 𝑥1 < 𝑥2;

𝑓2(𝑥1, 𝑥2) =


𝑥+2 ∧

(
𝛽𝐹√
𝜇
− 𝑥+1

)+
if 𝑥1 ≥ 𝑥2,

𝑥+2 ∧ 𝛽𝐹√
𝜇

if 𝑥1 < 𝑥2.

Moreover,

E[𝑄̂𝜆Σ (∞)] → E[( 𝑋̂1(∞)+ + 𝑋̂2(∞)+ − 𝛽𝐹/
√
𝜇)+] as 𝜆 → ∞.
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We make two important observations from Theorem 6. First, to characterize 𝑋̂𝜆
Σ

, we need to

keep track of a two-dimensional diffusion process 𝑋̂ in the limit. In this sense, we do not achieve

complete resource pooling. On the other hand, the drift terms of 𝑋̂ cannot be fully decomposed

along each dimension, i.e., 𝑓𝑖 (𝑥1, 𝑥2) depends on both 𝑥1 and 𝑥2. Thus, we achieve partial resource

pooling. Second, E[( 𝑋̂1(∞)++ 𝑋̂2(∞)+−𝛽𝐹/
√
𝜇)+] serves as a good approximation for E[𝑄̂𝜆

Σ
(∞)],

which suggests approximating min(𝑛𝜆,𝑛𝜆
𝐹
)∈Ω𝜆 (𝜃) (Π𝜆 (𝑛𝜆, 𝑛𝜆

𝐹
)−2𝑐𝑅𝜆)/

√
𝜆 by the following optimiza-

tion problem:

min
(𝛽,𝛽𝐹 )∈Ω̂(𝜃)

𝑉̂𝑝 (𝛽, 𝛽𝐹) :=2𝑐𝛽/√𝜇 + 𝑐𝐹𝛽𝐹/
√
𝜇

+ (ℎ + 𝑎𝜃)E
[ (
𝑋̂1(∞; 𝛽, 𝛽𝐹)+ + 𝑋̂2(∞; 𝛽, 𝛽𝐹)+ − 𝛽𝐹/

√
𝜇
)+]

,

(3.8)

where, if 𝜃 = 0,

Ω̂(0) := {(𝛽, 𝛽𝐹) : 𝛽 ∈ R, 𝛽𝐹 ≥ 0, 2𝛽𝜇 + 𝛽𝐹𝜇𝐹 > 0},

and, if 𝜃 > 0,

Ω̂(𝜃) := {(𝛽, 𝛽𝐹) : 𝛽 ∈ R, 𝛽𝐹 ≥ 0}.

We do not have a closed-form expression for E
[ (
𝑋̂1(∞; 𝛽, 𝛽𝐹)+ + 𝑋̂2(∞; 𝛽, 𝛽𝐹)+ − 𝛽𝐹/

√
𝜇
)+] .

Thus, (3.8) can only be solved numerically. In Figure 3.2, we plot 𝑉̂𝑝 (𝛽, 𝛽𝐹) for different values

of 𝛽 and 𝛽𝐹 . We observe that 𝑉̂𝑝 (𝛽, 𝛽𝐹) is convex and is minimized at (0.5, 0.5) in this example.

We next characterize the optimal staffing rule by rigorously drawing the connection between

the solution of the optimal staffing problem (3.7) and the diffusion optimization problem (3.8). Due

to the lack of an analytical solution for 𝑉̂𝑝 (𝛽, 𝛽𝐹), we impose the following technical assumption.

Assumption 4. The set arg min(𝛽,𝛽𝐹 )∈Ω̂(𝜃) 𝑉̂𝑝 (𝛽, 𝛽𝐹) is non-empty and finite.

Theorem 7. For 𝜃 ≤ 𝜇𝐹 ≤ 𝜇, under Assumption 4, a sequence of staffing policies (𝑛𝜆, 𝑛𝜆
𝐹
) is

asymptotically optimal if and only if the following two conditions hold:

1. 𝑛𝜆 = 𝑅𝜆 + 𝛽𝜆
√
𝑅𝜆 + 𝑜(

√
𝑅𝜆)

2. 𝑛𝜆
𝐹
= 𝛽𝜆

𝐹

√
𝑅𝜆 + 𝑜(

√
𝑅𝜆)
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Figure 3.2: 𝑉̂𝑝 (𝛽, 𝛽𝐹) as a function of 𝛽 and 𝛽𝐹 . (𝜇 = 1, 𝜇𝐹 = 0.85, 𝜃 = 0, 𝑐 = 1, 𝑐𝐹 = 1.4, ℎ = 1)

where (𝛽𝜆, 𝛽𝜆
𝐹
) ∈ arg min(𝛽,𝛽𝐹 )∈Ω̂(𝜃) 𝑉̂𝑝 (𝛽, 𝛽𝐹).

Remark 2. If 𝑉̂𝑝 (𝛽, 𝛽𝐹) has a unique minimizer (𝛽∗, 𝛽∗
𝐹
), then the asymptotically optimal staffing

levels satisfy 𝑛𝜆 = 𝑅𝜆 + 𝛽∗
√
𝑅𝜆 + 𝑜(

√
𝑅𝜆) and 𝑛𝜆

𝐹
= 𝛽∗

𝐹

√
𝑅𝜆 + 𝑜(

√
𝑅𝜆).

To illustrate why 𝑛𝜆
𝐹
= 𝑂 (

√
𝜆) is necessary for asymptotic optimality, we plot E[𝑄𝜆

Σ
(∞; (60 −

𝑛𝜆
𝐹
)/2, 𝑛𝜆

𝐹
)] as a function of 𝑛𝜆

𝐹
in Figure 3.3. We set 𝜆 = 25 and test two different scenarios for the

service rate when 𝜃 = 0. In the left plot, 𝜇 = 𝜇𝐹 = 1. In the right plot, 𝜇 = 1 while 𝜇𝐹 = 0.85. The

stationary queue lengths are estimated through simulation. The simulation errors (estimated using

the batch means method) are less than 0.01 and hence omitted. When 𝜇 = 𝜇𝐹 (left plot in Figure

3.3), we observe that increasing 𝑛𝜆
𝐹

beyond 2
√
𝜆 = 10 has almost no effect on the stationary total

queue length. In this case, if 𝑐 < 𝑐𝐹 , the staffing cost increases linearly with 𝑛𝜆
𝐹

while the holding

cost does not decrease much as 𝑛𝜆
𝐹

increases beyond 10. Thus, the optimal 𝑛𝜆
𝐹

cannot be too large.

When 𝜇 > 𝜇𝐹 (right plot in Figure 3.3), the stationary total queue length is not monotone in 𝑛𝜆
𝐹

.

The minimum is achieved at a relatively small value of 𝑛𝜆
𝐹

, i.e., 𝑛𝜆
𝐹
= 6. Therefore, the optimal 𝑛𝜆

𝐹

cannot be too large in this case as well.
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Figure 3.3: E[𝑄Σ (∞; (60 − 𝑛𝜆
𝐹
)/2, 𝑛𝜆

𝐹
)] as a function of 𝑛𝜆

𝐹
. Left: 𝜇 = 𝜇𝐹 = 1; Right 𝜇 = 1,

𝜇𝐹 = 0.85. (𝜆 = 25, 𝜃 = 0)

We conclude this section with some sensitivity analysis on 𝛽∗ and 𝛽∗
𝐹

. Let ℎ = 𝑐 = 1, 𝜇 = 1,

and 𝜃 = 0. Note that setting 𝑐 = 1 and 𝜇 = 1 is without loss of generality as it is equivalent to

choosing units for cost and time. We first test how (𝛽∗, 𝛽∗
𝐹
) varies with 𝑐𝐹 , when 𝜇𝐹 = 0.85. Table

3.1 shows one such experiment. We observe that 𝛽∗ is increasing in 𝑐𝐹 while 𝛽∗
𝐹

is decreasing

in 𝑐𝐹 . When 𝑐𝐹 is large, i.e., 𝑐𝐹 ≥ 1.6, 𝛽∗
𝐹
= 0, suggesting it becomes too expensive to use the

flexible servers then.

𝑐𝐹 1 1.2 1.4 1.6 1.8

𝛽∗ −0.2 0.2 0.5 0.9 0.9

𝛽∗
𝐹

1.9 1.1 0.5 0 0

Table 3.1: Sensitivity of (𝛽∗, 𝛽∗
𝐹
) with respect to 𝑐𝐹

We next test how (𝛽∗, 𝛽∗
𝐹
) varies with 𝜇𝐹 , when 𝑐𝐹 = 1.4. Table 3.2 shows one such experi-

ment. We observe that 𝛽∗ is decreasing in 𝜇𝐹 while 𝛽∗
𝐹

is increasing in 𝜇𝐹 . For very small values

of 𝜇𝐹 , i.e., 𝜇𝐹 ≤ 0.55, flexible servers are too inefficient to be staffed.
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𝜇𝐹 0.55 0.65 0.75 0.85 0.95

𝛽∗ 0.8 0.8 0.7 0.5 0.4

𝛽∗
𝐹

0 0.1 0.2 0.5 0.6

Table 3.2: How optimal (𝛽, 𝛽𝐹) varies with 𝜇𝐹

3.4 The Case with Demand Uncertainty

In this section, we study the joint staffing and scheduling optimization problem (3.2) with

random arrival rates. We assume Λ𝑖 = 𝑝𝑖𝜆 + 𝜆𝛼𝑖𝑌𝑖, where 𝑝𝑖 > 0, 1/2 < 𝛼𝑖 ≤ 1, and 𝑌𝑖 is a random

variable with E[𝑌𝑖] = 0 and Var(𝑌𝑖) = 𝜎2
𝑖
< ∞. As Λ𝑖 is an arrival rate, we assume Λ𝑖 ≥ 0 with

probability 1. For example, when 𝛼𝑖 = 1, we assume 𝑌𝑖 ≥ −𝑝𝑖 with probability 1. For ease of

exposition, we also assume 𝑌𝑖’s are continuous random variables with strictly increasing marginal

cdf on their domains of definition. We allow 𝑌1 and 𝑌2 to be dependent and denote by 𝑔 their joint

density. Without loss of generality, we assume 𝛼1 ≥ 𝛼2. For the analysis in this section, we also

require 𝜃 > 0 to ensure system stability regardless of the realized arrival rates.

We next make some comments about our modeling assumptions for this section. First, we

allow quite some asymmetry between the two classes. In particular, 𝑝𝑖’s, 𝛼𝑖’s, and the marginal

distribution of 𝑌𝑖’s can be different for the two classes. This implies that the optimal 𝑛1 and 𝑛2

might be different. Second, the mean of Λ𝑖 is of order 𝜆 while the standard deviation of Λ𝑖 is of

order 𝜆𝛼𝑖 . For queues with deterministic arrival rate 𝜆, our analysis in Section 3.3 reveals that the

stochastic fluctuation of the system is of order 𝜆1/2. In this section, we are interested in the case

where 𝛼𝑖 > 1/2, so that the demand uncertainty is of a larger order of magnitude than the stochastic

fluctuation of the system.

We start by providing an overview of how we address the two challenges listed Section 3.2 to

derive the optimal scheduling and staffing rules jointly. When facing demand uncertainty, solving

(3.2) analytically is more challenging than the case with deterministic arrival rates. This is because

we now face two sources of randomness: One is the parameter uncertainty, the other is the stochas-
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ticity of the queue, i.e., random interarrival, service, and patience times. In this section, we again

take a heavy-traffic asymptotic approach where we send the arrival rate parameter 𝜆 to infinity and

quantify how the optimal staffing rule scales with 𝜆. Under the assumption that 𝛼𝑖 > 1/2, we em-

ploy a stochastic-fluid approximation where we suppress the stochastic fluctuation of the queues

and focus on parameter uncertainty only [66]. In our setting, the stochastic-fluid optimal staffing

problem is a special case of the single-period multi-product inventory problem with demand sub-

stitution [75]. Based on the stochastic-fluid staffing solution, it also becomes easier to develop

good scheduling policies. We then show that the staffing and scheduling rules derived from the

stochastic fluid problem achieve an 𝑂 (𝜆1−𝛼2) optimality gap.

The key intuition behind our development is that when parameter uncertainty dominates system

stochasticity, optimally hedging against parameter uncertainty is more important. Indeed, with

high probability, the system with realized arrival rate is no longer in the QED regime. In these

cases, any “fluid-optimal" scheduling policy is “good enough". We will make these intuitions

more precise in the subsequent development.

3.4.1 Stochastic-Fluid Optimization Problem

For our model, the rate of customer abandonment can be expressed as

𝜃E[𝑄Σ (∞; 𝑛1, 𝑛2, 𝑛𝐹)] .

By rate conservation, the rate of customer abandonment can also be approximated by

E
[
((Λ1 − 𝑛1𝜇)+ + (Λ2 − 𝑛2𝜇)+ − 𝑛𝐹𝜇𝐹)+

]
.

Thus, we can approximate the steady-state queue length by

1
𝜃
E

[
((Λ1 − 𝑛1𝜇)+ + (Λ2 − 𝑛2𝜇)+ − 𝑛𝐹𝜇𝐹)+

]
.
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This allows us to approximate (3.2) by the following stochastic-fluid optimization problem

min
𝑛̃1≥0,𝑛̃2≥0,𝑛̃𝐹≥0

Π̃(𝑛̃1, 𝑛̃2, 𝑛̃𝐹) :=𝑐(𝑛̃1 + 𝑛̃2) + 𝑐𝐹 𝑛̃𝐹

+ (ℎ/𝜃 + 𝑎)E
[
((Λ1 − 𝑛̃1𝜇)+ + (Λ2 − 𝑛̃2𝜇)+ − 𝑛̃𝐹𝜇𝐹)+

]
.

(3.9)

For (3.9), we relax the integer requirement on 𝑛1, 𝑛2, 𝑛𝐹 and only require them to be non-negative.

We denote its optimal solution as (𝑛̃∗1, 𝑛̃
∗
2, 𝑛̃

∗
𝐹
) and the optimal value as Π̃∗.

The optimization problem (3.9) can be viewed as a special case of the single-period multi-

product inventory management problem with demand substitution, i.e., demand Λ𝑖 is best met by

dedicated resources, but may also be met by flexible resources if there is a shortfall of dedicated

resources. This class of inventory management problems has been studied in the literature in much

more general forms [76, 77, 78, 75, 79]. Restricting it to our special setting allows us to derive

more analytical insights.

To simplify the notation, we define 𝑐𝑃 := ℎ/𝜃 + 𝑎, i.e., the performance cost. Let 𝑞𝑖 denote the

solution of the following equation

P(𝑌𝑖 > 𝑞𝑖) =
𝑐

𝑐𝑃𝜇
.

We first study the case where 𝛼1 = 𝛼2 = 𝛼. If P(𝑌1 > 𝑞1 or 𝑌2 > 𝑞2) > 𝑐𝐹
𝑐𝑃𝜇𝐹

, let 𝑟1, 𝑟2 ∈ R,

and 𝑟𝐹 > 0 denote the solution to the following system of equations:

P(𝑌1 > 𝑟1, 𝑌1 − 𝑟1 + (𝑌2 − 𝑟2)+ > 𝑟𝐹) =
𝑐

𝑐𝑃𝜇
,

P((𝑌1 − 𝑟1)+ + (𝑌2 − 𝑟2)+ > 𝑟𝐹) =
𝑐𝐹

𝑐𝑃𝜇𝐹
.

The next lemma characterizes the optimal solution to (3.9) when 𝛼1 = 𝛼2.

Lemma 5. Suppose 𝛼1 = 𝛼2 = 𝛼.

If P(𝑌1 > 𝑞1 or 𝑌2 > 𝑞2) ≤ 𝑐𝐹
𝑐𝑃𝜇𝐹

, 𝑛̃∗
𝑖
= (𝑝𝑖𝜆 + 𝑞𝑖𝜆𝛼)/𝜇 for 𝑖 = 1, 2, and 𝑛̃∗

𝐹
= 0.

If P(𝑌1 > 𝑞1 or 𝑌2 > 𝑞2) > 𝑐𝐹
𝑐𝑃𝜇𝐹

, 𝑛̃∗
𝑖
= (𝑝𝑖𝜆 + 𝑟𝑖𝜆𝛼)/𝜇 for 𝑖 = 1, 2, and 𝑛̃∗

𝐹
= 𝑟𝐹𝜆

𝛼/𝜇𝐹 .

Lemma 5 reveals that the optimal solution to (3.9) has a very neat structure. The optimal
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number of dedicated servers involves a baseline level to meet the mean demand, 𝑝𝑖𝜆/𝜇, and an

uncertainty hedging of order 𝜆𝛼. We also note that the size of the flexible pool is𝑂 (𝜆𝛼), indicating

that the flexible pool is mostly used for uncertainty hedging.

We next consider the case where 𝛼1 > 𝛼2. In this case, we do not have explicit expressions for

𝑛̃∗
𝑖
’s and 𝑛̃∗

𝐹
as in Lemma 5. However, (3.9) can still be solved numerically very efficiently, as it

is a convex optimization problem. In addition, we can derive structural insights into the optimal

staffing levels. When P(𝑌1 > 𝑞1 or 𝑌2 > 𝑞2) > 𝑐𝐹
𝑐𝑃𝜇𝐹

, define 𝑙 ∈ R, 𝑙𝐹 > 0 to be the solution to the

following system of equations:

P(𝑌2 > 𝑙 + 𝑙𝐹 or {𝑌1 > 𝑞1, 𝑌2 > 𝑙}) =
𝑐

𝑐𝑃𝜇
,

P(𝑌1 > 𝑞1 or 𝑌2 > 𝑙 + 𝑙𝐹) =
𝑐𝐹

𝑐𝑃𝜇𝐹
.

The next lemma characterizes the optimal solution to (3.9) when 𝛼1 > 𝛼2.

Lemma 6. Suppose 𝛼1 > 𝛼2.

If P(𝑌1 > 𝑞1 or 𝑌2 > 𝑞2) ≤ 𝑐𝐹
𝑐𝑃𝜇𝐹

, 𝑛̃∗
𝑖
= (𝑝𝑖𝜆 + 𝑞𝑖𝜆𝛼𝑖 )/𝜇 + 𝑜(𝜆𝛼𝑖 ) for 𝑖 = 1, 2 and 𝑛̃∗

𝐹
= 𝑜(𝜆𝛼2).

If P(𝑌1 > 𝑞1 or 𝑌2 > 𝑞2) > 𝑐𝐹
𝑐𝑃𝜇𝐹

, 𝑛̃∗1 = (𝑝1𝜆 + 𝑞1𝜆
𝛼1)/𝜇 + 𝑜(𝜆𝛼1), 𝑛̃∗2 = (𝑝2𝜆 + 𝑙𝜆𝛼2)/𝜇 + 𝑜(𝜆𝛼2)

and 𝑛̃∗
𝐹
= 𝑙𝐹𝜆

𝛼2/𝜇𝐹 + 𝑜(𝜆𝛼2).

We note from Lemma 6 that the optimal size of the dedicated pool again contains a baseline

level to meet the mean demand and an uncertainty hedging. The size of the flexible pool is𝑂 (𝜆𝛼2).

As 𝛼2 < 𝛼1, the hedging functionality of the flexible pool is targeted for the less uncertain class.

We conduct numerical sensitivity analysis. For illustration, consider 𝑝1 = 𝑝2 = 1, 𝛼1 = 𝛼2 = 𝛼,

𝑌1 = 𝑍1, and 𝑌2 = 𝜌𝑍1 +
√︁

1 − 𝜌2𝑍2, where 𝑍1 and 𝑍2 are independent standard Normal random

variables. In this case, Cor(𝑌1, 𝑌2) = 𝜌. Due to the symmetry of the two classes, we have 𝑞∗1 =

𝑞∗2 := 𝑞∗, 𝑛̃∗
𝑖
= 𝜆/𝜇 + 𝑞∗𝜆𝛼/𝜇, and 𝑛̃∗

𝐹
= 𝑞∗

𝐹
𝜆𝛼/𝜇𝐹 . Figures 3.4 and 3.5 show how 𝑞∗ and 𝑞∗

𝐹

vary with 𝜌 for different values of 𝑐𝐹 or 𝜇𝐹 . We note that as 𝜌 increases, 𝑞∗
𝐹

decreases while 𝑞∗

increases. This is because when the demand of the two classes are highly positively correlated,

there is not much room for load-balancing. We also observe in Figure 3.4 that for a fixed value of

85



𝜌, the higher the cost of flexible servers, the smaller the value of 𝑞∗
𝐹

. Similarly, the less efficient

the flexible servers, the smaller the value of 𝑞∗
𝐹

(see Figure 3.5).
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Figure 3.4: How 𝑞∗ and 𝑞∗
𝐹

vary with 𝜌 when 𝜇𝐹 = 0.9 and 𝑐𝐹 ∈ {1, 1.2, 1.4}
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Figure 3.5: How 𝑞∗ and 𝑞∗
𝐹

vary with 𝜌 when 𝑐𝐹 = 1.2 and 𝜇𝐹 ∈ {0.8, 0.9, 1}

3.4.2 Asymptotically Optimal Staffing and Scheduling Rules

In this section, we quantify the quality of the staffing rule derived from the stochastic-fluid

approximation (3.9). We also develop a corresponding scheduling rule.

Consider a sequence of systems indexed by 𝜆. The superscript 𝜆 is used to denote the quantities
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related to the 𝜆-th system. For example, 𝑛̃𝜆,∗, 𝑛̃𝜆,∗
𝐹

is the stochastic-fluid optimal solution when

Λ𝑖 = 𝑝𝑖𝜆 + 𝜆𝛼𝑖𝑌𝑖 for Class 𝑖, 𝑖 = 1, 2.

Our proposed staffing rule for the 𝜆-th system is (⌈𝑛̃𝜆,∗1 ⌉, ⌈𝑛̃𝜆,∗2 ⌉, ⌊𝑛̃𝜆,∗
𝐹
⌋). We next introduce a

scheduling policy. Given a realization of the arrival rate Λ = 𝛾 := (𝛾1, 𝛾2), let 𝛿(𝛾) ∈ [0, 1] be a

solution of

((𝛾1 −𝑛𝜆1𝜇)
+ + (𝛾2 −𝑛𝜆2𝜇)

+−𝑛𝜆𝐹𝜇𝐹)
+ = (𝛾1 −𝑛𝜆1𝜇− 𝛿𝑛

𝜆
𝐹𝜇𝐹)

+ + (𝛾2 −𝑛𝜆2𝜇− (1− 𝛿)𝑛𝜆𝐹𝜇𝐹)
+. (3.10)

Note that the solution to (3.10) may not be unique. When (3.10) has multiple optimal solutions,

we can set 𝛿(𝛾) to be any one of them. For a fixed 𝛿(𝛾), the scheduling policy 𝜈̃𝜆 allocates

⌊𝛿(𝛾)𝑛𝜆
𝐹
⌋ flexible servers to Class 1 and the remaining ⌈(1 − 𝛿(𝛾))𝑛𝜆

𝐹
⌉ flexible servers to Class

2. When assigning customers to servers, the dedicated servers are prioritized over the flexible

servers. That is, upon each realization of the arrival rates Λ = 𝛾, the policy 𝜈̃𝜆 turns the M-model

into two independent inverted-V models. For each inverted-V model, we follow the fastest-server-

first policy.

To quantify the optimality gap of the stochastic-fluid based policies, we first quantify the dif-

ference between Π𝜆 defined in (3.2) and Π̃𝜆 defined in (3.9).

Lemma 7. For 𝜃 > 0, 𝛼1 ≥ 𝛼2 > 1/2, and 𝑛𝜆
𝑖
+ 𝑛𝜆

𝐹
= Θ(𝜆), for any scheduling policy 𝜈𝜆,

Π̃𝜆 (𝑛𝜆1, 𝑛
𝜆
2, 𝑛

𝜆
𝐹) ≤ Π𝜆 (𝑛𝜆1, 𝑛

𝜆
2, 𝑛

𝜆
𝐹 ; 𝜈𝜆).

For policy 𝜈̃𝜆, we also have

Π𝜆 (𝑛𝜆1, 𝑛
𝜆
2, 𝑛

𝜆
𝐹 ; 𝜈̃𝜆) ≤ Π̃𝜆 (𝑛𝜆1, 𝑛

𝜆
2, 𝑛

𝜆
𝐹) +𝑂 (𝜆1−𝛼2).

Based on Lemma 7, we have the following optimality gap quantification.
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Theorem 8. For 𝛼1 ≥ 𝛼2 > 1/2 and 𝜃 > 0,

Π𝜆 (⌈𝑛̃𝜆,∗1 ⌉, ⌈𝑛̃𝜆,∗2 ⌉, ⌊𝑛̃𝜆,∗
𝐹
⌋; 𝜈̃𝜆) = Π𝜆,∗ +𝑂 (𝜆1−𝛼2).

Theorem 8 indicates that the staffing rule based on the stochastic-fluid approximation together

with the scheduling policy 𝑣̃𝜆 is asymptotically optimal, i.e., it achieves an 𝑜(
√
𝜆) optimality gap.

In addition, we note from Theorem 8 that the optimality gap of our proposed staffing and schedul-

ing rule is determined by the smaller 𝛼𝑖. This is expected as the size of flexible pool, 𝑛̃𝜆,∗
𝐹

, is

determined by the smaller 𝛼𝑖 (Lemma 6).

When 𝑛̃𝜆,∗
𝐹

> 0, comparing to the case where no flexible server is available, i.e., 𝑛𝜆
𝐹
≡ 0, we

have

min
𝑛̃𝜆1≥0,𝑛̃𝜆2≥0

Π̃𝜆 (𝑛̃𝜆1, 𝑛̃
𝜆
2, 0) = Π̃𝜆,∗ + Θ(𝜆𝛼2).

Then, Theorem 8 indicates that in this case, having access to flexible servers can lead to an Θ(𝜆𝛼2)

cost-saving. This is different from the case without demand uncertainty (Section 3.3), where flexi-

ble servers only lead to an Θ(
√
𝜆) cost-saving.

We conclude this section with some remarks about good scheduling policies when facing a high

level of uncertainty in demand. Our proposed scheduling policy 𝜈̃𝜆 is quite simple but is sufficient

for achieving a good performance. This is because for most realized arrival rates, the system is

no longer in the critically loaded regime. Thus, any fluid-optimal scheduling policy will achieve

a similar optimality gap. To reinforce this point, consider another scheduling policy 𝜈̃𝜆
𝑅

defined as

follows. Similar to 𝑣̃𝜆, for a realized arrival rate Λ = 𝛾, we allocate ⌊𝛿(𝛾)𝑛𝜆
𝐹
⌋ flexible servers to

Class 1 and the remaining ⌈(1 − 𝛿(𝛾))𝑛𝜆
𝐹
⌉ flexible servers to Class 2. However, unlike 𝑣̃𝜆, when

assigning customers to servers, 𝜈̃𝜆
𝑅

prioritizes the slower flexible servers over the faster dedicated

servers, i.e., the policy turns the M-model into two independent slowest-server-first inverted-V

models. Following similar lines of argument as the proof of Theorem 8, one can show that this

policy also achieves an 𝑂 (𝜆1−𝛼2) optimality gap.

Although the scheduling policy 𝜈̃𝜆 is asymptotically optimal, it can be improved further. We
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next introduce a simple improved version of 𝜈̃𝜆, which we denote as 𝜈̃𝜆
𝐼
. For a realized arrival

rate, Λ = 𝛾, we again follow the same server allocation rule as 𝜈̃𝜆, and when assigning customers

to servers, we prioritize the dedicated servers. However, under 𝜈̃𝜆
𝐼
, the ⌊𝛿(𝛾)𝑛𝜆

𝐹
⌋ flexible servers

‘assigned’ to Class 1 only give priority to Class 1 customers, and the remaining ⌈(1 − 𝛿(𝛾))𝑛𝜆
𝐹
⌉

flexible servers ‘assigned’ to Class 2 only give priority to Class 2. For example, when one of the

⌊𝛿(𝛾)𝑛𝜆
𝐹
⌋ flexible servers assigned to Class 1 becomes available and there is no Class 1 customer

waiting, the flexible server can then serve a Class 2 customer waiting in queue. It is easy to see

that 𝜈̃𝜆
𝐼

is also asymptotically optimal. Indeed, following similar coupling arguments as those in

Appendix B.2, one can show that 𝜈̃𝜆
𝐼

leads to a smaller steady-state average queue length than 𝜈̃𝜆

for any given arrival rate realization.

In Section 3.5.2, we conduct some numerical experiments demonstrating the pre-limit perfor-

mance of 𝜈̃𝜆, 𝜈̃𝜆
𝑅

, and 𝜈̃𝜆
𝐼

introduced above (see Table 3.6).

3.5 Numerical Experiments

In this section, we demonstrate the pre-limit performance of our proposed staffing and schedul-

ing rules using simulation experiments.

3.5.1 Deterministic Arrival Rates

Based on the result in Theorem 7, we set the staffing levels

(𝑛̂𝜆, 𝑛̂𝜆𝐹) = (⌈𝑅𝜆 + 𝛽∗
√
𝑅𝜆⌉, ⌊𝛽∗𝐹

√
𝑅𝜆⌋). (3.11)

In the first numerical experiment, we consider the case with no abandonment, i.e., 𝜃 = 0. We

set ℎ = 𝑐 = 1, 𝜇 = 1, 𝜇𝐹 = 0.85 , and vary the values of 𝜆 and 𝑐𝐹 . In Table 3.3, we compare

the staffing rule (3.11) to the optimal staffing levels (𝑛𝜆,∗, 𝑛𝜆,∗
𝐹
) (solved by exhaustive search using

simulation). We observe that the staffing levels suggested by the diffusion optimization problem is

almost identical to the optimal staffing levels. In most cases, the difference between the two is less
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than or equal to 1, and the largest difference is 3. Table 3.3 also reports Π𝜆,∗ and the optimality

gaps, i.e., Π𝜆 (𝑛̂𝜆, 𝑛̂𝜆
𝐹
) − Π𝜆,∗. As expected, the optimality gaps are extremely small, even for

systems as small as 𝜆 = 25.

𝑐𝐹 (𝑛̂𝜆, 𝑛̂𝜆
𝐹
) (𝑛𝜆,∗, 𝑛𝜆,∗

𝐹
) Π𝜆,∗ Gap

𝜆 = 25
1 (27,10) (26,11) 65.91 0.17

1.2 (28,7) (28,7) 67.76 0
1.4 (29,5) (30,4) 69.12 0.05

𝜆 = 100
1 (103,20) (102,22) 230.94 0.08

1.2 (106,15) (106,15) 234.79 0
1.4 (108,11) (108,10) 237.27 0.19

𝜆 = 400
1 (406,40) (405,42) 861.42 0.16

1.2 (412,30) (413,27) 868.71 0.25
1.4 (416,22) (416,21) 873.85 0.01

Table 3.3: Performance of (𝑛̂𝜆, 𝑛̂𝜆
𝐹
) for systems with different scales, 𝜆’s. (𝜇 = 1, 𝜇𝐹 = 0.85, 𝜃 =

0, ℎ = 8, 𝑐 = 1)

Table 3.4 reports the results of a similar experiment when there is abandonment. In this exam-

ple, we set ℎ = 𝑎 = 8, 𝑐 = 1, 𝜇 = 1, and 𝜇𝐹 = 𝜃 = 0.85. We observe again that the prescription

(3.11) works very well for all system sizes. Specifically, the optimality gap across all cases are less

than 0.1.

3.5.2 Random Arrival Rates

In this section, we study the pre-limit performance of the stochastic-fluid based staffing and

scheduling rules when the arrival rates are random. For simplicity of illustration, we consider a

symmetric system where 𝑝1 = 𝑝2 = 1 and 𝛼1 = 𝛼2 = 𝛼. In this case, 𝑛̃𝜆,∗1 = 𝑛̃
𝜆,∗
2 := 𝑛̃𝜆,∗. Based on

the result in Theorem 8, we set the staffing level

(𝑛̂𝜆, 𝑛̂𝜆𝐹) = (⌈𝑛̃𝜆,∗⌉, ⌊𝑛̃𝜆,∗
𝐹
⌋), (3.12)

where 𝑛̂𝜆1 = 𝑛̂𝜆2 := 𝑛̂𝜆.
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𝑐𝐹 (𝑛̂𝜆, 𝑛̂𝜆
𝐹
) (𝑛𝜆,∗, 𝑛𝜆,∗

𝐹
) Π𝜆,∗ Gap

𝜆 = 25
1 (26,11) (25,13) 65.95 0.02

1.2 (28,7) (28,7) 67.94 0
1.4 (29,5) (29,5) 69.26 0

𝜆 = 100
1 (101,23) (101,23) 231.29 0

1.2 (105,15) (105,15) 235.12 0
1.4 (107,11) (108,10) 237.72 0.03

𝜆 = 400
1 (402,46) (402,46) 862.01 0

1.2 (410,30) (410,30) 869.50 0
1.4 (414,22) (415,21) 874.60 0.05

Table 3.4: Performance of (𝑛̂𝜆, 𝑛̂𝜆
𝐹
) for systems with different scales, 𝜆’s. (𝜇 = 1, 𝜇𝐹 = 0.85 =

𝜃, 𝑐 = 1, ℎ = 𝑎 = 8)

Let 𝑐 = 1, 𝑐𝐹 = 1.2, ℎ = 𝑎 = 8, 𝜇 = 1, 𝜇𝐹 = 0.9, and 𝜃 = 0.5. In addition, let 𝑌1 =

𝑍1, 𝑌2 = 𝜌𝑍1 +
√︁

1 − 𝜌2𝑍2, where 𝑍1 and 𝑍2 are independent standard Normal random variables,

and 𝜌 = 0.5. In this case, 𝑟1 = 𝑟2 = 1.22 and 𝑟𝐹 = 0.70 in Lemma 5. Thus,

𝑛̂𝜆 = ⌈𝜆 + 1.22𝜆𝛼⌉ and 𝑛̂𝜆𝐹 = ⌊0.70𝜆𝛼/0.9⌋ .

Next, to define 𝜈̃𝜆, we need to specify 𝛿(𝛾) (the results of Section 3.4 are valid for any choice that

satisfies (3.10)). In our experiments we choose 𝛿(𝛾) to strike a balance between the capacity of

the two classes, i.e. 𝛾1 − 𝑛̂𝜆1𝜇 − 𝛿𝑛̂𝜆
𝐹
𝜇𝐹 versus 𝛾2 − 𝑛̂𝜆2𝜇 − (1 − 𝛿)𝑛̂𝜆

𝐹
𝜇𝐹 . For example, if 𝑛̂𝜆 = 34,

𝑛̂𝜆
𝐹
= 5 and 𝛾 = (33, 35), 𝜈̃𝜆 allocates 1 flexible server to Class 1 and 4 to Class 2.

Table 3.5 reports the performance of our proposed staffing and scheduling rules for different

values of 𝛼 and 𝜆. The optimality gap in Theorem 8 cannot be computed numerically, because the

optimal scheduling policy for (3.2) is unknown. However, because by Lemma 7, the optimality

gap satisfies

Π𝜆 (𝑛̂𝜆, 𝑛̂𝜆𝐹 ; 𝜈̃𝜆) − Π𝜆,∗ ≤ Π𝜆 (𝑛̂𝜆, 𝑛̂𝜆𝐹 ; 𝜈̃𝜆) − Π̃𝜆,∗,

where Π̃𝜆,∗ is the optimal value of (3.9), we use Π𝜆 (𝑛̂𝜆, 𝑛̂𝜆
𝐹

; 𝜈̃𝜆) − Π̃𝜆,∗ as an approximation of the

optimality gap. Note that this approximation is larger than the actual optimality gap. We refer to it
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as “AG" in Table 3.5.

We observe that for a fixed value of 𝜆, the gap decreases as 𝛼 increases. For example, when

𝜆 = 25, as 𝛼 increases from 0.6 to 1, the gap decreases from 9.6 to 4.4. This agrees with the results

in Theorem 8, i.e., the optimality gap is𝑂 (𝜆1−𝛼), which decreases as 𝛼 increases. For a fixed value

of 𝛼, the ratio between the gap and Π̃𝜆,∗ decreases as 𝜆 increase. For example, when 𝛼 = 0.8, as 𝜆

increases from 25 to 100, the gap decreases from 5.5% of Π̃𝜆,∗ to 2% of Π̃𝜆,∗.

𝜆 = 25 𝜆 = 50 𝜆 = 100 𝜆 = 200
𝛼 Π̃𝜆,∗ AG Π̃𝜆,∗ AG Π̃𝜆,∗ AG Π̃𝜆,∗ AG

0.6 78.4 9.6 143.0 12.2 265.2 14.7 498.9 18.6
0.8 104.1 5.7 194.1 6.7 363.9 7.2 685.3 7.9
1 152.9 4.4 305.8 4.6 611.7 4.5 1223.3 4.2

Table 3.5: Performance of (𝑛̂𝜆, 𝑛̂𝜆
𝐹

; 𝜈̃𝜆) for systems with different values of 𝜆 and 𝛼. ‘AG’ stands
for approximate gap. (𝑐 = 1, 𝑐𝐹 = 1.2, ℎ = 𝑎 = 8, 𝜇 = 1, 𝜇𝐹 = 0.9, 𝜃 = 0.5, 𝜌 = 0.5)

We next compare the pre-limit performance of three asymptotically optimal scheduling poli-

cies: 𝜈̃𝜆, 𝜈̃𝜆
𝑅

, and 𝜈̃𝜆
𝐼

introduced in Section 3.4.2. We observe in Table 3.6 that

Π𝜆 (𝑛̂𝜆, 𝑛̂𝜆𝐹 ; 𝜈̃𝜆𝐼 ) < Π𝜆 (𝑛̂𝜆, 𝑛̂𝜆𝐹 ; 𝜈̃𝜆) < Π𝜆 (𝑛̂𝜆, 𝑛̂𝜆𝐹 ; 𝜈̃𝜆𝑅).

The performance gaps between 𝜈̃𝜆
𝑅

and 𝜈̃𝜆
𝐼

are small in all cases. This demonstrates that using as

crude a policy as 𝜈̃𝜆
𝑅

still leads to good performances.

𝜆 = 25 𝜆 = 50
𝛼 𝜈̃𝜆

𝐼
𝜈̃𝜆 𝜈̃𝜆

𝑅
𝜈̃𝜆
𝐼

𝜈̃𝜆 𝜈̃𝜆
𝑅

0.6 86.3 88.0 88.3 153.0 155.2 155.5
0.8 108.3 109.8 110.0 199.5 200.8 201.0
1 156.2 157.3 157.5 309.6 310.4 310.6

𝜆 = 100 𝜆 = 200
𝛼 𝜈̃𝜆

𝐼
𝜈̃𝜆 𝜈̃𝜆

𝑅
𝜈̃𝜆
𝐼

𝜈̃𝜆 𝜈̃𝜆
𝑅

0.6 276.8 279.9 280.3 513.6 517.5 518.1
0.8 369.2 371.1 371.4 691.2 693.2 693.5
1 614.3 616.2 616.4 1226.6 1227.5 1227.7

Table 3.6: The cost under other scheduling policies 𝜈 ∈ {𝜈̃𝜆
𝐼
, 𝜈̃𝜆, 𝜈̃𝜆

𝑅
} for different values of 𝜆 and

𝛼. (𝑐 = 1, 𝑐𝐹 = 1.2, ℎ = 𝑎 = 8, 𝜇 = 1, 𝜇𝐹 = 0.9, 𝜃 = 0.5, 𝜌 = 0.5)
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3.6 Concluding Remarks

In this work, we study the joint optimal staffing and scheduling problem for a two-class queue

with both dedicated and flexible servers. We quantify how the cost of flexibility affects the optimal

size of the flexible pool. We conclude the chapter with some remarks for future research.

Non-preemption For the deterministic arrival rate setting, our scheduling policy 𝜈𝜆,∗ is preemp-

tive. For example, we allow a customer in service with the flexible pool to be transferred to the

dedicated pool if a dedicated server becomes available. If we restrict ourselves to non-preemptive

policies, one may be tempted to define a non-preemptive version of the policy, and prove that it per-

forms asymptotically as well as the preemptive version in the many-server heavy-traffic regime.

Unfortunately, this asymptotic result is unlikely to hold in our case. This is because the size of

the flexible pool, 𝑂 (
√
𝜆), is not large enough to cause instantaneous changes in 𝑋𝜆 in the limit,

which indicates that the non-preemptive version of the policy may not be able to closely ‘track’

the preemptive policy (see [4] for a similar argument).

For the random arrival rate setting, our scheduling policy 𝜈̃𝜆 is preemptive, but this is not

needed to achieve the optimality gap in Theorem 8. Indeed, a simple coupling argument can show

that a non-preemptive fastest-server-first scheduling policy outperforms the preemptive slowest-

server-first scheduling policy 𝜈̃𝜆
𝑅

, and the latter is still asymptotically optimal.

Multiple customer classes When there are 𝑘 customer classes, servers can potentially have 2𝑘−1

different skill sets, i.e., each of the non-empty subsets of {1, · · · , 𝑘}. In this case, we need to

specify the optimal size of each potential server pool as well as the corresponding scheduling

policy. As 𝑘 increases, the number of possible system configurations can become very large,

posing substantial analytical challenges.

When facing demand uncertainty, we can still approximate the optimal staffing problem with

a multi-product inventory management problem with demand substitution. [79] study such in-

ventory networks when the ‘staffing’ costs are affine (or convex) in the degree of flexibility. Let
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𝑆1, 𝑆2 ⊆ {1, · · · , 𝑘}, and let 𝑛𝑆𝑖 denote the number of servers with skill set 𝑆𝑖. We also write |𝑆𝑖 |

for the cardinality of set 𝑆𝑖. [79] finds that if it is optimal to set 𝑛𝑆1 , 𝑛𝑆2 > 0 with 𝑆1 ⊊ 𝑆2, then

|𝑆1 | = |𝑆2 | − 1. This implies that if the optimal sizes of the dedicated pools are all positive, i.e.,

𝑛{𝑖} > 0 for 𝑖 = 1, 2, . . . , 𝑘 , then the only other server pools we need to consider are those with skill

set {𝑖, 𝑗}, 𝑖 ≠ 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑘 . This can help reduce the number of possible system configurations

that one needs to consider.
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Appendix A: Additions to and Proofs of Results in Chapter 2

A.1 Full Characterization of Optimal Policies for Extended N-Models

In this section, we provide the full characterization of the optimal scheduling polices for the

two extended N-models discussed in Section 2.5. We make the following assumptions about the

arrival rate functions.

Assumption 5. The arrival rate functions 𝜆𝑖 (𝑡), 𝑖 = 1, · · · , 𝐼 satisfy:

1. 𝜆𝑖 (𝑡) ≥ 𝑠𝑖𝜇𝑖𝑖 when 𝑡 < 𝜅𝑖 and 𝜆𝑖 (𝑡) < 𝑠𝑖𝜇𝑖𝑖 when 𝑡 ≥ 𝜅𝑖.

2. (𝜆𝑖 (𝑡))0≤𝑡≤𝜅𝑖 is piecewise monotone with a finite number of pieces.

3.
∫ ∞
𝜅𝑖

(𝑠𝑖𝜇𝑖𝑖 − 𝜆𝑖 (𝑡))𝑑𝑡 = ∞.

4. Given 𝑋 (0) = 𝑥, for any 0 ≤ 𝑡 ≤ 𝜅,𝑊 (𝑥, 𝑡) > 0, where

𝑊 (𝑥, 𝑡) = min
𝑧

𝐼∑︁
𝑖=1

𝑞𝑖 (𝑡)

s.t. ¤𝑞𝑖 (𝑠) = 𝜆𝑖 (𝑠) −
𝐼∑︁
𝑗=1

𝜇𝑖 𝑗 𝑧𝑖 𝑗 (𝑠), 𝑞𝑖 (0) = 𝑥𝑖, 𝑖 = 1, · · · , 𝐼

𝐼∑︁
𝑖=1

𝑧𝑖 𝑗 (𝑠) ≤ 𝑠 𝑗 , 𝑗 = 1, · · · , 𝐼

𝑞𝑖 (𝑠) ≥ 0, 𝑖 = 1, · · · , 𝐼

𝑧𝑖 𝑗 (𝑠) ≥ 0, 𝑖, 𝑗 = 1, · · · , 𝐼 .
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A.1.1 Many-Help-One Extended N-Model

In this section, we consider a 3-by-3 model in which pools 2 and 3 can help class 1, while pool

1 can serve only class 1 (see Figure 2.5(c) for a pictorial illustration). We refer to this model as the

exN1-model.

Following the development of the N-model, we first compare the ℎ𝜇 index. Without loss of

generality, we consider three possible cases:

I. ℎ1𝜇12 > ℎ2𝜇22 and ℎ1𝜇13 > ℎ3𝜇33. In this case, pool 𝑗 , 𝑗 = 2, 3 gives priority to class 1

when class 1 has a large enough backlog compared to class 𝑗 .

II. ℎ1𝜇12 < ℎ2𝜇22 and ℎ1𝜇13 > ℎ3𝜇33. In this case, pool 3 gives priority to class 1 when class 1

has a large enough backlog compared to class 3. Pool 2 provides partial help to class 1 after

the class 2 queue empties and when class 1 has a large enough backlog.

III. ℎ1𝜇12 < ℎ2𝜇22 and ℎ1𝜇13 < ℎ3𝜇33. In this case, pool 𝑗 , 𝑗 = 2, 3, provides partial help to

class 1 after class 𝑗 queue empties and when class 1 has a large enough backlog.

The key difference between the exN1-model and the N-model is that when pool 𝑗 , 𝑗 = 2, 3 is

determining how long it will help class 1, it also needs to take into account the help class 1 can

receive from pool 𝑘 , 𝑘 = 2, 3, 𝑘 ≠ 𝑗 . To make this notion more precise, we introduce the following

notation. Define 𝐺̄ 𝑡
exN1,1, 𝑗 (𝑞(𝑡)) as the time it takes pool 1 to empty queue 1 while taking into

account the help it can receive from pool 𝑗 . We first consider the second server pool – i.e., 𝑗 = 2.

For Case I, let 𝐹 𝑡2(𝑞(𝑡)) denote the full helping period for pool 2 to class 1:

𝐹 𝑡2(𝑞) = inf
{
𝑢 ≥ 0 : ℎ1𝜇12𝐺

𝑡+𝑢
1 (𝑞1(𝑡 + 𝑢)) ≤ ℎ2𝜇22𝐺

𝑡+𝑢
2 (𝑞2(𝑡 + 𝑢)) + 𝜙12

}
,

where, for 𝑞: 𝑞(𝑡) = 𝑞; for 𝑠 ≥ 𝑡, pool 1 serves class 1 only; pool 3 serves class 3 only; and pool 2

prioritizes class 1. Then,

𝐺̄ 𝑡
exN1,1,2(𝑞) = 𝐹

𝑡
2(𝑞) + 𝐺

𝑡+𝐹𝑡
2 (𝑞)

1 (𝑞1(𝑡 + 𝐹 𝑡2(𝑞))).
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In Cases II and III, let 𝑃𝑡2(𝑞(𝑡)) denote the partial help period for pool 2 to class 1:

𝑃𝑡2(𝑞) = inf
{
𝑢 ≥ 0 : ℎ1𝜇12𝐺

𝑡+𝐺𝑡
2 (𝑞2)+𝑢

1 (𝑞1(𝑡 + 𝐺 𝑡
2(𝑞2) + 𝑢)) ≤ 𝜙12

}
,

where, for 𝑞 with 𝑞(𝑡) = 𝑞, pool 1 serves class 1 only and pool 3 serves class 3 only for all times

𝑠 ≥ 𝑡, while pool 2 serves queue 2 only for times between 𝑡 and 𝑡 + 𝐺 𝑡
2(𝑞2), and provides partial

help to class 1 for times 𝑠 ≥ 𝑡 + 𝐺 𝑡
2(𝑞2). Then,

𝐺̄ 𝑡
exN1,1,2(𝑞) = 𝐺

𝑡
2(𝑞2) + 𝑃𝑡2(𝑞) + 𝐺

𝑡+𝐺𝑡
2 (𝑞)+𝑃

𝑡
2 (𝑞)

1 (𝑞1(𝑡 + 𝐺 𝑡
2(𝑞) + 𝑃

𝑡
2(𝑞))).

Note that 𝐺
𝑡+𝐺𝑡

2 (𝑞)+𝑃
𝑡
2 (𝑞)

1 (𝑞1(𝑡 + 𝐺 𝑡
2(𝑞) + 𝑃

𝑡
2(𝑞))) =

𝜙12
ℎ1𝜇12

if 𝑃𝑡2(𝑞) > 0.

We next consider the third server pool – i.e., 𝑗 = 3. In Cases I and II, let 𝐹 𝑡3(𝑞(𝑡)) denote the

full helping period for pool 3 to class 1:

𝐹 𝑡3(𝑞) = inf
{
𝑢 ≥ 0 : ℎ1𝜇13𝐺

𝑡+𝑢
1 (𝑞1(𝑡 + 𝑢)) ≤ ℎ3𝜇33𝐺

𝑡+𝑢
3 (𝑞3(𝑡 + 𝑢)) + 𝜙13

}
,

where, for 𝑞, 𝑞(𝑡) = 𝑞, for 𝑠 ≥ 𝑡, pool 1 serves class 1 only; pool 2 serves class 2 only; and pool 3

prioritizes class 1. Then,

𝐺̄ 𝑡
exN1,1,3(𝑞) = 𝐹

𝑡
3(𝑞) + 𝐺

𝑡+𝐹𝑡
3 (𝑞)

1
(
𝑞1

(
𝑡 + 𝐹 𝑡3(𝑞)

) )
.

In Case III, let 𝑃𝑡3(𝑞(𝑡)) denote the partial helping period for pool 3 to class 1:

𝑃𝑡3(𝑞) = inf
{
𝑢 ≥ 0 : ℎ1𝜇13𝐺

𝑡+𝐺𝑡
3 (𝑞3)+𝑢

1 (𝑞1(𝑡 + 𝐺 𝑡
3(𝑞3) + 𝑢)) ≤ 𝜙13

}
,

where, for 𝑞: 𝑞(𝑡) = 𝑞; for 𝑠 ≥ 𝑡, pool 1 serves class 1 only, and pool 2 serves class 2 only; between

𝑡 and 𝑡 + 𝐺 𝑡
3(𝑞3), pool 3 serves class 3 only; for 𝑠 ≥ 𝑡 + 𝐺 𝑡

3(𝑞3), pool 3 provides partial help to
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class 1. Then,

𝐺̄ 𝑡
exN1,1,3(𝑞) = 𝐺

𝑡
3(𝑞3) + 𝑃𝑡3(𝑞) + 𝐺

𝑡+𝐺𝑡
3 (𝑞)+𝑃

𝑡
3 (𝑞)

1 (𝑞1(𝑡 + 𝐺 𝑡
3(𝑞) + 𝑃

𝑡
3(𝑞))).

Similar to before, 𝐺
𝑡+𝐺𝑡

3 (𝑞)+𝑃
𝑡
3 (𝑞)

1 (𝑞1(𝑡 + 𝐺 𝑡
3(𝑞) + 𝑃

𝑡
3(𝑞))) =

𝜙31
ℎ3𝜇31

if 𝑃𝑡3(𝑞) > 0.

Note that when pool 𝑗 prioritizes class 1, it is possible that 𝑞1(𝑡) = 0, in which case, it may

no longer be feasible to have 𝑧1 𝑗 (𝑡) = 𝑠 𝑗 . To simplify the analysis, we will make the following

assumption, which ensures that 𝑞1(𝑡) > 0 when pool 2 or 3 prioritizes class 1.

Assumption 6. For 𝑡 < 𝜅1, 𝜆1(𝑡) > 𝑠1𝜇11 + 𝑠2𝜇12 + 𝑠3𝜇13.

The following theorem characterizes the optimal scheduling policy for the exN1-model.

Theorem 9. For the exN1-model, under Assumptions 5 and 6, the optimal control for (2.10) takes

the following form. Pool 1 serves as many class 1 customers as possible.

I. When ℎ1𝜇12 > ℎ2𝜇22 and ℎ1𝜇13 > ℎ3𝜇33, for pool 2,

iia. If
ℎ2𝜇22𝐺

𝑡
2 (𝑞2 (𝑡))+𝜙12
ℎ1𝜇12

≥ ℎ3𝜇33𝐺
𝑡
3 (𝑞3 (𝑡))+𝜙13
ℎ1𝜇13

and

ℎ1𝜇12𝐺̄
𝑡
exN1,1,3(𝑞(𝑡)) > ℎ2𝜇22𝐺

𝑡
2(𝑞2(𝑡)) + 𝜙12, (A.1)

pool 2 gives priority to class 1.

iib. Otherwise, if
ℎ2𝜇22𝐺

𝑡
2 (𝑞2 (𝑡))+𝜙12
ℎ1𝜇12

<
ℎ3𝜇33𝐺

𝑡
3 (𝑞3 (𝑡))+𝜙13
ℎ1𝜇13

and

ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) > ℎ2𝜇22𝐺

𝑡
2(𝑞2(𝑡)) + 𝜙12, (A.2)

pool 2 gives priority to class 1.

iic. Otherwise, pool 2 serves class 2 only.

