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Abstract

Learning to Edit Code :

Towards Building General Purpose Models for Source Code Editing

Saikat Chakraborty

The way software developers edit code day-to-day tends to be repetitive, often using existing

code elements. Many researchers have tried to automate the repetitive code editing process by

mining specific change templates. However, such templates are often manually implemented for

automated applications. Consequently, such template-based automated code editing is very tedious

to implement. In addition, template based code editing is often narrowly-scoped and low noise-

tolerant. Machine Learning, specially deep learning-based techniques, could help us solve these

problems because of their generalization and noise tolerance capacities.

The advancement of deep neural networks and the availability of vast open-source evolutionary

data opens up the possibility of automatically learning those templates from the wild and apply-

ing those in the appropriate context. However, deep neural network-based modeling for code

changes, and code, in general, introduces some specific problems that need specific attention from

the research community. For instance, source code exhibit strictly defined syntax and semantics

inherited from the properties of Programming Language (PL). In addition, source code vocabulary

(possible number of tokens) can be arbitrarily large.

This dissertation formulates the problem of automated code editing as a multi-modal trans-

lation problem, where, given a piece of code, the context, and some guidance, the objective is

to generate edited code. In particular, we divide the problem into two sub-problems — source



code understanding and generation. We empirically show that the deep neural networks (models

in general) for these problems should be aware of the PL-properties (i.e., syntax, semantics). This

dissertation investigates two primary directions of endowing the models with knowledge about PL-

properties — (i) explicit encoding: where we design models catering to a specific property, and

(ii) implicit encoding: where we train a very-large model to learn these properties from very large

corpus of source code in unsupervised ways.

With implicit encoding, we custom design the model to cater to the need for that property.

As an example of such models, we developed CODIT — a tree-based neural model for syntactic

correctness. We design CODIT based on the Context Free Grammar of the programming language.

Instead of generating source code, CODIT first generates the tree structure by sampling the pro-

duction rule from the CFG. Such a mechanism prohibits infeasible production rule selection. In

the later stage, CODIT generates the edited code conditioned on the tree generated earlier. Such

conditioning makes the edited code syntactically correct. CODIT showed promise in learning code

edit patterns in the wild and effectiveness in automatic program repair. In another empirical study,

we showed that a graph-based model is better suitable for source code understanding tasks such as

vulnerability detection.

On the other hand, with implicit encoding, we use a very large (with several hundred million

parameters) yet generic model. However, we pre-train these models on a super-large (usually hun-

dreds of gigabytes) collection of source code and code metadata. We empirically show that if

sufficiently pre-trained, such models are capable enough to learn PL properties such as syntax and

semantics. In this dissertation, we developed two such pre-trained models, with two different learn-

ing objectives. First, we developed PLBART— the first-ever pre-trained encoder-decoder-based

model for source code and show that such pre-train enables the model to generate syntactically

and semantically correct code. Further, we show an in-depth empirical study on using PLBART

in automated code editing. Finally, we develop another pre-trained model — NatGen to encode

the natural coding convention followed by developers into the model. To design NatGen, we

first deliberately modify the code from the developers’ written version preserving the original se-



mantics. We call such transformations ‘de-naturalizing’ transformations. Following the previous

studies on induced unnaturalness in code, we defined several such ‘de-naturalizing’ transforma-

tions and applied those to developer-written code. We pre-train NatGen to reverse the effect of

these transformations. That way, NatGen learns to generate code similar to the developers’ written

by undoing any unnaturalness induced by our forceful ‘de-naturalizing‘ transformations. NatGen

has performed well in code editing and other source code generation tasks.

The models and empirical studies we performed while writing this dissertation go beyond the

scope of automated code editing and are applicable to other software engineering automation prob-

lems such as Code translation, Code summarization, Code generation, Vulnerability detection,

Clone detection, etc. Thus, we believe this dissertation will influence and contribute to the ad-

vancement of AI4SE and PLP.
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Chapter 1: Introduction

The last few years have seen a lot of progress in bringing automation into the software develop-

ment process [24, 10, 219]. Availability of large quantities of software life-cycle data in vast open

source repository platforms (e.g., GitHub, BitBucket), developer forums (e.g., StackOverflow), and

issue trackers (e.g., Jira, Bugzilla) paves the way to automate different development tasks. Artifi-

cial Intelligence for Software Engineering (AI4SE) leverages these extensive data sources to build

automation tools for Software Engineers [51, 238, 83]. Previous researches had shown that source

code artifacts (e.g., source code [89], code changes [169, 166, 192], bugs [190]) are repetitive, i.e.,

follow similar patterns across different developers, repositories, and organizations. Such repetition

opens up the possibility of automating developers’ coding activities, offloading some of the repet-

itive and tedious tasks to machines, and leaving time for the developers to concentrate on more

creative tasks.

To this end, Programming Language Processing (PLP) [239, 159, 160], an emerging research

field, aims at developing automation tools for these repetitive activities, leveraging techniques

from Language Processing, Machine Learning (ML), and Deep Learning (DL). In particular, PLP

aims to develop techniques specially catered to Programming Languages and bring automation in

software engineers’ day-to-day programming activities. In this dissertation, we are aiming to build

tools towards automating one such repetitive [193, 200] programming activity — Code Editing.

Developers edit source code to add new features, fix bugs, or maintain existing functionality

(e.g., API updates, refactoring, etc.) all the time. Recent research has shown that these edits are

often repetitive [169, 166]. Moreover, the code components (e.g., token, sub-trees, etc.) used to

build the edits are often taken from the existing codebase [149, 25]. However, manually applying

such repetitive edits can be tedious and error-prone [191]. Thus, it is important to automate code

changes, as much as possible, to reduce the developers’ burden. There is significant industrial and
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academic work on automating code changes. For example, modern IDEs support specific types

of automatic changes (e.g., refactoring, adding boiler-plate code [157, 66], etc). Many research

tools aim to automate some types of edits, e.g., API related changes [167, 218, 195, 19, 172, 165],

refactoring [65, 194, 69, 152], frequently undergone code changes related to Pull Requests [223],

etc. Researchers have also proposed automating generic changes by learning either from example

edits [154, 200] or similar patches applied previously to source code [153, 166, 192, 223]. While

the above lines of work are promising and have shown initial success, they either rely on predefined

change templates or require domain-specific knowledge about the type of changes: both are hard to

generalize to the larger context. However, all of them leverage, in some way, common edit patterns.

Given that a large amount of code and its change history, associated high-level comments (e.g.,

commit messages) from developers is available, thanks to software forges like GitHub, Bitbucket,

etc., a natural question arises: Can we learn to predict general code changes by learning them in

the wild and guide the code changes with developers guidance?

In this dissertation, I envision building tools that can change part of a software’s source code

following code change patterns previously adopted by developers and high-level requirements

from developers. We define the Automated Code Edit1 task is as modification of existing code

(i.e., adding, deleting, or replacing code elements) through applying such frequent change pat-

terns [245, 252, 112, 223] . This dissertation proposes several techniques to build such editors. In

this dissertation, my primary focus has been designing Machine Learning (ML) and Deep Learn-

ing (DL) based automated code editing tools. While building such an automated code editor, we

investigated the design and adaptation of Programming Language (PL) specific properties into DL

models. We hypothesize that the success of a DL model in a complex Software Engineering task

such as Automated Code Editing depends on its capability in understanding source code, under-

standing other metadata associated with code, and correctly generating code. In this dissertation,

we propose several novel DL models and techniques for attaining such goals and evaluate these

models on automated code editing. We also evaluate the merit of these models on other crucial SE

1We use the term Code Change and Code Edit interchangeably
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tasks (§5.4, §7.5).

1.1 Problem Formulation and Challenges

Automated Code Editing. We formulate the Automated Code Editing as a mechanized transfor-

mation of an existing source code snippet. Such a transformation can be pre-programmed based

on the frequent transformation patterns learned from software’s evolution history, or push-button:

where a programmer provides guidance for code editing in natural language, and the editor takes

both learned patterns and developers’ guidance into consideration while editing the code. For-

mally, for a code to be automatically edited, the inputs the automated code editor tools are: the

code version before the edit (prev), and a guidance from the developer (guidance), the output is the

code version after the edit (target).

public String removeComment(String leftOver){
  while (hasBlockComment(leftOver)){
    leftOver = removeBlockComment(leftOver);

  }

  while (hasLineComment(leftOver)){
    leftOver = removeLineComment(leftOver);

  }

  return leftOver;

}  target 

public String removeComment(String leftOver){
  if (hasBlockComment(leftOver)){
    leftOver = removeBlockComment(leftOver);

  }

  if (hasLineComment(leftOver)){
    leftOver = removeLineComment(leftOver);

  }

  return leftOver;

}

 prev 

Remove all the comments from the string 
guidance

(auxiliary
information)

Figure 1.1: An example of code editing problem

Figure 1.1 shows one such automated edit example. To model the edits, one needs to learn

the conditional probability distribution of the target code version (T ) given its prev code version

(P) and guidance (G ). A good probabilistic model will assign higher probabilities to plausible

target versions and lower probabilities to less plausible ones. In particular, our goal is to design

a parametric probabilistic model with trainable parameters 𝜃, which maximizes the conditional

probability of the edited code (T𝑖) given the original code (P𝑖) and other guidance(s) (G𝑖) from a
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training dataset of examples edits (D). Formally,

𝜃∗ = arg max
𝜃

∏
𝑑𝑖∈D

𝑃(T𝑖 |P𝑖,G𝑖, 𝜃) (1.1)

Automated Code Editing as Source Code Understanding and Generation. We deconstruct

the Automated Code Editing problem into two sub-problems — Source Code Understanding and

Source Code Generation. As shown in Figure 1.1, part of the model needs to understand the input

code and how to process the input code. Another part of the model is responsible for generating

the edited code. Encoder-decoder Neural Machine Translation models (NMT) are a promising

approach to realizing such code edit models, where the previous code version (i.e.prev) and other

inputs (e.g.,guidance) are encoded into latent vector representations. Then, the target version is

synthesized (decoded) from the encoded representation. Previous research efforts [44, 225] inves-

tigated the initial viability of using NMT for code changes. At the core of the NMT, there is an

encoder and a decoder (generator). The encoder encodes and understands the input(s); the decoder

generates the changed or corrected code.

Challenges of Source Code Understanding. Modeling source code with deep learning brings a

unique set of research challenges. First, unlike fuzzy semantic structures (multiple semantic parse

trees based on the interpretation of sentence) of Natural Language [133, 121, 106, 86], Program-

ming Languages exhibit precise syntactic and semantic structure [76, 158, 198]. However, the

  1. public boolean checkEqual(
  2.             Object inst, MyClass object){
  3.     MyClass tmp = new MyClass();

  4.     if (inst == null) {

  5.         MyClass tmp2 = new MyClass();

 ...         ...
200.     }

201.     return super.equals(object);

202. }

Figure 1.2: Code example showing long range dependency between code components

precision in the underlying semantic structure allows a program to be excessively long, with very
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long-range dependencies between components. For instance, Figure 1.2 shows a code snippet,

where a variable object declared in line 2 is used in line 201. Such long-range dependencies

demand a specific model design to understand the code properly. In addition, several types of

semantic dependencies exist between the program components. For examples, in Figure 1.2, the

black edge is a control flow edge, the red edge is a data flow edge, and the blue is a data-dependency

edge. Thus, the model should understand and reason about these relationships between code com-

ponents to fully understand a code.

Challenges of Source Code Generation. Like source code understanding, source code genera-

tion is a significant challenge for any ML/DL model because of the strict syntactic and semantic

properties of source code. Unlike natural language, programs written in PL are consumed by the

machine. Thus, the slightest syntactic and semantic error in a code can make the whole code be-

boolean f (Object target)  {

    for(Object elem : if.elements) {

        if (elem.equals(target)) {

            return true;

        }

    }
    return false;

}

(a) Syntactically Incorrect Code

boolean findNumbers (String target){

  for (int i = 0; i < target.length(); i++){

    char c = target.charAt(i);

    if (c >= '0' && c <= '9'){

      return true; 

    }
  } 

  return null;

}

(b) Semantically Incorrect Code

void processFile (String fileName){

    Scanner sc = new Scanner(new File(fileName));

    for (   ; sc.hasNext() ;   ) {

        String line = sc.nextLine();

        this.processLine(line);

        ...

    }
    ...

}

(c) Naturally Incorrect Code

Figure 1.3: Examples of incorrect code

come useless. For instance, Figure 1.3(a) shows an almost correctly generated code with mistake

in one token. Such a mistake makes the generated code syntactically incorrect, hence unusable

in development. On the other hand, code in Figure 1.3(b) is syntactically valid, but the method
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in the code is returning null , where it should return boolean , which is a semantic violation.

Such a generated code will likely cause a compilation error, eventually resulting in a build failure.

Finally, the third type of error we are concerned about is unnatural code — a piece of code that is

syntactically and semantically correct. Still, a developer is less likely to write such a code. Such

a generated code may impede the readability and maintainability of the software. For instance,

if a developer had to write a for loop with the initializer and update blocks empty, they would

likely write a while loop (see Figure 1.3(c)). To be fully usable in the development pipeline, the

ML/DL-based code generator must demonstrate effectiveness in maintaining the correctness of the

code.

1.2 Solution Approach and Research Contribution

A closer look into the challenges in DL-based source code understanding and generation (as

discussed in Section 1.1) would reveal that PL-specific constructs (syntax, semantics) are the

source of these challenges. Thus, our hypothesis in this dissertation is to equip the model with

knowledge about these PL constructs to solve the problem. More specifically, we endow the mod-

els with knowledge about — (i) syntax, (ii) semantics, and (iii) common coding patterns followed

by developers. We investigate two different approaches to such endowment – explicit and implicit

encoding of PL properties in the model.

1.2.1 Explicit Encoding of PL Constructs

In this approach, we explicitly design models to adhere to PL properties. Regardless of the

development environment, organization, and API libraries, few properties of PL are generic to

any program in a particular programming language. For instance, every program written in Java

must adhere to the context-free grammar provided by Java Language Specification (JLS). Since

these syntax rules are stringent and well defined, it is convenient to build models around these

rules. Following this idea, we first developed CODIT [37]2 (details in Chapter 3). We investi-

2Published in TSE’20
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gated the syntactic correctness guarantee of generated code through the programming language’s

Context-Free Grammar (CFG). Using a tree-based model, the decoder in CODIT samples from the

CFG and generates the code’s syntax tree. In doing so, it ensures the syntactic guarantee of the

generated code. CODIT shows significant promise in automated code change and program repair.

CODIT successfully fixed fifteen (15) bugs completely and ten(1) partially out of 80 bugs in the

Defects4j [104] bug dataset. Note that we built CODIT to generate syntactically correct edited code

and learn the code edit patterns from generic patches in GitHub. We did not use other auxiliary

information (e.g., bug report, failing test traces) to generate the patches.

While CODIT shows promise in learning code edit patterns and subsequently generating syn-

tactically correct patches, we assume that CODIT should edit every piece of code it receives. To

identify whether or not to edit a piece of code, we need to design a classifier that we can train

to detect the need for editing. As an example of this sub-problem, we chose Vulnerability De-

tection [132, 253, 131, 204, 250] in the source code. In particular, given a training dataset of

vulnerable (buggy) and benign (non-vulnerable) code, our goal is to train a classifier. Ideally,

such a trained classifier would detect and classify the vulnerable code snippets from the rest. For

this classifier to work correctly, it should reason about the syntactic and semantic structure of the

code, which traditionally played a vital role in static analysis-based vulnerability detectors [53,

52]. Thus, we hypothesize that our classifier should know about semantic structure.

We performed an empirical study [38] 3 to test this hypothesis, where we compared different

DL-based vulnerability detection tools (details in Chapter 4). Without much of a surprise, we found

that when code is treated as a linear sequence of tokens with linear dependency and processed

with recurrent neural networks(e.g., RNNs, LSTMs, GRUs), they do not fully comprehend the

semantics of code and thus learn based on other spurious features in the dataset. On the other

hand, models are more equipped to learn about the semantic structure when we use a graph-based

model (e.g., GGNN [12]). We build a framework (ReVeal) for Vulnerability detection using GGNN

and representation learning for learning Vulnerable (buggy) code patterns. Being a graph-based

3Published in TSE’21
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model, ReVeal explicitly encodes the syntactic and semantic structures of the source code. The

success of ReVeal over the then state-of-the-art models for vulnerability detection showed us the

potential of explicit encoding of PL properties for program understanding. Through ReVeal and

CODIT, we showed the prospect of code understanding and generation with explicit encoding.

1.2.2 Implicit Encoding of PL Constructs

While the syntax property of source code is strictly defined across the whole programming

language, semantics largely depend on the libraries and APIs developers use. For instance, while

Java language specification insists on returning the same or child type as declared in the method

signature, different API libraries can extend a parent type into many different sub-types. In addi-

tion, coding patterns vary in different organizations’ coding practices and policies. For example,

some organizations may prefer handing exceptions locally in the method context. Some may prefer

leaving the exception to the execution environment [205, 201]. The sheer volume of open source

and proprietary libraries in modern PL4, and the diversity of coding patterns make it extremely

hard, if not impossible, to build a model to encode these rules explicitly.

Language
Knowledge

Edit
Knowledge

Input Output

Figure 1.4: Conceptual breakdown of different knowledge in a code editor model

While designing an explicit encoding model for API semantics and coding patterns is very

cumbersome, we have a crucial insight to encode these pieces of knowledge into the models. A

successful Automated Code Editing Model should possess two types of knowledge – (i) Knowl-

edge about PL and (ii) Knowledge about edit patterns. Since the API semantic patterns and coding

convention patterns are source code specific and are not dependent on the “Automated Code Edit-

ing” task (or any task, for that matter), these patterns are amenable to be learned from large corpora

4As of 21 June 2022, there are more than 38,000 repositories in GitHub alone with tag ‘java library’
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of source code data. Availability of ultra-large source code and other code-related metadata allows

us to implicitly learn these patterns in task-agnostic way. In particular, we can pre-train a

source code model to learn these patterns in an unsupervised way from a large corpus of unlabelled

source code data. We can further train such a pre-trained model to learn Code Edit patterns. In

fact, since the knowledge we embed in a pre-trained model is independent of any particular task,

developers can re-use such a pre-trained model in many different SE tasks.

Following the insight described above, we developed PLBART[5]5 – A pretraining mechanism

for simultaneously understanding and generating code (details in Chapter 5). We leveraged de-

noising auto encoding [126] to pre-train the encoder and decoder. We applied PLBART for a wide

variety of downstream software engineering tasks, where it showed great promise. We further

performed an in-depth empirical investigation on using PLBART in Automated Code Editing. We

developed a multi-modal code editing engine MODIT[39]6. We showed that pre-trained models

such as PLBART can learn PL constructs in an unsupervised way (details in Chapter 6). Further-

more, we showed the relative importance of different input modalities (i.e., the code that needs

to be edited, the surrounding code context where the patch is applied, and a guidance dictating

the edit) in automated code editing. We further define a pre-training objective, “naturalization”,

to pre-train the models with natural coding conventions followed by the developers. In this work,

we take developers’ written code and apply semantic-preserving code transformation to make the

code “unnatural” and “weird”. We ask a model to transform those unnatural codes into their orig-

inal forms. With such a training mechanism, we aim to make the model implicitly biased towards

the natural coding convention followed by developers. With these insights, we developed Nat-

Gen [36]7 – a pre-trained model for source code generation (details in Chapter 7). Like PLBART,

NatGen also showed great promise in different SE tasks, including Automated Code Editing.

To summarize, in this dissertation, we show that using Deep Learning models we can suc-

cessfully edit source code at scale. We propose several new and novel modeling approaches for

5Published in NAACL’21.
6Published in ASE’21
7Published in FSE’22
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Automated Source Code Editing. We investigate and demonstrate different perspectives and ap-

proaches for designing such code editing models and their respective strengths and shortcomings.

The models we designed and the insights we provided in this dissertation should serve as a compre-

hensive guide to model designing for source code editing for future research. The research works

that we present in this dissertation are as follows

1. CODIT: Code Editing with Tree-Based Neural Models - Published in IEEE Transaction of

Software Engineering, 2020.

2. (Part of) ReVeal : Deep Learning Based Vulnerability Detection: Are We There Yet? -

Published in IEEE Transaction of Software Engineering, 2021.

3. PLBART : Unified Pre-training for Program Understanding and Generation - Published in

Annual Conference of the North American Chapter of the Association for Computational

Linguistics, 2021.

4. MODIT: On Multi-Modal Learning of Editing Source Code - Published in IEEE/ACM In-

ternational Conference on Automated Software Engineering, 2021.

5. NatGen : Generative pre-training by “Naturalizing” source code - Published in ACM Joint

European Software Engineering Conference and Symposium on the Foundations of Software

Engineering, 2022.

In addition to being effective in automated code editing, these models showed great promise in

other SE tasks, including Code Generation, Code Translation across programming languages, Code

Summarization, Clone Detection, Vulnerability Detection, etc. Thus, I believe this thesis reaches

beyond the scope of automated code editing problems and contributes to Artificial Intelligence of

Software Engineering (AI4SE) and Programming Language Processing (PLP).
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Chapter 2: Background and Related Work

2.1 Background

In this section, we will discuss different background ideas and concepts we utilize in different

chapters in this thesis.

2.1.1 Modeling Code Changes.

Generating source code using machine learning models has been explored in the past [89, 222,

84, 176]. These methods model a probability distribution 𝑝(𝑐 |𝜅) where 𝑐 is the generated code

and 𝜅 is any contextual information upon which the generated code is conditioned. In this work,

we generate code edits. Thus, we are interested in models that predict code given its previous

version. We achieve this using NMT-style models, which are a special case of 𝑝(𝑐 |𝜅), where 𝑐 is

the new and 𝜅 is the previous version of the code. NMT allows us to represent code edits with a

single end-to-end model, taking into consideration the original version of a code and defining a

conditional probability distribution of the target version. Similar ideas have been explored in NLP

for paraphrasing [147].

2.1.2 Grammar-based modeling.

Context Free Grammars (CFG) have been used to describe the syntax of programming lan-

guages [117] and natural language [45, 91]. A CFG is a tuple 𝐺 = (𝑁, Σ, 𝑃, 𝑆) where 𝑁 is a set

of non-terminals, Σ is a set of terminals, 𝑃 is a set of production rules in the form of 𝛼 → 𝛽 and

𝑎 ∈ 𝑁 , 𝑏 ∈ (𝑁 ∪Σ)∗, and 𝑆 is the start symbol. A sentence (i.e. sequence of tokens) that belongs to

the language defined by 𝐺 can be parsed by applying the appropriate derivation rules from the start

symbol 𝑆. A common technique for generation of utterances is to expand the left-most, bottom-
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most non-terminal until all non-terminals have been expanded. Probabilistic context-free grammar

(PCFG) is an extension of CFG, where each production rule in associated with a probability, i.e. is

defined as (𝑁, Σ, 𝑃,Π, 𝑆) where Π defines a probability distribution for each production rule in 𝑃

conditioned on 𝛼.

2.1.3 Neural Machine Translation

Neural Machine Translation(NMT) [23] is a very well studied field, which has been very suc-

cessful in translating a sentence from one language to another. At a very high level, input to an

NMT model is a sentence (𝑋 = 𝑥1, 𝑥2, ..., 𝑥𝑛), which is usually a sequence of tokens (𝑥𝑖), and the

output is also a sentence (𝑌 = 𝑦1, 𝑦2, ..., 𝑦𝑚) – sequence of tokens (𝑦𝑖). While learning to translate

from 𝑋 to 𝑌 , NMT models learn s learn conditional probability distribution 𝑃(𝑌 |𝑋). Such proba-

bility distributions are learned w.r.t. model parameters 𝜃, where model training process optimizes

𝜃 in such a way that maximizes the expected probability distribution of a dataset. An NMT model

usually contains an encoder and a decoder. The encoder processes, understands, and generates

vector representations of the input sentence. The decoder starts after the encoder and sequen-

tially generates the target sentence by reasoning about the encoder-generated input representation.

While sequentially generating the target sentence, the decoder usually performs different heuristic

searches (for instance, beam search) to balance exploration and exploitation.

In recent few years, Software Engineering has seen a wide spectrum of adaptation of NMT.

Some prominent application of NMT is SE include Program Synthesis [243], Code summariza-

tion [233, 4], Edit summarization [139], Code Edit Generation [225, 223, 37], Automatic Program

Repair [146, 101, 44], etc. These research efforts capitalize on NMTs’ capability to understand

and generate complex patterns and establish NMT as a viable tool for SE-related tasks.

2.1.4 Transformer Model for Sequence Processing

Transformer [228] model revolutionized sequence processing with attention mechanism. Un-

like the traditional RNN-based model where input tokens are processed sequentially, the trans-
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former assumes soft-dependency between each pair of tokens in a sequence. Such dependency

weights are learned in the form of attention weights based on the task of the transformer. While

learning the representation of a token, the transformer learns to attend to all the input tokens. From

a conceptual point of view, the transformer converts a sequence to a complete graph1, where each

node is a token. The weights of the edges are attention weights between tokens which are learned

based on the task of the transformer. The transformer encodes each token’s position in the sequence

(positional encoding) as part of the input. In such a way, the transformer learns long-range depen-

dency. Since its inception, the transformer is very successful in different NLP understanding and

generation tasks. Transformers’ ability of reasoning about long-range dependency is proved useful

for several source code processing task including code completions [113], code generation [216],

code summarization [4].

2.1.5 Transfer Learning for Source Code

In recent few years, Transfer learning [221, 234, 173] shows promise for a wide variety of

SE tasks. Such transfer learning aims at learning task agnostic representation of source code and

reuse such knowledge for different tasks. One way to learn such task agnostic representation of

input is pre-training a model with a large collection of source code. The learning objective of

such pre-training is often understanding the code or generating the correct code. A pre-trained

model is expected to embed the knowledge about source code through its parameters. Such pre-

trained models are later fine-tuned for task-specific objectives. CuBERT [107], CodeBERT [63],

GraphCodeBERT [78] are all transformer-based encoder models which are pre-trained to under-

stand code. Such models are primarily trained using Masked Language Model [59], replaced token

prediction [63], semantic link prediction [78], etc. For code generation, CodeGPT [142, 101] pre-

trains a transformer-based model to generate general-purpose code sequentially. More recently,

PLBART [5] pre-trained transformer-based model jointly for understanding and generating code

with denoising auto-encoding [126]. PLBART consists of an encoder and a decoder. The encoder

1https://en.wikipedia.org/wiki/Complete_graph

13

https://en.wikipedia.org/wiki/Complete_graph


is presented with slight noise (for instance, token replacement) induced code, and the decoder is

expected to generate noise-free code. Since code editing task requires both the understanding of

code and code generation, we chose PLBART as the base model for MODIT. Similar to PLBART,

NatGen also consist of an encoder and a decoder. In contrast to PLBART’s knowledge about

source code generation, NatGen exhibits an implicit bias towards learning natural coding patterns

followed by developers.

2.2 Related Works

Automatic Code Change. There are a lot of research efforts to capture repetitiveness of develop-

ers’ way of editing source code. These researches show the potential of automatic refactoring [69,

194], boilerplate code [152] etc. These research efforts include (semi-)automatic tools involving

traditional program analysis techniques (e.g., clone detection, dependency analysis, graph match-

ing) [199, 153]. Other research direction aims at learning source code edit from previous edits and

applying those edit patterns in similar context [192, 166]. Some of these efforts targets very spe-

cific code changes; For example, Nguyen et al. [167] proposed a graph-matching-based approach

for automatically updating API usage. Tansey et al. [218] semantic preserving transformation of

java classes for automated refactoring. Other directions of works address more general-purpose

code change learned from open source repositories [223, 37]. Such approaches target solving

automated code editing tasks in a data-driven approach, and the edit patterns are learned from

example changes. In this research, we also investigated general purpose source code changes in

the wild. More closely to CODIT, Rolim et al. [200]’s proposed technique constraints source code

generation with additional input/output specification or test cases. Nevertheless, we argue that

textual guidance could be a very good surrogate specification.

Machine Translation (MT) for source code. MT is used to translate source code from one

programming language into another [108, 164, 163, 42]. These works primarily used Seq2Seq

model at different code abstractions. In contrast, we propose a syntactic, tree-based model. More
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closely to our work, Tufano et al. [224, 223], and Chen et al. [43] showed promising results us-

ing a Seq2Seq model with attention and copy mechanism. Our baseline Seq2Seq model is very

similar to these models. However, Tufano et al. [225, 224] employed a different form of abstrac-

tion: using a heuristic, they replace most of the identifiers including variables, methods and types

with abstract names and transform previous and new code fragments to abstracted code templates.

This vaguely resembles CODIT’s M𝑡𝑟𝑒𝑒 that predicts syntax-based templates. Gupta et al. used

Seq2Seq models to fix C syntactic errors in student assignments [80]. However, their approach can

fix syntactic errors for 50% of the input codes i.e. for rest of the 50% generated patches were syn-

tactically incorrect which is never the case for CODIT because of we employ a tree-based approach.

Lutellier et al. [146] treated code needs to be changed and the context as two difference modali-

ties and use separate encoders. However, our empirical evidence showed that using one encoder

to encode all the modalities result in the best performance. More recently, Ding et al. [58] pre-

sented empirical evidence that instead of generating a whole code element (i.e. context+change) of

the target version, only generating the sequence of changes might perform better for code change

modeling. Other NMT application in source code and software engineering include program com-

prehension [15, 92, 233, 4], commit message generation [241, 139], program synthesis [243, 183]

etc.

Structure Based Modeling of Code. Code is inherently structured. Many form of structured

modeling is used in source code over the years for different tasks. Allamanis et al. [14, 8] proposed

statistical modeling technique for mining source code idioms, where they leverages probabilistic

Tree Substitution Grammar (pTSG) for mining code idioms. CODIT’s M𝑡𝑟𝑒𝑒 is based on similar

concept, where we model the derivation rule sequence based on a probabilistic Context Free Gram-

mar. Brockschmidt et al. [31], Allmanis et al. [12] proposed graph neural network for modeling

source code. However, their application scenario is different from CODIT’s application, i.e. their

focus is mainly on generating natural looking code and/or identify bugs in code. Recent researches

that are very close to CODIT include Yin et al. [244]’s proposed graph neural network-based dis-
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tributed representation for code edits but their work focused on change representation than gener-

ation. Other recent works that focus on program change or program repair include Graph2Diff by

Tarlow et al. [220], Hoppity by Dinella et al. [56]. These research results are promising and may

augment or surpass CODIT’s performance, but problem formulation between these approach are

fundamentally different. While these technique model the change only in the code, we formulate

the problem of code change in encoder-decoder fashion, where encoder-decoder implicitly models

the changes in code.

Program Repair . Automatic program repair is a well-researched field, and previous researchers

proposed many generic techniques for general software bugs repair [105, 111, 124, 135, 140].