For pool 3,
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iiia. If
ℎ3𝜇33𝐺

𝑡
3 (𝑞3 (𝑡)+𝜙13
ℎ1𝜇13

≥ ℎ2𝜇22𝐺
𝑡
2 (𝑞2 (𝑡)+𝜙12
ℎ1𝜇12

and

ℎ1𝜇13𝐺̄
𝑡
exN1,1,2(𝑞(𝑡)) > ℎ3𝜇33𝐺

𝑡
3(𝑞3(𝑡)) + 𝜙13, (A.3)

pool 3 gives priority to class 1.

iiib. Otherwise, if
ℎ3𝜇33𝐺

𝑡
3 (𝑞3 (𝑡)+𝜙13
ℎ1𝜇13

<
ℎ2𝜇22𝐺

𝑡
2 (𝑞2 (𝑡)+𝜙12
ℎ1𝜇12

and

ℎ1𝜇13𝐺
𝑡
1(𝑞1(𝑡)) > ℎ3𝜇33𝐺

𝑡
3(𝑞3(𝑡)) + 𝜙13, (A.4)

pool 3 gives priority to class 1.

iiic. Otherwise, pool 3 serves class 3 only.

II. When ℎ1𝜇12 < ℎ2𝜇22 and ℎ1𝜇13 > ℎ3𝜇33, pool 2 prioritizes class 2.

iia. If

𝐺 𝑡
2(𝑞2(𝑡)) = 0 and ℎ1𝜇12𝐺̄

𝑡
exN1,1,3(𝑞(𝑡)) > 𝜙12, (A.5)

pool 2 provides partial help to class 1.

iib. Otherwise, pool 2 serves class 2 only.

For pool 3,

iiia. If

ℎ1𝜇13𝐺̄
𝑡
exN1,1,2(𝑞(𝑡)) > ℎ3𝜇33𝐺

𝑡
3(𝑞3(𝑡)) + 𝜙13, (A.6)

pool 3 prioritizes class 1.

iiib. Otherwise, pool 3 serves class 3 only.

III. When ℎ1𝜇12 < ℎ2𝜇22 and ℎ1𝜇13 < ℎ3𝜇33, both pool 2 and pool 3 prioritize their primary

classes, respectively. For pool 2,
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iia. If

𝐺 𝑡
2(𝑞2(𝑡)) = 0, and ℎ1𝜇12𝐺̄

𝑡
exN1,1,3(𝑞(𝑡)) > 𝜙12, (A.7)

pool 2 provides partial help to class 1.

iib. Otherwise, pool 2 serves class 2 only.

For pool 3,

iiia. If

𝐺 𝑡
3(𝑞3(𝑡)) = 0 and ℎ1𝜇13𝐺̄

𝑡
exN1,1,2(𝑞(𝑡)) > 𝜙13, (A.8)

pool 3 provides partial help to class 1.

iiic. Otherwise, pool 3 serves class 3 only.

To provide more intuition behind Theorem 9, let us consider the case where the conditions of

I.iia. hold. The inequalities of I. involve the ℎ𝜇 index, under which we show that pool 𝑗 , 𝑗 = 2, 3,

should provide full help to class 1 if help is initiated. This is consistent with the first stage of

the optimal policy for the N-model. The first inequality in iia. says that the “tolerance” level of

overflow to pool 3 is higher than that of pool 2, noting that the index mimics condition (2.6) if we

consider pool 1 and pool 2 (or pool 1 and pool 3) as a sub-system. This second-stage condition

indicates that pool 3 will help class 1 longer than pool 2.

It is worth repeating that the key difference between the exN1-model and the N-model lies in

the second stage; we need to compare only the ℎ𝜇 index in the first stage, even when there are

more than two classes. Under iia., when pool 2 determines how long it will help class 1, it also

needs to take into account the help that class 1 can receive from pool 3, as formalized by (A.1).

Comparing the exN1-model to the N-model, we note that 𝐺̄ 𝑡
exN1,1,3(𝑞(𝑡)) ≤ 𝐺 𝑡

1(𝑞1(𝑡)). This

implies that in the exN1-model, because pool 3 can also help class 1, pool 2 may provide less

help to class 1 than in the N-model. Similar observations hold for the other cases, as well. To

demonstrate this, Figure A.1 compares the optimal trajectory of an exN1-model (a) with the opti-

mal trajectory of a similar N-model (b). In particular, the two models share the same parameters
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for the first two classes. The only difference is that the exN1-model has an extra class, class 3, and

an extra server pool, pool 3 (see the caption of Figure A.1 for more details).

For the exN1-model in our example, ℎ1𝜇12 > ℎ2𝜇22 and ℎ1𝜇13 > ℎ3𝜇33 – i.e., both pool 2 and

pool 3 will give strict priority to class 1 if the class 1 queue is large enough. Indeed, we observe

that both pools provide full help to class 1 at the beginning. Pool 2 stops helping class 1 at 𝑡 = 3.5

in the exN1-model. In contrast, pool 2 stops helping class 1 at 𝑡 = 6.1 in the N-model. This is

because in the exN1-model, class 1 can also get help from pool 3, and when pool 2 decides how

much to help class 1, it also takes the extra help from pool 3 into account. Lastly, we note that

with the extra help from pool 3, the exN1-model is able to empty the class 1 queue faster than the

N-model can.
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Figure A.1: Optimal trajectory of the exN1-model versus the N-model. (𝑠1 = 𝑠2 = 2, 𝜆1 = 𝜆2 =

0.3, 𝜇11 = 𝜇22 = 0.25, 𝜇12 = 0.2, 𝜙12 = 1, ℎ1 = 1.5, ℎ2 = 1, 𝑞1(0) = 10, 𝑞2(0) = 5. For the
exN1-model, 𝑠3 = 2, 𝜆3 = 0.3, 𝜇33 = 0.25, 𝜇13 = 0.18, 𝜙13 = 1, ℎ3 = 1, and 𝑞3(0) = 3.)

A.1.2 One-Helps-Many Extended N-Model

In this section, we consider a 3 × 3 model in which pool 1 can serve classes 1, 2 and 3, while

pools 2 and 3 can serve only their corresponding primary class (see Figure 2.5(d) for a pictorial

illustration). We refer to this model as the exN2-model.

Following the development of the N-model, we first compare the ℎ𝜇 index. Without loss of

generality, we consider three possible cases:
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I. ℎ2𝜇21 > ℎ3𝜇31 > ℎ1𝜇11. In this case, pool 1 prioritizes classes 2 and 3 when there are large

enough backlogs in these two classes compared to class 1. When deciding between classes

2 and 3, class 2 enjoys higher priority over class 3.

II. ℎ2𝜇21 > ℎ1𝜇11 > ℎ3𝜇31. In this case, pool 1 prioritizes class 2 when there is a large enough

backlog in class 2. Pool 1 can provide partial help to class 3 after the class 1 queue empties

and when class 3 has a large enough backlog.

III. ℎ1𝜇11 > ℎ2𝜇21 > ℎ3𝜇31. In this case, pool 1 provides only partial help to classes 2 and 3

after the class 1 queue empties and when there are large enough backlogs in the two classes.

When deciding between classes 2 and 3, class 2 enjoys higher priority over class 3.

The key difference between the exN2-model and the N-model is that when pool 1 is determin-

ing how long it will help class 𝑖, 𝑖 = 2, 3, it also needs to take into account the help it can provide

to class 𝑘 , 𝑘 = 2, 3, 𝑘 ≠ 𝑖. To make this notion more precise, we introduce the following notation.

In Case I, let 𝐹 𝑡 (𝑞(𝑡)) denote the length of the full helping period for pool 1 to class 3:

𝐹 𝑡 (𝑞) = inf
{
𝑢 ≥ 0 : ℎ3𝜇31𝐺

𝑡+𝑢
3 (𝑞3(𝑡 + 𝑢)) ≤ ℎ1𝜇11𝐺

𝑡+𝑢
1 (𝑞1(𝑡 + 𝑢)) + 𝜙31

}
,

where for 𝑞: 𝑞(𝑡) = 𝑞; for 𝑠 ≥ 𝑡, pool 1 prioritizes class 3. Let 𝐺̄ 𝑡
exN2,1(𝑞(𝑡)) denote the time it

takes to empty queue 1 given that it may provide some help to class 3:

𝐺̄ 𝑡
exN2,1(𝑞) = 𝐹

𝑡 (𝑞(𝑡)) + 𝐺 𝑡+𝐹𝑡 (𝑞)
1 (𝑞1(𝑡 + 𝐹 𝑡 (𝑞))).

In Cases II and III, let 𝑃𝑡 (𝑞(𝑡)) denote the length of pool 1’s partial helping period to class 3:

𝑃𝑡 (𝑞) = inf
{
𝑢 ≥ 0 : ℎ3𝜇31𝐺

𝑡+𝐺𝑡
1 (𝑞1)+𝑢

3 (𝑞3(𝑡 + 𝐺 𝑡
1(𝑞1) + 𝑢)) ≤ 𝜙31

}
,

where, for 𝑞: 𝑞(𝑡) = 𝑞, between 𝑡 and 𝐺 𝑡
1(𝑞1), pool 1 serves class 1 only; and for 𝑠 > 𝑡 + 𝐺 𝑡

1(𝑞1),

pool 1 provides partial help to class 3.
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Note that when pool 1 gives priority to class 𝑖, it is possible that 𝑞2(𝑡) = 0, in which case, it

may no longer be feasible to have 𝑧21(𝑡) = 𝑠1. To simplify the analysis, we will make the following

assumption, which ensures that 𝑞𝑖 (𝑡) > 0 when pool 1 gives priority to class 𝑖, 𝑖 = 2, 3.

Assumption 7. For 𝑖 = 1, 2 and 𝑡 < 𝜅𝑖, 𝜆𝑖 (𝑡) > 𝑠1𝜇𝑖1 + 𝑠𝑖𝜇𝑖𝑖.

The following theorem characterizes the optimal scheduling policy for the exN2-model.

Theorem 10. For the exN2-model, under Assumptions 5 and 7, the optimal control for (2.10) takes

the following form. Pools 2 and 3 serve their primary classes as much as possible.

I. When ℎ2𝜇21 > ℎ3𝜇31 > ℎ1𝜇11,

a. If

ℎ2𝜇21𝐺
𝑡
2(𝑞2(𝑡)) > ℎ1𝜇11𝐺̄

𝑡
exN2,1(𝑞(𝑡)) + (ℎ3𝜇31 − ℎ1𝜇11)𝐹 𝑡 (𝑞(𝑡)) + 𝜙21, (A.9)

pool 1 gives priority to class 2.

b. Otherwise, if

ℎ3𝜇31𝐺
𝑡
3(𝑞3(𝑡)) > ℎ1𝜇11𝐺

𝑡
1(𝑞1(𝑡)) + 𝜙31, (A.10)

pool 1 gives priority to class 3.

c. Otherwise, pool 1 serves class 1 only.

II. When ℎ2𝜇21 > ℎ1𝜇11 > ℎ3𝜇31,

a. If

ℎ2𝜇21𝐺
𝑡
2(𝑞2(𝑡)) > ℎ1𝜇11𝐺

𝑡
1(𝑞1(𝑡)) + ℎ3𝜇31𝑃

𝑡 (𝑞(𝑡)) + 𝜙21, (A.11)

pool 1 gives priority to class 2.

b. Otherwise, if 𝐺 𝑡
1(𝑞1(𝑡)) = 0 and ℎ3𝜇31𝐺

𝑡
3(𝑞3(𝑡)) > 𝜙31, pool 1 provides partial help

to class 3.
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c. Otherwise, pool 1 serves class 1 only.

III. When ℎ1𝜇11 > ℎ2𝜇21 > ℎ3𝜇31,

a. If

𝐺 𝑡
1(𝑞1(𝑡)) = 0 and ℎ2𝜇21𝐺

𝑡
2(𝑞2(𝑡)) > ℎ3𝜇31𝑃

𝑡 (𝑞(𝑡)) + 𝜙21, (A.12)

pool 1 provides partial help to class 2.

b. Otherwise, if 𝐺 𝑡
1(𝑞1(𝑡)) = 0 and ℎ3𝜇31𝐺

𝑡
3(𝑞3(𝑡)) > 𝜙31, pool 1 provides partial help

to class 3.

c. Otherwise, pool 1 serves class 1 only.

To provide more intuition behind Theorem 10, let us consider Case I. In the first stage, pool

1 prioritizes classes 2 and 3 when there are large enough backlogs in these two classes compared

to class 1. When deciding between classes 2 and 3, class 2 enjoys a higher priority than class 3.

The key difference between the exN2-model and the N-model again lies in the second stage. In

particular, when pool 1 is determining how long it will help class 2, it also needs to consider the

help it can provide to class 3, as formalized by (A.9).

Comparing the exN2-model to the N-model, we note that 𝐺̄ 𝑡
exN2,1(𝑞(𝑡)) ≥ 𝐺

𝑡
1(𝑞1(𝑡)), and

ℎ1𝜇11𝐺̄
𝑡
exN2,1(𝑞(𝑡)) + (ℎ3𝜇31 − ℎ1𝜇11)𝐹 𝑡 (𝑞(𝑡)) + 𝜙21 ≥ ℎ1𝜇11𝐺

𝑡
1(𝑞1(𝑡)) + 𝜙21.

Because pool 1 can also help class 3 in the exN2-model, it provides less help to class 2 than in an

otherwise similar N-model. See also Figure A.2 in Appendix A.2 for a numerical illustration.

A.2 Additional Numerical Experiments

A.2.1 Fluid trajectory for exN2-model

Figure A.2 compares the optimal trajectory of an exN2-model (a) with the optimal trajectory

of a similar N-model (b). For the N-model, we assume that pool 1 can serve both classes 1 and 2,
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while pool 2 can serve only class 2. The two systems share the same parameters for the first two

classes (see the caption of Figure A.2 for more details).

For the exN2-model in our example, we have ℎ2𝜇21 > ℎ3𝜇31 > ℎ1𝜇11. Thus, we observe that

pool 1 first provides full help to class 2 and then switches priority to help class 3. Pool 1 stops

helping class 2 at 𝑡 = 4.6. In contrast, in the N-model, pool 1 stops helping class 2 at 𝑡 = 6.1. This

is because in the exN2-model, pool 1 can also help class 3 and, thus, may provide less help to class

2 in order to help class 3. In the exN2-model, pool 1 provides full help to class 3 from 𝑡 = 4.6 to

𝑡 = 7.6. Lastly, we note that because class 2 gets more help from pool 1 in the N-model, its queue

empties faster in the N-model than in the exN2-model.
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Figure A.2: Optimal trajectory of the exN2-model versus the N-model. (𝑠1 = 𝑠2 = 2, 𝜆1 = 𝜆2 =

0.3, 𝜇11 = 𝜇22 = 0.25, 𝜇21 = 0.2, 𝜙21 = 1, ℎ1 = 1, ℎ2 = 1.5, 𝑞1(0) = 5, 𝑞2(0) = 10. For the
exN2-model, 𝑠3 = 2, 𝜆3 = 0.3, 𝜇33 = 0.25, 𝜇31 = 0.18 ,𝜙13 = 1, ℎ3 = 1, and 𝑞3(0) = 10.)

A.2.2 Performance of different policies in the stochastic systems

Tuned versus untuned policies for the N-model

Table A.1 shows the cost comparison between the tuned and untuned policies for the N-model.

We set the tuning parameter 𝜃 = 0.8 in the tuned policy, where 𝜃 is used for 𝜃𝐺 𝑡
𝑘 (𝑖∗) (𝑞𝑘 (𝑖∗) (𝑡)) on

the left-hand side of (2.12) and (2.13) in the heuristic policy. Note that the untuned policy (with

𝜃 = 1) is the fluid optimal control policy for the N-model. From this table, we observe that the

tuned policy can achieve a slightly better performance than the untuned policy can in the stochastic
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system. The relative cost difference between the tuned and untuned policies is 1.1% to 2.1%.

Different policies for the X-model

The X-model setting is the same as the baseline setting specified in Section 2.6.1 for the N-

model, except that pool 1 can serve class 2 customers if necessary. Table A.2 reports the cost

comparison among different policies. The “Look-ahead (opt)” policy corresponds to the optimal

fluid control derived in Section 2.5.1, while the “Look-ahead (heu)” policy is the heuristic policy

– i.e., (2.12) and (2.13) – with tuning parameter 𝜃 = 0.8. In all cases tested, our heuristic policy

achieves performance that is comparable to (slightly better than) that of the fluid-optimal policy.

Table A.3 shows the cost comparison between the tuned and untuned policies for the X-model.

In the table, the “N-policy Untuned” and “X-policy Untuned” stand for the directly translated

optimal fluid control policies derived for the N- and X-models, and for the “N-policy Tuned”, we

use the tuning parameter 𝜃 = 0.8. From this table, we observe that the relative cost difference

between the tuned and untuned policies is 0.6% to 2.1%.

Tuned versus untuned heuristic policies for the 5-by-5 networks

Table A.4 shows the cost comparison between the tuned and the untuned policies for the 5×5

model. We set the tuning parameter 𝜃 = 0.8 in the tuned policy. We observe that the relative cost

difference between the tuned and untuned policies is 1.2% to 4.1%.

A.3 Proof of Lemma 1

Proof. Proof. Take 𝐺 𝑡
𝑖
(𝑞𝑖 (𝑡)) as a function of 𝑡. Note that when class 𝑖 (𝑖 = 1, 2) is only served

by pool 𝑖 and 𝐺 𝑡
𝑖
(𝑞𝑖 (𝑡)) > 0, 𝐺 𝑡

𝑖
(𝑞𝑖 (𝑡)) decreases at rate 1 until it hits zero. When pool 2 provides

help to class 1, 𝐺 𝑡
1(𝑞1(𝑡)) decreases at rate at least 1, while 𝐺 𝑡

2(𝑞2(𝑡)) decreases at rate at most 1.

Since ℎ1𝜇12 > ℎ2𝜇22, 𝜓(𝑡) keeps decreasing in 𝑡 until 𝐺 𝑡
1(𝑞1(𝑡)) hits zero. After 𝐺 𝑡

1(𝑞1(𝑡)) hits

zero, say at time 𝜏1, it stays at zero for 𝑡 ≥ 𝜏1. Since 𝐺 𝑡
2(𝑞2(𝑡)) ≥ 0, 𝜓(𝑡) < 0 for 𝑡 ≥ 𝜏1.
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Tuned (𝜃 = 0.8) Untuned (𝜃 = 1)
First Arrival Setting

𝜙 = 2 Holding 1.08 1.09
Overflow 0.13 0.14

Total 1.21 1.23
SE 0.003 0.003

𝜙 = 10 Holding 1.13 1.10
Overflow 0.51 0.56

Total 1.64 1.67
SE 0.004 0.004

𝜙 = 25 Holding 1.47 1.28
Overflow 0.78 1.00

Total 2.25 2.28
SE 0.005 0.005

Tuned (𝜃 = 0.8) Untuned (𝜃 = 1)
Second Arrival Setting

𝜙 = 2 Holding 2.72 2.78
Overflow 0.28 0.29

Total 3.00 3.07
SE 0.007 0.007

𝜙 = 10 Holding 2.68 2.70
Overflow 1.31 1.37

Total 3.99 4.08
SE 0.008 0.008

𝜙 = 25 Holding 2.78 2.72
Overflow 2.81 2.98

Total 5.59 5.70
SE 0.010 0.010

Table A.1: Simulation costs for the N-model over 10000 replications. The holding cost ℎ =

(1.5, 1). The costs shown in the table are in units of 104. “SE” stands for the standard error
for the corresponding total cost. The tuning parameter 𝜃 is for 𝜃𝐺 𝑡

𝑘 (𝑖∗) (𝑞𝑘 (𝑖∗) (𝑡)) on the left-hand
side of (2.12) and (2.13) in the heuristic policy. (ℎ = (1.5, 1), 𝑠𝑖 = 20 and 𝜇𝑖𝑖 = 0.25, for 𝑖 = 1, 2,
𝜇12 = 0.2, 𝜙12 = 𝜙, 𝜆2(𝑡) = 3. First arrival setting: 𝜆1(𝑡) = 8 × 1{𝑡 < 40} + 4 × 1{𝑡 ≥ 40}
and 𝑋 (0) = (60, 70). Second arrival setting: 𝜆1(𝑡) = 12 × 1{𝑡 < 40} + 4.5 × 1{𝑡 ≥ 40} and
𝑋 (0) = (30, 40).)
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LA (opt) LA (heu) MaxP ModMaxP Cmu ModCmu

𝜙 = 2 Holding 1.09 1.08 1.10 1.10 1.08 2.75
Overflow 0.14 0.13 0.13 0.13 0.22 0.00

Total 1.23 1.21 1.23 1.23 1.29 2.75
SE 0.003 0.003 0.003 0.003 0.003 0.008

𝜙 = 10 Holding 1.10 1.13 1.10 1.11 1.08 2.75
Overflow 0.56 0.51 0.65 0.62 1.08 0.00

Total 1.67 1.64 1.75 1.73 2.16 2.75
SE 0.004 0.004 0.004 0.004 0.005 0.008

𝜙 = 25 Holding 1.28 1.47 1.10 1.13 1.08 2.75
Overflow 1.00 0.78 1.63 1.41 2.70 0.00

Total 2.28 2.25 2.73 2.54 3.78 2.75
SE 0.005 0.005 0.005 0.005 0.007 0.008

Table A.2: Expected total cost for the X-model under different routing policies. The costs shown
in the table are in units of 104. “SE” stands for the standard error for the corresponding average
total cost (holding + overflow). (Parameter setting: ℎ = (1.5, 1), 𝑠𝑖 = 20, 𝜇𝑖𝑖 = 0.25, 𝜇𝑖 𝑗 = 0.2 and
𝜙𝑖 𝑗 = 𝜙 for 𝑖 ≠ 𝑗 ; 𝜆2(𝑡) = 3, 𝜆1(𝑡) = 8 × 1{𝑡 < 40} + 4 × 1{𝑡 ≥ 40}, and 𝑋 (0) = (60, 70).)

A.4 Proof of Optimal Fluid Control Results

The proof of Theorem 1 and subsequent fluid optimal control results (Theorems 2, 4, 9 and

10) utilize Pontryagin’s Minimum Principle. In its most standard version, Pontryagin’s Minimum

Principle provides a list of necessary conditions satisfied by any optimal solution to the optimal

control problem. In this section, we first introduce a special sufficient version of Pontryagin’s

Minimum Principle. We then demonstrate how it can be applied to prove Theorem 1. The proofs

of the other results follow similar lines of analysis and are provided later in this section.

A.4.1 Pontryagin’s Minimum Principle

To state the result in a general form that can be applied to all our subsequent analysis, we first

introduce some notation.

Consider a system with 𝐼 classes of customers, i.e., 𝑞 = (𝑞1, . . . , 𝑞𝐼) and 𝑧 = (𝑧𝑖 𝑗 , 𝑖, 𝑗 =

1, . . . , 𝐼). Let 𝐹 (𝑞, 𝑧) = ∑𝐼
𝑖=1 ℎ𝑖𝑞𝑖 +

∑
𝑗≠𝑖 𝜙𝑖 𝑗 𝑧𝑖 𝑗 denote the instantaneous cost function. Let ¤𝑞𝑖 (𝑡) =

𝑓𝑖 (𝑞, 𝑧, 𝑡) and 𝑓 (𝑞, 𝑧, 𝑡) = ( 𝑓1(𝑞, 𝑧, 𝑡), . . . , 𝑓𝐼 (𝑞, 𝑧, 𝑡)). We also define 𝑔𝑖 (𝑞) = −𝑞𝑖 and 𝑔(𝑞) =
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N-policy Tuned (𝜃 = 0.8) N-policy Untuned X-policy Untuned
First Arrival Setting

𝜙 = 2 Holding 1.08 1.09 1.05
Overflow 0.13 0.14 0.16

Total 1.21 1.23 1.21
SE 0.003 0.003 0.003

𝜙 = 10 Holding 1.13 1.10 1.10
Overflow 0.51 0.56 0.56

Total 1.64 1.67 1.67
SE 0.004 0.004 0.004

𝜙 = 25 Holding 1.47 1.28 1.28
Overflow 0.78 1.00 1.00

Total 2.25 2.28 2.28
SE 0.005 0.005 0.005

N-policy Tuned (𝜃 = 0.8) N-policy Untuned X-policy Untuned
Second Arrival Setting

𝜙 = 2 Holding 2.63 2.64 2.64
Overflow 0.30 0.32 0.32

Total 2.94 2.96 2.96
SE 0.007 0.007 0.007

𝜙 = 10 Holding 2.67 2.67 2.67
Overflow 1.31 1.40 1.40

Total 3.99 4.07 4.07
SE 0.008 0.008 0.008

𝜙 = 25 Holding 2.78 2.72 2.72
Overflow 2.81 2.98 2.98

Total 5.59 5.70 5.70
SE 0.010 0.010 0.010

Table A.3: Simulation costs for the X-model over 10000 replications. The costs shown in the table
are in units of 104. “SE” stands for the standard error for the corresponding total cost. In the
table, the “N-policy Untuned” and “X-policy Untuned” stand for the optimal fluid control policies
derived for the N- and X-models, and for the “N-policy Tuned”, we used the tuning parameter
𝜃 = 0.8 for 𝜃𝐺 𝑡

𝑘 (𝑖∗) (𝑞𝑘 (𝑖∗) (𝑡)) on the left-hand side of (2.12) and (2.13). (ℎ = (1.5, 1), 𝑠𝑖 = 20 and
𝜇𝑖𝑖 = 0.25, for 𝑖 = 1, 2, 𝜇12 = 0.2, 𝜙12 = 𝜙, 𝜆2(𝑡) = 3. First arrival setting: 𝜆1(𝑡) = 8 × 1{𝑡 < 40} +
4×1{𝑡 ≥ 40} and 𝑋 (0) = (60, 70). Second arrival setting: 𝜆1(𝑡) = 12×1{𝑡 < 40}+4.5×1{𝑡 ≥ 40}
and 𝑋 (0) = (30, 40). For the X-model, 𝜇21 = 0.2 and 𝜙21 = 𝜙.)
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Tuned (𝜃 = 0.8) Untuned (𝜃 = 1)
Network Structure 1

𝜙 = 2 Holding 3.21 3.24
Overflow 0.52 0.53

Total 3.73 3.77
SE 0.007 0.007

𝜙 = 10 Holding 3.45 3.33
Overflow 2.05 2.24

Total 5.50 5.58
SE 0.008 0.008

𝜙 = 25 Holding 4.29 4.04
Overflow 3.57 3.95

Total 7.86 7.99
SE 0.012 0.011

Network Structure 2

𝜙 = 2 Holding 3.00 3.08
Overflow 0.48 0.50

Total 3.48 3.58
SE 0.005 0.006

𝜙 = 10 Holding 3.07 3.12
Overflow 1.98 2.15

Total 5.05 5.26
SE 0.007 0.008

𝜙 = 25 Holding 3.57 3.42
Overflow 3.77 4.19

Total 7.34 7.61
SE 0.009 0.010

Table A.4: Simulation costs for the 5×5 model over 10000 replications. The holding cost ℎ =

(1.5, 1). The costs shown in the table are in units of 104. “SE” stands for the standard error for
the corresponding total cost. The tuning parameter 𝜃 is for 𝜃𝐺 𝑡

𝑘 (𝑖∗) (𝑞𝑘 (𝑖∗) (𝑡)) on the left-hand side
of (2.12) and (2.13) in the heuristic policy. (Parameter setting: ℎ = (1.5, 1, 1, 1.5, 1), 𝑠𝑖 = 20,
𝜇𝑖𝑖 = 0.25, 𝜇𝑖 𝑗 = 0.2 and 𝜙𝑖 𝑗 = 𝜙 for 𝑖 ≠ 𝑗 ; 𝜆1(𝑡) = 12 × 1{𝑡 < 40} + 4.5 × 1{𝑡 ≥ 40}, 𝜆2(𝑡) = 3,
𝜆3(𝑡) = 4, 𝜆4(𝑡) = 8 × 1{𝑡 < 40} + 4 × 1{𝑡 ≥ 40}, 𝜆5(𝑡) = 3, and 𝑋 (0) = (30, 40, 50, 60, 70).)
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(𝑔1(𝑞), . . . , 𝑔𝐼 (𝑞)). Lastly, let 𝑙𝑖 𝑗 (𝑧) = −𝑧𝑖 𝑗 , 𝑙 𝑗 (𝑧) =
∑𝐼
𝑖=1 𝑧𝑖 𝑗 − 𝑠 𝑗 , and 𝑙 (𝑧) = (𝑙𝑖 𝑗 (𝑧), 𝑙 𝑗 (𝑧), 𝑖, 𝑗 =

1, . . . , 𝐼). Consider a general optimal control problem

min
𝑧

∫ ∞

0
𝐹 (𝑞(𝑡), 𝑧(𝑡)) 𝑑𝑡

s.t. ¤𝑞(𝑡) = 𝑓 (𝑞(𝑡), 𝑧(𝑡), 𝑡) , 𝑞(0) = 𝑞0

𝑔(𝑞(𝑡)) ≤ 0

𝑙 (𝑧(𝑡)) ≤ 0

(A.13)

Note that under the assumption that
∫ ∞
𝜅𝑖

(𝑠𝑖𝜇𝑖𝑖 − 𝜆𝑖 (𝑡))𝑑𝑡 = ∞ for 𝑖 = 1, . . . , 𝐼. The queue will

eventually hit zero and stay there. After this hitting time, 𝐹 (𝑞(𝑡), 𝑧(𝑡)) = 0. Thus, even though we

define (A.13) as an infinite horizon problem, it is the same as a finite horizon problem where the

planning horizon is long enough (possibly depending on the initial condition) such that the queue

reaches zero by the end of the planning horizon.

Let 𝑝(𝑡) = (𝑝1(𝑡), . . . , 𝑝𝐼 (𝑡)) ∈ R𝐼 denote the adjoint vector. Let 𝜂(𝑡) = (𝜂1(𝑡), . . . , 𝜂𝐼 (𝑡)) ∈

R𝐼 and 𝜉 (𝑡) = (𝜉𝑖 𝑗 (𝑡), 𝜉 𝑗 (𝑡), 𝑖, 𝑗 = 1, . . . , 𝐼) ∈ R𝐼2+𝐼 denote the Lagrangian multipliers for the state

and control constraints respectively. Define the Hamiltonian 𝐻 as

𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) = 𝐹 (𝑞(𝑡), 𝑧(𝑡)) + 𝑝(𝑡)𝑇 𝑓 (𝑞(𝑡), 𝑧(𝑡), 𝑡)

and the augmented Hamiltonian 𝐿 as

𝐿 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝜂(𝑡), 𝛾(𝑡), 𝜉 (𝑡), 𝑡) = 𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) + 𝜂(𝑡)𝑇𝑔(𝑞(𝑡)) + 𝜉 (𝑡)𝑇 𝑙 (𝑧(𝑡))

The following sufficient conditions are adapted from Theorems 8.2 and 8.4 in [41] for (A.13).

Theorem 11 (Arrow-type sufficient condition). Let (𝑞∗, 𝑧∗) be a feasible pair for the optimal

control problem (A.13). Assume that there exists a piecewise continuously differentiable function

𝑝∗(𝑡) : [0,∞) → R𝐼 and piecewise continuous functions 𝜂∗ : [0,∞) → R𝐼 and 𝜉∗ : [0,∞) →

R𝐼
2+𝐼 , such that the following conditions hold almost everywhere:
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1. Ordinary Differential Equation condition:

𝑞∗(0) = 𝑞0, ¤𝑞∗(𝑡) = 𝑓 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑡) (ODE)

2. Adjoint Vector condition:

¤𝑝∗(𝑡) = −∇𝑞𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝜉∗(𝑡), 𝑡) (ADJ)

3. Minimization condition:

𝐻 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝑡) = min
𝑧
{𝐻 (𝑞∗(𝑡), 𝑧(𝑡), 𝑝∗(𝑡), 𝑡)} (M)

4. Transversality condition:

∇𝑧𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝜉∗(𝑡), 𝑡) = 0 (T)

5. Complementarity condition:

𝜂∗(𝑡) ≥ 0, 𝜂∗(𝑡)𝑇𝑔(𝑞∗(𝑡)) = 0

𝜉∗(𝑡) ≥ 0, 𝜉∗(𝑡)𝑇 𝑙 (𝑧∗(𝑡)) = 0
(C)

6. Jump condition: At every point 𝛽 of discontinuity of 𝑝∗, there exists an 𝜔∗(𝛽) ∈ R𝐼 such that

𝑝∗(𝛽−) = 𝑝∗(𝛽+) + 𝜔∗(𝛽)𝑇∇𝑞𝑔(𝑞∗(𝛽))

𝜔∗(𝛽) ≥ 0, 𝜔∗(𝛽)𝑇𝑔 (𝑞∗(𝛽)) = 0.
(J)

7. Hamiltonian condition (H): If the minimized Hamiltonian 𝐻 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝑡) is convex

in 𝑞∗(𝑡) for all (𝑝∗(𝑡), 𝑡), the pure state constraint 𝑔(𝑞(𝑡)) is quasiconvex in 𝑞(𝑡), and the

control constraint 𝑙 (𝑧(𝑡)) is quasiconvex in 𝑧(𝑡).
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Then, (𝑞∗, 𝑧∗) is an optimal pair.

A.4.2 Optimal control for the N-Model under single demand surge

In this section, we provide the proof of Theorem 1. The basic strategy is to construct a feasible

pair (𝑞∗, 𝑧∗) and verify that the assumptions in Theorem 11 hold.

Proof. Proof of Theorem 1. In this case,

𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) =ℎ1𝑞1(𝑡) + ℎ2𝑞2(𝑡) + 𝜙12𝑧12(𝑡)

+ 𝑝1(𝑡) (𝜆1(𝑡) − 𝜇11𝑧11(𝑡) − 𝜇12𝑧12(𝑡)) + 𝑝2(𝑡) (𝜆2(𝑡) − 𝜇22𝑧22(𝑡))

and

𝐿 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝜂(𝑡), 𝜉 (𝑡), 𝛾(𝑡), 𝑡) =𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡)) − 𝜂1(𝑡)𝑞1(𝑡) − 𝜂2(𝑡)𝑞2(𝑡)

− 𝜉11(𝑡)𝑧11(𝑡) − 𝜉12(𝑡)𝑧12(𝑡) − 𝜉22(𝑡)𝑧22(𝑡)

+ 𝛾1(𝑡) (𝑧11(𝑡) − 𝑠1) + 𝛾2(𝑡) (𝑧12(𝑡) + 𝑧22(𝑡) − 𝑠2).

We next verify the sufficient conditions listed in Theorem 11.

Case I: ℎ1𝜇12 ≥ ℎ2𝜇22. In this case, the policy is that pool 2 gives priority to class 1 for a time

𝜏∗ = inf{𝑡 ≥ 0 : ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) − 𝜙12 ≤ ℎ2𝜇22𝐺

𝑡
2(𝑞2(𝑡))} (A.14)

assuming the inequality in case (Ia) holds initially, and 𝜏∗ = 0 otherwise. After this 𝜏∗ units of

time, pool 2 stops helping class 1. To see this, note that since ℎ1𝜇12 ≥ ℎ2𝜇22, from Lemma 1, if

the inequality in case (Ia) does not hold at some 𝑡′, it also does not hold at all subsequent 𝑡 ≥ 𝑡′.

Under the policy characterized in Case I, the times to deplete the two queues are

𝜏∗1 = 𝜏∗ + 𝐺𝜏∗

1 (𝑞∗1(𝜏
∗)), 𝜏∗2 = 𝜏∗ + 𝐺𝜏∗

2 (𝑞∗2(𝜏
∗)). (A.15)
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Then, we consider the following queue length trajectory:

𝑞∗1(𝑡) =



𝑞1 +
∫ 𝑡

0 (𝜆1(𝑠) − 𝑠1𝜇11 − 𝑧∗12(𝑠)𝜇12) 𝑑𝑠, 𝑡 ∈ [0, 𝜏∗),

𝑞∗1(𝜏
∗) +

∫ 𝑡

𝜏∗
(𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [𝜏∗, 𝜏∗1 ),

0, 𝑡 ∈ [𝜏∗1 ,∞),

𝑞∗2(𝑡) =



𝑞2 +
∫ 𝑡

0 (𝜆2(𝑠) − 𝑧∗22(𝑠)𝜇22) 𝑑𝑠, 𝑡 ∈ [0, 𝜏∗),

𝑞∗2(𝜏
∗) +

∫ 𝑡

𝜏∗
(𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [𝜏∗, 𝜏∗2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞).

Note that it may be that 𝑧∗12(𝑡) < 𝑠2 for 𝑡 ∈ [0, 𝜏∗], if 𝑞1(𝑡) = 0 and 𝜆1(𝑡) < 𝑠1𝜇11 + 𝑠2𝜇12. In

this case, 𝑧∗22(𝑡) = 𝑠2 − 𝑧∗12(𝑡) (since 𝑞2(𝑡) > 0 by assumption). However, it is always the case

that 𝑧∗11(𝑡) = 𝑠1 for 𝑡 ∈ [0, 𝜏∗], since either (i) 𝑞1(𝑡) > 0 or (ii) 𝑞1(𝑡) = 0 and 𝑡 < 𝜅1, so that

𝜆1(𝑡) ≥ 𝑠1𝜇11.

Assuming 𝜏∗ > 0, we now partition the interval [0, 𝜏∗) into subintervals 𝐼1, · · · , 𝐼𝑛 where

𝑛 ≥ 1, 𝐼𝑖 = [𝐴𝑖−1, 𝐴𝑖) and 0 = 𝐴0 < 𝐴1 < · · · < 𝐴𝑛 = 𝜏
∗, as follows. In the interior 𝑡 ∈ (𝐴𝑖−1, 𝐴𝑖)

of each subinterval, either (i) 𝑞1(𝑡) > 0 and 𝑞2(𝑡) > 0, in which case we say that 𝐼𝑖 is an interior

subinterval, or (ii) 𝑞1(𝑡) = 0 and 𝑞2(𝑡) > 0, in which case we say that 𝐼𝑖 is a boundary subinterval.

Note that it is not possible that 𝑞1(𝑡) > 0 and 𝑞2(𝑡) = 0 in some subinterval, because 𝑧∗22(𝑡) = 0

during this time and 𝜆2(𝑡) > 0. The subintervals 𝐼1, · · · , 𝐼𝑛 do not necessarily alternate between

interior and boundary subintervals: it is possible that 𝐼𝑘 and 𝐼𝑘+1 are both interior subintervals,

with 𝑞1(𝑡) hitting zero at the single point 𝐴𝑘 .

We next define the adjoint vector

𝑝∗2(𝑡) =


ℎ2(𝜏∗2 − 𝑡), 𝑡 ∈ [0, 𝜏∗2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞),
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and

𝑝∗1(𝑡) =


ℎ1(𝜏∗1 − 𝑡), 𝑡 ∈ [𝜏∗, 𝜏∗1 ),

0, 𝑡 ∈ [𝜏∗1 ,∞).

For 𝑡 < 𝜏∗, with 𝑝∗1(𝐴𝑛) = 𝑝
∗
1(𝜏

∗) defined, moving backwards in time, we recursively define 𝑝∗1(𝑡)

for 𝑡 ∈ [0, 𝐴𝑛). We will do this in such a way that (i) the jumps of 𝑝∗1, if any, occur only when

𝑞∗1(𝑡) = 0 and the jumps are positive; (ii) in any interior subinterval 𝐼𝑖,

𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 ≥ 0; (A.16)

and (iii) in any boundary subinterval 𝐼𝑖,

𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 = 0. (A.17)

Note that 𝑝∗1(𝜏
∗)𝜇12 − 𝜙12 − 𝑝∗2(𝜏

∗)𝜇22 = 0 if 𝜏∗ > 0.

More specifically, suppose 𝑝∗1(𝐴𝑘 ) has been defined for some 𝑘 , with 𝑝∗1(𝐴𝑘 )𝜇12 − 𝜙12 −

𝑝∗2(𝐴𝑘 )𝜇22 ≥ 0. If 𝐼𝑘 is an interior subinterval, we set

𝑝∗1(𝑡) = ℎ1(𝐴𝑘 − 𝑡) + 𝑝∗1(𝐴𝑘 )

for 𝑡 ∈ [𝐴𝑘−1, 𝐴𝑘 ). That is, 𝑝∗1 is continuous at 𝐴𝑘 and has slope −ℎ1 in the subinterval 𝐼𝑘 . Thus,

𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 has slope ℎ2𝜇22 − ℎ1𝜇12 ≤ 0, which implies that 𝑝∗1(𝐴𝑘−1)𝜇12 − 𝜙12 −

𝑝∗2(𝐴𝑘−1)𝜇22 ≥ 0. If 𝐼𝑘 is a boundary subinterval, we set 𝑝∗1(𝐴𝑘−1) = 𝑝∗2(𝐴𝑘−1)𝜇22/𝜇12 + 𝜙12/𝜇12

and 𝑝∗1(𝑡) = 𝑝∗1(𝐴𝑘−1) − ℎ2𝜇22
𝜇12

(𝑡 − 𝐴𝑘−1) for 𝑡 ∈ (𝐴𝑘−1, 𝐴𝑘 ). That is, 𝑝∗1 has a jump at 𝐴𝑘 and has

slope − ℎ2𝜇22
𝜇12

in the subinterval 𝐼𝑘 . This ensures that 𝜙12 − 𝑝∗1(𝑡)𝜇12 = −𝑝∗2(𝑡)𝜇22 everywhere in

𝐼𝑘 . The size of the jump at 𝐴𝑘 is 𝑝∗1(𝐴𝑘 ) − 𝑝
∗
2(𝐴𝑘 )𝜇22/𝜇12 − 𝜙12/𝜇12 ≥ 0, which is non-negative

because 𝑝∗1(𝐴𝑘 )𝜇12 − 𝜙12 − 𝑝∗2(𝐴𝑘 )𝜇22 ≥ 0. This way, we have defined 𝑝∗1 for 𝑡 ∈ [0, 𝜏∗) that

satisfies conditions (i), (ii) and (iii).
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Lastly, define the multipliers

𝜂∗1(𝑡) =



0, 𝑡 ∈ 𝐼𝑘 and 𝐼𝑘 is an interior subinterval,

ℎ1 − ℎ2𝜇22
𝜇12

, 𝑡 ∈ 𝐼𝑘 and 𝐼𝑘 is a boundary subinterval,

0, 𝑡 ∈ [𝜏∗, 𝜏∗1 ),

ℎ1, 𝑡 ∈ [𝜏∗1 ,∞),

𝜂∗2(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗2 ),

ℎ2, 𝑡 ∈ [𝜏∗2 ,∞),

𝛾∗1 (𝑡) =


𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [0, 𝜏∗1 ),

0, 𝑡 ∈ [𝜏∗1 ,∞),

𝛾∗2 (𝑡) =



𝑝∗1(𝑡)𝜇12 − 𝜙12, 𝑡 ∈ [0, 𝜏∗)

𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [𝜏∗, 𝜏∗2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞),

𝜉∗12(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗),

𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [𝜏∗,∞),

𝜉∗22(𝑡) =


𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝜏∗),

0, 𝑡 ∈ [𝜏∗,∞),

and 𝜉∗11(𝑡) = 0 for all 𝑡 ≥ 0. Note that if 𝜏∗ > 0, 𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 ≥ 0 for 𝑡 ∈ [0, 𝜏∗), and
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𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 ≤ 0 for 𝑡 ∈ [𝜏∗,∞). Thus, 𝜉∗12 and 𝜉∗22 are non-negative.

The conditions (ODE), (ADJ), (J), and (H) are straightforwardly verified, i.e., by construction.

For (C), we only need to check that when 𝑧∗22(𝑡) > 0 in a boundary subinterval [𝐴𝑘−1, 𝐴𝑘 ),

𝜉∗22(𝑡) = 0. This holds because of (A.17). (Note that 𝑧∗22(𝐴𝑘 ) = 0.)

For (T), we have that

∇𝑧11𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = −𝑝∗1(𝑡)𝜇11 + 𝛾∗1 (𝑡) − 𝜉
∗
11(𝑡) = 0

because 𝜉∗11(𝑡) = 0 and 𝛾∗1 (𝑡) = 𝑝
∗
1(𝑡)𝜇11. Next,

∇𝑧22𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = −𝑝∗2(𝑡)𝜇22 + 𝛾∗2 (𝑡) − 𝜉
∗
22(𝑡) = 0

because 𝜉∗22(𝑡) = 𝛾
∗
2 (𝑡) − 𝑝

∗
2(𝑡)𝜇22 for 𝑡 ∈ [0, 𝜏∗), and 𝜉∗22(𝑡) = 0 and 𝛾∗2 (𝑡) = 𝑝∗2(𝑡)𝜇22 for 𝑡 ≥ 𝜏∗.

Finally,

∇𝑧12𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝛾∗2 (𝑡) − 𝜉
∗
12(𝑡) = 0

because 𝜉∗12(𝑡) = 0 and 𝛾∗2 (𝑡) = 𝑝
∗
1(𝑡)𝜇12 − 𝜙12 for 𝑡 ∈ [0, 𝜏∗), and 𝜉∗12(𝑡) = 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝛾∗2 (𝑡)

for 𝑡 ≥ 𝜏∗.

Lastly, for (M), it is easy to see that 𝑧∗11(𝑡) should always be maximal. Note that even when

𝑞∗1(𝑡) = 0 for some 𝑡 < 𝜏∗, (M) follows because under the constraint that 𝑧∗11(𝑡)𝜇11 + 𝑧∗12(𝑡)𝜇12 ≤

𝜆1(𝑡), the coefficients of 𝑧∗11(𝑡) and 𝑧∗12(𝑡) are −𝑝∗1(𝑡)𝜇11 and 𝜙12 − 𝑝∗1(𝑡)𝜇12. For 𝑡 < 𝜏∗, the

coefficients of 𝑧∗12(𝑡) and 𝑧∗22(𝑡) are respectively 𝜙12 − 𝑝∗1(𝑡)𝜇12 and −𝑝∗2(𝑡)𝜇22. Since 𝑝∗1(𝑡)𝜇12 −

𝜙12 ≥ 𝑝∗2(𝑡)𝜇22, it is optimal to have 𝑧∗12(𝑡) being maximal. When 𝑡 ≥ 𝜏∗, 𝑝∗1(𝑡)𝜇12 − 𝜙12 ≤

𝑝∗2(𝑡)𝜇22, and so it is optimal to have 𝑧∗22(𝑡) being maximal. This in turn implies 𝑧∗12(𝑡) = 0 for 𝑡 ∈

[𝜏∗, 𝜏∗2 ) is optimal (pool 2 has no spare capacity to help class 1). When 𝑡 ≥ 𝜏∗2 , 𝜙12 − 𝑝∗1(𝑡)𝜇12 ≤ 0,

so again 𝑧∗12(𝑡) = 0 is optimal.

Case II: ℎ1𝜇12 < ℎ2𝜇22. Let 𝜏𝑖 = 𝐺0
𝑖
(𝑞𝑖 (0)) for 𝑖 = 1, 2. In this case, the policy is that each
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pool serves only its own class for 𝑡 ∈ [0, 𝜏2). Under Assumption 1, 𝜏2 ≥ 𝜅2. Thus, 𝜆2(𝑡) < 𝑠2𝜇22

and 𝑞2(𝑡) = 0 for 𝑡 ≥ 𝜏2. Then, pool 2 gives partial help to class 1 for 𝑡 ∈ [𝜏2, 𝜏2 + 𝜏∗), where

𝜏∗ = inf{𝑡 ≥ 0 : ℎ1𝜇12𝐺
𝜏2+𝑡
1 (𝑞1(𝜏2 + 𝑡)) ≤ 𝜙12}.

If ℎ1𝜇12𝐺
𝜏2
1 (𝑞1(𝜏2)) ≤ 𝜙12, 𝜏∗ = 0. For 𝑡 ≥ 𝜏2 + 𝜏∗, the inequality in (IIa) does not hold. Thus,

each pool serves its own class only.

Note that if 𝜏1 ≤ 𝜏2, we have 𝜏∗ = 0, which will be discussed below. Suppose for now 𝜏1 > 𝜏2.

Let 𝜏∗1 = 𝜏2 + 𝜏∗ + 𝐺𝜏2+𝜏∗
1 (𝑞∗1(𝜏2 + 𝜏∗)) be the time at which queue 1 empties. Note that if 𝜏∗ > 0,

then ℎ1𝜇12𝐺
𝜏2+𝜏∗
1 (𝑞1(𝜏2 + 𝜏∗)) = 𝜙12 by continuity, so that 𝜏∗1 = 𝜏2 + 𝜏∗ + 𝜙12

ℎ1𝜇12
. Then, we consider

the following queue length trajectory:

𝑞∗1(𝑡) =



𝑞1 +
∫ 𝑡

0 (𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [0, 𝜏2),

𝑞∗1(𝜏2) +
∫ 𝑡

𝜏2
(𝜆1(𝑠) − 𝑠1𝜇11 − (𝑠2 − 𝜆2(𝑠)/𝜇22)𝜇12) 𝑑𝑠, 𝑡 ∈ [𝜏2, 𝜏2 + 𝜏∗),

𝑞∗1(𝜏2 + 𝜏∗) +
∫ 𝑡

𝜏2+𝜏∗
(𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [𝜏2 + 𝜏∗, 𝜏∗1 )

0, 𝑡 ∈ [𝜏∗1 ,∞),

𝑞∗2(𝑡) =


𝑞2 +

∫ 𝑡

0 (𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [0, 𝜏2),

0, 𝑡 ∈ [𝜏2,∞).

Note that the expression for 𝑞∗2(𝑡) holds because, under Assumption 1, queue 2 will only be emptied

once. Also, Assumption 1 implies that 𝑞∗1(𝑡) > 0 for 𝑡 ∈ [𝜏2, 𝜏2+𝜏∗), so that 𝑧∗12(𝑡) = 𝑠2−𝜆2(𝑠)/𝜇22

and 𝑧∗11(𝑡) = 𝑠1𝜇11. Finally, Assumption 1 implies that 𝑞∗1(𝑡) > 0 for 𝑡 ∈ [0, 𝜏2), except possibly

for an initial interval containing 0 in which 𝜆1(𝑡) = 𝑠1𝜇11 if 𝑞1(0) = 0. Thus, 𝑧∗11(𝑡) = 𝑠1𝜇11 for

𝑡 ∈ [0, 𝜏2).
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Next, define the adjoint vectors

𝑝∗1(𝑡) =


ℎ1(𝜏∗1 − 𝑡), 𝑡 ∈ [0, 𝜏∗1 ),

0, 𝑡 ∈ [𝜏∗1 ,∞),

𝑝∗2(𝑡) =



ℎ2(𝜏2 − 𝑡) + ℎ1
𝜇12
𝜇22
𝜏∗, 𝑡 ∈ [0, 𝜏2),

ℎ1
𝜇12
𝜇22

(𝜏2 + 𝜏∗ − 𝑡), 𝑡 ∈ [𝜏2, 𝜏2 + 𝜏∗),

0, 𝑡 ∈ [𝜏2 + 𝜏∗,∞).

Lastly, define the multipliers

𝜂∗1(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗1 ),

ℎ1, 𝑡 ∈ [𝜏∗1 ,∞),

𝜂∗2(𝑡) =



0, 𝑡 ∈ [0, 𝜏2),

ℎ2 − ℎ1
𝜇12
𝜇22
, 𝑡 ∈ [𝜏2, 𝜏2 + 𝜏∗)

ℎ2, 𝑡 ∈ [𝜏2 + 𝜏∗,∞)

𝛾∗1 (𝑡) =


𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [0, 𝜏∗1 ),

0, 𝑡 ∈ [𝜏∗1 ,∞),

𝛾∗2 (𝑡) =


𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝜏2 + 𝜏∗),

0, 𝑡 ∈ [𝜏2 + 𝜏∗,∞)
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𝜉∗12(𝑡) =



𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝜏2)

0, 𝑡 ∈ [𝜏2, 𝜏2 + 𝜏∗),

𝜙12 − 𝑝∗1(𝑡)𝜇12, 𝑡 ∈ [𝜏2 + 𝜏∗,∞)

and 𝜉∗11(𝑡) = 𝜉
∗
22(𝑡) = 0 for all 𝑡 ≥ 0. Note that 𝜂∗2(𝑡) ≥ 0 because ℎ2𝜇22 ≥ ℎ1𝜇12 by assumption.

In addition, because ℎ1𝜇12 ≤ ℎ2𝜇22, 𝜉∗12(𝑡) = 𝜙12 − ℎ1𝜇12(𝜏∗1 − 𝑡) + ℎ2𝜇22(𝜏2 − 𝑡) + ℎ1𝜇12𝜏
∗ is

non-increasing on [0, 𝜏2). If 𝜏∗ > 0, 𝜉∗12(𝑡) → 0 as 𝑡 → 𝜏2 because ℎ1𝜇12(𝜏∗1 − 𝜏∗ − 𝜏2) = 𝜙12. If

𝜏∗ = 0, 𝜉∗12(𝑡) → 𝜙12 − ℎ1𝜇12𝐺
𝜏2
1 (𝑞1(𝜏2)) ≥ 0 as 𝑡 → 𝜏2. Thus,

𝜙12 − ℎ1𝜇12(𝜏∗1 − 𝑡) + ℎ2𝜇22(𝜏2 − 𝑡) + ℎ1𝜇12𝜏
∗ ≥ 0 (A.18)

and 𝜉∗12(𝑡) ≥ 0.

The conditions (ODE), (ADJ), (C), (J), and (H) are verified straightforwardly by construction.

For (T),

∇𝑧11𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = −𝑝∗1(𝑡)𝜇11 + 𝛾∗1 (𝑡) − 𝜉
∗
11(𝑡) = 0

because 𝜉∗11(𝑡) = 0 and 𝛾∗1 (𝑡) = 𝑝
∗
1(𝑡)𝜇11. Similarly,

∇𝑧22𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = −𝑝∗2(𝑡)𝜇22 + 𝛾∗2 (𝑡) − 𝜉
∗
22(𝑡) = 0

because 𝜉∗22(𝑡) = 0 and 𝛾∗2 (𝑡) = 𝑝
∗
2(𝑡)𝜇22. Finally,

∇𝑧12𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝛾∗2 (𝑡) − 𝜉
∗
12(𝑡)

For 𝑡 ≥ 𝜏2+𝜏∗, 𝜙12−𝑝∗1(𝑡)𝜇12+𝛾∗2 (𝑡)−𝜉
∗
12(𝑡) = 0 because the 𝛾∗2 (𝑡) = 0 and 𝜉∗12(𝑡) = 𝜙12−𝑝∗1(𝑡)𝜇12.
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For 𝑡 ∈ [𝜏2, 𝜏2 + 𝜏∗),

𝜙12− 𝑝∗1(𝑡)𝜇12+ 𝑝∗2(𝑡)𝜇22 = 𝜙12−ℎ1𝜇12
(
(𝜏∗1 − 𝑡) − (𝜏2 + 𝜏∗ − 𝑡)

)
= 𝜙12−ℎ1𝜇12𝐺

𝜏2+𝜏∗
1 (𝑞∗1(𝜏2+𝜏∗))

is zero. Finally, for 𝑡 ∈ [0, 𝜏2), 𝜙12− 𝑝∗1(𝑡)𝜇12+𝛾∗2 (𝑡)−𝜉
∗
12(𝑡) = 0 because 𝜉∗12(𝑡) = 𝜙12− 𝑝∗1(𝑡)𝜇12+

𝛾∗2 (𝑡).

Lastly, for (M), it is easy to see that 𝑧∗11(𝑡) should always be maximal. The coefficients of 𝑧∗12(𝑡)

and 𝑧∗22(𝑡) are respectively 𝜙12 − 𝑝∗1(𝑡)𝜇12 and −𝑝∗2(𝑡)𝜇22. When 𝑡 ∈ [0, 𝜏2), 𝑝∗1(𝑡)𝜇12 − 𝜙12 ≤

𝑝∗2(𝑡)𝜇22 (see (A.18)), and it can be verified that the inequality holds for all other 𝑡 with equality

for 𝑡 ∈ [𝜏2, 𝜏2 + 𝜏∗). Thus, it is optimal to have 𝑧∗22(𝑡) being maximal for 𝑡 ≥ 0. When 𝑡 < 𝜏2,

𝑞∗2(𝑡) > 0, and so 𝑧∗12(𝑡) = 0 is optimal (there is no spare capacity for pool 2 to help class 1). When

𝑡 ∈ [𝜏2, 𝜏2 + 𝜏∗), 𝜙12 − 𝑝∗1(𝑡)𝜇12 ≤ 0, so it is optimal to maximize 𝑧∗12(𝑡) in the sense of partial

sharing, i.e. 𝑧∗12(𝑡) = 𝑠2 − 𝑧∗22(𝑡). When 𝑡 ≥ 𝜏2 + 𝜏∗, 𝜙12 − 𝑝∗1(𝑡)𝜇12 ≥ 0, so it is optimal to have

𝑧∗12(𝑡) = 0. This completes the proof.

A.5 Proof of Asymptotic Optimality

In this section, we provide the proof of Theorem 3. Lemma 8 establishes the first part of the

theorem. For the second part of the theorem, we take the following steps:

1. We first show in Theorem 12 that there exists a fluid limit under any admissible control.

2. We then show in Theorem 13 that the fluid limit under the fluid translated control {𝜈̃𝑛}𝑛≥1

follows the optimal fluid trajectory given in Section 3.

3. The key to verifying Theorem 13 is the continuity in the 𝐺 and 𝐺̃ factors, which is estab-

lished in Lemma 9 and Lemma 10, respectively.

For notational convenience, we define the scaled version of the estimated arrival rate:

𝜆̃𝑛𝑖 (𝑡) :=
Λ𝑛
𝑖
(𝑡)
𝑛

= 𝜆𝑖 (𝑡) + 𝜖𝑛𝑖 (𝑡), where 𝜖𝑛
𝑖
(𝑡) = 𝐸𝑛

𝑖
(𝑡)/𝑛.
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Then, we can rewrite 𝐺̃ 𝑡
𝑖,𝑛
(𝑛𝑥) as 𝐺̃ 𝑡

𝑖,𝑛
(𝑛𝑥) = inf

{
Δ ≥ 0 :

∫ 𝑡+Δ
𝑡

(𝑠𝑖𝜇𝑖𝑖 − 𝜆̃𝑛𝑖 (𝑠)) 𝑑𝑠 = 𝑥
}
. With a little

abuse of notation, we redefine the input of the function as 𝑥, instead of 𝑛𝑥, i.e.,

𝐺̃ 𝑡
𝑖,𝑛 (𝑥) = inf

{
Δ ≥ 0 :

∫ 𝑡+Δ

𝑡

(𝑠𝑖𝜇𝑖𝑖 − 𝜆̃𝑛𝑖 (𝑠)) 𝑑𝑠 = 𝑥
}
. (A.19)

We start from proving the following lemma, which establishes the results in the first part of

Theorem 3.

Lemma 8. For any admissible control 𝜋𝑛 for system 𝑛, 𝑉̄𝑛,𝜋
𝑛 (𝑥) ≥ 𝑉̄∗(𝑥).

Proof. Proof. We suppress the superscript 𝜋𝑛 from the corresponding processes to simplify the

notation. Let 𝑔𝑛
𝑖
(𝑡, 𝑥) = 𝜆𝑛

𝑖
(𝑡) − ∑

𝑗 (𝜋𝑛𝑡 (𝑥))𝑖 𝑗𝑛𝜇𝑖 𝑗 for 𝑡 ∈ [0, 𝑇 (𝑥)], 𝑥 ∈ N2. Note that

𝑀𝑖 (·) := 𝑋𝑛𝑖 (·) − 𝑛𝑥𝑖 −
∫ ·

0
𝑔𝑛𝑖 (𝑠, 𝑋𝑛 (𝑠)) 𝑑𝑠

is a zero-mean martingale by the Dynkin formula. Taking expectation gives

E𝜋 [𝑋𝑛𝑖 (𝑡)] = 𝑛𝑥𝑖+
∫ 𝑡

0
E𝜋 [𝑔𝑛𝑖 (𝑠, 𝑋𝑛 (𝑠))] 𝑑𝑠 = 𝑛𝑥𝑖+

∫ 𝑡

0

(
𝑛𝜆𝑖 (𝑠) − 𝑛

∑︁
𝑗

E𝜋 [𝑍𝑛𝑖 𝑗 (𝑠)]𝜇𝑖 𝑗

)
𝑑𝑠 (A.20)

for 𝑡 ∈ [0, 𝑇 (𝑥)].

Consider the (fluid) policy 𝑢: 𝑢𝑡 (E𝜋 [𝑋𝑛 (𝑡)/𝑛]) = E𝜋 [𝑍𝑛 (𝑡)], i.e., if at time 𝑡 we have 𝑞(𝑡) =

E𝜋 [𝑋𝑛 (𝑡)/𝑛], then 𝑧(𝑡) = E𝜋 [𝑍𝑛 (𝑡)]. 𝑢𝑡 (𝑥) for other values of 𝑡 and 𝑥 can be defined arbitrarily.

Note that for each 𝑗 ,
∑
𝑖 𝑧𝑖 𝑗 (𝑡) =

∑
𝑖 E[𝑍𝑛𝑖 𝑗 (𝑡)] ≤ 𝑠 𝑗 , and (A.20) implies that

0 ≤ E𝜋 [𝑋𝑛𝑖 (𝑡)/𝑛] = 𝑥𝑖 +
∫ 𝑡

0

(
𝜆𝑖 (𝑠) −

∑︁
𝑗

E𝜋 [𝑍𝑛𝑖 𝑗 (𝑠)]𝜇𝑖 𝑗

)
𝑑𝑠

for 𝑡 ∈ [0, 𝑇 (𝑥)]. Thus, 𝑢 is an admissible control for the fluid problem and the corresponding

fluid dynamics takes the form:

𝑞𝑖 (𝑡) = E𝜋 [𝑋𝑛𝑖 (𝑡)/𝑛], 𝑧𝑖 𝑗 (𝑡) = E𝜋 [𝑍𝑛𝑖 𝑗 (𝑡)] for 𝑡 ∈ [0, 𝑇 (𝑥)] .
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Then,

𝑉̄𝑛,𝜋
𝑛 (𝑥) = E𝜋

[∫ 𝑇 (𝑥)

0

(∑︁
𝑖

ℎ𝑖

𝑛
𝑋𝑛𝑖 (𝑡) +

∑︁
𝑖≠ 𝑗

𝜙𝑖 𝑗𝑍
𝑛
𝑖 𝑗 (𝑡)

)
𝑑𝑡

]
=

∫ 𝑇 (𝑥)

0

(∑︁
𝑖

ℎ𝑖𝑞𝑖 (𝑡) +
∑︁
𝑖≠ 𝑗

𝜙𝑖 𝑗 𝑧𝑖 𝑗 (𝑡)
)
𝑑𝑡

≥ 𝑉̄∗(𝑥).

To prove the second part of Theorem 3, we first introduce a notion of a fluid limit and show in

Theorem 12 below that there exists a fluid limit under any admissible control.

Theorem 12. There exists almost surely a subsequence {𝑛𝑘 : 𝑘 ∈ N} such that ( 𝑋̄𝑛𝑘 , 𝑌 𝑛𝑘 ) →

( 𝑋̄, 𝑌 ) uniformly on compact intervals (u.o.c.) as 𝑛→ ∞. Moreover, ( 𝑋̄,𝑌 ) is Lipschitz continuous

and satisfies

(a) 𝑋̄ (0) = 𝑥, 𝑋̄ (𝑡) ≥ 0 for 𝑡 ≥ 0;

(b) 𝑋̄𝑖 (𝑡) = 𝑋̄𝑖 (0) +
∫ 𝑡

0 𝜆𝑖 (𝑠) 𝑑𝑠 −
∑
𝑗 𝑌𝑖 𝑗 (𝑡)𝜇𝑖 𝑗 ;

(c) 𝑌 (·) is non-decreasing with 𝑌𝑖 𝑗 (0) = 0;

(d)
∑
𝑖 (𝑌𝑖 𝑗 (𝑡) − 𝑌𝑖 𝑗 (𝑠)) ≤ 𝑠 𝑗 (𝑡 − 𝑠) for 𝑗 = 1, 2 and 0 ≤ 𝑠 < 𝑡.

Proof. Proof. By Strong Law of Large Numbers, the scaled number of arrivals

𝐴̄𝑛𝑖 (𝑡) :=
1
𝑛
𝑆𝑖

(∫ 𝑡

0
𝜆𝑛𝑖 (𝑠) 𝑑𝑠

)
=

1
𝑛
𝑆𝑖

(
𝑛

∫ 𝑡

0
𝜆𝑖 (𝑠) 𝑑𝑠

)
,

where 𝑆𝑖 is a rate-1 Poisson process, satisfies

𝐴̄𝑛𝑖 (𝑡) →
∫ 𝑡

0
𝜆𝑖 (𝑠) 𝑑𝑠
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uniformly on compact sets (u.o.c.) as 𝑛 → ∞. The rest of the proof follows from Theorem 6.5 in

[80].

From Theorem 12, there exists a fluid limit for the sequence of systems under the fluid trans-

lated control {𝜈̃𝑛}𝑛≥1 of Theorem 3. We next show that any fluid limit of the sequence of systems

under policy {𝜈̃𝑛}𝑛≥1 is equal to the optimal fluid trajectory. Let (𝑞∗, 𝑦∗) denote the optimal fluid

trajectory, i.e., (𝑞∗, 𝑧∗) is defined in Theorem 1 and 𝑦∗
𝑖 𝑗
(𝑡) =

∫ 𝑡

0 𝑧
∗
𝑖 𝑗
(𝑠) 𝑑𝑠.

Theorem 13. Let (𝑄̄,𝑌 ) = (𝑞1, 𝑞2, 𝑌11, 𝑌12, 𝑌22) be a fluid limit for the sequence of systems under

policy {𝜈̃𝑛}𝑛≥1. Then, (𝑄̄,𝑌 ) = (𝑞∗, 𝑦∗).

Before we prove Theorem 13, we first present two auxiliary lemmas that will be used in the

proof.

Lemma 9. If 𝑡 ↦→ 𝑥𝑖 (𝑡) is continuous, 𝑡 ↦→ 𝐺 𝑡
𝑖
(𝑥𝑖 (𝑡)) is also continuous.

Proof. Proof. We will show that 𝑡 ↦→ 𝐺 𝑡
𝑖
(𝑥) is continuous for any fixed 𝑥 ≥ 0. To simplify

notation, let 𝑎𝑖 (𝑡) = 𝑠𝑖𝜇𝑖𝑖 − 𝜆𝑖 (𝑡). Fix 𝑡 > 0 and let 𝜖 > 0 be an arbitrarily small constant.

Case I: 𝑡 > 𝜅𝑖. We may assume that 𝑡 − 𝜖 > 𝜅𝑖. Note that
∫ 𝑡+𝐺𝑡

𝑖
(𝑥)

𝑡−𝛿 𝑎𝑖 (𝑠) 𝑑𝑠 ≥ 𝑥 if 𝛿 ≤ 𝜖 . Thus,

𝐺 𝑡−𝛿
𝑖 (𝑥) ≤ 𝐺 𝑡

𝑖 (𝑥) + 𝛿 ≤ 𝐺 𝑡
𝑖 (𝑥) + 𝜖 .

Next, note that 𝜉1(𝛿) :=
∫ 𝑡−𝛿−𝜖+𝐺𝑡

𝑖
(𝑥)

𝑡−𝛿 𝑎𝑖 (𝑠) 𝑑𝑠 is a continuous function of 𝛿. As 𝜉1(0) < 𝑥, there

exists 𝛿1 > 0 such that for all 0 ≤ 𝛿 < 𝛿1, 𝜉1(𝛿) < 𝑥. Thus,

𝐺 𝑡−𝛿
𝑖 (𝑥) ≥ 𝐺 𝑡

𝑖 (𝑥) − 𝜖 .

Above all, for 0 ≤ 𝛿 < 𝜖 ∧ 𝛿1, |𝐺 𝑡−𝛿
𝑖

(𝑥) − 𝐺 𝑡
𝑖
(𝑥) | < 𝜖 , i.e., we have left-continuity.

For the right continuity, we first note that for 0 ≤ 𝛿 < 𝜖 ,
∫ 𝑡+𝐺𝑡

𝑖
(𝑥)

𝑡+𝛿 𝑎𝑖 (𝑠) 𝑑𝑠 < 𝑥. Thus,

𝐺 𝑡+𝜖
𝑖 (𝑥) > 𝐺 𝑡

𝑖 (𝑥) − 𝛿 > 𝐺 𝑡
𝑖 (𝑥) − 𝜖 .
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Next, note that 𝜉2(𝛿) :=
∫ 𝑡+𝛿+𝐺𝑡

𝑖
(𝑥)+𝜖

𝑡+𝛿 𝑎𝑖 (𝑠) 𝑑𝑠 is a continuous function of 𝛿. As 𝜉2(0) > 𝑥, there

exists 𝛿2 > 0 such that for all 0 ≤ 𝛿 < 𝛿2, 𝜉2(𝛿) > 𝑥. Thus,

𝐺 𝑡+𝛿
𝑖 (𝑥) ≤ 𝐺 𝑡

𝑖 (𝑥) + 𝜖 .

Above all, for 0 ≤ 𝛿 < 𝜖 ∧ 𝛿2, |𝐺 𝑡+𝛿
𝑖

(𝑥) − 𝐺 𝑡
𝑖
(𝑥) | < 𝜖 , i.e., we have right-continuity.

Case II: 𝑡 < 𝜅𝑖. Note that for 0 ≤ 𝛿 ≤ 𝜅𝑖 − 𝑡,
∫ 𝑡+𝐺𝑡

𝑖
(𝑥)

𝑡+𝛿 𝑎𝑖 (𝑠) 𝑑𝑠 ≥ 𝑥. Thus,

𝐺 𝑡+𝛿
𝑖 (𝑥) ≤ 𝐺 𝑡

𝑖 (𝑥) − 𝛿 ≤ 𝐺 𝑡
𝑖 (𝑥).

Next, note that 𝜉3(𝛿) =
∫ 𝑡+𝐺𝑡

𝑖
(𝑥)−𝜖/2

𝑡+𝛿 𝑎𝑖 (𝑠) 𝑑𝑠 is a continuous function of 𝛿. As 𝜉3(0) < 𝑥, there

exists 𝛿3 > 0, such that for 0 ≤ 𝛿 ≤ 𝛿3 𝜉3(𝛿) < 𝑥 Thus,

𝐺 𝑡+𝛿
𝑖 (𝑥) ≥ 𝐺 𝑡

𝑖 (𝑥) − 𝜖/2 − 𝛿.

Above all, for 0 ≤ 𝛿 ≤ 𝛿3 ∧ 𝜖/2, |𝐺 𝑡+𝛿
𝑖

(𝑥) − 𝐺 𝑡
𝑖
(𝑥) | = 𝐺 𝑡

𝑖
(𝑥) − 𝐺 𝑡+𝛿

𝑖
(𝑥) ≤ 𝜖 , i.e., we have

right-continuity.

For the left continuity, we first note that for 0 ≤ 𝛿 ≤ 𝜅𝑖 − 𝑡,
∫ 𝑡+𝐺𝑡

𝑖
(𝑥)

𝑡−𝛿 𝑎𝑖 (𝑠) 𝑑𝑠 ≤ 𝑥. Thus,

𝐺 𝑡−𝛿
𝑖 (𝑥) ≥ 𝐺 𝑡

𝑖 (𝑥) + 𝛿 ≥ 𝐺 𝑡
𝑖 (𝑥).

Next, note that 𝜉4(𝛿) :=
∫ 𝑡+𝐺𝑡

𝑖
(𝑥)+𝜖/2

𝑡−𝛿 𝑎𝑖 (𝑠) 𝑑𝑠 is a continuous function of 𝛿. As 𝜉4(0) > 𝑥, there

exists 𝛿4 > 0 such that for 0 ≤ 𝛿 ≤ 𝛿4, 𝜉4(𝛿) > 𝑥 Thus,

𝐺 𝑡−𝛿
𝑖 (𝑥) ≤ 𝐺 𝑡

𝑖 (𝑥) + 𝜖/2 + 𝛿.

Above all, for 0 ≤ 𝛿 ≤ 𝛿4 ∧ 𝜖/2, |𝐺 𝑡−𝛿
𝑖

(𝑥) − 𝐺 𝑡
𝑖
(𝑥) | = 𝐺 𝑡−𝛿

𝑖
(𝑥) − 𝐺 𝑡

𝑖
(𝑥) ≤ 𝜖 , i.e., we have

left-continuity.

Case III: 𝑡 = 𝜅𝑖. The right-continuity follows the right-continuity argument of case I and the
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left-continuity follows the left-continuity argument of case II.

The proof that 𝑡 ↦→ 𝐺 𝑡
𝑖
(𝑞𝑖 (𝑡)) is continuous in 𝑡 follows similarly.

For the next lemma, recall the definition of 𝐺̃ 𝑡
𝑖,𝑛
(𝑥) in (A.19).

Lemma 10. If 𝑋1(𝑡) is bounded on [0, 𝜅1], 𝑋𝑛1 (𝑡) ≥ 0 and 𝑋𝑛1 (𝑡) → 𝑋1(𝑡) uniformly on 𝑡 ∈ [0, 𝜅1],

then

𝐺̃ 𝑡
1,𝑛 (𝑋

𝑛
1 (𝑡)) → 𝐺 𝑡

1(𝑋1(𝑡))

uniformly on 𝑡 ∈ [0, 𝜅1] as 𝑛 → ∞. The same is true on the interval [𝜅1, 𝐴] for any 𝐴 > 𝜅1. The

same is also true for class 2 on any closed bounded interval.

Proof. Proof of Lemma 10. Note that the assumptions imply that there exist 𝑁0 > 0 and 𝐵 > 0

such that 𝑋𝑛1 (𝑡) ≤ 𝐵 for all 𝑛 > 𝑁0 and all 𝑡 ∈ [0, 𝜅1]. Let 𝛼 > 0 (we use 𝛼 instead of 𝜖 to avoid

confusion with the error function 𝜖𝑛 (·)). It suffices, then, to show that there exist 𝑁1 > 0 and 𝛿 > 0

such that

|𝐺 𝑡
1(𝑥1) − 𝐺̃ 𝑡

1,𝑛 (𝑥2) | ≤ 𝛼

for all 𝑛 > 𝑁1, 𝑡 ∈ [0, 𝜅1] and 0 ≤ 𝑥1, 𝑥2 ≤ 𝐵 and |𝑥1 − 𝑥2 | ≤ 𝛿.

Note that because 𝐺 𝑡
1(𝐵) is a continuous function of 𝑡, 𝐺 𝑡

1(𝑥) is bounded, say by 𝐶, for 𝑡 ∈

[0, 𝜅1] and 0 ≤ 𝑥 ≤ 𝐵. Let

𝐷 (𝛼) = inf
0≤𝑠≤𝐶

∫ 𝜅1+𝑠+𝛼

𝜅1+𝑠
(𝑠1𝜇11 − 𝜆1(𝑢)) 𝑑𝑢.

Note that 𝐷 (𝛼) > 0 because 𝑠1𝜇11 > 𝜆1(𝑢) for 𝑢 > 𝜅1.
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Now, observe that

∫ 𝑡+𝐺𝑡
1 (𝑥1)+𝛼

𝑡

(𝑠1𝜇11 − 𝜆1(𝑢) − 𝜖𝑛1 (𝑢)) 𝑑𝑢

≥
∫ 𝑡+𝐺𝑡

1 (𝑥1)+𝛼

𝑡

(𝑠1𝜇11 − 𝜆1(𝑢) − |𝜖𝑛1 (𝑢) |) 𝑑𝑢

=

∫ 𝑡+𝐺𝑡
1 (𝑥1)

𝑡

(𝑠1𝜇11 − 𝜆1(𝑢)) 𝑑𝑢 +
∫ 𝑡+𝐺𝑡

1 (𝑥1)+𝛼

𝑡+𝐺𝑡
1 (𝑥1)

(𝑠1𝜇11 − 𝜆1(𝑢)) 𝑑𝑢 −
∫ 𝑡+𝐺𝑡

1 (𝑥1)+𝛼

𝑡

|𝜖𝑛1 (𝑢) | 𝑑𝑢

≥𝑥1 + 𝐷 (𝛼) − (𝐶 + 𝛼) sup
𝑡≤𝑢≤𝑡+𝐶+𝛼

|𝜖𝑛1 (𝑢) |

≥𝑥1 + 𝐷 (𝛼)/2

for 𝑛 > 𝑁2 large enough, since 𝜖𝑛 (·) → 0 u.o.c. by assumption. Therefore, if 𝑥2 < 𝑥1 + 𝐷 (𝛼)/2,

then

𝐺̃ 𝑡
1,𝑛 (𝑥2) < 𝐺 𝑡

1(𝑥1) + 𝛼.

Next, observe that

∫ 𝑡+𝐺𝑡
1 (𝑥1)−𝛼

𝑡

(𝑠1𝜇11 − 𝜆1(𝑢) − 𝜖𝑛1 (𝑢)) 𝑑𝑢

≤
∫ 𝑡+𝐺𝑡

1 (𝑥1)−𝛼

𝑡

(𝑠1𝜇11 − 𝜆1(𝑢) + |𝜖𝑛1 (𝑢) |) 𝑑𝑢

=

∫ 𝑡+𝐺𝑡
1 (𝑥1)

𝑡

(𝑠1𝜇11 − 𝜆1(𝑢)) 𝑑𝑢 −
∫ 𝑡+𝐺𝑡

1 (𝑥1)

𝑡+𝐺𝑡
1 (𝑥1)−𝛼

(𝑠1𝜇11 − 𝜆1(𝑢)) 𝑑𝑢 +
∫ 𝑡+𝐺𝑡

1 (𝑥1)−𝛼

𝑡

|𝜖𝑛1 (𝑢) | 𝑑𝑢

≤𝑥1 − 𝐷 (𝛼) + (𝐶 − 𝛼) sup
𝑡≤𝑢≤𝑡+𝐶−𝛼

|𝜖𝑛1 (𝑢) |

≤𝑥1 − 𝐷 (𝛼)/2

for 𝑛 > 𝑁2 large enough, as before. Therefore, if 𝑥2 > 𝑥1 − 𝐷 (𝛼)/2, then

𝐺̃ 𝑡
1,𝑛 (𝑥2) > 𝐺 𝑡

1(𝑥1) − 𝛼.

(We have assumed above that 𝑡 + 𝐺 𝑡
1(𝑥1) − 𝛼 ≥ 𝜅1, since otherwise it is trivial that 𝐺̃ 𝑡

1,𝑛 (𝑥2) >
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𝐺 𝑡
1(𝑥1) − 𝛼.) Hence, if |𝑥2 − 𝑥1 | < 𝐷 (𝛼)/2, then

|𝐺 𝑡
1(𝑥1) − 𝐺̃ 𝑡

1,𝑛 (𝑥2) | ≤ 𝛼

for 𝑛 > 𝑁2, as required. The proof for [𝜅1, 𝐴] and for class 2 are similar.

Next, we prove Theorem 13.

Proof. Proof of Theorem 13. We divide the analysis into two cases.

Case I: ℎ1𝜇12 > ℎ2𝜇22. Let 𝑇1 ≥ 0 be the time that pool 2 stops helping class 1 under the

optimal fluid control. That is,

ℎ1𝜇12𝐺
𝑡
1(𝑞

∗
1(𝑡)) − 𝜙12 > ℎ2𝜇22𝐺

𝑡
2(𝑞

∗
2(𝑡))

for 𝑡 ∈ [0, 𝑇1) and

ℎ1𝜇12𝐺
𝑡
1(𝑞

∗
1(𝑡)) − 𝜙12 < ℎ2𝜇22𝐺

𝑡
2(𝑞

∗
2(𝑡))

for 𝑡 > 𝑇1.

Supppose 𝑇1 > 0, so that ℎ1𝜇12𝐺
𝑇1
1 (𝑞∗1(𝑇1)) − 𝜙12 = ℎ2𝜇22𝐺

𝑇1
2 (𝑞∗2(𝑇1)). We partition [0, 𝑇1)

into finitely many subintervals [𝐴𝑖, 𝐴𝑖+1) (𝑖 = 0, · · · , 𝑛) such that 0 = 𝐴0 < · · · < 𝐴𝑛+1 = 𝑇1, and

on each open subinterval 𝑡 ∈ (𝐴𝑖, 𝐴𝑖+1), either 𝑞∗1(𝑡) = 0 only or 𝑞∗1(𝑡) > 0 only. The fact that are

finitely many such intervals comes from piecewise monotonicity assumption, i.e., Assumption 5

and the proof of Theorem 1.

We next show inductively that (𝑄̄,𝑌 ) = (𝑞∗, 𝑦∗) on each [𝐴𝑖, 𝐴𝑖+1). Suppose that 𝑄̄(𝐴𝑖) =

𝑞∗(𝐴𝑖) and 𝑌 (𝐴𝑖) = 𝑦∗(𝐴𝑖) for some 𝑖.

We first consider the case that 𝑞∗1(𝑡) > 0 on (𝐴𝑖, 𝐴𝑖+1). Because 𝑞∗1(𝑡) decreases at the max-

imum possible rate for 𝑡 < 𝑇1 under the optimal fluid control, we have that 𝑄̄1(𝑡) ≥ 𝑞∗1(𝑡) > 0

and 𝑄̄2(𝑡) ≤ 𝑞∗2(𝑡) for all 𝑡 ∈ (𝐴𝑖, 𝐴𝑖+1). Hence, for 𝑠 ∈ (𝐴𝑖, 𝐴𝑖+1), ℎ1𝜇12𝐺
𝑠
1(𝑄̄1(𝑠)) − 𝜙12 >
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ℎ2𝜇22𝐺
𝑠
2(𝑄̄2(𝑠)). By continuity of 𝑡 ↦→ 𝐺 𝑡

𝑖
(𝑄̄𝑖 (𝑡)) (Lemma 9), we have

ℎ1𝜇12𝐺
𝑡
1(𝑄̄1(𝑡)) − 𝜙12 > 𝛿 + ℎ2𝜇22𝐺

𝑡
2(𝑄̄2(𝑡))

for all 𝑡 ∈ [𝑠− 𝜖, 𝑠 + 𝜖], for some 𝜖, 𝛿 > 0. Since (𝑄𝑛1 (𝑡)/𝑛, 𝑄
𝑛
2 (𝑡)/𝑛)) → (𝑄̄1(𝑡), 𝑄̄2(𝑡)) u.o.c., we

have by Lemma 10 that

ℎ1𝜇12𝐺̃
𝑡
1,𝑛 (𝑄

𝑛
1 (𝑡)/𝑛) − 𝜙12 > 𝛿/2 + ℎ2𝜇22𝐺̃

𝑡
2,𝑛 (𝑄

𝑛
2 (𝑡)/𝑛) and 𝑄𝑛1 (𝑡) > 𝑠1 + 𝑠2

for all 𝑡 ∈ [𝑠 − 𝜖, 𝑠 + 𝜖], for 𝑛 large enough. According to the scheduling policy, for each such 𝑛th

system and 𝑡 ∈ [𝑠 − 𝜖, 𝑠 + 𝜖], pool 2 prioritizes class 1, so that 𝑑𝑌 𝑛 (𝑡)/𝑑𝑡 = (𝑠1, 𝑠2, 0). In addition,

since ℎ1𝜇12𝐺
𝑡
1(𝑞

∗
1(𝑡)) − 𝜙12 > ℎ2𝜇22𝐺

𝑡
2(𝑞

∗
2(𝑡)),

ℎ1𝜇12𝐺
𝑡
1(𝑄̄1(𝑡)) − 𝜙12 > ℎ2𝜇22𝐺

𝑡
2(𝑄̄2(𝑡))

for all 𝑡 ∈ (𝐴𝑖, 𝐴𝑖+1). Then, 𝑑𝑌 (𝑡)/𝑑𝑡 = 𝑑𝑦∗(𝑡)/𝑑𝑡 for all (regular) 𝑡 ∈ (𝐴𝑖, 𝐴𝑖+1), which implies

that (𝑄̄,𝑌 ) = (𝑞∗, 𝑦∗) on 𝑡 ∈ [𝐴𝑖, 𝐴𝑖+1]. In particular, 𝑄̄(𝐴𝑖+1) = 𝑞∗(𝐴𝑖+1) and 𝑌 (𝐴𝑖+1) = 𝑦∗(𝐴𝑖+1).

This technique – applying Lemma 10 to derive inequalities involving 𝐺̃ 𝑡
𝑖,𝑛
(𝑄𝑛

𝑖
(𝑡)/𝑛) based on in-

equalities involving 𝐺 𝑡
𝑖
(𝑄̄𝑖 (𝑡)) – is also used in subsequent cases in the proof.

We next consider the case 𝑞∗1(𝑡) = 0 on (𝐴𝑖, 𝐴𝑖+1). Suppose that 𝑄̄1(𝑡) > 0 for some 𝑡 ∈

(𝐴𝑖, 𝐴𝑖+1). Let 𝑆 = sup{𝑠 ≤ 𝑡 : 𝑄̄1(𝑠) = 0}. Note that 𝑄̄1(𝑆) = 0 by continuity, and that

𝑆 ≥ 𝐴𝑖 because 𝑄̄1(𝐴𝑖) = 0. By definition 𝑄̄1(𝑠) > 0 for all 𝑠 ∈ (𝑆, 𝑡]. Then, following

similar lines of analysis as in the case when 𝑞∗1(𝑡) > 0, 𝑑𝑌 𝑛 (𝑡)/𝑑𝑡 = (𝑠1, 𝑠2, 0) for large enough

𝑛 and 𝑑𝑄̄1(𝑡)/𝑑𝑡 = 𝜆1(𝑡) − 𝑠1𝜇11 − 𝑠2𝜇12 ≤ 0. In this case, 𝑄̄1(𝑠) is non-increasing in (𝑆, 𝑡].

Thus, 𝑄̄1(𝑠) ≥ 𝑄̄1(𝑡) > 0 for 𝑠 ∈ (𝑆, 𝑡]. This implies that 𝑄̄1(𝑠) is not continuous at 𝑠 = 𝑆,

a contradiction. This implies that 𝑄̄1(𝑡) = 0 for 𝑡 ∈ (𝐴𝑖, 𝐴𝑖+1). In addition, by Assumption

1, 𝑄̄2(𝑡) > 0 on (𝐴𝑖, 𝐴𝑖+1), which implies that 𝑑 (𝑌12(𝑡) + 𝑌22(𝑡))/𝑑𝑡 = 𝑠2 on (𝐴𝑖, 𝐴𝑖+1). As
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𝑑𝑌11(𝑡)/𝑑𝑡 = 𝑠1 and 𝑄̄1(𝑡) = 0, we have

𝑑𝑌12(𝑡)
𝑑𝑡

=
𝜆1(𝑡) − 𝑠1𝜇11

𝜇12
=
𝑑𝑦∗12(𝑡)
𝑑𝑡

for 𝑡 ∈ (𝐴𝑖, 𝐴𝑖+1).

Thus, (𝑄̄,𝑌 ) = (𝑞∗, 𝑦∗) on [𝐴𝑖, 𝐴𝑖+1].

By induction, (𝑄̄,𝑌 ) = (𝑞∗, 𝑦∗) on [0, 𝑇1).

Lastly, we analyze (𝑄̄(𝑡), 𝑌 (𝑡)) for 𝑡 > 𝑇1. Note that for 𝑇1 > 0, 𝑞∗1(𝑇1) > 0. Let 𝑇2 > 𝑇1 be the

first time 𝑞∗1 empties, i.e., 𝑇2 = inf{𝑡 ≥ 𝑇1 : 𝑞∗1(𝑡) = 0}. Let 𝑆2 > 𝑇1 be the first time 𝑄̄1 empties,

i.e., 𝑆2 = inf{𝑡 ≥ 𝑇1 : 𝑄̄1(𝑡) = 0}. For 𝑇1 < 𝑡 < 𝑆2, 𝑄̄1(𝑡) > 0. By the same reasoning as before,

we have that there exists 𝜖 > 0 such that 𝑄𝑛1 (𝑠) > 𝑠1 for 𝑠 ∈ [𝑡 − 𝜖, 𝑡 + 𝜖], for 𝑛 sufficiently large.

Thus, according to our scheduling policy, 𝑑𝑌11(𝑡)/𝑑𝑡 = 𝑠1. This implies that ℎ1𝜇12𝐺
𝑡
1(𝑄̄1(𝑡))−𝜙12

decreases at rate at least ℎ1𝜇12, whereas ℎ2𝜇22𝐺
𝑡
2(𝑄̄2(𝑡)) decreases at rate at most ℎ2𝜇22. Since

ℎ1𝜇12 > ℎ2𝜇22 and ℎ1𝜇12𝐺
𝑇1
1 (𝑄̄1(𝑇1)) − 𝜙12 ≤ ℎ2𝜇22𝐺

𝑇1
2 (𝑄̄2(𝑇1)) (strict inequality is possible if

𝑇1 = 0), we have that for all 𝑇1 < 𝑡 < 𝑆2,

ℎ1𝜇12𝐺
𝑡
1(𝑄̄1(𝑡)) − 𝜙12 < ℎ2𝜇22𝐺

𝑡
2(𝑄̄2(𝑡)).

Following similar lines of argument as before, we can show that for each 𝑡 ∈ (𝑇1, 𝑆2) and large

enough 𝑛, pool 2 only serves class 2 in the 𝑛th system at time 𝑡. Therefore, 𝑄̄1(𝑡) = 𝑞∗1(𝑡) for

𝑡 ∈ (𝑇1, 𝑆2) and 𝑆2 = 𝑇2. For 𝑡 > 𝑇2, 𝑄̄1(𝑡) = 0. Hence, 𝑄̄1(𝑡) = 𝑞∗1(𝑡) for all 𝑡.

The above also establishes that 𝑄̄2 = 𝑞∗2, 𝑌12 = 𝑦∗12 and 𝑌22 = 𝑦∗22 on (𝑇1, 𝑇3), where 𝑇3 =

inf{𝑡 ≥ 𝑇1 : 𝑞∗2(𝑡) = 0} is the common emptying time of the class 2 queue for both 𝑞∗2 and 𝑄̄2. For

𝑡 > 𝑇3, we again have that

ℎ1𝜇12𝐺
𝑡
1(𝑄̄1(𝑡)) − 𝜙12 < ℎ2𝜇22𝐺

𝑡
2(𝑄̄2(𝑡)),

as shown above if 𝑡 < 𝑆2, and trivially if 𝑡 ≥ 𝑆2. Therefore 𝑌12 = 𝑦∗12 for 𝑡 > 𝑇3, and pool 2 only

serves its own class for large enough systems. Since 𝑄̄1 = 𝑞∗1, this also implies that 𝑌11 = 𝑦∗11.
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Finally, for 𝑡 > 𝑆2, since 𝑄̄′
2(𝑡) ≤ 0 whenever 𝑄̄2(𝑡) > 0, 𝑄̄2(𝑡) = 𝑞∗2(𝑡) = 0 and 𝑌22(𝑡) = 𝑦∗22(𝑡).

Case II: ℎ1𝜇12 < ℎ2𝜇22. The case of interest is the one where pool 2 provides partial help to

queue 1 in 𝑞∗, i.e., after queue 2 has emptied, queue 1 is still large. If no partial help occurs, the

result will follow from the analysis in case I.

Let 𝑇1 = inf{𝑡 ≥ 𝜅2 : 𝑞∗2(𝑡) = 0}. Similarly, let 𝑆1 = inf{𝑡 ≥ 𝜅2 : 𝑄̄2(𝑡) = 0}. For 𝑡 < 𝑆1 ∧ 𝑇1,

we have 𝑄̄𝑖 (𝑡) > 0. By the same reasoning as in Case I, 𝑑𝑌𝑖𝑖 (𝑡)/𝑑𝑡 = 𝑠𝑖 = 𝑑𝑦∗𝑖𝑖 (𝑡)/𝑑𝑡. This implies

𝑆1 = 𝑇1. Thus, (𝑄̄,𝑌 ) = (𝑞∗, 𝑦∗) on 𝑡 ∈ [0, 𝑇1]. For 𝑡 > 𝑇1, we can show as in Case I that 𝑄̄′
2(𝑡) ≤ 0

if 𝑄̄2(𝑡) > 0, so that 𝑄̄2(𝑡) = 0 = 𝑞∗2(𝑡). Hence also 𝑌22(𝑡) = 𝑦∗22(𝑡) for 𝑡 > 𝑇1.

Next, let𝑇2 ≥ 𝑇1 be the time at which partial help by pool 2 ends under the optimal fluid control.

For 𝑡 ∈ [𝑇1, 𝑇2), ℎ1𝜇12𝐺
𝑡
1(𝑞

∗
1(𝑡)) > 𝜙12 and 𝑞∗2(𝑡) = 0. Note that 𝑄̄2(𝑡) = 0 for 𝑡 ∈ [𝑇1, 𝑇2) as well.

Because the optimal fluid control minimizes 𝑞1(𝑡) for 𝑡 ∈ [𝑇1, 𝑇2) while keeping 𝑞2(𝑡) at zero, we

have that 𝑄̄1(𝑡) ≥ 𝑞∗1(𝑡) > 0 for 𝑡 ∈ [𝑇1, 𝑇2). Hence, ℎ1𝜇12𝐺
𝑡
1(𝑄̄1(𝑡)) > 𝜙12 for 𝑡 ∈ [𝑇1, 𝑇2). Thus,

𝑑 (𝑌12(𝑡) + 𝑌22(𝑡))/𝑑𝑡 = 𝑠2 = 𝑑 (𝑦∗12(𝑡) + 𝑦
∗
22(𝑡))/𝑑𝑡 for 𝑡 ∈ (𝑇1, 𝑇2). Since 𝑌22 = 𝑦∗22, this implies

that 𝑌12(𝑡) = 𝑦∗12(𝑡) for 𝑡 ∈ [𝑇1, 𝑇2). Hence also 𝑄̄1(𝑡) = 𝑞∗1(𝑡) for 𝑡 ∈ [𝑇1, 𝑇2).

For 𝑡 > 𝑇2, ℎ1𝜇12𝐺
𝑡
1(𝑄̄1(𝑡)) < 𝜙12. Following similar lines of argument as before, 𝑌12(𝑡) =

𝑦∗12(𝑡) = 𝑦
∗
12(𝑇2), 𝑌11(𝑡) = 𝑦∗11(𝑡) and 𝑄̄11(𝑡) = 𝑞∗11(𝑡).

With Theorem 13, we are now ready to prove the second part of Theorem 3.

Proof. Proof. Recall that ( 𝑋̄𝑛, 𝑌 𝑛) → (𝑞∗, 𝑦∗) uniformly on [0, 𝑇 (𝑥)] almost surely, which implies

that 𝑋̄𝑛
𝑖
(𝑡) is uniformly bounded in 𝑛 and 𝑡. Also, note that 𝑌 𝑛12(𝑇 (𝑥)) ≤ 𝑠2𝑇 (𝑥) is bounded. We

have
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𝑉̄𝑛,𝜈̃
𝑛 (𝑥) =E

[∫ 𝑇 (𝑥)

0

∑︁
𝑖

ℎ𝑖 𝑋̄
𝑛
𝑖 (𝑡) 𝑑𝑡 + 𝜙12𝑌

𝑛
12(𝑇 (𝑥))

]
=

∫ 𝑇 (𝑥)

0

∑︁
𝑖

ℎ𝑖E[𝑋̄𝑛𝑖 (𝑡)] 𝑑𝑡 + 𝜙12E[𝑌 𝑛12(𝑇 (𝑥))] since 𝑋̄𝑛
𝑖
(𝑡) ≥ 0

→
∫ 𝑇 (𝑥)

0

∑︁
𝑖

ℎ𝑖𝑞
∗
𝑖 (𝑡) 𝑑𝑡 + 𝜙12𝑦

∗
12(𝑇 (𝑥)) as 𝑛→ ∞ by bounded convergence

=𝑉̄∗(𝑥).

A.6 Proof of the optimal fluid control for the N-model with multiple demand surges

Proof. Proof of Theorem 2. We will construct the optimal primal and dual trajectories under the

policy characterized in Theorem 2 and show that the conditions in Theorem 11 are satisfied.

Case I: ℎ1𝜇12 > ℎ2𝜇22. In this case,

𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) =ℎ1𝑞1(𝑡) + ℎ2𝑞2(𝑡) + 𝜙12𝑧12(𝑡)

+ 𝑝1(𝑡) (𝜆1(𝑡) − 𝜇11𝑧11(𝑡) − 𝜇12𝑧12(𝑡)) + 𝑝2(𝑡) (𝜆2(𝑡) − 𝜇22𝑧22(𝑡))

and

𝐿 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝜂(𝑡), 𝜉 (𝑡), 𝛾(𝑡), 𝑡) =𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) − 𝜂1(𝑡)𝑞1(𝑡) − 𝜂2(𝑡)𝑞2(𝑡)

− 𝜉11(𝑡)𝑧11(𝑡) − 𝜉12(𝑡)𝑧12(𝑡) − 𝜉22(𝑡)𝑧22(𝑡)

+ 𝛾1(𝑡) (𝑧11(𝑡) − 𝑠1) + 𝛾2(𝑡) (𝑧12(𝑡) + 𝑧22(𝑡) − 𝑠2).

There are three scenarios to consider, depending on the queue lengths at time 𝜅𝑏 (i.e., the beginning

of the second demand surge).

Scenario A: 𝑞∗1(𝜅𝑏) = 𝑞∗2(𝜅𝑏) = 0. That is, both queues have been emptied by the start

of the second demand surge. Following the proof of Theorem 1, we obtain 𝑞∗
𝑖
, 𝑝∗

𝑖
, 𝑧∗
𝑖 𝑗
, 𝜂∗
𝑖
, 𝜉∗
𝑖 𝑗
, 𝛾∗

𝑗
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for 𝑡 ∈ [0, 𝜅𝑏). We can then solve an “independent" optimal control problem using the initial state

(0, 0) to obtain the values of 𝑞∗
𝑖
, 𝑝∗

𝑖
, 𝑧∗
𝑖 𝑗
, 𝜂∗
𝑖
, 𝜉∗
𝑖 𝑗
, 𝛾∗

𝑗
for 𝑡 ∈ [𝜅𝑏,∞). The verification of the conditions

in Theorem 11 follows exactly the same lines of analysis as the proof of Theorem 1.

Scenario B: 𝑞∗1(𝜅𝑏) > 0. This implies that 𝑞∗1(𝑡) > 0 and 𝑡 + 𝐺 𝑡
1(𝑞

∗
1(𝑡)) > 𝜅𝑏 for 𝑡 ∈ [0, 𝜅𝑏)

(except possibly 𝑞∗1(𝑡) = 0 in an initial interval containing zero). In this case, 𝐺 𝑡
1(𝑞

∗
1(𝑡)) decreases

at rate at least one until it hits zero. As such, pool 2 does not resume helping class 1 once it stops

helping class 1. Pool 2 gives priority to class 1 for an initial time

𝜏∗ = inf{𝑡 ≥ 0 : ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) − 𝜙12 ≤ ℎ2𝜇22𝐺

𝑡
2(𝑞2(𝑡))}. (A.21)

Thereafter, each queue is served by its primary server pool only, and is emptied at time 𝜏∗
𝑖

=

𝜏∗ + 𝐺𝜏∗
𝑖
(𝑞∗
𝑖
(𝜏∗)). Note that 𝜏∗1 ∉ (𝜅𝑏, 𝜅𝑐], because the class 1 queue cannot be emptied at time

𝑡 ∈ (𝜅𝑏, 𝜅𝑐] without help from pool 2.

The optimal queue length trajectory follows:

𝑞∗1(𝑡) =



𝑞1 +
∫ 𝑡

0 (𝜆1(𝑠) − 𝑠1𝜇11 − 𝑧∗12(𝑠)𝜇12) 𝑑𝑠, 𝑡 ∈ [0, 𝜏∗),

𝑞∗1(𝜏
∗) +

∫ 𝑡

𝜏∗
(𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [𝜏∗, 𝜏∗1 ),

0, 𝑡 ∈ [𝜏∗1 ,∞),

𝑞∗2(𝑡) =



𝑞2 +
∫ 𝑡

0 (𝜆2(𝑠) − 𝑧∗22(𝑠)𝜇22) 𝑑𝑠, 𝑡 ∈ [0, 𝜏∗),

𝑞∗2(𝜏
∗) +

∫ 𝑡

𝜏∗
(𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [𝜏∗, 𝜏∗2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞).

Note that 𝑞∗
𝑖
(𝑡)’s have exactly the same dynamics as 𝑞∗

𝑖
(𝑡)’s in Case I in the proof of Theorem 1.

Thus, the proof of this scenario follows exactly the same lines of analysis as Case I in Theorem 1

(i.e., the two demand surges can be treat as a single demand surge).
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Scenario C: 𝑞∗1(𝜅𝑏) = 0 and 𝑞∗2(𝜅𝑏) > 0. Pool 2 gives priority to class 1 for an initial time

𝜏∗ = inf{𝑡 ≥ 0 : ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) − 𝜙12 ≤ ℎ2𝜇22𝐺

𝑡
2(𝑞2(𝑡))}. (A.22)

At time 𝜏∗1 = 𝜏∗ + 𝐺𝜏∗

1 (𝑞∗1(𝜏
∗)) ≤ 𝜅𝑏, pool 1 is emptied.

Next, at time 𝜅𝑏, 𝐺 𝑡
1(𝑞1(𝑡)) jumps from zero to a positive number due to the second demand

surge, and hence pool 2 may resume helping class 1. Let

𝜏′ = inf{𝑡 ≥ 𝜅𝑏 : ℎ1𝜇12𝐺
𝑡
1(𝑞1(𝑡)) − 𝜙12 ≤ ℎ2𝜇22𝐺

𝑡
2(𝑞2(𝑡))} (A.23)

be the time this helping period ends. In addition, let

𝜏′𝑖 = 𝜏
′ + 𝐺𝜏𝑑

𝑖
(𝑞∗𝑖 (𝜏𝑑))

be the subsequent time that class 𝑖, 𝑖 = 1, 2, queue is emptied.
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The optimal queue length trajectory follows:

𝑞∗1(𝑡) =



𝑞1 +
∫ 𝑡

0 (𝜆1(𝑠) − 𝑠1𝜇11 − 𝑧∗12(𝑠)𝜇12) 𝑑𝑠, 𝑡 ∈ [0, 𝜏∗),

𝑞∗1(𝜏
∗) +

∫ 𝑡

𝜏∗
(𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [𝜏∗, 𝜏∗1 ),

0, 𝑡 ∈ [𝜏∗1 , 𝜅𝑏),∫ 𝑡

𝜅𝑏
(𝜆1(𝑠) − 𝑠1𝜇11 − 𝑧∗12(𝑠)𝜇12) 𝑑𝑠, 𝑡 ∈ [𝜅𝑏, 𝜏′),∫ 𝑡

𝜏′
(𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [𝜏′, 𝜏′1),

0, 𝑡 ∈ [𝜏′1,∞),

𝑞∗2(𝑡) =



𝑞2 +
∫ 𝑡

0 (𝜆2(𝑠) − 𝑧∗22(𝑠)𝜇22) 𝑑𝑠, 𝑡 ∈ [0, 𝜏∗),

𝑞∗2(𝜏
∗) +

∫ 𝑡

𝜏∗
(𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [𝜏∗, 𝜅𝑏),

𝑞∗2(𝜅𝑏) +
∫ 𝑡

𝜅𝑏
(𝜆2(𝑠) − 𝑧∗22(𝑠)𝜇22) 𝑑𝑠, 𝑡 ∈ [𝜅𝑏, 𝜏′),

𝑞∗2(𝜏
′) +

∫ 𝑡

𝜏𝑑
(𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [𝜏′, 𝜏′2),

0, 𝑡 ∈ [𝜏′2,∞).

Note that it may be that 𝑧∗12(𝑡) < 𝑠2 for 𝑡 ∈ [0, 𝜏∗) or 𝑡 ∈ [𝜅𝑏, 𝜏′), if 𝑞1(𝑡) = 0 and 𝜆1(𝑡) <

𝑠1𝜇11 + 𝑠2𝜇12. In this case, 𝑧∗22(𝑡) = 𝑠2 − 𝑧∗12(𝑡) (since 𝑞2(𝑡) > 0 by assumption). However, it is

always the case that 𝑧∗11(𝑡) = 𝑠1 for 𝑡 ∈ [0, 𝜏∗].