There are two different directions in program repair research : generate and validate approach,

and synthesis bases approach. In generate and validate approaches, candidate patches are first

generated and then validated by running test cases [111, 125, 141, 206, 235]. Synthesis based

program repair tools synthesizes program elements through symbolic execution of test cases [168,

151]. CODIT can be considered a program generation tool in generate and validate based program-

repair direction. Arcuri et al. [21], Le Goues et al. [125] built their tool for program repair based

on this assumption. Both of these works used existing code as the search space of program fixes.

Elixir [206] used 8 predefined code transformation patterns and applied those to generate patches.

CapGen [235] prioritize operator in expression and fix ingredients based in the context of the fix.

They also relied on predefined transformation patterns for program mutation. In contrast, CODIT

learns the transformation patterns automatically. Le et al. [123] utilized the development history as

an effective guide in program fixing. They mined patterns from existing change history and used

existing mutation tool to mutate programs. They showed that the mutants that match the mined

patterns are likely to be relevant patch. They used this philosophy to guide their search for program

fix. The key difference between Le et al. and this work, is that we do not just mine change patterns,

but learn a probabilistic model that learns to generalize from the limited data.
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Deep Learning for Source Code Analysis Vast sources of code in open source repositories and

forums make deep learning feasible for SE tasks. Code Summarization [161, 13, 97, 16, 92, 82,

3], Bug Detection [190, 132, 204, 250, 38], Code Translation [42, 60, 240], Clone Detection [248,

246, 230], Code completion [128, 85, 176] are some of the tasks that are addressed with deep

neural solution. While most of the prior approaches use task-specific representation learning, a

few works [17, 63, 78, 122, 47] attempted to learn transferable representations in an unsupervised

fashion. More closely PLBART and NatGen, CodeBERT [63] is pre-trained on bimodal data to

capture the semantic interaction between the input modalities (i.e. program and natural languages).

More recently, GraphCodeBERT [78] improves upon CodeBERT by leveraging data flow in source

code.

Transformer Models in Source Code Analysis. The approach of pre-training large Transform-

ers without human labels started in NLP domain with BERT [54], which introduces two pre-

training objectives (i.e., Mask Language Modeling and Next Sentence Prediction). Later, Liu et al..

show that RoBERTa [138] outperforms BERT only using Mask Language Modeling (MLM) with

new training strategies and hyper-parameter tuning. MLM is a self-supervised task that the model

randomly masks or modifies a certain number of tokens and tries to recover them. Following the

success of the pre-trained model in the NLP domain, researchers applied these models to code

related tasks. CodeBERT is one of the earliest that was specially trained for code and relevant nat-

ural language descriptions. It is pre-trained with two objectives (i.e., MLM and Replaced Token

Detection [46]) and demonstrated pre-training’s effectiveness for code. Later, an architecturally

equivalent model, GraphCodeBERT, was introduced; it improved over CodeBERT on most tasks

by incorporating data-flow information.

Though CodeBERT [63] & GraphCodeBERT [78] do well at code understanding tasks, these

models are not as good at generative tasks. Both models are encoder-only and have to start with

an untrained decoder in fine-tuning for generative tasks, such as code repair, code generation, code

summarization, and code translation. To address this limitation,we developed PLBART [5], pre-
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trained as a generative denoising autoencoder. A specific set of noises is introduced to code and

relevant natural language description and used as the input to the model. The model’s objective is to

encode the noisy input in the encoder and generate noise-free code or text in the decoder. PLBART

(builds on BART [126]) outperforms both CodeBERT [63] and GraphCodeBERT [78] on both un-

derstanding and generative tasks with a pre-trained encoder and decoder [5]. DOBF [203] uses

de-obfuscation (recovering variable names) as their pre-training task; however, rather than gener-

ating code, they just generate a dictionary of recovered names. CodeT5 [232] (based T5 [188])

is the latest denoising model. CodeT5 uses the developer-assigned identifiers in code, adding two

code-specific pre-training objectives to the original T5, identifier tagging and masked identifier

prediction. CodeT5 is an encoder-decoder model and excels at both understanding and genera-

tive tasks compared to other models. Similar to CodeT5, [181, 150] are also built based on T5

architecture and perform reasonably well in the different downstream tasks. NatGen has a similar

architecture to CodeT5; but rather than CodeT5’s pre-training objectives, we “de-naturalize" code,

using the formal channel of code to inject meaning-preserving transforms, and then force NatGen

to recreate, the original, “natural" code. Rewriting semantically equivalent code requires semantic

understanding, and that can be applied to code only because of its dual-channel nature. Our eval-

uation shows that rewriting semantically equivalent programs in the pre-training stage results in

performance gains in at least three popular Software Engineering tasks.
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Part I

Explicit Encoding

19



Chapter 3: Code Editing with Tree-Based Neural Models

3.1 Motivation

We design an encoder-decoder-based machine translation model that operates on the tree rep-

resentation of the code to capture syntactic changes. Our key observation is that such tree-based

models, unlike their token-based counterparts, can capture the rich structural properties of code and

thus can produce syntactically correct patch. In particular, we design a two step encoder-decoder

model that models the probability distribution of changes. In the first step, it learns to suggest

structural changes in code using a tree-to-tree model, suggesting structural changes in the form of

Abstract Syntax Tree (AST) modifications. Tree-based models, unlike their token-based counter-

parts, can capture the rich structure of code and always produce syntactically correct patches. In

the second step, the model concretizes the previously generated code fragment by predicting the

tokens conditioned on the AST that was generated in the first step: given the type of each leaf node

in the syntax tree, our model suggests concrete tokens of the correct type while respecting scope

information. We combine these two models to realize CODIT, a code change suggestion engine,

which accepts a code fragment and generates potential edits of that snippet.

Figure 3.1 illustrates an example of our approach. Here, the original code fragment return

super.equals(object) is edited to return object == this. CODIT takes these two

code fragments along with their context, for training. While suggesting changes, i.e., during test

time, CODIT takes as input the previous version of the code and generates its edited version. CODIT

operates on the parse trees of the previous (𝑡𝑝) and new (𝑡𝑛) versions of the code, as shown in

Figure 3.1(a) (In the rest of the paper, a subscript or superscript with 𝑝 and 𝑛 correspond to previous

and new versions respectively). In Figure 3.1, changes are applied only to the subtree rooted at

the 𝑀𝑒𝑡ℎ𝑜𝑑_𝑐𝑎𝑙𝑙 node. The subtree is replaced by a new subtree (𝑡𝑛) with Bool_stmt as a root.
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(a) Example of correctly suggested change by CODIT along with the source and target parse
trees. The deleted and added nodes are marked in red and green respectively.

(b) Sequence of grammar rules extracted from the parse trees.

Return Var EQ Var SC 

return object == this ; ......
t = k­1 t = k t = k+1 t = k+2 t = k+3

...

Return O_ref DOT M_name LB Var RB SC 

return super . equals ( object ) ;...

(c) Token generation. Token probabilities are conditioned based on terminal types generated by tree
translator (see figure 3.1(a))

Figure 3.1: Illustrative Example showing CODIT’s working procedure.

The deleted and added subtrees are highlighted in red and green respectively.

While modeling the edit, CODIT first predicts the structural changes in the parse tree. For ex-

ample, in Figure 3.1(a) CODIT first generates the changes corresponding to the subtrees with dark

nodes and red edges. Next the structure is concretized by generating the token names (terminal

nodes). This is realized by combining two models: (i) a tree-based model predicting the struc-

tural change (see §3.2.1) followed by a (ii) a token generation model conditioned on the structure
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generated by the tree translation model (see §3.2.2).

Tree Translator. The tree translator is responsible for generating structural changes to the tree

structure. A machine learning model is used to learn a (probabilistic) mapping between 𝑡𝑝 and

𝑡𝑛. First, a tree encoder, encodes 𝑡𝑝 computing a distributed vector representation for each of

the production rules in 𝑡𝑝 yielding the distributed representation for the whole tree. Then, the

tree decoder uses the encoded representations of 𝑡𝑝 to sequentially select rules from the language

grammar to generate 𝑡𝑛. The tree generation starts with the root node. Then, at each subsequent

step, the bottom-most, left-most non-terminal node of the current tree is expanded. For instance,

in Figure 3.1(a), at time step t, node Stmt is expanded with rule Stmt → Bool_Stmt SC.

When the tree generation process encounters a terminal node, it records the node type to be used

by the token generation model and proceeds to the next non-terminal. In this way, given the LHS

rule sequences of Figure 3.1(b) the RHS rule sequences is generated.

Token Generator: The token generator predicts concrete tokens for the terminal node types gen-

erated in the previous step. The token generator is a standard seq2seq model with attention and

copying [23] but constrained on the token types generated by the tree translator. To achieve this,

the token generator first encodes the token string representation and the node type sequence from

𝑡𝑝. The token decoder at each step probabilistically selects a token from the vocabulary or copies

one from the input tokens in 𝑡𝑝. However, in contrast to traditional seq2seq where the generation

of each token is only conditioned on the previously generated and source tokens, we additionally

condition on the token type that has been predicted by the tree model and generate only tokens

that are valid for that toke type. Figure 3.1(c) shows this step: given the token sequence of the

original code super . equals ( object ) and their corresponding token types (given in

dark box), the new token sequence that is generated is object == this .

In this work, we particularly focus on smaller changes as our previous experience [192] shows

that such changes mostly go through similar edits. In fact, all the previous NMT-based code trans-

formation works [223, 224, 43] also aim to automate such changes. A recent study by Karampatsis

et al. [110] showed that small changes are frequent—our analysis of the top 92 projects of their
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dataset found that, on average, in each project, one line changes take place around 26.71% of the

total commits and account for up to 70% for the bug fix changes. Our focus in this work is pri-

marily to automatically change small code fragments (often bounded by small AST sizes and/or

few lines long) to reflect such repetitive patterns. Note that, in theory, our approach can be applied

to any small fragment of code in the project repository with any programming language. How-

ever, for prototyping, we designed CODIT to learn changes that belong to methods of popular java

project in Github.

In this work, we collect a new dataset — Code-Change-Data, consisting of 32,473 patches

from 48 open-source GitHub projects collected from Travis Torrent [29]. Our experiments show

CODIT achieves 15.94% patch suggestion accuracy in the top 5 suggestions; this result outperforms

a Copy-Seq2Seq baseline model by 63.34% and a Tree2Seq based model by 44.37%. We also

evaluate CODIT on Pull-Request-Data proposed by Tufano et al. [223]. Our evaluation shows that

CODIT suggests 28.87% of correct patches in the top 5 outperforming Copy-Seq2Seq-based model

by 9.26% and Tree2Seq based model by 22.92%. Further evaluation on CODIT’s ability to suggest

bug-fixing patches in Defects4J shows that CODIT suggests 15 complete fixes and 10 partial fixes

out of 80 bugs in Defects4J.

3.2 Methodology

We decompose the task of predicting code changes in two stages: First, we learn and predict the

structure (syntax tree) of the edited code. Then, given the predicted tree structure, we concretize

the code. We factor the generation process as

𝑃(𝑐𝑛 |𝑐𝑝) = 𝑃(𝑐𝑛 |𝑡𝑛, 𝑐𝑝)𝑃(𝑡𝑛 |𝑡𝑝)𝑃(𝑡𝑝 |𝑐𝑝) (3.1)

and our goal is to find 𝑐𝑛 such that 𝑐𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑛𝑃(𝑐𝑛 |𝑐𝑝). Here, 𝑐𝑝 is the previous version of the

code and 𝑡𝑝 is its parse tree, whereas 𝑐𝑛 is the new version of the code and 𝑡𝑛 its parse tree. Note

that parsing a code fragment is unambiguous, i.e. 𝑃(𝑡𝑝 |𝑐𝑝) = 1. Thus, our problem takes the form
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𝑐𝑛 = arg max
𝑐𝑛,𝑡𝑛

𝑃(𝑐𝑛 |𝑡𝑛, 𝑐𝑝)︸        ︷︷        ︸
M𝑡𝑜𝑘𝑒𝑛

. 𝑃(𝑡𝑛 |𝑡𝑝)︸   ︷︷   ︸
M𝑡𝑟𝑒𝑒

(3.2)

Equation 3.2 has two parts. First, it estimates the changed syntax tree 𝑃(𝑡𝑛 |𝑡𝑝). We implement this

with a tree-based encoder-decoder model (section 3.2.1). Next, given the predicted syntax tree 𝑡𝑛,

we estimate the probability of the concrete edited code with 𝑝(𝑐𝑛 |𝑡𝑛, 𝑐𝑝) (Section 3.2.2).

3.2.1 Tree Translation Model

The goal of M𝑡𝑟𝑒𝑒 is to model the probability distribution of a new tree (𝑡𝑛) given a previous

version of the tree (𝑡𝑝). For any meaningful code the generated tree is syntactically correct. We

represent the tree as a sequence of grammar rule generations following the CFG of the underlying

programming language. The tree is generated by iteratively applying CFG expansions at the left-

most bottom-most non-terminal node (frontier_node) starting from the start symbol.

For example, consider the tree fragments in Figure 3.1(a). Figure 3.1(b) shows the sequence of

rules that generate those trees. For example, in the right tree of Figure 3.1(a), the node Ret_Stmt

is first expanded by the rule: Ret_Stmt→Return Stmt. Since, Return is a terminal node, it

is not expanded any further. Next, node Stmt is expanded with rule: Stmt→Bool_Stmt SC.

The tree is further expanded with Bool_Stmt→LHS EQ RHS, LHS→Var, and RHS→Var.

During the tree generation process, we apply these rules to yield the tree fragment of the next

version.

In particular, the tree is generated by picking CFG rules at each non-terminal node. Thus, our

model resembles a Probabilistic Context-Free Grammar (PCFG), but the probability of each rule

depends on its surroundings. The neural network models the probability distribution, 𝑃(𝑅𝑛
𝑘
|𝑅𝑛1 , ...𝑅

𝑛
𝑘−1, 𝑡𝑝):

At time 𝑘 the probability of a rule depends on the input tree 𝑡𝑝 and the rules 𝑅𝑛1 , ...𝑅
𝑛
𝑘−1 that have

been applied so far. Thus, the model for generating the syntax tree 𝑡𝑛 is given by

𝑃(𝑡𝑛 |𝑡𝑝) =
𝜏∏
𝑘=1

𝑃(𝑅𝑛𝑘 |𝑅
𝑛
1 , ...𝑅

𝑛
𝑘−1, 𝑡𝑝) (3.3)

24



Encoder: The encoder encodes the sequence of rules that construct 𝑡𝑝. For every rule 𝑅𝑝
𝑖

in 𝑡𝑝,

we first transform it into a single learnable distributed vector representation 𝒓𝑅𝑝
𝑖
. Then, the LSTM

encoder summarizes the whole sequence up to position 𝑖 into a single vector 𝒉𝑝
𝑖

.

𝒉𝑝
𝑖
= 𝑓𝐿𝑆𝑇𝑀 (𝒉𝑝

𝑖−1, 𝒓𝑅𝑝𝑖 ) (3.4)

This hidden vector contains information about the particular rule being applied and the previously

applied rules. Once all the rules in 𝑡𝑝 are processed, we get a final hidden representation (𝒉𝑝𝜏 ). The

representations at each time step (𝒉𝑝1 , 𝒉
𝑝

2 , ..., 𝒉
𝑝
𝜏 ) are used in the decoder to generate rule sequence

for the next version of the tree. The parameters of the LSTM and the rules representations 𝒓𝑅𝑝
𝑖

are

randomly initialized and learned jointly with all other model parameters.

Decoder: Our decoder has an LSTM with an attention mechanism as described by Bahdanau

et al. [23]. The decoder LSTM is initialized with the final output from the encoder, i.e. 𝒉𝑛0 = 𝒉𝑝𝜏 .

At a given decoding step 𝑘 the decoder LSTM changes its internal state in the following way,

𝒉𝑛𝑘 = 𝑓𝐿𝑆𝑇𝑀 (𝒉𝑛𝑘−1,𝝍𝑘 ), (3.5)

where 𝝍𝑘 is computed by the attention-based weighted sum of the inputs 𝒉𝑝
𝑗

as [23] in , i.e.

𝝍𝑘 =
𝜏∑︁
𝑗=1

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝒉𝑛𝑘−1
𝑇 𝒉𝑝

𝑗
)𝒉𝑝

𝑗
(3.6)

Then, the probability over the rules at the 𝑘th step is:

𝑃(𝑅𝑛𝑘 |𝑅
𝑛
1 , ...𝑅

𝑛
𝑘−1, 𝑡𝑝) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑊𝑡𝑟𝑒𝑒 · 𝒉𝑛𝑘 + b𝑡𝑟𝑒𝑒) (3.7)

At each timestep, we pick a derivation rule 𝑅𝑛
𝑘

following equation (3.7) to expand the frontier_node

(𝑛𝑡
𝑓
) in a depth-first, left-to-right fashion. When a terminal node is reached, it is recorded to be used

in M𝑡𝑜𝑘𝑒𝑛 and the decoder proceeds to next non-terminal. In Equation (3.7), 𝑊𝑡𝑟𝑒𝑒 and b𝑡𝑟𝑒𝑒 are
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parameters that are jointly learned along with the LSTM parameters of the encoder and decoder.

3.2.2 Token Generation Model

We now focus on generating a concrete code fragment 𝑐, i.e. a sequence of tokens (𝑥1, 𝑥2, ...).

For the edit task, the probability of an edited token 𝑥𝑛
𝑘

depends not only on the tokens of the

previous version (𝑥𝑝1 , ..., 𝑥
𝑝
𝑚) but also on the previously generated tokens 𝑥𝑛1, ..., 𝑥

𝑛
𝑘−1. The next

token 𝑥𝑛
𝑘

also depends on the token type (𝜃), which is generated by M𝑡𝑟𝑒𝑒. Thus,

𝑃(𝑐𝑛 |𝑐𝑝, 𝑡𝑛) =
𝑚′∏
𝑘=1

𝑃(𝑥𝑛𝑘 |𝑥
𝑛
1, ..., 𝑥

𝑛
𝑘−1, {𝑥

𝑝

1 , ..., 𝑥
𝑝
𝑚}, 𝜃𝑛𝑘 ) (3.8)

Here, 𝜃𝑛
𝑘

is the node type corresponding to the generated terminal token 𝑥𝑛
𝑘
. Note that, the token

generation model can be viewed as a conditional probabilistic translation model where token prob-

abilities are conditioned not only on the context but also on the type of the token (𝜃∗∗). Similar to

M𝑡𝑟𝑒𝑒, we use an encoder-decoder. The encoder encodes each token and corresponding type of

the input sequence into a hidden representation with an LSTM (figure 3.1(c)). Then, for each to-

ken (𝑥𝑝
𝑖

) in the previous version of the code, the corresponding hidden representation (𝑠𝑝
𝑖

) is given

by: 𝒔𝑝
𝑖
= 𝑓𝐿𝑆𝑇𝑀 (𝒔𝑝

𝑖−1, 𝑒𝑛𝑐( [𝑥
𝑝

𝑖
, 𝜃

𝑝

𝑖
])). Here, 𝜃𝑝

𝑖
is the terminal token type corresponding to the

generated token 𝑥𝑝
𝑖

and 𝑒𝑛𝑐() is a function that encodes the pair of 𝑥𝑝
𝑖
, 𝜃

𝑝

𝑖
to a (learnable) vector

representation.

The decoder’s initial state is the final state of the encoder. Then, it generates a probability dis-

tribution over tokens from the vocabulary. The internal state at time step 𝑘 of the token generation

is 𝒔𝑛
𝑘
= 𝑓𝐿𝑆𝑇𝑀 (𝒔𝑛

𝑘−1, 𝑒𝑛𝑐(𝑥
𝑛
𝑖
, 𝜃𝑛
𝑘
), 𝝃 𝑘 )), where 𝝃 𝑘 is the attention vector over the previous version

of the code and is computed as in Equation (3.6). Finally, the probability of the 𝑘th target token is

computed as

𝑃(𝑥𝑛𝑘 |𝑥
𝑛
1, ..., 𝑥

𝑛
𝑘−1, {𝑥

𝑝

1 , ..., 𝑥
𝑛
𝑚}, 𝜃𝑛𝑘 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑊𝑡𝑜𝑘𝑒𝑛 · 𝒔𝑛𝑘 + 𝒃𝑡𝑜𝑘𝑒𝑛 + 𝑚𝑎𝑠𝑘 (𝜃𝑛𝑘 )

)
(3.9)

Here, 𝑊𝑡𝑜𝑘𝑒𝑛 and 𝒃𝑡𝑜𝑘𝑒𝑛 are parameters that are optimized along with all other model parameters.
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Since not all tokens are valid for all the token types, we apply a mask that deterministically filters

out invalid candidates. For example, a token type of boolean_value, can only be concretized

into true or false. Since the language grammar provides this information, we create a mask

(𝑚𝑎𝑠𝑘 (𝜃𝑛
𝑘
)) that returns a −∞ value for masked entries and zero otherwise. Similarly, not all

variable, method names, type names are valid at every position. We refine the mask based on the

variables, method names and type names extracted from the scope of the change. In the case of

method, type and variable names, CODIT allows M𝑡𝑜𝑘𝑒𝑛 to generate a special <unknown> token.

However, the <unknown> token is then replaced by the source token that has the highest attention

probability (i.e. the highest component of 𝝃 𝑘 ), a common technique in NLP. The mask restricts the

search domain for tokens. However, in case to variable, type, and method name M𝑡𝑜𝑘𝑒𝑛 can only

generate whatever token available to it in the vocabulary (through masking) and whatever tokens

are available in input code (through copying).

3.2.3 Implementation

Our tree-based translation model is implemented as an edit recommendation tool, CODIT.

CODIT learns source code changes from a dataset of patches. Then, given a code fragment to edit,

CODIT predicts potential changes that are likely to take place in a similar context. We implement

CODIT extending OpenNMT [116] based on PyTorch. We now discuss CODIT’s implementation

in details.

Patch Pre-processing. We represent the patches in a parse tree format and extract necessary

information (e.g., grammar rules, tokens, and token-types) from them.

Parse Tree Representation. As a first step of the training process, CODIT takes a dataset of

patches as input and parses them. CODIT works at method granularity. For a method patch Δ𝑚,

CODIT takes the two versions of 𝑚: 𝑚𝑝 and 𝑚𝑛. Using GumTree, a tree-based code differencing

tool [62], it identifies the edited AST nodes. The edit operations are represented as insertion,

deletion, and update of nodes w.r.t. 𝑚𝑝. For example, in Figure 3.1(a), red nodes are identified

as deleted nodes and green nodes are marked as added nodes. CODIT then selects the minimal
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subtree of each AST that captures all the edited nodes. If the size of the tree exceeds a maximum

size of 𝑚𝑎𝑥_𝑐ℎ𝑎𝑛𝑔𝑒_𝑠𝑖𝑧𝑒, we do not consider the patch. CODIT also collects the edit context by

including the nodes that connect the root of the method to the root of the changed tree. In order

for doing such, we traverse from change subtree towards the root of the code tree. CODIT expands

the considered context by adding immediate parent of a node in the context until it exceeds a tree

size threshold (𝑚𝑎𝑥_𝑡𝑟𝑒𝑒_𝑠𝑖𝑧𝑒). During this process, CODIT excludes changes in comments and

literals. Finally, for each edit pair, CODIT extracts a pair (𝐴𝑆𝑇𝑝, 𝐴𝑆𝑇𝑛) where 𝐴𝑆𝑇𝑝 is the original

AST where a change was applied, and 𝐴𝑆𝑇𝑛 is the AST after the changes. CODIT then converts

the ASTs to their parse tree representation such that each token corresponds to a terminal node.

Thus, a patch is represented as the pair of parse trees (𝑡𝑝, 𝑡𝑛).

Information Extraction. CODIT extracts grammar rules, tokens and token types from 𝑡𝑝 and

𝑡𝑛. To extract the rule sequence, CODIT traverses the tree in a depth-first pre-order way. From

𝑡𝑝, CODIT records the rule sequence (𝑅𝑝1 , ..., 𝑅
𝑝
𝜏 ) and from 𝑡𝑛, CODIT gets (𝑅𝑛1 , ..., 𝑅

𝑛
𝜏′) (Fig-

ure 3.1(b)). CODIT then traverses the parse trees in a pre-order fashion to get the augmented token

sequences, i.e. tokens along with their terminal node types: (𝑥𝑝∗ , 𝜃
𝑝
∗ ) from 𝑡𝑝 and (𝑥𝑛∗ , 𝜃𝑛∗) from 𝑡𝑛.

CODIT traverses the trees in a left-most depth-first fashion. When a terminal node is visited, the

corresponding augmented token (𝑥∗∗, 𝜃∗∗) is recorded.

Model Training. We train the tree translation model (M𝑡𝑟𝑒𝑒) and token generation model (M𝑡𝑜𝑘𝑒𝑛)

to optimize Equation (3.3) and Equation (3.8) respectively using the cross-entropy loss as the

objective function. Note that the losses of the two models are independent and thus we train each

model separately. In our preliminary experiment, we found that the quality of the generated code is

not entirely correlated to the loss. To mitigate this, we used top-1 accuracy to validate our model.

We train the model for a fixed amount of 𝑛𝑒𝑝𝑜𝑐ℎ epochs using early stopping (with patience of

𝑣𝑎𝑙𝑖𝑑𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒) on the top-1 suggestion accuracy on the validation data. We use stochastic gradient

descent to optimize the model.

Model Testing. To test the model and generate changes, we use beam-search [196] to produce the

suggestions from M𝑡𝑟𝑒𝑒 and M𝑡𝑜𝑘𝑒𝑛. First given a rule sequence from the previous version of the
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tree, CODIT generates 𝐾𝑡𝑟𝑒𝑒 rule sequences. CODIT subsequently use these rule sequence to build

the actual AST. While building the tree from the rule sequence, CODIT ignores the sequence if

the rule sequence is infeasible (i.e., head of the rule does not match the frontier_node, 𝑛𝑡
𝑓
).

Combining the beam search in rule sequence and the tree building procedure, CODIT generate

different trees reflecting different structural changes. Then for each tree, CODIT generates 𝐾𝑡𝑜𝑘𝑒𝑛

different concrete code. Thus, CODIT generates 𝐾𝑡𝑟𝑒𝑒 · 𝐾𝑡𝑜𝑘𝑒𝑛 code fragments. We sort them based

on their probability, i.e. 𝑙𝑜𝑔(𝑃(𝑐𝑛 |𝑐𝑝, 𝑡𝑝)) = 𝑙𝑜𝑔(𝑃(𝑐𝑛 |𝑐𝑝, 𝑡𝑛) · 𝑃(𝑡𝑛 |𝑡𝑝)). From the sorted list of

generated code, we pick the top 𝐾 suggestions.

3.3 Experimental Design

Table 3.1: Summary of datasets used to evaluate CODIT.

Dataset # Projects
# Train # Validtion # Test # Tokens # Nodes

Examples Examples Examples Max Average Max Average

Code-Change-Data 48 24072 3258 5143 38 15 47 20

Pull-Request-Data [43] 3 4320 613 613 34 17 47 23

Defects4J-data [104] 6 22060 2537 117 35 16 43 21

We evaluate CODIT for three different types of changes that often appear in practice: (i) code

change in the wild, (ii) pull request edits, and (iii) bug repair. For each task, we train and evaluate

CODIT on different datasets. Table 3.1 provides detailed statistics of the datasets we used.

(i) Code Change Task. We collected a large scale real code change dataset (Code-Change-Data)

from 48 open-source projects from GitHub. These projects also appear in TravisTorrent [29] and

have at least 50 commits in Java files. These project are excludes any forked project, toy project, or

unpopular projects (all the projects have at least 10 watchers in GitHub). Moreover, these projects

are big and organized enough that they use Travis Continuous integration system for maintainabil-

ity. For each project, we collected the revision history of the main branch. For each commit, we

record the code before and after the commit for all Java files that are affected. In total we found

java 241,976 file pairs. We then use GumTree [62] tool to locate the change in the file and check
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whether the changes are inside a method in the corresponding files. Most of the changes that are

outside a method in a java class are changes related to import statements and changes related to

constant value. We consider those out of CODIT’s scope. We further remove any pairs, where the

change is only in literals and constants. Excluding such method pairs, we got 182,952 method

pairs. We collect patches where maximum change size is upto 10 nodes and we allow maximum 20

nodes as context. With this data collection hyper-parameter settings, we collected 44,382 patches.

We divide every project based on their chronology. From every project, we divide earliest 70%

patches into train set, next 10% into validation set and rest 20% into test set based on the project

chronology. We removed any exact test and validation examples from the training set. We also

removed intra-set duplicates. After removing such duplicate patches, we ended up with 32,473

patches in total, which are then used to train and evaluate CODIT.

(ii) Pull Request Task. For this task, we use Pull-Request-Data, provided by Tufano et al. [223]

which contains source code changes from merged pull requests from three projects from Ger-

rit [70]. Their dataset contains 21774 method pairs in total. Similar to the Code-Change-Data, we

only consider maximum change size upto 10 nodes and context tree size upto 20 nodes to extract

examples that are in CODIT’s scope from this dataset. We extracted 5546 examples patch pair.

(iii) Bug Repair Task. For this task, we evaluate CODIT on Defects4J [104] bug-fix patches. We

extract 117 patch pairs across 80 bug ids in Defect4j dataset with the same data collection config-

uration as Code Change Task. These are the bugs that are in CODIT’s scope. To train CODIT for

this task, we create a dataset of code changes from six projects repositories in Defects4J dataset

containing 24597 patches. We remove the test commits from the training dataset.

3.3.1 Evaluation Metric

To evaluate CODIT, we measure for a given code fragment, how accurately CODIT generates

patches. We consider CODIT to correctly generate a patch if it exactly matches the developer

produced patches. CODIT produces the top 𝐾 patches and we compute CODIT’s accuracy by

counting how many patches are correctly generated in top 𝐾 . Note that this metric is stricter than
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semantic equivalence.

For the bug fix task, CODIT takes a buggy line as input and generates the corresponding patched

code. We consider a bug to be fixed if we find a patch that passes all the test cases. While such

an evaluation gives us a good estimate of how the CODIT is performing, it does not guarantee

generating human written patch. To further investigate, we also manually investigate the patches

to check the similarity with the developer provided patches.

3.3.2 Baseline

We consider several baselines to evaluate CODIT’s performance. Our first baseline in a vanilla

LSTM based Seq2Seq model with attention mechanism [23]. Results of this baseline indicate

different drawbacks of considering raw code as a sequence of token. The second baseline, we con-

sider, is proposed by Tufano et al. [224]. For a given code snippet (previous version), Tufano et al.

first abstracted the identifier names and stored the mapping between original and abstract identi-

fiers in a symbol table. The resultant abstracted code (obtained by substituting the raw identifiers

with abstract names) is then translated by an NMT model. After translation, they concretize the

abstract code using the information stored in the symbol table. We observe that the NMT some-

times introduces new abstract identifiers (i.e. identifiers that were not present in the before-patch

version of code) in the patched code. The patches where the abstract symbols predicted by the

model are not found in the symbol table remain undecidable. Such patches, although can be useful

to guide developers similar to our M𝑡𝑟𝑒𝑒, cannot be automatically concretized, and thus, we do not

count them as fully correct patches. Both the vanilla Seq2Seq and Tufano et al.’s model consider

the before version of the code as input. Recently, SequenceR [43] proposed way to represent addi-

tional context to help the model generate concrete code. We design such a baseline, where we add

additional context to 𝑐𝑃. Following SequenceR, we add copy attention, where the model learns to

copy from the contexed code.