Assume 𝜏∗ > 0. We now partition the interval [0, 𝜏∗) into subintervals 𝐼1, · · · , 𝐼𝑛 where 𝑛 ≥ 1,

𝐼𝑖 = [𝐴𝑖−1, 𝐴𝑖) and 0 = 𝐴0 < 𝐴1 < · · · < 𝐴𝑛 = 𝜏∗. The subintervals are defined such that in the

interior of each subinterval, i.e., 𝑡 ∈ (𝐴𝑖−1, 𝐴𝑖), either (i) 𝑞1(𝑡) > 0 and 𝑞2(𝑡) > 0, in which case

we say that 𝐼𝑖 is an interior subinterval, or (ii) 𝑞1(𝑡) = 0 and 𝑞2(𝑡) > 0, in which case we say that

𝐼𝑖 is a boundary subinterval. Note that it is not possible that 𝑞1(𝑡) > 0 and 𝑞2(𝑡) = 0 for 𝑡 ∈ 𝐼𝑖,

because when 𝑞1(𝑡) > 0, 𝑧∗22(𝑡) = 0 and 𝜆2(𝑡) > 0 during this time. The subintervals 𝐼1, · · · , 𝐼𝑛 do

not necessarily alternate between interior and boundary subintervals: it is possible that 𝐼𝑘 and 𝐼𝑘+1

are both interior subintervals, with 𝑞1(𝑡) hitting zero at the single point 𝐴𝑘 .
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Define the adjoint vector

𝑝∗2(𝑡) =


ℎ2(𝜏∗2 − 𝑡), 𝑡 ∈ [0, 𝜏′2),

0, 𝑡 ∈ [𝜏′2,∞).

We also define

𝑝∗1(𝑡) =


ℎ1(𝜏∗1 − 𝑡), 𝑡 ∈ [𝜏∗, 𝜏∗1 ),

0, 𝑡 ∈ [𝜏∗1 , 𝜅𝑏).

With 𝑝∗1(𝐴𝑛) = 𝑝
∗
1(𝜏

∗) defined, we recursively define 𝑝∗1(𝑡) for 𝑡 ∈ [0, 𝐴𝑛). We will do this in such

a way that (i) the jumps of 𝑝∗1, if any, occur only when 𝑞∗1(𝑡) = 0 and are positive; (ii) in interior

subintervals 𝐼𝑖,

𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 ≥ 0; (A.24)

and (iii) in boundary subintervals 𝐼𝑖,

𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 = 0. (A.25)

Note that this is done exactly as in the proof of Theorem 1.

Likewise, define

𝑝∗1(𝑡) =


ℎ1(𝜏′1 − 𝑡), 𝑡 ∈ [𝜏′, 𝜏′1),

0, 𝑡 ∈ [𝜏′1, 𝜅𝑏).

With 𝑝∗1(𝜏
′) defined, we can again recursively define 𝑝∗1(𝑡) for 𝑡 ∈ [𝜅𝑏, 𝜏′) such that (i) the jumps

of 𝑝∗1, if any, occur only when 𝑞∗1(𝑡) = 0 and are positive; (ii) in interior subintervals 𝐼𝑖 of [𝜅𝑏, 𝜏𝑑),

𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 ≥ 0; (A.26)
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and (iii) in boundary subintervals 𝐼𝑖 of [𝜅𝑏, 𝜏𝑑),

𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 = 0. (A.27)

Note that while 𝑝∗2(𝑡) decreases linearly to zero, 𝑝∗1(𝑡) may not always be decreasing as it has a

jump at time 𝜅𝑏.

Define the multipliers

𝜂∗1(𝑡) =



0, 𝑡 ∈ 𝐼𝑘 and 𝐼𝑘 is an interior subinterval,

ℎ1 − ℎ2𝜇22
𝜇12

, 𝑡 ∈ 𝐼𝑘 and 𝐼𝑘 is a boundary subinterval,

0, 𝑡 ∈ [𝜏∗, 𝜏∗1 )
⋃[𝜏𝑑 , 𝜏′1),

ℎ1, 𝑡 ∈ [𝜏∗1 , 𝜅𝑏)
⋃[𝜏′1,∞),

𝜂∗2(𝑡) =


0, 𝑡 ∈ [0, 𝜏′2),

ℎ2, 𝑡 ∈ [𝜏′2,∞)

𝛾∗1 (𝑡) =


𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [0, 𝜏∗1 )

⋃[𝜅𝑏, 𝜏′1),

0, 𝑡 ∈ [𝜏∗1 , 𝜅𝑏)
⋃[𝜏′1,∞),

𝛾∗2 (𝑡) =



𝑝∗1(𝑡)𝜇12 − 𝜙12, 𝑡 ∈ [0, 𝜏∗)⋃[𝜅𝑏, 𝜏′)

𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [𝜏∗, 𝜅𝑏)
⋃[𝜏′, 𝜏′2),

0, 𝑡 ∈ [𝜏′2,∞)
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𝜉∗12(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗)⋃[𝜅𝑏, 𝜏′),

𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [𝜏∗, 𝜅𝑏)
⋃[𝜏′,∞),

𝜉∗22(𝑡) =


𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝜏∗)⋃[𝜅𝑏, 𝜏′),

0, 𝑡 ∈ [𝜏∗, 𝜅𝑏)
⋃[𝜏′,∞)

and 𝜉∗11(𝑡) = 0 for all 𝑡 ≥ 0. Note that if 𝜏∗ > 0, 𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 ≥ 0 for 𝑡 ∈ [0, 𝜏∗) by

construction, and 𝑝∗1(𝑡)𝜇12−𝜙12−𝑝∗2(𝑡)𝜇22 ≤ 0 for 𝑡 ∈ [𝜏∗,∞) since 𝑝∗1(𝜏
∗)𝜇12−𝜙12−𝑝∗2(𝜏

∗)𝜇22 ≤

0 (it is worth noting that strict inequality can occur if 𝑞∗1(𝑡) hits zero exactly at time 𝜅𝑏, since then

𝐺 𝑡
1(𝑞

∗
1(𝑡)) will jump at time 𝜏∗1 ) and ℎ1𝜇12 − ℎ2𝜇22 ≥ 0. Thus, 𝜉∗12 and 𝜉∗22 are non-negative on

[0, 𝜅𝑏). Similarly, they are non-negative on [𝜅𝑏,∞).

The conditions (ODE), (ADJ), (J), and (H) are easily verified. For (C), we only need to check

that when 𝑧∗22(𝑡) > 0 in boundary subintervals 𝑡 ∈ [𝐴𝑘−1, 𝐴𝑘 ), 𝜉∗22(𝑡) = 0. This holds because of

(A.25) and (A.27). We now verify (T). Note that

∇𝑧11𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = −𝑝∗1(𝑡)𝜇11 + 𝛾∗1 (𝑡) − 𝜉
∗
11(𝑡) = 0

because 𝜉∗11(𝑡) = 0 and 𝛾∗1 (𝑡) = 𝑝
∗
1(𝑡)𝜇11. Next,

∇𝑧22𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = −𝑝∗2(𝑡)𝜇22 + 𝛾∗2 (𝑡) − 𝜉
∗
22(𝑡) = 0

because 𝜉∗22(𝑡) = 𝛾
∗
2 (𝑡) − 𝑝

∗
2(𝑡)𝜇22 for 𝑡 ∈ [0, 𝜏∗)⋃[𝜅𝑏, 𝜏𝑑), and 𝜉∗22(𝑡) = 0 and 𝛾∗2 (𝑡) = 𝑝∗2(𝑡)𝜇22

otherwise. Finally,

∇𝑧12𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝛾∗2 (𝑡) − 𝜉
∗
12(𝑡) = 0

because 𝜉∗12(𝑡) = 0 and 𝛾∗2 (𝑡) = 𝑝∗1(𝑡)𝜇12 − 𝜙12 for 𝑡 ∈ [0, 𝜏∗)⋃[𝜅𝑏, 𝜏𝑑), and 𝜉∗12(𝑡) = 𝜙12 −
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𝑝∗1(𝑡)𝜇12 + 𝛾∗2 (𝑡) otherwise.

It remains to verify (M). It is clear that 𝑧∗11(𝑡) should always be maximal. (This is slightly less

clear if 𝑞∗1(𝑡) = 0 for some 𝑡 < 𝜏∗, since there is a constraint 𝑧∗11(𝑡)𝜇11 + 𝑧∗12(𝑡)𝜇12 ≤ 𝜆1(𝑡) when

𝑞∗1(𝑡) = 0. In this case, (M) follows because the coefficients of 𝑧∗11(𝑡) and 𝑧∗12(𝑡) are −𝑝∗1(𝑡)𝜇11

and 𝜙12 − 𝑝∗1(𝑡)𝜇12.) For 𝑡 ∈ [0, 𝜏∗)⋃[𝜅𝑏, 𝜏𝑑), the coefficients of 𝑧∗12(𝑡) and 𝑧∗22(𝑡) are respectively

𝜙12 − 𝑝∗1(𝑡)𝜇12 and −𝑝∗2(𝑡)𝜇22. Since 𝑝∗1(𝑡)𝜇12 − 𝜙12 ≥ 𝑝∗2(𝑡)𝜇22, it is optimal to have 𝑧∗12(𝑡)

maximal. For other 𝑡, the reverse inequality is true, and so it is optimal to have 𝑧∗22(𝑡) maximal.

This in turn implies that 𝑧∗12(𝑡) = 0 for 𝑡 < 𝜏′2 is optimal (pool 2 has no spare capacity to help class

1). When 𝑡 ≥ 𝜏′2, 𝜙12 − 𝑝∗1(𝑡)𝜇12 ≤ 0, and again 𝑧∗12(𝑡) = 0 is optimal.

Case II: ℎ1𝜇12 ≤ ℎ2𝜇22. The proof is similar to that of Theorem 1 and we provide a roadmap here

only. In this case, pool 2 will serve only its own class until the class 2 queue is emptied. Thereafter,

it may provide partial help to class 1 for up to two different intervals, one for each demand surge

period of class 1.

If 𝑞∗1(𝜅𝑏) > 0, the two demand surges for class 1 behave as a single demand surge, and the

proof of Theorem 1 applies directly. If 𝐺0
2(𝑞2(0)) ≥ 𝜅𝑏, there is at most one demand surge

for class 1 after pool 2 is ready to provide partial help. The proof of Theorem 1 again applies

directly. Suppose instead 𝑞∗1(𝜅𝑏) = 0 and 𝐺0
2(𝑞2(0)) < 𝜅𝑏. In this case, we can apply the proof

of Theorem 1 separately to each of the two intervals [0, 𝜅𝑏) and [𝜅𝑏,∞). Noting that in this case,

𝑞∗1(𝜅𝑏) = 𝑞
∗
2(𝜅𝑏) = 0.

A.7 Optimal control for the X-Model

Proof. Proof of Theorem 4. To prove that the policy characterized in Theorem 4 is optimal, we

shall construct the optimal primal and dual trajectories and show that the conditions in Theorem

11 are satisfied.

Let 𝑞1(0) = 𝑞1 and 𝑞2(0) = 𝑞2. For the X-model, the Hamiltonian takes the form:

𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) =
∑︁
𝑖

ℎ𝑖𝑞𝑖 (𝑡) + 𝜙12𝑧12(𝑡) + 𝜙21𝑧21(𝑡) +
∑︁
𝑖

𝑝𝑖 (𝑡)
(
𝜆𝑖 (𝑡) −

∑︁
𝑗

𝜇𝑖 𝑗 𝑧𝑖 𝑗 (𝑡)
)
.

146



The augmented Hamiltonian takes the form:

𝐿 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝜂(𝑡), 𝛾(𝑡), 𝜉 (𝑡), 𝑡)

= 𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) −
∑︁
𝑖

𝜂𝑖 (𝑡)𝑞𝑖 (𝑡) + 𝛾1(𝑡) (𝑧11(𝑡) + 𝑧21(𝑡) − 𝑠1)

+𝛾2(𝑡) (𝑧12(𝑡) + 𝑧22(𝑡) − 𝑠2) −
∑︁
𝑖, 𝑗

𝜉𝑖 𝑗 (𝑡)𝑧𝑖 𝑗 (𝑡).

Consider first the case ℎ1𝜇12 > ℎ2𝜇22. We further consider two sub-cases, depending on

whether pool 2 initially prioritizes class 1, i.e., whether (2.11) holds at 𝑡 = 0.

Case I: Pool 2 does not initially prioritize class 1, i.e., (2.11) does not hold at 𝑡 = 0. In this

case, the policy is that each pool serves only its own class for 𝑡 < 𝜏1 := 𝐺0
1(𝑞1(0)). Then, pool 1

gives partial help to class 2 for 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗), where

𝜏∗ = inf{𝑡 ≥ 0 : ℎ2𝜇21𝐺
𝜏1+𝑡
2 (𝑞2(𝜏1 + 𝑡)) ≤ 𝜙21}.

At all subsequent times, each pool serves only its own class again. In what follows, intervals of the

form [𝑎, 𝑏) for 𝑏 ≤ 𝑎 are empty.

Let 𝜏∗2 denote the first time at which queue 2 empties. That is, 𝜏∗2 = 𝜏2 := 𝐺0
2(𝑞2(0)) if 𝜏2 ≤ 𝜏1,

and 𝜏∗2 = 𝜏1+𝜏∗+𝐺𝜏1+𝜏∗
2 (𝑞∗2(𝜏1+𝜏∗)) if 𝜏2 > 𝜏1. Note that if 𝜏∗ > 0, then ℎ2𝜇21𝐺

𝜏1+𝜏∗
2 (𝑞∗2(𝜏1+𝜏∗)) =

𝜙21 by continuity, so that 𝜏∗2 = 𝜏1 + 𝜏∗ + 𝜙21
ℎ2𝜇21

.
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The optimal queue length trajectory follows:

𝑞∗1(𝑡) =


𝑞1 +

∫ 𝑡

0 (𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [0, 𝜏1),

0, 𝑡 ∈ [𝜏1,∞),

𝑞∗2(𝑡) =



𝑞2 +
∫ 𝑡

0 (𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [0, 𝜏1 ∧ 𝜏∗2 ),

𝑞∗2(𝜏1) +
∫ 𝑡

𝜏1
(𝜆2(𝑠) − 𝑠2𝜇22 − (𝑠1 − 𝜆1(𝑠)/𝜇11)𝜇21) 𝑑𝑠, 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗),

𝑞∗2(𝜏1 + 𝜏∗) +
∫ 𝑡

𝜏1+𝜏∗
(𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [𝜏1 + 𝜏∗, 𝜏∗2 )

0, 𝑡 ∈ [𝜏∗2 ,∞).

Define the adjoint vectors

𝑝∗1(𝑡) =



ℎ1(𝜏1 − 𝑡) + ℎ2
𝜇21
𝜇11
𝜏∗, 𝑡 ∈ [0, 𝜏1),

ℎ2
𝜇21
𝜇11

(𝜏1 + 𝜏∗ − 𝑡), 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗),

0, 𝑡 ∈ [𝜏1 + 𝜏∗,∞),

𝑝∗2(𝑡) =


ℎ2(𝜏∗2 − 𝑡), 𝑡 ∈ [0, 𝜏∗2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞).

Define the Lagrangian multipliers

𝜂∗1(𝑡) =



0, 𝑡 ∈ [0, 𝜏1),

ℎ1 − ℎ2
𝜇21
𝜇11
, 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗),

ℎ1, 𝑡 ∈ [𝜏1 + 𝜏∗,∞),

𝜂∗2(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗2 ),

ℎ2, 𝑡 ∈ [𝜏∗2 ,∞).
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𝛾∗1 (𝑡) =


𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [0, 𝜏1 + 𝜏∗),

0, 𝑡 ∈ [𝜏1 + 𝜏∗,∞),

𝛾∗2 (𝑡) =


𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝜏∗2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞).

𝜉∗12(𝑡) =


𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝜏1 + 𝜏∗),

𝜙12 + 𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [𝜏1 + 𝜏∗,∞),

𝜉∗21(𝑡) =



𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [0, 𝜏1),

0, 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗),

𝜙21 − 𝑝∗2(𝑡)𝜇21, 𝑡 ∈ [𝜏1 + 𝜏∗,∞),

and 𝜉∗11(𝑡) = 𝜉
∗
22(𝑡) = 0 for all 𝑡 ≥ 0. Note that 𝜂∗1(𝑡) ≥ 0 because ℎ1𝜇11 ≥ ℎ2𝜇21 by assumption.

To see that 𝜉∗21(𝑡) ≥ 0, note that because ℎ2𝜇21 ≤ ℎ1𝜇11, 𝜉∗21(𝑡) is non-increasing on [0, 𝜏1).

Moreover, if 𝜏∗ > 0, it approaches zero as 𝑡 → 𝜏1 (because ℎ2𝜇21(𝜏∗2 − 𝜏∗ − 𝜏1) = 𝜙21), while if

𝜏∗ = 0, it approaches 𝜙21 − ℎ2𝜇21𝐺
𝜏1
2 (𝑞2(𝜏1)) ≥ 0 instead, even if 𝜏∗2 ≤ 𝜏1.

To see that 𝜉∗12(𝑡) ≥ 0, note that it is non-decreasing on [0, 𝜏1) (because ℎ1𝜇12 ≥ ℎ2𝜇22), it is

monotone on [𝜏1, 𝜏1 + 𝜏∗), and it attains the value 𝜙12 + 𝑝∗2(𝜏1 + 𝜏∗)𝜇22 ≥ 0 at 𝜏1 + 𝜏∗. Thus, it

suffices to check that 𝜉∗12(0) ≥ 0. Meanwhile 𝜉∗12(0) ≥ 0 is equivalent to (2.11) is violated, which

is assumed in this case.

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-

tion.
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We now verify (T). We have for 𝑖 = 1, 2 that

∇𝑧𝑖𝑖𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = −𝑝∗𝑖 (𝑡)𝜇𝑖𝑖 + 𝛾∗𝑖 (𝑡) − 𝜉∗𝑖𝑖 (𝑡) = 0

because 𝜉∗
𝑖𝑖
(𝑡) = 0 and 𝛾∗

𝑖
(𝑡) = 𝑝∗

𝑖
(𝑡)𝜇𝑖𝑖. Next,

∇𝑧12𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝛾∗2 (𝑡) − 𝜉
∗
12(𝑡) = 0

because 𝜉∗12(𝑡) = 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22. Finally,

∇𝑧21𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡) − 𝜉
∗
21(𝑡).

For 𝑡 ≥ 𝜏1+𝜏∗, 𝜙21−𝑝∗2(𝑡)𝜇21+𝛾∗1 (𝑡)−𝜉
∗
21(𝑡) = 0 because the 𝛾∗1 (𝑡) = 0 and 𝜉∗21(𝑡) = 𝜙21−𝑝∗2(𝑡)𝜇21.

For 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗), we get

𝜙21− 𝑝∗2(𝑡)𝜇21+ 𝑝∗1(𝑡)𝜇11 = 𝜙21−ℎ2𝜇21
(
(𝜏∗2 − 𝑡) − (𝜏1 + 𝜏∗ − 𝑡)

)
= 𝜙21−ℎ2𝜇21𝐺

𝜏1+𝜏∗
2 (𝑞∗2(𝜏1+𝜏∗))

which is zero. Finally, for 𝑡 ∈ [0, 𝜏1), 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡) − 𝜉
∗
21(𝑡) = 0 because 𝜉∗21(𝑡) =

𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡).

It remains to verify (M). The coefficients of 𝑧∗11(𝑡) and 𝑧∗21(𝑡) are respectively −𝑝∗1(𝑡)𝜇11 and

𝜙21 − 𝑝∗2(𝑡)𝜇21. Note that 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝑝∗1(𝑡)𝜇11 = 𝜉∗21(𝑡) ≥ 0 for all 𝑡, so the Hamiltonian is

minimized by setting 𝑧∗11(𝑡) maximal, i.e. pool 1 prioritizing class 1. For 𝑡 < 𝜏1, 𝐺 𝑡
1(𝑞1(𝑡)) > 0,

so pool 1 has no capacity to help class 2, i.e. 𝑧∗21(𝑡) = 0. For 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗), 𝜙21 − 𝑝∗2(𝑡)𝜇21 = 0,

so it is Hamiltonian-minimal (i.e. minimizes the Hamiltonian) for pool 1 to partially help class

2 (not helping is also Hamiltonian-minimal), i.e. 𝑧∗21(𝑡) = 𝑁1 − 𝑧∗11(𝑡). Finally, for 𝑡 ≥ 𝜏1 + 𝜏∗,

𝜙21 − 𝑝∗2(𝑡)𝜇21 ≥ 0, and so it is Hamiltonian-minimal for pool 2 to serve only its own class.

Next, the coefficients of 𝑧∗12(𝑡) and 𝑧∗22(𝑡) are respectively 𝜙12 − 𝑝∗1(𝑡)𝜇12 and −𝑝∗2(𝑡)𝜇22. Note

that 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22 = 𝜉∗12(𝑡) ≥ 0, for all 𝑡, so the Hamiltonian is minimized by setting
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𝑧∗22(𝑡) maximal, i.e., pool 2 prioritizing class 2. Thus, for 𝑡 < 𝜏∗2 , it is Hamiltonian-minimal to have

𝑧∗22(𝑡) = 𝑁2 and 𝑧∗12(𝑡) = 0. If 𝜏∗2 < 𝜏1 and 𝑡 ≥ 𝜏∗2 , 𝜙12 − 𝑝∗1(𝑡)𝜇12 = 𝜉∗12(𝑡) ≥ 0, and so it is again

Hamiltonian-minimal to have 𝑧∗12(𝑡) = 0. This completes the proof for case I.

Case II: Pool 2 initially prioritizes class 1, i.e., (2.11) holds at 𝑡 = 0. Let 𝑇1 > 0 be the length

of time pool 2 initially prioritizes class 1. By continuity, equality holds for (2.11) at 𝑡 = 𝑇1. In the

next period [𝑇1, 𝑇2), each pool serves its own primary class until queue 1 empties at time 𝑇2. Next,

in [𝑇2, 𝑇3), pool 1 partially helps class 2, i.e. 𝑧∗21(𝑡) = 𝑠1 − 𝑧∗11(𝑡). Finally, for all remaining time

𝑡 ≥ 𝑇3, each pool again serves only its own primary class. Here, 0 < 𝑇1 ≤ 𝑇2 ≤ 𝑇3, with 𝑇2 = 𝑇3 if

𝐺
𝑇2
2 (𝑞∗2(𝑇2)) ≤ 𝜙21

ℎ2𝜇21
. Also, 𝑇1 = 𝑇2 is only possible if 𝜙12 = 0.

Let 𝑇4 be the time other than zero that queue 2 empties after its demand surge ends, i.e. 𝑇4 =

inf{𝑡 > 0 : 𝐺 𝑡
2(𝑞

∗
2(𝑡)) = 0}. It is possible that 𝑇4 ≤ 𝑇2 or 𝑇4 > 𝑇2. If 𝑇4 > 𝑇2, then 𝑇4 =

𝑇3 + 𝐺𝑇3
2 (𝑞∗2(𝑇3)). Note that the restriction that 𝑡 > 0 is necessary because it is possible that

𝐺0
2(𝑞2(0)) = 0 if 𝑞2(0) = 0 and 𝜅2 = 0.

The optimal queue length trajectory follows:

𝑞∗1(𝑡) =



𝑞1 +
∫ 𝑡

0 (𝜆1(𝑠) − 𝑠1𝜇11 − 𝑧∗12(𝑠)𝜇12) 𝑑𝑠, 𝑡 ∈ [0, 𝑇1),

𝑞∗1(𝜏1) +
∫ 𝑡

𝜏1
(𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [𝑇1, 𝑇2),

0, 𝑡 ∈ [𝑇2,∞),

𝑞∗2(𝑡) =



𝑞2 +
∫ 𝑡

0 (𝜆2(𝑠) − 𝑧∗22(𝑠)𝜇22) 𝑑𝑠, 𝑡 ∈ [0, 𝑇1),

𝑞∗2(𝜏1) +
∫ 𝑡

𝜏1
(𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [𝑇1, 𝑇2 ∧ 𝑇4),

𝑞∗2(𝜏2) +
∫ 𝑡

𝜏2
(𝜆2(𝑠) − 𝑠2𝜇22 − (𝑠1 − 𝜆1(𝑠)/𝜇11)𝜇21) 𝑑𝑠, 𝑡 ∈ [𝑇2, 𝑇3),

𝑞∗2(𝑇3) +
∫ 𝑡

𝑇3
(𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [𝑇3, 𝑇4),

0, 𝑡 ∈ [𝑇4,∞).

Note that it is possible that 𝑧∗12(𝑡) < 𝑠2 and 𝑧∗22(𝑡) = 𝑠2 − 𝑧∗12(𝑡) > 0 for 𝑡 ∈ [0, 𝑇1) when pool 2

prioritizes class 1, because it may be that 𝑞∗1(𝑡) = 0 and 𝜆1(𝑡) < 𝑠1𝜇11 + 𝑠2𝜇12 but 𝐺 𝑡
1(𝑞

∗
1(𝑡)) > 0.
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Define the adjoint vector

𝑝∗2(𝑡) =


ℎ2(𝑇4 − 𝑡), 𝑡 ∈ [0, 𝑇4),

0, 𝑡 ∈ [𝑇4,∞).

We also define

𝑝∗1(𝑡) =



ℎ1(𝑇2 − 𝑡) + ℎ2
𝜇21
𝜇11

(𝑇3 − 𝑇2), 𝑡 ∈ [𝑇1, 𝑇2),

ℎ2
𝜇21
𝜇11

(𝑇3 − 𝑡), 𝑡 ∈ [𝑇2, 𝑇3),

0, 𝑡 ∈ [𝑇3,∞).

We also need to define 𝑝∗1(𝑡) for 𝑡 ∈ [0, 𝑇1). We partition the interval [0, 𝑇1) into subintervals

𝐼1, · · · , 𝐼𝑛 where 𝑛 ≥ 1, 𝐼𝑖 = [𝐴𝑖−1, 𝐴𝑖) and 0 = 𝐴0 < 𝐴1 < · · · < 𝐴𝑛 = 𝑇1, as follows. In the

interior 𝑡 ∈ (𝐴𝑖−1, 𝐴𝑖) of each subinterval, either (i) 𝑞∗1(𝑡) > 0 and 𝑞∗2(𝑡) > 0, in which case we

say that 𝐼𝑖 is an interior subinterval, or (ii) 𝑞∗1(𝑡) = 0 and 𝑞∗2(𝑡) > 0, in which case we say that

𝐼𝑖 is a boundary subinterval. Note that it is not possible that 𝑞∗1(𝑡) > 0 and 𝑞∗2(𝑡) = 0 in some

subinterval, because 𝑧∗22(𝑡) = 0 during this time and 𝜆2(𝑡) > 0. Also, Assumption 5 rules out the

case 𝑞∗1(𝑡) = 𝑞
∗
2(𝑡) = 0 (such a subinterval cannot occur after 𝜅1 ∨ 𝜅2, because then 𝐺 𝑡

𝑖
(𝑞𝑖 (𝑡)) = 0

for 𝑖 = 1, 2 and (2.11) cannot hold).

The subintervals 𝐼1, · · · , 𝐼𝑛 do not necessarily alternate between interior and boundary subin-

tervals: it is possible that 𝐼𝑘 and 𝐼𝑘+1 are both interior subintervals, with 𝑞1(𝑡) hitting zero at the

single point 𝐴𝑘 . The fact that there are finitely many such subintervals follows from piecewise

monotonicity in Assumption 5, because the class 1 queue length can only leave zero once during

each monotone period.

With 𝑝∗1(𝐴𝑛) = 𝑝∗1(𝑇1) defined, we recursively define 𝑝∗1(𝑡) for 𝑡 ∈ [0, 𝐴𝑛). We will do this

in such a way that (i) the jumps of 𝑝∗1, if any, occur only when 𝑞∗1(𝑡) = 0 and are positive; (ii) in

interior subintervals 𝐼𝑖,

𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 ≥ 0; (A.28)
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and (iii) in boundary subintervals 𝐼𝑖,

𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 = 0. (A.29)

Note that

𝑝∗1(𝑇1)𝜇12 − 𝜙12 − 𝑝∗2(𝑇1)𝜇22 = 0. (A.30)

Indeed, this statement is equivalent to equality for (2.11) at 𝑡 = 𝑇1, which follows from continuity.

Suppose 𝑝∗1(𝐴𝑘 ) has been defined for some 𝑘 , with 𝑝∗1(𝐴𝑘 )𝜇12 − 𝜙12 − 𝑝∗2(𝐴𝑘 )𝜇22 ≥ 0. If 𝐼𝑘 is

an interior subinterval, we set

𝑝∗1(𝑡) = ℎ1(𝐴𝑘 − 𝑡) + 𝑝∗1(𝐴𝑘 )

for 𝑡 ∈ [𝐴𝑘−1, 𝐴𝑘 ). That is, 𝑝∗1 is continuous at 𝐴𝑘 and has slope −ℎ1 in the subinterval 𝐼𝑘 . Thus,

𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22 has slope ℎ2𝜇22 − ℎ1𝜇12 ≤ 0, which implies that 𝑝∗1(𝐴𝑘−1)𝜇12 − 𝜙12 −

𝑝∗2(𝐴𝑘−1)𝜇22 ≥ 0.

Suppose instead 𝐼𝑘 is a boundary subinterval. We set 𝑝∗1(𝐴𝑘−1) = 𝑝∗2(𝐴𝑘−1)𝜇22/𝜇12 + 𝜙12/𝜇12

and 𝑝∗1(𝑡) = 𝑝∗1(𝐴𝑘−1) − ℎ2𝜇22
𝜇12

(𝑡 − 𝐴𝑘−1) for 𝑡 ∈ (𝐴𝑘−1, 𝐴𝑘 ). That is, 𝑝∗1 has a jump at 𝐴𝑘 and has

slope − ℎ2𝜇22
𝜇12

in the subinterval 𝐼𝑘 . This ensures that 𝜙12 − 𝑝∗1(𝑡)𝜇12 = −𝑝∗2(𝑡)𝜇22 everywhere in

𝐼𝑘 . The size of the jump at 𝐴𝑘 is 𝑝∗1(𝐴𝑘 ) − 𝑝
∗
2(𝐴𝑘 )𝜇22/𝜇12 − 𝜙12/𝜇12 ≥ 0, which is non-negative

because 𝑝∗1(𝐴𝑘 )𝜇12 − 𝜙12 − 𝑝∗2(𝐴𝑘 )𝜇22 ≥ 0. Thus, we have defined 𝑝∗1 for 𝑡 ∈ [0, 𝑇1) satisfying

conditions (i), (ii) and (iii).
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Define the multipliers

𝜂∗1(𝑡) =



0, 𝑡 ∈ 𝐼𝑘 and 𝐼𝑘 is an interior subinterval,

ℎ1 − ℎ2
𝜇22
𝜇12
, 𝑡 ∈ 𝐼𝑘 and 𝐼𝑘 is a boundary subinterval,

0, 𝑡 ∈ [𝑇1, 𝑇2),

ℎ1 − ℎ2
𝜇21
𝜇11
, 𝑡 ∈ [𝑇2, 𝑇3),

ℎ1, 𝑡 ∈ [𝑇3,∞),

𝜂∗2(𝑡) =


0, 𝑡 ∈ [0, 𝑇4),

ℎ2, 𝑡 ∈ [𝑇4,∞).

Note that ℎ1𝜇12 ≥ ℎ2𝜇22 and ℎ1𝜇11 ≥ ℎ2𝜇21, so that 𝜂∗1(𝑡) ≥ 0. Define also

𝛾∗1 (𝑡) =


𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [0, 𝑇3),

0, 𝑡 ∈ [𝑇3,∞),

𝛾∗2 (𝑡) =



𝑝∗1(𝑡)𝜇12 − 𝜙12, 𝑡 ∈ [0, 𝑇1)

𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [𝑇1, 𝑇4),

0, 𝑡 ∈ [𝑇4,∞).
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𝜉∗12(𝑡) =


0, 𝑡 ∈ [0, 𝑇1),

𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [𝑇1,∞),

𝜉∗21(𝑡) =



𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [0, 𝑇2),

0, 𝑡 ∈ [𝑇2, 𝑇3),

𝜙21 − 𝑝∗2(𝑡)𝜇21, 𝑡 ∈ [𝑇3,∞).

𝜉∗22(𝑡) =


𝑝∗1(𝑡)𝜇12 − 𝜙12 − 𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝑇1),

0, 𝑡 ∈ [𝑇1,∞),

and 𝜉∗11(𝑡) = 0 for all 𝑡 ≥ 0. Note that 𝑝∗1(𝑡)𝜇12−𝜙12− 𝑝∗2(𝑡)𝜇22 ≥ 0 for 𝑡 ∈ [0, 𝑇1) by construction.

Also, 𝜙12 − 𝑝∗1(𝑇1)𝜇12 + 𝑝∗2(𝑇1)𝜇22 = 0 from (A.30). Since ℎ1𝜇12 − ℎ2𝜇22 ≥ 0, 𝜙12 − 𝑝∗1(𝑡)𝜇12 +

𝑝∗2(𝑡)𝜇22 is non-decreasing for 𝑡 ∈ [𝑇1, 𝑇3), after which point it equals 𝜙12 + 𝑝∗2(𝑡)𝜇22 ≥ 0. Thus,

𝜉∗12 and 𝜉∗22 are non-negative.

To see that 𝜉∗21(𝑡) ≥ 0, note that because ℎ2𝜇21 ≤ ℎ1𝜇11, 𝜉∗21(𝑡) is non-increasing on [0, 𝑇2)

(its slope is at most ℎ2𝜇21 − ℎ1𝜇11 for 𝑡 ∈ [0, 𝑇1)). If 𝑇3 > 𝑇2, 𝜉∗21(𝑇2−) = 0 and 𝜉∗21(𝑡) is non-

decreasing from its value of zero for 𝑡 ∈ [𝑇3,∞), so that 𝜉∗21(𝑡) ≥ 0 everywhere. If instead 𝑇3 = 𝑇2,

we have 𝜉∗21(𝑇2−) ≥ 0 instead, and the same result holds.

The conditions (ODE), (ADJ), (J), and (H) can be straightforwardly verified by our construc-

tion. For (C), we only need to check that when 𝑧∗22(𝑡) > 0 in boundary subintervals 𝑡 ∈ [𝐴𝑘−1, 𝐴𝑘 ),

𝜉∗22(𝑡) = 0. This holds because of (A.29). (Note that 𝑧∗22(𝐴𝑘 ) = 0.)

We now verify (T). We have that

∇𝑧11𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = −𝑝∗1(𝑡)𝜇11 + 𝛾∗1 (𝑡) − 𝜉
∗
11(𝑡) = 0

because 𝜉∗11(𝑡) = 0 and 𝛾∗1 (𝑡) = 𝑝
∗
1(𝑡)𝜇11. Next,

∇𝑧22𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = −𝑝∗2(𝑡)𝜇22 + 𝛾∗2 (𝑡) − 𝜉
∗
22(𝑡) = 0
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because 𝜉∗22(𝑡) = 𝛾
∗
2 (𝑡) − 𝑝

∗
2(𝑡)𝜇22 for 𝑡 ∈ [0, 𝑇1), and 𝜉∗22(𝑡) = 0 and 𝛾∗2 (𝑡) = 𝑝∗2(𝑡)𝜇22 for 𝑡 ≥ 𝑇1.

Next,

∇𝑧12𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝛾∗2 (𝑡) − 𝜉
∗
12(𝑡) = 0

because 𝜉∗12(𝑡) = 0 and 𝛾∗2 (𝑡) = 𝑝
∗
1(𝑡)𝜇12 − 𝜙12 for 𝑡 ∈ [0, 𝑇1), and 𝜉∗12(𝑡) = 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝛾∗2 (𝑡)

for 𝑡 ≥ 𝑇1. Finally,

∇𝑧21𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡) − 𝜉
∗
21(𝑡) = 0

because 𝜉∗21(𝑡) = 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡) for all 𝑡 ≥ 0.

It remains to verify (M). The coefficients of 𝑧∗11(𝑡) and 𝑧∗21(𝑡) are respectively −𝑝∗1(𝑡)𝜇11 and

𝜙21 − 𝑝∗2(𝑡)𝜇21. Note that 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝑝∗1(𝑡)𝜇11 = 𝜉∗21(𝑡) ≥ 0 for all 𝑡, so the Hamiltonian is

minimized by setting 𝑧∗11(𝑡) maximal, i.e. pool 1 prioritizing class 1. For 𝑡 < 𝑇2, 𝐺 𝑡
1(𝑞1(𝑡)) > 0, so

pool 1 has no capacity to help class 2, i.e. 𝑧∗21(𝑡) = 0. For 𝑡 ∈ [𝑇2, 𝑇3), 𝜙21 − 𝑝∗2(𝑡)𝜇21 = 0, so it is

Hamiltonian-minimal for pool 1 to partially help class 2 (not helping is also Hamiltonian-minimal),

i.e. 𝑧∗21(𝑡) = 𝑠1 − 𝑧∗11(𝑡). Finally, for 𝑡 ≥ 𝑇3, 𝜙21 − 𝑝∗2(𝑡)𝜇21 ≥ 0, and so it is Hamiltonian-minimal

for pool 2 to serve only its own class.

Next, the coefficients of 𝑧∗12(𝑡) and 𝑧∗22(𝑡) are respectively 𝜙12 − 𝑝∗1(𝑡)𝜇12 and −𝑝∗2(𝑡)𝜇22. For

𝑡 < 𝑇1, 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22 = −𝜉∗22(𝑡) ≤ 0, so it is Hamiltonian-minimal to have 𝑧∗12(𝑡)

maximal, i.e. pool 2 prioritizing class 1. Since 𝑝∗2(𝑡) ≥ 0, it is also Hamiltonian-minimal to

have any remaining pool 2 servers serve its own class, i.e. 𝑧∗22(𝑡) = 𝑠2 − 𝑧∗12(𝑡). For 𝑡 ≥ 𝑇1,

𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22 = 𝜉∗12(𝑡) ≥ 0, so it is Hamiltonian-minimal to have 𝑧∗22(𝑡) maximal, i.e.

pool 2 prioritizing class 2. Thus, for 𝑡 < 𝑇4, it is Hamiltonian-minimal to have 𝑧∗22(𝑡) = 𝑠2 and

𝑧∗12(𝑡) = 0. If 𝑇4 < 𝑇2 and 𝑡 ≥ 𝑇2, 𝜙12 − 𝑝∗1(𝑡)𝜇12 = 𝜉∗12(𝑡) ≥ 0, and so it is again Hamiltonian-

minimal to have 𝑧∗12(𝑡) = 0. This completes the proof.

Consider next the other case ℎ1𝜇12 < ℎ2𝜇22 and ℎ2𝜇21 < ℎ1𝜇11. Let 𝜏𝑖 = 𝐺0
𝑖
(𝑞𝑖 (0)) for

𝑖 = 1, 2 be the time for each queue to empty using its own pool. By symmetry, we may assume
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without loss of generality that 𝜏1 ≤ 𝜏2. Thus, the trajectory under the stated policy is as follows.

First, in [0, 𝜏1], each pool serves only its own class until queue 1 empties. Let

𝜏∗ = inf
{
𝑡 ≥ 0 : 𝐺𝜏1+𝑡

2 (𝑞2(𝜏1 + 𝑡)) ≤
𝜙21
ℎ2𝜇21

}
.

Then, pool 1 will partially help class 2 for 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗), after which helping stops and both

pools again serve only their own class, until queue 2 is also emptied.

Let 𝜏∗2 = 𝜏1 + 𝜏∗ + 𝐺𝜏1+𝜏∗
2 (𝑞∗2(𝜏1 + 𝜏∗)) be the time until queue 2 empties. Note that if 𝜏∗ > 0,

then ℎ2𝜇21𝐺
𝜏1+𝜏∗
2 (𝑞∗2(𝜏1 + 𝜏∗)) = 𝜙21 by continuity, so that 𝜏∗2 = 𝜏1 + 𝜏∗ + 𝜙21

ℎ2𝜇21
.

The optimal queue length trajectory follows:

𝑞∗1(𝑡) =


𝑞1 +

∫ 𝑡

0 (𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [0, 𝜏1),

0, 𝑡 ∈ [𝜏1,∞),

𝑞∗2(𝑡) =



𝑞2 +
∫ 𝑡

0 (𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [0, 𝜏1),

𝑞∗2(𝜏1) +
∫ 𝑡

𝜏1
(𝜆2(𝑠) − 𝑠2𝜇22 − (𝑠1 − 𝜆1(𝑠)/𝜇11)𝜇21) 𝑑𝑠, 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗),

𝑞∗2(𝜏1 + 𝜏∗) +
∫ 𝑡

𝜏1+𝜏∗
(𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [𝜏1 + 𝜏∗, 𝜏∗2 )

0, 𝑡 ∈ [𝜏∗2 ,∞).

Define the adjoint vectors

𝑝∗1(𝑡) =



ℎ1(𝜏1 − 𝑡) + ℎ2
𝜇21
𝜇11
𝜏∗, 𝑡 ∈ [0, 𝜏1),

ℎ2
𝜇21
𝜇11

(𝜏1 + 𝜏∗ − 𝑡), 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗),

0, 𝑡 ∈ [𝜏1 + 𝜏∗,∞),

𝑝∗2(𝑡) =


ℎ2(𝜏∗2 − 𝑡), 𝑡 ∈ [0, 𝜏∗2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞).
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Define the Lagrangian multipliers

𝜂∗1(𝑡) =



0, 𝑡 ∈ [0, 𝜏1),

ℎ1 − ℎ2
𝜇21
𝜇11
, 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗),

ℎ1, 𝑡 ∈ [𝜏1 + 𝜏∗,∞),

𝜂∗2(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗2 ),

ℎ2, 𝑡 ∈ [𝜏∗2 ,∞).

𝛾∗1 (𝑡) =


𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [0, 𝜏1 + 𝜏∗),

0, 𝑡 ∈ [𝜏1 + 𝜏∗,∞),

𝛾∗2 (𝑡) =


𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝜏∗2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞).

𝜉∗12(𝑡) =


𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝜏1 + 𝜏∗),

𝜙12 + 𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [𝜏1 + 𝜏∗,∞),

𝜉∗21(𝑡) =



𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [0, 𝜏1),

0, 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗),

𝜙21 − 𝑝∗2(𝑡)𝜇21, 𝑡 ∈ [𝜏1 + 𝜏∗,∞),

and 𝜉∗11(𝑡) = 𝜉
∗
22(𝑡) = 0 for all 𝑡 ≥ 0. Note that 𝜂∗1(𝑡) ≥ 0 because ℎ1𝜇11 ≥ ℎ2𝜇21 by assumption.

To see that 𝜉∗21(𝑡) ≥ 0, note that because ℎ2𝜇21 ≤ ℎ1𝜇11, 𝜉∗21(𝑡) is non-increasing on [0, 𝜏1).

Moreover, if 𝜏∗ > 0, it approaches zero as 𝑡 → 𝜏1 (because ℎ2𝜇21(𝜏∗2 − 𝜏∗ − 𝜏1) = 𝜙21), while if

𝜏∗ = 0, it approaches 𝜙21 − ℎ2𝜇21𝐺
𝜏1
2 (𝑞2(𝜏1)) ≥ 0 instead, even if 𝜏∗2 ≤ 𝜏1.
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Next, note that 𝜉∗12(𝑡) is non-increasing on [0, 𝜏1) (because ℎ1𝜇12 ≤ ℎ2𝜇22) and decreasing on

[𝜏1, 𝜏1 + 𝜏∗), at which point it attains the value 𝜙12 + 𝑝∗2(𝜏1 + 𝜏∗)𝜇22 ≥ 0. Thus, 𝜉∗12(𝑡) ≥ 0 for all 𝑡.

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-

tion.

We now verify (T). We have for 𝑖 = 1, 2 that

∇𝑧𝑖𝑖𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = −𝑝∗𝑖 (𝑡)𝜇𝑖𝑖 + 𝛾∗𝑖 (𝑡) − 𝜉∗𝑖𝑖 (𝑡) = 0

because 𝜉∗
𝑖𝑖
(𝑡) = 0 and 𝛾∗

𝑖
(𝑡) = 𝑝∗

𝑖
(𝑡)𝜇𝑖𝑖. Next,

∇𝑧12𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝛾∗2 (𝑡) − 𝜉
∗
12(𝑡) = 0

because 𝜉∗12(𝑡) = 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22. Finally,

∇𝑧21𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡)) = 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡) − 𝜉
∗
21(𝑡).

For 𝑡 ≥ 𝜏1 + 𝜏∗, 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡) − 𝜉
∗
21(𝑡) = 0 because the third term is zero and 𝜉∗21(𝑡) =

𝜙21 − 𝑝∗2(𝑡)𝜇21. For 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗), we get

𝜙21− 𝑝∗2(𝑡)𝜇21+ 𝑝∗1(𝑡)𝜇11 = 𝜙21−ℎ2𝜇21
(
(𝜏∗2 − 𝑡) − (𝜏1 + 𝜏∗ − 𝑡)

)
= 𝜙21−ℎ2𝜇21𝐺

𝜏1+𝜏∗
2 (𝑞∗2(𝜏1+𝜏∗))

which is zero. Finally, for 𝑡 ∈ [0, 𝜏1), 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡) − 𝜉
∗
21(𝑡) = 0 because 𝜉∗21(𝑡) =

𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡).

It remains to verify Hamiltonian minimization. The coefficients of 𝑧∗11(𝑡) and 𝑧∗21(𝑡) are respec-

tively −𝑝∗1(𝑡)𝜇11 and 𝜙21 − 𝑝∗2(𝑡)𝜇21. Note that 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝑝∗1(𝑡)𝜇11 = 𝜉∗21(𝑡) ≥ 0 for all 𝑡, so

the Hamiltonian is minimized by setting 𝑧∗11(𝑡) maximal, i.e. pool 1 prioritizing class 1. For 𝑡 < 𝜏1,

𝐺 𝑡
1(𝑞1(𝑡)) > 0, so pool 1 has no capacity to help class 2, i.e. 𝑧∗21(𝑡) = 0. For 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏∗),

𝜙21 − 𝑝∗2(𝑡)𝜇21 = 0, so it is Hamiltonian-minimal for pool 1 to partially help class 2 (not helping is
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also Hamiltonian-minimal), i.e. 𝑧∗21(𝑡) = 𝑠1 − 𝑧∗11(𝑡). Finally, for 𝑡 ≥ 𝜏1 + 𝜏∗, 𝜙21 − 𝑝∗2(𝑡)𝜇21 ≥ 0,

and so it is Hamiltonian-minimal for pool 2 to serve only its own class.

Next, the coefficients of 𝑧∗12(𝑡) and 𝑧∗22(𝑡) are respectively 𝜙12 − 𝑝∗1(𝑡)𝜇12 and −𝑝∗2(𝑡)𝜇22. Note

that 𝜙12 − 𝑝∗1(𝑡)𝜇12 + 𝑝∗2(𝑡)𝜇22 = 𝜉∗12(𝑡) ≥ 0, for all 𝑡, so the Hamiltonian is minimized by setting

𝑧∗22(𝑡) maximal, i.e. pool 2 prioritizing class 2. Thus, for 𝑡 < 𝜏∗2 , it is Hamiltonian-minimal to have

𝑧∗22(𝑡) = 𝑠2 and 𝑧∗12(𝑡) = 0. If 𝜏∗2 < 𝜏1 and 𝑡 ≥ 𝜏∗2 , 𝜙12 − 𝑝∗1(𝑡)𝜇12 = 𝜉∗12(𝑡) ≥ 0, and so it is again

Hamiltonian-minimal to have 𝑧∗12(𝑡) = 0. This completes the proof.

A.8 Optimal control for the exN1-Model

Proof. Proof of Theorem 9. We will construct the optimal primal and dual trajectories under the

policy characterized in Theorem 9 and show that the conditions in Theorem 11 are satisfied.

Case I: ℎ1𝜇12 ≥ ℎ2𝜇22 and ℎ1𝜇13 ≥ ℎ3𝜇33. Let 𝑞∗(𝑡), 𝑧∗(𝑡) be the trajectories under the given

control. The trajectory is such that each pool 𝑖 = 2, 3 gives priority to class 1 for some (possibly

zero) time, then only helps its own class thereafter. To see this, suppose without loss of generality

that pool 2 is the first pool to stop giving priority to class 1. After this point, 𝐺̄ 𝑡
𝑒𝑥𝑁1,1,3(𝑞(𝑡))

decreases at rate 1 while pool 3 continues to give priority to class 1, and 𝐺 𝑡
2(𝑞2(𝑡)) decreases at

rate 1 as well. Since ℎ1𝜇12 ≥ ℎ2𝜇22, (A.1) does not hold at all subsequent times. When pool 3

stops helping class 1, 𝐺̄ 𝑡
𝑒𝑥𝑁1,1,3(𝑞(𝑡)) = 𝐺

𝑡
1(𝑞1(𝑡), and again, because ℎ1𝜇12 ≥ ℎ2𝜇22, the second

inequality in (A.2) is never subsequently triggered.

Define 𝜆1,3(𝑡) = 𝜆1(𝑡)−𝑧∗13(𝑡)𝜇13 to be the class 1 arrival rate ‘seen’ by pool 2, after accounting

for the effects of pool 3’s help. We claim that (𝑞∗1(𝑡), 𝑞
∗
2(𝑡), 𝑧

∗
11(𝑡), 𝑧

∗
12(𝑡)), 𝑧

∗
22(𝑡)) corresponds to

that of Theorem 1 for the N-model, where the arrival rate of class 1 is replaced by 𝜆1,3(𝑡). To

see this, consider the two cases: (i) pool 2 stops helping class 1 after pool 3, and (ii) pool 2 stops

helping class 1 before pool 3. If (i), then pool 2 stops helping class 1 when (A.2) is violated, which

is precisely the same condition as in the N-model. If (ii), note that pool 2 stops helping class 1

when (A.1) is violated. Recall the definition of 𝐹 𝑡3(𝑞). Note that when pool 2 stops helping class 1

at time 𝑡, pool 3 continues to help class 1 for time 𝐹 𝑡3(𝑞), by construction. After which, pool 1 will
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take a further time 𝐺
𝑡+𝐺𝑡

3 (𝑞)+𝑃
𝑡
3 (𝑞)

1 (𝑞1(𝑡 + 𝐺 𝑡
3(𝑞) + 𝑃

𝑡
3(𝑞))) to empty. As such,

𝐺̄ 𝑡
𝑒𝑥𝑁1,1,3(𝑞(𝑡)) = 𝐺

𝑡
1(𝑞1(𝑡)),

where in the definition of 𝐺 𝑡
1, the arrival rate of class 1 is replaced by 𝜆1,3(𝑡). This proves the

claim.

From the proof of Theorem 1, we obtain 𝑝∗
𝑖
(𝑡), 𝜂∗

𝑖
(𝑡), 𝛾∗

𝑖
(𝑡), 𝜉∗1𝑖 (𝑡), 𝜉

∗
𝑖𝑖
(𝑡) for 𝑖 = 1, 2. Repeat-

ing the above procedure of considering 𝜆1,2(𝑡) = 𝜆1(𝑡) − 𝑧12(𝑡)𝜇12, we obtain 𝑝∗
𝑖
(𝑡), 𝜂∗

𝑖
(𝑡), 𝛾∗

𝑖
(𝑡),

𝜉∗1𝑖 (𝑡), 𝜉
∗
𝑖𝑖
(𝑡) for 𝑖 = 1, 3. Note that the obtained values of 𝑝∗1(𝑡), 𝜂

∗
1(𝑡), 𝛾

∗
1 (𝑡), 𝜉

∗
11(𝑡) are the same.

The conditions (ODE), (ADJ), (T), (C) and (J) follow directly from the N-model analysis. It

remains to verify (M).

The Hamiltonian is

𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) =
∑︁
𝑖

ℎ𝑖𝑞𝑖 (𝑡) +
∑︁
𝑗≠1

𝜙1 𝑗 𝑧1 𝑗 (𝑡) +
∑︁
𝑖

𝑝𝑖 (𝑡)
(
𝜆𝑖 (𝑡) −

∑︁
𝑗

𝜇𝑖 𝑗 𝑧𝑖 𝑗 (𝑡)
)
.(A.31)

For 𝑖 = 2, 3, the coefficients of 𝑧1𝑖 (𝑡) and 𝑧𝑖𝑖 (𝑡) are 𝜙1𝑖 − 𝑝∗1(𝑡)𝜇1𝑖 and −𝑝∗
𝑖
(𝑡)𝜇𝑖𝑖. By the proof of

the corresponding N-model, 𝜙1𝑖 − 𝑝∗1(𝑡)𝜇1𝑖 ≤ −𝑝∗
𝑖
(𝑡)𝜇𝑖𝑖 ≤ 0 whenever pool 𝑖 is prioritizing class

1, 𝜙1𝑖 − 𝑝∗1(𝑡)𝜇1𝑖 ≥ −𝑝∗
𝑖
(𝑡)𝜇𝑖𝑖 whenever pool 𝑖 is prioritizing its own class and 𝐺 𝑡

𝑖
(𝑞𝑖 (𝑡)) > 0 and

𝜙1𝑖 − 𝑝∗1(𝑡)𝜇1𝑖 ≥ 0 whenever pool 𝐺 𝑡
𝑖
(𝑞𝑖 (𝑡)) = 0. Moreover, by Assumption 6, 𝑞1(𝑡) > 0 whenever

pool 𝑖 is prioritizing class 1. This establishes (M).