To understand the tree encoding mechanism, we used several tree encoders. First method we

considered is similar to DeepCom [92], where the AST is represented as a sequential representa-

31



tion called Structure Based Traversal (SBT). Second tree encoding method we consider is similar

to Code2Seq, where code AST is represented by a set of paths in the tree. While these tree en-

coding methods are used for generating Code comment, we leverage these encoding methods for

code change prediction. We design a Seq2Seq method with DeepCom encoder (Tree2Seq), and

Code2Seq encoder. We also enable the copy attention in both of these baselines.

The basic premise of CODIT is based on the fact that code changes are repetitive. Thus, another

obvious baseline is to see how CODIT performs w.r.t. to code-clone based edit recommendation

tool [192]. In particular, given a previous version (𝑐𝑝) of an edit, we search for the closest 𝑘 code

fragments using similar bag-of-words at the token level similar to Sajnani et al. [208]. In our train-

ing data of code edits, this step searches in the previous code versions and use the corresponding

code fragments of the next version as suggested changes.

Bug-fixing baselines: For the bug fix task, we compare CODIT’s performance with two different

baselines. Our first baseline is SequenceR [43], we compare with the results they reported. We

also compare our result with other the state-of-the-art non-NMT based program repair systems

— Elixir [206].

3.4 Research Findings

We evaluate CODIT’s performances to generate concrete patches w.r.t. generic edits (RQ-3.1)

and bug fixes (RQ-3.3). In RQ-3.2, we present an ablation study to evaluate our design choices.

RQ-3.1. How accurately can CODIT suggest concrete edits?

To answer this RQ, we evaluate CODIT’s accuracy w.r.t. the evaluation dataset containing con-

crete patches. Table 3.2 shows the results: for Code-Change-Data, CODIT can successfully gen-

erate 201 (3.91%), 571 (11.10%), and 820 (15.94%) patches at top 1, 2, and 5 respectively. In

contrast, at top 1, SequenceR generates 282 (5.48%) correct patches, and performs the best among

all the methods. While SequenceR outperforms CODIT in top 1, CODIT outperforms SequenceR
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Table 3.2: Performance of CODIT suggesting concrete patches. For Token Based models, predominant
source of information in the code are token sequences. For Tree Based models information source is code
AST. For IR based method, information retrieval model is used on code.

Method
Code Change Data Pull Request Data

Number of examples : 5143 Number of examples : 613
Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

Token Based

Seq2Seq 107 149 194 45 55 69
(2.08%) (2.9%) (3.77%) (7.34%) (8.97%) (11.26%)

Tufano et al.
175 238 338 81 104 145

(3.40%) (4.63%) (6.57%) (13.21%) (16.97%) (23.65%)

SequenceR 282 398 502 39 137 162
(5.48%) (7.74%) (9.76%) (6.36%) (22.35%) (26.43%)

Tree Based

Tree2Seq 147 355 568 39 89 144
(2.86%) (6.9%) (11.04%) (6.36%) (14.52%) (23.49%)

Code2seq 58 82 117 4 7 10
(1.12%) (1.59%) (2.27%) (0.65%) (1.14%) (1.63%)

CODIT
201 571 820 57 134 177

(3.91%) (11.10%) (15.94%) (9.3%) (21.86%) (28.87%)

IR based B𝑖𝑟
40 49 61 8 8 9

(0.77%) (0.95%) (1.18%) (1.30%) (1.30%) (1.46%)

with significant margin at top 2 and top 5.

In Pull-Request-Data, CODIT generates 57 (9.3%), 134 (21.86%), and 177 (28.87%) correct

patches at top 1, 2, and 5 respectively. At top 1, Tufano et al.’s [224] method produces 81 patches.

At top 2, CODIT produces 134 (21.86%) patches, which is comparable with SequenceR’s result

137 (22.35%). At top 5, CODIT outperforms all the other baselines achieving 9.2% gain over

SequenceR baseline.

The main advantage point of CODIT is that, since it considers the structural changes separate

from the token changes, it can learn the structural change pattern well instead of being dominated

by learning the code token changes. However, being a two stage process, CODIT has two different

hinge point for failure. If M𝑡𝑟𝑒𝑒 does not generate the correct tree, no matter how good M𝑡𝑜𝑘𝑒𝑛

performs, CODIT is unable to generate correct patch. We conjecture that, this is the reason for

CODIT’s failure at top 1.

Among the baselines we compared here, SequenceR, and Tree2Seq takes the advantage of

copy attention. Tufano et al.’s model takes the advantage of reduced vocabulary through identifier
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Example 1. API Change

return f.createJsonParser createParser(...)

Example 2. Type Change

void appendTo(StringBuffer StringBuilder buffer)

Example 3. Parameter: Add/Delete Method Parameter

1. testDataPath(false , true , true , true, false );

2. assertNotificationEnqueued(map ,key ,value ,hash)

Example 4. Refactoring: Modify Method Parameters Name

void visit(JSession x session , ...) throws Exception
{

visit (((JNode) (x session)), ...);
}

Example 5. Statement: Add Statement

{...
interruptenator.shutdown();
Thread.interrupted();

}

Example 6. Inheritance: Abstracting a Method

public abstract void removeSessionCookies (...)
{

throw new android...MustOverrideException();
}

Example 7. Exception Change: Add Try Block

public void copyFrom( java.lang.Object arr){
+ try{

android.os.Trace.traceBegin (...);
+ finally{

android.os.Trace.traceEnd(...);
+ }
}

Example 8. Other: Delete Unreferenced Variable

public void testConstructor2NPE(){
...
-AtomicIntegerArray aa = new AtomicIntegerArray(a);
shouldThrow () ;
...
}

Every cell shows an example of correctly suggested patches by CODIT. Top line is the patch category, followed by
the actual patch. In the patch, Red tokens/lines are deleted and Green tokens/lines are added.

Figure 3.2: Examples of different types of concrete patches generated by CODIT
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Ex:1. return Error EOFException.class ;

Ex:2. return Exception EOFException.class ;

Ex:3. return RuntimeException EOFException.class ;

Ex:4. return new Error EOFException(msg) ;

Ex:5. return new Exception EOFException(msg);

Ex:6. return new RuntimeException EOFException(msg);

Figure 3.3: Examples of CODIT’s ability to generalize in different use cases. Exception, Error,
RuntimeException are modified to EOFException under different context.

abstraction. Tufano et al.’s model works best when the code is mostly self contained i.e., when

there is always a mapping from abstract identifier to concrete identifier in the symbol table, their

method can take full advantage of the vocabulary reduction. to When the input code is mostly self

contained (i.e., most of the tokens necessary to generate a patch are inside the input code 𝑐𝑝 or

appears within the context limit in as presented to SequenceR).

In code change task with NMT, the deterministic positions of code tokens are important to put

attention over different parts of code. While Code2Seq [15]’s representation of input code as ran-

dom collection of paths in the code showed success for code comprehension, it does not generalize

well for code change due to the stochastic nature of the input. Additionally, copy attention cannot

be trivially applied to Code2Seq since, like attention, copy also rely on the defined positions of

tokens in the input.

While CODIT replaces any <unknown> prediction by the token with highest attention score

(see section 3.2.2), unlike SequenceR, CODIT does not learn to copy. The rationale is, unlike

SequenceR, CODIT’s input code (𝑐𝑝) is not enhanced by the context. Instead, we present the

context to the CODIT through the token mask (see §3.9). If we enable copy attention, CODIT

becomes highly biased by the tokens that are inside 𝑐𝑝.

Note that, “vocabulary explosion” still remains an open problem for code generation. Neither

CODIT nor any other baselines we discussed here solve this problem. CODIT presents a way to

learn the structural change and restricts the search domain for token names through a mask. For

instance, where M𝑡𝑜𝑘𝑒𝑛 needs to generate a token of primitive data type (M𝑡𝑜𝑘𝑒𝑛 knows the token
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type because M𝑡𝑟𝑒𝑒 already generated a tree with terminal node types), it can restrict the search over

the primitive types only. While it is expected that the decoder of an ideal Seq2Seq model would

inherently learn appropriate tokens at appropriate positions as it implicitly learns code structure, in

reality, because of its unrestricted search space, they tend to mispredict more tokens than CODIT.

For qualitative evaluation, we show some non-trivial patches that CODIT can successfully gen-

erate. CODIT can learn a wide range of patch patterns. Figure 3.2 shows few examples of different

category of patches that CODIT can generate. CODIT also shows promise in generating non-trivial

structure based changes. Consider Example 4 where x is renamed to session both the formal

parameter and the usage in the body. Note that, since CODIT uses a tree-based model it is good

at capturing long-distance dependencies allowing the token-level model to focus on predicting to-

kens, e.g., such that it can rename the same variable similarly. Another interesting example where

CODIT can successfully generate patches is shown in example 6, where CODIT does not only add

the abstract keyword in the method signature, but also removes the body. Since CODIT is

aware of code syntax, it learns that method declarations with an abstract keyword have a high

probability of an empty method body.

Figure 3.3 shows some additional examples where CODIT can successfully generate patches. In

these examples, different exception/error types (i.e. Exception , Error , RuntimeException

) are changed to EOFException although their usage differs. In the first three examples

EOFException is used as a class reference, while for the others EOFException is used to

initialize an object. These examples also illustrate CODIT’s ability to generalize to different con-

texts and use-cases. Other structural transformation that CODIT include, but not limited to, include

scoping (example 7 in Figure 3.2), adding/deleting method parameters (example 3 in Figure 3.2),

changing method/variable access modifiers (example 9, 10 in Figure 3.2), etc.

Result 3.1: CODIT suggests 15.94% correct patches for Code-Change-Data and 28.87% for

Pull-Request-Data within top 5 and outperforms best baseline by 44.37% and 9.26% respec-

tively.

Next, we evaluate CODIT’s sub-components.
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RQ-3.2. How do different design choices affect CODIT’s performance?

This RQ is essentially an ablation study where we investigate in three parts: (i) the token generation

model (M𝑡𝑜𝑘𝑒𝑛), (ii) the tree translation model (M𝑡𝑟𝑒𝑒), and (iii) evaluate the combined model, i.e.

CODIT, under different design choices. We further show the ablation study on the data collection

hyper-parameters (i.e., 𝑚𝑎𝑥_𝑐ℎ𝑎𝑛𝑔𝑒_𝑠𝑖𝑧𝑒, and 𝑚𝑎𝑥_𝑡𝑟𝑒𝑒_𝑠𝑖𝑧𝑒) and investigate the cross project

generalization.

Evaluating token generation model. Here we compare M𝑡𝑜𝑘𝑒𝑛 with the baseline SequenceR

model. Note that M𝑡𝑜𝑘𝑒𝑛 generates a token given its structure. Thus, for evaluating the standalone

token generation model in CODIT’s framework, we assume that the true structure is given (em-

ulating a scenario where a developer knows the kind of structural change they want to apply).

Table 3.3 presents the results.

Table 3.3: Correct patches generated by the standalone token generation model when the true tree structure
is known.

Dataset
Total Correct Patches

SequenceR standalone M𝑡𝑜𝑘𝑒𝑛

Code-Change-Data 502 (9.76%) 2035 (39.57%)

Pull-Request-Data 162 (26.43%) 378 (61.66%)

While the baseline Seq2Seq with copy-attention (SequenceR) generates 9.76% (502 out of

5143) and 26.43% (162 out of 613) correct patches for Code-Change-Data and Pull-Request-Data

respectively at top 5, Table 3.3 shows that if the change structure (i.e. 𝑡𝑛) is known, the standalone

M𝑡𝑜𝑘𝑒𝑛 model of CODIT can generate 39.57% (2035 out of 6832) and 61.66% (378 out of 613) for

Code-Change-Data and Pull-Request-Data respectively. This result empirically shows that if the

tree structure is known, NMT-based code change prediction significantly improves. In fact, this

observation led us build CODIT as a two-stage model.

Evaluating tree translation model. Here we evaluate how accurately M𝑡𝑟𝑒𝑒 predicts the structure
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Table 3.4: M𝑡𝑟𝑒𝑒 top-5 performance for different settings.

Dataset
# Correct Abstract Patches∗

Tufano et al. CODIT

Code-Change-Data 1983 / 5143 (38.56%) 2920 / 5143 (56.78%)

Pull-Request-Data 241 / 613 (39.31%) 342 / 613 (55.79%)
* Each cell represents correctly predicted patches / total patches (percentage of correct patch) in the corresponding setting.

of a change — shown in Table 3.4. M𝑡𝑟𝑒𝑒 can predict 56.78% and 55.79% of the structural changes

in Code-Change-Data and Pull-Request-Data respectively. Note that, the outputs that are gener-

ated by M𝑡𝑟𝑒𝑒 are not concrete code, rather structural abstractions. In contrast, Tufano et al.’s [224]

predicts 38.56% and 39.31% correct patches in Code-Change-Data and Pull-Request-Data respec-

tively. Note that, their abstraction and our abstraction method is completely different. In their case,

for some of the identifiers (those already exist in the symbol table), they have a deterministic way

to concretize the code. In our case, M𝑡𝑜𝑘𝑒𝑛 in CODIT augments M𝑡𝑟𝑒𝑒 by providing a stochastic

way to concretize every identifier by using NMT.

Note that, not all patches contain structural changes (e.g., when a single token, such as a method

name, is changed). For example, 3050 test patches of Code-Change-Data, and 225 test patches of

Pull-Request-Data do not have structural changes. When we use these patches to train M𝑡𝑟𝑒𝑒, we

essentially train the model to sometimes copy the input to the output and rewarding the loss func-

tion for predicting no transformation. Thus, to report the capability of M𝑡𝑟𝑒𝑒 to predict structural

changes, we also train a separate version of M𝑡𝑟𝑒𝑒 using only the training patches with at least 1

node differing between 𝑡𝑛 and 𝑡𝑝. We also remove examples with no structural changes from the

test set. This is our filtered dataset. In the filtered dataset, M𝑡𝑟𝑒𝑒 predicts 33.61% and 30.73%

edited structures from Code-Change-Data and Pull-Request-Data respectively. This gives us an

estimate of how well M𝑡𝑟𝑒𝑒 can predict structural changes.

Evaluating CODIT. Having M𝑡𝑟𝑒𝑒 and M𝑡𝑜𝑘𝑒𝑛 evaluated separately, we will now evaluate our end-

to-end combined model (M𝑡𝑟𝑒𝑒 + M𝑡𝑜𝑘𝑒𝑛) focusing on two aspects: (i) effect of attention-based

copy mechanism, (ii) effect of beam size.

First, we evaluate contribution of CODIT’s attention-based copy mechanism. Table 3.5 shows
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the results. Note that, unlike SequenceR, CODIT is not trained for learning to copy. Our copy

mechanism is an auxiliary step in the beam search that prohibits occurrence of <unknown> token

in the generated code.

Table 3.5: CODIT performance w.r.t. to the attention based copy mechanism @top-5 (𝐾𝑡𝑟𝑒𝑒 =2, 𝐾𝑡𝑜𝑘𝑒𝑛 =5).
Lower bound is without copy. The upper bound evaluates with oracle copying predictions for <unknown>.
For CODIT each <unknown> token is replaced by the source token with the highest attention.

Dataset lower bound upper bound CODIT

Code-Change-Data 742 (14.42%) 898 (17.46%) 820 (15.94%)

Pull-Request-Data 163 (26.59%) 191 (31.16%) 177 (28.87%)
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Figure 3.4: Performance of CODIT @top-5 (𝐾𝑡𝑜𝑘𝑒𝑛 = 5) for different 𝐾𝑡𝑟𝑒𝑒

Recall that M𝑡𝑜𝑘𝑒𝑛 generates a probability distribution over the vocabulary. Since the vocab-

ulary is generated using the training data, any unseen tokens in the test patches are replaced by a

special <unknown> token. In our experiment, we found that a large number (about 3% is Code-

Change-Data and about 4% is Pull-Request-Data) of patches contain <unknown> tokens; this

is undesirable since the generated code will not compile. When we do not replace <unknown>

tokens, CODIT can predict 742 (14.42%), and 163 (26.59%) correct patches in Code-Change-Data

and Pull-Request-Data respectively. However, if all the <unknown> tokens could be replaced

perfectly with the intended token, i.e. upper bound of the number of correct patches goes up to

898 (17.46%) and 191 (31.16%) correct patches in Code-Change-Data and Pull-Request-Data re-

spectively. This shows the need for tackling the <unknown> token problem. To solve this, we
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replace <unknown> tokens predicted by M𝑡𝑜𝑘𝑒𝑛 with the source token with the highest attention

probability following Section 3.2.2. With this, CODIT generates 820 (15.94%), and 177 (28.87%)

correct patches from Code-Change-Data and Pull-Request-Data respectively (Table 3.5).

Second, we test two configuration parameters related to the beam size, 𝐾𝑡𝑟𝑒𝑒 and 𝐾𝑡𝑜𝑘𝑒𝑛 i.e. the

number of trees generated by M𝑡𝑟𝑒𝑒 and number of concrete token sequences generated by M𝑡𝑜𝑘𝑒𝑛

per tree (Section 3.2). While Table 3.2 shows the effect of different values of 𝐾𝑡𝑜𝑘𝑒𝑛 (e.g.,, 1, 2, 5),

here we investigate the effect of 𝐾𝑡𝑟𝑒𝑒 for a given 𝐾𝑡𝑜𝑘𝑒𝑛. Figure 3.4 shows the parameter sensitivity

of 𝐾𝑡𝑟𝑒𝑒 when 𝐾𝑡𝑜𝑘𝑒𝑛 is set 5. Recall from Section 3.2, CODIT first generates 𝐾𝑡𝑟𝑒𝑒 number of trees,

and then generates 𝐾𝑡𝑜𝑘𝑒𝑛 number of code per tree. Among those 𝐾𝑡𝑟𝑒𝑒 ∗𝐾𝑡𝑜𝑘𝑒𝑛 generated code,

CODIT chooses top 𝐾𝑡𝑜𝑘𝑒𝑛 number of code to as final output. In both Code-Change-Data (CC data

in figure 3.4), and Pull-Request-Data (PR data in figure 3.4), CODIT performs best when 𝐾𝑡𝑟𝑒𝑒 =

2. When 𝐾𝑡𝑟𝑒𝑒 = 2, total generated code is 10, among which CODIT chooses top 5. With increasing

number of 𝐾𝑡𝑟𝑒𝑒, CODIT has to choose from increasing number of generated code, eventually

hurting the performance of CODIT.
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Figure 3.5: Percentage of correct prediction by CODIT with respect to number of nodes in the tree.

Next we evaluate CODIT’s ability to generate correct patches w.r.t. the tree size. Figure 3.5

shows histogram of percentage of correctly predicted examples by CODIT w.r.t. size of the tree (in

terms of nodes). While CODIT performs well in predicting smaller trees (≤ 10 nodes), CODIT

also works comparably well in larger tree sizes. In fact, CODIT produces 21.97% correct code in
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Pull-Request-Data, and 16.48% correct code in Code-Change-Data where the tree size is larger

than 30 nodes.

Table 3.6: Cross project generalization test for CODIT (% of correct at @top-5).

Settings CODIT full M𝑡𝑟𝑒𝑒 only

Intra-Project Split 15.94 56.78

Cross Project Split 9.48 59.65

To understand how CODIT generalizes beyond a project, we do a cross-project generalization

test. Instead of chronological split of examples (see section 3.3), we split the examples based

on projects, i.e., all the examples that belongs to a project falls into only one split (train/valida-

tion/test). We then train and test CODIT based on this data split. Table 3.6 shows the result in

this settings w.r.t. to intra-project split. While M𝑡𝑟𝑒𝑒 in intra-project and cross-project evaluation

setting achieves similar performance, full CODIT performance deteriorate by 68%. The main rea-

son behind such deterioration is diverse choice of token name across different projects. Developer

tend to use project specific naming convention, api etc. This also indicates that the structural

change pattern that developers follow are more ubiquitous across different projects than the token

changes.

Result 3.2: CODIT yields the best performance with a copy-based attention mechanism and with

tree beam size of 2. M𝑡𝑟𝑒𝑒 achieves 58.78% and 55.79% accuracy and M𝑡𝑜𝑘𝑒𝑛 achieves 39.57%

and 61.66% accuracy in Code-Change-Data and Pull-Request-Data respectively when tested

individually.

Finally, we evaluate CODIT’s ability to fixing bugs.

RQ-3.3. How accurately CODIT suggests bug-fix patches?

We evaluate this RQ with the state-of-the-art bug-repair dataset, Defects4J [104].

Training: We collect commits from the projects’ original GitHub repositories and preprocess

them as described in Section 3.2. We further remove the Defects4J bug fix patches and use the rest
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of the patches to train and validate CODIT.

Testing: We extract the methods corresponding to the bug location(s) from the buggy-versions of

Defects4J. A bug can have fixes across multiple methods. We consider each method as candidates

for testing and extract their ASTs. We then filter out the methods that are not within our accepted

tree sizes. In this way, we get 117 buggy method ASTs corresponding to 80 bugs. The rest of the

bugs are ignored.

Here we assume that a fault-localization technique already localizes the bug [1]. In general,

fault-localization is an integral part of program repair. However, in this paper, we focus on eval-

uating CODIT’s ability to produce patches rather than an end-to-end repair tool. Since fault lo-

calization and fixing are methodologically independent, we assume that bug location is given and

evaluate whether CODIT can produce the correct patch. Evaluation of CODIT’s promise as a full-

fledged bug repair tool remains for future work.

For a buggy method, we extract 𝑐𝑝. Then for a given 𝑐𝑝, we run CODIT and generate a ranked

list of generated code fragments (𝑐𝑛). We then try to patch the buggy code with the generated

fragments following the rank order, until the bug-triggering test passes. If the test case passes, we

mark it a potential patch and recommend it to developers. We set a specific time budget for the

patch generation and testing. For qualitative evaluation, we additionally investigate manually the

patches that pass the triggering test cases to evaluate the semantic equivalence with the developer-

provided patches. Here we set the maximum time budget for each buggy method to 1 hour. We

believe this is a reasonable threshold as previous repair tools (e.g., Elixir [206]) set 90 minutes for

generating patches. SimFix [100] set 5 hours as their time out for generating patches and running

test cases.

CODIT can successfully generate at least 1 patch that passes the bug-triggering test case for

51 methods out of 117 buggy methods from 30 bugs, i.e. 43.59% buggy methods are potentially

fixed. Figure 3.6 shows the number of patches passing the bug-triggering test case w.r.t. time. We

see that, 48 out of 51 successful patches are generated within 20 minutes.
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Figure 3.6: Patches passing the bug-triggering tests v.s. time.

We further manually analyze the generated patches with the developer-provided patches: among

51 potential patches, 30 patches are identical and come from 25 different bug ids (See Table 3.7).

The bugs marked in green are completely fixed by CODIT with all their buggy methods being suc-

cessfully fixed. For example, Math-49 has 4 buggy methods, CODIT fixes all four. For the bugs

marked in blue†, CODIT fixes all the methods that are in scope. For example, for Lang-4, there

are 2 methods to be fixed, 1 of them are in CODIT’s scope, and CODIT fixes that. However, for

two other bugs (marked in orange*), CODIT produces only a partial fix. For example, in the case

of Math-46 and Mockito-6, although all the methods are within scope, CODIT could fix 1 out of 2

and 2 out of 20 methods respectively. The ‘Patch Type’ column further shows the type of change

patterns.

SequenceR [43] is a notable NMT based program repair tool which takes the advantage of

learning to copy in NMT. They evaluated on 75 one line bugs in Defects4J dataset and reported

19 plausible and 14 fully correct successful patches. Among those 75 bugs, 38 are in CODIT’s

scope. Out of those 38 bugs, CODIT can successfully generate patches for 14 bugs. Note that,

we do not present CODIT as full fledged automated program repair tool, rather a tool for guiding

developers. Thus, for automatic evaluation, we assumed the correct values of constants (of any

data type) given.

One prominent bug repair approach [186, 206, 111] is to transform a suspicious program ele-

ment following some change patterns until a patch that passes the test cases is found. For instance,

Elixir [206] used 8 predefined code transformation patterns and applied those. In fact, CODIT can
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Table 3.7: CODIT’s performance on fixing Defects4J [104] bugs.

Project BugId
# methods # methods # methods Patch

to be in CODIT Type
patched scope can fix

Chart

8 1 1 1 Api Change

10 1 1 1 Method-Invocation

11 1 1 1 Variable-Name-Change

12 1 1 1 Api-Change

Closure

3† 2† 1† 1† Method-Invocation†
75† 2† 1† 1† Return-Value-Change†
86 1 1 1 Boolean-Value-Change

92 1 1 1 Api-Change†
93 1 1 1 Api-Change

Lang

4† 2† 1† 1† Method-Invocation†
6 1 1 1 Method-Parameter-Change

21 1 1 1 Method-Parameter-Change

26 1 1 1 Method-Parameter-Add

30† 5† 1† 1† Type-Change†

Math

6† 13† 1† 1† Method-Parameter-Change†
30 1 1 1 Type-Change

46* 2* 2* 1* Ternary-Statement-Change*

49 4 4 4 Object-Reference-Change

57 1 1 1 Type-Change

59 1 1 1 Ternary-Statement-Change

70 1 1 1 Method-Parameter-Add

98 2 2 2 Array-Size-Change

Mockito
6* 20* 20* 2* Api-Change*

25† 6† 1† 1† Method-Parameter-Add†
30† 2† 1† 1† Method-Parameter-Add†

Green rows are bug ids where CODIT can produce complete patch. Blue† rows are where CODIT can fix all the
methods that are in CODIT’s scope. Orange* rows are where CODIT could not fix all that are in CODIT’s scope.

generate fixes for 8 bugs out of 26 bugs that are fixed by Elixir [206].

Nevertheless, CODIT can be viewed as a transformation schema which automatically learns

these patterns without human guidance. We note that CODIT is not explicitly focused on bug-fix
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changes since it is trained with generic changes. Even then, CODIT achieves good performance in

Defects4J bugs. Thus, we believe CODIT has the potential to complement existing program repair

tools by customizing the training with previous bug-fix patches and allowing to learn from larger

change sizes. Note that, current version of CODIT does not handle multi-hunk bugs. Even if a bug

is multi-hunk, in current prototype, we consider each of the hunk as separate input to CODIT. For

instance, consider Math-46, which is a 2-hunk bug. While all 2 methods are in CODIT’s scope,

CODIT can only fix one. Currently we do not consider interaction between multiple hunks [207].

We leave the investigation of NMT in such scenario for future work.

Result 3.3: CODIT generates complete bug-fix patches for 15 bugs and partial patches for 10

bugs in Defects4J.

3.4.1 Discussion & Threats to validity

Threats to External Validity. We built and trained CODIT on real-world changes. Like all ma-

chine learning models, our hypothesis is that the dataset is representative of real code changes. To

mitigate this threat, we collected patch data from different repositories and different types of edits

collected from real world.

Most NMT based model (or any other text decoder based models) faces the “vocabulary ex-

plosion” problem. That problem is even more prominent in code modeling, since possible names

of identifiers can be virtually infinite. While this problem is a major bottleneck in DL base code

generation, CODIT does not solve this problem. In fact, similar to previous researches (i.e., Se-

quenceR [43]), CODIT cannnot generate new identifiers if it is not in the vocabulary or in the input

code.

Threats to Internal Validity. Similar to other ML techniques, CODIT’s performance depends

on hyperparameters. To minimize this threat, we tune the model with a validation set. To check

for any unintended implementation bug, we frequently probed our model during experiments and

tested for desirable qualities. In our evaluation, we used exact match accuracy as an evaluation

metric. However, a semantically equivalent code may be syntactically different, e.g., refactored

45



code. We will miss such semantically equivalent patches. Thus, we give a lower bound for CODIT’s

performance.

Search Space for Code Generation. Synthesizing patches (or code in general) is challenging [64].

When we view code generation as a sequence of token generation problem, the space of the possi-

ble actions becomes too large. Existing statistical language modeling techniques endorse the action

space with a probability distribution, which effectively reduces the action space significantly since

it allows to consider only the subset of probable actions. The action space can be further reduced

by relaxing the problem of concrete code generation to some form of abstract code generation, e.g.,

generating code sketches [162], abstracting token names [224], etc. For example, Tufano et al. re-

duce the effective size of the action space to 3.53 · 1010 by considering abstract token names [224].

While considering all possible ASTs allowed by the language’s grammar, the space size grows

to 1.81 · 1035. In this work, a probabilistic grammar further reduces the effective action space to

3.18 · 1010, which is significantly lower than previous methods. Such reduction of the action space

allows us to search for code more efficiently.

Ensemble Learning for Program Repair. The overall performance of pre-trained deep-learning

models may vary due to the different model architectures and hyper-parameters, even if they are

trained on the same training corpus. Moreover, bug fixing patterns are numerous and highly depen-

dent on the bug context and the bug type, so a single pre-trained model may only have the power to

fix certain kinds of bugs and miss the others. To overcome this limitation, ensemble learning can

be a potential approach to leverage the capacities of different models and learn the fixing patterns

in multiple aspects [145].

Larger Code Edits. Our work has focused on generating small code changes (single-line or single-

hunk) since such changes take a non-trivial part of software evolution. However, predicting larger

(multi-line and multi-hunk) code changes is important and always regarded as a harder task for

current automated program repair techniques. Generating larger code snippets will significantly

increase the difficulty of repairing bugs for pure sequence-to-sequence model, since any wrongly

predicted token along the code sequence will lead to meaningless patches. CODIT can address this
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problem as it takes language grammar into consideration. Specifically, the tree translation model

could maintain its power when dealing with larger code changes, because the structural changes

are much simpler and more predictable than token-level code changes. Given the tree structure

of the patch, CODIT will not widely search for tokens in the whole vocabulary, but rather, only

possible candidates corresponding to a node type will be considered. Therefore, such hierarchical

model may have potential to generate larger edits.

3.5 Concluding Remarks

In this chapter, we proposed and evaluated CODIT, a tree-based hierarchical model for sug-

gesting eminent source code changes. CODIT’s objective is to suggest changes similar to change

patterns observed in the wild. We evaluate our work against a large number of real-world patches.

The results indicate that tree-based models are promising for generating code patches and can out-

perform popular seq2seq alternatives. We also apply our model to program repair tasks, and the

experiments show that CODIT is capable of predicting bug fixes as well. While in this chapter,

we have seen an example of explicitly encoding PL properties (i.e. syntax) into the model, in the

next chapter, we will explore explicit encoding of semantic properties into the model and the use

of such in program understanding.
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Chapter 4: Program Understanding through Explicit Program

Encoding

4.1 Motivation

Automated detection of security vulnerabilities is a fundamental problem in systems secu-

rity. Traditional techniques are known to suffer from high false-positive/false-negative rates [102,

211]. For example, static analysis-based tools typically result in high false positives detecting non-

vulnerable (hereafter, neutral) 1 cases as vulnerable, and dynamic analysis suffers from high false

negatives. So far these tools remain unreliable, leaving significant overhead for developers [211].