Case II: ℎ1𝜇12 < ℎ2𝜇22 and ℎ1𝜇13 > ℎ3𝜇33.

The argument is similar to that of Case I. Let 𝑞∗(𝑡), 𝑧∗(𝑡) be the trajectories under the given

control. Define 𝜆1,3(𝑡) = 𝜆1(𝑡) − 𝑧∗13(𝑡)𝜇13 to be the class 1 arrival rate ‘seen’ by pool 2, after

accounting for the effects of pool 3’s help. We claim that (𝑞∗1(𝑡), 𝑞
∗
2(𝑡), 𝑧

∗
11(𝑡), 𝑧

∗
12(𝑡)), 𝑧

∗
22(𝑡)) cor-

responds to that of Theorem 1 for the N-model, where the arrival rate of class 1 is replaced by

𝜆1,3(𝑡). To see this, note that pool 2 stops partial helping class 1 when the inequality in (A.5) is

violated. At this time, pool 3 will continue to prioritize class 1 until (A.6) is violated (if it has not
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yet stopped prioritizing class 1). Thus, the class 1 queue will take an additional

𝐺̄ 𝑡
exN1,1,3(𝑞) = 𝐺

𝑡
3(𝑞3) + 𝑃𝑡3(𝑞) + 𝐺

𝑡+𝐺𝑡
3 (𝑞)+𝑃

𝑡
3 (𝑞)

1 (𝑞1(𝑡 + 𝐺 𝑡
3(𝑞) + 𝑃

𝑡
3(𝑞)))

time to empty, as required.

From the proof of Theorem 1, we obtain 𝑝∗
𝑖
(𝑡), 𝜂∗

𝑖
(𝑡), 𝛾∗

𝑖
(𝑡), 𝜉∗1𝑖 (𝑡), 𝜉

∗
𝑖𝑖
(𝑡) for 𝑖 = 1, 2. Repeat-

ing the above procedure of considering 𝜆1,2(𝑡) = 𝜆1(𝑡) − 𝑧12(𝑡)𝜇12, we obtain 𝑝∗
𝑖
(𝑡), 𝜂∗

𝑖
(𝑡), 𝛾∗

𝑖
(𝑡),

𝜉∗1𝑖 (𝑡), 𝜉
∗
𝑖𝑖
(𝑡) for 𝑖 = 1, 3. Note that the obtained values of 𝑝∗1(𝑡), 𝜂

∗
1(𝑡), 𝛾

∗
1 (𝑡), 𝜉

∗
11(𝑡) are the same.

The conditions (ODE), (ADJ), (T), (C), and (J) all follow directly from the N-model analysis.

It remains to verify (M).

The Hamiltonian is

𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) =
∑︁
𝑖

ℎ𝑖𝑞𝑖 (𝑡) +
∑︁
𝑗≠1

𝜙1 𝑗 𝑧1 𝑗 (𝑡) +
∑︁
𝑖

𝑝𝑖 (𝑡)
(
𝜆𝑖 (𝑡) −

∑︁
𝑗

𝜇𝑖 𝑗 𝑧𝑖 𝑗 (𝑡)
)
.(A.32)

For 𝑖 = 2, 3, the coefficients of 𝑧1𝑖 (𝑡) and 𝑧𝑖𝑖 (𝑡) are 𝜙1𝑖− 𝑝∗1(𝑡)𝜇1𝑖 and −𝑝∗
𝑖
(𝑡)𝜇𝑖𝑖. By the proof of the

corresponding N-model (consisting of classes 1 and 3), 𝜙13− 𝑝∗1(𝑡)𝜇13 ≤ −𝑝∗3(𝑡)𝜇33 ≤ 0 whenever

pool 3 is prioritizing class 1, 𝜙13 − 𝑝∗1(𝑡)𝜇13 ≥ −𝑝∗3(𝑡)𝜇33 whenever pool 3 is prioritizing its own

class and 𝐺 𝑡
3(𝑞3(𝑡)) > 0 and 𝜙13 − 𝑝∗1(𝑡)𝜇13 ≥ 0 whenever pool 𝐺 𝑡

3(𝑞3(𝑡)) = 0. Also, by the proof

of the corresponding N-model (consisting of classes 1 and 2), 𝜙12 − 𝑝∗1(𝑡)𝜇12 ≥ −𝑝∗2(𝑡)𝜇22 for all

𝑡, so it is optimal for pool 2 to prioritize its own class for all 𝑡. It also follows from the proof of the

N-model that 𝜙12 − 𝑝∗1(𝑡)𝜇12 ≤ 0 when pool 2 is partially helping class 2, and 𝜙12 − 𝑝∗1(𝑡)𝜇12 ≥ 0

otherwise. Moreover, by Assumption 6, 𝑞1(𝑡) > 0 whenever pool 𝑖 is providing help to class 1.

This establishes (M).

Case III: ℎ1𝜇12 < ℎ2𝜇22 and ℎ1𝜇13 < ℎ3𝜇33. The argument is similar to the previous two

cases. Let 𝑞∗(𝑡), 𝑧∗(𝑡) be the trajectories under the given control. Define 𝜆1,3(𝑡) = 𝜆1(𝑡)−𝑧∗13(𝑡)𝜇13

to be the class 1 arrival rate ‘seen’ by pool 2, after accounting for the effects of pool 3’s help. It

follows similarly to the other cases that (𝑞∗1(𝑡), 𝑞
∗
2(𝑡), 𝑧

∗
11(𝑡), 𝑧

∗
12(𝑡)), 𝑧

∗
22(𝑡)) corresponds to that of

Theorem 1 for the N-model, where the arrival rate of class 1 is replaced by 𝜆1,3(𝑡).
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From the proof of Theorem 1, we obtain 𝑝∗
𝑖
(𝑡), 𝜂∗

𝑖
(𝑡), 𝛾∗

𝑖
(𝑡), 𝜉∗1𝑖 (𝑡), 𝜉

∗
𝑖𝑖
(𝑡) for 𝑖 = 1, 2. Repeat-

ing the above procedure of considering 𝜆1,2(𝑡) = 𝜆1(𝑡) − 𝑧12(𝑡)𝜇12, we obtain 𝑝∗
𝑖
(𝑡), 𝜂∗

𝑖
(𝑡), 𝛾∗

𝑖
(𝑡),

𝜉∗1𝑖 (𝑡), 𝜉
∗
𝑖𝑖
(𝑡) for 𝑖 = 1, 3. Note that the obtained values of 𝑝∗1(𝑡), 𝜂

∗
1(𝑡), 𝛾

∗
1 (𝑡), 𝜉

∗
11(𝑡) are the same.

The conditions (ODE), (ADJ), (T), (C), and (J) all follow directly from the N-model analysis.

It remains to verify (M).

The Hamiltonian is

𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) =
∑︁
𝑖

ℎ𝑖𝑞𝑖 (𝑡) +
∑︁
𝑗≠1

𝜙1 𝑗 𝑧1 𝑗 (𝑡) +
∑︁
𝑖

𝑝𝑖 (𝑡)
(
𝜆𝑖 (𝑡) −

∑︁
𝑗

𝜇𝑖 𝑗 𝑧𝑖 𝑗 (𝑡)
)
.(A.33)

For 𝑖 = 2, 3, the coefficients of 𝑧1𝑖 (𝑡) and 𝑧𝑖𝑖 (𝑡) are 𝜙1𝑖− 𝑝∗1(𝑡)𝜇1𝑖 and −𝑝∗
𝑖
(𝑡)𝜇𝑖𝑖. By the proof of the

corresponding N-model, 𝜙1𝑖−𝑝∗1(𝑡)𝜇1𝑖 ≥ −𝑝∗
𝑖
(𝑡)𝜇𝑖𝑖 for 𝑖 = 2, 3 and all 𝑡, so it is optimal for pool 𝑖 to

prioritize its own class for all 𝑡. It also follows from the proof of the N-model that 𝜙1𝑖−𝑝∗𝑖 (𝑡)𝜇1𝑖 ≤ 0

when pool 𝑖 is partially helping class 2, and 𝜙1𝑖−𝑝∗1(𝑡)𝜇1𝑖 ≥ 0 otherwise. Moreover, by Assumption

6, 𝑞1(𝑡) > 0 whenever pool 𝑖 is providing help to class 1. This establishes (M).

A.9 Optimal control for the exN2-Model

Proof. Proof of Theorem 10. We will construct the optimal primal and dual trajectories under the

policy characterized in Theorem 10 and show that the conditions in Theorem 11 are satisfied.

Let 𝑞1(0) = 𝑞1 and 𝑞2(0) = 𝑞2. For the exN2-model, the Hamiltonian takes the form:

𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) =
∑︁
𝑖

ℎ𝑖𝑞𝑖 (𝑡) +
3∑︁
𝑗=2

𝜙 𝑗1𝑧 𝑗1(𝑡) +
∑︁
𝑖

𝑝𝑖 (𝑡)
(
𝜆𝑖 (𝑡) −

∑︁
𝑗

𝜇𝑖 𝑗 𝑧𝑖 𝑗 (𝑡)
)
.(A.34)

The augmented Hamiltonian takes the form:

𝐿 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝜂(𝑡), 𝛾(𝑡), 𝜉 (𝑡), 𝑡)

= 𝐻 (𝑞(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑡) −
∑︁
𝑖

𝜂𝑖 (𝑡)𝑞𝑖 (𝑡) + 𝛾1(𝑡) (𝑧11(𝑡) + 𝑧21(𝑡) + 𝑧31(𝑡) − 𝑠1)

+ 𝛾2(𝑡) (𝑧22(𝑡) − 𝑠2) + 𝛾3(𝑡) (𝑧33(𝑡) − 𝑠3) −
∑︁
𝑖, 𝑗

𝜉𝑖 𝑗 (𝑡)𝑧𝑖 𝑗 (𝑡).
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Case I: ℎ2𝜇21 ≥ ℎ3𝜇31 ≥ ℎ1𝜇11. In this case, the policy is that pool 1 first fully serves class

2 for a time 𝜏1 ≥ 0, then fully serves class 3 for a time 𝜏2 ≥ 0, then serves only its own class

thereafter. To see this, note first that

ℎ2𝜇21𝐺
𝜏1
2 (𝑞2(𝜏1)) ≤ ℎ1𝜇11𝐺̄𝑒𝑥𝑁2,1(𝑞(𝜏1)) + (ℎ3𝜇31 − ℎ1𝜇11)𝐹 𝑡 (𝑞(𝑡)) + 𝜙21

where equality holds by continuity if 𝜏1 > 0. Subsequently, ℎ2𝜇21𝐺
𝑡
2(𝑞2(𝑡)) decreases at rate

ℎ2𝜇21, while the RHS decreases at rate ℎ3𝜇31 when pool 1 fully helps class 3 and at rate ℎ1𝜇11

when pool 1 serves its own class. Because ℎ2𝜇21 ≥ ℎ3𝜇31 ≥ ℎ1𝜇11, the inequality (A.9) never

holds subsequently, and so pool 1 will not fully serve class 2 after time 𝜏1.

Next, note that

ℎ3𝜇31𝐺
𝜏1+𝜏2
3 (𝑞3(𝜏1 + 𝜏2)) − 𝜙31 ≤ ℎ1𝜇11𝐺

𝜏1+𝜏2
1 (𝑞1(𝜏1 + 𝜏2))

with equality holding by continuity if 𝜏2 > 0. Subsequently, when pool 1 serves its own class,

ℎ3𝜇31𝐺
𝑡
3(𝑞3(𝑡)) decreases at rate ℎ3𝜇31 while ℎ1𝜇11𝐺

𝑡
1(𝑞1(𝑡)) decreases at rate ℎ1𝜇11, and since

ℎ3𝜇31 ≥ ℎ1𝜇11, the inequality (A.10) never holds subsequently, and so pool 1 will not fully serve

class 3 after time 𝜏1 + 𝜏2.

The times to deplete the three queues are

𝜏∗1 = 𝜏1 + 𝜏2 + 𝐺𝜏1+𝜏2
1 (𝑞∗1(𝜏1 + 𝜏2)),

𝜏∗2 = 𝜏1 + 𝐺𝜏1
2 (𝑞∗2(𝜏1)),

𝜏∗3 = min
{
𝐺0

3(𝑞3(0)), 𝜏1 + 𝜏2 + 𝐺𝜏1+𝜏2
3 (𝑞∗3(𝜏1 + 𝜏2))

}
.
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The optimal queue length trajectory follows:

𝑞∗1(𝑡) =



𝑞1 +
∫ 𝑡

0 (𝜆1(𝑠) − 𝑧∗11(𝑠)𝜇11) 𝑑𝑠, 𝑡 ∈ [0, 𝜏1 + 𝜏2),

𝑞∗1(𝜏1 + 𝜏2) +
∫ 𝑡

𝜏1+𝜏2
(𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [𝜏1 + 𝜏2, 𝜏

∗
1 ),

0, 𝑡 ∈ [𝜏∗1 ,∞),

𝑞∗2(𝑡) =



𝑞2 +
∫ 𝑡

0 (𝜆2(𝑠) − 𝑠2𝜇22 − 𝑧∗21(𝑠)𝜇21) 𝑑𝑠, 𝑡 ∈ [0, 𝜏1),

𝑞∗2(𝜏1) +
∫ 𝑡

𝜏1
(𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [𝜏1, 𝜏

∗
2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞),

𝑞∗3(𝑡) =



𝑞3 +
∫ 𝑡

0 (𝜆3(𝑠) − 𝑠3𝜇33 − 𝑧∗31(𝑠)𝜇31) 𝑑𝑠, 𝑡 ∈ [0,min{𝜏∗3 , 𝜏1 + 𝜏2}),

𝑞∗3(𝜏1 + 𝜏2) +
∫ 𝑡

𝜏1+𝜏2
(𝜆3(𝑠) − 𝑠3𝜇33) 𝑑𝑠, 𝑡 ∈ [𝜏1 + 𝜏2, 𝜏

∗
3 ),

0, 𝑡 ∈ [𝜏∗3 ,∞).

Note that by Assumption 7, 𝑞∗2(𝑡) > 0 for 𝑡 ∈ [0, 𝜏1) and 𝑞∗3(𝑡) > 0 for 𝑡 ∈ [0, 𝜏1 + 𝜏2). Thus,

when pool 1 is fully helping class 2, 𝑧∗21(𝑡) = 𝑠1 and similarly, when pool 1 is fully helping class

3, 𝑧∗31(𝑡) = 𝑠1.

Define the adjoint vectors, for 𝑖 = 1, 2, 3,

𝑝∗𝑖 (𝑡) =


ℎ𝑖 (𝜏∗𝑖 − 𝑡), 𝑡 ∈ [0, 𝜏∗

𝑖
),

0, 𝑡 ∈ [𝜏∗
𝑖
,∞).
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Define the multipliers

𝜂∗1(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗1 ),

ℎ1, 𝑡 ∈ [𝜏∗1 ,∞),

𝜂∗2(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗2 ),

ℎ2, 𝑡 ∈ [𝜏∗2 ,∞)

𝜂∗3(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗3 ),

ℎ3, 𝑡 ∈ [𝜏∗3 ,∞)

𝛾∗1 (𝑡) =



𝑝∗2(𝑡)𝜇21 − 𝜙21, 𝑡 ∈ [0, 𝜏1),

𝑝∗3(𝑡)𝜇31 − 𝜙31, 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏2),

𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [𝜏1 + 𝜏2, 𝜏
∗
1 ),

0, 𝑡 ∈ [𝜏∗1 ,∞),

𝛾∗2 (𝑡) =


𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝜏∗2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞),

𝛾∗3 (𝑡) =


𝑝∗3(𝑡)𝜇33, 𝑡 ∈ [0, 𝜏∗3 ),

0, 𝑡 ∈ [𝜏∗3 ,∞)
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𝜉∗21(𝑡) =


0, 𝑡 ∈ [0, 𝜏1),

𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡), 𝑡 ∈ [𝜏1,∞)

𝜉∗31(𝑡) =


0, 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏2),

𝜙31 − 𝑝∗3(𝑡)𝜇31 + 𝛾∗1 (𝑡), 𝑡 ∉ [𝜏1, 𝜏1 + 𝜏2)

𝜉∗11(𝑡) =


𝛾∗1 (𝑡) − 𝑝

∗
1(𝑡)𝜇11, 𝑡 ∈ [0, 𝜏1 + 𝜏2),

0, 𝑡 ∈ [𝜏1 + 𝜏2,∞)

and 𝜉∗22(𝑡) = 𝜉∗33(𝑡) = 0 for all 𝑡 ≥ 0. We next show 𝛾∗1 (𝑡) and 𝜉∗
𝑖 𝑗
(𝑡) are non-negative. Suppose

first that 𝜏1 > 0 and 𝜏2 > 0. By construction of the policy, we have

ℎ2𝜇21(𝜏∗2 − 𝜏1) − 𝜙21 = ℎ1𝜇11(𝜏∗1 − 𝜏1 − 𝜏2) + ℎ3𝜇31𝜏2

and

ℎ3𝜇31(𝜏∗3 − 𝜏1 − 𝜏2) − 𝜙31 = ℎ1𝜇11(𝜏∗1 − 𝜏1 − 𝜏2).

Then,

𝑝∗2(𝜏1)𝜇21 − 𝜙21 = 𝑝∗3(𝜏1)𝜇31 − 𝜙31

and

𝑝∗3(𝜏1 + 𝜏2)𝜇31 − 𝜙31 = 𝑝∗1(𝜏1 + 𝜏2)𝜇11.

In particular, 𝛾∗1 (𝑡) is continuous. Since 𝛾∗1 (𝑡) is decreasing in each of the intervals [0, 𝜏1), [𝜏1, 𝜏1 +

𝜏2) and [𝜏1 + 𝜏2, 𝜏
∗
1 ), before reaching zero, it is non-negative. Moreover, because ℎ2𝜇21 ≥ ℎ3𝜇31 ≥

ℎ1𝜇11, 𝛾∗1 (𝑡) decreases at a rate that is at least the rate at which 𝑝∗1(𝑡)𝜇11 changes in [0, 𝜏1 + 𝜏2),

𝛾∗1 (𝑡) ≥ 𝑝∗1(𝑡)𝜇11 in [0, 𝜏1 + 𝜏2), i.e., 𝜉∗11(𝑡) ≥ 0.

Next, from the above discussion, we have that 𝜉∗21(𝜏1) = 0. Because ℎ2𝜇21 ≥ ℎ3𝜇31 ≥ ℎ1𝜇11,
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𝜉∗21(𝑡) is non-decreasing for 𝑡 ∈ [𝜏1, 𝜏
∗
2 ), and is non-negative for 𝑡 ≥ 𝜏∗2 because 𝑝∗2(𝑡) = 0. Thus,

𝜉∗21(𝑡) ≥ 0. We also have that 𝜉∗31(𝜏1−) = 0 = 𝜉∗31(𝜏1 + 𝜏2). A similar reasoning shows that 𝜉∗31(𝑡)

is non-increasing in [0, 𝜏1) and non-decreasing in [𝜏1 + 𝜏2, 𝜏
∗
3 ), and so 𝜉∗31(𝑡) ≥ 0 for all 𝑡.

The analysis for the cases involving 𝜏1 = 0 and 𝜏2 = 0 follows similarly.

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-

tion.

We now verify (T). For 𝑖 = 2, 3,

∇𝑧𝑖𝑖𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = −𝑝∗𝑖 (𝑡)𝜇𝑖𝑖 + 𝛾∗𝑖 (𝑡) − 𝜉∗𝑖𝑖 (𝑡) = 0

because 𝜉∗
𝑖𝑖
(𝑡) = 0 and 𝛾∗

𝑖
(𝑡) = 𝑝∗

𝑖
(𝑡)𝜇𝑖𝑖. Next,

∇𝑧11𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = −𝑝∗1(𝑡)𝜇11 + 𝛾∗1 (𝑡) − 𝜉
∗
11(𝑡) = 0

because 𝜉∗11(𝑡) = 𝛾∗1 (𝑡) − 𝑝∗1(𝑡)𝜇11 for 𝑡 ∈ [0, 𝜏1 + 𝜏2), and 𝜉∗11(𝑡) = 0 and 𝛾∗1 (𝑡) = 𝑝∗1(𝑡)𝜇11 for

𝑡 ≥ 𝜏1 + 𝜏2. Next,

∇𝑧21𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡) − 𝜉
∗
21(𝑡) = 0

because 𝜉∗21(𝑡) = 0 and 𝛾∗1 (𝑡) = 𝑝
∗
2(𝑡)𝜇21 − 𝜙21 for 𝑡 ∈ [0, 𝜏1), and 𝜉∗21(𝑡) = 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡)

for 𝑡 ≥ 𝜏1. Finally,

∇𝑧31𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = 𝜙31 − 𝑝∗3(𝑡)𝜇31 + 𝛾∗1 (𝑡) − 𝜉
∗
31(𝑡) = 0

because 𝜉∗31(𝑡) = 0 and 𝛾∗1 (𝑡) = 𝑝
∗
3(𝑡)𝜇31−𝜙31 for 𝑡 ∈ [𝜏1, 𝜏1+𝜏2), and 𝜉∗31(𝑡) = 𝜙31−𝑝∗3(𝑡)𝜇31+𝛾∗1 (𝑡)

for 𝑡 ∉ [𝜏1, 𝜏1 + 𝜏2).

It remains to verify (M). It is easy to see that 𝑧∗22(𝑡) and 𝑧∗33(𝑡) should always be maximal.

The coefficients of 𝑧∗11(𝑡), 𝑧
∗
21(𝑡) and 𝑧∗31(𝑡) are respectively −𝑝∗1(𝑡)𝜇11, 𝜙21 − 𝑝∗2(𝑡)𝜇21 and 𝜙31 −
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𝑝∗3(𝑡)𝜇31. For 𝑡 < 𝜏1, we have that 𝑝∗2(𝑡)𝜇21 − 𝜙21 ≥ 𝑝∗3(𝑡)𝜇31 − 𝜙31 ≥ 𝑝∗1(𝑡)𝜇11 (this follows from

the earlier discussion of 𝛾∗1 (𝑡)), it is optimal to have 𝑧∗21(𝑡) maximal. When 𝑡 ∈ [𝜏1, 𝜏1 + 𝜏2), we

have 𝑝∗3(𝑡)𝜇31 − 𝜙31 ≥ max(𝑝∗2(𝑡)𝜇21 − 𝜙21, 𝑝
∗
1(𝑡)𝜇11), so it is optimal to have 𝑧∗31(𝑡) maximal.

Finally, when 𝑡 ≥ 𝜏1 + 𝜏2, we have 𝑝∗1(𝑡)𝜇11 ≥ 𝑝∗3(𝑡)𝜇31 − 𝜙31 ≥ 𝑝∗2(𝑡)𝜇21 − 𝜙21, so it is optimal to

have pool 1 give class 1 priority. When 𝑝∗1(𝑡) = 0 so that 𝑞∗1(𝑡) = 0, we have that 𝑝∗
𝑖
(𝑡)𝜇𝑖1−𝜙𝑖1 ≤ 0

for 𝑖 = 2, 3, so it is optimal for pool 1 to not partially help classes 2 and 3.

Case II: ℎ2𝜇21 ≥ ℎ1𝜇11 > ℎ3𝜇31. In this case, the policy is that pool 1 first fully serves class 2

for a time 𝜏1 ≥ 0, then serves only its own class 1 for time 𝜏2 = 𝐺
𝜏1
1 (𝑞1(𝜏1)) until it empties, then

partially helps class 3 for some time 𝜏3 ≥ 0, then serves only its own class thereafter. To see this,

note first that

ℎ2𝜇21𝐺
𝜏1
2 (𝑞2(𝜏1)) ≤ ℎ1𝜇11𝐺

𝜏1
1 (𝑞1(𝜏1)) + ℎ3𝜇31𝑃

𝜏1 (𝑞(𝜏1)) + 𝜙21

where equality holds by continuity if 𝜏1 > 0. Subsequently, ℎ2𝜇21𝐺
𝑡
2(𝑞2(𝑡)) decreases at rate

ℎ2𝜇21, while the RHS decreases at rate ℎ1𝜇11 when pool 1 serves only its own class and at rate

ℎ3𝜇31 when pool 1 partially helps class 3. Because ℎ2𝜇21 ≥ ℎ1𝜇11 > ℎ3𝜇31, the inequality (A.11)

never holds subsequently, and so pool 1 will not fully serve class 2 after time 𝜏1.

The times to deplete the three queues are

𝜏∗1 = 𝜏1 + 𝐺𝜏1
1 (𝑞∗1(𝜏1),

𝜏∗2 = 𝜏1 + 𝐺𝜏1
2 (𝑞∗2(𝜏1)),

𝜏∗3 = min
{
𝐺0

3(𝑞3(0)), 𝜏∗1 + 𝜏3 + 𝐺
𝜏∗1+𝜏3
3 (𝑞3(𝜏∗1 + 𝜏3))

}
.
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The optimal queue length trajectory follows:

𝑞∗1(𝑡) =



𝑞1 +
∫ 𝑡

0 (𝜆1(𝑠) − 𝑧∗11(𝑠)𝜇11) 𝑑𝑠, 𝑡 ∈ [0, 𝜏1),

𝑞∗1(𝜏1) +
∫ 𝑡

𝜏1
(𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [𝜏1, 𝜏

∗
1 ),

0, 𝑡 ∈ [𝜏∗1 ,∞),

𝑞∗2(𝑡) =



𝑞2 +
∫ 𝑡

0 (𝜆2(𝑠) − 𝑠2𝜇22 − 𝑧∗21(𝑠)𝜇21) 𝑑𝑠, 𝑡 ∈ [0, 𝜏1),

𝑞∗2(𝜏1) +
∫ 𝑡

𝜏1
(𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [𝜏1, 𝜏

∗
2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞).

In addition, if 𝜏∗3 > 0,

𝑞∗3(𝑡) =



𝑞3 +
∫ 𝑡

0 (𝜆3(𝑠) − 𝑠3𝜇33) 𝑑𝑠, 𝑡 ∈ [0, 𝜏∗1 ),

𝑞∗3(𝜏
∗
1 ) +

∫ 𝑡

𝜏∗1
(𝜆3(𝑠) − 𝑠3𝜇33 − (𝑠1 − 𝜆1(𝑠)/𝜇11)𝜇31) 𝑑𝑠, 𝑡 ∈ [𝜏∗1 , 𝜏

∗
1 + 𝜏3),

𝑞∗3(𝜏
∗
1 + 𝜏3) +

∫ 𝑡

𝜏∗1
(𝜆3(𝑠) − 𝑠3𝜇33) 𝑑𝑠, 𝑡 ∈ [𝜏∗1 + 𝜏3, 𝜏

∗
3 ),

0, 𝑡 ∈ [𝜏∗3 ,∞),

otherwise,

𝑞∗3(𝑡) =


𝑞3 +

∫ 𝑡

0 (𝜆3(𝑠) − 𝑠3𝜇33) 𝑑𝑠, 𝑡 ∈ [0, 𝜏∗3 ),

0, 𝑡 ∈ [𝜏∗3 ,∞).

Assumption 7 ensures that 𝑞∗2(𝑡) > 0 for 𝑡 ∈ [0, 𝜏1). Thus, when pool 1 is fully helping class 2,

𝑧∗21(𝑡) = 𝑠1.

Define the adjoint vectors, for 𝑖 = 2, 3,

𝑝∗𝑖 (𝑡) =


ℎ𝑖 (𝜏∗𝑖 − 𝑡), 𝑡 ∈ [0, 𝜏∗

𝑖
),

0, 𝑡 ∈ [𝜏∗
𝑖
,∞).
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Define also

𝑝∗1(𝑡) =



ℎ1(𝜏∗1 − 𝑡) + ℎ3
𝜇31
𝜇11
𝜏3, 𝑡 ∈ [0, 𝜏∗1 )

ℎ3
𝜇31
𝜇11

(𝜏∗1 + 𝜏3 − 𝑡), 𝑡 ∈ [𝜏∗1 , 𝜏
∗
1 + 𝜏3),

0, 𝑡 ∈ [𝜏∗1 + 𝜏3,∞).

Define the multipliers

𝜂∗1(𝑡) =



0, 𝑡 ∈ [0, 𝜏∗1 ),

ℎ1 − ℎ3
𝜇31
𝜇11
, 𝑡 ∈ [𝜏∗1 , 𝜏

∗
1 + 𝜏3),

ℎ1, 𝑡 ∈ [𝜏∗1 + 𝜏3,∞),

𝜂∗2(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗2 ),

ℎ2, 𝑡 ∈ [𝜏∗2 ,∞)

𝜂∗3(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗3 ),

ℎ3, 𝑡 ∈ [𝜏∗3 ,∞)
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𝛾∗1 (𝑡) =



𝑝∗2(𝑡)𝜇21 − 𝜙21, 𝑡 ∈ [0, 𝜏1),

𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [𝜏1, 𝜏
∗
1 + 𝜏3),

0, 𝑡 ∈ [𝜏∗1 + 𝜏3,∞),

𝛾∗2 (𝑡) =


𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝜏∗2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞),

𝛾∗3 (𝑡) =


𝑝∗3(𝑡)𝜇33, 𝑡 ∈ [0, 𝜏∗3 ),

0, 𝑡 ∈ [𝜏∗3 ,∞)

𝜉∗21(𝑡) =


0, 𝑡 ∈ [0, 𝜏1),

𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡), 𝑡 ∈ [𝜏1,∞)

𝜉∗31(𝑡) =


0, 𝑡 ∈ [𝜏∗1 , 𝜏

∗
1 + 𝜏3),

𝜙31 − 𝑝∗3(𝑡)𝜇31 + 𝛾∗1 (𝑡), 𝑡 ∉ [𝜏∗1 , 𝜏
∗
1 + 𝜏3)

𝜉∗11(𝑡) =


𝛾∗1 (𝑡) − 𝑝

∗
1(𝑡)𝜇11, 𝑡 ∈ [0, 𝜏1),

0, 𝑡 ∈ [𝜏1,∞)

and 𝜉∗22(𝑡) = 𝜉∗33(𝑡) = 0 for all 𝑡 ≥ 0. Note that 𝜂∗1 ≥ 0 because ℎ1𝜇11 > ℎ3𝜇31. We next show

𝛾∗1 (𝑡) and 𝜉∗
𝑖 𝑗
(𝑡) are non-negative. Suppose first that 𝜏1 > 0. Note that

ℎ2𝜇21(𝜏∗2 − 𝜏1) − 𝜙21 = ℎ1𝜇11(𝜏∗1 − 𝜏1) + ℎ3𝜇31𝜏3,
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from which it follows that

𝑝∗2(𝜏1)𝜇21 − 𝜙21 = 𝑝∗1(𝜏1)𝜇11.

In particular, 𝛾∗1 (𝑡) is continuous. Since 𝛾∗1 (𝑡) is decreasing in each of the intervals [0, 𝜏1) and

[𝜏1, 𝜏
∗
1 + 𝜏3) before reaching zero, it is non-negative. Moreover, because ℎ2𝜇21 ≥ ℎ1𝜇11 > ℎ3𝜇31,

𝛾∗1 (𝑡) decreases at a rate that is at least the rate at which 𝑝∗1(𝑡)𝜇11 changes in [0, 𝜏1), 𝛾∗1 (𝑡) ≥

𝑝∗1(𝑡)𝜇11 in [0, 𝜏1), i.e., 𝜉∗11(𝑡) ≥ 0.

Next, from the above discussion, we have that 𝜉∗21(𝜏1) = 0. Because ℎ2𝜇21 ≥ ℎ1𝜇11 > ℎ3𝜇31,

𝜉∗21(𝑡) is non-decreasing for 𝑡 ∈ [𝜏1, 𝜏
∗
2 ), and is non-negative for 𝑡 ≥ 𝜏∗2 because 𝑝∗2(𝑡) = 0. Thus,

𝜉∗21(𝑡) ≥ 0. Next, 𝜉∗31(𝑡) is zero if 𝜏3 = 0; suppose instead 𝜏3 > 0. For 𝑡 ∈ [𝜏∗1 , 𝜏
∗
1 + 𝜏3), we have

𝜉∗31(𝑡) = 𝜙31 − 𝑝∗3(𝑡)𝜇31 + 𝑝∗1(𝑡)𝜇11 = 𝜙31 − ℎ3𝜇31(𝜏∗1 − 𝑡) + ℎ3
𝜇31
𝜇11

𝜇11(𝜏∗1 + 𝜏3 − 𝑡) = 0,

because 𝜏∗3 = 𝜏∗1 + 𝜏3 + 𝜙31
ℎ3𝜇31

.

The analysis for the cases involving 𝜏1 = 0 and 𝜏2 = 0 follows similarly.

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-

tion.

We now verify (T). For 𝑖 = 2, 3,

∇𝑧𝑖𝑖𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = −𝑝∗𝑖 (𝑡)𝜇𝑖𝑖 + 𝛾∗𝑖 (𝑡) − 𝜉∗𝑖𝑖 (𝑡) = 0

because 𝜉∗
𝑖𝑖
(𝑡) = 0 and 𝛾∗

𝑖
(𝑡) = 𝑝∗

𝑖
(𝑡)𝜇𝑖𝑖. Next,

∇𝑧11𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = −𝑝∗1(𝑡)𝜇11 + 𝛾∗1 (𝑡) − 𝜉
∗
11(𝑡) = 0

because 𝜉∗11(𝑡) = 𝛾
∗
1 (𝑡) − 𝑝

∗
1(𝑡)𝜇11 for 𝑡 ∈ [0, 𝜏1), and 𝜉∗11(𝑡) = 0 and 𝛾∗1 (𝑡) = 𝑝∗1(𝑡)𝜇11 for 𝑡 ≥ 𝜏1.

Next,

∇𝑧21𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡) − 𝜉
∗
21(𝑡) = 0
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because 𝜉∗21(𝑡) = 0 and 𝛾∗1 (𝑡) = 𝑝
∗
2(𝑡)𝜇21 − 𝜙21 for 𝑡 ∈ [0, 𝜏1), and 𝜉∗21(𝑡) = 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡)

for 𝑡 ≥ 𝜏1. Finally,

∇𝑧31𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = 𝜙31 − 𝑝∗3(𝑡)𝜇31 + 𝛾∗1 (𝑡) − 𝜉
∗
31(𝑡).

When 𝑡 ∉ [𝜏∗1 , 𝜏
∗
1 + 𝜏3), 𝜙31 − 𝑝∗3(𝑡)𝜇31 +𝛾∗1 (𝑡) − 𝜉

∗
31(𝑡) = 0 because 𝜉∗31(𝑡) = 𝜙31 − 𝑝∗3(𝑡)𝜇31 +𝛾∗1 (𝑡).

For 𝑡 ∈ [𝜏∗1 , 𝜏
∗
1 + 𝜏3), 𝜉∗31(𝑡) = 0 and we have

𝜙31 − 𝑝∗3(𝑡)𝜇31 + 𝑝∗1(𝑡)𝜇11 = 𝜙31 − ℎ3𝜇31(𝜏∗1 − 𝑡) + ℎ3
𝜇31
𝜇11

𝜇11(𝜏∗1 + 𝜏3 − 𝑡) = 0,

because 𝜏∗3 = 𝜏∗1 + 𝜏3 + 𝜙31
ℎ3𝜇31

.

It remains to verify (M). It is clear that 𝑧∗22(𝑡) and 𝑧∗33(𝑡) should always be maximal. The coef-

ficients of 𝑧∗11(𝑡), 𝑧
∗
21(𝑡) and 𝑧∗31(𝑡) are respectively −𝑝∗1(𝑡)𝜇11, 𝜙21 − 𝑝∗2(𝑡)𝜇21 and 𝜙31 − 𝑝∗3(𝑡)𝜇31.

From the earlier discussion, we have that 𝑝∗2(𝑡)𝜇21 − 𝜙21 ≥ 𝑝∗1(𝑡)𝜇11 for 𝑡 ∈ [0, 𝜏1), and that

𝑝∗1(𝑡)𝜇11 = 𝑝∗3(𝑡)𝜇31 − 𝜙31 for 𝑡 ∈ [𝜏∗1 , 𝜏
∗
1 + 𝜏3). Because ℎ2𝜇21 ≥ ℎ1𝜇11 > ℎ3𝜇31, we have

that 𝑝∗1(𝑡)𝜇11 > 𝑝∗3(𝑡)𝜇31 − 𝜙31 for 𝑡 ∈ [𝜏1, 𝜏
∗
1 ), and hence also 𝑝∗2(𝑡)𝜇21 − 𝜙21 > 𝑝∗1(𝑡)𝜇11 for

𝑡 ∈ [0, 𝜏1). As such, for 𝑡 ∈ [0, 𝜏1), it is optimal to have 𝑧∗21(𝑡) maximal. When 𝑡 ∈ [𝜏1, 𝜏
∗
1 ), we

have 𝑝∗1(𝑡)𝜇11 ≥ max(𝑝∗2(𝑡)𝜇21 − 𝜙21, 𝑝
∗
3(𝑡)𝜇31 − 𝜙31), so it is optimal to have pool 1 serve only

class 1. When 𝑡 ∈ [𝜏∗1 , 𝜏
∗
1 + 𝜏3), we have 𝑝∗1(𝑡)𝜇11 = 𝑝∗3(𝑡)𝜇31 − 𝜙31 ≥ 𝑝∗2(𝑡)𝜇21 − 𝜙21, so it is

optimal to have pool 1 to partially help class 3. When 𝑡 ≥ 𝜏∗1 + 𝜏3, 𝑝∗1(𝑡) = 0, and we have that

𝑝∗
𝑖
(𝑡)𝜇𝑖1 − 𝜙𝑖1 ≤ 0 for 𝑖 = 2, 3, so it is optimal for pool 1 to not partially help classes 2 and 3.

Case III: ℎ1𝜇11 > ℎ2𝜇21 ≥ ℎ3𝜇31. In this case, the policy is that pool 1 first serves only its

own class 1 for a time 𝜏∗1 = 𝐺0
1(𝑞1(0)) ≥ 0 until it empties, then partially helps class 2 for time

𝜏2 ≥ 0, then partially helps class 3 for some time 𝜏3 ≥ 0, then serves only its own class thereafter.

To see this, note first that

ℎ2𝜇21𝐺
𝜏∗1+𝜏2
2 (𝑞2(𝜏∗1 + 𝜏2)) ≤ ℎ3𝜇31𝑃

𝜏∗1+𝜏2 (𝑞(𝜏∗1 + 𝜏2)) + 𝜙21
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where equality holds by continuity if 𝜏2 > 0. Subsequently, ℎ2𝜇21𝐺
𝑡
2(𝑞2(𝑡)) decreases at rate

ℎ2𝜇21, while the RHS decreases at rate ℎ3𝜇31. Because ℎ2𝜇21 ≥ ℎ3𝜇31, the inequality (A.12) never

holds subsequently, and so pool 1 will not partially help class 2 after time 𝜏∗1 + 𝜏2.

The times to deplete the three queues are

𝜏∗1 = 𝐺0
1(𝑞1(0)),

𝜏∗2 = min
{
𝐺0

2(𝑞2(0)), 𝜏∗1 + 𝜏2 + 𝐺
𝜏∗1+𝜏2
2 (𝑞∗2(𝜏

∗
1 + 𝜏2))

}
,

𝜏∗3 = min
{
𝐺0

3(𝑞3(0)), 𝜏∗1 + 𝜏2 + 𝜏3 + 𝐺
𝜏∗1+𝜏2+𝜏3
3 (𝑞∗3(𝜏

∗
1 + 𝜏2 + 𝜏3))

}
.

The optimal queue length trajectory follows:

𝑞∗1(𝑡) =


𝑞1 +

∫ 𝑡

0 (𝜆1(𝑠) − 𝑠1𝜇11) 𝑑𝑠, 𝑡 ∈ [0, 𝜏∗1 ),

0, 𝑡 ∈ [𝜏∗1 ,∞),

𝑞∗2(𝑡) =



𝑞2 +
∫ 𝑡

0 (𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [0,min{𝜏∗1 , 𝜏
∗
2 }),

𝑞∗2(𝜏
∗
1 ) +

∫ 𝑡

𝜏∗1
(𝜆2(𝑠) − 𝑠2𝜇22 − 𝑧∗21(𝑠)𝜇21) 𝑑𝑠, 𝑡 ∈ [𝜏∗1 , 𝜏

∗
1 + 𝜏2),

𝑞∗2(𝜏
∗
1 + 𝜏2) +

∫ 𝑡

𝜏∗1+𝜏2
(𝜆2(𝑠) − 𝑠2𝜇22) 𝑑𝑠, 𝑡 ∈ [𝜏∗1 + 𝜏2, 𝜏

∗
2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞),

𝑞∗3(𝑡) =



𝑞3 +
∫ 𝑡

0 (𝜆3(𝑠) − 𝑠3𝜇33) 𝑑𝑠, 𝑡 ∈ [0,min{𝜏∗1 , 𝜏
∗
3 }),

𝑞∗3(𝜏
∗
1 ) +

∫ 𝑡

𝜏∗1
(𝜆3(𝑠) − 𝑠3𝜇33 − 𝑧∗31(𝑠)𝜇31) 𝑑𝑠, 𝑡 ∈ [𝜏∗1 ,min{𝜏∗1 + 𝜏2 + 𝜏3, 𝜏

∗
3 }),

𝑞∗3(𝜏
∗
1 + 𝜏2 + 𝜏3) +

∫ 𝑡

𝜏∗1+𝜏2+𝜏3
(𝜆3(𝑠) − 𝑠3𝜇33) 𝑑𝑠, 𝑡 ∈ [𝜏∗1 + 𝜏2 + 𝜏3, 𝜏

∗
3 ),

0, 𝑡 ∈ [𝜏∗3 ,∞).

Note for example that if 𝜏∗1 > 𝜏
∗
2 , then 𝜏2 = 0 and [𝜏∗1 , 𝜏

∗
1 + 𝜏2) is empty and so the corresponding

expression for 𝑞∗2(𝑡) can be ignored. Assumption 7 ensures that 𝑞∗2(𝑡) > 0 for 𝑡 ∈ [𝜏∗1 , 𝜏
∗
1 + 𝜏2)

and 𝑞∗3(𝑡) > 0 for 𝑡 ∈ [𝜏∗1 + 𝜏2, 𝜏
∗
1 + 𝜏2 + 𝜏3). Thus, when pool 1 is partially helping class 𝑖 = 2, 3,

𝑧∗
𝑖1(𝑡) = 𝑠1 − 𝑧∗11(𝑡) = 𝑠1 − 𝜆1(𝑠)/𝜇11.
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Define the adjoint vectors, for 𝑖 = 2, 3,

𝑝∗𝑖 (𝑡) =


ℎ𝑖 (𝜏∗𝑖 − 𝑡), 𝑡 ∈ [0, 𝜏∗

𝑖
),

0, 𝑡 ∈ [𝜏∗
𝑖
,∞).

Define also

𝑝∗1(𝑡) =



ℎ1(𝜏∗1 − 𝑡) + ℎ2
𝜇21
𝜇11
𝜏2 + ℎ3

𝜇31
𝜇11
𝜏3, 𝑡 ∈ [0, 𝜏∗1 ),

ℎ2
𝜇21
𝜇11

(𝜏∗1 + 𝜏2 − 𝑡) + ℎ3
𝜇31
𝜇11
𝜏3, 𝑡 ∈ [𝜏∗1 , 𝜏

∗
1 + 𝜏2),

ℎ3
𝜇31
𝜇11

(𝜏∗1 + 𝜏2 + 𝜏3 − 𝑡), 𝑡 ∈ [𝜏∗1 + 𝜏2, 𝜏
∗
1 + 𝜏2 + 𝜏3),

0, 𝑡 ∈ [𝜏∗1 + 𝜏2 + 𝜏3,∞).

Define the multipliers

𝜂∗1(𝑡) =



0, 𝑡 ∈ [0, 𝜏∗1 ),

ℎ1 − ℎ2
𝜇21
𝜇11
, 𝑡 ∈ [𝜏∗1 , 𝜏

∗
1 + 𝜏2),

ℎ1 − ℎ3
𝜇31
𝜇11
, 𝑡 ∈ [𝜏∗1 + 𝜏2, 𝜏

∗
1 + 𝜏2 + 𝜏3),

ℎ1, 𝑡 ∈ [𝜏∗1 + 𝜏2 + 𝜏3,∞),

𝜂∗2(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗2 ),

ℎ2, 𝑡 ∈ [𝜏∗2 ,∞)

𝜂∗3(𝑡) =


0, 𝑡 ∈ [0, 𝜏∗3 ),

ℎ3, 𝑡 ∈ [𝜏∗3 ,∞)
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𝛾∗1 (𝑡) =


𝑝∗1(𝑡)𝜇11, 𝑡 ∈ [0, 𝜏∗1 + 𝜏2 + 𝜏3),

0, 𝑡 ∈ [𝜏∗1 + 𝜏2 + 𝜏3,∞),

𝛾∗2 (𝑡) =


𝑝∗2(𝑡)𝜇22, 𝑡 ∈ [0, 𝜏∗2 ),

0, 𝑡 ∈ [𝜏∗2 ,∞),

𝛾∗3 (𝑡) =


𝑝∗3(𝑡)𝜇33, 𝑡 ∈ [0, 𝜏∗3 ),

0, 𝑡 ∈ [𝜏∗3 ,∞)

𝜉∗21(𝑡) =


0, 𝑡 ∈ [𝜏∗1 , 𝜏

∗
1 + 𝜏2),

𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡), 𝑡 ∉ [𝜏∗1 , 𝜏
∗
1 + 𝜏2)

𝜉∗31(𝑡) =


0, 𝑡 ∈ [𝜏∗1 + 𝜏2, 𝜏

∗
1 + 𝜏2 + 𝜏3),

𝜙31 − 𝑝∗3(𝑡)𝜇31 + 𝛾∗1 (𝑡), 𝑡 ∉ [𝜏∗1 + 𝜏2, 𝜏
∗
1 + 𝜏2 + 𝜏3)

and 𝜉∗11(𝑡) = 𝜉∗22(𝑡) = 𝜉∗33(𝑡) = 0 for all 𝑡 ≥ 0. Note that 𝜂∗1(𝑡) ≥ 0 because ℎ1𝜇11 > ℎ2𝜇21 ≥

ℎ3𝜇31. We next show 𝜉∗21(𝑡) and 𝜉∗31(𝑡) are non-negative. Consider first 𝜉∗21(𝑡). Because ℎ1𝜇11 >

ℎ2𝜇21 ≥ ℎ3𝜇31, 𝛾∗1 (𝑡) − 𝑝
∗
2(𝑡)𝜇21 + 𝜙21 is decreasing on [0, 𝜏∗1 ), constant on [𝜏∗1 , 𝜏

∗
1 + 𝜏2) and non-

decreasing on [𝜏∗1 + 𝜏2, 𝜏
∗
2 ), after which it is positive since 𝑝∗2(𝑡) = 0. So, it suffices to show that

𝛾∗1 (𝑡) − 𝑝
∗
2(𝑡)𝜇21 + 𝜙21 is non-negative at 𝑡 = 𝜏∗1 + 𝜏2. This holds because

𝜙21 − 𝑝∗2(𝜏
∗
1 + 𝜏2)𝜇21 + 𝑝∗1(𝜏

∗
1 + 𝜏2)𝜇11 = 𝜙21 − ℎ2𝜇21(𝜏∗2 − 𝜏

∗
1 − 𝜏2) + ℎ2𝜇21(𝜏∗1 − 𝜏

∗
1 ) + ℎ3𝜇31𝜏3 ≥ 0,

since ℎ2𝜇21(𝜏∗2 − 𝜏∗1 − 𝜏2) − 𝜙21 ≤ ℎ3𝜇31𝜏3 by construction of the policy (equality holds if 𝜏2 > 0).

We next turn to 𝜉∗31(𝑡). Because ℎ1𝜇11 > ℎ2𝜇21 ≥ ℎ3𝜇31, 𝛾∗1 (𝑡) − 𝑝∗3(𝑡)𝜇31 + 𝜙31 is non-
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increasing on [0, 𝜏∗1 + 𝜏2) and constant on [𝜏∗1 + 𝜏2, 𝜏
∗
1 + 𝜏2 + 𝜏3), after which it is non-decreasing

since 𝛾∗1 (𝑡) = 0. So, it suffices to show that 𝛾∗1 (𝑡)− 𝑝
∗
3(𝑡)𝜇31+𝜙31 is non-negative at 𝑡∗ = 𝜏∗1 +𝜏2+𝜏3.

This holds because we have

𝜙31 − 𝑝∗3(𝑡
∗)𝜇31 + 𝑝∗1(𝑡

∗)𝜇11 = 𝜙31 − ℎ3𝜇31(𝜏∗3 − 𝑡∗) + ℎ3𝜇31(𝜏∗1 + 𝜏2 + 𝜏3 − 𝑡∗) ≥ 0,

because ℎ3𝜇31(𝜏∗3 − 𝜏∗1 − 𝜏2 − 𝜏3) ≤ 𝜙31 by construction of the policy (equality holds if 𝜏3 > 0).

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforward verified by construction.

We now verify (T). For 𝑖 = 1, 2, 3,

∇𝑧𝑖𝑖𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = −𝑝∗𝑖 (𝑡)𝜇𝑖𝑖 + 𝛾∗𝑖 (𝑡) − 𝜉∗𝑖𝑖 (𝑡) = 0

because 𝜉∗
𝑖𝑖
(𝑡) = 0 and 𝛾∗

𝑖
(𝑡) = 𝑝∗

𝑖
(𝑡)𝜇𝑖𝑖. Next,

∇𝑧21𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡) − 𝜉
∗
21(𝑡).

When 𝑡 ∉ [𝜏∗1 , 𝜏
∗
1 + 𝜏2), this is zero because 𝜉∗21(𝑡) = 𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝛾∗1 (𝑡). For 𝑡 ∈ [𝜏∗1 , 𝜏

∗
1 + 𝜏2),

𝜉∗21(𝑡) = 0 and we have

𝜙21 − 𝑝∗2(𝑡)𝜇21 + 𝑝∗1(𝑡)𝜇11 = 𝜙21 − ℎ2𝜇21(𝜏∗2 − 𝑡) + ℎ2𝜇21(𝜏∗1 + 𝜏2 − 𝑡) + ℎ3𝜇31𝜏3 = 0,

because ℎ2𝜇21(𝜏∗2 − 𝜏∗1 − 𝜏2) − 𝜙21 = ℎ3𝜇31𝜏3, when 𝜏2 > 0. Finally,

∇𝑧31𝐿 (𝑞∗(𝑡), 𝑧∗(𝑡), 𝑝∗(𝑡), 𝜂∗(𝑡), 𝛾∗(𝑡), 𝜉∗(𝑡), 𝑡) = 𝜙31 − 𝑝∗3(𝑡)𝜇31 + 𝛾∗1 (𝑡) − 𝜉
∗
31(𝑡).

When 𝑡 ∉ [𝜏∗1 + 𝜏2, 𝜏
∗
1 + 𝜏2 + 𝜏3), this is zero because 𝜉∗31(𝑡) = 𝜙31 − 𝑝∗3(𝑡)𝜇31 + 𝛾∗1 (𝑡). For

𝑡 ∈ [𝜏∗1 + 𝜏2, 𝜏
∗
1 + 𝜏2 + 𝜏3), 𝜉∗31(𝑡) = 0 and we have

𝜙31 − 𝑝∗3(𝑡)𝜇31 + 𝑝∗1(𝑡)𝜇11 = 𝜙31 − ℎ3𝜇31(𝜏∗3 − 𝑡) + ℎ3𝜇31(𝜏∗1 + 𝜏2 + 𝜏3 − 𝑡) = 0,
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because ℎ3𝜇31(𝜏∗3 − 𝜏∗1 − 𝜏2 − 𝜏3) = 𝜙31, when 𝜏3 > 0.

It remains to verify (M). It is clear that 𝑧∗22(𝑡) and 𝑧∗33(𝑡) should always be maximal. The coef-

ficients of 𝑧∗11(𝑡), 𝑧
∗
21(𝑡) and 𝑧∗31(𝑡) are respectively −𝑝∗1(𝑡)𝜇11, 𝜙21 − 𝑝∗2(𝑡)𝜇21 and 𝜙31 − 𝑝∗3(𝑡)𝜇31.

From the earlier discussion on the non-negativity of 𝜉∗21(𝑡) and 𝜉∗31(𝑡), we have that 𝑝∗2(𝑡)𝜇21−𝜙21 ≤

𝑝∗1(𝑡)𝜇11 for all 𝑡, and that 𝑝∗3(𝑡)𝜇31 −𝜙31 ≤ 𝑝∗1(𝑡)𝜇11 for all 𝑡. Thus, it is optimal for pool 1 to give

priority to class 1 at all times. For 𝑡 ∈ [𝜏∗1 , 𝜏
∗
1 + 𝜏2), 𝑝∗1(𝑡)𝜇11 = 𝑝∗2(𝑡)𝜇21 − 𝜙21, and so it is optimal

for pool 1 to partially help class 2. For 𝑡 ∈ [𝜏∗1 + 𝜏2, 𝜏
∗
1 + 𝜏2 + 𝜏3), 𝑝∗1(𝑡)𝜇11 = 𝑝∗3(𝑡)𝜇31 − 𝜙31, and

so it is optimal for pool 1 to partially help class 3. For 𝑡 ≥ 𝜏∗1 + 𝜏2 + 𝜏3, 𝑝∗1(𝑡) = 0, which implies

that 𝑝∗
𝑖
(𝑡)𝜇𝑖1 − 𝜙𝑖1 ≤ 0 for 𝑖 = 2, 3, and so it is optimal for pool 1 to not help classes 2 and 3.

179



Appendix B: Proofs of Results in Chapter 3

B.1 Two important stochastic dominance results

In this section, we present two important stochastic dominance results that are useful for our

subsequent analysis, e.g., the proofs of Theorem 5, Lemma 2, and Lemma 4. These results build

on coupling arguments and can be of independent interest.

Let {𝑌 (𝑡) = (𝑌1(𝑡), 𝑌2(𝑡)); 𝑡 ≥ 0} and {𝑌 (𝑡) = (𝑌1(𝑡), 𝑌2(𝑡)); 𝑡 ≥ 0} be two positive recurrent

birth-and-death processes. The birth (arrival) rates are 𝜆 for both 𝑌𝑖 and 𝑌𝑖, 𝑖 = 1, 2. Let 𝜁𝑖 (𝑦) be

the death (departure) rate of 𝑌𝑖 when 𝑌 (𝑡) = 𝑦. We also define 𝜁Σ (𝑦) = 𝜁1(𝑦) + 𝜁2(𝑦), 𝜁𝑀 (𝑦) =

𝜁1(𝑦)1{𝑦1 ≥ 𝑦2} + 𝜁2(𝑦)1{𝑦1 < 𝑦2}, and 𝜁𝑚 (𝑦) = 𝜁1(𝑦)1{𝑦1 ≤ 𝑦2} + 𝜁2(𝑦)1{𝑦1 > 𝑦2}. Similarly,

let 𝜁𝑖 ( 𝑦̃) be the death rate of 𝑌𝑖, 𝑖 = 1, 2, when 𝑌 (𝑡) = 𝑦̃, 𝜁Σ ( 𝑦̃) = 𝜁1( 𝑦̃) + 𝜁2( 𝑦̃), 𝜁𝑀 (𝑦) =

𝜁1( 𝑦̃)1{𝑦̃1 ≥ 𝑦̃2} + 𝜁2( 𝑦̃)1{𝑦̃1 < 𝑦̃2}, and 𝜁𝑚 (𝑦) = 𝜁1( 𝑦̃)1{𝑦̃1 ≤ 𝑦̃2} + 𝜁2( 𝑦̃)1{𝑦̃1 > 𝑦̃2}.

The following two lemmas provide sufficient conditions to establish stochastic dominance be-

tween 𝑌 (∞) and 𝑌 (∞).

Lemma 11. For {𝑌 (𝑡); 𝑡 ≥ 0} and {𝑌 (𝑡); 𝑡 ≥ 0}, suppose

P1) 𝜁Σ (𝑦) ≥ 𝜁Σ ( 𝑦̃) whenever 𝑦1 + 𝑦2 = 𝑦̃1 + 𝑦̃2 and 𝑦1 ∨ 𝑦2 ≤ 𝑦̃1 ∨ 𝑦̃2;

P2) 𝜁𝑀 (𝑦) ≥ 𝜁𝑀 ( 𝑦̃) whenever 𝑦1 ∨ 𝑦2 = 𝑦̃1 ∨ 𝑦̃2 and 𝑦1 + 𝑦2 ≤ 𝑦̃1 + 𝑦2.

Then, 𝑌1(∞) + 𝑌2(∞) ≤𝑠𝑡 𝑌1(∞) + 𝑌2(∞) and 𝑌1(∞) ∨ 𝑌2(∞) ≤𝑠𝑡 𝑌1(∞) ∨ 𝑌2(∞).

Proof. We prove the lemma by constructing a coupling, under which

𝑌1(𝑡) + 𝑌2(𝑡) ≤ 𝑌1(𝑡) + 𝑌2(𝑡) and 𝑌1(𝑡) ∨ 𝑌2(𝑡) ≤ 𝑌1(𝑡) ∨ 𝑌2(𝑡)

for all 𝑡 ≥ 0 path-by-path [81].
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We start by introducing the coupling. Let 𝑌 (0) = 𝑌 (0) = 𝑦0 for any fixed 𝑦0 ∈ N2
0. We denote

the 𝑘-th potential transition time in both systems by 𝑡𝑘 with 𝑡0 = 0. In particular, for 𝑌 (𝑡𝑘 ) = 𝑦 and

𝑌 (𝑡𝑘 ) = 𝑦̃, let

𝛿𝑀 =


𝑒1 𝑦1 ≥ 𝑦2

𝑒2 𝑦1 < 𝑦2

and 𝛿𝑚 =


𝑒2 𝑦1 ≥ 𝑦2

𝑒1 𝑦1 < 𝑦2

.

Similarly let

𝛿𝑀 =


𝑒1 𝑦̃1 ≥ 𝑦̃2

𝑒2 𝑦̃1 < 𝑦̃2

and 𝛿𝑚 =


𝑒2 𝑦̃1 ≥ 𝑦̃2

𝑒1 𝑦̃1 < 𝑦̃2

.

We then generate 𝑡𝑘+1 − 𝑡𝑘 from an exponential distribution with rate Λ := 2𝜆 + 𝜁Σ (𝑦) ∨ 𝜁Σ ( 𝑦̃). We

also generate a random variable𝑈 uniformly distributed on [0, 1]. We update the states of the two

systems according to the following:

𝑌 (𝑡𝑘+1) = 𝑌 (𝑡𝑘 ) +



𝛿𝑀 0 ≤ 𝑈 ≤ 𝜆/Λ

𝛿𝑚 𝜆/Λ < 𝑈 ≤ 2𝜆/Λ

−𝛿𝑀 2𝜆/Λ < 𝑈 ≤ (2𝜆 + 𝜁𝑀 (𝑦))/Λ

−𝛿𝑚 (2𝜆 + 𝜁𝑀 (𝑦))/Λ < 𝑈 ≤ (2𝜆 + 𝜁Σ (𝑦))/Λ

0 Otherwise;

and

𝑌 (𝑡𝑘+1) = 𝑌 (𝑡𝑘 ) +



𝛿𝑀 0 ≤ 𝑈 ≤ 𝜆/Λ

𝛿𝑚 𝜆/Λ < 𝑈 ≤ 2𝜆/Λ

−𝛿𝑀 2𝜆/Λ < 𝑈 ≤ (2𝜆 + 𝜁𝑀 ( 𝑦̃))/Λ

−𝛿𝑚 (2𝜆 + 𝜁𝑀 ( 𝑦̃))/Λ < 𝑈 ≤ (2𝜆 + 𝜁Σ ( 𝑦̃))/Λ

0 Otherwise.

Now, let 𝑆 = {𝑘 ∈ N0 : 𝑌1(𝑡𝑘 ) + 𝑌2(𝑡𝑘 ) = 𝑌1(𝑡𝑘 ) + 𝑌2(𝑡𝑘 )}, and let the elements of 𝑆, 𝑠𝑖, be
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ordered such that 0 = 𝑠0 < 𝑠1 < · · · . We will prove by induction that

𝑌1(𝑡𝑘 ) ∨𝑌2(𝑡𝑘 ) ≤ 𝑌1(𝑡𝑘 ) ∨𝑌2(𝑡𝑘 ) and 𝑌1(𝑡𝑘 ) +𝑌2(𝑡𝑘 ) ≤ 𝑌1(𝑡𝑘 ) +𝑌2(𝑡𝑘 ) for 0 ≤ 𝑘 ≤ 𝑠𝑖 for any 𝑖 ∈ N.

(B.1)

For 𝑖 = 0, we have 𝑌1(0) + 𝑌2(0) = 𝑌1(0) + 𝑌2(0) and 𝑌1(0) ∨ 𝑌2(0) = 𝑌1(0) ∨ 𝑌2(0) by

construction.

Suppose (B.1) holds for some 𝑖, 𝑖 ∈ N0. We first note that for 𝑘 = 𝑠𝑖 + 1, if 𝑠𝑖 + 1 ∈ 𝑆,

we have 𝑌1(𝑡𝑘 ) + 𝑌2(𝑡𝑘 ) = 𝑌1(𝑡𝑘 ) + 𝑌2(𝑡𝑘 ). If 𝑠𝑖 + 1 ∉ 𝑆, then by the coupling construction and

P1, there must be a departure from 𝑌 but not 𝑌 . Consequently, 𝑌1(𝑡𝑘 ) + 𝑌2(𝑡𝑘 ) < 𝑌1(𝑡𝑘 ) + 𝑌2(𝑡𝑘 ).

This also implies that for 𝑠𝑖 + 1 < 𝑘 < 𝑠𝑖+1 (we set 𝑠𝑖+1 = ∞ if 𝑠𝑖 is the last element in 𝑆),

𝑌1(𝑡𝑘 ) +𝑌2(𝑡𝑘 ) < 𝑌1(𝑡𝑘 ) +𝑌2(𝑡𝑘 ). We next note that for 𝑠𝑖 < 𝑘 ≤ 𝑠𝑖+1, by our coupling construction,

if there is an arrival, it either joins the larger queue in both systems or the smaller queue in both

systems. Thus, in this case 𝑌1(𝑡𝑘 ) ∨𝑌2(𝑡𝑘 ) ≤ 𝑌1(𝑡𝑘 ) ∨𝑌2(𝑡𝑘 ). If there is a departure, then we further

consider two cases.

Case 1. 𝑌1(𝑡𝑘−1) ∨𝑌2(𝑡𝑘−1) < 𝑌1(𝑡𝑘−1) ∨𝑌2(𝑡𝑘−1): since the difference between the two quantities

changes by at most 1 at each epoch, we have 𝑌1(𝑡𝑘 ) ∨ 𝑌2(𝑡𝑘 ) ≤ 𝑌1(𝑡𝑘 ) ∨ 𝑌2(𝑡𝑘 ).

Case 2. 𝑌1(𝑡𝑘−1) ∨ 𝑌2(𝑡𝑘−1) = 𝑌1(𝑡𝑘−1) ∨ 𝑌2(𝑡𝑘−1): by P2, if there is a departure from the larger

queue in 𝑌 , there must be a departure from the larger queue in 𝑌 . Moreover, if 𝑌1(𝑡𝑘−1) = 𝑌2(𝑡𝑘−1),

as 𝑌1(𝑡𝑘−1) +𝑌2(𝑡𝑘−1) ≤ 𝑌1(𝑡𝑘−1) +𝑌2(𝑡𝑘−1), we have 𝑌1(𝑡𝑘−1) = 𝑌2(𝑡𝑘−1). Thus, 𝑌1(𝑡𝑘 ) ∨𝑌2(𝑡𝑘 ) ≤

𝑌1(𝑡𝑘 ) ∨ 𝑌2(𝑡𝑘 ).

Above all, 𝑌1(𝑡) + 𝑌2(𝑡) ≤ 𝑌1(𝑡) + 𝑌2(𝑡) and 𝑌1(𝑡) ∨ 𝑌2(𝑡) ≤ 𝑌1(𝑡) ∨ 𝑌2(𝑡) for all 𝑡 ≥ 0 under

our coupling construction. This further implies the stochastic dominance results for the stationary

distributions.

Lemma 12. For {𝑌 (𝑡); 𝑡 ≥ 0} and {𝑌 (𝑡); 𝑡 ≥ 0}, suppose

P1) 𝜁Σ (𝑦) ≤ 𝜁Σ ( 𝑦̃) whenever 𝑦1 + 𝑦2 = 𝑦̃1 + 𝑦̃2 and 𝑦1 ∧ 𝑦2 ≥ 𝑦̃1 ∧ 𝑦̃2;

P2) 𝜁𝑚 (𝑦) ≤ 𝜁𝑚 ( 𝑦̃) whenever 𝑦1 ∧ 𝑦2 = 𝑦̃1 ∧ 𝑦̃2 and 𝑦1 + 𝑦2 ≥ 𝑦̃1 + 𝑦2.
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Then, 𝑌1(∞) + 𝑌2(∞) ≥𝑠𝑡 𝑌1(∞) + 𝑌2(∞) and 𝑌1(∞) ∧ 𝑌2(∞) ≥𝑠𝑡 𝑌1(∞) ∧ 𝑌2(∞).

Proof. The coupling construction follows a similar coupling idea as the proof of Lemma 11. We

highlight the difference here for completeness.

Let 𝑌 (0) = 𝑌 (0) = 𝑦0 for any fixed 𝑦0 ∈ N2
0. We denote the 𝑘-th potential transition time in

both systems by 𝑡𝑘 with 𝑡0 = 0. In particular, for 𝑌 (𝑡𝑘 ) = 𝑦 and 𝑌 (𝑡𝑘 ) = 𝑦̃, we generate 𝑡𝑘+1 − 𝑡𝑘

from an exponential distribution with rate Λ := 2𝜆 + 𝜁Σ (𝑦) ∨ 𝜁Σ ( 𝑦̃). We also generate a random

variable 𝑈 uniformly distributed on [0, 1] and update the states of the two systems according to

the following:

𝑌 (𝑡𝑘+1) = 𝑌 (𝑡𝑘 ) +



𝛿𝑀 0 ≤ 𝑈 ≤ 𝜆/Λ

𝛿𝑚 𝜆/Λ < 𝑈 ≤ 2𝜆/Λ

−𝛿𝑚 2𝜆/Λ < 𝑈 ≤ (2𝜆 + 𝜁𝑚 (𝑦))/Λ

−𝛿𝑀 (2𝜆 + 𝜁𝑚 (𝑦))/Λ < 𝑈 ≤ (2𝜆 + 𝜁Σ (𝑦))/Λ

0 Otherwise;

and

𝑌 (𝑡𝑘+1) = 𝑌 (𝑡𝑘 ) +



𝛿𝑀 0 ≤ 𝑈 ≤ 𝜆/Λ

𝛿𝑚 𝜆/Λ < 𝑈 ≤ 2𝜆/Λ

−𝛿𝑚 2𝜆/Λ < 𝑈 ≤ (2𝜆 + 𝜁𝑚 ( 𝑦̃))/Λ

−𝛿𝑀 (2𝜆 + 𝜁𝑚 ( 𝑦̃))/Λ < 𝑈 ≤ (2𝜆 + 𝜁Σ ( 𝑦̃))/Λ

0 Otherwise.

We next prove by contradiction that

𝑌1(𝑡𝑘 ) ∧ 𝑌2(𝑡𝑘 ) ≥ 𝑌1(𝑡𝑘 ) ∧ 𝑌2(𝑡𝑘 ) and 𝑌1(𝑡𝑘 ) + 𝑌2(𝑡𝑘 ) ≥ 𝑌1(𝑡𝑘 ) + 𝑌2(𝑡𝑘 ) for all 𝑘 ≥ 0. (B.2)

Let 𝑘 > 0 be the minimal index such that either (i) 𝑌1(𝑡𝑘 ) ∧ 𝑌2(𝑡𝑘 ) < 𝑌1(𝑡𝑘 ) ∧ 𝑌2(𝑡𝑘 ) or (ii)
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𝑌1(𝑡𝑘 ) + 𝑌2(𝑡𝑘 ) < 𝑌1(𝑡𝑘 ) + 𝑌2(𝑡𝑘 ), assuming the existence of such 𝑘 .

In Scenario (i), 𝑌1(𝑡𝑘−1) ∧𝑌2(𝑡𝑘−1) = 𝑌1(𝑡𝑘−1) ∧𝑌2(𝑡𝑘−1) and 𝑌1(𝑡𝑘−1) +𝑌2(𝑡𝑘−1) ≥ 𝑌1(𝑡𝑘−1) +

𝑌2(𝑡𝑘−1). If there is an arrival event at time 𝑡𝑘 , then based on our coupling construction, this is

an arrival to both systems, and the arrival is either to the smaller queue in both systems or to

the large queue in both. If 𝑌1(𝑡𝑘−1) = 𝑌2(𝑡𝑘−1) so that 𝑌1 ∧ 𝑌2 does not increase at 𝑡𝑘 , then as

𝑌1(𝑡𝑘−1) + 𝑌2(𝑡𝑘−1) ≥ 𝑌1(𝑡𝑘−1) + 𝑌2(𝑡𝑘−1), 𝑌1(𝑡𝑘−1) = 𝑌2(𝑡𝑘−1), and so 𝑌1 ∧ 𝑌2 does not increase

either. Hence, in this case 𝑌1(𝑡𝑘 ) ∧ 𝑌2(𝑡𝑘 ) = 𝑌1(𝑡𝑘 ) ∧ 𝑌2(𝑡𝑘 ). Suppose instead there is a departure

event at 𝑡𝑘 . There must be a departure from the smaller component in 𝑌 . However, by P2 and our

coupling construction, there must be a departure from the smaller component in 𝑌 as well. Hence,

we again have that 𝑌1(𝑡𝑘 ) ∧ 𝑌2(𝑡𝑘 ) = 𝑌1(𝑡𝑘 ) ∧ 𝑌2(𝑡𝑘 ). Thus, Scenario (i) is not feasible.

In Scenario (ii), 𝑌1(𝑡𝑘−1) ∧𝑌2(𝑡𝑘−1) ≥ 𝑌1(𝑡𝑘−1) ∧𝑌2(𝑡𝑘−1) and 𝑌1(𝑡𝑘−1) +𝑌2(𝑡𝑘−1) = 𝑌1(𝑡𝑘−1) +

𝑌2(𝑡𝑘−1). Since arrivals coincide in both systems, there must be a departure from 𝑌 at 𝑡𝑘 . However,

by P1 and our coupling construction, there must be a departure from 𝑌 as well. This rules out

Scenario (ii).

Combining the analysis for the two scenarios, there is a contradiction. Thus, (B.2) holds, which

further implies the stochastic dominance results for the stationary distributions.

B.2 Application of the stochastic dominance results

B.2.1 Proofs of Lemma 2 and Lemma 4

In this section, we apply Lemma 11 to compare two system configurations. Lemmas 2 and 4

then follow as corollaries to this comparison.

Fix policy 𝜈𝜆,∗ for 𝑋𝜆, which has 𝑛𝜆 servers in each dedicated server pool and 𝑛𝜆
𝐹

flexible

servers. Consider two auxiliary queueing systems 𝑋̃𝜆 and 𝑋̌𝜆 based on 𝑋𝜆. 𝑋̃𝜆 has no flexible

servers. Each dedicated pool of 𝑋̃𝜆 has 𝑛𝜆 servers that can work at rate 𝜇 and 𝑛𝜆
𝐹
/2 servers that

can work at rate 𝜇𝐹 . When assigning customers to servers, the rate-𝜇 servers are prioritized. On

the other hand, 𝑋̌𝜆 does not have any dedicated servers. Instead, it has 2𝑛𝜆 + 𝑛𝜆
𝐹

flexible servers,

among which 2𝑛𝜆 servers can work at rate 𝜇 and 𝑛𝜆
𝐹

servers can work at rate 𝜇𝐹 . When assigning
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customers to servers, we again prioritize the faster servers.

Lemma 13. Suppose 𝜃 ≤ 𝜇𝐹 . For 𝑋̃𝜆, 𝑋̌𝜆 and 𝑋𝜆, if (𝑛𝜆, 𝑛𝜆
𝐹
) ∈ Ω𝜆 (𝜃),

𝑋̌𝜆1 (∞) + 𝑋̌𝜆2 (∞) ≤𝑠𝑡𝑋𝜆1 (∞) + 𝑋𝜆2 (∞) ≤𝑠𝑡 𝑋̃𝜆1 (∞) + 𝑋̃𝜆2 (∞);

𝑋̌𝜆1 (∞) ∨ 𝑋̌𝜆2 (∞) ≤𝑠𝑡𝑋𝜆1 (∞) ∨ 𝑋𝜆2 (∞) ≤𝑠𝑡 𝑋̃𝜆1 (∞) ∨ 𝑋̃𝜆2 (∞);(
𝑋̌𝜆1 (∞) + 𝑋̌𝜆2 (∞) − 2𝑛𝜆 − 𝑛𝜆𝐹

)+
≤𝑠𝑡𝑄𝜆Σ (∞) ≤𝑠𝑡

(
𝑋̃𝜆1 (∞) − 𝑛𝜆 − 𝑛𝜆𝐹/2

)+
+

(
𝑋̃𝜆2 (∞) − 𝑛𝜆 − 𝑛𝜆𝐹/2

)+
.

Proof. Because all three processes are two-dimensional birth-and-death processes with common

arrival rate 𝜆, we can apply Lemma 11. To simplify the notation, we omit the superscript 𝜆. Set

𝑌 = 𝑋 and 𝑌 = 𝑋̃ . Then the death rates take the form:

𝜁1(𝑦1, 𝑦2)

=


𝜇(𝑦1 ∧ 𝑛) + 𝜇𝐹 ((𝑦1 − 𝑛)+ ∧ 𝑛𝐹) + 𝜃 (𝑦1 − 𝑛 − 𝑛𝐹)+ 𝑦1 ≥ 𝑦2

𝜇(𝑦1 ∧ 𝑛) + 𝜇𝐹 ((𝑦1 − 𝑛)+ ∧ (𝑛𝐹 − (𝑦2 − 𝑛)+)+) + 𝜃 ((𝑦1 − 𝑛)+ − (𝑛𝐹 − (𝑦2 − 𝑛)+)+) 𝑦1 < 𝑦2

𝜁2(𝑦1, 𝑦2)

=


𝜇(𝑦2 ∧ 𝑛) + 𝜇𝐹 ((𝑦2 − 𝑛)+ ∧ (𝑛𝐹 − (𝑦1 − 𝑛)+)+) + 𝜃 ((𝑦2 − 𝑛)+ − (𝑛𝐹 − (𝑦1 − 𝑛)+)+) 𝑦1 ≥ 𝑦2

𝜇(𝑦2 ∧ 𝑛) + 𝜇𝐹 ((𝑦2 − 𝑛)+ ∧ 𝑛𝐹) + 𝜃 (𝑦2 − 𝑛 − 𝑛𝐹)+ 𝑦1 < 𝑦2

𝜁1(𝑦1, 𝑦2) = 𝜇(𝑦1 ∧ 𝑛) + 𝜇𝐹 (𝑛𝐹/2 ∧ (𝑦1 − 𝑛)+) + 𝜃 (𝑦1 − 𝑛 − 𝑛𝐹/2)+

𝜁2(𝑦1, 𝑦2) = 𝜇(𝑦2 ∧ 𝑛) + 𝜇𝐹 (𝑛𝐹/2 ∧ (𝑦2 − 𝑛)+) + 𝜃 (𝑦2 − 𝑛 − 𝑛𝐹/2)+

Since 𝜇 ≥ 𝜇𝐹 ≥ 𝜃, it is straightforward to verify that P1 and P2 in Lemma 11 hold. Thus, from the

proof of Lemma 11, we can construct a coupling such that

𝑌1(𝑡) + 𝑌2(𝑡) ≤ 𝑌1(𝑡) + 𝑌2(𝑡) and 𝑌1(𝑡) ∨ 𝑌2(𝑡) ≤ 𝑌1(𝑡) ∨ 𝑌2(𝑡)
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for 𝑡 ≥ 0 path-by-path. In addition,

𝑄Σ (𝑡) =
(
(𝑋1(𝑡) − 𝑛)+ + (𝑋2(𝑡) − 𝑛)+ − 𝑛𝐹

)+
≤ (𝑋1(𝑡) − (𝑛 + 𝑛𝐹/2))+ + (𝑋2(𝑡) − (𝑛 + 𝑛𝐹/2))+

≤ ( 𝑋̃1(𝑡) − (𝑛 + 𝑛𝐹/2))+ + ( 𝑋̃2(𝑡) − (𝑛 + 𝑛𝐹/2))+

As 𝑌 is positive recurrent for (𝑛, 𝑛𝐹) ∈ Ω𝜆 (𝜃), so is 𝑌 . Sending 𝑡 to infinity for the coupled

processes, we have the stochastic dominance results in stationarity. The stochastic dominance

results for 𝑋 over 𝑋̌ follow similarly.

For Lemma 2, we note that under the policy 𝜈𝜆,∗, for (𝑛𝜆, 𝑛𝜆
𝐹
) ∈ Ω𝜆 (0),

𝑋𝜆1 (∞) + 𝑋𝜆2 (∞) ≤𝑠𝑡 𝑋̃𝜆1 (∞) + 𝑋̃𝜆2 (∞)

by Lemma 13. Then, the stability of 𝑋̃𝜆1 and 𝑋̃𝜆2 implies the stability of (𝑋𝜆1 , 𝑋
𝜆
2 ).

For Lemma 4, we have 𝜇 = 𝜇𝐹 . In this case,

𝑄𝜆Σ (∞; 0, 2𝑛𝜆 + 𝑛𝜆𝐹)
𝑑
=

(
𝑋̌𝜆1 (∞) + 𝑋̌𝜆2 (∞) − 2𝑛𝜆 − 𝑛𝜆𝐹

)+
.

Then, by Lemma 13, under the policy 𝜈𝜆,∗, we have

𝑄𝜆Σ (∞; 0, 2𝑛𝜆 + 𝑛𝜆𝐹) ≤𝑠𝑡 𝑄
𝜆
Σ (∞; 𝑛𝜆, 𝑛𝜆𝐹).

B.2.2 Proof of Theorem 5

Proof. We apply Lemma 11 to prove Theorem 5. To simplify notation, we omit the superscript 𝜆.

Consider 𝑌 (𝑡) = 𝑋 (𝑡; 𝑛, 𝑛𝐹 ; 𝜈∗) and 𝑌 (𝑡) = 𝑋 (𝑡; 𝑛, 𝑛𝐹 ; 𝜈). We will first verify that P1 and P2 in

Lemma 11 hold.
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For P1, 𝑦1 + 𝑦2 = 𝑦̃1 + 𝑦̃2 and 𝑦1 ∨ 𝑦2 ≤ 𝑦̃1 ∨ 𝑦̃2. Since 𝜇 ≥ 𝜇𝐹 ≥ 𝜃,

𝜁Σ ( 𝑦̃) ≤ 𝜁Σ ( 𝑦̃) ≤ 𝜁Σ (𝑦).

For P2, 𝑦1 ∨ 𝑦2 = 𝑦̃1 ∨ 𝑦̃2 and 𝑦1 + 𝑦2 ≤ 𝑦̃1 + 𝑦2. Without loss of generality, suppose 𝑦1 ≥ 𝑦2

and 𝑦1 = 𝑦̃1 ≥ 𝑦̃2. Then,

𝜁𝑀 ( 𝑦̃) ≤ 𝜁𝑀 ( 𝑦̃) = 𝜇(𝑦1 ∧ 𝑛) + 𝜇𝐹 (𝑛𝐹 ∧ (𝑦1 − 𝑛)+) + 𝜃 (𝑦1 − 𝑛 − 𝑛𝐹)+ = 𝜁𝑀 (𝑦).

The positive recurrence of 𝑌 is established in Lemma 2. For 𝑌 , if it is not positive recurrent,

we define 𝑌𝑖 (∞) = ∞. Then by Lemma 11,

𝑋𝜆1 (∞; 𝑛, 𝑛𝐹 ; 𝜈∗) + 𝑋𝜆2 (∞; 𝑛, 𝑛𝐹 ; 𝜈∗) ≤𝑠𝑡 𝑋𝜆1 (∞; 𝑛, 𝑛𝐹 ; 𝜈) + 𝑋𝜆2 (∞; 𝑛, 𝑛𝐹 ; 𝜈)

and

𝑋𝜆1 (∞; 𝑛, 𝑛𝐹 ; 𝜈∗) ∨ 𝑋𝜆2 (∞; 𝑛, 𝑛𝐹 ; 𝜈∗) ≤𝑠𝑡 𝑋𝜆1 (∞; 𝑛, 𝑛𝐹 ; 𝜈) ∨ 𝑋𝜆2 (∞; 𝑛, 𝑛𝐹 ; 𝜈).

Lastly, for the queue length, consider the function 𝑓 : N2
0 → N0 defined by 𝑓 (𝑦1, 𝑦2) =

((𝑦1 − 𝑛)+ + (𝑦2 − 𝑛)+ − 𝑛𝐹)+. Note that if 𝑦1 + 𝑦2 ≤ 𝑦̃1 + 𝑦̃2 and 𝑦1 ∨ 𝑦2 ≤ 𝑦̃1 ∨ 𝑦̃2, then

𝑓 (𝑦) ≤ 𝑓 ( 𝑦̃). Therefore,

𝑄𝜆Σ (∞; 𝑛, 𝑛𝐹 , 𝜈∗) =
(
(𝑋𝜆1 (∞; 𝑛, 𝑛𝐹 ; 𝜈∗) − 𝑛)+ + (𝑋𝜆2 (∞; 𝑛, 𝑛𝐹 ; 𝜈∗) − 𝑛)+ − 𝑛𝐹

)+
≤𝑠𝑡

(
(𝑋𝜆1 (∞; 𝑛, 𝑛𝐹 ; 𝜈) − 𝑛)+ + (𝑋𝜆2 (∞; 𝑛, 𝑛𝐹 ; 𝜈) − 𝑛)+ − 𝑛𝐹

)+
≤𝑠𝑡 𝑄𝜆Σ (∞; 𝑛, 𝑛𝐹 ; 𝜈).
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B.2.3 Optimal scheduling rule when 𝜃 ≥ 𝜇𝐹 = 𝜇

Define 𝜙𝜆,∗ by

𝑍𝜆𝑖 (𝑡) = min{𝑛𝜆, 𝑋𝜆𝑖 (𝑡)} for 𝑖 = 1, 2; (B.3)

and if 𝑋𝜆1 (𝑡) ≤ 𝑋𝜆2 (𝑡),

𝑍𝜆𝐹1(𝑡) = min{𝑛𝜆𝐹 , (𝑋
𝜆
1 (𝑡) − 𝑛

𝜆)+}, 𝑍𝜆𝐹2(𝑡) = min{𝑛𝜆𝐹 − 𝑍𝜆𝐹1(𝑡), (𝑋
𝜆
2 (𝑡) − 𝑛

𝜆)+}; (B.4)

otherwise,

𝑍𝜆𝐹1(𝑡) = min{𝑛𝜆𝐹 − 𝑍𝜆𝐹2(𝑡), (𝑋
𝜆
1 (𝑡) − 𝑛

𝜆)+}, 𝑍𝜆𝐹2(𝑡) = min{𝑛𝜆𝐹 , (𝑋
𝜆
2 (𝑡) − 𝑛

𝜆)+}. (B.5)

That is, the flexible pool gives priority to the class with fewer customers in the system. The next

theorem show that 𝜙𝜆,∗ is optimal when 𝜃 ≥ 𝜇𝐹 = 𝜇.

Theorem 14. Suppose 𝜃 ≥ 𝜇 = 𝜇𝐹 . For any deterministic Markovian scheduling policy 𝜈𝜆,

E[𝑄𝜆Σ (∞; 𝑛𝜆, 𝑛𝜆𝐹 ; 𝜈𝜆)] ≥ E[𝑄𝜆Σ (∞; 𝑛𝜆, 𝑛𝜆𝐹 ; 𝜙𝜆,∗)],

which implies that Π𝜆 (𝑛𝜆, 𝑛𝜆
𝐹

; 𝜈𝜆) ≥ Π𝜆 (𝑛𝜆, 𝑛𝜆
𝐹

; 𝜙𝜆,∗).

Proof. The proof of Theorem 14 uses a coupling construction similar to that of Theorem 5, but

does so by considering a ‘dual’ problem where we maximize the number of busy servers. In

particular, the key observation is that

𝜃E[𝑄𝜆Σ (∞)] = 2𝜆 − 𝜇E[𝑍𝜆1 (∞) + 𝑍𝜆2 (∞)] − 𝜇𝐹E[𝑍𝜆𝐹 (∞)] (B.6)

so that minimizing E[𝑄𝜆
Σ
(∞)] is equivalent to maximizing

𝜇E[𝑍𝜆1 (∞) + 𝑍𝜆2 (∞)] + 𝜇𝐹E[𝑍𝜆𝐹 (∞)] .
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This may be accomplished by keeping 𝑋𝜆1 + 𝑋
𝜆
2 and 𝑋𝜆1 ∧ 𝑋

𝜆
2 both large. Based on this observation,

we shall prove Theorem 14 using Lemma 12.

To simplify the notation, we drop the superscript 𝜆. Let 𝑌 (𝑡) = 𝑋 (𝑡; 𝑛, 𝑛𝐹 ; 𝜙∗) and 𝑌 (𝑡) =

𝑋 (𝑡; 𝑛, 𝑛𝐹 ; 𝜈). We next verify P1 and P2 of Lemma 12.

For P1, 𝑦1 + 𝑦2 = 𝑦̃1 + 𝑦̃2 and 𝑦1 ∧ 𝑦2 ≥ 𝑦̃1 ∧ 𝑦̃2. In this case, we have

𝜁Σ (𝑦) ≤ 𝜁Σ ( 𝑦̃) ≤ 𝜁Σ ( 𝑦̃).

For P2, 𝑦1 ∧ 𝑦2 = 𝑦̃1 ∧ 𝑦̃2 and 𝑦1 + 𝑦2 ≥ 𝑦̃1 + 𝑦2. Without loss of generality, suppose 𝑦1 ≤ 𝑦2

and 𝑦1 = 𝑦̃1 ≤ 𝑦̃2. Then,

𝜁𝑚 ( 𝑦̃) = 𝜁1( 𝑦̃) ≥ 𝜇(𝑦1 ∧ (𝑛 + 𝑛𝐹)) + 𝜃 (𝑦1 − 𝑛 − 𝑛𝐹)+ = 𝜁𝑚 (𝑦)

From Lemma 12, we can construct a coupling, under which

𝑌1(𝑡) + 𝑌2(𝑡) ≥ 𝑌1(𝑡) + 𝑌2(𝑡) and 𝑌1(𝑡) ∧ 𝑌2(𝑡) ≥ 𝑌1(𝑡) ∧ 𝑌2(𝑡).

This further implies that

𝜇(𝑍1(𝑡) + 𝑍2(𝑡)) + 𝜇𝐹𝑍𝐹 (𝑡) ≥ 𝜇(𝑍̃1(𝑡) + 𝑍̃2(𝑡)) + 𝜇𝐹 𝑍̃𝐹 (𝑡).

As 𝜃 > 0, both 𝑌 and 𝑌 are positive recurrent. Thus,

𝜇(𝑍1(∞) + 𝑍2(∞)) + 𝜇𝐹𝑍𝐹 (∞) ≥𝑠𝑡 𝜇(𝑍̃1(∞) + 𝑍̃2(∞)) + 𝜇𝐹 𝑍̃𝐹 (∞),

This completes the proof due to (B.6).

Remark 3. It is hard to extend the results in Theorem 14 to the case where 𝜇 > 𝜇𝐹 . This is because

when 𝜇 > 𝜇𝐹 , P1 in Lemma 12 no longer holds. For example, consider 𝑛 = 𝑛𝐹 = 1, 𝑦 = (1, 1) and

𝑦̃ = (0, 2). In this case, 𝜁Σ (𝑦) = 2𝜇 > 𝜇 + 𝜇𝐹 ≥ 𝜁Σ ( 𝑦̃).
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B.3 Proofs of the Results in Section 3.3.2

B.3.1 Proof of Lemma 3.

Proof. Note that E[𝑄𝜆
Σ
(∞; ⌊𝑅𝜆 +

√
𝑅𝜆⌋, 0)] = 𝑂 (

√
𝜆) [59]. Thus,

Π𝜆,∗ ≤ Π𝜆 (⌊𝑅𝜆 +
√
𝑅𝜆⌋, 0) = 2𝑐𝑅𝜆 +𝑂 (

√
𝜆).

To prove Π𝜆,∗ = 2𝑐𝑅𝜆 +𝑂 (
√
𝜆), it suffices to prove that 𝑛𝜆,∗ = 𝑅𝜆 +𝑂 (

√
𝜆) and 𝑛𝜆,∗

𝐹
= 𝑂 (

√
𝜆).

We first prove lim sup𝜆→∞
𝑛𝜆,∗−𝑅𝜆

√
𝜆

< ∞. Suppose by contradiction that there exists a subse-

quence {𝜆𝑘 }𝑘∈N such that lim𝑘→∞ 𝜆𝑘 = ∞ and lim𝑘→∞(𝑛𝜆𝑘 ,∗ − 𝑅𝑘 )/
√
𝜆𝑘 = ∞, where 𝑅𝑘 = 𝜆𝑘/𝜇.

Then,

Π𝜆𝑘 (𝑛𝜆𝑘 ,∗, 𝑛𝜆𝑘 ,∗
𝐹

) − 2𝑐𝑅𝑘√
𝜆𝑘

≥
𝑐(2𝑛𝜆𝑘 ,∗ + 𝑛𝜆𝑘 ,∗

𝐹
− 2𝑅𝑘 )√

𝜆𝑘
≥ 2𝑐(𝑛𝜆𝑘 ,∗ − 𝑅𝑘 )√

𝜆𝑘
→ ∞,

contradicting that Π𝜆,∗ ≤ 2𝑐𝑅𝜆 +𝑂 (
√
𝜆).

We next prove that lim inf𝜆→∞
𝑛𝜆,∗−𝑅𝜆

√
𝜆

> −∞ and lim sup𝜆→∞
𝑛
𝜆,∗
𝐹√
𝜆
< ∞.

Consider the case where 𝜃 = 0. Note that for stability, 2𝑛𝜆,∗𝜇 + 𝑛𝜆,∗
𝐹
𝜇𝐹 > 2𝜆. To prove

lim sup𝜆→∞
𝑛
𝜆,∗
𝐹√
𝜆
< ∞, we suppose for contradiction that there exists a subsequence {𝜆𝑘 }𝑘∈N such

that lim𝑘→∞ 𝜆𝑘 = ∞ and lim𝑘→∞ 𝑛
𝜆𝑘 ,∗
𝐹

/
√
𝜆𝑘 = ∞. Note that 2𝑛𝜆𝑘 ,∗ > 2𝜆𝑘/𝜇 − 𝑛𝜆𝑘 ,∗𝐹

𝜇𝐹/𝜇. Then,

Π𝜆𝑘 (𝑛𝜆𝑘 ,∗, 𝑛𝜆𝑘 ,∗
𝐹

) − 2𝑐𝑅𝑘√
𝜆𝑘

≥
𝑐(2𝑛𝜆𝑘 ,∗ − 2𝑅𝑘 ) + 𝑐𝐹𝑛𝜆𝑘 ,∗𝐹√

𝜆𝑘
≥
𝑛
𝜆𝑘 ,∗
𝐹

(𝑐𝐹 − 𝑐𝜇𝐹/𝜇)√
𝜆𝑘

→ ∞,

contradicting that Π𝜆,∗ ≤ 2𝑐𝑅𝜆 + 𝑂 (
√
𝜆). Since 2𝑛𝜆𝑘 ,∗ > 2𝜆𝑘/𝜇 − 𝑛𝜆𝑘 ,∗

𝐹
𝜇𝐹/𝜇, this also shows that

lim inf𝜆→∞
𝑛𝜆,∗−𝑅𝜆

√
𝜆

> −∞.

We now turn to the case where 𝜃 > 0. We first note that 𝜃E[𝑄𝜆
Σ
(∞; 𝑛𝜆, 𝑛𝜆

𝐹
)] ≥ 2𝜆−2𝑛𝜆𝜇−𝑛𝜆

𝐹
𝜇𝐹 .

To prove lim sup𝜆→∞
𝑛
𝜆,∗
𝐹√
𝜆
< ∞, suppose for contradiction that there exists a subsequence {𝜆𝑘 }𝑘∈N
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such that lim𝑘→∞ 𝜆𝑘 = ∞ and lim𝑘→∞ 𝑛
𝜆𝑘 ,∗
𝐹

/
√
𝜆𝑘 = ∞. Note that

Π𝜆𝑘 (𝑛𝜆𝑘 ,∗, 𝑛𝜆𝑘 ,∗
𝐹

) − 2𝑐𝑅𝑘√
𝜆𝑘

≥
2𝑐(𝑛𝜆𝑘 ,∗ − 𝑅𝑘 ) + 𝑐𝐹𝑛𝜆𝑘 ,∗𝐹√

𝜆𝑘
. (B.7)

Since the LHS of (B.7) must be bounded, say by 2𝑐𝐶 for some constant 𝐶 > 0, we have

𝑛𝜆𝑘 ,∗ − 𝑅𝑘 ≤ 𝐶
√︁
𝜆𝑘 −

𝑐𝐹

2𝑐
𝑛
𝜆𝑘 ,∗
𝐹

.

Therefore,

𝜆𝑘 − 𝑛𝜆𝑘 ,∗𝜇 ≥ 𝑐𝐹𝜇

2𝑐
𝑛
𝜆𝑘 ,∗
𝐹

− 𝐶𝜇
√︁
𝜆𝑘 ≥

1
2
𝑛
𝜆𝑘 ,∗
𝐹

𝜇𝐹 − 𝐶𝜇
√︁
𝜆𝑘 .

Next, for ℎ/𝜃 + 𝑎 = 𝑐𝐹/𝜇𝐹 + 𝛿 = 𝑐/𝜇 + 𝜖 satisfying 0 < 𝛿 < 𝜖 ,

Π𝜆𝑘 (𝑛𝜆𝑘 ,∗, 𝑛𝜆𝑘 ,∗
𝐹

) − 2𝑐𝑅𝑘√
𝜆𝑘

=
(ℎ/𝜃 + 𝑎)𝜃E[𝑄𝜆

Σ
(∞; 𝑛𝜆𝑘 ,∗, 𝑛𝜆𝑘 ,∗

𝐹
)] + 2𝑐(𝑛𝜆𝑘 ,∗ − 𝑅𝑘 ) + 𝑐𝐹𝑛𝜆𝑘 ,∗𝐹√

𝜆𝑘

≥
(ℎ/𝜃 + 𝑎) (2𝜆𝑘 − 2𝑛𝜆𝑘 ,∗𝜇 − 𝑛𝜆𝑘 ,∗

𝐹
𝜇𝐹) + 2𝑐(𝑛𝜆𝑘 ,∗ − 𝑅𝑘 ) + 𝑐𝐹𝑛𝜆𝑘 ,∗𝐹√
𝜆𝑘

=
2𝜖 (𝜆𝑘 − 𝑛𝜆𝑘 ,∗𝜇) − 𝛿𝑛𝜆𝑘 ,∗𝐹

𝜇𝐹√
𝜆𝑘

≥
(𝜖 − 𝛿)𝑛𝜆𝑘 ,∗

𝐹
𝜇𝐹 − 2𝜖𝐶𝜇

√
𝜆𝑘√

𝜆𝑘

→ ∞

as 𝑘 → ∞. This contradicts that Π𝜆,∗ ≤ 2𝑐𝑅𝜆 +𝑂 (
√
𝜆), and so 𝑛𝜆

𝐹
= 𝑂 (

√
𝜆).

To prove that lim inf𝜆→∞
𝑛𝜆,∗−𝑅𝜆

√
𝜆

> −∞, assume for contradiction that there exists a subse-

quence {𝜆𝑘 }𝑘∈N such that lim𝑘→∞ 𝜆𝑘 = ∞ and lim𝑘→∞(𝑛𝜆𝑘 ,∗ − 𝑅𝑘 )/
√
𝜆𝑘 = −∞. Then, for
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𝑛
𝜆𝑘 ,∗
𝐹

= 𝑂 (
√
𝜆𝑘 ), we have

Π𝜆𝑘 (𝑛𝜆𝑘 ,∗, 𝑛𝜆𝑘 ,∗
𝐹

) − 2𝑐𝑅𝑘√
𝜆𝑘

≥
2𝜖 (𝜆𝑘 − 𝑛𝜆𝑘 ,∗𝜇) − 𝛿𝑛𝜆𝑘 ,∗𝐹

𝜇𝐹√
𝜆𝑘

=
−2𝜖 𝜇(𝑛𝜆𝑘 ,∗ − 𝑅𝑘 ) − 𝛿𝑛𝜆𝑘 ,∗𝐹

𝜇𝐹√
𝜆𝑘

→ ∞.

This is a contradiction.

B.3.2 Some auxiliary lemmas

Before we prove Theorem 6, we first present three auxiliary lemmas.

Lemma 14. Let 𝑀𝜆 = {𝑀𝜆 (𝑡) : 𝑡 ≥ 0} be a sequence of ergodic Markov chains taking values in

R𝑚, and ℎ : R𝑚 → R𝑛 be a measurable function. Suppose

1. ℎ(𝑀𝜆 (𝑡)) ⇒ 𝑅(𝑡) in 𝐷𝑛 if ℎ(𝑀𝜆 (0)) ⇒ 𝑅(0) as 𝜆 → ∞, where 𝑅 is a continuous ergodic

process with a unique stationary distribution 𝑅(∞);

2. {ℎ(𝑀𝜆 (∞)) : 𝜆 ≥ 1} is tight.

Then, ℎ(𝑀𝜆 (∞)) ⇒ 𝑅(∞) as 𝜆 → ∞.

Proof. The proof follows similar lines of argument as [82]. As {(ℎ(𝑀𝜆 (∞)) : 𝜆 ≥ 1} is tight,

every subsequence has a convergent further subsequence. Let 𝑌 be a weak limit of {(ℎ(𝑀𝜆 (∞)) :

𝜆 ≥ 1}, i.e., there exists a sequence {𝜆𝑘 : 𝑘 ∈ N}, such that ℎ(𝑀𝜆𝑘 (∞)) ⇒ 𝑌 as 𝑘 → ∞.

Now for each 𝑘 , set 𝑀𝜆𝑘 (0) 𝑑
= 𝑀𝜆𝑘 (∞). Then, we have 𝑀𝜆𝑘 (𝑡) 𝑑

= 𝑀𝜆𝑘 (∞) for any 𝑡 ≥ 0. This

implies that ℎ(𝑀𝜆𝑘 (0)) ⇒ 𝑌 , which further implies that ℎ(𝑀𝜆𝑘 (𝑡)) ⇒ 𝑅(𝑡) in 𝐷𝑛 as 𝑘 → ∞. As

𝑅(0) 𝑑
= 𝑌 , 𝑅(𝑡) 𝑑

= 𝑌 . Furthermore, as 𝑅(𝑡) ⇒ 𝑅(∞) as 𝑡 → ∞, 𝑌 𝑑
= 𝑅(𝑡) 𝑑

= 𝑅(∞). Therefore,

every weak limit of {(ℎ(𝑀𝜆 (∞)) : 𝜆 ≥ 1} follows the same distribution as 𝑅(∞). This indicates

that ℎ(𝑀𝜆 (∞)) ⇒ 𝑅(∞) as 𝜆 → ∞.
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Let 𝑋̃𝜆1 (·) denote the number of customers in a system with arrival rate 𝜆, 𝑛𝜆 rate-𝜇 servers and

𝑛𝜆
𝐹
/2 rate-𝜇𝐹 servers.

Lemma 15. If either (i) 𝜃 = 0 and 𝜆 < 𝑛𝜆𝜇 + 𝑛𝜆
𝐹

2 𝜇𝐹 = 𝜆 + Θ(
√
𝜆) or (ii) 𝜃 > 0, 𝑛𝜆𝜇 = 𝜆 +𝑂 (

√
𝜆),

and 𝑛𝜆
𝐹
= 𝑂 (

√
𝜆),

sup
𝜆>1
E


(
( 𝑋̃𝜆1 (∞) − 𝑛𝜆 − 𝑛𝜆

𝐹
/2)+

√
𝜆

)2 < ∞.

Proof. Let 𝐶𝜆 = 𝑛𝜆 + 𝑛𝜆
𝐹
/2. We first note that 𝑋̃𝜆1 (·) is a positive-recurrent birth-death process. Let

𝜋𝜆 denote its stationary distribution. In Case (i), for 𝑘 ≥ 𝐶𝜆, we have

𝜋𝜆 (𝑘) = 𝜋𝜆 (𝐶𝜆) ©­« 𝜆

𝑛𝜆𝜇 + 𝑛𝜆
𝐹

2 𝜇𝐹

ª®¬
𝑘−𝐶𝜆

.

This implies that ( 𝑋̃𝜆1 (∞) − 𝐶𝜆)+ is stochastically bounded by a geometric random variable with

probability of success

1 − 𝜆

𝑛𝜆𝜇 + 𝑛𝜆
𝐹
𝜇𝐹/2

= Θ(1/
√
𝜆).

Thus, E
[ (
𝑋̃𝜆1 (∞) − 𝐶𝜆)+

)2
]
= 𝑂 (𝜆).

In Case (ii), choose 𝑙𝜆 ≥ 0 such that 𝑙𝜆 = 𝑂 (
√
𝜆) and 𝑛𝜆𝜇 + 𝑛𝜆

𝐹

2 𝜇𝐹 + 𝑙
𝜆𝜃 = 𝜆 +Θ(

√
𝜆), and note

that it suffices to prove that

sup
𝜆>1
E


(
( 𝑋̃𝜆1 (∞) − 𝑛𝜆 − 𝑛𝜆

𝐹
/2 − 𝑙𝜆)+

√
𝜆

)2 < ∞.

Let 𝐷𝜆 = 𝑛𝜆 + 𝑛𝜆
𝐹
/2 + 𝑙𝜆. For 𝑘 ≥ 𝐷𝜆, we have

𝜋𝜆 (𝑘) = 𝜋𝜆 (𝐷𝜆)
𝑘−𝐷𝜆∏
𝑗=1

©­« 𝜆

𝑛𝜆𝜇 + 𝑛𝜆
𝐹

2 𝜇𝐹 + 𝑙𝜆𝜃 + 𝑗𝜃
ª®¬ ≤ 𝜋𝜆 (𝐷𝜆) ©­« 𝜆

𝑛𝜆𝜇 + 𝑛𝜆
𝐹

2 𝜇𝐹 + 𝑙𝜆𝜃
ª®¬
𝑘−𝐷𝜆

.

Thus ( 𝑋̃𝜆1 (∞) − 𝐷𝜆)+ is stochastically bounded by a geometric random variable with probability
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of success

1 − 𝜆

𝑛𝜆𝜇 + 𝑛𝜆
𝐹
𝜇𝐹/2 + 𝑙𝜆𝜃

= Θ(1/
√
𝜆),

Thus, E
[ (
𝑋̃𝜆1 (∞) − 𝐷𝜆)+

)2
]
= 𝑂 (𝜆).

Lemma 16. For (𝑛𝜆, 𝑛𝜆
𝐹
) ∈ Ω𝜆 (𝜃), 2𝑛𝜆 + 𝑛𝜆

𝐹
= 2𝑅𝜆 + 𝛾

√
𝑅𝜆 + 𝑜(

√
𝑅𝜆), and 𝑛𝜆

𝐹
= 𝑂 (

√
𝜆), we have

sup
𝜆>1
E

[
(𝑋𝜆

𝑖
(∞) − 𝑛𝜆)−
√
𝜆

]
< ∞.

Proof. We prove the lemma for 𝑖 = 1 only; the case 𝑖 = 2 is similar. Let 𝜋𝜆1 (𝑘) = P(𝑋
𝜆
1 (∞) = 𝑘).