Recent progress in Deep Learning (DL), especially in domains like computer vision and natural

language processing, has sparked interest in using DL to detect security vulnerabilities automat-

ically with high accuracy. According to Google scholar, 92 papers appeared in popular security

and software engineering venues between 2019 and 2020 that apply learning techniques to detect

different types of bugs2. In fact, several recent studies have demonstrated very promising results

achieving accuracy up to 95% [132, 131, 204, 250].

Given such remarkable reported success of DL models at detecting vulnerabilities, it is natural

to ask why they are performing so well, what kind of features these models are learning, and

whether they are generalizable, i.e., can they be used to reliably detect real-world vulnerabilities?

The generalizability of a DL model is often limited by implicit biases in the dataset, which are

often introduced during the dataset generation/curation/labeling process and therefore affect both

the testing and training data equally (assuming that they are drawn from the same dataset). These

biases tend to allow DL models to achieve high accuracy in the test data by learning highly idiosyn-

1We prefer to refer to non-vulnerable code as “neutral” to indicate that they contain no known vulnerabilities or
that they do not fall in any known vulnerability category.

2published in TSE, ICSE, FSE, ASE, S&P Oakland, CCS, USENIX Security, etc.
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cratic features specific to that dataset instead of generalizable features. For example, Yudkowsky

et al. [247] described an instance where US Army found out that a neural network for detecting

camouflaged tanks did not generalize well due to dataset bias even though the model achieved very

high accuracy in the testing data. They found that all the photos with the camouflaged tanks in

the dataset were shot in cloudy days, and the model simply learned to classify lighter and darker

images instead of detecting tanks.

Our in depth investigation revealed that none of the existing models perform well in real-

world settings. If we directly use a pre-trained model to detect the real-world vulnerabilities, the

performance drops by ∼73%, on average. Even if we retrain these models with real-world data,

their performance drops by ∼54% from the reported results. For example, VulDeePecker [132]

reported a precision of 86.9% in their paper. However, when we use VulDeePecker’s pre-trained

model in real world datasets, its precision reduced to 11.12%, and after retraining, the precision

becomes 17.68%. A thorough investigation revealed the following problems:

• Inadequate Model. The most popular models treat code as a sequence of tokens and do

not take into account semantic dependencies that play a vital role in vulnerability predic-

tions. Token based models assume that tokens are linearly dependent on each other, and
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void	action(char	*data)	const	{
				for	(;	*data	!=	'\0';	data++){
								foo(data);
								bar(data);
								if	(*data	==	SEARCH_CHAR){
												printLine("We	have	a	match!");
												break;
								}
				}
				free(data);
}

Figure 4.1: Example of CWE-761 [50]. A buffer is freed not at the start of the buffer but somewhere in
the middle of the buffer. This can cause the application to crash, or in some cases, modify critical program
variables or execute code. This vulnerability can be detected with data dependency.

thus, only lexical dependencies between the tokens are present, while the semantic depen-

dencies are lost, which often play important roles in vulnerability detection [53].To incorpo-
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rate some semantic information, VulDeePecker [132] and SySeVR [131] extracted program

slices of a potentially interesting point. For example, consider the code in Figure 4.1. A slice

w.r.t.free function call at line 10 gives us all the lines except lines 6 and 7. The token se-

quence of the slice are: void action ( char * data )const { for ( data

; * data != ‘0’; data ++ ){ foo ( data ); bar ( data ); if (

* data == SEARCH_CHAR ){ free ( data ); . In this examples, while the two

main components for this code being vulnerable, i.e. data++ (line 2) and free(data)

(line 10) are present in the token sequence, they are far apart from each other without explic-

itly maintaining any dependencies.

In contrast, as a graph based model can consider the data dependency edges (red edge), we

see that there is a direct edge between those lines making those lines closer to each other

making it easier for the model to reason about that connection. Note that this is a sim-

ple CWE example (CWE 761), which requires only the data dependency graph to reason

about. Real-world vulnerabilities are much more complex and require reasoning about con-

trol flow, data flow, dominance relationship, and other kinds of dependencies between code

elements [242]. However, graph-based models, in general, are much more expensive than

their token-based counterparts and do not perform well in a resource-constrained environ-

ment.

• Learning Irrelevant Features. Using state-of-the-art explanation techniques [79], we find

that the current models are essentially learning up irrelevant features that are not related to

vulnerabilities and are likely artifacts of the datasets. We investigate the feature that the ex-

isting techniques are picking up from pre-existing datasets leveraging state-of-the-art expla-

nation techniques [212, 79]. To our surprise, models that exhibit outstanding performance

in pre-existing datasets are picking up irrelevant features. These features are not related to

vulnerabilities in any way and are likely to be artifacts of those datasets.

To overcome these problems, we propose a road-map that we hope will help the DL-based
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vulnerability prediction researchers to avoid such pitfalls in the future. We build a graph based

program representation and vulnerability detection tool, ReVeal. We further empirically establish

that the use of semantic information (with graph-based models) improve vulnerability detection.

Following these steps, we can boost precision and recall of the best performing model in the liter-

ature by up to 33.57% and 128.38% respectively.

4.2 Methodology

4.2.1 DL-based Vulnerability Detection

DL-based vulnerability predictors learn the vulnerable code patterns from a training data (𝐷𝑡𝑟𝑎𝑖𝑛)

set where code elements are labeled as vulnerable or neutral. Given a code element (𝑥) and corre-

sponding vulnerable/neutral label (𝑦), the goal of the model is to learn features that maximize the

probability 𝑝(𝑦 |𝑥) with respect to the model parameters (𝜃). Formally, training a model is learning

the optimal parameter settings (𝜃∗) such that,

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃
∏

(𝑥,𝑦)∈𝐷𝑡𝑟𝑎𝑖𝑛

𝑝(𝑦 |𝑥, 𝜃) (4.1)

First, a code element (𝑥𝑖) is transformed to a real valued vector (ℎ𝑖 ∈ R𝑛), which is a compact

representation of 𝑥𝑖. How a model transforms 𝑥𝑖 to ℎ𝑖 depends on the specifics of the model. This

ℎ𝑖 is transformed to a scalar 𝑦̂ ∈ [0, 1] which denotes the probability of code element 𝑥𝑖 being

vulnerable. In general, this transformation and probability calculation is achieved through a feed

forward layer and a softmax [30] layer in the model. Typically, for binary classification task like

Vulnerability Detection, optimal model parameters are learned by minimizing the cross-entropy

loss [215]. Cross-entropy loss penalizes the discrepancy in the model’s predicted probability and

the actual probability (0. for neutral 1. for vulnerable examples) [182].
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Figure 4.2: Overview of the ReVeal vulnerability prediction framework.

4.2.2 Graph Based Representation Learning

We now present a brief overview of the ReVeal pipeline that aims to lay a roadmap for accu-

rately detecting vulnerabilities in real-world projects. Figure 4.2 illustrates the ReVeal pipeline.

It operates in two phases namely, feature extraction (Phase-I) and training (Phase-II). In the first

phase we translate real-world code into a graph-embedding. In the second phase, we train a rep-

resentation learner on the extracted features to learn a representation that most ideally demarcates

the vulnerable examples from neutral.

Feature Extraction (Phase-I)

The goal of this phase is to convert code into a compact and a uniform length feature vector

while maintaining the semantic and syntactic information. Our proposed road map extracts a

feature vector using a graphical representation of code. Note that, the feature extraction scheme

presented below represents the most commonly used series of steps for extracting features from

a graph representation [250]. ReVeal uses this scheme to extract the graph embedding of each

function in code (graph based feature vector that represent the entirety of a function in a code).

To extract the syntax and semantics in the code, we generate a code property graph (hereafter,

CPG) [242]. The CPG is a particularly useful representation of the original code since it offers a

combined and a succinct representation of the code consisting of elements from the control-flow

and data-flow graph in addition to the AST and program dependency graph (or PDG). Each of the

above elements offer additional context about the overall semantic structure of the code [242].
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Formally, a CPG is denoted as G = (V,E), where V represent the vertices (or nodes) in the

graph and E represents the edges. Each vertex V in the CPG is comprised of the vertex type

(e.g., ArithmeticExpression, CallStatement etc.) and a fragment of the original

code. To encode the type information, we use a one-hot encoding vector denoted by 𝑇𝑣. To encode

the code fragment in the vertex, we use a word2vec embedding denoted by 𝐶𝑣. Next, to create the

vertex embedding, we concatenate 𝑇𝑣 and 𝐶𝑣 into a joint vector notation for each vertex.

The current vertex embedding is not adequate since it considers each vertex in isolation. It

therefore lacks information about its adjacent vertices and, as a result, the overall graph structure.

This may be addressed by ensuring that each vertex embedding reflects both its information and

those of its neighbors. We use gated graph neural networks (hereafter GGNN) [130] for this

purpose. Feature vectors for all the nodes in the graph (𝑋) along with the edges (E) are the input to

the GGNN [130, 251]. For every vertex in the CPG, GGNN assigns a gated recurring unit (GRU)

that updates the current vertex embedding by assimilating the embedding of all its neighbors.

Formally,

𝑥′𝑣 = 𝐺𝑅𝑈 (𝑥𝑣,
∑︁

(𝑢,𝑣)∈E
𝑔(𝑥𝑢))

Where, 𝐺𝑅𝑈 (·) is a Gated Recurrent Function, 𝑥𝑣 is the embedding of the current vertex 𝑣, and

𝑔(·) is a transformation function that assimilates the embeddings of all of vertex 𝑣’s neighbors [249,

130, 12]. 𝑥′𝑣 is the GGNN-transformed representation of the vertex 𝑣’s original embedding 𝑥𝑣. 𝑥′𝑣

now incorporates 𝑣’s original embedding 𝑥𝑣 as well as the embedding of its neighbors.

The final step in preprocessing is to aggregate all the vertex embedding 𝑥′𝑣 to create a single

vector representing the whole CPG denoted by 𝑥𝑔, i.e.:

𝑥𝑔 =
∑︁
𝑣∈V

𝑥′𝑣

Note that ReVeal uses a simple element-wise summation as the aggregation function, but in

practice it is a configurable parameter in the pipeline. The result of the pipeline presented so far
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is an 𝑚−dimensional feature vector representation of the original source code. To pre-train the

GGNN, we augment a classification layer on top of the GGNN feature extraction. This training

mechanism is similar to Devign [250]. Such pre-training deconstructs the task of “learning code

representation”, and “learning vulnerability”, and is also used by Russell et al. [204]. While, we

pre-train GGNN in a supervised fashion, unsupervised program representation learning [122] can

also be done to learn better program presentation. However, such learning is beyond the scope of

this research and we leave that for future research.

Training (Phase-II)

In real-world data, the number of neutral samples (i.e. negative examples) far outnumbers the

vulnerable examples (i.e. positive examples) . If left unaddressed, this introduces an undesirable

bias in the model limiting its predictive performance. Further, extracted feature vectors of the

vulnerable and neutral examples exhibit a significant overlap in the feature space. This makes it

difficult to demarcate the vulnerable examples from the neutral ones. Training a DL model without

accounting for the overlap makes it susceptible to poor predictive performance. To mitigate the

above problems, we propose a two step approach. First, we use re-sampling to balance the ratio of

vulnerable and neutral examples in the training data. Next, we train a representation learning model

on the re-balanced data to learn a representation that can most optimally distinguish vulnerable and

neutral examples.

Reducing Class Imbalance In order to handle imbalance in the number of vulnerable and neu-

tral classes, we use the “synthetic minority over-sampling technique” (for short, SMOTE) [40].

It operates by changing the frequency of the different classes in the data. Specifically, SMOTE

sub-samples the majority class (i.e., randomly deleting some examples) while super-sampling the

minority class (by creating synthetic examples) until all classes have the same frequency. In the

case of vulnerability prediction, the minority class is usually the vulnerable examples. SMOTE

has shown to be effective in a number of domains with imbalanced datasets [217, 144]. During
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super-sampling, SMOTE picks a vulnerable example and finds 𝑘 nearest vulnerable neighbors. It

then builds a synthetic member of the minority class by interpolating between itself and one of its

random nearest neighbors. During under-sampling, SMOTE randomly removes neutral examples

from the training set. This process is repeated until a balance is reached between the vulnerable

and neutral examples. Note that, while we use off-the-shelf SMOTE for re-balancing training data,

other data re-balancing technique (e.g., MWMOTE [27], ProWSyn [26]). Nevertheless, SMOTE

as a re-balancing module in ReVeal’s pipeline is configurable and can easily be replaced by other

re-balancing techniques. Comparison between different re-balancing techniques themselves is be-

yond the scope of this research.

Representation Learning Model The graph embedding of the vulnerable and neutral code sam-

ples at the end of Phase-I tend to exhibit a high degree of overlap in feature space. This makes

the models “brittle”. To improve the predictive performance, we seek a model that can project the

features from the original non-separable space into a latent space which offers a better separability

between vulnerable and neutral samples. For this, we use a multi-layer perceptron (MLP) [215],

designed to transform input feature vector (𝑥𝑔) to a latent representation denoted by ℎ(𝑥𝑔). The

MLP consists of three groups of layers namely, the input layer (𝑥𝑔), a set of intermediate layers

which are parameterized by 𝜃 (denoted by 𝑓 (·, 𝜃), and a final output layer denoted by 𝑦̂.

The proposed representation learner works by taking as input the original graph embedding 𝑥𝑔

and passing it through the intermediate layers 𝑓 (·, 𝜃). The intermediate layer project the original

graph embedding 𝑥𝑔 onto a latent space ℎ(𝑥𝑔). Finally, the output layer uses the features in the

latent space to predict for vulnerabilities as, 𝑦̂ = 𝜎
(
W ∗ ℎ(𝑥𝑔) + 𝑏

)
. Where 𝜎 represents the

softmax function, ℎ𝑔 is the latent representation, W and 𝑏 represent the model weights and bias

respectively.

To maximize the separation between the vulnerable and the neutral examples in the latent

space, we adopt the triplet loss [148] as our loss function. Triplet loss has been widely used in

machine learning, specifically in representation learning, to create a maximal separation between
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classes [90, 229]. The triplet loss is comprised of three individual loss functions: (a) cross entropy

loss (L𝐶𝐸 ); (b) projection loss (L𝑝); and (c) regularization loss (Lreg). It is given by:

L𝑡𝑟 𝑝 = L𝐶𝐸 + 𝛼 ∗ L𝑝 + 𝛽 ∗ Lreg (4.2)

𝛼 and 𝛽 are two hyperparameters indicating the contribution of projection loss and regularization

loss respectively. The first component of the triplet loss is to measure the cross-entropy loss to

penalize miss-classifications. Cross-entropy loss increases as the predicted probability diverges

from the actual label. It is given by,

L𝐶𝐸 = −
∑︁

𝑦̂ · 𝑙𝑜𝑔(𝑦) + (1 − 𝑦̂) · 𝑙𝑜𝑔(1 − 𝑦) (4.3)

Here, 𝑦 is the true label and 𝑦̂ represents the predicted label.The second component of the triplet

loss is used the quantify how well the latent representation can separate the vulnerable and neutral

examples. A latent representation is considered useful if all the vulnerable examples in the latent

space are close to each other while simultaneous being farther away from all the neutral examples,

i.e. examples from same class are very close (i.e. similar) to each other and examples from different

class are far away from each other. Accordingly, we define a loss function L𝑝 which is defined by.

L𝑝 =
��D(ℎ(𝑥𝑔), ℎ(𝑥same)) − D(ℎ(𝑥𝑔), ℎ(𝑥diff )) + 𝛾

�� (4.4)

Here, ℎ(𝑥same) is the latent representation of an example that belongs to the same class as 𝑥𝑔

and ℎ(𝑥diff ) is the latent representation of an example that belongs to a different class as that of

𝑥𝑔. Further, 𝛾 is a hyperparameter used to define a minimum separation boundary. Lastly, D(·)

represents the cosine distance between two vectors and is given by,

D(𝑣1, 𝑣2) = 1 −
���� 𝑣1.𝑣2
| |𝑣1 | | ∗ | |𝑣2 | |

���� (4.5)

If the distance between two examples that belong to the same class is large (i.e.D(ℎ(𝑥𝑔), ℎ(𝑥same))
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Table 4.1: Summary Statistics of the ReVeal dataset. ‘25 Q.’ and ‘75 Q.’ represents 25th quantile and 75th
quantile, respectively. All the statistics are on function granularity.

Summary Count
Statistic Min. 25 Q. Median 75 Q. Max.

# of lines of code 2 7 15 33 915

# of tokens 7 56 121 274 8830

# of nodes 2 9 18 38 499

# of edges 5 41 87 198 8257

Total Number of Examples 18169

Number of Vulnerable Examples 1658

is large) or if the distance between two examples that belong to different classes is small (i.e.

D(ℎ(𝑥𝑔), ℎ(𝑥diff )) is small), L𝑝 would be large to indicate a sub-optimal representation.

The final component of the triplet loss is the regularization loss (Lreg) that is used to limit

the magnitude of latent representation (ℎ(𝑥𝑔)). It has been observed that, over several iterations,

the latent representation ℎ(𝑥𝑔) of the input 𝑥𝑔 tend to increase in magnitude arbitrarily [209].

Such arbitrary increase in ℎ(𝑥𝑔) prevents the model from converging [71]. Therefore, we use a

regularization loss (Lreg) to penalize latent representations (ℎ(𝑥𝑔)) that are larger in magnitude.

The regularization loss is given by:

Lreg = | |ℎ(𝑥𝑔) | | + | |ℎ(𝑥same) | | + | |ℎ(𝑥diff ) | | (4.6)

With the triplet loss function, ReVeal trains the model to optimize for it parameters (i.e. 𝜃,𝑊, 𝑏)

by minimizing equation 4.2.

4.3 Experimental Design

We evaluate the existing methods (i.e., VulDeePecker [132], SySeVR [131], Russell et al. [204],

and Devign [250]) and ReVeal’s performance on two real world datasets. First dataset, ReVeal-data

which we collected from issue-trackers of Chromium and Debian projects (see Table 4.1 for statis-

tics on this dataset). Second dataset is vulnerabilities collected from FFMPeg and Qemu project
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proposed by Zhou et al. [250].

To understand a model’s performance, researchers and model developers need to understand

the performance of a model against a known set of examples.

Problem Formulation and Evaluation Metric: Most of the approaches formulate the problem as

a classification problem, where given a code example, the model will provide a binary prediction

indicating whether the code is vulnerable or not. This prediction formulation relies on the fact that

there are sufficient number of examples (both vulnerable and neutral) to train on. In this study,

we are focusing on the similar formulation. While both VulDeePecker and SySeVR formulate

the problem as classification of code slices, we followed the problem formulation used by Rus-

sell et al. [204], and Devign [251], where we classify the function. We note that slices are paths

in the control/data flow/dependency graphs, and a slice lacks the rich connectivity of nodes that is

present in the whole graph. Thus we chose to classify the whole graph in contrast to the slices.

We study approaches based on four popular evaluation metrics for classification task [184]

– Accuracy, Precision, Recall, and F1-score. Precision, also known as Positive Predictive rate,

is calculated as true positive / (true positive + false positive), indicates correctness of predicted

vulnerable samples. Recall, on the other hand, indicates the effectiveness of vulnerability predic-

tion and is calculated as true positive / (true positive + false negative). F1-score is defined as the

geometric mean of precision and recall and indicates balance between those.

Evaluation Procedure: Since DL models highly depend on the randomness [28], to remove any

bias created due to the randomness, we run 30 trials of the same experiment. At every run, we

randomly split the dataset into disjoint train, validation, and test sets with 70%, 10%, and 20% of

the dataset respectively. We report the median performance and the inter-quartile range (IQR) of

the performance. When comparing the results to baselines, we use statistical significance test [118]

and effect size test [87]. Significance test tells us whether two series of samples differ merely by

random noises. Effect sizes tells us whether two series of samples differ by more than just a trivial

amount. To assert statistically sound comparisons, following previous approaches [2, 99], we use

a non-parametric bootstrap hypothesis test [103] in conjunction with the A12 effect size test [20].
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We distinguish results from different experiments if both significance test and effect size test agreed

that the division was statistically significant (99% confidence) and is not result of a “small” effect

(A12 ≥ 60%) (similar to Agrawal et al. [2]).

Table 4.2: Performance of different models in Vulnerability Detection. All the numbers are reported as
Median (IQR) format.

Dataset Input Approach Accuracy Precision Recall F1-score

R
eV

ea
l

da
ta

se
t

Token Russell et al. 90.98 24.63 10.91 15.24
(0.75) (5.35) (2.47) (2.74)

Slice +
VulDeePecker 89.05 17.68 13.87 15.7

(0.80) (7.51) (8.53) (6.41)
Token

SySeVR 84.22 24.46 40.11 30.25
(2.48) (4.85) (4.71) (2.35)

Graph

Devign 88.41 34.61 26.67 29.87
(0.66) (3.24) (6.01) (4.34)

ReVeal 84.37 30.91 60.91 41.25
(1.73) (2.76) (7.89) (2.28)

FF
M

pe
g

+
Q

em
u

Token Russell et al. 58.13 54.04 39.50 45.62
(0.88) (2.09) (2.17) (1.33)

Slice +
VulDeePecker 53.58 47.36 28.70 35.20

(0.61) (1.80) (12.08) (8.82)
Token

SySeVR 52.52 48.34 65.96 56.03
(0.81) (1.51) (7.12) (3.20)

Graph

Devign 58.57 53.60 62.73 57.18
(1.03) (3.21) (2.99) (2.58)

ReVeal 62.51 56.85 74.61 64.42
(0.90) (1.54) (4.31) (1.33)

4.4 Research Findings

Form the context of this dissertation, in this work, we investigate two major research questions.

First, we investigate the effect of Graph-based models to semantic understanding of source code.

Thus, we ask,
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Table 4.3: Impact of GGNN in ReVeal’s performance [Median (IQR)].

Dataset Approach Accuracy Precision Recall F1-score

R
eV

ea
l

da
ta

se
t ReVeal 83.69 29.48 57.69 39.09

w/o GGNN (1.60) (2.69) (7.85) (2.30)

ReVeal 84.37 30.91 60.91 41.25
with GGNN (1.73) (2.76) (7.89) (2.28)

FF
M

pe
g+

Q
em

u

ReVeal 53.87 49.60 89.25 63.69
w/o GGNN (2.69) (1.68) (3.78) (0.85)

ReVeal 62.51 56.85 74.61 64.42
with GGNN (0.90) (1.54) (4.31) (1.33)

RQ-4.1. Does explicit encoding of PL properties through help better understand source

code?

Table 4.2 tabulates our findings on techniques on Vulnerability detection task. The results show

that, graph-based models (both Devign and ReVeal) perform better than token based models in both

the dataset. In ReVeal-data, ReVeal achieves median F1 score of 41.25. In contract, the best token-

based model’s (SySeVR) F1 score is 30.25. For the FFMpeg+Qemu dataset, again, SySeVR is the

best performing token based model with median F1 score of 56.03. In contrast, ReVeal’ median

F1 score in this dataset is 64.42. To understand the contribution of Graph-Based modeling even

further, we perform and ablation study, where we removed the GGNN from ReVeal’s pipeline.

Table 4.3 shows the result of this ablation study. When GGNN is removed from ReVeal’s pipeline

median F1-score drops 5.03% in ReVeal-data and 1.14% in FFMpeg+Qemu dataset. We conjecture

that representing source code as a graph and building a graph-based model makes ReVeal better

suitable for understanding the syntax and semantics of source code.

Result 4.1: DL model understands PL properties (syntax, and semantics) better when such prop-

erties are explicitly encoded in the model. Since syntax and semantic properties are exhibited

through a graph, building a graph-based model performs best in source code understanding task

such as Vulnerability Detection.
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1 link_layer_show(struct ib_port *p,

2 struct port_attribute *unused, char * buf){

3 switch (rdma_port_get_link_layer(

4 p->ibdev, p->port_num)) {

5 case IB_LINK_LAYER_INFINIBAND:

6 return sprintf(buf, "%s\n", "InfiniBand");
7 case IB_LINK_LAYER_ETHERNET:

8 return sprintf(buf, "%s\n", "Ethernet");

9 default:
10 return sprintf(buf, "%s\n", "Unknown");

11 }

12 }
(a) Vulnerable code example in Draper [204] dataset correctly predicted by Russel et al.’s token-based
method.

1 static int mov_read_dvc1( MOVContext *c ,
2 AVIOContext *pb , MOVAtom atom ) {

3 AVStream *st ;

4 uint8_t profile_level ;

5 if ( c->fc->nb_streams < 1 )

6 return 0 ;
7 st = c->fc->streams[c->fc->nb_streams-1] ;

8 if ( atom.size >= (1<<28) || atom.size < 7 )

9 return AVERROR_INVALIDDATA ;

10 profile_level = avio_r8(pb) ;

11 if ( (profile_level & 0xf0) ! = 0xc0 )

12 return 0 ;
... ...
18 st->codec->extradata_size = atom.size - 7 ;

19 avio_seek(pb, 6, SEEK_CUR) ;

20 avio_read(
21 pb, st->codec->extradata,

22 st->codec->extradata_size) ;

23 return 0 ;
24 }

(b) Vulnerable example from FFMpeg+Qemu [250] dataset correctly predicted by graph model. Other method
could not predict the vulnerability in this example.

Figure 4.3: Contribution of different code component in correct classification of vulnerability by different
model. Red-shaded code elements are most contributing, Green-shaded are the least. Red colored code
are the source of vulnerabilities.

Further we qualitatively investigate, why does a graph-based model perform better than its

token-based counterpart? Thus, we ask,
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1 void CWE190_Integer_Overflow_Unsigned_int...()

2 unsigned int data ;

3 data = 0 ;

4 badSink ( data ) ;

5 static void badSink ( unsigned int data )

6 if ( badStatic )

7 unsigned int result = data * data ;

8 printUnsignedLine ( result );

9 void printUnsignedLine(unsigned unsignedNumber)

10 printf ( "%u\n" , unsignedNumber );

Figure 4.4: Integer Overflow vulnerability (CWE-190).

1 void CWE789_Uncontrolled_Mem_Alloc...()

2 size_t data ;

3 data = 0;

4 if ( staticFive == 5 )

5 data = rand ( );

6 if ( staticFive == 5 )

7 char * myString ;

8 if ( data > strlen ( HELLO_STRING ) )

9 myString = (char *)malloc( data * sizeof(char));

10 strcpy ( myString , HELLO_STRING );

11 printLine ( myString );

12 void printLine (const char * line)

13 if ( line != NULL )

14 printf ( "%s\n" , line );

15 free ( myString );

Figure 4.5: Uncontrolled Memory vulnerability (CWE-789).

RQ-4.2. Does a model learn irrelevant feature with improper choice of model?

In order to choose a good DL model for Vulnerability Detection, it is important to understand

what features the model uses to make its predictions. A good model should assign greater impor-

tance to the vulnerability related code features.

Experimental Setup. To understand what features a model uses for its prediction, we find the

feature importance assigned to the predicted code by the existing approaches. For token-based

models such as VulDeePecker, SySeVR, and Russell et al., we use Lemna to identify feature im-

portance [79]. Lemna assigns each token in the input with a value 𝜔𝑡
𝑖
, representing the contribution
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of that token for prediction. A higher value of 𝜔𝑡
𝑖

indicates a larger contribution of token towards

the prediction and vice versa. For graph-based models, such as Devign, Lemna is not applica-

ble [79]. In this case, we use the activation value of each vertex in the graph to obtain the feature

importance. The larger the activation, the more critical the vertex is.

Results. To visualize the feature importances, we use a heatmap to highlight the most to least im-

portant segments of the code. Figure 4.3 shows two examples of correct predictions. Figure 4.3(a)

shows an instance where Russell et al.’s token-based method accurately predicted a vulnerability.

But, the features that were considered most important for the prediction (lines 2 and 3) are not

related to the actual vulnerability that appears in buggy sprintf lines (lines 6, 8, and 10). We

observe similar behavior in other token based methods.

In contrast, Figure 4.3(b) shows an example that was misclassified as non-vulnerable by token-

based methods, but graph-based models accurately predict them as vulnerable. Here we note that

the vulnerability is on line 20, and graph-based models use lines 3, 7, 19 to make the prediction,

i.e. mark the corresponding function as vulnerable. We observe that each of these lines shares a

data dependency with line 20 (through pb and st). Since graph-based models learn the semantic

dependencies between each of the vertices in the graph through the code property graph, a series

of connected vertices, each with high feature importance, causes the graph-based model to make

the accurate prediction. Token-based models lack the requisite semantic information and therefore

fail to make accurate predictions. In addition to this case study, Figure 4.4, and Figure 4.5 shows

two other examples of integer overflow and memory overflow, respectively. VulDeePecker [132]

and SySeVR [131] correctly classified these as vulnerable. However, the heatmap shows the those

models are just picking up mostly unrelated features from the code.

Result 4.2: Form the case study, we conjecture that when appropriate model is not deployed for

code understanding task, models tend to pick up irrelevant features from the dataset.
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4.5 Concluding Remarks

In this chapter, we systematically study different aspects of Deep Learning based Vulnerability

Detection to effectively find real world vulnerabilities. We empirically show different shortcom-

ings of existing models that potentially limits the usability of those techniques in practice. Our

investigation found that existing modeling techniques do not completely address code semantics

and data imbalance in vulnerability detection. Following these empirical findings, we propose a

framework for collecting real world vulnerability dataset. We propose ReVeal as a configurable

vulnerability prediction tool that addresses the concerns we discovered in existing systems and

demonstrate its potential towards a better vulnerability prediction tool.
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Part II

Implicit Encoding
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Chapter 5: Unified Pre-training for Program Understanding and

Generation

5.1 Motivation

In the previous two chapters, we have studied design of models for source code processing

with explicit encoding of PL constructs. Such encoding require specifically crafted models to cater

to specific need for PL properties. In this chapter (and next two chapters), we will study general

purpose models with implicit encoding. In particular, we study the design and training of models

from large corpus of source code and other metadata with minimal human supervision. Such

training endows models with the knowledge about the properties of source code implicitly.

Engineers and developers write software programs in a programming language (PL) like Java,

Python, etc., and often use natural language (NL) to communicate with each other. Use of Natural

Languages such as English in software engineering ranges from writing documentation, commit

messages, bug reports to seeking help in different forums (e.g., Stack Overflow), etc. Automating

different software engineering applications, such as source code summarization, generation, and

translation, heavily rely on the understanding of PL and NL—we collectively refer them as PLUG

(stands for, Program and Language Understanding and Generation) applications or tasks. Note

that the use of NL in software development is quite different than colloquially written and spoken

language. For example, NL in software development often contains domain-specific jargon, e.g.,

when software engineers use Code Smell1, it means a potential problem in code (something other

than Smell in regular English language).