Then for 0 ≤ 𝑘 < 𝑛𝜆, we have 𝜆𝜋𝜆1 (𝑘) = (𝑘 + 1)𝜇𝜋𝜆1 (𝑘 + 1). This implies that

E[(𝑋𝜆1 (∞) − 𝑛𝜆)−] = 𝜋𝜆1 (𝑛
𝜆)

𝑛𝜆∑︁
𝑘=0

(𝑛𝜆 − 𝑘) 𝜇
𝑛𝜆−𝑘𝑛𝜆!
𝜆𝑛

𝜆−𝑘 𝑘!

≤ 1∑𝑛𝜆

𝑘=0
𝜇𝑛

𝜆−𝑘𝑛𝜆!
𝜆𝑛

𝜆−𝑘 𝑘!

·
𝑛𝜆∑︁
𝑘=0

(𝑛𝜆 − 𝑘) 𝜇
𝑛𝜆−𝑘𝑛𝜆!
𝜆𝑛

𝜆−𝑘 𝑘!

=
1∑𝑛𝜆

𝑘=0
𝜇𝑛

𝜆−𝑘𝑛𝜆!
𝜆𝑛

𝜆−𝑘 𝑘!

· 1
𝜋𝜆𝑐 (𝑛𝜆)

· 𝜋𝜆𝑐 (𝑛𝜆)
𝑛𝜆∑︁
𝑘=0

(𝑛𝜆 − 𝑘) 𝜇
𝑛𝜆−𝑘𝑛𝜆!
𝜆𝑛

𝜆−𝑘 𝑘!

=
1∑𝑛𝜆

𝑘=0 𝜋
𝜆
𝑐 (𝑘)

· E[(𝑋𝜆𝑐 (∞) − 𝑛𝜆)−]

where 𝑋𝜆𝑐 denotes the number-in-system process of an 𝑀/𝑀/(𝑛𝜆 + 𝑛𝜆
𝐹
) + 𝑀 queue with arrival

rate 𝜆 and service rate 𝜇, and abandonment rate 𝜃 ≥ 0, and 𝜋𝜆𝑐 denotes the stationary distribution

of 𝑋𝜆𝑐 . As E[(𝑋𝜆𝑐 (∞) − 𝑛𝜆 − 𝑛𝜆
𝐹
)−] = 𝑂 (

√
𝜆) [59] and 𝑛𝜆

𝐹
= 𝑂 (

√
𝜆), E[(𝑋𝜆𝑐 (∞) − 𝑛𝜆)−] = 𝑂 (

√
𝜆).

We also note that
∑𝑛𝜆

𝑘=0 𝜋
𝜆
𝑐 (𝑘) = P(𝑋𝜆𝑐 ≤ 𝑛𝜆) = Θ(1). Thus, E[(𝑋𝜆1 (∞) − 𝑛𝜆)−] = 𝑂 (

√
𝜆).

B.3.3 Proof of Theorem 6

Define, for 𝑖 = 1, 2, the fluid-scale processes

𝑍̄𝜆𝑖 (𝑡) =
𝑍𝜆
𝑖
(𝑡)
𝑛𝜆

, 𝐴̄𝜆𝑖 (𝑡) =
𝐴𝑖 (𝜆𝑡)
𝑛𝜆

, and 𝑆𝜆𝑖 (𝑡) =
𝑆𝑖 (𝑛𝜆𝜇𝑡)
𝑛𝜆

.
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We also define, for 𝑖 = 1, 2,

𝐺̄𝜆
𝑖 (𝑡) =

𝐺𝑖 (𝜃
√
𝜆𝑡)

√
𝜆

and 𝑆𝜆𝐹𝑖 (𝑡) =
𝑆𝐹𝑖 (𝜇𝐹

√
𝜆𝑡)

√
𝜆

.

Define, for 𝑖 = 1, 2, the diffusion-scale processes

𝐴̂𝜆𝑖 (𝑡) =
𝐴𝑖 (𝜆𝑡) − 𝜆𝑡√

𝜆
and 𝑆𝜆𝑖 (𝑡) =

𝑆𝑖 (𝑛𝜆𝜇𝑡) − 𝑛𝜆𝜇𝑡√
𝜆

.

We first note that because

𝑋𝜆𝑖 (𝑡) = 𝑋𝜆𝑖 (0) + 𝐴𝑖 (𝜆𝑡) − 𝐺𝑖
(
𝜃

∫ 𝑡

0
𝑄𝜆𝑖 (𝑠) 𝑑𝑠

)
− 𝑆𝑖

(
𝜇

∫ 𝑡

0
𝑍𝜆𝑖 (𝑠) 𝑑𝑠

)
− 𝑆𝐹𝑖

(
𝜇𝐹

∫ 𝑡

0
𝑍𝜆𝐹𝑖 (𝑠) 𝑑𝑠

)
,

we have that

𝑋̂𝜆𝑖 (𝑡) = 𝑋̂𝜆𝑖 (0) + 𝑌𝜆𝑖 (𝑡) + 𝐹𝑖 ( 𝑋̂𝜆) (𝑡),

where

𝑌𝜆𝑖 (𝑡) = 𝐴̂𝜆𝑖 (𝑡) − 𝑆𝜆𝑖
(∫ 𝑡

0
𝑍̄𝜆𝑖 (𝑠) 𝑑𝑠

)
−

©­­«
𝑆𝐹𝑖

(
𝜇𝐹

∫ 𝑡

0 𝑍
𝜆
𝐹𝑖
(𝑠) 𝑑𝑠

)
√
𝜆

− 𝜇𝐹
∫ 𝑡

0
𝑓𝑖 ( 𝑋̂𝜆 (𝑠)) 𝑑𝑠

ª®®¬
−

©­­«
𝐺𝑖

(
𝜃
∫ 𝑡

0 𝑄
𝜆
𝑖
(𝑠) 𝑑𝑠

)
√
𝜆

− 𝜃
∫ 𝑡

0
( 𝑋̂𝜆 (𝑠)+ − 𝑓𝑖 ( 𝑋̂𝜆 (𝑠)) 𝑑𝑠

ª®®¬ +
𝜆 − 𝑛𝜆𝜇
√
𝜆

𝑡

and

𝐹𝑖 ( 𝑋̂𝜆) (𝑡) = 𝜇
∫ 𝑡

0
𝑋̂𝜆𝑖 (𝑠)− 𝑑𝑠 − (𝜇𝐹 − 𝜃)

∫ 𝑡

0
𝑓𝑖 ( 𝑋̂𝜆 (𝑠)) 𝑑𝑠 − 𝜃

∫ 𝑡

0
𝑋̂𝜆𝑖 (𝑠)+ 𝑑𝑠. (B.8)

The proof of Theorem 6 is then divided into six steps.

Step 1. Establish the convergence of the fluid-scale number-in-service processes 𝑍̄𝜆
𝑖

.

Lemma 17. For (𝑛𝜆, 𝑛𝜆
𝐹
) ∈ Ω𝜆 (𝜃), suppose 𝑛𝜆 = 𝑅𝜆+𝛽

√
𝑅𝜆+𝑜(

√
𝑅𝜆) and 𝑛𝜆

𝐹
= 𝛽𝐹

√
𝑅𝜆+𝑜(

√
𝑅𝜆).

If 𝑍̄𝜆
𝑖
(0) → 1, 𝑖 = 1, 2,, then 𝑍̄𝜆

𝑖
⇒ 𝐼 in 𝐷 as 𝜆 → ∞.
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Proof. For any fixed 𝜖 > 0 and 𝑇 > 0, we shall prove that

lim
𝜆→∞
P

(
inf

0≤𝑡≤𝑇
𝑍̄𝜆1 (𝑡) < 1 − 𝜖

)
→ 0.

Define 𝜏𝜆1 = inf{0 ≤ 𝑡 ≤ 𝑇 : 𝑍̄𝜆1 (𝑡) < 1 − 𝜖} and 𝜏𝜆2 = sup{0 ≤ 𝑡 < 𝜏𝜆1 : 𝑍̄𝜆1 (𝑡) > 1 − 𝜖/2}.

Let 𝐸̄𝜆 be the event that 𝜏𝜆1 and 𝜏𝜆2 are well-defined, i.e. 𝜏𝜆
𝑖
≤ 𝑇 . The initial condition 𝑍̄𝜆

𝑖
(0) → 1

implies that
{
inf0≤𝑡≤𝑇 𝑍̄𝜆1 (𝑡) < 1 − 𝜖

}
⊆ 𝐸̄𝜆 for 𝜆 sufficiently large.

As 𝑍̄𝜆1 (𝑡) < 1 for 𝑡 ∈ [𝜏𝜆2 , 𝜏
𝜆
1 ], all Class 1 arrivals on [𝜏𝜆2 , 𝜏

𝜆
1 ] join the dedicated server pool

immediately on arrival. Moreover there are no abandonments from Class 1. Thus,

( 𝐴̄𝜆1 (𝜏
𝜆
1 ) − 𝐴̄

𝜆
1 (𝜏

𝜆
2−)) −

(
𝑆𝜆1

(∫ 𝜏𝜆1

0
𝑍̄1(𝑠)𝑑𝑠

)
− 𝑆𝜆1

(∫ 𝜏𝜆2

0
𝑍̄1(𝑠)𝑑𝑠

))
= 𝑍̄𝜆1 (𝜏

𝜆
1 ) − 𝑍̄

𝜆
1 (𝜏

𝜆
2−) ≤ −𝜖/2.

This further implies that

P(𝐸̄𝜆) ≤ P ©­« inf
0≤𝑠≤𝑡≤𝑇

0≤𝑢≤𝑠

( 𝐴̄𝜆1 (𝑡) − 𝐴̄
𝜆
1 (𝑠)) − (𝑆𝜆1 (𝑢 + 𝑡 − 𝑠) − 𝑆

𝜆
1 (𝑢)) ≤ −𝜖/2ª®¬ → 0,

where the convergence follows from the fact that, by the functional strong law of large numbers

(FSLLN) for Poisson processes, ( 𝐴̄𝜆1 , 𝑆
𝜆
1) ⇒ (𝜇𝜒, 𝜇𝜒) as 𝜆 → ∞. The analysis for 𝑍̄𝜆2 follows

similarly.

We note from Lemma 17 that in the fluid scale, the dedicated servers are busy all the time.

Step 2. Establish proper limits for the diffusion-scale processes 𝑌𝜆
𝑖

.

Lemma 18. For (𝑛𝜆, 𝑛𝜆
𝐹
) ∈ Ω𝜆 (𝜃), suppose 𝑛𝜆 = 𝑅𝜆+𝛽

√
𝑅𝜆+𝑜(

√
𝑅𝜆) and 𝑛𝜆

𝐹
= 𝛽𝐹

√
𝑅𝜆+𝑜(

√
𝑅𝜆).

If 𝑍̄𝜆
𝑖
(0) → 1, 𝑖 = 1, 2, then

(
𝑌𝜆1 , 𝑌

𝜆
2

)
⇒ (

√
2𝐵1 − 𝛽

√
𝜇𝜒,

√
2𝐵2 − 𝛽

√
𝜇𝜒) in 𝐷2 as 𝜆 → ∞,

where 𝐵1 and 𝐵2 are independent Brownian motions.
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Proof. Recall that

𝑌𝜆𝑖 (𝑡) = 𝐴̂𝜆𝑖 (𝑡) − 𝑆𝜆𝑖
(∫ 𝑡

0
𝑍̄𝜆𝑖 (𝑠) 𝑑𝑠

)
−

©­­«
𝑆𝐹𝑖

(
𝜇𝐹

∫ 𝑡

0 𝑍
𝜆
𝐹𝑖
(𝑠) 𝑑𝑠

)
√
𝜆

− 𝜇𝐹
∫ 𝑡

0
𝑓𝑖 ( 𝑋̂𝜆 (𝑠)) 𝑑𝑠

ª®®¬
−

©­­«
𝐺𝑖

(
𝜃
∫ 𝑡

0 𝑄
𝜆
𝑖
(𝑠) 𝑑𝑠

)
√
𝜆

− 𝜃
∫ 𝑡

0
( 𝑋̂𝜆 (𝑠)+ − 𝑓𝑖 ( 𝑋̂𝜆 (𝑠)) 𝑑𝑠

ª®®¬ +
𝜆 − 𝑛𝜆𝜇
√
𝜆

𝑡.

We shall analyze the five components of 𝑌𝑖 in sequence.

First, by the functional central limit theorem (FCLT) for Poisson processes, 𝐴̂𝜆
𝑖
⇒ 𝐵𝑖 in 𝐷 as

𝜆 → ∞, where 𝐵𝑖 is a Brownian motion.

Second, as
∫ ·

0 𝑍̄
𝜆
𝑖
(𝑠) 𝑑𝑠 ⇒ 𝜒 (Lemma 17), by a random time change, the FCLT for Poisson

processes, and the continuous mapping theorem (Chapter 13 of [83]), we have 𝑆𝜆
𝑖

(∫ ·
0 𝑍̄

𝜆
𝑖
(𝑠) 𝑑𝑠

)
⇒

𝐵̃𝑖 in 𝐷 as 𝜆 → ∞, where 𝐵̃𝑖 is a Brownian motion and is independent of 𝐵𝑖.

Third, by the FSLLN for Poisson processes, 𝑆𝜆
𝐹𝑖

⇒ 𝜇𝐹 𝜒 as 𝜆 → ∞. Next, we rewrite

∫ 𝑡

0 𝑍
𝜆
𝐹𝑖
(𝑠) 𝑑𝑠

√
𝜆

=

∫ 𝑡

0
𝑓 𝜆𝑖 ( 𝑋̂𝜆1 (𝑠), 𝑋̂

𝜆
2 (𝑠)) 𝑑𝑠,

where

𝑓 𝜆1 (𝑥1, 𝑥2) =


𝑥+1 ∧ 𝑛𝜆

𝐹√
𝜆
, 𝑥1 ≥ 𝑥2,

𝑥+1 ∧
(
𝑛𝜆
𝐹√
𝜆
− 𝑥+2

)+
, 𝑥1 < 𝑥2;

and 𝑓 𝜆2 (𝑥1, 𝑥2) =


𝑥+2 ∧

(
𝑛𝜆
𝐹√
𝜆
− 𝑥+1

)+
, 𝑥1 ≥ 𝑥2,

𝑥+2 ∧ 𝑛𝜆
𝐹√
𝜆
, 𝑥1 < 𝑥2.

Then, as 𝑓 𝜆 → 𝑓 as 𝜆 → ∞,

𝑆𝐹𝑖

(
𝜇𝐹

∫ 𝑡

0 𝑍
𝜆
𝐹𝑖
(𝑠) 𝑑𝑠

)
√
𝜆

− 𝜇𝐹
∫ 𝑡

0
𝑓𝑖 ( 𝑋̂𝜆 (𝑠)) 𝑑𝑠

=𝑆𝜆𝐹𝑖

(
1
√
𝜆

∫ 𝑡

0
𝑍𝜆𝐹𝑖 (𝑠) 𝑑𝑠

)
− 𝜇𝐹

∫ 𝑡

0
𝑓 𝜆𝑖 ( 𝑋̂𝜆 (𝑠)) 𝑑𝑠 + 𝜇𝐹

∫ 𝑡

0
𝑓 𝜆𝑖 ( 𝑋̂𝜆 (𝑠)) − 𝑓𝑖 ( 𝑋̂𝜆 (𝑠)) 𝑑𝑠

⇒0 as 𝜆 → ∞.
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Fourth, by the FSLLN for Poisson processes, 𝐺̄𝜆
𝑖
→ 𝜃𝜒 as 𝜆 → ∞. Then, because

𝜃
∫ 𝑡

0 𝑄
𝜆
𝑖
(𝑠) 𝑑𝑠

√
𝜆

=
𝜃
∫ 𝑡

0 ((𝑋
𝜆
𝑖
(𝑠) − 𝑛𝜆)+ − 𝑍𝜆

𝐹𝑖
(𝑠)) 𝑑𝑠

√
𝜆

= 𝜃

∫ 𝑡

0
( 𝑋̂𝜆𝑖 (𝑠)+ − 𝑓 𝜆𝑖 ( 𝑋̂𝜆1 (𝑠), 𝑋̂

𝜆
2 (𝑠)) 𝑑𝑠,

𝐺𝑖

(
𝜃
∫ 𝑡

0 𝑄
𝜆
𝑖
(𝑠) 𝑑𝑠

)
√
𝜆

− 𝜃
∫ 𝑡

0
( 𝑋̂𝜆 (𝑠)+ − 𝑓𝑖 ( 𝑋̂𝜆 (𝑠)) 𝑑𝑠

=𝐺̄𝜆
𝑖

(
1
√
𝜆

∫ 𝑡

0
𝑄𝜆𝑖 (𝑠) 𝑑𝑠

)
− 𝜃
√
𝜆

∫ 𝑡

0
𝑄𝜆𝑖 (𝑠) 𝑑𝑠 + 𝜃

∫ 𝑡

0
( 𝑓𝑖 ( 𝑋̂𝜆 (𝑠) − 𝑓 𝜆𝑖 ( 𝑋̂𝜆 (𝑠)) 𝑑𝑠

⇒0 as 𝜆 → ∞.

Fifth, under the assumption of the lemma, (𝜆 − 𝑛𝜆𝜇)/
√
𝜆 → −𝛽√𝜇 as 𝜆 → ∞.

Finally, putting the five parts together, we have the result.

Step 3. Establish the C-tightness of the {𝑋̂𝜆 : 𝜆 ≥ 1}.

Lemma 19. For (𝑛𝜆, 𝑛𝜆
𝐹
) ∈ Ω𝜆 (𝜃), suppose 𝑛𝜆 = 𝑅𝜆+𝛽

√
𝑅𝜆+𝑜(

√
𝑅𝜆) and 𝑛𝜆

𝐹
= 𝛽𝐹

√
𝑅𝜆+𝑜(

√
𝑅𝜆).

If 𝑋̂𝜆 (0) ⇒ 𝑋̂ (0) as 𝜆 → ∞,
{
𝑋̂𝜆 : 𝜆 ≥ 1

}
is C-tight in [0, 𝑇] for all 𝑇 > 0.

Proof. Following the C-tightness definition in [84], we will prove that for any fixed 𝜖, 𝛾 > 0, there

exist 𝛿 > 0 and 𝜆0 > 0 such that for all 𝜆 ≥ 𝜆0,

P
©­­« sup

0≤𝑠<𝑡≤𝑇
|𝑠−𝑡 |<𝛿

| 𝑋̂𝜆𝑖 (𝑡) − 𝑋̂𝜆𝑖 (𝑠) | ≥ 𝜖
ª®®¬ ≤ 𝛾

for 𝑖 = 1, 2. Consider the representation

𝑋̂𝜆𝑖 (𝑡) =𝑋̂𝜆𝑖 (0) + 𝐴̂𝜆𝑖 (𝑡) − 𝑆𝜆𝑖
(∫ 𝑡

0
𝑍̄𝜆𝑖 (𝑠) 𝑑𝑠

)
+ 𝜆 − 𝑛

𝜆𝜇
√
𝜆

𝑡 + 𝜇
∫ 𝑡

0
𝑋̂𝜆𝑖 (𝑠)− 𝑑𝑠

−
𝑆𝐹𝑖

(
𝜇𝐹

∫ 𝑡

0 𝑍
𝜆
𝐹𝑖
(𝑠) 𝑑𝑠

)
√
𝜆

−
𝐺𝑖 (𝜃

∫ 𝑡

0 𝑄
𝜆
𝑖
(𝑠) 𝑑𝑠)

√
𝜆

.
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First, as

𝑋̂𝜆𝑖 (0) + 𝐴̂𝜆𝑖 (𝑡) − 𝑆𝜆𝑖
(∫ 𝑡

0
𝑍̄𝜆𝑖 (𝑠) 𝑑𝑠

)
+ 𝜆 − 𝑛

𝜆𝜇
√
𝜆

𝑡 ⇒ 𝑋̂𝑖 (0) +
√

2𝐵𝑖 (𝑡) − 𝛽
√
𝜇𝑡 in 𝐷 as 𝜆 → ∞

and
√

2𝐵𝑖 (𝑡) − 𝛽
√
𝜇𝑡 is continuous, {𝑋̂𝜆

𝑖
(0) + 𝐴̂𝜆

𝑖
(𝑡) − 𝑆𝜆

𝑖

(∫ 𝑡

0 𝑍̄
𝜆
𝑖
(𝑠) 𝑑𝑠

)
+ (𝜆 − 𝑛𝜆𝜇)/

√
𝜆 : 𝜆 ≥ 1}

is C-tight (Lemma 4.2 of [84]).

Second, for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 ,

1
√
𝜆

(
𝑆𝐹𝑖

(
𝜇𝐹

∫ 𝑡

0
𝑍𝜆𝐹𝑖 (𝑢) 𝑑𝑢

)
− 𝑆𝐹𝑖

(
𝜇𝐹

∫ 𝑠

0
𝑍𝜆𝐹𝑖 (𝑢) 𝑑𝑢

))
≤𝑆𝜆𝐹𝑖

(∫ 𝑠

0 𝑍𝜆
𝐹𝑖
(𝑢) 𝑑𝑢

√
𝜆

+
𝑛𝜆
𝐹
(𝑡 − 𝑠)
√
𝜆

)
− 𝑆𝜆𝐹𝑖

(∫ 𝑠

0 𝑍𝜆
𝐹𝑖
(𝑢) 𝑑𝑢

√
𝜆

)
.

Then, the C-tightness of { 1√
𝜆
𝑆𝐹𝑖

(
𝜇𝐹

∫ ·
0 𝑍

𝜆
𝐹𝑖
(𝑠) 𝑑𝑠

)
} follows from the fact that 𝑛𝜆

𝐹
/
√
𝜆 → 𝛽𝐹/

√
𝜇 <

∞ and 𝑆𝜆
𝐹𝑖

⇒ 𝜇𝐹 𝜒 in 𝐷 as 𝜆 → ∞.

Third, for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 , we note that

1
√
𝜆

(
𝐺𝑖

(
𝜃

∫ 𝑡

0
𝑄𝜆𝑖 (𝑢) 𝑑𝑢

)
− 𝐺𝑖

(
𝜃

∫ 𝑠

0
𝑄𝜆𝑖 (𝑢) 𝑑𝑢

))
≤𝐺̄𝜆

𝑖

(∫ 𝑠

0 𝑄
𝜆
𝑖
(𝑢) 𝑑𝑢 + (𝑡 − 𝑠) sup0≤𝑣≤𝑇 𝑄

𝜆
𝑖
(𝑣)

√
𝜆

)
− 𝐺̄𝜆

𝑖

(∫ 𝑠

0 𝑄
𝜆
𝑖
(𝑢) 𝑑𝑢

√
𝜆

)
.

Then, to prove that { 1√
𝜆
𝐺𝑖 (𝜃

∫ ·
0 𝑄

𝜆
𝑖
(𝑠) 𝑑𝑠)} is C-tight, it suffices to prove that for any 𝛾 > 0, there

exists 𝐾, 𝜆0 > 0, such that P
(
sup0≤𝑣≤𝑇 𝑄

𝜆
𝑖
(𝑣)/

√
𝜆 ≥ 𝐾

)
≤ 𝛾/2 for every 𝜆 > 𝜆0. Furthermore,

since 𝑛𝜆
𝐹
= 𝑂 (

√
𝜆), it is sufficient to prove that P

(
sup0≤𝑣≤𝑇 𝑋̂

𝜆
𝑖
(𝑣) ≥ 𝐾

)
≤ 𝛾/2, which follows

from Lemma 13.

Fourth, we prove that {𝜇
∫ ·

0 𝑋̂
𝜆
𝑖
(𝑠)− 𝑑𝑠 : 𝜆 ≥ 1} is C-tight. For 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 , we first note that

𝜇

∫ 𝑡

0
𝑋̂𝜆𝑖 (𝑢)− 𝑑𝑢 − 𝜇

∫ 𝑠

0
𝑋̂𝜆𝑖 (𝑢)− 𝑑𝑢 ≤ 𝜇(𝑡 − 𝑠) sup

0≤𝑢≤𝑇
𝑋̂𝜆𝑖 (𝑢)−.

Next from Lemma 16 we have that for any 𝛾 > 0, there exists 𝐾 > 0 and 𝜆0 > 0 such that for all
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𝜆 > 𝜆0,

P

(
sup

0≤𝑢≤𝑇
𝑋̂𝜆𝑖 (𝑢)− > 𝐾

)
≤ 𝛾.

Thus, {𝜇
∫ ·

0 𝑋̂
𝜆
𝑖
(𝑠)− 𝑑𝑠 : 𝜆 ≥ 1} is C-tight.

Putting the four parts together, we have the C-tightness of
{
𝑋̂𝜆 : 𝜆 ≥ 1

}
.

Lemma 19 implies that any subsequence of 𝑋̂𝜆 has a weakly convergent further subsequence

and the limit is continuous almost surely (Proposition 4.1 in [84]).

Step 4. Establish that 𝐹 is continuous at almost all limit points of 𝑋̂𝜆.

Lemma 20. For (𝑛𝜆, 𝑛𝜆
𝐹
) ∈ Ω𝜆 (𝜃), suppose 𝑛𝜆 = 𝑅𝜆+𝛽

√
𝑅𝜆+𝑜(

√
𝑅𝜆) and 𝑛𝜆

𝐹
= 𝛽𝐹

√
𝑅𝜆+𝑜(

√
𝑅𝜆).

The mapping 𝐹 : 𝐷2 → 𝐷2 defined in (B.8) is continuous at almost all limit points of 𝑋̂𝜆.

Proof. From the C-tightness of {𝑋̂𝜆 : 𝜆 ≥ 1}, almost all sub-sequential limits of 𝑋̂𝜆 are continuous.

Thus, it suffices to prove continuity of 𝐹 under the uniform topology. We denote by 𝑋̂ a generic

sub-sequential limit of 𝑋̂𝜆.

Fix 𝑇 > 0. For 𝑋 ∈ 𝐷2, define ∥𝑋 ∥𝑇 = sup0≤𝑡≤𝑇 max( |𝑋1(𝑡) |, |𝑋2(𝑡) |). Now, fix 𝜖 > 0.

Consider 𝑋,𝑌 ∈ 𝐷2 with 𝑋 continuous and ∥𝑋 − 𝑌 ∥𝑇 < 𝜖/2.

For 0 ≤ 𝑡 ≤ 𝑇 , ����∫ 𝑡

0
𝑋𝑖 (𝑠)− 𝑑𝑠 −

∫ 𝑡

0
𝑌𝑖 (𝑠)− 𝑑𝑠

���� < 𝜖𝑡/2 ≤ 𝜖𝑇/2.

Similarly, ����∫ 𝑡

0
𝑋𝑖 (𝑠)+ 𝑑𝑠 −

∫ 𝑡

0
𝑌𝑖 (𝑠)+ 𝑑𝑠

���� < 𝜖𝑡/2 ≤ 𝜖𝑇/2.

Next, for 𝑓𝑖, when |𝑋1(𝑡) − 𝑋2(𝑡) | ≥ 𝜖 , if 𝑋1(𝑡) > 𝑋2(𝑡), then 𝑌1(𝑡) > 𝑌2(𝑡), and if 𝑋1(𝑡) < 𝑋2(𝑡),

then𝑌1(𝑡) < 𝑌2(𝑡). In this case, we have | 𝑓𝑖 (𝑋 (𝑡))− 𝑓𝑖 (𝑌 (𝑡)) | ≤ 𝜖/2. If, instead, |𝑋1(𝑡)−𝑋2(𝑡) | < 𝜖 ,
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| 𝑓𝑖 (𝑋 (𝑡)) − 𝑓𝑖 (𝑌 (𝑡)) | ≤ 𝛽𝐹/
√
𝜇. Putting the two cases together, we have����∫ 𝑡

0
𝑓𝑖 (𝑋 (𝑠)) 𝑑𝑠 −

∫ 𝑡

0
𝑓𝑖 (𝑌 (𝑠)) 𝑑𝑠

����
≤ 𝜖

2

∫ 𝑡

0
1{|𝑋1(𝑠) − 𝑋2(𝑠) | ≥ 𝜖} 𝑑𝑠 +

𝛽𝐹√
𝜇

∫ 𝑡

0
1{|𝑋1(𝑠) − 𝑋2(𝑠) | < 𝜖} 𝑑𝑠

≤ 𝜖𝑇
2

+ 𝛽𝐹√
𝜇

∫ 𝑇

0
1{|𝑋1(𝑠) − 𝑋2(𝑠) | < 𝜖} 𝑑𝑠.

Above all,

|𝐹𝑖 (𝑋) (𝑡) − 𝐹𝑖 (𝑌 ) (𝑡) | ≤𝜇
����∫ 𝑡

0
𝑋𝑖 (𝑠)− 𝑑𝑠 −

∫ 𝑡

0
𝑌𝑖 (𝑠)− 𝑑𝑠

���� + 𝜃 ����∫ 𝑡

0
𝑋𝑖 (𝑠)+ 𝑑𝑠 −

∫ 𝑡

0
𝑌𝑖 (𝑠)+ 𝑑𝑠

����
+ (𝜇𝐹 − 𝜃)

����∫ 𝑡

0
𝑓𝑖 (𝑋 (𝑠)) 𝑑𝑠 −

∫ 𝑡

0
𝑓𝑖 (𝑌 (𝑠)) 𝑑𝑠

����
≤ 𝜖 𝜇𝑇

2
+ 𝜖𝜃𝑇

2
+ 𝜖 (𝜇𝐹 − 𝜃)𝑇

2
+ 𝛽𝐹√

𝜇
(𝜇𝐹 − 𝜃)

∫ 𝑇

0
1{|𝑋1(𝑡) − 𝑋2(𝑡) | < 𝜖} 𝑑𝑡

→ 𝛽𝐹√
𝜇
(𝜇𝐹 − 𝜃)

∫ 𝑇

0
1{𝑋1(𝑡) = 𝑋2(𝑡)} 𝑑𝑡 as 𝜖 ↓ 0.

This implies that to prove continuity of 𝐹 at 𝑋̂ , it suffices to prove that

P

(∫ 𝑇

0
1{𝑋̂1(𝑡) = 𝑋̂2(𝑡)} 𝑑𝑡 = 0

)
= 1.

Note that 𝑋̂𝜆 ⇒ 𝑋̂ implies that 𝑋̂ takes the form

𝑋̂𝑖 (𝑡) = 𝑋̂𝑖 (0) +
√

2𝐵𝑖 (𝑡) − 𝛽
√
𝜇𝑡 + 𝜇

∫ 𝑡

0
𝑋̂𝑖 (𝑠)− 𝑑𝑠 + 𝜃

∫ 𝑡

0
𝑋̂𝑖 (𝑠)+ 𝑑𝑠 − 𝐿𝑖 (𝑡),

where 𝐿𝑖 (𝑡) is a weak limit of {(𝜇𝐹 − 𝜃)
∫ 𝑡

0 𝑓𝑖 ( 𝑋̂𝜆 (𝑠)) 𝑑𝑠}. We also note that 𝐿𝑖 (𝑡) is monotone

increasing and bounded by (𝜇𝐹 − 𝜃)𝛽𝐹 𝑡/
√
𝜇. Thus, 𝐿𝑖 has finite total variation. Meanwhile, since

𝑋̂ is continuous,


𝑋̂



𝑇
< ∞. As

∫ 𝑡

0 𝑋̂𝑖 (𝑠)
− 𝑑𝑠 ≤

∫ 𝑇
0 𝑋̂𝑖 (𝑠)− 𝑑𝑠 < ∞, 𝜇

∫ 𝑡

0 𝑋̂𝑖 (𝑠)
− 𝑑𝑠 has finite total

variation as well. Similarly, 𝜃
∫ 𝑡

0 𝑋̂𝑖 (𝑠)
+ 𝑑𝑠 has finite total variation as well. It then follows that

𝑋̂ (𝑡) is the sum of a Brownian motion and other terms of finite total variation. Therefore 𝑋̂ spends

almost surely zero time on {𝑋̂1(𝑠) = 𝑋̂2(𝑠)} [85].

201



Step 5. Establish that 𝑋̂ is suitably well-posed.

The following lemma follows directly from Proposition 5.3.10 in [86].

Lemma 21. The diffusion equation

𝑋̂𝑖 (𝑡) = 𝑋̂𝑖 (0) +
√

2𝐵𝑖 (𝑡) − 𝛽
√
𝜇𝑡 + 𝜇

∫ 𝑡

0
𝑋̂𝑖 (𝑠)− 𝑑𝑠 − (𝜇𝐹 − 𝜃)

∫ 𝑡

0
𝑓𝑖 ( 𝑋̂ (𝑠)) 𝑑𝑠 − 𝜃

∫ 𝑡

0
𝑋̂𝑖 (𝑠)+ 𝑑𝑠

has a unique (weak) solution.

Steps 1-5 together establish the process level convergence of 𝑋̂𝜆, i.e.,

𝑋̂𝜆 ⇒ 𝑋̂ in 𝐷2 as 𝜆 → ∞.

We also note that

𝑄̂𝜆Σ (𝑡) =
(
𝑋̂𝜆1 (𝑡)

+ + 𝑋̂𝜆2 (𝑡)
+ − 𝑛𝜆𝐹/

√
𝜆

)+
=

(
𝑋̂𝜆1 (𝑡)

+ + 𝑋̂𝜆2 (𝑡)
+ − 𝛽𝐹/

√
𝜇

)+
+ 𝑔𝜆 ( 𝑋̂𝜆1 (𝑡), 𝑋̂

𝜆
2 (𝑡))

where

��𝑔𝜆 ( 𝑋̂𝜆1 (𝑡), 𝑋̂𝜆2 (𝑡))�� = ���(𝑋̂𝜆1 (𝑡)+ + 𝑋̂𝜆2 (𝑡)+ − 𝑛𝜆𝐹/√𝜆)+ − (
𝑋̂𝜆1 (𝑡)

+ + 𝑋̂𝜆2 (𝑡)
+ − 𝛽𝐹/

√
𝜇

)+���
≤ |𝑛𝜆𝐹/

√
𝜆 − 𝛽𝐹/

√
𝜇 | → 0 as 𝜆 → ∞.

This implies that 𝑄̂𝜆
Σ
⇒

(
𝑋̂+

1 + 𝑋̂+
2 − 𝛽𝐹/

√
𝜇
)+ in 𝐷 as 𝜆 → ∞.

Step 6. Establish the appropriate interchange of limits and uniform integrability results.

Lemma 22. For (𝛽, 𝛽𝐹) ∈ Ω̂(𝜃), the diffusion process 𝑋̂ is positive recurrent.

Proof. We will show that the function𝑉 (𝑥1, 𝑥2) = 1
2 (𝑥

2
1+𝑥

2
2) is a Lyapunov function. The generator
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𝐺 of 𝑋̂ applied to 𝑉 is given by

𝐺𝑉 (𝑥) =
2∑︁
𝑖=1

𝑥𝑖
(
−𝛽√𝜇 + 𝜇𝑥−𝑖 − 𝜃𝑥+𝑖 − (𝜇𝐹 − 𝜃) 𝑓𝑖 (𝑥)

)
for 𝑥 ∈ R2.

We first consider the case 𝜃 > 0. Because 𝑓𝑖 is bounded (by 𝛽𝐹/
√
𝜇), we have that −𝛽√𝜇+𝜇𝑥−

𝑖
−

𝜃𝑥+
𝑖
− (𝜇𝐹 − 𝜃) 𝑓𝑖 (𝑥) ≤ −1 for all 𝑥𝑖 > 0 large enough, and −𝛽√𝜇 + 𝜇𝑥−

𝑖
− 𝜃𝑥+

𝑖
− (𝜇𝐹 − 𝜃) 𝑓𝑖 (𝑥) ≥ 1

for all −𝑥𝑖 > 0 large enough. It follows that 𝐺𝑉 (𝑥) ≤ −1 for all |𝑥 | large enough.

Suppose instead 𝜃 = 0. If 𝛽 > 0, −𝛽√𝜇 + 𝜇𝑥−
𝑖
− 𝜇𝐹 𝑓𝑖 (𝑥) ≤ −𝛽√𝜇 < 0 for all 𝑥𝑖 > 0, and

−𝛽√𝜇 + 𝜇𝑥−
𝑖
− 𝜇𝐹 𝑓𝑖 (𝑥) ≥ 1 for all −𝑥𝑖 > 0 large enough. Thus we may suppose 𝛽 ≤ 0.

Suppose first both 𝑥𝑖 are non-negative, with 𝑥1 ≥ 𝑥2 ≥ 0 (the case 𝑥2 > 𝑥1 ≥ 0 is similar).

Then, if 𝑥1 ≥ 𝛽𝐹/
√
𝜇,

𝐺𝑉 (𝑥) = 𝑥1(−𝛽
√
𝜇 − 𝜇𝐹𝛽𝐹/

√
𝜇) − 𝑥2𝛽

√
𝜇 ≤ −𝑥1√

𝜇
(2𝛽𝜇 + 𝛽𝐹𝜇𝐹) ≤ −1

for 𝑥1 large enough, since 2𝛽𝜇 + 𝛽𝐹𝜇𝐹 > 0.

Next, suppose exactly one 𝑥𝑖 is non-negative, with 𝑥1 ≥ 0 > 𝑥2 (the case 𝑥2 ≥ 0 > 𝑥1 is

similar). We have, if 𝑥1 ≥ 𝛽𝐹/
√
𝜇,

𝐺𝑉 (𝑥) = 𝑥1(−𝛽
√
𝜇 − 𝜇𝐹 𝑓𝑖 (𝑥)) − 𝜇𝑥2

2 − 𝛽
√
𝜇𝑥2

≤ − 𝑥1√
𝜇
(𝛽𝜇 + 𝛽𝐹𝜇𝐹) − 𝜇𝑥2

2 ≤ − 𝑥1√
𝜇
(2𝛽𝜇 + 𝛽𝐹𝜇𝐹) − 𝜇𝑥2

2 ≤ −1

for |𝑥 | large enough, since 2𝛽𝜇 + 𝛽𝐹𝜇𝐹 > 0. If instead 0 ≤ 𝑥1 < 𝛽𝐹/
√
𝜇, we have that 𝑥1(−𝛽

√
𝜇 −

𝜇𝐹 𝑓𝑖 (𝑥)) is bounded, so again 𝐺𝑉 (𝑥) ≤ −1 for |𝑥 | large enough.

Finally, suppose 𝑥𝑖 < 0 for 𝑖 = 1, 2. We have

𝐺𝑉 (𝑥) =
2∑︁
𝑖=1

𝑥𝑖 (−𝛽
√
𝜇 − 𝜇𝑥𝑖) ≤ −1
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for |𝑥 | large enough. This completes the proof.

Lemma 22 implies that 𝑋̂ (∞) is well defined.

Lemma 23. Suppose 𝑛𝜆 = 𝑅𝜆+𝛽
√
𝑅𝜆+𝑜(

√
𝑅𝜆) and 𝑛𝜆

𝐹
= 𝛽𝐹

√
𝑅𝜆+𝑜(

√
𝑅𝜆), with (𝑛𝜆, 𝑛𝜆

𝐹
) ∈ Ω𝜆 (𝜃)

and (𝛽, 𝛽𝐹) ∈ Ω̂(𝜃). Then,

𝑄̂𝜆Σ (∞) ⇒
(
𝑋̂1(∞)+ + 𝑋̂2(∞)+ − 𝛽𝐹/

√
𝜇
)+ as 𝜆 → ∞

and

E[𝑄̂𝜆Σ (∞)] → E
[ (
𝑋̂1(∞)+ + 𝑋̂2(∞)+ − 𝛽𝐹/

√
𝜇
)+] as 𝜆 → ∞.

Proof. Note that

sup
𝜆>1
E[( 𝑋̂𝜆𝑖 (∞)+)2]

= sup
𝜆>1
E


(
(𝑋𝜆

𝑖
(∞) − 𝑛𝜆)+
√
𝜆

)2
≤ sup

𝜆>1
E


(∑2

𝑗=1(𝑋𝜆𝑗 (∞) − 𝑛𝜆)+
√
𝜆

)2
≤ sup

𝜆>1
E


©­­«
∑2
𝑗=1

(
(𝑋𝜆

𝑗
(∞) − 𝑛𝜆 − 𝑛𝜆

𝐹
/2)+ + 𝑛𝜆

𝐹
/2

)
√
𝜆

ª®®¬
2

≤ sup
𝜆>1

4E

(
( 𝑋̃𝜆1 (∞) − 𝑛𝜆 − 𝑛𝜆

𝐹
/2)+ + 𝑛𝜆

𝐹
/2

√
𝜆

)2 by Lemma 13 and Cauchy-Schwarz Inequality

< ∞ by Lemma 15.

(B.9)

In addition,

sup
𝜆>1
E[𝑋̂𝜆𝑖 (∞)−] = sup

𝜆>1
E

[
(𝑋𝜆

𝑖
(∞) − 𝑛𝜆)−
√
𝜆

]
< ∞
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by Lemma 16. Then we have sup𝜆>1 E[| 𝑋̂𝜆𝑖 (∞)|] < ∞, i.e., {𝑋̂𝜆 (∞) : 𝜆 > 1} is tight. Thus,

𝑋̂𝜆 (∞) ⇒ 𝑋̂ (∞) as 𝜆 → ∞ by Lemma 14. By the continuous mapping and converging together

theorems, we have 𝑄̂𝜆
Σ
(∞) ⇒

(
𝑋̂1(∞)+ + 𝑋̂2(∞)+ − 𝛽𝐹/

√
𝜇
)+ as 𝜆 → ∞.

Next, the bound in (B.9) also implies that {𝑋̂𝜆
𝑖
(∞)+ : 𝜆 > 1} is uniformly integrable. As

𝑄̂𝜆
Σ
(∞) ≤ 𝑋̂𝜆1 (∞)+ + 𝑋̂𝜆2 (∞)+, {𝑄̂𝜆

Σ
(∞) : 𝜆 > 1} is also uniformly integrable. Thus,

E[𝑄̂𝜆Σ (∞)] → E
[ (
𝑋̂1(∞)+ + 𝑋̂2(∞)+ − 𝛽𝐹/

√
𝜇
)+] as 𝜆 → ∞.

This concludes the proof of Theorem 6.

B.3.4 Proof of Theorem 7.

Proof. We first prove the ‘only if’ part. Let (𝑛𝜆, 𝑛𝜆
𝐹
) be asymptotically optimal, and suppose for

contradiction that it is not of the form stated in the theorem. That is, there exists 𝜖 > 0 and a

subsequence, which we index again by 𝜆 for convenience, satisfying

min
(𝑎,𝑏)∈arg min𝛽,𝛽𝐹 𝑉̂𝑝 (𝛽,𝛽𝐹 )

���𝑛𝜆 − 𝑅𝜆 − 𝑎√𝑅𝜆��� + ���𝑛𝜆𝐹 − 𝑏
√
𝑅𝜆

���
√
𝑅𝜆

> 𝜖

for each 𝜆. This subsequence is asymptotically optimal, and so it follows from the proof of Lemma

3 that

𝑛𝜆𝐹 = 𝑏𝜆
√
𝑅𝜆 + 𝑜(

√
𝑅𝜆) and 𝑛𝜆 = 𝑅𝜆 + 𝑎𝜆

√
𝑅𝜆 + 𝑜(

√
𝑅𝜆)

for some bounded sequences {𝑎𝜆} and {𝑏𝜆}. Then, there exist finite constants (𝑎, 𝑏) and a subse-

quence indexed by 𝜆′, such that (𝑎, 𝑏) ∉ arg min𝛽,𝛽𝐹 𝑉̂𝑝 (𝛽, 𝛽𝐹) and

𝑎𝜆′ → 𝑎 and 𝑏𝜆′ → 𝑏 as 𝜆′ → ∞.
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For the ease of notation, we re-index this subsequence by 𝜆. As (𝑎, 𝑏) ∉ arg min𝛽,𝛽𝐹 𝑉̂𝑝 (𝛽, 𝛽𝐹),

there exists (𝛽, 𝛽𝐹) such that 𝑉̂𝑝 (𝛽, 𝛽𝐹) < 𝑉̂𝑝 (𝑎, 𝑏). Define

𝑛̄𝜆𝐹 = 𝛽𝐹
√
𝑅𝜆 + 𝑜(

√
𝑅𝜆) and 𝑛̄𝜆 = 𝑅𝜆 + 𝛽

√
𝑅𝜆 + 𝑜(

√
𝑅𝜆).

Then,

lim sup
𝜆→∞

Π𝜆 (𝑛𝜆, 𝑛𝜆
𝐹
) − Π𝜆,∗

√
𝜆

≥ lim sup
𝜆→∞

Π𝜆 (𝑛𝜆, 𝑛𝜆
𝐹
) − Π𝜆 (𝑛̄𝜆, 𝑛̄𝜆

𝐹
)

√
𝜆

= lim sup
𝜆→∞

{
2𝑐(𝑛𝜆 − 𝑅𝜆) + 𝑐𝐹𝑛𝜆𝐹 + (ℎ + 𝑎𝜃)E[𝑄𝜆

Σ
(∞; 𝑛𝜆, 𝑛𝜆

𝐹
)]

√
𝜆

−
2𝑐(𝑛̄𝜆 − 𝑅𝜆) + 𝑐𝐹 𝑛̄𝜆𝐹 + (ℎ + 𝑎𝜃)E[𝑄𝜆

Σ
(∞; 𝑛̄𝜆, 𝑛̄𝜆

𝐹
)])

√
𝜆

}
=𝑉̂𝑝 (𝑎, 𝑏) − 𝑉̂𝑝 (𝛽, 𝛽𝐹) > 0

where the last equality follows from Theorem 6, contradicting asymptotic optimality.

It remains to prove the ‘if’ part. From the proof of the ‘only if’ part, the sequence of optimal

staffing levels (𝑛𝜆,∗, 𝑛𝜆,∗
𝐹
) satisfy

𝑛
𝜆,∗
𝐹

= 𝑑𝜆
√
𝑅𝜆 + 𝑜(

√
𝑅𝜆) and 𝑛𝜆,∗ = 𝑅𝜆 + 𝑐𝜆

√
𝑅𝜆 + 𝑜(

√
𝑅𝜆)

for some (𝑐𝜆, 𝑑𝜆) ∈ arg min𝛽,𝛽𝐹 𝑉̂𝑝 (𝛽, 𝛽𝐹). Next, consider any sequence

𝑛𝜆𝐹 = 𝑏𝜆
√
𝑅𝜆 + 𝑜(

√
𝑅𝜆) and 𝑛𝜆 = 𝑅𝜆 + 𝑎𝜆

√
𝑅𝜆 + 𝑜(

√
𝑅𝜆)

where (𝑎𝜆, 𝑏𝜆) ∈ arg min𝛽,𝛽𝐹 𝑉̂𝑝 (𝛽, 𝛽𝐹). Then,
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lim sup
𝜆→∞

Π𝜆 (𝑛𝜆, 𝑛𝜆
𝐹
) − Π𝜆,∗

√
𝜆

= lim sup
𝜆→∞

Π𝜆 (𝑛𝜆, 𝑛𝜆
𝐹
) − Π𝜆 (𝑛𝜆,∗, 𝑛𝜆,∗

𝐹
)

√
𝜆

= lim sup
𝜆→∞

{
2𝑐(𝑛𝜆 − 𝑅𝜆) + 𝑐𝐹𝑛𝜆𝐹 + (ℎ + 𝑎𝜃)E[𝑄𝜆

Σ
(∞; 𝑛𝜆, 𝑛𝜆

𝐹
)]

√
𝜆

−
2𝑐(𝑛𝜆,∗ − 𝑅𝜆) + 𝑐𝐹𝑛𝜆,∗𝐹 + (ℎ + 𝑎𝜃)E[𝑄𝜆

Σ
(∞; 𝑛𝜆,∗, 𝑛𝜆,∗

𝐹
)]

√
𝜆

}
(B.10)

=𝑉̂∗
𝑝 − 𝑉̂∗

𝑝 = 0,

where 𝑉̂∗
𝑝 = min𝛽,𝛽𝐹 𝑉̂𝑝 (𝛽, 𝛽𝐹). To see (B.10), note that by Theorem 6, we have that for any

(𝑎, 𝑏) ∈ arg min𝛽,𝛽𝐹 𝑉̂𝑝 (𝛽, 𝛽𝐹),

2𝑐𝑎
√
𝑅𝜆 + 𝑐𝐹𝑏

√
𝑅𝜆 + 𝑜(

√
𝑅𝜆)

√
𝜆

+ (ℎ + 𝑎𝜃)E[𝑄̂𝜆Σ (∞; 𝑎, 𝑏)] = 𝑉̂∗
𝑝 + 𝑜(1).

Then, (B.10) follows because arg min𝛽,𝛽𝐹 𝑉̂𝑝 (𝛽, 𝛽𝐹) is finite under Assumption 4.

B.4 Proofs of the Results in Section 3.4

For 𝑥, 𝑦 ∈ R and 𝑧 ≥ 0, define

𝐾𝜆 (𝑥, 𝑦, 𝑧) = Π̃𝜆

(
𝑝1𝜆 + 𝑥𝜆𝛼1

𝜇
,
𝑝2𝜆 + 𝑦𝜆𝛼2

𝜇
,
𝑧𝜆𝛼2

𝜇𝐹

)
.

B.4.1 Proof of Lemma 5.

Proof. In this case,

𝐾𝜆 (𝑥, 𝑦, 𝑧) = 𝑐(𝑝1 + 𝑝2)𝑅𝜆 + 𝜆𝛼
(
𝑐

𝜇
𝑥 + 𝑐

𝜇
𝑦 + 𝑐𝐹

𝜇𝐹
𝑧

)
+ 𝑐𝑃𝜆𝛼E

[ (
(𝑌1 − 𝑥)+ + (𝑌2 − 𝑦)+ − 𝑧

)+]
.
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In the first case, note that 𝐾𝜆 (𝑥, 𝑦, 𝑧) is convex and

∇𝐾𝜆 (𝑞1, 𝑞2, 0) = 𝜆𝛼
(
0, 0,

𝑐𝐹

𝜇𝐹
− 𝑐𝑃P(𝑌1 > 𝑞1 or 𝑌2 > 𝑞2)

)
.

As 𝑐𝐹
𝜇𝐹

− 𝑐𝑃P(𝑌1 > 𝑞1 or 𝑌2 > 𝑞2) ≥ 0, (𝑞1, 𝑞2, 0) is optimal.

In the second case, we have

∇𝐾𝜆 (𝑟1, 𝑟2, 𝑟𝐹) = (0, 0, 0).

The optimality of (𝑟1, 𝑟2, 𝑟𝐹) follows due to the convexity of 𝐾𝜆 (𝑥, 𝑦, 𝑧).

B.4.2 Proof of Lemma 6.

Proof. In this case,

𝐾𝜆 (𝑥, 𝑦, 𝑧) =𝑐(𝑝1 + 𝑝2)𝑅𝜆 + 𝜆𝛼1
𝑐

𝜇
𝑥 + 𝜆𝛼2

(
𝑐

𝜇
𝑦 + 𝑐𝐹

𝜇𝐹
𝑧

)
+ 𝑐𝑃𝜆𝛼1E

[ (
(𝑌1 − 𝑥)+ + 𝜆𝛼2−𝛼1 (𝑌2 − 𝑦)+ − 𝜆𝛼2−𝛼1𝑧

)+]
.

Let (𝑥∗
𝜆
, 𝑦∗
𝜆
, 𝑧∗
𝜆
) be the minimizer of 𝐾𝜆.

We first show that 𝑥∗
𝜆
= 𝑞1+𝑜(1). Note that 𝐾∗

𝜆
:= Π̃𝜆,∗ ≤ 𝐾𝜆 (0, 0, 0) = 𝑐(𝑝1+ 𝑝2)𝑅𝜆 +𝑂 (𝜆𝛼1).

Since 𝐾𝜆 (𝑥, 𝑦, 𝑧) ≥ 𝑐(𝑝1 + 𝑝2)𝑅𝜆 + 𝜆𝛼1 𝑐
𝜇
𝑥, we have that 𝑥∗+

𝜆
= 𝑂 (1).