In this work, our goal is to develop a general-purpose model that can be used in various PLUG

applications. Recent advancements in deep learning and the availability of large-scale PL and de-

1https://en.wikipedia.org/wiki/Code_smell
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Program snippet in Python

def sort_list(uns):
return sorted(uns, key=lambda x:x[0])

Program snippet in Java

static Tuple[] sortArray(Tuple[] uns){
return Arrays.sort(

uns, new Comparator<Tuple>() {
public int compare(
Tuple o1, Tuple o2) {

return o1.get(0) == o2.get(0);
}

});
}

Summary: sort a list of tuples by first element.

Figure 5.1: Example motivating the need to understand the association of program and natural languages
for code summarization, generation, and translation.

velopers’ NL data ushered in the automation of PLUG applications. One important aspect of PLUG

applications is that they demand a profound understanding of program syntax and semantics and

mutual dependencies between PL and NL. For example, Figure 5.1 shows two implementations

of the same algorithm (sorting) in two PL and corresponding NL summary. An automatic trans-

lation tool must understand that function sorted in Python acts similar to Arrays.sort in

Java and the lambda operation in Python is equivalent to instantiating a Comparator object in

Java. Similarly, a tool that summarizes either of these code must understand that x[0] in Python

or Tuple.get(0) in Java refers to the first element in the tuple list.

Most of the available data in PL and NL are unlabeled and cannot be trivially used to acquire

PLUG task-specific supervision. However, PLUG tasks have a common prerequisite — under-

standing PL and NL syntax and semantics. Leveraging unlabelled data to pre-train a model to

learn PL and NL representation can be transferred across PLUG tasks. This approach reduces the

requirement of having large-scale annotations for task-specific fine-tuning. In recent years we have

seen a colossal effort to pre-train models on a massive amount of unlabeled data (e.g., text, images,

videos) [55, 138, 48, 49, 129, 213] to transfer representation encoders across a wide variety of
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applications. There are a few research effort in learning general purpose PL-NL representation

encoders, such as CodeBERT [63] and GraphCodeBERT [78] that are pre-trained on a small-scale

bimodal data (code-text pairs). Such models have been found effective for PLUG tasks, including

code search, code completion, etc.

Language generation tasks such as code summarization is modeled as sequence-to-sequence

learning, where an encoder learns to encode the input code and a decoder generates the target

summary. Despite the effectiveness of existing methods, they do not have a pre-trained decoder

for language generation. Therefore, they still require a large amount of parallel data to train the

decoder. To overcome this limitation, Lewis et al. [127] proposed denoising sequence-to-sequence

pre-training where a Transformer [228] learns to reconstruct an original text that is corrupted using

an arbitrary noise function. Very recently, Lachaux et al. [122] studied denoising pre-training

using a large-scale source code collection aiming at unsupervised program translation and found

the approach useful. This raises a natural question, can we unify pre-training for programming

and natural language? Presumably, to facilitate such pre-training, we need unlabeled NL text that

is relevant to software development. Note that unlike other bimodal scenarios (e.g., vision and

language), PL and associated NL text share the same alphabet or uses anchor tokens (e.g., “sort”,

“list”, “tuple” as shown in Figure 5.1) that can help to learn alignment between semantic spaces

across languages.

We introduce PLBART (Program and Language BART), a bidirectional and autoregressive

transformer pre-trained on unlabeled data across PL and NL to learn multilingual representations

applicable to a broad spectrum of PLUG applications. We evaluate PLBART on code summa-

rization, generation, translation, program repair, clone detection, and vulnerability detection tasks.

Experiment results show that PLBART outperforms or rivals state-of-the-art methods, e.g., Code-

BERT and GraphCodeBERT, demonstrating its promise on program understanding and generation.

We perform a thorough analysis to demonstrate that PLBART learns program syntax, logical data

flow that is indispensable to program semantics, and excels even when limited annotations are

available.
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5.2 Methodology

PLBART uses denoising sequence-to-sequence pre-training to utilize unlabeled data in PL and

NL. Such pre-training lets PLBART reason about language syntax and semantics. At the same

time, PLBART learns to generate language coherently.

Table 5.1: Statistics of the data used to pre-train PLBART. “Nb of documents” refers to the number of
functions in Java and Python collected from Github and the number of posts (questions and answers) in the
natural language (English) from StackOverflow.

Java Python NL

All Size 352 GB 224 GB 79 GB

All - Nb of tokens 36.4 B 28 B 6.7 B

All - Nb of documents 470 M 210 M 47 M

Table 5.2: Example encoder inputs and decoder outputs during denoising pre-training of PLBART. We use
three noising strategies: token masking, token deletion, and token infilling (shown in the three examples,
respectively).

PLBART Encoder Input PLBART Decoder Output
Is 0 the [MASK] Fibonacci [MASK]
? <En>

<En> Is 0 the first Fibonacci
number ?

public static main ( String args
[ ] ) { date = Date ( ) ; System
. out . ( String . format ( "
Current Date : % tc " , ) ) ; }
<java>

<java> public static void main
( String args [ ] ) { Date date
= new Date ( ) ; System . out
. printf ( String . format ( "
Current Date : % tc " , date ) )
; }

def addThreeNumbers ( x , y , z )
: NEW_LINE INDENT return [MASK]
<python>

<python> def addThreeNumbers (
x , y , z ) : NEW_LINE INDENT
return x + y + z

5.2.1 Denoising Pre-training

Data & pre-processing We pre-train PLBART on a large-collection of Java and Python func-

tions and natural language descriptions from GitHub and StackOverflow, respectively. We down-

load all the GitHub repositories associated with Java and Python languages available on Google
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BigQuery.2 We extract the Java and Python functions following the pre-processing pipeline from

Lachaux et al. [122]. We collect the StackOverflow posts (include both questions and answers,

exclude code snippets) by downloading the data dump (date: 7th September 2020) from stackex-

change.3 Statistics of the pre-training dataset are presented in Table 5.1. We tokenize all the data

with a sentencepiece model [120] learned on 1/5’th of the pre-training data. We train sentencepiece

to learn 50,000 subword tokens.

One key challenge to aggregate data from different modalities is that some modalities may

have more data, such as we have 14 times more data in PL than NL. Therefore, we mix and

up/down sample the data following [48] to alleviate the bias towards PL. We sample instances for

pre-training according to a multinomial distribution with probabilities (𝑞1, 𝑞2, . . . , 𝑞𝑁 ):

𝑞𝑖 =
1
𝑝𝑖

·
𝑝𝛼
𝑖∑𝑁

𝑗=1 𝑝
𝛼
𝑗

, 𝑝𝑖 =
𝑛𝑖∑𝑁
𝑗=1 𝑛 𝑗

,

where 𝑁 is the total number of languages and 𝑛𝑖 is the total number of instances in language 𝑖. We

set the smoothing parameter 𝛼 to 0.3.

Table 5.3: Example inputs to the encoder and decoder for fine-tuning PLBART on sequence generation
tasks: source code summarization (S), generation (G), and translation (T).

PLBART Encoder Input PLBART Decoder Output

S

def maximum (a , b , c) :
NEW_LINE INDENT return max (
[ a , b , c ] ) <python>

<En> Find the maximum of three
numbers

G

Find the maximum of three
numbers <En>

<java> public int maximum ( int
a , int b , int c ) { return
Math . max ( a , Math . max (
b , c ) ) }

T

public int maximum ( int a , int
b , int c ) { return Math . max
( a , Math . max ( b , c ) ) }
<java>

<python> def maximum (a , b , c)
: NEW_LINE INDENT return max (
[ a , b , c ] )

2https://console.cloud.google.com/ marketplace/details/github/github-repos
3https://archive.org/download/stackexchange
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Architecture PLBART uses the same architecture as BART𝑏𝑎𝑠𝑒 [127], it uses the sequence-

to-sequence Transformer architecture [228], with 6 layers of encoder and 6 layers of decoder

with model dimension of 768 and 12 heads (∼140M parameters). The only exception is, we in-

clude an additional layer-normalization layer on top of both the encoder and decoder following

Liu et al. [137], which is found to stabilize training with FP16 precision.

Noise function, 𝑓 In denoising autoencoding, a model learns to reconstruct an input text that

is corrupted by a noise function. Reconstruction of the original input requires the model to learn

language syntax and semantics. In this work, we use three noising strategies: token masking, token

deletion, and token infilling [127]. According to the first two strategies, random tokens are sampled

and replaced with a mask token or deleted from the input sequence. In token infilling, a number of

text spans are sampled and replaced with a single mask token. The span lengths are drawn from a

Poisson distribution (𝜆 = 3.5). We mask 35% of the tokens in each instance.

Input/Output Format The input to the encoder is a noisy text sequence, while the input to

the decoder is the original text with one position offset. A language id symbol (e.g., <java>,

<python>) is appended and prepended to the encoder and decoder inputs, respectively. We provide

a few examples in Table 5.2. The input instances are truncated if they exceed a maximum sequence

length of 512.

Learning PLBART is pre-trained on 𝑁 languages (in our case, 𝑁=3), where each language 𝑁𝑖

has a collection of unlabeled instances D𝑖 = {𝑥1, . . . , 𝑥𝑛𝑖 }. Each instance is corrupted using the

noise function 𝑓 and we train PLBART to predict the original instance 𝑥 from 𝑓 (𝑥). Formally,

PLBART is trained to maximize L𝜃:

L𝜃 =

𝑁∑︁
𝑖=1

𝑚𝑖∑︁
𝑗=1

log 𝑃(𝑥 𝑗 | 𝑓 (𝑥 𝑗 ); 𝜃)
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where 𝑚𝑖 is the number of sampled instances in language 𝑖 and the likelihood 𝑃 is estimated

following the standard sequence-to-sequence decoding.

Optimization We train PLBART on 8 Nvidia GeForce RTX 2080 Ti GPUs for 100K steps. The

effective batch size is maintained at 2048 instances. We use Adam (𝜖 = 1e-6, 𝛽2 = 0.98) with a

linear learning rate decay schedule for optimization. We started the training with dropout 0.1 and

reduced it to 0.05 at 50K steps and 0 at 80K steps. This is done to help the model better fit the data

[137]. The total training time was approximately 276 hours (11.5 days). All experiments are done

using the Fairseq library [171].

5.2.2 Fine-tuning PLBART

We fine-tune PLBART for two broad categories of downstream applications.

Sequence Generation PLBART has an encoder-decoder architecture where the decoder is capa-

ble of generating target sequences autoregressively. Therefore, we can directly fine-tune PLBART

on sequence generation tasks, such as code summarization, generation, and translation. Unlike

denoising pre-training, the source sequence is given as input to the encoder during fine-tuning, and

the decoder generates the target sequence. The source and target sequence can be a piece of code

or text sequence. Table 5.3 shows a few examples of input and output to and for PLBART for

different generation tasks. Note that PLBART prepends a language id to the decoded sequence; it

enables fine-tuning PLBART in a multilingual setting (e.g., code generation in multiple languages).

Sequence Classification We fine-tune PLBART on sequence classification tasks following Lewis

et al. [127]. The input sequence is fed into both the encoder and decoder. For a pair of inputs, we

concatenate them but insert a special token (“</s>”) between them. A special token is added at

the end of the input sequence. This last token’s representation from the final decoder layer is fed

into a linear classifier for prediction.
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Optimization We fine-tune PLBART for a maximum of 100K steps on all the downstream tasks

with 2500 warm-up steps. We set the maximum learning rate, effective batch size, and dropout

rate to 3e-5, 32 and 0.1, respectively. The final models are selected based on the validation BLEU

(in generation task) or accuracy (in classification tasks). Fine-tuning PLBART is carried out in one

Nvidia GeForce RTX 2080 Ti GPU.

Table 5.4: Details of the hyper-parameters used during fine-tuning for sequence generation tasks. ∗ indicates
pre-trained from scratch using source code-text pairs.

Hyper-parameter RoBERTa∗ CodeGPT-2 CodeBERT GraphCodeBERT PLBART

vocab size 50,265 50,001 50,265 - 50,004

n_positions 514 1024 514 256 1024

model size 768 768 768 768 768

# layers 12 12 12 12 6

# heads 12 12 12 12 12

d 𝑓 𝑓 3072 3072 3072 - 3072

dropout 0.1 0.1 0.1 - 0.1

optimizer Adam Adam Adam Adam Adam

learning rate 5e-5 5e-5 5e-5 1e-4 5e-5

batch size 32 32 32 64 32

5.3 Experiment Design

To understand PLBART’s performance in a broader context, we evaluate PLBART on several

tasks. In particular, we investigate the following research questions,

• RQ-5.1. Does PLBART’s pre-training help the model understand source code better?

• RQ-5.2. Does PLBART’s pre-training teach model to generate correct code?

• RQ-5.3. How effective is PLBARTin learning automated code editing?

Our evaluation focuses on assessing PLBART’s ability to capture rich semantics in source code

and associated natural language text.
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Table 5.5: Statistics of the downstream benchmark datasets.

Task Dataset Language Train Valid Test

Summarizaion Husain et al. [93]

Ruby 24,927 1,400 1,261
Javascript 58,025 3,885 3,291
Go 167,288 7,325 8,122
Python 251,820 13,914 14,918
Java 164,923 5,183 10,955
PHP 241,241 12,982 14,014

Generation Iyer et al. [95] NL to Java 100,000 2,000 2,000

Translation
Code-Code [142]

Java to C# 10,300 500 1,000
C# to Java 10,300 500 1,000

Code Editing Java𝑠𝑚𝑎𝑙𝑙 46,680 5,835 5,835
[225] Java𝑚𝑒𝑑𝑖𝑢𝑚 52,364 6,545 6,545

Classification

Vulnerability Detection
C/C++ 21,854 2,732 2,732

[250]
Clone Detection

Java 100,000 10,000 415,416
[230]

5.3.1 Evaluation Tasks

We divide the evaluation tasks into four categories. The evaluation task datasets are summa-

rized in Table 5.5. We use CodeXGLUE [142] provided public dataset and corresponding train-

validation-test splits for all the tasks.

Code Summarization refers to the task of generating a natural language (English) summary

from a piece of code. We fine-tune PLBART on summarizing source code written in six different

programming languages, namely, Ruby, Javascript, Go, Python, Java, and PHP.

Code Generation is exactly the opposite of code summarization. It refers to the task of gen-

erating a code (in a target PL) from its NL description. We fine-tune PLBART on the Concode

dataset [95], where the input is a text describing class member functions in Java and class environ-

ment, the output is the target function.

Code Translation requires a model to generate an equivalent code in the target PL from the

input code written in the source PL. Note that the source and target PL can be the same. Hence, we
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consider two types of tasks in this category. The first task is a typical PL translation task, translating

a code i.e. from Java code to C#, and vice versa. In this task, the semantic meaning of the translated

code should exactly match the input code. Thus, this task evaluates PLBART’s understanding of

program semantics and syntax across PL. The second task we consider is automated code editing.

In this task, the input is a buggy code, and the output is a modified version of the same code which

fixes the bug. This task helps us understand PLBART’s ability to understand code semantics and

apply semantic changes in the code.

Code Classification aims at predicting the target label given a single or a pair of source code.

We evaluate PLBART on two classification tasks. The first task is clone detection, where given a

pair of code, the goal is to determine whether they are clone of each other (similar to paraphrasing

in NLP).. The second task is detecting whether a piece of code is vulnerable. This task help

us gauging PLBART’s effectiveness in program understanding in an unseen PL since the code

examples in this task are written in C/C++.

5.3.2 Evaluation Metrics

BLEU computes the n-gram overlap between a generated sequence and a collection of refer-

ences. We use corpus level BLEU [174] score for all the generation tasks, except code summariza-

tion where we use smoothed BLEU-4 score [134] following Feng et al. [63].

CodeBLEU is a metric for measuring the quality of the synthesized code [197]. Unlike BLEU,

CodeBLEU also considers grammatical and logical correctness based on the abstract syntax tree

and the data-flow structure.

Exact Match (EM) evaluates if a generated sequence exactly matches the reference.
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5.3.3 Baseline Methods

We compare PLBART with several state-of-the-art models and broadly divide them into two

categories. First, the models that are trained on the evaluation tasks from scratch, and second,

the models that are pre-trained on unlabeled corpora and then fine-tuned on the evaluation tasks.

Table 5.4 shows the hyperparameter details of PLBARTalong with other baseline models.

Training from Scratch

Seq2Seq [143] is an LSTM based Seq2Seq model with attention mechanism. Vocabulary is

constructed using byte-pair encoding.

Transformer [228] is the base architecture of PLBART and other pre-trained models. Trans-

former baseline has the same number of parameters as PLBART. Hence, a comparison with this

baseline demonstrates the direct usefulness of pre-training PLBART.

Pre-trained Models

As described in section 6.3, PLBART consists of an encoder and autoregressive decoder. We

compare PLBART on two categories of pre-trained models. First, the encoder-only models (e.g.,

RoBERTa, CodeBERT, and GraphCodeBERT) that are combined with a randomly initialized de-

coder for task-specific fine-tuning. The second category of baselines include decoder-only models

(CodeGPT) that can perform generation autoregressively.

RoBERTa, RoBERTa (code) are RoBERTa [138] model variants. While RoBERTa is pre-

trained on natural language, RoBERTa (code) is pre-trained on source code from CodeSearch-

Net [93].

CodeBERT [63] combines masked language modeling (MLM) [55] with replaced token detec-

tion objective [46] to pre-train a Transformer encoder.

GraphCodeBERT [78] is a concurrent work with this research which improved CodeBERT by

modeling the data flow edges between code tokens. We report GraphCodeBERT’s performance
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directly from the paper since their implementation is not publicly available yet.

GPT-2, CodeGPT-2, and CodeGPT-adapted are GPT-style models. While GPT-2 [187] is

pre-trained on NL corpora, CodeGPT-2 and CodeGPT-adapted are pre-trained on CodeSearchNet

[142]. Note that, CodeGPT-adapted starts from the GPT-2 checkpoint for pre-training.

5.4 Research Findings

We designed PLBARTto jointly understand and generate source code and apply it to different

downstream tasks. To understand PLBART’s capability better in both code understanding, we first

ask,

RQ-5.1. Does PLBART’s pre-training help the model understand source code better?

Experimental Setup. To answer this question, we compare PLBARTwith other tools w.r.t. three

different tasks – Code summarization, Vulnerability Detection, and Clone detection. All these tasks

require models’ profound understanding of source code. Among these tasks, Code summarization

is a generative task, where the model needs to generate an NL summary of a given source code. On

the other hand, Vulnerability Detection and Clone detection are Code Classification tasks. Given a

code (or pair of codes), the model classifies the input into positive and negative classes.

Results. Table 5.6 shows the result of code summarization. PLBART outperforms the baseline

methods in five out of the six programming languages with an overall average improvement of

0.49 BLEU-4 over CodeBERT.

The highest improvement (∼16%) is in the Ruby language, which has the smallest amount of

training examples. Unlike CodeBERT, PLBART is not pre-trained on the Ruby language; however,

the significant performance improvement indicates that PLBART learns better generic program

semantics. In contrast, PLBART performs poorly in the PHP language. The potential reason is

syntax mismatch between the pre-trained languages and PHP. Surprisingly, RoBERTa performs

77



Table 5.6: Results on source code summarization, evaluated with smoothed BLEU-4 score. The baseline
results are reported from Feng et al. [63].

Methods Ruby Javascript Go Python Java PHP Overall

Seq2Seq 9.64 10.21 13.98 15.93 15.09 21.08 14.32

Transformer 11.18 11.59 16.38 15.81 16.26 22.12 15.56

RoBERTa 11.17 11.90 17.72 18.14 16.47 24.02 16.57

CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16 17.83

PLBART 14.11 15.56 18.91 19.30 18.45 23.58 18.32

better than PLBART on the PHP language. We suspect that since RoBERTa is pre-trained on

natural language only, it does not suffer from the syntax mismatch issue. Overall in comparison to

the Transformer baseline, PLBART improves with an average of 2.76 BLEU-4, and we credit this

improvement to the pre-training step.

In both clone detection and the vulnerability detection tasks, PLBART outperforms CodeBERT.

We present the results in Table 5.7. In the vulnerability detection task, code semantics is the most

critical feature [250, 38]. Since PLBART is not pre-trained on C/C++ language, its improved

performance compared to the Transformer baseline is the testament that PLBART can identify

semantics beyond the language syntax’s specifics. Moreover, PLBART’s improved performances

over CodeBERT and GraphCodeBERT confirms its effectiveness in program understanding in ad-

dition to its generation ability.

Table 5.7: Results on the vulnerable code detection (accuracy) and clone detection (F1 score) tasks.

Tasks Vulnerability Detection Clone Detection

Transformer 61.64 -

CodeBERT 62.08 96.5

GraphCodeBERT - 97.1

PLBART 63.18 97.2

We acknowledge that neither PLBART nor CodeBERT is state-of-the-art in vulnerability detec-

tion, as graph-based models perform best in this task. VulBerta [81], and CoTexT [181] were the

SOTA for this task at the time of this project, and while writing this dissertation, respectively. Nev-
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ertheless, our goal in this evaluation is to study how well PLBART understands program semantics

in an unseen language for a different type of task (other than the generation, i.e. classification).

Result 5.1: PLBARTdemonstrates exemplary performance in tasks that require source code un-

derstanding. For source code summarization, PLBARToutperforms existing pre-trained mod-

els in five of the six programming languages. For vulnerability detection and close detection,

PLBARTperforms comparably or slightly better than the model explicitly pre-trained to under-

stand code – e.g., CodeBERT.

Next, we evaluate PLBART’s performance in different tasks that requires model’s capacity to

generate source code.

RQ-5.2. Does PLBART’s pre-training teach model to generate correct code?

Experimental Setup. In this research question, we evaluate PLBARTin two different source

code generative tasks – NL to Code Generation and Code to Code Translation. The output of these

tasks is source code; thus, these experiments will stress-test PLBART’s ability in source code

generation.

Results.

NL to Code Generation Table 5.8 shows the evaluation result on code generation from NL

description. PLBART outperforms all the baselines in terms of BLEU and CodeBLEU. While

CodeGPT-adapted [142] achieves the best Exact Match (EM) score, PLBART outperforms CodeGPT-

adapted by a large margin in terms of CodeBLEU. This result implies that PLBART generates

significantly more syntactically and logically correct code than all the baselines.

Table 5.9 shows an example of code generated by PLBART. The difference between the ref-

erence code and the generated code is in line 6 onward. In the reference code, loc0 is returned,

however same loc0 is returned in an else block in the generated code. If we look closely, in
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Table 5.8: Results on text-to-code generation task using the CONCODE dataset [95].

Methods Exact Match Accuracy BLEU CodeBLEU
Seq2Seq 3.05 21.31 26.39

Guo et al. [77] 10.05 24.40 29.46

Iyer et al. [94] 12.20 26.60 -

GPT-2 17.35 25.37 29.69

CodeGPT-2 18.25 28.69 32.71

CodeGPT-adapted 20.10 32.79 35.98

PLBART 18.75 36.69 38.52

PLBART10𝐾 17.25 31.40 33.32

PLBART20𝐾 18.45 34.00 35.75

PLBART30𝐾 18.65 34.84 37.08

PLBART50𝐾 17.70 35.02 37.11

CodeBART80𝐾 18.45 36.76 39.01

Table 5.9: An example of generated code by PLBART that is syntactically and semantically valid, but does
not match the reference.

Input text

returns the count to which the specified key is mapped
in this frequency counter , or 0 if the map contains no
mapping for this key .

Reference Code

Integer function (T arg0) {
Integer loc0 = counter.get(arg0);
if (loc0 == null) {

return 0 ;
}
return loc0;

}

Generated Code

int function (T arg0) {
Integer loc0 = counter.get(arg0);
if (loc0 == null) {

return 0 ;
}
else {

return loc0;
}

}

the reference code, line 6 will be executed only if the condition in line 3 (i.e.loc0 == null) is

false. In the generated code, loc0 will be returned only if the condition in line 3 is false,
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making the generated code semantically equivalent to the reference code.

To study whether PLBART learns code syntax and logical flow during pre-training or fine-

tuning, we perform an ablation study where we use subset of the training examples (10K, 20K, and

50K) to finetune PLBART in this task.As table 5.8 shows, with only 10K examples, PLBART out-

performs all baselines in terms of CodeBLUE. This ablation shows that PLBART learns program

syntax and data flow during pre-training, resulting in effective performance on downstream tasks

even when finetuned on small number of examples.

As we have shown in CODIT(§3), generating syntactically and logically correct code has been

a big challenge in program generation. While CODIT’s model is explicitly designed to ensure

syntactic correctness, We conjecture that PLBART’s large-scale denoising sequence-to-sequence

pre-training implicitly enables the model understand program syntax and logical flow; therefore

enables PLBART to generate syntactically and logically valid code.

Table 5.10: Results on source code translation using Java and C# language dataset introduced in [142].
PBSMT refers to phrase-based statistical machine translation where the default settings of Moses decoder
[119] is used. The training data is tokenized using the RoBERTa [138] tokenizer.

Methods Java to C# C# to Java
BLEU EM CodeBLEU BLEU EM CodeBLEU

Naive Copy 18.54 0 34.20 18.69 0 43.04

PBSMT 43.53 12.50 42.71 40.06 16.10 43.48

Transformer 55.84 33.00 63.74 50.47 37.90 61.59

RoBERTa (code) 77.46 56.10 83.07 71.99 57.90 80.18

CodeBERT 79.92 59.00 85.10 72.14 58.80 79.41

GraphCodeBERT 80.58 59.40 - 72.64 58.80 -

PLBART 83.02 64.60 87.92 78.35 65.00 85.27

Code to Code Translation. Table 5.10 presents the evaluation results on code translation. PLBART

outperforms all the baselines w.r.t. EM, BLEU, and CodeBLEU. PLBART improves over Code-

BERT by 9.5% and 10.5% when translating from Java to C# and C# to Java, respectively. Although

PLBART is not pre-trained on C# language, there is a significant syntactic and semantic similarity
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between Java and C#. Thus PLBART understands C# language syntax and semantics. However,

such similarities are non-trivial, making the Naive copy and PBSMT perform very poorly in both

the translation tasks.

Table 5.11: Example C# code generated by PLBARTthat does not exactly match the reference code.

Reference Code : C#

public bool find(int start_1){
findPos = start_1;
...
else{

if (findPos >= _regionEnd){
matchFound = false;
return false;

}
}
...

}

Generated Code : C#

public bool find(int start){
findPos = start;
...
else if (findPos >= _regionEnd){

matchFound = false;
return false;

}
...

}

Table 5.11 shows an example where PLBART’s generated C# code does not exactly match

the reference; however, they are semantically equivalent. In the reference, the else block (line

4-9) is equivalent to the else if block (line 4-7) in the generated code. In addition, start

is generated as function parameter and used in the function body, equivalent to start_1 in the

reference code. This further corroborates the syntactic understanding of PLBART and its ability to

reason about the data flow in source code.

Result 5.2: PLBART’s pre-training teaches the model to syntactically and semantically correct

code. When finetuned on a fraction of training data, PLBARTdemonstrates significantly better

performance in NL to code generation and code to code translation by generating syntactically

and semantically correct code.
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Finally, we evaluate PLBART in the context of this dissertation. In particular, we evaluate

PLBART’s performance for automatic program editing.

RQ-5.3. How effective is PLBARTin learning automated code editing?

Table 5.12: Results on program repair (Abstract Code).

Methods Small Medium
Exact Match Accuracy BLEU Exact Match Accuracy BLEU

Naive Copy 0 78.06 0 90.91

Seq2Seq 10.00 76.76 2.50 72.08

Transformer 14.70 77.21 3.70 89.25

CodeBERT 16.40 77.42 5.16 91.07
GraphCodeBERT 17.30 80.58 9.10 72.64

PLBART 19.21 77.02 8.98 88.50

Experimental Setup. We evaluate PLBART’s effectiveness in automated code editing in two

different versions (abstract and concrete) of the Bugfix dataset proposed by Tufano et al. [223].

While in the Concrete version, the identifier names appearing in the original code are retained, the

abstract version replaces such concrete identifier names with abstract names such as VAT_1,

METHOD_1 , etc. In this task, both the input and the output are in the same language. While the

input is a buggy code, the output should be the target bug-free code. Thus in this task, the exact

match is the critical metric.

Results. Table 5.12 shows the result of automated code editing in the abstract dataset. PLBART

can generate 17.13% and 74.03% more correct bug fixes than CodeBERT in Java𝑠𝑚𝑎𝑙𝑙 and Java𝑚𝑒𝑑𝑖𝑢𝑚

datasets, respectively. Unlike CODIT, in this evaluation, we are generating the whole method after

the edit pattern is applied since we pre-trained PLBARTon method granularity.

Table 5.13 shows the results on the concrete version of the code edits. Here we compare two

different granularities of the edited code. First, we compare when the model only generates the
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Table 5.13: Evaluation of PLBARTin generating concrete edits.

Method Mode of Exact Match Accuracy
Edited Code Small Medium

CODIT Patch Only 6.53 4.79

Transformer (PLBART Patch Only 20.65 7.87

without pretraining) Full Method 14.85 4.97

PLBART
Patch Only 26.67 19.79

Full Method 20.35 8.35

patched code. This experiment allows us to compare our earlier method, CODIT directly. Also,

we compare the whole method generation on the concrete dataset. When the whole edited method

is being generated, PLBART outperforms the Transformer model 4 by 37% in the small dataset

and 68% in the medium dataset. Such an improvement is wholly attributed to the PLBART’s pre-

training. PLBART achieves significantly higher performance than CODIT when we train PLBART

to generate the patched code only. In contrast to CODIT’s exact match accuracy of 6.53% and

4.79% exact in small and medium datasets, respectively, PLBARTachieves 26.67% and 19.79% in

those datasets. While we designed CODIT to explicitly encode the syntax property of source code

into the model, empirically, we show that PLBART can implicitly learn the syntax and semantic

properties of source code through pre-training.

Result 5.3: PLBART’s pre-training enables the model to jointly understand and generate source

code, which is crucial for automated code editing. Results show that pre-training from a large

corpus of data teach the model to generate syntactically and semantically correct code for auto-

mated code editing.

5.5 Concluding Remarks

This chapter presents PLBART, a sizeable pre-trained sequence-to-sequence model that can

perform program and language understanding and generation tasks. PLBART achieves state-of-

4This transformer model follows the same architecture as PLBART. The only difference is that this model is trained
from scratch.
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the-art performance on various downstream software engineering tasks, including code summa-

rization, code generation, and code translation. Furthermore, experiments on discriminative tasks

establish PLBART’s effectiveness on program understanding. We also show that PLBART learns

crucial program characteristics due to pre-training, such as syntax, identifier naming conventions,

data flow. While in this chapter, we empirically establish that large-scale pre-training teaches the

model through implicit encoding, in the next chapter, we will empirically investigate usage of

such model in automated code editing. In particular, we will experimentally evaluate different in-

put components useful for automated code editing in light of the implicitly encoded (pre-trained)

model.
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Chapter 6: On Multi-Modal Learning of Editing Source Code

6.1 Motivation

In the last chapter, we introduce PLBART, a bidirectional and autoregressive transformer pre-

trained on unlabeled data across PL and NL to learn multilingual representations applicable to a

broad spectrum of PLUG applications.

//Guidance: use LinkedList and fix sublist problem ...
public void addPicture (String picture){

if ((pictures) == null) {
- pictures = new ArrayList<>();
+ pictures = new LinkedList<>(); //correct patch
+ pictures = new HashSet<>(); //plausible patch

}
pictures.add(picture);

}

Figure 6.1: Example of an identical code (marked in red) changed in two different ways ( green and blue)
in two different contexts, where both can be correct patches. However, based on developers’ guidance (top
line) to fix a list related problem, green is the correct patch in this context.

While PLBART showed initial promise of using pre-trained model in automated code editing,

learning such generic code changes is challenging. A programmer may change an identical piece

of code in different ways in two different contexts, both can potentially be correct patches (see Fig-

ure 6.1).

For example, an identical code fragment pictures = new ArrayList <> ()was changed

in two different ways:

pictures = new HashSet<>(); and pictures = new LinkedList<>() in two

different code contexts. Without knowing the developers’ intention and the edit context, the auto-

mated code editing tools have no way to predict the most intended patches. For instance, in the

above example, LinkedList was used to fix a sublist-related problem. Once such an intention
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 1 // Guidance: fix problem which occurred when
 2 // the resulting json is empty ...
 3
 4 private String generateResultingJsonString(
 5       char wrappingQuote, Map<String, Object>jsonMap){
 6     JsonObject jsonObject = new JSONObject(jsonMap);
 7     String newJson = jsonObject.toJSONString(LT_COMPRESS);
 8     if (
 9 -        newJson.charAt(1) != wrappingQuote
10 +        !jsonObject.isEmpty() &&
11 +        (newJson.charAt(1) != wrappingQuote)
12     ){
13     return replaceUnescaped(
14        newJson, newJson.charAt(1), qrappingQuote);
15     }
16     return newJson;
17 }

Guidance Context

Figure 6.2: A motivating example. The guidance provides a brief summary of what needs to be changes.
The underlined tokens are directly copied from guidance and context into the patched code.

is known, it is easy to choose a LinkedList-related patch from the alternate options. Thus, such an

additional modality of information can reinforce the performance of automated code-editing tools.

In fact, given just a piece of code without any additional information, it is perhaps unlikely that

even a human developer can comprehend how to change it. Consider another real-life example

shown in Figure 6.2. If a programmer only considers the edited expression in line 9, it is difficult to

decide how to modify it. However, with additional information modalities – i.e. the guidance (line

1,2) and the context (the whole method before the patch), the correct patch often becomes evident

to the programmer since the guidance effectively summarises how to change the code and the

context provides necessary ingredients for generating a concretely patched code. We hypothesize

that such multi-modal information could be beneficial to an automated code-editing tool. To that

end, we design MODIT, a multi-modal code editing engine that is based on three information

modalities: (i) the code fragment that needs to be edited, (ii) developers’ intention written in

natural language, and (iii) explicitly given edit context.

In particular, MODIT is based on a transformer-based [228] NMT model. As input, MODIT

takes the code that needs to be edited (e.g., the lines that need to be patched), additional guidance

describing developers’ intent, and the context of the edits that are explicitly identified by the de-
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veloper (e.g., the surrounding method body, or surrounding lines of code, etc.). Note that previous

works [37, 44] also provided context and the edit location while generating edits; however, they

are fed together to the model as a unified code element. Thus, the model had the burden of identify-

ing the edit location and then generating the patch. In contrast, isolating the context from the edit

location and feeding them to the model as different modalities provides MODIT with additional

information about the edits.

Curating developers’ intent for a large number of edits that can train the model is non-trivial.

As a proof of concept, we leverage the commit messages associated with the edits to simulate

developers’ intent automatically. We acknowledge that commit messages could be noisy and may

not always reflect the change summary [139]. Nonetheless, our extensive empirical result shows

that, even with such noisy guidance, MODIT performs better in generating correctly edited code.

Being a model that encodes and generates source code, MODIT needs to both clearly under-

stand and correctly generate programming languages (PL). While several previous approaches [37]

designed sophisticated tree/grammar-based models to embed the knowledge of PL into the model,

the most recent transformer-based approaches [63, 78, 5] showed considerable promise with pre-

training with a large volume of source code. Since these models are pre-trained with billions of

source code written by actual developers, and transformers are known to learn distant dependen-

cies between the nodes, these models can learn about code structures during the pre-training step.

Among such pre-trained models, PLBART [5] learns jointly to understand and generate source

code and showed much promise in generative tasks. Thus, we chose PLBART as the starting point

to train MODIT, i.e., we initialize MODIT’s model with learned parameters from PLBART.

We evaluate MODIT on two different datasets ( 𝐵2𝐹𝑠, and 𝐵2𝐹𝑚) proposed by Tufano et al. [225]

consisting of an extensive collection of bug-fix commits from GitHub. Our empirical investigation

shows that a summary of the change written in natural language as additional guidance from the

developer improves MODIT’s performance by narrowing down the search space for change pat-

terns. The code-edit context, presented as a separate information modality, helps MODIT to gen-

erate edited code correctly by providing necessary code ingredients (e.g., variable names, method
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names, etc). MODIT generates ∼3.5 times more correct patches than CODIT showing that MODIT

is robust enough to learn PL syntax implicitly. Furthermore, MODIT generates two times as many

correct patches as a large transformer model could generate.

Additionally, our empirical investigation reveals that when we use one encoder to encode

all information modalities rather than learning from individual modalities separately, the model

learns representation based on inter-modality reasoning. In contrast, a dedicated encoder for each

individual modality only learns intra-modality reasoning. Our experiment shows that a multi-

modal/single-encoder model outperforms multi-modal/multi-encoder model by up to 46.5%.

We summarize our main contributions in this paper as follows.

• We propose MODIT– a novel multi-modal NMT-based tool for automatic code editing. Our

extensive empirical evaluation shows that Automatic Code Editing can be vastly improved

with additional information modalities like code context and developer guidance.

• We empirically investigate different design choices for MODIT. We provide a summary of

the lessons that we learned in our experiments. We believe such lessons are valuable for

guiding future research.

6.2 Methodology

Input Modalities

private String ... (char  ...
 Map<String, Object>jsonMap){...} 

fix problem which occurred
when the resulting json is empty 

newJson.charAt(1) != wrappingQuote

Modality 1: Code to be edited

Modality 2: Guidance

Modality 3: Context

newJson... <s> 
fix problem ... <s> 
private String ... }

<s> _new Json ...<s> 
_fix _problem ...<s> 
_private _String ... _}

Combined Multi-modal Input

Pre-processing

Tokenization

Tokenized Input

Encoder-Decoder Model

Transformer
Encoder

Transformer Decoder

Output Generation

_! _json
Object . is Empty
() _&& _( ... </s>

Top Candidate Code

Post-processing

Edited Code

! json.isEmpty() && ( newJson.charAt(1) !=
wrappingQuote )

Figure 6.3: Overview of MODIT pipeline

Figure 6.3 shows an overview of MODIT’s working procedure. MODIT is a multi-layer encoder-

decoder based model consisting of a Transformer-based encoder and a Transformer-based decoder.

89



Both the encoder and decoder consist of 6 layers. MODIT works on three different modalities of

information: (i) Code that needs to be edited (𝑒𝑝), (ii) natural language guidance from the devel-

oper (G), and (iii) the context code where the patch is applied (𝐶). We acknowledge that 𝑒𝑝 is

essentially a substring of 𝐶. However, by explicitly extracting and presenting 𝑒𝑝 to MODIT, we

provide MODIT with additional information about the change location. Thus, despite being a part

of the context, we consider 𝑒𝑝 a separate modality. Nevertheless, MODIT consists of three steps.

First, the pre-processing step processes and tokenizes these input modalities (§6.2.1). Then the en-

coder in MODIT encodes the processed input, and the decoder sequentially generates the patched

code as a sequence of tokens (§6.2.2). At final step, MODIT post-processes the decoder generated

output and prepares the edited code (§6.2.3).

6.2.1 Pre-processing

Input Consolidation. In the pre-processing step, MODIT generates consolidated multi-modal input

(𝑋) from the three input modalities (i.e. 𝑒𝑝, G, and𝐶). MODIT combines these input modalities as a

sequence separated by a special <s> token i.e. 𝑋 = 𝑒𝑝 <s> G <s> 𝐶 . In the example shown in Fig-

ure 6.2, 𝑒𝑝 is newJson.charAt(1))!= wrappingQuote , G is fix problem which

occurred when the resulting json is empty, and 𝐶 is the whole function before

the edit (see Input Modalities in figure 6.3). MODIT generates a consolidates multi-modal in-

put sequence as newJson.charAt(1)) ... <s> fix problem which occurred

... <s> private String ... }.

Tokenization. MODIT uses sentence-piece tokenizer [120]. Sentence-piece tokenizer divides every

token into sequence of subtokens. Such subword tokenization is similar to previously used byte-

pair encoding in automatic code editing literature [109, 101]. We use PLBART [5]’s sentence-

piece tokenizer which is trained on billions of code from GitHub. After tokenizing the consoli-

dated input 𝑋 from figure 6.2, we get _new Json . char At ( 1 ) ... <s> _fix

_problem _which _oc cur red ... <s> _private _String ... _}.
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6.2.2 Encoder-Decoder Model

The input to MODIT’s encoder-decoder model is a sequence of subtokens generated in the

previous step.

Transformer Encoder. Given an input sequence 𝑋 = 𝑥1, 𝑥1, ..., 𝑥𝑛, the encoder learns the represen-

tation of every token at layer 𝑙 as 𝑅𝑒
𝑙
(𝑥𝑖) using self-attention computed as

𝑅𝑒𝑙 (𝑥𝑖) =
𝑛∑︁
𝑗=𝑖

𝑎𝑖, 𝑗 ∗ 𝑅𝑒𝑙−1(𝑥 𝑗 ) (6.1)

Where 𝑅𝑒
𝑙−1(𝑥 𝑗 ) is the representation of subtoken 𝑥 𝑗 as generated by layer 𝑙−1, and 𝑎𝑖, 𝑗 is the atten-

tion weight of subtoken 𝑥𝑖 to 𝑥 𝑗 . Such attention weights are learned by multi-head attention [228].

Final layer generated representation (i.e. 𝑅𝑒6 (𝑥𝑖)) is the final representation for every subtoken 𝑥𝑖 in

the input. Note that, the encoder learns the representation of Equation (6.1) of a subtoken, using all

subtokens in the sequence. Thus the learned representation of every subtoken contains information

about the whole input sequence. Since we encode all the information modalities in one sequence,

the learned representation of every subtoken encodes information about other modalities.

Transformer Decoder. The decoder in MODIT is a transformer-based sequential left-to-right de-

coder consisting of 6 layers. It sequentially generates one subtoken at a time using previously

generated subtokens and the final representation (𝑅𝑒
𝑙
(𝑥𝑖)) from the encoder. The decoder contains

two modules – (i) self-attention, and (ii) cross-attention. The self-attention layer work similar to

the self-attention in the encoder. First, with self attention, decoder generates representation 𝑅𝑑 𝑙 (𝑦𝑖)

of last generated token 𝑦𝑖 with self attention on all previously generated tokens (𝑦1, 𝑦2, ..., 𝑦𝑖). This

self attention follows same mechanism described in Equation (6.1). After learning decoder rep-

resentation by self attention, decoder applies attention of encoder generated input representation

using the following equation,

D𝑙 (𝑦𝑖) =
𝑛∑︁
𝑗=𝑖

𝛼𝑙𝑖, 𝑗 ∗ 𝑅𝑒6 (𝑥 𝑗 ) (6.2)

Where 𝛼𝑙
𝑖, 𝑗

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑑𝑜𝑡

(
𝑅𝑒6

(
𝑥 𝑗
)
, 𝑅𝑑 𝑙 (𝑦𝑖)

))
is the attention weight between output subtoken
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𝑦𝑖 to input subtoken 𝑥 𝑗 . The softmax generates an attention probability distribution over the length

of input tokens. Finally the decoder learned representation, 𝐷 𝑙 (𝑦𝑖) is projected to the vocabulary

to predict maximally likely subtoken from the vocabulary as next token.

In summary, the encoder learns representation of every subtokens in the input using all input

subtoken, essentially encoding the whole input information in every input subtoken representation.

The decoder’s self-attention mechanism allows the decoder to attend to all previously generated

subtokens allowing the decoder decide on generating correct token at correct place. The cross-

attention allows the decoder to attend to encoded representation - implicitly letting the model

decide where to copy from the input where to choose from new tokens in the vocabulary. We

initialize the end-to-end encoder-decoder in MODIT using pre-trained weights of PLBART [5].

6.2.3 Output Generation

The decoder in MODIT continue predicting subtoken until it predicts the end of sequence </s>

token. During inference, MODIT uses beam search to generate sequence of subtokens. Once

the decoder finishes, MODIT post-processes the top ranked sequence in the beam search. First,

MODIT removes the end of sequence </s> token. It then detokenizes the subtokens sequence

to code token sequence. In this step, MODIT merges generated subtokens that are fragments of

a code token into one code token. For the example shown in figure 6.2, MODIT generates the

subtoken sequence _! _json . is Empty () _&& _( _new Json . char At

( 1 ) _!= _wrap ping Quote _) </s>. After detokenization, MODIT generates !

json.isEmpty()&& ( newJson.charAt(1)!= wrappingQuote ) .

6.3 Experimental Design

6.3.1 Dataset

To prove our concept of MODIT, we experiment on two different datasets (i.e. 𝐵2𝐹𝑠, and

𝐵2𝐹𝑚) proposed by Tufano et al. [225]. In these two datasets, they collected large collections
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Table 6.1: Statistics of the datasets studied.

Dataset Avg. Avg. Avg. tokens # examples
Tokens Change Size* in Guidance Train Valid Test

𝐵2𝐹𝑠 32.27 7.39 11.55 46628 5828 5831

𝐵2𝐹𝑚 74.65 8.83 11.48 53324 6542 6538
* Change size measured as token edit distance.

of bug-fix code changes along with commit messages from Java projects in GitHub. Each example

in these datasets contains the java method before the change (𝐶𝑝), the method after the change

(𝐶𝑛), and the commit message for the change. There are some examples (< 100) with corrupted

bytes in the commit message, which we could not process. We excluded such examples from the

dataset. Table 6.1 shows statistics of the two datasets we used in this paper. 𝐵2𝐹𝑠 contains smaller

methods with maximum token length 50, and 𝐵2𝐹𝑚 contains bigger methods with up to 100 to-

kens in length. The average size of the change (edit distance) is 7.39, and 8.83 respectively, in

𝐵2𝐹𝑠 and 𝐵2𝐹𝑚.

6.3.2 Data Preparation

For the datasets described in section 6.3.1, we extract the input modalities and the expected

output to train MODIT. For every method pair (i.e. before edit - 𝐶𝑝, after edit - 𝐶𝑛) in those

dataset, we use GumTree [62] to extract a sequence of tree edit locations. We identify the root

of the smallest subtree of 𝐶𝑝’s AST that encompasses all the edit operations. We call the code

fragment corresponding to that subtree as code to be edited(𝑒𝑝) and used as MODIT’s first modality.

Similarly, we extract the code corresponding to the smallest subtree encompassing all the edit

operations from 𝐶𝑛 and use that as code after edit(𝑒𝑛). We use the commit message associated

with the function pair as MODIT’s second modality, guidance(G). Finally, we use the full method

before edit (𝐶𝑝) as MODIT’s third modality, context(𝐶).
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6.3.3 Training

After combining every example in the datasets in MODIT’s input (𝑒𝑝, G, 𝐶) and expected

output (𝑒𝑛), we use this combined dataset to train MODIT. For training MODIT, we use Label

Smoothed Cross Entropy as loss function. We use Adam optimizer, with a learning rate of 5𝑒−5.

We train MODIT for 30 epochs, after every epoch, we run beam search inference on the validation

dataset. We stop training if the validation performance does not improve for five consecutive

validations.

6.3.4 Evaluation Metric

We use the top-1 accuracy as the evaluation metric throughout the paper. For proof-of-concept,

we evaluate all techniques with beam size 5. When the generated patched code matches exactly

with the expected patched code 𝑒𝑛, it is correct, incorrect otherwise. Note that this is the most

stringent metric for evaluation. Previous approaches [43, 146] talked about filtering out infeasible

patches from a ranked list of top k patches using test cases. However, we conjecture that such test

cases may not always be available for general purpose code edits. Thus, we only compare top-1

accuracy.

6.4 Research Findings

MODIT contains several design components: (i) use of multimodal information, (ii) use of

transformer and initializing it with the pre-trained model, and (iii) use of end-to-end encoder-

decoder (using PLBART) to generate patches instead of separately using pre-trained encoder or

pre-trained decoder, as used by previous tools. First, we are interested in evaluating MODIT w.r.t.

state-of-the-art methods. In particular, we evaluate how these three design choices effect MODIT’s

performance. So, we start with investigating,

RQ-6.1. How accurately does MODIT generate edited code w.r.t. other techniques?
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Experimental Setup. We carefully chose the baselines to understand the contribution from dif-

ferent design choices of MODIT. We evaluated our model in two experimental settings. First, we

train different baseline models where the full model is trained from scratch. In this setting, the first

baseline we consider is an LSTM with attention [23] NMT model. Various existing code patching

approaches [225, 43] used such settings. Second baseline is Transformer [228] based Seq2Seq

model. We consider two different-sized transformers. This enables us to contrast effect of model

size in code-editing performance. The Transformer-base model consists of six encoder layers and

six decoder layers. The Transformer-base model’s architecture is the same as MODIT’s architec-

ture. Furthermore, we consider another transformer with a much larger architecture. Transformer-

large contains twelve encoder layers and twelve decoder layers with three times as many learnable

parameters as the Transformer-base model. The final baseline in this group is CODIT, which is a

tree-based model. Comparison w.r.t. CODIT allows us to contrast externally given syntax informa-

tion (in the form of CFG) and learned syntax by transformers (i.e. MODIT). We use all three input

modalities (see Figure 6.3 for example) as input to the LSTM and Transformer. Using auxiliary

modalities is non-trivial with CODIT since the input to CODIT must be a syntax-tree. Thus, we use

uni-modal input (𝑒𝑝) with CODIT.

In the second setting, we consider different pre-trained models, which we used to fine-tune for

patch generation. Figure 6.4 shows schematic diagrams of the pre-trained models we compared in

this evaluation. First two models we considered are CodeBERT [63], and GraphCodeBERT [78].

Both of these models are pre-trained encoders primarily trained to understand code. To use these

for the patching task, we add a six-layered transformer-based decoder along with the encoder. The

decoder is trained from scratch (see figure 6.4(a)). Another pre-trained baseline is CodeGPT [142].

GPT is a single left-to-right decoder model primarily pre-trained to generate code. For the code

editing task, a special token <SEP> combines the input and the output as a sequence separated.

Jiang et al. [101] showed the effectiveness of GPT for the source code patching task (see fig-

ure 6.4(b)). In contrast to these pre-trained models, MODIT uses PLBART, an end-to-end encoder-

decoder model trained to understand and generate code simultaneously (see figure 6.4(c)). To
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<s> if ( first ... } <s>

first == </s>

first ==

null

null ;

;

Decoder Trained from
Scratch

Pretrained
Bidirectional Encoder

(a) CodeBERT — Consist of bidirectional pretrained encoder
and a decoder trained from scratch.

<SEP>

first == </s>

first ==

null

null ;

;

;

<SEP>

}

;

if

( ...

first ...<s>

if

Pretrained Left-to-Right Decoder

(b) CodeGPT — One pretrained single decoder processes the
input and output sequentially from left to right.

<s> if ( first ... } <s>

first == </s>

first ==

null

null ;

;

Pretrained
Bidirectional Encoder

Pretrained Left-to-
Right Decoder

(c) PLBART — Consist of pretrained bidirectional encoder
and pretrained left to right decoder.

Figure 6.4: Schematic diagram of the three types of pre-trained models. used to evaluate MODIT.

compare from a fairground, we evaluate these pre-trained models with uni-modal input (𝑒𝑝), and

multi-modal input (𝑒𝑝<s> G<s> 𝐶), separately.

Results. Table 6.2 shows the accuracy in top 1 predicted patch by MODIT along with different

baselines. LSTM based Seq2Seq model predicted 6.14% and 1.04% correct patches in 𝐵2𝐹𝑠 and

𝐵2𝐹𝑚 respectively. The Transformer-base model achieves 11.18% and 6.61% top-1 accuracy in

those datasets, which improves further to 13.40% and 8.63% with the Transformer-large model.

CODIT predicts 6.53% and 4.79% correct patches in 𝐵2𝐹𝑠 and 𝐵2𝐹𝑚, respectively. Note that

CODIT takes the external information in the form of CFG; thus, the patches CODIT generate are

syntactically correct. Nevertheless, the transformers, even the smaller model, perform better to

predict the correct patch. We conjecture that the transformer model can implicitly learn the code
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Table 6.2: Top-1 accuracies of different models w.r.t. their training type, model sizes, input modality.

Training Model # of Multi- Accuracy (%)
Type Name params (M) Modal 𝐵2𝐹𝑠 𝐵2𝐹𝑚

LSTM 82.89 ✓ 6.14 1.04

Transformer-base 139.22 ✓ 11.18 6.61

Transformer-large 406.03 ✓ 13.40 8.63
Fr

om
Sc

ra
tc

h

CODIT 105.43 ✗ 6.53 4.79

✗ 24.28 16.76
CodeBERT 172.50

✓ 26.05 17.13

✗ 24.44 16.85
GraphCodeBERT 172.50

✓ 25.67 18.31

✗ 28.13 16.35
CodeGPT 124.44

✓ 28.43 17.64

Vanilla PLBART† 139.22 N/A 20.35 8.35

✗ 26.67 19.79

Fi
ne

-t
un

ed

MODIT 139.22
✓ 29.99 23.02

† - vanilla PLBART generates the whole method after the edit, while MODIT generates just the patched code.

syntax without direct supervision.

In contrast to the models trained from scratch, when we fine-tune a pre-trained model, it gener-

ates significantly more correct patches than models trained from scratch. For instance, MODIT (ini-

tialized with pre-trained PLBART) generates 168% and 248% more correct patches than the Transformer-

base model (with randomly initialized parameters), despite both of these models having the same

architecture and the same number of parameters. In fact, the smallest fine-tuned model (CodeGPT)

performs much better than the larger model trained from scratch (Transformer-large).

All the fine-tuned models exhibit better performance when the input data are multi-modal with

various degrees of improvement. With all three input modalities, CodeBERT [63] generates 7%

and 2.2% more correct patches in 𝐵2𝐹𝑠 and 𝐵2𝐹𝑚, respectively, compared to a unimodal Code-

BERT model. In case of MODIT, such improvement is 11.07% in 𝐵2𝐹𝑠 and 16.23% in 𝐵2𝐹𝑚.

The G in the multi-modal data often contains explicit hints about how to change the code. For

instance, consider the example shown in Figure 6.2, the guidance explicitly says there is a problem

with the json when it is empty. Furthermore, with the presence of 𝐶 in the input, the model can
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identify different variables, methods used in the method and potentially copy something from the

context. We conjecture that such additional information from these two additional input modalities

(i) reduce the search space for change patterns, (ii) help models copy relevant identifiers from the

context.

Among the fine-tuned models multi-modalities, MODIT generates 15.12% more correct patches

than CodeBERT, 16.82% than GraphCodeBERT, and 5.49% than CodeGPT in 𝐵2𝐹𝑠. In the case

of 𝐵2𝐹𝑚 dataset, MODIT’s improvement in performance is 34.38%, 25.72%, 30.50% higher than

CodeBERT, GraphCodeBERT, and CodeGPT, respectively. To understand these results better, let

us look at some of the examples.

//Guidance: merging of items that aren’t actually equal
public static boolean equals(

ItemStack one, ItemStack two) {
- return one.isSimilar(two) &&
- (one.toString().equals(two.toString()));
+ return one.isSimilar(two); //MODIT generated

/* CodeGPT generated */
+ return one.toString().equals(two.toString());
}

Figure 6.5: Example patch where MODIT was able to generate correct patch, but CodeGPT could not.
MODIT’s patch is shown in green, and CodeGPT generated patch is shown in blue.

Figure 6.5 shows an example patch where MODIT correctly generated the expected patch

but CodeGPT could not. If we look closely, we can see that the code to be changed (𝑒𝑝) is a

boolean expression where the two clauses are combines with &&. While only the first clause,

one.isSimilar(two) is the expected output, CodeGPT chooses the second clause, one.

toString().equals(two.toString()) from the original. Recall from figure 6.4(b),

CodeGPT processes the combined input and output sequence (separated by special <SEP> token)

in left-to-right fashion. Thus, encodes representation of the input tokens do not contain information

about the whole input sequence. In contrast, the MODIT uses a pre-trained bi-direction encoder

which helps MODIT to understand the input fully. Based on the examples we have seen and the

empirical result, we conjecture that, for code-editing tasks, the model must fully understand the
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// Guidance: ... code refactoring ...
public boolean isEmpty() {
- if((first) == null){ return true;}
- return false;
+ return (first) == null; //MODIT predicts

/* CodeBERT generated */
+ return ((first) == null) || (first.get()) == null;

}

Figure 6.6: Correctly predicted patch by MODIT. CodeBERT could not understand and reason about the
textual hint to predict the correct patch.

input in a bi-directional fashion.

Figure 6.6 shows an example where MODIT generated correct patch, CodeBERT could not.

Note that the guidance text explicitly asks about code refactoring, implying that the patched code

should be semantically similar to the original code. Similar to the original code, patched could

should return true when first == null , otherwise it should return false . An automated

code change tool should not add additional code features when doing the refactoring. However,

CodeBERT generated patch which introduced an additional clause first.get()== null in

the return expression, which make CodeBERT’s generate code semantically different from the

original. MODIT was able to generate the correct patch for this example.

Finally, we summarize the empirical lessons we learned in this research question as

• Multi-modal input improves Code-Editing capability, irrespective of the underlying model

used. The guidance often narrows the edit pattern search space, and the context narrows

down the token generation search space.

• Transformer models (especially larger ones) are robust enough to learn the code’s syntax

information without direct supervision. When a pre-trained model is used to initialize trans-

former parameters, the improvement is notably higher.

• For code-editing task, both understanding the input and correctly generated output are im-

portant. While a pre-trained encoder understands the code and a pre-trained decoder gener-

ates correct code, an end-to-end pre-trained encoder-decoder model (e.g., PLBART) the best
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choice to fine-tune for this task.

Result 6.1: MODIT generates 29.99%, and 23.02% correct patches in top-1 position for two dif-

ferent datasets outperforming CodeBERT by up to 25.72%, GraphCodeBERT by up to 34.38%,

and CodeGPT by up to 30.50%. Pre-trained models tend to be more effective than models trained

from scratch for code editing—MODIT improves the performance by 167% than the best model

trained from the scratch.

MODIT uses three input modalities. Our next evaluation target is how these individual modali-

ties effect MODIT’s performance? Thus we ask,

RQ-6.2. What are the contribution of different input modalities in MODIT ’s performance?

Experimental Setup. In this experiment, we investigate the contribution of different input modal-

ities in MODIT’s performance. Recall from section 6.2.1 that we use three inputs in MODIT (i.e.

𝑒𝑝, 𝐶, G). Here, we investigate different combinations of such input modalities. More precisely,

we investigate the influence of three information sources: (i) code that needs to be changed (𝑒𝑝), (ii)

context (𝐶), and (iii) guidance (G). Note that, by presenting 𝑒𝑝 as a separate information modality,

we are essentially providing MODIT with the information about the location of the change. To

study the effect of such presentation, we study another alternative experimental setup, where we

annotate the change location inside the context with two unique tokens <START> and <END>.

Results. Table 6.3 shows MODIT’s performance with different combination of input modalities.

When we present only the context to MODIT, it predicts 13.05% correct patches in 𝐵2𝐹𝑠 and

4.50% in the 𝐵2𝐹𝑚, which improves further to 17.89%, and 4.51% in those two datasets respec-

tively when we add G. Note that in these two scenarios, the model does not explicitly know which

portion of the code needs to be edited; it sees the whole method and predicts (only) the patched

code (𝑒𝑛). In addition to learning how to patch, the model implicitly learns where to apply the patch

in this setup. To test whether the identification of such location is the performance bottleneck, we
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Table 6.3: Contribution of different input modalities in MODIT’s performance. ✓ indicates that correspond-
ing input modality is used as encoder input, ✗ indicates otherwise. We report top-1 accuracy as performance
measure. Exp. ID is used later to refer to corresponding experiment result. Exp. ID Φ∗ denotes an experi-
ment with ∗ as input modalities.

Exp. ID
Inputs Accuracy (%)

𝑒𝑝 𝐶 G 𝐵2𝐹𝑠 𝐵2𝐹𝑚
Φ𝑐 ✗ ✓ ✗ 13.05 4.50

Φ𝑐𝑔 ✗ ✓ ✓ 17.89 4.51

Φ
†
𝑐 ✗ ✓† ✗ 13.03 4.53

Φ
†
𝑐𝑔 ✗ ✓† ✓ 17.90 4.60

Φ𝑒 ✓ ✗ ✗ 26.67 19.79

Φ𝑒𝑔 ✓ ✗ ✓ 28.76 21.63

Φ𝑒𝑐 ✓ ✓ ✗ 29.79 21.40

Φ𝑒𝑐𝑔 ✓ ✓ ✓ 29.99 23.02
† 𝑒𝑝 is surrounded by two special tokens <START> and <END> inside the context.

surround the code that needs to be patched with two special tokens <START> and <END>. Se-

quenceR [44] also proposed such annotation of buggy code. Surprisingly, such annotation resulted

in comparable (slightly worse in one case) performance by MODIT.

In the next set of experiments, we extract the code that needs to be edited (𝑒𝑝) and present it

as a separate input modality. First, we only present the 𝑒𝑝 without the other two modalities. When

we only present the 𝑒𝑝 and generate the edited code (𝑒𝑛), it results in 26.67% top-1 accuracy in

the 𝐵2𝐹𝑠 and 19.79% in the 𝐵2𝐹𝑚. Ding et al. [58] attributed such improvement to the reduced

search space due to shorter input. Our result corroborates their empirical findings. Nevertheless,

when we add the G modality with the 𝑒𝑝, MODIT’s performance improves to 28.76% and 21.63%

in 𝐵2𝐹𝑠 and 𝐵2𝐹𝑚, respectively.

In our final set of experiments in this research question, we augment 𝑒𝑝 with the 𝐶. In this

evaluation setup, MODIT predicts 29.79% correct patches in the 𝐵2𝐹𝑠 and 21.40% in the 𝐵2𝐹𝑚,

which is improved further to 29.99%, and 23.02% correct patches in those two datasets when we

add G.