Now suppose for contradiction that there exists a subsequence, indexed by 𝜆𝑘 , such that either

i) 𝑥∗
𝜆𝑘

→ −∞ or ii) 𝑥∗
𝜆𝑘

→ 𝐶 ∈ R\{𝑞1}. Note that

𝐾𝜆 (𝑥, 𝑦, 𝑧) ≥ 𝑐(𝑝1 + 𝑝2)𝑅𝜆 + 𝜆𝛼1
𝑐

𝜇
𝑥 + 𝜆𝛼2

𝑐𝐹

𝜇𝐹
𝑧 + 𝑐𝑃𝜆𝛼1E[(𝑌1 − 𝑥)+ − 𝜆𝛼2−𝛼1𝑧)+]

= 𝑐(𝑝1 + 𝑝2)𝑅𝜆 + 𝜆𝛼1
𝑐

𝜇
𝑥 + 𝜆𝛼2

𝑐𝐹

𝜇𝐹
𝑧 + 𝑐𝑃𝜆𝛼1E[(𝑌1 − 𝑥 − 𝜆𝛼2−𝛼1𝑧)+]

= 𝑐(𝑝1 + 𝑝2)𝑅𝜆 + 𝜆𝛼1
𝑐

𝜇
(𝑥 + 𝜆𝛼2−𝛼1𝑧) + 𝑐𝑃𝜆𝛼1E[(𝑌1 − 𝑥 − 𝜆𝛼2−𝛼1𝑧)+] + 𝜆𝛼2

(
𝑐𝐹

𝜇𝐹
− 𝑐

𝜇

)
𝑧.

(B.11)
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First suppose that 𝑥∗
𝜆𝑘

→ −∞. Since 𝑐𝑃 > 𝑐𝐹/𝜇𝐹 > 𝑐/𝜇 and 𝐾∗
𝜆
≤ 𝑐(𝑝1+𝑝2)𝑅𝜆+𝑂 (𝜆𝛼1), it follows

that
(
𝑥∗
𝜆
+ 𝜆𝛼2−𝛼1𝑧∗

𝜆

)−
= 𝑂 (1). This in turn implies that 𝜆𝛼2−𝛼1𝑧∗

𝜆
→ ∞, so that 𝜆𝛼2

(
𝑐𝐹
𝜇𝐹

− 𝑐
𝜇

)
𝑧∗
𝜆

grows to infinity faster than 𝑂 (𝜆𝛼1). Then, the second and third terms of the last equation (B.11)

will be 𝑂 (𝜆𝛼1), while the last is of a larger order. This contradicts that (𝑥∗
𝜆
, 𝑦∗
𝜆
, 𝑧∗
𝜆
) is optimal.

Consider the second case 𝑥∗
𝜆
→ 𝐶 ∈ R\{𝑞1}. Note that

𝐾𝜆 (𝑞1, 0, 0) = 𝑐(𝑝1 + 𝑝2)𝑅𝜆 + 𝜆𝛼1 𝑓 (𝑞1)

where 𝑓 (𝑥) = 𝑐
𝜇
𝑥 + 𝑐𝑃E[(𝑌1 − 𝑥)+]. From (B.11), we have that

𝐾𝜆 (𝑥∗𝜆, 𝑦∗𝜆, 𝑧∗𝜆) ≥ 𝑐(𝑝1 + 𝑝2)𝑅𝜆 + 𝜆𝛼1 𝑓 (𝑥∗𝜆 + 𝜆𝛼2−𝛼1𝑧∗𝜆) + 𝜆𝛼2

(
𝑐𝐹

𝜇𝐹
− 𝑐

𝜇

)
𝑧∗𝜆.

Since 𝑞1 is uniquely optimal for 𝑓 and 𝑥∗
𝜆
→ 𝐶, we must have 𝜆𝛼2−𝛼1𝑧∗

𝜆
→ 𝑞1 − 𝐶 > 0. But then

𝜆𝛼2
(
𝑐𝐹
𝜇𝐹

− 𝑐
𝜇

)
𝑧∗
𝜆
≠ 𝑜(𝜆𝛼1), contradicting optimality.

This completes the proof that 𝑥∗
𝜆

= 𝑞1 + 𝑜(1). Next, we prove that 𝑦∗
𝜆

and 𝑧∗
𝜆

are of the

appropriate form. We first show they are 𝑂 (1). Consider the partial derivatives

𝜕𝐾𝜆

𝜕𝑦
= 𝜆𝛼2

(
𝑐

𝜇
− 𝑐𝑃P[𝑌2 > 𝑦, 𝜆

𝛼1−𝛼2 (𝑌1 − 𝑥)+ + 𝑌2 − 𝑦 > 𝑧]
)

and
𝜕𝐾𝜆

𝜕𝑧
= 𝜆𝛼2

(
𝑐𝐹

𝜇𝐹
− 𝑐𝑃P[𝜆𝛼1−𝛼2 (𝑌1 − 𝑥)+ + (𝑌2 − 𝑦)+ > 𝑧]

)
.

By optimality, we have

0 <
𝑐

𝑐𝑃𝜇
= P[𝑌2 > 𝑦

∗
𝜆, 𝜆

𝛼1−𝛼2 (𝑌1 − 𝑥∗𝜆)+ + 𝑌2 − 𝑦∗𝜆 > 𝑧∗𝜆] ≤ P[𝑌2 > 𝑦
∗
𝜆]

which implies that 𝑦∗+
𝜆

= 𝑂 (1). If 𝑦∗−
𝜆

≠ 𝑂 (1), then there is a subsequence (re-indexed by 𝜆) such
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that 𝑦∗
𝜆
→ −∞, which implies that

1 >
𝑐

𝑐𝑃𝜇
= P[𝑌2 > 𝑦

∗
𝜆, 𝜆

𝛼1−𝛼2 (𝑌1 − 𝑥∗𝜆)+ + 𝑌2 − 𝑦∗𝜆 > 𝑧∗𝜆]

= P[𝜆𝛼1−𝛼2 (𝑌1 − 𝑥∗𝜆)+ + 𝑌2 − 𝑦∗𝜆 > 𝑧∗𝜆] + 𝑜(1)

≥ P[𝑌2 > 𝑦
∗
𝜆 + 𝑧∗𝜆] + 𝑜(1).

This in turn implies 𝑧∗
𝜆
→ ∞, and in particular 𝑧∗

𝜆
> 0. But then

P[𝜆𝛼1−𝛼2 (𝑌1 − 𝑥∗𝜆)+ + (𝑌2 − 𝑦∗𝜆)+ > 𝑧∗𝜆] = P[𝑌2 > 𝑦
∗
𝜆, 𝜆

𝛼1−𝛼2 (𝑌1 − 𝑥∗𝜆)+ + 𝑌2 − 𝑦∗𝜆 > 𝑧∗𝜆] + 𝑜(1)

=
𝑐

𝑐𝑃𝜇
+ 𝑜(1) < 𝑐𝐹

𝑐𝑃𝜇𝐹

so that 𝜕𝐾𝜆

𝜕𝑧
(𝑥∗
𝜆
, 𝑦∗
𝜆
, 𝑧∗
𝜆
) > 0, contradicting optimality. Hence, 𝑦∗

𝜆
= 𝑂 (1).

Next, we show 𝑧∗
𝜆
= 𝑂 (1). If not, we can obtain a subsequence indexed again by 𝜆 such that

𝑧∗
𝜆
→ ∞, and in particular 𝑧∗

𝜆
> 0. Since 𝑦∗

𝜆
= 𝑂 (1) and 𝑥∗

𝜆
= 𝑞1 + 𝑜(1), we have

P[𝜆𝛼1−𝛼2 (𝑌1 − 𝑥∗𝜆)+ + (𝑌2 − 𝑦∗𝜆)+ > 𝑧∗𝜆] = P[𝜆𝛼1−𝛼2 (𝑌1 − 𝑞1)+ > 𝑧∗𝜆] + 𝑜(1)

≤ P[𝑌1 > 𝑞1] + 𝑜(1) =
𝑐

𝑐𝑃𝜇
+ 𝑜(1)

so that 𝜕𝐾𝜆

𝜕𝑧
(𝑥∗
𝜆
, 𝑦∗
𝜆
, 𝑧∗
𝜆
) > 0 contradicting optimality. Thus 𝑧∗

𝜆
= 𝑂 (1).

Finally, we show that 𝑦∗
𝜆

and 𝑧∗
𝜆

have the right asymptotics. Suppose 𝑛̃∗2 and 𝑛̃∗
𝐹

are not of

the specified form. First suppose P(𝑌1 > 𝑞1 or 𝑌2 > 𝑞2) > 𝑐𝐹
𝑐𝑃𝜇𝐹

. Then, there is a subsequence

re-indexed by 𝜆 such that 𝑥∗
𝜆
→ 𝑞1, 𝑦∗

𝜆
→ 𝐷 ∈ R and 𝑧∗

𝜆
→ 𝐸 ≥ 0, where either 𝐷 ≠ 𝑙 or 𝐸 ≠ 𝑙𝐹 .

Note that

P[𝑌2 > 𝑦
∗
𝜆, 𝜆

𝛼1−𝛼2 (𝑌1 − 𝑥∗𝜆)+ + 𝑌2 − 𝑦∗𝜆 > 𝑧∗𝜆] = P[𝑌2 > 𝐷,𝑌1 > 𝑞1 or 𝑌2 > 𝐷 + 𝐸] + 𝑜(1)

= P[𝑌2 > 𝐷 + 𝐸 or (𝑌2 > 𝐷,𝑌1 > 𝑞1)] + 𝑜(1)
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and

P[𝜆𝛼1−𝛼2 (𝑌1 − 𝑥∗𝜆)+ + (𝑌2 − 𝑦∗𝜆)+ > 𝑧∗𝜆] = P[𝑌1 > 𝑞1 or 𝑌2 > 𝐷 + 𝐸] + 𝑜(1).

By optimality, we must have either (i) the first probability is 𝑐
𝑐𝑃𝜇

and the second is 𝑐𝐹
𝑐𝑃𝜇𝐹

or (ii) the

first probability is 𝑐
𝑐𝑃𝜇

, the second is ≤ 𝑐𝐹
𝑐𝑃𝜇𝐹

and 𝐸 = 0. Case (i) is ruled out by the uniqueness

of 𝑙 and 𝑙𝐹 . If (ii), then 𝐷 > 𝑞2 in order for the second probability to be ≤ 𝑐𝐹
𝑐𝑃𝜇𝐹

, but 𝐷 = 𝑞2 is

necessary for the first probability to be 𝑐
𝑐𝑃𝜇

. This is a contradiction and thus 𝑦∗
𝜆
= 𝑙 + 𝑜(1) and

𝑧∗
𝜆
= 𝑙𝐹 + 𝑜(1).

We now turn to the other case P(𝑌1 > 𝑞1 or 𝑌2 > 𝑞2) < 𝑐𝐹
𝑐𝑃𝜇𝐹

. Using the previous notation, we

can again obtain a subsequence such that either 𝐷 ≠ 𝑞2 or 𝐸 > 0. The case 𝐸 = 0 and 𝐷 ≠ 𝑞2 can

be ruled out by our previous discussion, so suppose 𝐸 > 0. By optimality, we must have that

P[𝑌2 > 𝐷 + 𝐸 or (𝑌2 > 𝐷,𝑌1 > 𝑞1)] =
𝑐

𝑐𝑃𝜇

and

P[𝑌1 > 𝑞1 or 𝑌2 > 𝐷 + 𝐸] = 𝑐𝐹

𝑐𝑃𝜇𝐹
.

The second equation ensures 𝐷 + 𝐸 < 𝑞2. Then, the first probability is at least P(𝑌2 > 𝐷 + 𝐸) >

P(𝑌2 > 𝑞2) = 𝑐
𝑐𝑃𝜇

, a contradiction. This completes the proof.

B.4.3 Two auxiliary lemmas

Note that for any given arrival rate realization, under the scheduling policy 𝜈̃𝜆, the two-class

queue can be decomposed into two independent single-class queues with two types of servers:

the high-priority rate-𝜇 servers and the low-priority rate-𝜇𝐹 servers. In this section, we study

the single-class queue with arrival rate 𝛾, 𝑛 high-priority rate-𝜇 servers, 𝑛𝐹 low-priority rate-𝜇𝐹

servers, and abandonment rate 𝜃 = 𝜇𝐹 . To simplify the notation, we denote by 𝑋 the steady-state

number of customers in the system,𝑄 the steady-state number of customers waiting in queue, 𝑍 the
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steady-state number of customers in service with rate-𝜇 servers, and 𝑍𝐹 the steady-state number

of customers in service with rate-𝜇𝐹 servers.

Lemma 24. For the single-class queue with two types of servers and 𝜃 = 𝜇𝐹 , there are universal

constants 𝐾1, 𝐾2, 𝐾3 > 0 (i.e. not depending on 𝑛, 𝑛𝐹 or 𝛾), such that

𝜃E[𝑄] ≤ (𝛾 − 𝑛𝜇 − 𝑛𝐹𝜇𝐹)+ + 𝐾1
√
𝛾 exp(−𝐾2

𝛾
(𝛾 − 𝑛𝜇 − 𝑛𝐹𝜇𝐹)2) + 𝐾3.

Proof. We start by showing that

E[𝑋] = 𝛾/𝜃 − 𝑛𝜇/𝜃 + 𝑛 + (𝜇 − 𝜃)E[(𝑛 − 𝑋)+]/𝜃. (B.12)

Let 𝜉 (𝑥) denote the death rate at state 𝑥. When 𝑥 > 𝑛, 𝜉 (𝑥) = 𝑥𝜃 + 𝑛(𝜇 − 𝜃); when 𝑥 ≤ 𝑛,

𝜉 (𝑥) = 𝑥𝜇 = 𝑥𝜃 + 𝑥(𝜇 − 𝜃). Equating the birth rate and the death rate in stationarity, we have

𝛾 = E[𝑋𝜃 + 𝑛(𝜇 − 𝜃) − (𝑛 − 𝑋)+(𝜇 − 𝜃)],

which implies (B.12).

First, consider the case where 𝛾 ≥ 𝑛𝜇 + 𝑛𝐹𝜇𝐹 . We have

E[𝑄] = E[(𝑋 − 𝑛 − 𝑛𝐹)+]

= E[𝑋] − 𝑛 − 𝑛𝐹 +
𝑛+𝑛𝐹−1∑︁
𝑥=0
P[𝑋 ≤ 𝑥]

= 𝛾/𝜃 − 𝑛𝜇/𝜃 + 𝑛 + (𝜇 − 𝜃)E[(𝑛 − 𝑋)+]/𝜃 − 𝑛 − 𝑛𝐹 +
𝑛+𝑛𝐹−1∑︁
𝑥=0
P[𝑋 ≤ 𝑥] by (B.12)

= (𝛾/𝜃 − 𝑛𝜇/𝜃 − 𝑛𝐹) +
𝜇 − 𝜃
𝜃

𝑛−1∑︁
𝑥=0
P[𝑋 ≤ 𝑥] +

𝑛+𝑛𝐹−1∑︁
𝑥=0
P[𝑋 ≤ 𝑥] .

It suffices to bound
∑𝑛+𝑛𝐹−1
𝑥=0 P[𝑋 ≤ 𝑥]. Let 𝑀1 = ⌊𝛾/𝜃 − 𝑛𝜇/𝜃 + 𝑛⌋, which is the mode of 𝑋 (to

see this, note that the death rate 𝜉 (𝑥) is increasing in 𝑥, and that the birth rate 𝛾 is larger than the
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death rate for 𝑥 < 𝑀1, and is smaller than the death rate for 𝑥 > 𝑀1). We then have 𝑀1 ≥ 𝑛 + 𝑛𝐹 ,

and 𝜉 (𝑀1) = 𝑛𝜇 + ⌊𝛾/𝜃 − 𝑛𝜇/𝜃⌋𝜃 ≤ 𝛾. For 0 < 𝑘 ≤ 𝑀1 − 𝑛 + 1, note that

P[𝑋 = 𝑀1 − 𝑘] = P[𝑋 = 𝑀1] ·
𝜉 (𝑀1) (𝜉 (𝑀1) − 𝜃) · · · (𝜉 (𝑀1) − (𝑘 − 1)𝜃)

𝛾𝑘

≤ P[𝑋 = 𝑀1] ·
𝛾(𝛾 − 𝜃) · · · (𝛾 − (𝑘 − 1)𝜃)

𝛾𝑘

= P[𝑋 = 𝑀1] · 1(1 − 𝜃/𝛾) · · · (1 − (𝑘 − 1)𝜃/𝛾)

≤ P[𝑋 = 𝑀1] · (1 − (𝑘 − 1)𝜃/2𝛾)𝑘

≤ P[𝑋 = 𝑀1] · exp(−(𝑘 − 1)𝑘𝜃/2𝛾) as 1 − 𝑥 ≤ exp(−𝑥).

Similarly, for 𝑀1 − 𝑛 + 1 < 𝑘 ≤ 𝑀1,

P[𝑋 = 𝑀1 − 𝑘]

=P[𝑋 = 𝑀1] ·
1
𝛾𝑘
𝜉 (𝑀1) (𝜉 (𝑀1) − 𝜃) · · · (𝜉 (𝑀1) − (𝑀1 − 𝑛)𝜃) · (𝜉 (𝑀1) − (𝑀1 − 𝑛)𝜃 − 𝜇)

· · · (𝜉 (𝑀1) − (𝑀1 − 𝑛)𝜃 − (𝑘 − 𝑀1 + 𝑛 − 1)𝜇)

≤P[𝑋 = 𝑀1]×
𝜉 (𝑀1) (𝜉 (𝑀1) − 𝜃) · · · (𝜉 (𝑀1) − (𝑀1 − 𝑛)𝜃) · (𝜉 (𝑀1) − (𝑀1 − 𝑛 + 1)𝜃) · · · (𝜉 (𝑀1) − (𝑘 − 1)𝜃)

𝛾𝑘

≤P[𝑋 = 𝑀1] · (1 − (𝑘 − 1)𝜃/2𝛾)𝑘

≤P[𝑋 = 𝑀1] · exp(−(𝑘 − 1)𝑘𝜃/2𝛾).

Choose 𝐴1 > 0 such that 𝐴1𝑘
2 ≤ 𝑘 (𝑘 − 1)𝜃/2 for all 𝑘 ≥ 2, then for any 1 < 𝑘 ≤ 𝑀1

P[𝑋 = 𝑀1 − 𝑘] ≤ P[𝑋 = 𝑀1] · exp(−𝐴1𝑘
2/𝛾).

Next, we bound P[𝑋 = 𝑀1]. Note that for 𝑘 > 0,

P[𝑋 = 𝑀1 + 𝑘] = P[𝑋 = 𝑀1] ·
𝛾𝑘

(𝜉 (𝑀1) + 𝜃) · · · (𝜉 (𝑀1) + 𝑘𝜃)
.
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Then, because

𝛾 ⌊
√
𝛾⌋

(𝜉 (𝑀1) + 𝜃) · · · (𝜉 (𝑀1) + ⌊√𝛾⌋𝜃) ≥ 𝛾 ⌊
√
𝛾⌋

(𝛾 + 𝜃) · · · (𝛾 + ⌊√𝛾⌋𝜃)

≥ 𝛾 ⌊
√
𝛾⌋

(𝛾 + ⌊√𝛾⌋𝜃) ⌊
√
𝛾⌋

=

(
1 −

⌊√𝛾⌋𝜃
𝛾 + ⌊√𝛾⌋𝜃

) ⌊√𝛾⌋
≥

(
1 −

⌊√𝛾⌋𝜃
𝛾

) ⌊√𝛾⌋
→ exp(−𝜃) as 𝛾 → ∞,

for 𝛾 large enough and 1 ≤ 𝑘 ≤ ⌊√𝛾⌋,

P[𝑋 = 𝑀1 + 𝑘] ≥ P[𝑋 = 𝑀1] · exp(−𝜃)/2.

Thus, for 𝛾 large enough,

1 ≥
𝑀1+⌊

√
𝛾⌋∑︁

𝑘=𝑀1

P[𝑋 = 𝑘] ≥ P[𝑋 = 𝑀1] · (1 + ⌊√𝛾⌋ exp(−𝜃)/2)

which implies that

P[𝑋 = 𝑀1] ≤
1

1 + ⌊√𝛾⌋ exp(−𝜃)/2
≤ 𝐵1√

𝛾
,

where 𝐵1 = 2 exp(𝜃).

Above all, we have proven that for 𝛾 large enough, when 1 < 𝑘 ≤ 𝑀1,

P[𝑋 = 𝑀1 − 𝑘] ≤ 𝐵1 · exp(−𝐴1𝑘
2/𝛾)/√𝛾.

214



Then, for 1 < 𝑘 ≤ 𝑛 + 𝑛𝐹 ,

P[𝑋 ≤ 𝑛 + 𝑛𝐹 − 𝑘] = P[𝑋 ≤ 𝑀1 − (𝑀1 − 𝑛 − 𝑛𝐹 + 𝑘)]

=

𝑀1∑︁
𝑗=𝑀1−𝑛−𝑛𝐹+𝑘

P[𝑋 = 𝑀1 − 𝑗]

≤
𝑀1∑︁

𝑗=𝑀1−𝑛−𝑛𝐹+𝑘
𝐵1 exp(−𝐴1 𝑗

2/𝛾)/√𝛾

≤
∫ ∞

𝑀1−𝑛−𝑛𝐹+𝑘−1
𝐵1 exp(−𝐴1 𝑗

2/𝛾)/√𝛾 𝑑𝑗

≤ 𝐵1
√

2𝜋
2
√
𝐴1

exp(−𝐴1(𝑀1 − 𝑛 − 𝑛𝐹 + 𝑘 − 1)2/(2𝛾)) by Chernoff-Cramer bound.

Choose 𝐷1 > 0 such that 𝐷1𝑥
2 ≤ 𝐴1(𝑥 − 1)2/2 for all 𝑥 ≥ 2. Then, for 𝛾 large enough, and

2 ≤ 𝑘 ≤ 𝑛 + 𝑛𝐹 ,

P[𝑋 ≤ 𝑛 + 𝑛𝐹 − 𝑘] ≤ 𝐶1 exp(−𝐷1(𝑀 − 𝑛 − 𝑛𝐹 + 𝑘)2/𝛾)

where 𝐶1 =
𝐵1

√
2𝜋

2
√
𝐴1

.

Finally, we have for 𝛾 large enough

𝑛+𝑛𝐹−1∑︁
𝑥=0
P[𝑋 ≤ 𝑥] ≤

∫ 𝑛+𝑛𝐹

0
P[𝑋 ≤ 𝑛 + 𝑛𝐹 − 𝑥] 𝑑𝑥

≤
∫ 𝑛+𝑛𝐹

2
P[𝑋 ≤ 𝑛 + 𝑛𝐹 − 𝑥] 𝑑𝑥 + 2

≤
∫ 𝑛+𝑛𝐹

0
𝐶1 exp(−𝐷1(𝑀1 − 𝑛 − 𝑛𝐹 + 𝑥)2/𝛾) 𝑑𝑥 + 2

=

∫ 𝑀1

𝑀1−𝑛−𝑛𝐹
𝐶1 exp(−𝐷1𝑥

2/𝛾) 𝑑𝑥 + 2

≤
𝐶1

√︁
2𝜋𝛾

2
√
𝐷1

exp(−𝐷1(𝑀1 − 𝑛 − 𝑛𝐹)2/(2𝛾)) + 2.

Since 𝑀1 − 𝑛 − 𝑛𝐹 =
⌊ 𝛾−𝑛𝜇−𝑛𝐹𝜇𝐹

𝜃

⌋
, this completes the proof for 𝛾 > 𝑛𝜇 + 𝑛𝐹𝜇𝐹 .

Next, consider the case where 𝑛𝜇 ≤ 𝛾 < 𝑛𝜇 + 𝑛𝐹𝜇𝐹 . Let 𝑀2 = 𝑛 + ⌊ 𝛾−𝑛𝜇
𝜃

⌋ be the mode of 𝑋
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in this case. Note that

𝑛 + 𝑛𝐹 − 𝑀2 ≥ 𝑛𝜇 + 𝑛𝐹𝜇𝐹 − 𝛾
𝜃

.

Thus, for any 𝐶 > 0,

exp(−𝐶𝜃2(𝑛 + 𝑛𝐹 − 𝑀2)2) ≤ exp(−𝐶 (𝑛𝜇 + 𝑛𝐹𝜇𝐹 − 𝛾)2).

Next, note that

E[𝑄] = E[(𝑋 − 𝑛 − 𝑛𝐹)+] =
∞∑︁

𝑥=𝑛+𝑛𝐹
P[𝑋 > 𝑥] .

As 𝜉 (𝑀2) = 𝑛𝜇 + ⌊ 𝛾−𝑛𝜇
𝜃

⌋𝜃, we have for 𝑘 > 0,

P[𝑋 = 𝑀2 + 𝑘] = P[𝑋 = 𝑀2] ·
𝛾𝑘

(𝜉 (𝑀2) + 𝜃) · · · (𝜉 (𝑀2) + 𝑘𝜃)

≤ P[𝑋 = 𝑀2] ·
𝛾𝑘

𝛾(𝛾 + 𝜃) · · · (𝛾 + (𝑘 − 1)𝜃)

≤ P[𝑋 = 𝑀2] ·
(

𝛾

𝛾 + (𝑘 − 1)𝜃/2

) 𝑘/2

= P[𝑋 = 𝑀2] ·
(
1 − (𝑘 − 1)𝜃/2

𝛾 + (𝑘 − 1)𝜃/2

) 𝑘/2

≤ P[𝑋 = 𝑀2] · exp
(
− 𝑘 (𝑘 − 1)𝜃/4
𝛾 + (𝑘 − 1)𝜃/2

)
≤ P[𝑋 = 𝑀2] ·

(
exp

(
− 𝑘 (𝑘 − 1)𝜃/4

2𝛾

)
+ exp

(
− 𝑘 (𝑘 − 1)𝜃/4

(𝑘 − 1)𝜃

))
= P[𝑋 = 𝑀2] ·

(
exp

(
− 𝑘 (𝑘 − 1)𝜃

8𝛾

)
+ exp (−𝑘/4)

)
.

The last inequality comes from the fact that 𝑘 (𝑘−1)𝜃/4
𝛾+(𝑘−1)𝜃/2 ≥ 𝑘 (𝑘−1)𝜃/4

2𝛾 if 𝛾 ≥ (𝑘 − 1)𝜃/2 and
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𝑘 (𝑘−1)𝜃/4
𝛾+(𝑘−1)𝜃/2 ≥ 𝑘 (𝑘−1)𝜃/4

(𝑘−1)𝜃 otherwise. Thus, for all 𝑘 > 0,

P[𝑋 ≥ 𝑀2 + 𝑘] =
∞∑︁
𝑗=𝑘

P[𝑋 = 𝑀2 + 𝑗]

≤
∞∑︁
𝑗=𝑘

P[𝑋 = 𝑀2] ·
(
exp

(
− 𝑗 ( 𝑗 − 1)𝜃

8𝛾

)
+ exp (− 𝑗/4)

)
≤ P[𝑋 = 𝑀2] ·

(∫ ∞

𝑘−1
exp

(
− 𝑗 ( 𝑗 − 1)𝜃

8𝛾

)
𝑑𝑗 + exp(−𝑘/4)

1 − exp(−1/4)

)
.

Choose 𝐵2 > 0 such that 𝐵2𝑥
2 ≤ 𝑥(𝑥 − 1)𝜃/8 for all 𝑥 ≥ 2, and choose 𝐹2 > 0 such that

𝐹2𝑥
2 ≤ 𝐵2(𝑥 − 1)2/2 for all 𝑥 ≥ 3. Also, choose 𝐴2 > 0 such that P[𝑋 = 𝑀2] ≤ 𝐴2/

√
𝛾 (the

existence of 𝐴2 follows similarly to before.) Then, for all 𝑘 ≥ 3,

P[𝑋 ≥ 𝑀2 + 𝑘] ≤ P[𝑋 = 𝑀2] ·
(∫ ∞

𝑘−1
exp

(
− 𝑗 ( 𝑗 − 1)𝜃

8𝛾

)
𝑑𝑗 + exp(−𝑘/4)

1 − exp(−1/4)

)
≤ 𝐴2√

𝛾

(∫ ∞

𝑘−1
exp

(
−𝐵2 𝑗

2/𝛾
)
𝑑𝑗 + exp(−𝑘/4)

1 − exp(−1/4)

)
≤ 𝐴2

√
2𝜋

2
√
𝐵2

· exp(−𝐵2(𝑘 − 1)2/2𝛾) + 𝐶2 exp(−𝐷2𝑘)/
√
𝛾

≤ 𝐸2 exp(−𝐹2𝑘
2/𝛾) + 𝐶2 exp(−𝐷2𝑘)/

√
𝛾

for some universal 𝐶2, 𝐷2, 𝐸2 > 0. Finally,

∞∑︁
𝑥=𝑛+𝑛𝐹

P[𝑋 > 𝑥] =
∫ ∞

𝑛+𝑛𝐹−𝑀2

P[𝑋 > 𝑀2 + 𝑥] 𝑑𝑥

≤ 3 +
∫ ∞

𝑛+𝑛𝐹−𝑀2+3
𝐸2 exp(−𝐹2𝑥

2/𝛾) + 𝐶2 exp(−𝐷2𝑥)/
√
𝛾 𝑑𝑥

≤ 3 +
∫ ∞

𝑛+𝑛𝐹−𝑀2

𝐸2 exp(−𝐹2𝑥
2/𝛾) + 𝐶2 exp(−𝐷2𝑥)/

√
𝛾 𝑑𝑥

≤ 3 + 𝐿2
√
𝛾 exp(−𝐹2(𝑛 + 𝑛𝐹 − 𝑀2)2/2𝛾) + 𝐺2 exp(−𝐷2(𝑛 + 𝑛𝐹 − 𝑀2))/

√
𝛾

≤ 𝐿2
√
𝛾 exp(−𝐹2(𝑛 + 𝑛𝐹 − 𝑀2)2/2𝛾) + 3 + 𝐺2

for some universal 𝐿2, 𝐺2 > 0.
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Lastly, consider the case where 0 < 𝛾 < 𝑛𝜇. This is very similar to the proof of the case

𝑛𝜇 ≤ 𝛾 < 𝑛𝜇 + 𝑛𝐹𝜇𝐹 , but we include it here for completeness. Let 𝑀3 = ⌊𝛾/𝜇⌋ be the mode of 𝑋

in this case. Note that

𝑛 + 𝑛𝐹 − 𝑀3 ≥ 𝑛𝜇 + 𝑛𝐹𝜇 − 𝛾
𝜇

≥ 𝑛𝜇 + 𝑛𝐹𝜇𝐹 − 𝛾
𝜇

.

Thus, for any 𝐶 > 0,

exp(−𝐶𝜇2(𝑛 + 𝑛𝐹 − 𝑀3)2) ≤ exp(−𝐶 (𝑛𝜇 + 𝑛𝐹𝜇𝐹 − 𝛾)2).

Next, note that

E[𝑄] = E[(𝑋 − 𝑛 − 𝑛𝐹)+] =
∞∑︁

𝑥=𝑛+𝑛𝐹
P[𝑋 > 𝑥] .

For 𝜉 (𝑀3) = ⌊𝛾/𝜇⌋𝜇, we have for 0 < 𝑘 ≤ 𝑛 − 𝑀3,

P[𝑋 = 𝑀3 + 𝑘] = P[𝑋 = 𝑀3] ·
𝛾𝑘

(𝜉 (𝑀3) + 𝜇) · · · (𝜉 (𝑀3) + 𝑘𝜇)
,

and for 𝑘 > 𝑛 − 𝑀3,

P[𝑋 = 𝑀3 + 𝑘] ≤P[𝑋 = 𝑀3] ·
𝛾𝑘

(𝜉 (𝑀3) + 𝜇) · · · (𝜉 (𝑀3) + 𝑘𝜇)
.
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Thus, for all 𝑘 > 0, we have

P[𝑋 = 𝑀3 + 𝑘] ≤ P[𝑋 = 𝑀3] ·
𝛾𝑘

(𝜉 (𝑀3) + 𝜇) · · · (𝜉 (𝑀3) + 𝑘𝜇)

≤ P[𝑋 = 𝑀3] ·
𝛾𝑘

𝛾(𝛾 + 𝜇) · · · (𝛾 + (𝑘 − 1)𝜇)

≤ P[𝑋 = 𝑀3] ·
(

𝛾

𝛾 + (𝑘 − 1)𝜇/2

) 𝑘/2

= P[𝑋 = 𝑀3] ·
(
1 − (𝑘 − 1)𝜇/2

𝛾 + (𝑘 − 1)𝜇/2

) 𝑘/2

≤ P[𝑋 = 𝑀3] · exp
(
− 𝑘 (𝑘 − 1)𝜇/4
𝛾 + (𝑘 − 1)𝜇/2

)
≤ P[𝑋 = 𝑀3] ·

(
exp

(
− 𝑘 (𝑘 − 1)𝜇/4

2𝛾

)
+ exp

(
− 𝑘 (𝑘 − 1)𝜇/4

(𝑘 − 1)𝜇

))
= P[𝑋 = 𝑀3] ·

(
exp

(
− 𝑘 (𝑘 − 1)𝜇

8𝛾

)
+ exp (−𝑘/4)

)
.

The last inequality comes from the fact that 𝑘 (𝑘−1)𝜇/4
𝛾+(𝑘−1)𝜇/2 ≥ 𝑘 (𝑘−1)𝜇/4

2𝛾 if 𝛾 ≥ (𝑘 − 1)𝜇/2 and

𝑘 (𝑘−1)𝜇/4
𝛾+(𝑘−1)𝜇/2 ≥ 𝑘 (𝑘−1)𝜇/4

(𝑘−1)𝜇 otherwise. Thus, for all 𝑘 > 0,

P[𝑋 ≥ 𝑀3 + 𝑘] =
∞∑︁
𝑗=𝑘

P[𝑋 = 𝑀3 + 𝑗]

≤
∞∑︁
𝑗=𝑘

P[𝑋 = 𝑀3] ·
(
exp

(
− 𝑗 ( 𝑗 − 1)𝜇

8𝛾

)
+ exp (− 𝑗/4)

)
≤ P[𝑋 = 𝑀3] ·

(∫ ∞

𝑘−1
exp

(
− 𝑗 ( 𝑗 − 1)𝜇

8𝛾

)
𝑑𝑗 + exp(−𝑘/4)

1 − exp(−1/4)

)
.

Choose 𝐵3 > 0 such that 𝐵3𝑥
2 ≤ 𝑥(𝑥 − 1)𝜇/8 for all 𝑥 ≥ 2, and choose 𝐹3 > 0 such that

𝐹3𝑥
2 ≤ 𝐵3(𝑥 − 1)2/2 for all 𝑥 ≥ 3. Also, choose 𝐴3 > 0 such that P[𝑋 = 𝑀3] ≤ 𝐴3/

√
𝛾. Then,
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for all 𝑘 ≥ 3,

P[𝑋 ≥ 𝑀3 + 𝑘] ≤ P[𝑋 = 𝑀3] ·
(∫ ∞

𝑘−1
exp

(
− 𝑗 ( 𝑗 − 1)𝜇

8𝛾

)
𝑑𝑗 + exp(−𝑘/4)

1 − exp(−1/4)

)
≤ 𝐴3√

𝛾

(∫ ∞

𝑘−1
exp

(
−𝐵3 𝑗

2/𝛾
)
𝑑𝑗 + exp(−𝑘/4)

1 − exp(−1/4)

)
≤ 𝐴3

√
2𝜋

2
√
𝐵3

· exp(−𝐵3(𝑘 − 1)2/2𝛾) + 𝐶3 exp(−𝐷3𝑘)/
√
𝛾

≤ 𝐸3 exp(−𝐹3𝑘
2/𝛾) + 𝐶3 exp(−𝐷3𝑘)/

√
𝛾

for some universal 𝐶3, 𝐷3, 𝐸3 > 0. Finally,

∞∑︁
𝑥=𝑛+𝑛𝐹

P[𝑋 > 𝑥] =
∫ ∞

𝑛+𝑛𝐹−𝑀3

P[𝑋 > 𝑀3 + 𝑥] 𝑑𝑥

≤ 3 +
∫ ∞

𝑛+𝑛𝐹−𝑀3+3
𝐸3 exp(−𝐹3𝑥

2/𝛾) + 𝐶3 exp(−𝐷3𝑥)/
√
𝛾 𝑑𝑥

≤ 3 +
∫ ∞

𝑛+𝑛𝐹−𝑀3

𝐸3 exp(−𝐹3𝑥
2/𝛾) + 𝐶3 exp(−𝐷3𝑥)/

√
𝛾 𝑑𝑥

≤ 3 + 𝐿3
√
𝛾 exp(−𝐹3(𝑛 + 𝑛𝐹 − 𝑀3)2/2𝛾) + 𝐺3 exp(−𝐷3(𝑛 + 𝑛𝐹 − 𝑀3))/

√
𝛾

≤ 𝐿3
√
𝛾 exp(−𝐹3(𝑛 + 𝑛𝐹 − 𝑀3)2/2𝛾) + 3 + 𝐺3

for some universal 𝐿3, 𝐺3 > 0. This completes the proof.

Next, consider two single-class queues, A and B, with common arrival rate 𝜆 and abandonment

rate 𝜃. System A has 𝑚 high priority rate-𝜇 servers and 𝑚𝐹 low priority rate-𝜇𝐹 servers, while

system B has 𝑚/𝑟 high priority rate-𝑟𝜇 servers and 𝑚𝐹/𝑟 low priority rate-𝑟𝜇𝐹 servers, for some

𝑟 > 1. Let𝑄𝐴 (∞) and𝑄𝐵 (∞) denote the stationary queue lengths of the two systems respectively.

Lemma 25. For systems A and B,

𝑄𝐴 (∞) ≤𝑠𝑡 𝑄𝐵 (∞).

Proof. The proof follows the same lines of argument as the proof of Lemma 2 in [7], and is only
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included for completeness. Let 𝑋𝐴 (𝑡) and 𝑋𝐵 (𝑡) denote the headcount processes, which are birth-

death processes. Let 𝛼 = 𝑚 +𝑚𝐹 and 𝛽 = (𝑚 +𝑚𝐹)/𝑟 be the number of servers in the two systems,

and let 𝜉𝐴 (·) and 𝜉𝐵 (·) denote the death rates.

We first note that the two systems have the same birth rates. For 𝑥 ≥ 0, 𝜉𝐴 (𝛼 + 𝑥) = 𝜉𝐵 (𝛽 + 𝑥),

and for 0 ≤ 𝑥 ≤ 𝛽, 𝜉𝐴 (𝛼 − 𝑥) ≥ 𝜉𝐵 (𝛽 − 𝑥). Initialize 𝑋𝐴 (0) = 𝛼, 𝑋𝐵 (0) = 𝛽. Couple the two

systems such that (i) the arrivals to both systems coincide, and (ii) the departures in system B is a

subset of the departures in system A. Then, for all 𝑡 ≥ 0, 𝑋𝐴 (𝑡) − 𝛼 ≤ 𝑋𝐵 (𝑡) − 𝛽 and

𝑄𝐴 (𝑡) = (𝑋𝐴 (𝑡) − 𝛼)+ ≤ (𝑋𝐵 (𝑡) − 𝛽)+ = 𝑄𝐵 (𝑡).

As the stationary distribution is well-defined, we have the stochastic dominance of the stationary

distribution.

B.4.4 Proof of Lemma 7

Proof. To simplify the notation, we drop the superscript 𝜆 and the ‘(∞)’. In particular, let 𝑋𝑖

denote the stationary number of Class 𝑖 customers in the system, 𝑄Σ denote the stationary total

queue length, 𝑍𝑖 denote the stationary number of Class 𝑖 customers served by the dedicated servers,

and 𝑍𝐹𝑖 denote the stationary number of Class 𝑖 customers served by the flexible servers.

We first prove the lower bound. Consider the case where 𝜃 ≤ 𝜇𝐹 . Note that 𝑄Σ ≥

𝑓 (𝑋1, 𝑋2) := ((𝑋1 − 𝑛1)+ + (𝑋2 − 𝑛2)+ − 𝑛𝐹)+. As 𝑓 is convex, by Jensen’s inequality

E[𝑄Σ |Λ = 𝛾; 𝜈] ≥ E[ 𝑓 (𝑋1, 𝑋2) |Λ = 𝛾; 𝜈] ≥ 𝑓 (E[𝑋1 |Λ = 𝛾; 𝜈],E[𝑋2 |Λ = 𝛾; 𝜈]).

Thus,

𝜃E[𝑄Σ |Λ = 𝛾; 𝜈] ≥
(
𝜃E[𝑋1 |Λ = 𝛾; 𝜈] − 𝜃𝑛1)+ + (𝜃E[𝑋2 |Λ = 𝛾; 𝜈] − 𝜃𝑛2)+ − 𝜃𝑛𝐹

)+
.
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Equating the arrival and departure rates in stationarity, we have

𝛾𝑖 = 𝜃E[𝑋𝑖 |Λ = 𝛾; 𝜈] + (𝜇 − 𝜃)E[𝑍𝑖 |Λ = 𝛾; 𝜈] + (𝜇𝐹 − 𝜃)E[𝑍𝐹𝑖 |Λ = 𝛾; 𝜈] .

Because E[𝑍𝑖 |Λ = 𝛾; 𝜈] ≤ 𝑛𝑖 and E[𝑍𝐹1 |Λ = 𝛾; 𝜈] + E[𝑍𝐹2 |Λ = 𝛾; 𝜈] ≤ 𝑛𝐹 , for some 𝛼 = 𝛼(𝛾) ∈

[0, 1],

𝛾1 ≤ 𝜃E[𝑋1 |Λ = 𝛾; 𝜈] + (𝜇 − 𝜃)𝑛1 + 𝛼(𝜇𝐹 − 𝜃)𝑛𝐹

and

𝛾2 ≤ 𝜃E[𝑋2 |Λ = 𝛾; 𝜈] + (𝜇 − 𝜃)𝑛2 + (1 − 𝛼) (𝜇𝐹 − 𝜃)𝑛𝐹 .

Then,

𝜃E[𝑄Σ |Λ = 𝛾; 𝜈] ≥
(
𝜃E[𝑋1 |Λ = 𝛾; 𝜈] − 𝜃𝑛1)+ + (𝜃E[𝑋2 |Λ = 𝛾; 𝜈] − 𝜃𝑛2)+ − 𝜃𝑛𝐹

)+
≥

(
(𝛾1 − 𝜇𝑛1 − 𝛼(𝜇𝐹 − 𝜃)𝑛𝐹)+ + (𝛾2 − 𝜇𝑛2 − (1 − 𝛼) (𝜇𝐹 − 𝜃)𝑛𝐹)+ − 𝜃𝑛𝐹

)+
≥

(
(𝛾1 − 𝜇𝑛1)+ + (𝛾2 − 𝜇𝑛2)+ − 𝜇𝐹𝑛𝐹

)+
,

where the last inequality follows from the fact that ((𝑎−𝑐)++(𝑏−𝑑)+−𝑒)+ ≥ (𝑎++𝑏+−(𝑐+𝑑+𝑒))+

for any 𝑐, 𝑑, 𝑒 ≥ 0.

Next, consider the case where 𝜃 > 𝜇𝐹 . Note that

𝜃E[𝑄Σ |Λ = 𝛾; 𝜈] = 𝛾1 + 𝛾2 − 𝜇E[𝑍1 + 𝑍2 |Λ = 𝛾; 𝜈] − 𝜇𝐹E[𝑍𝐹1 + 𝑍𝐹1 |Λ = 𝛾; 𝜈] .

Consider an auxiliary system, 𝑋̃ , with all parameters the same except that its abandonment rate is

𝜃 = 𝜇𝐹 . We next construct a scheduling policy 𝜈′ such that

E[𝑍1 + 𝑍2 |Λ = 𝛾; 𝜈] = E[𝑍̃1 + 𝑍̃2 |Λ = 𝛾; 𝜈′] and E[𝑍𝐹1 + 𝑍𝐹2 |Λ = 𝛾; 𝜈] = E[𝑍̃𝐹1 + 𝑍̃𝐹2 |Λ = 𝛾; 𝜈′] .

(B.13)
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The policy for 𝜈′ is constructed through a coupling that keeps 𝑍𝑖 = 𝑍̃𝑖 and 𝑍𝐹𝑖 = 𝑍̃𝐹𝑖 at all times.

This can be achieved by assuming that arrivals and service completions in both systems coincide,

and that the abandonments in the auxiliary system is a subset of the abandonments in the original

system since 𝜃 < 𝜃.

From (B.13), we have

𝜃E[𝑄Σ |Λ = 𝛾; 𝜈] = 𝜃E[𝑄̃Σ |Λ = 𝛾; 𝜈′] ≥
(
(𝛾1 − 𝜇𝑛1)+ + (𝛾2 − 𝜇𝑛2)+ − 𝜇𝐹𝑛𝐹

)+
,

where the last inequality follows from our analysis of the case where 𝜃 ≤ 𝜇𝐹 .

We next prove the upper bound. We first consider the case when 𝜃 = 𝜇𝐹 . By Lemma 24, we

have

𝜃E[𝑄Σ |Λ = 𝛾; 𝜈̃]

=𝜃E[𝑄1 |Λ = 𝛾; 𝜈̃] + 𝜃E[𝑄2 |Λ = 𝛾; 𝜈̃]

≤(𝛾1 − 𝜇𝑛1 − ⌊𝛿𝑛𝐹⌋𝜇𝐹)+ + 𝐾1
√
𝛾1 exp(−𝐾2

𝛾1
(𝛾1 − 𝜇𝑛1 − ⌊𝛿𝑛𝐹⌋𝜇𝐹)2) + 𝐾3

+ (𝛾2 − 𝜇𝑛2 − ⌈(1 − 𝛿)𝑛𝐹⌉𝜇𝐹)+ + 𝐾1
√
𝛾2 exp(−𝐾2

𝛾2
(𝛾2 − 𝜇𝑛2 − ⌈(1 − 𝛿)𝑛𝐹⌉𝜇𝐹)2) + 𝐾3

≤(𝛾1 − 𝜇𝑛1 − 𝛿𝑛𝐹𝜇𝐹)+ + 𝐾1
√
𝛾1 exp(−𝐾2

𝛾1
(𝛾1 − 𝜇𝑛1 − ⌊𝛿𝑛𝐹⌋𝜇𝐹)2) + 𝐾3 + 𝜇𝐹

+ (𝛾2 − 𝜇𝑛2 − (1 − 𝛿)𝑛𝐹𝜇𝐹)+ + 𝐾1
√
𝛾2 exp(−𝐾2

𝛾2
(𝛾2 − 𝜇𝑛2 − ⌈(1 − 𝛿)𝑛𝐹⌉𝜇𝐹)2) + 𝐾3 + 𝜇𝐹

=((𝛾1 − 𝜇𝑛1)+ + (𝛾2 − 𝜇𝑛2)+ − 𝜇𝐹𝑛𝐹)+ + 2(𝐾3 + 𝜇𝐹)

+ 𝐾1
√
𝛾1 exp(−𝐾2

𝛾1
(𝛾1 − 𝜇𝑛1 − ⌊𝛿𝑛𝐹⌋𝜇𝐹)2) + 𝐾1

√
𝛾2 exp(−𝐾2

𝛾2
(𝛾2 − 𝜇𝑛2 − ⌈(1 − 𝛿)𝑛𝐹⌉𝜇𝐹)2).

The result then follows using the proof of Lemma 1 in [7].

Next, consider the case when 𝜃 < 𝜇𝐹 . Let the original system be labeled I. We form an auxiliary

system II with the same parameters, except that the abandonment rate is 𝜃 𝐼 𝐼 = 𝜇𝐹 and the holding
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cost is ℎ𝐼 𝐼 = ℎ𝜇𝐹/𝜃. We write

Π𝐼 (𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈̃) = 𝑐(𝑛1 + 𝑛2) + 𝑐𝐹𝑛𝐹 + (𝑎 + ℎ/𝜃)𝐴𝐼 (𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈̃)

where 𝐴𝐼 (𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈̃) = 𝜃E[𝑄 𝐼
Σ
(𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈̃)] is the stationary abandonment rate in system I.

Similarly,

Π𝐼 𝐼 (𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈̃) = 𝑐(𝑛1 + 𝑛2) + 𝑐𝐹𝑛𝐹 + (𝑎 + ℎ/𝜃)𝐴𝐼 𝐼 (𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈̃).

We next show that

𝐴𝐼 (𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈̃) ≤ 𝐴𝐼 𝐼 (𝑛1, 𝑛2, 𝑛𝐹 ; 𝜈̃). (B.14)

Note that

𝐴𝑖 = EΛ [Λ − 𝜇𝑍 𝑖 − 𝜇𝐹𝑍 𝑖𝐹]

where 𝑍 𝑖 and 𝑍 𝑖
𝐹

are the stationary number of busy rate-𝜇 servers and rate-𝜇𝐹 servers respectively,

in system 𝑖, 𝑖 = 𝐼, 𝐼 𝐼. Thus, we only need to show that 𝑍 𝐼 ≥𝑠𝑡 𝑍 𝐼 𝐼 and 𝑍 𝐼
𝐹
≥𝑠𝑡 𝑍 𝐼 𝐼𝐹 . Based on the

scheduling policy 𝜈̃, it suffices to verify the following: If 𝑋 𝐼 is the stationary headcount in a single-

class queue with 𝑚 high priority rate-𝜇 servers, 𝑚𝐹 low priority rate-𝜇𝐹 servers, and abandonment

rate 𝜃, and 𝑋 𝐼 𝐼 is the same but with abandonment rate 𝜇𝐹 , then 𝑋 𝐼 ≥𝑠𝑡 𝑋 𝐼 𝐼 . This is true because

the birth rates of the two corresponding processes are the same, while the death rate in 𝐼 𝐼 is higher

than in 𝐼. This proves (B.14), which further implies that

Π𝜆,𝐼 (𝑛𝜆1, 𝑛
𝜆
2, 𝑛

𝜆
𝐹 ; 𝜈̃𝜆) ≤ Π𝜆,𝐼 𝐼 (𝑛𝜆1, 𝑛

𝜆
2, 𝑛

𝜆
𝐹 ; 𝜈̃𝜆) ≤ Π̃𝜆 (𝑛𝜆1, 𝑛

𝜆
2, 𝑛

𝜆
𝐹) +𝑂 (𝜆1−𝛼2) as 𝜃 𝐼 𝐼 = 𝜇𝐹 .
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Lastly, consider the case where 𝜃 > 𝜇𝐹 . We form a new auxiliary system III with the same

parameters as 𝑋 , except that 𝜇𝐼 𝐼 𝐼
𝐹

= 𝜃, 𝜇𝐼 𝐼 𝐼 = 𝜇𝜃/𝜇𝐹 , 𝑐𝐼 𝐼 𝐼 = 𝑐𝜃/𝜇𝐹 , and 𝑐𝐼 𝐼 𝐼
𝐹

= 𝑐𝐹𝜃/𝜇𝐹 . Then,

Π𝜆,𝐼 (𝑛𝜆1, 𝑛
𝜆
2, 𝑛

𝜆
𝐹 ; 𝜈̃𝜆) ≤ Π𝜆,𝐼 𝐼 𝐼

( 𝜇𝐹
𝜃
𝑛𝜆1,

𝜇𝐹

𝜃
𝑛𝜆2,

𝜇𝐹

𝜃
𝑛𝜆𝐹 ; 𝜈̃𝜆

)
by Lemma 25

≤ Π̃𝜆 (𝑛𝜆1, 𝑛
𝜆
2, 𝑛

𝜆
𝐹) +𝑂 (𝜆1−𝛼2) as 𝜇𝐼 𝐼 𝐼

𝐹
= 𝜃.

B.4.5 Proof of Theorem 8.

Proof. Let (𝑛𝜆,∗1 , 𝑛
𝜆,∗
2 , 𝑛

𝜆,∗
𝐹

; 𝜈𝜆,∗) be optimal for (3.2). We have

Π𝜆 (⌈𝑛̃𝜆,∗1 ⌉, ⌈𝑛̃𝜆,∗2 ⌉, ⌊𝑛̃𝜆,∗
𝐹
⌋; 𝜈̃𝜆)

≤Π̃𝜆 (⌈𝑛̃𝜆,∗1 ⌉, ⌈𝑛̃𝜆,∗2 ⌉, ⌊𝑛̃𝜆,∗
𝐹
⌋) +𝑂 (𝜆1−𝛼2) by the upper bound in Lemma 7

≤Π̃𝜆 (𝑛̃𝜆,∗1 , 𝑛̃
𝜆,∗
2 , 𝑛̃

𝜆,∗
𝐹
) + 2𝑐 + 𝑐𝑃𝜇𝐹 +𝑂 (𝜆1−𝛼2)

≤Π̃𝜆 (𝑛𝜆,∗1 , 𝑛
𝜆,∗
2 , 𝑛

𝜆,∗
𝐹
) +𝑂 (𝜆1−𝛼2)

≤Π𝜆 (𝑛𝜆,∗1 , 𝑛
𝜆,∗
2 , 𝑛

𝜆,∗
𝐹

; 𝜈𝜆,∗) +𝑂 (𝜆1−𝛼2) by the lower bound in Lemma 7.
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