Figure 6.7 shows an example where MODIT with all modalities could successfully generate

101



// Guidance: fixed some bugs in type checking
// improved performance by caching types of expressions
private TypeCheckInfo getType(SadlUnionType expression){

...
return new TypeCheckInfo(

- declarationConceptName, declarationConceptName
/* MODIT generated patch with guidance */

+ declarationConceptName, declarationConceptName,
+ this, expression

/* MODIT generated patch without guidance */
+ this.declarationConceptName,
+ this.declarationConceptName

);
}

Figure 6.7: Example showing the effect of textual guidance in MODIT’s performance. MODIT produced the
correct patch with guidance, without guidance as input MODIT’s produced patch is essentially refactored
version of original input.

correct patch. The text guidance (G) provides hint that variable expression should somehow

associate with the construction of TypeCheckInfo in the patched code. However, without this

guidance MODIT generated a wrong patch by accessing existing parameters from this object.

Essentially, without the guidance, MODIT refactored the input code.

// Guidance: Fix bug of sending wrong message
public void setPredecessor (model.Message m) {

this.predecessor = Integer.valueOf(m.Content);
model.Message sent = new model.Message();
sent.To = m.Origin;

- sendMessage(m);
/* MODIT generates with the context. */

+ sendMessage(sent);
/* MODIT generates without context as input. */

+ sendMessage(m.toString());
}

Figure 6.8: Example showing the necessity of context information in predicting the correct patch. MODIT’s
generated correct patch with the context as input. Without context, MODIT received sendMessage(m)
and the guidance as input, did not know the variable sent could be the parameter of the function
sendMessage, and predicted a wrong patch.

Figure 6.8 shows the effect of context as input modality to MODIT. The before edit version

of the code(𝑒𝑝) passed the wrong parameter (m) to sendMessage function. When the context
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(𝐶) is presented to MODIT, it saw another variable (sent) in the context. In contrast, without

context(𝐶), MODIT indeed changed the parameter; but sent m.toString() — resulting in a

wrong patch.

When we extract the buggy code and present the buggy code along with the context, we see a

big performance improvement (see the difference between Φ𝑐, and Φ𝑒𝑐 in table 6.3).

We hypothesize that, when only context (i.e. full code) is presented (Φ𝑐), the model gets con-

fused to identify which portion from the context needs to be edited since any portion of the code is

a likely candidate for patching. However, when we extract the exact code that needs to be edited

and present as a separate input modality to MODIT, it can focus on patching just that code using

other modalities (including the context) as a supporting source of information. In a recent study,

Ding et al. [58] pointed out the need for effective ways to include context in the NMT based code

editors. Our empirical results show that MODIT’s way of including context as a separate modality

is a potential solution to that problem.

In summary, each of the modalities contribute to the overall performances of MODIT. Lessons

learned in these experiments are:

• Additional textual guidance helps the patch generation. Such guidance can provide important

clue about how to modify the code and sometimes provide ingredients necessary for the

change.

• Adding context explicitly in the input enables the model to select appropriate identifiers for

patching.

• Isolating buggy code help the model put proper focus on the necessary part of the code while

leveraging auxiliary information from other modalities.

Result 6.2: All three modalities (code to be edited, context, and guidance) are essential for

MODIT to perform the best. Without either one of those, performance decreases. MODIT’s per-
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formance improves up to 37.37% when additional textual guidance is used as an input modality.

Context modality improves MODIT’s performance up to 6.4%.

Recall from Section 6.2.1, MODIT proposes to encode all the input modalities as a sequence and

use one encoder for the consolidated multi-modal input. An alternative to this encoding mechanism

is to encode individual input modality with dedicated input encoder. Our next evaluation aims at

finding out the best strategy to encode input modalities. Hence, we investigate,

RQ-6.3. What is the best strategy to encode multiple input modalities?

Experimental setup. To validate MODIT’s design choice of appending all input modalities into

one sequence, we test alternative ways to combine input modalities. In particular, we follow the

design choice proposed by Lutellier et al. [146], where they used multiple encoders to encode the

𝑒𝑝 and the 𝐶. Tufano et al. [226] also leverages a similar idea to encode input code and code

review messages. Nevertheless, we use a multi-encoder model shown in figure 6.9. In a multi-

...

<s> if ( first ... }

Code Encoder

<s> public boolean isEmpty ...}

Context Encoder

<s> code refactoring...

Guidance Encoder

<s>

first == </s>

first ==

null

null ;

;

Decoder

Figure 6.9: An alternative architecture of code editing with multi-encoder model. We initialize each of the
encoders with pre-trained Encoder model.

encoder setting, we first encode each input modality with a corresponding dedicated encoder. After

the encoder finishes encoding, we concatenate the encoded representations and pass those to the

decoder for generating patched code. To retain maximum effectiveness, we initialize each individ-

ual encoder with pre-trained weights from CodeBERT [63]. We consider a single-encoder model

(also initialized with CodeBERT) as a baseline to compare on the fairground. While presenting the

inputs to the single encoder model, we concatenate input modalities with a unique separator token
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<s>. Finally, to test the robustness of our empirical finding, we propose two different experimental

settings. In the first evaluation setup, we use all three input modalities. We compare a tri-encoder

model with a single-encoder model. Next, we consider bimodal input data – 𝑒𝑝 and G. We use a

dual-encoder model and compare it with a single-encoder model in this setup.

Table 6.4: Comparison of multi encoder model.

# of # of Accuracy (%)
Modalities Encoders 𝐵2𝐹𝑠 𝐵2𝐹𝑚

3 (𝑒𝑝, G, 𝐶)
3 20.63 11.69

1 26.05 17.13

2 (𝑒𝑝, G)
2 23.12 15.49

1 23.81 17.46

Result. Table 6.4 shows the result of multi-encoder models. For tri-modal input data, if we use

three different encoders, the model can predict 20.63% correct patches in the 𝐵2𝐹𝑠 and 11.69%

correct patches in the 𝐵2𝐹𝑚. In contrast, if we use a single encoder, the model’s predictive perfor-

mance increases to 26.05% and 17.13% top-1 accuracy in the 𝐵2𝐹𝑠 and the 𝐵2𝐹𝑚, respectively.

In the bimodal dataset (where the input modalities are 𝑒𝑝 and G), the dual-encoder model

predicts 23.12% correct patches in the top-1 position for the 𝐵2𝐹𝑠 and 15.49% correct for the

𝐵2𝐹𝑚. The single encoder counterpart, in this setup, predicts 23.81% correct patches for the 𝐵2𝐹𝑠

and 17.46% for the 𝐵2𝐹𝑚. The empirical results show that the single-encoder model performs

better in both the experimental setup than the multi-encoder setup. We find similar results with

GraphCodeBERT [78].

To explain why single-encoder is performing better than multi-encoder, let us look at the en-

coders’ working procedure. Figure 6.10 depicts how the encoder generates representation for input

tokens. Note that the encoders we used in this research question are transformer-based generating

representation for an input token by learning its dependency on all other tokens in the sequence.

When we present all the input modalities to a single encoder, it generates input representation for
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Y1X1 X2 Y2 Decoder

Single Encoder

(a) Single encoder for encoding multiple-modalities. Encoder can
learn representation w.r.t. all modalities.

Y1 Y2

X1 X2

DecoderEncoder 1

1

Encoder 2

(b) Dual-encoder for encoding individual modalities separately.
Representation of tokens from a particular modality is learned w.r.t.
(only) other tokens from the same modality.

Figure 6.10: Input token representation generation in single encoder and multiple encoder.

those tokens w.r.t. and other tokens in the same modality and tokens from other modalities. For

instance, in figure 6.10(a), the encoder generates 𝑋2’s representation considering 𝑋1, 𝑌1, and 𝑌2. In

contrast, in figure 6.10, 𝑋2’s representation is learned only w.r.t. 𝑋1, since encoder1 does not see

the input modality 𝑌 . Thus, when we present all the input modalities to one single encoder, we

conjecture that learned representations are more robust than that of learning with multi-encoder.

Finally, we summarize the lessons we learned in this research question as

• In multi-modal translation, using single encoder results in better performance than using a

separate encoder for each modality.

• Single-encoder generates input representation by inter-modality reasoning (attention), hence

learns more robust representation than that of multi-encoder.

Result 6.3: Encoding all the input modalities by a single encoder is the best way to learn in a

multi-modal setting. A single encoder improves code-editing performance by up to 46.5% than

the corresponding multi-encoder setting.
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Both in CODIT (§3), and MODIT (this work), we assumed that the location of the code change

is given. This assumption may pose a threat to the usefulness of MODIT in a real development

scenario. To study the impact, we ask

RQ-6.4. What is the impact of localization in automated code editing

To answer to the research question, we perform an experiment where we pass the whole function

as input to MODIT and expect the whole edited function to be generated. Table 6.5 shows the

Table 6.5: Performance of MODIT when the input in the full code and the output is patched full code.

Inputs Accuracy (%)

Full Code Guidance 𝐵2𝐹𝑠 𝐵2𝐹𝑚
✓ ✗ 20.35 8.35

✓ ✓ 21.57 13.18

top-1 accuracy in the 𝐵2𝐹𝑠 and the 𝐵2𝐹𝑚. MODIT generates correctly patched full code in

20.35% cases for the 𝐵2𝐹𝑠 and 8.35% cases for the 𝐵2𝐹𝑚. With additional textual guidance,

the performance is further improved to 21.57% and 13.18% in the 𝐵2𝐹𝑠 and 𝐵2𝐹𝑚, respectively.

While textual guidance helps in this experimental setup, we notice a big drop in performance than

the results shown in table 6.3. This is because the benchmark datasets we used contain small edits

(see table 6.1). Thus, while generating the full code, the model wastes a large amount of effort

trying to generate things that did not change. Nevertheless, our hypothesis external guidance

improves code editing holds even when the model generates full code.

Result 6.4: Knowing the precise location to edit code significantly improves the performance

of automated code editing. When the model knows the precise location, it (i.) precisely knows

which portion of the code to put most emphasis on, and (ii.) does not waste resources trying to

generate code which did not change.
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6.4.1 Discussion & Threats to Validity

Tokenization for Source Code Processing

Table 6.6: Comparison between concrete tokenization and abstract tokenization alongside pre-trained mod-
els. Results are shown as top-1 accuracy of full code generation in 𝐵2𝐹𝑠/ 𝐵2𝐹𝑚 datasets.

Token type CodeBERT GraphCodeBERT PLBART

Abstract 16.4 / 5.16 17.30 / 9.10 19.21 / 8.98

Concrete 17.3 / 8.38 16.65 / 8.64 20.35 / 8.35

The possible number of source code can be virtually infinite. Vocabulary explosion has been

a big challenge while processing source code with Machine Learning technique [224, 110]. Pre-

vious research efforts have addressed this problem using several different heuristics. For instance,

Tufano et al. [224, 225] identifiers abstraction, which drastically reduces the vocabulary size con-

sidered making it easier to learn patterns by the model. Recent studies [58, 146, 101, 110] found

that Byte-Pair Encoding [210] partially solves the open-vocabulary problem by sub-dividing rare

words into relatively less rare sub-words. Such sub-division is also learned from large corpora of

data. All the pre-trained models used in this paper used sub-word tokenization techniques. Code-

BERT and GraphCodeBERT used RoBERTa tokenizer [138], CodeGPT used GPT tokenizer [187],

and PLBART used sentence-piece tokenizer [120]. The use of such tokenizers strips away the

burden of identifier abstraction. Our investigation shows that, in some cases, pre-trained models

perform better with concrete tokens than abstract tokens (see table 6.6 for detailed result). Thus,

we champion using input and outputs with concrete tokens when a pre-trained model is used.

External Validity

Bias in the dataset. Both 𝐵2𝐹𝑠, and 𝐵2𝐹𝑚 are collection of bug-fix commits, and thus there is

a threat that these dataset may exhibit specific bias towards bug-fix patches. While the commits

in these datasets are filtered and classified as bug fix commits, these changes are made by real

developers as part of development life cycle. Unlike other bugfix datasets [104], 𝐵2𝐹𝑠 and 𝐵2𝐹𝑚
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do not isolate the bug. Thus, we conjecture that possibility of existence of any such bias is minimal.

Noise in commit message. We used commit message as a guidance for code editing. While

previous research efforts [250, 251] showed that commit messages are very useful to summarize

the changes in a commit, other research efforts [68, 114] also elucidated noises present in the

commit message. To mitigate this threat, we carefully chose the dataset we tested MODIT on.

The original authors [225] of the the dataset reported that they carefully investigated the dataset

and after manual investigation, they reported that 97.6% of the commits in their datasets are true

positive. Despite this threat, MODIT’s performance seems to improve with commit message as

additional input.

Construct Validity

In general, developers write commit message after they edited the code, in theory, summarizing

the edits they made. In this paper, we assumed an experimental setup where developer would write

the summary before editing the code. Such assumption may pose a threat to the applicability

of MODIT in real world, since in some cases, the developer may not know what edits they are

going to make prior to the actual editing. Regardless, we consider MODIT as a proof-of-concept,

where empirically we show that, if a developer had the idea of change in mind, that could help an

automated code editor.

Internal Validity

All Deep Learning based techniques are sensitive to hyper-parameters. Thus using a sub-

optimal hyper-parameter can pose a threat to the validity of MODIT, especially while comparing

with other baselines. As we compared with other pre-trained models, we cannot really modify

the architecture and dimensions of other pre-trained models. As for other hyper-parameters (i.e.

learning rate, batch size, etc), we use the exact same hyper-parameters described by respective

paper. Nevertheless, we open source out code and data for broader dissemination.
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6.5 Concluding Remarks

In this chapter, we highlight that an automatic code edit tool should possess knowledge about

the underlying programming language, in general. Also, it can benefit from additional informa-

tion such as edit context and developers’ intention expressed in natural language. To that end,

we design, present, and evaluate MODIT– a multi-modal NMT-based automated code editor. Our

in-depth evaluation shows that MODIT improves code-editing by leveraging knowledge about pro-

gramming language through pre-training. In addition, we showed that leveraging additional modal-

ities of information could benefit the source code editor. Our empirical evaluation reveals some

critical lessons about the design choices of building an automated code editor that we believe will

guide future research in automatic code editing.
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Chapter 7: Generative pre-training by “Naturalizing” source code

7.1 Motivation

Statistical models of the “naturalness" of code [89] have proven useful for a range of Soft-

ware Engineering tasks [10, 185], including code generation [18], repair [37, 225], summariza-

tion [136], retrieval [175], and clone detection [236, 57]. The earlier work in this area trained

models directly on tasks, including the early work on type recovery [84, 11], de-obfuscation [195,

227], repair [80], and summarization [97, 4]. Training on-task requires a lot of labeled data.

While labeled data is abundant for tasks like code completion (where the corpus inherently pro-

vides supervision), other tasks like code generation, translation, summarization, repair, etc., require

well-curated, high-quality data. Simply grabbing data from Github might yield poor-quality [75],

highly-duplicated data [7]. With increasing model capacity (hundreds of millions, even billions of

parameters, are pretty common; larger models tend to perform better [41, 232]), this unacceptable

disparity between vast model capacity and the limited availability of well-curated, high-quality,

labeled data has increased and will likely worsen.

This shortage of high-quality labeled data for on-task training is not unique to Software En-

gineering (SE), although it is complicated here by the increased, specialized skill required for

labeling SE data. To address the issue of training large models in the presence of data scarcity,

such models are often pre-trained on some generic tasks, which relate to actual downstream tasks.

For example, consider two SE tasks: code generation and code translation. Both tasks require

ML models to learn how to generate natural, syntactically, and semantically correct code. This

commonality across tasks motivates a quest for better pre-trained models, using a self- (or un-)

supervised task which transfers well to other downstream tasks. Such pre-trained models can also

learn a generic representation of the input data, which, in turn, transfers to diverse downstream
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tasks.

A popular approach for dealing with this problem involves derivatives of BERT style mod-

els [54], e.g., CodeBERT [63], GraphCodeBERT [78], etc. These models are good at captur-

ing generic code representations. For code generation tasks, GPT-3 or BART-style models (e.g.,

Codex, CodeT5, PLBART, SPTCode, etc. [41, 5, 232, 170]) are popular. The important insight

here is that independent of final tasks, when very high capacity models are trained with huge code

corpora to learn simple, self-supervised, “busy work”, they still learn general syntactic and seman-

tic constraints of writing code. Different approaches adopt different techniques to train the model

to write code. For instance, GPT-style models (e.g., Codex) learn to generate code sequentially,

mimicking the left-to-right language model. CodeT5 masks out some tokens and asks the model to

generate only those masked tokens. On the other hand, PLBART and SPT-Code present the model

with erroneous code (with deleted or masked tokens) and ask the model to generate the corrected,

complete code. The models’ ability to generate code depends mainly on the pre-training objective

that the model is optimized for.

We propose a novel pre-training task: we ask the model to “naturalize" code, i.e. take “weird",

synthetic code as input and output semantic equivalent, “natural" code that a human developer

would have written. This is a very demanding pre-training task—the model has to learn both

code naturalness and code semantics. We were inspired by noting the work of human Editors (of

books, journals, newspapers): they digest imperfectly written but mostly correct text, understand

the intent, and then produce more perfect text with pretty much the same meaning. Editing is hard:

a skilled Editor has to have very high levels of language comprehension, to understand given,

potentially badly-written text, and then deploy very high-level writing skills to generate well-

formed text. If Editing could be used as an at-scale pre-training task, the learned model would

presumably have excellent language comprehension and also generate excellent text. However, it’s

not obvious how to generate at-scale training data for this “Editing" task, say, for English.

But our concern here is code, not natural language. We start with the argument that, because

of the bimodal, dual-channel nature of code [33], it is indeed possible to generate at-scale training
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a. Natural Code

Scanner sc = new Scanner(...);
while (sc.hasNext()) {

String ln = sc.next();
...

}
...

b. Un-natural code

Scanner sc = new Scanner(...);
for ( ; sc.hasNext() ; ) {

String ln = sc.next();
...

}
...

Figure 7.1: Example of a natural code fragment written by developers and its ‘un-naturally’ transformed
counterpart. If the initialization and update part of the for loop were to left empty, developers
would write the while loop.

data for the Editing task (a.k.a. refactoring in Software Engineering terminology). Code has a

formal channel, with well-defined semantics; because of this, it’s possible to transform code into

endless forms, all meaning-equivalent. Essentially, we can deploy a set of meaning preserving

transformations to rewrite existing code from widely-used GitHub projects (which presumably

have good-quality code that has passed human code review). These rewrites, (e.g., Figure 7.1),

preserve meaning but will make the code into an artificial, often unnatural form1.

Nevertheless, after rewriting code with de-naturalizing transformation, we now have a matched

pair of two semantically equivalent forms of code: a “de-naturalized" form and the original “nat-

ural" form. Furthermore, we can produce these pairs at-scale, and then pre-train on a code “Nat-

uralization" task. By analogy with human Editors as described above, such pre-training forces

the model to learn two hard things: 1) capture the meaning of the input code, and 2) generate an

output that more closely resembles human-written code. We hypothesize that the resulting model

will both learn better meaning representations, and also generate better code.

To this end, we pre-trained our NetGen model, using “Code Naturalizing” task. NetGen is

based on a transformer-based sequence-to-sequence model, and learns to “naturalize" artificially

generated “de-naturalized" code back into the form originally written by developers. We em-

phasize that NetGen learns to generate the whole code; this learned skill transfers to downstream

fine-tuning tasks that require code generation. We show that our pre-training objective helps model

generate more natural code (complete code, with high syntactic and semantic similarity with the

1Studies, with human-subjects [35, 34] suggest that humans find such rewritten but semantically identical forms
harder to read and understand.
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original human-written code). With proper fine-tuning, NetGen achieves state-of-the-art perfor-

mance in various downstream fine-tuning tasks, including code generation, code translation, bug

fix, that demand code generation. We also show that NetGen is specially effective when labelled

data is scarce. We summarize our main contributions.

1. We introduce the idea of "Code naturalization" as a pre-training task.

2. Using code from Github, and custom tooling, we have generated and released a large dataset

for pre-training models on the Naturalization task.

3. We have built and released a large Sequence-to-Sequence model pre-trained on Naturaliza-

tion.

4. We show that (when appropriately fine-tuned) NetGen outperforms SOTA on several set-

tings.

7.2 Background & Problem Formulation

This section presents the relevant technical background that leads to this work and an overview

of the main research questions.

7.2.1 The Dual Channels of Code

Humans can read and write both natural languages and code. However, unlike natural language,

source code involves two channels of information: formal & natural [35]. The formal channel,

unique to code, affords precise, formal semantics; interpreters, compilers, etc., use this channel.

On the other hand, the natural channel (perhaps more probabilistic and noisy) relies on variable

names, comments, etc., and is commonly used by humans for code comprehension and communi-

cation [34, 35]. The formal channel’s precision enables semantic preserving code transformation,

which supports static analysis, optimization, obfuscation, etc. For instance, major refactoring of

a source code may drastically change the syntactic structure while preserving the semantics [67,
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57]. However, not all the semantically equivalent code is “natural" [88]—the usual way developers

write code and thus, amenable to statistical models [88]. In fact, deviation from such “naturalness"

may lead to unintended bugs [190], and increase difficulty of human comprehension [34, 35].

We leverage the natural/formal duality for our pre-training objective in this work. We keep

the formal channel constant (not changing the meaning) for a given code and modify the syntax

by creating “unnatural” code. Then we train the model to take the “unnatural" code as input and

do what a human Editor does with natural language text: understand the “unnatural" code and

generate more natural code that a developer would write. Thus, the model simultaneously learns

to both comprehend code, and generate “natural” code.

7.2.2 “Naturalizing" vs. De-noising

Naturalizing pre-training essentially follows in the tradition of denoising pre-training, although,

arguably, the former is more subtle and challenging. Denoising pre-training [126, 122, 5] is a

well-established pre-training strategy for encoder-decoder models: the encoder is presented with a

noised-up input, and the decoder is asked to generate the original, noise-free input. By training the

model to identify & remove “noise” in a noisy output, (in theory) one teaches it to reason about

and correctly generate text. Exactly what a model learns largely depends on the noise types. For

instance, PLBART [5] uses syntactic noise2(i.e. token masking, token deletion, etc.). Thus, denois-

ing pre-training enables PLBART to learn both about the syntax of input source code, and learn

to generate syntactically correct code. Naturalizing pre-training, on the other hand, begins with

syntactically correct but artificially-created unnatural source code and forces the model to gener-

ate correct semantically equivalent natural code that is just what a human originally wrote. Such

pre-training requires more subtle changes to the code. We hypothesize that this provides a more

demanding pre-training setting, which will lead to better on-task code generation performance.

2Noise that breaks the syntax structure of code
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7.2.3 Research Questions

Our hypothesis is that our naturalizing task (see section 7.3.1) endows our pre-trained model

with the ability to generate syntactically and semantically correct, and natural code. This leads to

several RQs.

RQ-7.1. Does “Naturalization” help to improve code generation?

In contrast to existing de-noising techniques [5] that help the model learn lexical & syntactic

structure, the naturalizing task, which is arguably more demanding than de-noising, forces NetGen

generating better code with higher syntactic and semantic correctness.

The pre-training data we use (in NetGen) challenges the model to naturalize code that was “de-

naturalized" in several ways, such as dead-code inserted, variable renamed, etc. We investigate the

relative performance under different naturalization challenges.

RQ-7.2. How do different components in NetGen contribute to code generation?

We evaluate the performance under different challenges on a held-out validation dataset. This

dataset is sampled with the same distribution of de-naturalizing transforms as the training dataset

(D𝑡); on this set, the model to reconstruct the original code. Our exploratory investigation reveals

that Variable Renaming is the hardest transformation to undo: the model reconstructs original code

with only 40% accuracy. Dead Code, on the other hand, is the easiest with 99% accuracy.

We further investigate NetGen’s performance for downstream source code generation tasks.

RQ-7.3. How effective is NetGen when fine-tuned for different generative tasks in source

code?

We fine-tune the pre-trained NetGen on task-specific training dataset for a certain time budget

and evaluate the fine-tuned model on the benchmark testing dataset for corresponding task. These

tasks include source code (java) generation from text, code translation (from Java to C# and C#

to Java), and Bug fixing. After fine-tuning, NetGen achieves the state-of-the-art performance in

all these tasks. In addition, we also discover that, code generated by NetGen are syntactically and
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semantically more closer to the expected code.

We observe that training a model for a complex task requires sufficient labeled data. How-

ever, for most software engineering tasks, finding labeled data is a significant challenge [6]. We

investigate potential scenario where size of the training data is extremely small.

RQ-7.4. How well does NetGen’s pre-training help in tasks where labelled data is scarce?

We simulate training data scarcity in two different ways – Zero-shot learning, and Few-shot

learning. For “Zero-shot” learning, we evaluate the pre-trained NetGen in different tasks without

any task specific fine-tuning. For “few-shot” setting, we simulate training data scarcity by sub-

sampling the benchmark training datasets. We fine-tune the pre-trained NetGen on these limited

training examples and measure the performance. We observe that NetGen is very efficient in low-

data training. Since NetGen learns to generate syntactically and semantically correct code as part

of pre-training, it faces less burden while learning in low-data training.

7.3 Methodology

Our approach comprises three steps: (i) “De-Naturalize” source code to accumulate pre-training

data for NetGen (§7.3.1); (ii) pre-train NetGen using this data for naturalization task (§7.3.2); (iii)

Fine-tune pre-trained NetGen with task specific dataset (§7.3.3).

7.3.1 De-Naturalizing Source Code

For the first step above, we use six rules to transform a natural code into its unnatural coun-

terpart. These transformations are semantic-preserving but rewrite an original, natural, (human-)

written code to an artificial form. Given a natural code element, we deploy an appropriate trans-

formation, based on its AST structure and rewrite the code to “de-naturalize” it.
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1 int search(int[] arr, int key, int low, int high){
2 while (low <= high) {
3 int mid = low + ((high - low) / 2);
4 if(arr[mid] == key) { return mid; }
5 else { high = mid + 1; }
6 }
7 return -1;
8 }

Listing 7.1: Original Code

1 int search(int[] arr, int key, int low, int high){

2 for ( ; low <= high ; ) {

3 int mid = low + ((high - low) / 2);
4 if(arr[mid] == key) { return mid; }
5 else { high = mid + 1; }
6 }
7 return -1;
8 }

Listing 7.2: Loop Transformation

1 int search(int[] arr, int key, int low, int high){
2 while (low <= high) {
3 int mid = low + ((high - low) / 2);

4 while ( i < i ) {
5 high = mid + 1;
6 }
7 // ... Rest of the Code
8 }
9 return -1;

10 }

Listing 7.3: DeadCode Insertion

1 int search(int[] arr, int key, int low, int high){

2 while ( high >= low ) {

3 int mid = low + ((high - low) / 2);

4 if( arr[mid] ! = key ) {

5 high = mid + 1;
6 }

7 else { return mid; }
8 }
9 return -1;

10 }

Listing 7.4: Block and Operand Swap

Figure 7.2: Semantic preserving transformation used to prepare the pre-training data for NetGen (Part-1).
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1 int search(int[] arr, int key, int low, int high){
2 while (low <= high) {
3 int mid = low + ((high - low) / 2);
4 if(arr[mid] == key) { return mid; }
5 else { high = mid + 1; }
6 }
7 return -1;
8 }

Listing 7.5: Original Code

1 int search(int[] arr, int key, int low, int high){
2 while (low <= high) {
3 int mid = low + ((high - low) / 2);
4 if(arr[mid] == key) { return mid; }
5 else {

6 high = mid+ + ;
7 }
8 }
9 return -1;

10 }

Listing 7.6: Inserting confusing code element

1 int search(int[] var_1 , int key, int low, int var_2 ){
2 while (low <= var_2 ) {

3 int mid = low + (( var_2 - low) / 2);

4 if( var_1 [mid] == key) { return mid; }

5 else { var_2 = mid + 1; }

6 }
7 return -1;
8 }

Listing 7.7: Variable Renaming

Figure 7.3: Semantic preserving transformation used to prepare the pre-training data for NetGen (Part-2).
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Designing Transformation Rules.

We use six classes of de-naturalizing transformations. These transformations are motivated by

prior work on functional reasoning about source code [57, 74, 73] and semantic bug-seeding [177].

Figure 7.2 and figure 7.3 show the details.

Loop Transformation (Listing 7.2). This rule modifies for loops into equivalent while

loop and vice-versa. We rewrite a while loop of the form while ( condition ) { loop-body

} into a for loop as for ( ; condition ; ) { loop-body }. Likewise, to trans-

form a for loop into a while loop, we move the initializer of the for (if any) before the loop,

and the update expression (if any) of the for loop as the last statement in the loop. We also add

this update statement before any loop breaking statement (i.e. break, continue). For exam-

ple, we transform “for( int i = 0; i < 10; i++ ){ if(i){ foo(); continue;}

bar(); }” as “ int i = 0; while(i < 10){ if(i){ foo(); i++; continue;}

bar(); i++; }”.

Dead Code Injection (Listing 7.3). We inject blocks of dead code at random positions in the

original code. By “dead code" we mean code that appears in the source but is never executed. In

Listing 7.3, we inject the code block high = mid + 1; at line 4 of the original code (list-

ing 7.1). To add challenge to the model, we transplant these inserted statements from the same

input code. To ensure the "death" of inserted code, we put the inserted statements in a block

headed by either a loop or a branch, guarded by a unsatisfiable condition so that the code inside

the block will never execute. In Listing 7.3, the condition i < i is always false ; and the code

in line 5 is quite dead.

Block Swap (Listing 7.4). Here we swap the “then" block of a chosen if statement with the

corresponding else block. To preserve semantic equivalence, we negate the original branching

condition. For instance, listing 7.4 replaces the if block (line 4 in Listing 7.1) with the else

block (line 5 in listing 7.1). We negate the original condition (arr[mid] == key ) as (arr[

mid] != key ).

Operand Swap (Listing 7.4). Here, we swap the operands of binary logical operations. For
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instance, we change the expression low <= high with high >= low in line 2 in Listing 7.4.

When swapping the operands of a logical operator, we change the operator to make sure the mod-

ified expression is the logical equivalent to the one before modification. In case of asymmetric

inequality operators (>, <, >=, <=), we change the direction – keep as is for symmetric operators

(i.e. ==, ! =).

Confusing Code Insertion (Listing 7.6). We introduce confusing code patterns in the code as

outlined by [74, 73]. In particular, we introduce two forms of confusing code. First, we modify

the of the form {i = j; j += 1;} to i = j++; . Second, we introduce ternary operator as

applicable. For example, we transform the code if (x != 0){y = p;} else {y = q;}

to y = (x != 0)? p : q; .

Variable Renaming (Listing 7.7). We rename some variables to VAR_i. While renaming a

variable, we analyze the dataflow of that variable and rename all occurrences of that variable in

the entire code. From all the variables used in the code, we change just a certain percentage. For

instance, in Listing 7.7, we renamed variable arr to var_1 , and variable high to var_2 ,

leaving all other variables unchanged. Note that, unlike other transformations, variable renaming

does not create AST of Dataflow graph difference. However, this challenging task [12] forces the

model to learn to generate natural variable names. This resembles the de-obfuscation pre-training

task of [203].

Applying Transformation.

Assume a set of transformation rules Φ = {𝜙1, 𝜙2, 𝜙3, ...}. Given original code 𝑐𝑖, 𝜙 𝑗 (𝑐𝑖)

transforms the code, changing the structure while preserving semantics. Figure 7.4 shows how to

apply such transformation to 𝑐𝑖. It works in three steps:

• Find Transformation Location. Given a piece of source code (𝑐𝑖), we first use tree-sitter3 to

parse out the AST (𝑇𝑐𝑖 ). From the AST, we extract potential locations for de-naturalization.

3https://tree-sitter.github.io/tree-sitter/
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Figure 7.4: “De-Naturalization” workflow in NetGen.

These locations are nodes (𝑛𝑘 ) in 𝑇𝑐𝑖 . While choosing location 𝑛𝑘 from 𝑇𝑐𝑖 , we consult Φ – we

extract the nodes where at least one of 𝜙 𝑗 ∈ Φ is applicable.

• Select Transformation Rule. Once we have a set of such nodes, we filter out the transformation

rules that cannot be applied to any node of in 𝑇𝑐𝑖 . After such a filtration, we have a set of

transformations Φ𝑎 ⊆ Φ. At this stage, we randomly select one transformation pattern 𝜙 𝑗 ∈ Φ𝑎

to apply at an application location (AST node) 𝑛𝑘 .

• Apply Transformation. We apply 𝜙 𝑗 to 𝑛𝑘 to get the transformed node 𝑛′
𝑘
. We then structurally

match 𝑛′
𝑘

with the original AST𝑇𝑐𝑖 , specifically 𝑛𝑘 . We adapt the context of 𝑛𝑘 to the transformed

node’s (𝑛′
𝑘
) context. In that way, we get the transformed AST (𝑇 ′

𝑐𝑖
), which we then translate to

get the transformed code 𝑐′
𝑖
.
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We designed the transformation function 𝜙 𝑗 and subsequent context adaptation in such a way

that preserves the meaning or functionality of the original code. We use AST analysis and (ap-

proximated) data flow analysis on code AST.

7.3.2 Pre-training

Once we have a pool of “unnatural” code using the transformation in Section 7.3.1 (i.e. trans-

form code 𝑐𝑖 as ‘un-natural’ code 𝜙 𝑗 (𝑐𝑖)), we use a neural sequence-to-sequence translation model

(M) to reconstruct 𝑐𝑖 from 𝜙(𝑐𝑖), i.e. we want M(𝜙 𝑗 (𝑐𝑖)) to approximate 𝑐𝑖 . In particular, given

a training dataset D𝑡 = {𝑐1, 𝑐2, ...} consisting of developers written code, set of “de-naturalizing”

transformations Φ = {𝜙1, 𝜙2, 𝜙3, ...}, we optimize the following function to learn M’s optimal

parameter Θ.

Θ = arg min
𝜃

∑︁
𝑐𝑖∈D𝑡

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦
(
M

(
𝜙 𝑗 (𝑐𝑖)

)
, 𝑐𝑖

)
(7.1)

7.3.3 Fine-tuning

The objective of our pre-training is to learn to both comprehend and generate general-purpose

source code. However, different tasks related to source code generation (e.g., text to code gener-

ation, code to code translation, bug fixing) call for task-specific training of the pre-trained model.

This training phase on a pre-trained model is known as fine-tuning [54]. We consider the fine-

tuning in NetGen as a translation task and follow the standard transformer based-machine transla-

tion procedure [228]. First, the encoder generates the encoded representation 𝑅(𝑋) given the input

𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑛]. The decoder then sequentially generates the output 𝑌 = [𝑦1, 𝑦2, ..., 𝑦𝑚]. While

encoding an input token 𝑥𝑘 , the encoder learns the attention matrix w.r.t. every token in the input,

including 𝑥𝑘 . Such attention matrix is known as self-attention. While generating an output token

𝑦𝑚, the decoder learns the attention matrix with all previously generated tokens [𝑦1, 𝑦2, ..., 𝑦𝑚−1]

through self-attention and the encoder generated representation 𝑅(𝑋) through cross-attention. We

refer to Vaswani et al. [228] for more detail about transformer-based translation.
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7.4 Experimental Design

This section details the experimental design of NetGen.

Pre-training data. Following prior works [63, 78, 232], we primarily use CodeSearchNet [93]

dataset for the pre-training purpose. CodeSerachNet is a publicly available dataset with six lan-

guages: Java, Python, Go, JavaScript, Ruby, and PHP. In addition to CodeSearchNet, CodeT5

uses additional data for C and C#. We also use 1M functions each for C and C#. For these two

additional languages, we collected 5000 active projects from GitHub and randomly selected 1M

functions considering the maximum sequence length of the model.

Table 7.1: Statistics of fine-tuning datasets.

Task Dataset Train# Dev# Test#

Text −→ Code Generation [96] Concode 100000 2000 2000

Code −→ Code Translation [142] CodeXGLUE 10300 500 1000

Text+code −→ Code BugFix [223]
Small 46628 5828 5831
Medium 53324 6542 6538

Fine-tuning data. We evaluate different variations of three benchmark tasks related to source

code generation. The first task is Text to Code generation, where the input is an NL descrip-

tion of a Java method, and the output is the code. The second task is Code Translation between

Java to C# and C# to Java. For this task, we evaluate Java-C# parallel dataset proposed by

CodeXGLUE [142]. The third and final task is Bug Fix, where the given a buggy code and a

summary of the fix model generates the fixed code. For this task, we used the two different ver-

sions of the dataset (small, with less than 50 tokens and medium with up to 100 tokens) proposed

by Tufano et al. [223]. Note that, similar to MODIT [39], we evaluate on concrete 4 version of the

refinement datasets.Table 7.1 shows the datasets and their statistics. For Text to Code Generation
4In contrast to the original ‘Abstract’ edit dataset proposed by Tufano et al. [223], we continue using the ‘concrete’

edit dataset with concrete identifier names. See out comparison between ‘concrete’ and ‘abstract’ edits in §6.4.1

124



and Code Translation, we reuse the same split from CodeXGLUE [142], and for Bug Fix, we reuse

the same split as MODIT.

Pre-training Model Configurations. We use 12 layer transformers with 12 attention heads on

both encoder and decoder following the CodeT5 [232] architecture. As discussed in Section 6.3,

we use de-naturalization generative objectives for pre-training. We initialize our model with

CodeT5’s [232] released parameters. In particular, we initialize NetGen with “CodeT5-base”

model. We pre-train NetGen on 2 Nvidia GeForce RTX 3090 GPUs for 25K steps, maintain-

ing the effective batch size at 1080 with learning rate 5e-5. We train NetGen for approximately

168 hours.

Evaluation Metric. Throughout the experiments in this work, we evaluate accuracies w.r.t. exact

match (EM), Syntax match (SM), Dataflow match (DM), and CodeBLEU (CB) [197]. SM is

the proportion of matching subtrees between output code and tadget code’s ASTs w.r.t. number

of all possible subtrees in the target code’s AST. DM is the percentage of matched (with target

code) anonymized dataflow edge (def-use edge) of output code w.r.t. all dataflow edges in the

target code. Note that, both the SM and DM are components of CB. We explicitly evaluate these

for understanding the syntactic and semantic correctness of generated code. We reuse Microsoft

CodeXGLUE tool [155] to compute SM, DM, and CB.

Baselines. While comparing the evaluation results for different tasks, we compare with large

scale pre-trained models, including GPT-2 [187], CodeGPT [142], PLBART [5], SPT-Code [170]

and CodeT5 [232]. Most of our fine-tuning evaluation is on benchmarked dataset; thus, we report

the available results from CodeXGLUE leaderboard [156]. There are some task specific baselines,

which we discuss while describing corresponding task.
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7.5 Research Findings

We evaluate NetGen on (i) pre-training and (ii) three fine-tuning tasks. We also check NetGen’s

effectiveness in zero-shot and few-shot settings.

7.5.1 NetGen’s Effectiveness on pre-training

RQ-7.1. Does “Naturalization” help to improve code generation?

Motivation. We investigate whether pre-training on naturalizing task helps the model generate

correct and natural code (code that is syntactically and semantically similar to the original code).

Experimental Setup. We compare three large scale pre-trained models: (i) CodeT5 [232], (ii)

PLBART [5], and (iii) NetGen. Note that, since PLBART is only pre-trained on Java and Python,

we compare PLBART only for those languages, with the corresponding results of other models.

We ask each of these models to reconstruct developers’ written code from its de-naturalized (but

semantically identical, see §7.3.1 & §7.3.1) variants. We use the held-out validation data from

our training procedure for this evaluation. We evaluate the models for generating the Exact Match

(EM), Syntax Match (SM) and Dataflow Match (DM).

Table 7.2: Evaluation of NetGen for code generation task. CS is the percentage of examples where output
is directly copied from source, and ED is the median edit distance between input code and output code.

Eval Data Model EM SM DM CB CS ED

Full
CodeT5 0 13.93 19.86 9.74 0% 60
NetGen 70.39 98.78 97.69 97.31 0.01% 8

Java & Py
CodeT5 0 13.83 23.67 10.87 0% 65
PLBART 0 73.17 75.95 74.56 7.05% 3
NetGen 64.13 98.16 96.85 96.82 0.01% 10

Results. Table 7.2 shows the evaluation results.
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· Syntax Match. We find that the code generated by PLBART and NetGen are mostly syntactically

correct. However, CodeT5’s does not always generate syntactically valid code, suggesting an ad-

vantage for naturalization pre-training. For instance, Figure 7.5 shows code generated by different

models from the given input. As we can see, CodeT5 generates a syntactically erroneous fragment.

In contrast, PLBART made a minor edit on the input code, just removing the protected key-

word. Both PLBART and NetGen are pre-trained to generate complete code rather than fragments

(which is the case of CodeT5 [188]); thus, the former two generally do better at generating syntac-

tically correct code.

Example : 1
1. Input

protected SDV iam(SDV in,...){
if(i < i){

return new IAM(...);
}
return new IAM(...);

}

2. PLBART output

SDV iam(SDV in, ...){
if(i < i){

return new IAM(...);
}
return new IAM(...);

}

3. NetGen output

protected SDV iam(SDV in,...){
return new IAM(...);

}

4. CodeT5 output

if (in) {

return
} }

Figure 7.5: Example of input and generated code by different pretrained models.

· Semantic Match. NetGen is effective at recovering developers’ written code from its de-naturalized

semantic variants—around 70% of the generated code (CodeBlue = 97%) exactly matches the

original code. PLBART, which deploys syntactic denoising, is at the second position in terms of

CodeBlue.

NetGen also dominates the other two models in generating syntactically (SM) & semantically

(DM) valid code. While PLBART appears to generate syntactically correct code, it mostly copies

code from the input—median edit distance from PLBART’s input and the generated code is 3 (see

Table 7.2). In fact, in 7.05% of cases, PLBART just copies the input! By contrast, NetGen learns

to generate variants of the input code, with only 0.01% direct copy and a median edit distance of
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10. Since PLBART is trained to remove syntax errors from the input, we conjecture that it does not

inherently learn the semantic variation of the code. By contrast, we expose NetGen to semantic

code variations, forcing it to learn to generate code that is both more natural and semantically

equivalent.

Example : 2
1. Input

int maxVal ( int value1 , int VAR_2
, int target ) {
if ( value1 > VAR_2 ) {

for ( int i = value1 ; i <
value1 ; i ++ ) {
return value1 > target ?

value1 : target;
}
return value1 ;

}
else

return VAR_2 > target ?
VAR_2 : target ;

}

2. PLBART output

maxVal ( int value1 , int VAR_2 ,
int target ) {
if ( value1 > VAR_2 ) {

for ( int i = value1 ; i <
value1 ; i ++ ) {
return value1 > target ?

value1 : target;
}
return value1 ;

}
else

return VAR_2 > target ?
VAR_2 : target ;

}

3. NetGen output

int maxVal ( int value1 , int

value2 , int target ) {

if ( value1 > value2 ) {
for ( int i = value1 ; i <

value1 ; i ++ ) {
return value1 > target ?

value1 : target;
}
return value1 ;

}

else return value2 > target ?

value2 : target ;
}

4. CodeT5 output

if ( value1 > VAR_2
value1 = VAR_2 ;
value1 = VAR_2 ;
value1 ;
}
return value1 ;

} }

Figure 7.6: Example of input generated code by different pre-trained models.

· Closer look into CodeT5. Unlike NetGen and PLBART, CodeT5 is not explicitly trained

to generate complete code. During pre-training, CodeT5 learned to “unmask” masked token se-
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Example : 3
1. Input

int maxVal ( int value1 , int value2
, int target ) {
if ( value1 > value ) {

for ( int i = value1 ; i <
value1 ; i ++ ) {
return value1 > target ?

value1 : target;
}
return value1 ;

}
else

return value2 > target ?
value2 : target ;

}

2. PLBART output

maxVal ( int value1 , int value2 ,
int target ) {
if ( value1 > value ) {

for ( int i = value1 ; i <
value1 ; i ++ ) {
return value1 > target ?

value1 : target;
}
return value1 ;

}
else

return value2 > target ?
value2 : target ;

}

3. NetGen output

int maxVal ( int value1 , int
value2 , int target ) {
if ( value1 > value ) {

for ( int i = value1 ; i <
value1 ; i ++ ) {

if ( value1 > target ) {

return value1 ;

}

else {

return target ;

}

return value1 ;
}

}

else if ( value2 > target ) {

return value2 ;

}

else {

return target ;

}

}

4. CodeT5 output

int int i = value2 ; i ++ ) {
return value2 ;

}

} }
value1 value2 ; value1 ; } value2 ; } }

Figure 7.7: Example of input generated code by different pre-trained models (contd.)

quences. Thus, to better measure CodeT5’s generation capacity, we conduct another experiment

where we replaced all occurrences of some of the variable names in code with a special MASK1,

MASK2 tokens and asked CodeT5 to generate. This is one of the objectives (masked identifiers
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Example : 4
1. Input

int maxVal ( int value1 , int value2
, int target ) {
if ( value1 > value ) {

return value1 ;
}
else

return value2 > target ?
value2 : target ;

}

2. PLBART output

maxVal ( int value1 , int value2 ,
int target ) {
if ( value1 > value ) {

return value1 ;
}
else

return value2 > target ?
value2 : target ;

}

3. NetGen output

int maxVal ( int value1 , int value2
, int target ) { if (

value1 > value ) {
return value1 ;

}

else if ( value2 > target ) {

return value2 ;

}

else {

return target ;

}

}

4. CodeT5 output

private int } int ( ) {
return value ;

} } ( ) {
return

} } }

Figure 7.8: Example of input generated code by different pre-trained models (contd.)

prediction) CodeT5 is pre-trained to optimize. We take the CodeT5’s output and identify all poten-

tial identifiers 5. Surprisingly, in only 0.27% of the cases, could CodeT5 generate all the variables,

and in 0.61% of cases half of the masked variables., while NetGen successfully translates 40.45%

of those examples back to its original code, including correctly predicting the replaced variable

names. In addition, CodeT5’s generated token sequence contained a lot of other tokens than the

variable names (figure 7.5.4, for example). More example code generation are shown in Figures

7.6, 7.7, 7.8, 7.9.

Result 7.1: Naturalization enables NetGen to reason about code semantics and thus help gen-

erate more natural code variants than existing pre-training models and pre-training objectives.

We also did an ablation study evaluating the effect of NetGen’s different components on the
5we use regex "[A-Za-z_]+[A-Za-z0-9_]*" to find identifiers.
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Example : 5
1. Input

int maxVal ( int value1 , int value2
, int target ) {
if ( value1 > value ) {

return value1 ;
for ( int i = value1 ; i <

value1 ; i ++ ) {
return value1 ;

}
}
else return value2 ;

}

2. PLBART output

maxVal ( int value1 , int value2 ,
int target ) {
if ( value1 > value ) {

return value1 ;
for ( int i = value1 ; i <

value1 ; i ++ ) {
return value1 ;

}
}
else return value2 ;

}

3. NetGen output

int maxVal ( int value1 , int value2
, int target ) {
if ( value1 > value ) {

return value1 ;

int i = value1 ;

while ( i < value1 ) {

return value1 ;

i ++ ;

}
}
else

return value2 ;
}

4. CodeT5 output

int for ( int i = value2 ; ivalue2 ;
} } intvalue1 ; value1 ; value2
; value1 ; value2 ; } }

Figure 7.9: Example of input generated code by different pre-trained models (contd.)

results.

RQ-7.2. How do different components in NetGen contribute to code generation?

Motivation. In this RQ, we study how different transformation rules (see §7.3.1)contribute to

learn generating natural code from different semantic variants . We also evaluate how well NetGen

learns that in different programming languages over training time.

Experimental Setup. While pre-training, we checkpoint the NetGen model every 1k training

steps, for a full run of 25k steps. At each checkpoint, we evaluate the naturalization task perfor-

mance. Before training, we held out 0.1% of the total data as validation data. Note that, since our
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goal in this experiment is to understand NetGen’s pre-training better, we “de-naturalized" the vali-

dation data using the same training data distribution. This setting gives us a controlled environment

for experimentation.
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Figure 7.10: Performance of NetGen pre-trained model under different code transformations.

Results. Figure 7.10 shows NetGen’s performance under different types of semantic variants.

Results show that NetGen has most trouble recreating the original code (just 40% Exact Match)

with the variable renaming task. Variable renaming is challenging even for human developers [9]—

different developers may propose different names for the same object. Nevertheless, on this task,

NetGen achieves good syntax and dataflow match (99% and 92% respectively), indicating that

NetGen preserves syntax or semantics in most cases while generating code with renamed variables.

On the other hand, NetGen can eliminate Dead Code with 99% accuracy. This result may be

an artifact of our specific implementation of this transformation. Our dead-code insertion rule is

simple, and formulaic; so the NetGen quickly learns to identify and remove such dead code. A

more complex pattern of dead code may challenge the model more, and help make it more robust;

we leave this for future work. For naturalizing other transformations, NetGen achieves more than

80% exact match accuracy for Block swap and Confusion removing, and more than 75% exact

match accuracy for the rest. In all cases, syntax match, dataflow match, and CodeBLEU are well

above 90%.
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7.5.2 Pre-training progression for all metrics
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0 5 10 15 20 25
Training Step (x1000)

95

96

97

98

99

Da
ta

flo
w 

M
at

ch

C
C#

Go
Java

JS
Php

Python
Ruby

(c) Dataflow Match Accuracy
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Figure 7.11: Progression of Different metrics of different language in Validation dataset over number pre-
training steps.

Figure 7.11 shows how validation performance improves for different languages, with more

training steps. Across all the languages the performance rapidly increases over the first few thou-

sand training steps. In fact, at the beginning of (step 0) of NetGen’s pre-training, the overall exact

match is 0, syntax match is 13.93%, dataflow match is 19.86% and CodeBLEU is 9.74% (see Ta-

ble 7.2 for details6). However, after just 1000 steps of training, the exact match rises to 61%, syntax

match to 97%, dataflow match to 94%, and CodeBLEU to 95%. These metrics continue improving

6NetGen’s pre-training start from CodeT5-base. Thus, CodeT5-base is NetGen’s checkpoint at step 0.
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as training progresses. These results confirm that across all the languages NetGen gradually learns

to generate more natural code from semantic variants.

Result 7.2: Pre-training performance depends on the types of semantic variants—while variable

renaming seems the most difficult (∼40% accuracy), dead-code elimination appears to be an

easier task (∼99% accuracy) to learn.

7.5.3 NetGen’s Effectiveness on Fine-tuning Tasks

This section evaluates NetGen’s performance on three benchmark source code generative tasks.

RQ-7.3. How effective is NetGen when fine-tuned for different generative tasks in source

code?

Table 7.3: Results of Text to Code Generation. ‘-’ implies that those results are not reported by correspond-
ing approaches. M𝑙𝑎𝑠𝑡 is the model after completing the fintuning, and M𝑏𝑒𝑠𝑡 is the intermediate model
with best validation performance.

Approach EM SM DM CB

Seq2Seq 3.05 - - 26.39
Guo et al. [77] 10.05 - - 29.46
Iyer et al. [96] 12.20 - - -

GPT-2 17.30 - - 29.69
CodeGPT 20.10 - - 35.98
PLBART 18.75 - - 38.52

CodeT5-base 22.30 - - 43.20
(reported)

CodeT5*
M𝑙𝑎𝑠𝑡 21.85 44.34 44.52 41.75
M𝑏𝑒𝑠𝑡 21.55 41.08 43.71 38.30

NetGen
M𝑙𝑎𝑠𝑡 22.25 45.59 46.87 43.73
M𝑏𝑒𝑠𝑡 22.30 44.38 45.64 42.44

* Our reproduced result using CodeT5’s publicly available pre-trained model.

Baselines. In addition to the baselines discussed in Section 7.4, for the Text to Java Code genera-

tion task, we compare with a group of baselines with no pre-training involved. These baselines in-

clude LSTM based Sequence to sequence models, Guo et al. [77]’s, and Iyer et al. [96]’s proposed
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techniques. We also report our reproduced version of CodeT5 results in different tasks, slightly

different from what they reported. For both the Bug Fix task, we compare with the reported results

of MODIT [39] and our reproduced CodeT5 result.

Results.

Text to Code Generation. Table 7.3 shows evaluation results for text to code generation. We

trained for 30 epochs. We stopped the training is the validation performance does not increase for

more than three(3) consecutive epochs. For both CodeT5 and NetGen, we report the performance

of final model after the fine-tuning terminated (M𝑙𝑎𝑠𝑡) and the performance of the model with

best validation perfomance (M𝑏𝑒𝑠𝑡). Interestingly, for both CodeT5 and NetGen, the M𝑙𝑎𝑠𝑡 model

performs better than the corresponding M𝑏𝑒𝑠𝑡 model. The result shows that NetGen’s generated

code are more syntactically and semantically closer to the target code. The M𝑙𝑎𝑠𝑡 model of Net-

Gen outperforms CodeT5’s M𝑙𝑎𝑠𝑡 model by 2.8% in SM, 5.28% in DM and 4.74% in CB. Such

improvements are statistically significant with more than 99.99% confidence (see Table 7.5). We

conjecture that NetGen’s pre-training with “naturalization” help generate more natural code.

Table 7.4: Code Translation results. ‘-’ implies that those results are not reported by corresponding ap-
proaches.

Approach Java −→ C# C# −→ Java
EM SM DM CB EM SM DM CB

PBSTM 12.5 - - 42.7 16.1 - - 43.5
CodeBERT 59.0 - - 85.1 58.8 - - 79.4
SPT-Code 64.1 - - - 60.2 - - -
PLBART 64.6 - - 87.9 65.0 - - 85.3
CodeT5

65.9 - - - 66.9 - - -
(reported)
CodeT5* 65.9 90.4 91.9 87.8 66.0 90.4 88.9 84.4

NetGen 66.2 91.0 92.0 88.1 67.3 91.0 89.8 85.2
* Our reproduced result using CodeT5’s publicly available pre-trained model.

Code Translation. Table 7.4 shows the results of NetGen and different baselines for Code Trans-
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Table 7.5: One sided Wilcoxon sign rank test statistics result comparison between NetGen and CodeT5
across different tasks and metrics. Highlighted results are statistically significant with >95% confidence.

Task Metric P-Value

Code generation
Syntax Match <0.001
Dataflow Match <0.001

(Text to Java)
CodeBLEU <0.001

Translation
Syntax Match 0.093
Dataflow Match 0.147

(C# to Java)
CodeBLEU 0.016

Translation
Syntax Match 0.166
Dataflow Match 0.462

(Java to C#)
CodeBLEU 0.021

lation. For Java to C# translation, NetGen achieves exact match accuracy of 66.2% while CodeT5’s

accuracy is 65.9%. In C# to Java translation, NetGen achieves 67.3% exact match accuracy, which

CodeT5 achieves 66.0%. In addition, the syntactic match (SM), Dataflow match (DM), and Code-

BLEU are also higher than that of CodeT5. While the improvement in SM and DM are not statis-

tically significant, the improvement in CodeBLEU is statistically significant with more than 97%

confidence (Table 7.5). Since Java and C# are very similar languages, we believe translating across

PL w.r.t. these datasets are not very challenging, which is also corroborates by high performance

of other baselines. Nevertheless, the statistically significant improvement on CodeBLEU suggest

that NetGen is overall learning slightly better translation than CodeT5.

Table 7.6: Result of Bug fix (Top 1 fix accuracy).

Approach BugFix𝑠𝑚𝑎𝑙𝑙 BugFix𝑚𝑒𝑑𝑖𝑢𝑚
Unimodal Multimodal Unimodal Multimodal

MODIT 20.35 21.57 8.35 13.18
CodeT5 21.79 22.97 12.59 14.94

NetGen 22.26 23.43 13.32 14.93

Bug Fix. Similar to MODIT, we evaluate the top-1 accuracy of the generated fixed code. We

also evaluate uni-modal settings, where the fix description is unavailable, and multi-modal set-

tings, where we have access to the fix description. Table 7.6 shows the results of Bug Fix. For
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the BugFix𝑠𝑚𝑎𝑙𝑙 dataset, NetGen outperforms both CodeT5 and MODIT in both unimodal and

multi-modal settings. For For the BugFix𝑚𝑒𝑑𝑖𝑢𝑚 dataset, NetGen performs better than CodeT5 and

MODIT in unimodal setting and slightly worse than CodeT5 in the multi-modal setting.

Result 7.3: NetGen performs better than most of the existing baselines. NetGen’s improvement

in Syntax match and Dataflow match signifies NetGen’s ability to generate code syntactically

and semantically closer to target code.

RQ-7.4. How well does NetGen’s pre-training help in tasks where labelled data is scarce?
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Figure 7.12: Zero-shot transfer learning capability of NetGen in for different tasks.

Motivation. Learning to generate code usually requires a large amount of annotated training

data. A lot of time and effort goes into curating high-quality training data [6, 122]. Unsuper-

vised pre-training endows machine learning models with necessary domain knowledge about the
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Figure 7.13: Few shot Learning evaluation of NetGen. In each case, the pre-trained model is fine-tuned on
200 training examples for 10 epoch and the result is on the full test set.

task [61]. In practice, this knowledge appears to transfer across multiple tasks. Such pre-training

reduces the effort to learn each different task. We therefore study the effectiveness of NetGen’s

domain knowledge about source code syntax and semantics. In particular, we stress test whether

the knowledge NetGen learned during pre-training is useful for downstream tasks, by limiting

available task-specific training data.

Experimental Setup. We evaluate NetGen’s over several data-limited tasks: Text to Code gen-

eration, Code Translation, and Bug Fix. We consider two different settings. First, we consider

zero-shot [202, 237] evaluation. Here we evaluate different pre-trained models without any task-

specific training. Naturally, we don’t see good performance in this setting. Nevertheless, this

stress-test measures the code generation ability of models. Second, we try few-shot learning [231,

189, 214]. We randomly choose a few training examples for each task and fine-tune the pre-trained

models on those examples, and evaluate their performance. We gradually increase the number of
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(a) Text to Code Generation.

100 200 300 400 500

40

60

Sy
nt

ax
 M

at
ch

100 200 300 400 500

40

60
Da

ta
flo

w 
M

at
ch

100 200 300 400 500

40

60

Co
de

BL
EU

NatGen CodeT5

(b) C# to Java Translation.

100 200 300 400 500
20

40

60

Sy
nt

ax
 M

at
ch

100 200 300 400 500
20

40

60

Da
ta

flo
w 

M
at

ch

100 200 300 400 500
20

40

60

Co
de

BL
EU

NatGen CodeT5

(c) Java to C# Translation.
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(d) Bug Fix (small, multimodal).

Figure 7.14: NetGen’s results on different tasks with Few shot settings. X-axis shows number of training
examples.

training examples over several few-shot settings.
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Results. Figure 7.12 shows the NetGen’s and CodeT5’s zero-shot performance. Lacking task-

specific training, we can see here how much transferable knowledge each model learned just dur-

ing pre-training. There are large differences in all the tasks between NetGen and CodeT5 across

Syntax Match and Dataflow Match. It signifies NetGen learns to generate both syntactically and

semantically correct code during pre-training, which CodeT5 rarely can do. Figure 7.13 shows the

performance of NetGen and CodeT5 when trained on 200 training examples. NetGen also has an

advantage over CodeT5 here.

We note a larger performance gap in the Translation tasks (Figure 7.12(a) & 7.12(b)) and Bug

Fix (Figure 7.12(d)) tasks, compared to Text to Code Generation task (Figure 7.12(c)) in both the

zero-shot and the few shot (Figure 7.13) experiments. We conjecture that such discrepancy is the

artifact of the nature of the tasks. The cross-lingual alignment between NL and Java code is the

key factor in generating text to code. In contrast, both the input and output are the programming

language in the translation and bug fix task. Thus, we hypothesize that NetGen leverages its shared

knowledge across different programming languages learned during the pre-training.

We further stress test NetGen’s with few-shot learning; we gradually increased the number

of training examples and trained both CodeT5 and NetGen. Figure 7.14 shows the performance

progress as the number of training examples increase. For all four tasks, NetGen significantly

improves over CodeT5 when the number of training examples is minimal. With increasing train-

ing examples, the performance gap gradually decreases. Arguably, with enough labeled data and

enough resources, all high-capacity models will get better at generating source code. Nevertheless,

we learn two critical lessons from NetGen’s better performance in zero-shot and few-shot learning.

First, NetGen’s better performance across all tasks suggests that that the coding knowledge it learns

from the naturalization task is more generic and transferable. Second, for any pre-trained model

to be effective in code generation, especially in a limited training data scenario, the pre-training

should explicitly teach the model how to write code. Otherwise, we hypothesize that a big chunk

of fine-tuning resources will be spent on the models’ learning to write code.
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Result 7.4: NetGen is very effective in source code generative tasks when minimal training

resource is available. Since NetGen explicitly learns to generate code during pre-training, it can

avoid learning such during fine-tuning saving fine-tuning resource.

7.5.4 Limitations & Threats

Bias introduced by ‘de-naturalizing’ transformations. In Section 7.3.1, we described our six

transformations to “de-naturalize" source code. The NetGen model learns to revert one trans-

formation at a time. In fact, we found empirically that, when given code with more than one

‘de-naturalization’ transformation applied, the model reverses only one of them. There is thus a

threat our limited application of de-naturalization limits the ability of our NetGen. Regardless, we

consider NetGen as a proof-of-concept and the first work towards teaching a model to write natural

code.

Knowledge retention from CodeT5. As mentioned in Section 7.4, we start NetGen’s pre-training

from CodeT5-base model [232]. Starting further pre-training from an existing pre-trained check-

point is very common in large-scale pre-training. For instance, GraphCodeBERT [78] is pre-

trained based on CodeBERT [63] model, which was pre-trained based on RoBERTa [138] model.

Both the Open AI-CodeX [41] and Github Copilot [72] models are further pre-trained in OpenAI-

GPT3 [32]. Nevertheless, when we further train a pre-trained model on different tasks, it is subject

to “catastrophic forgetting” [115] of the knowledge learned in the base model. In order to test

whether NetGen is forgetting CodeT5’s knowledge about natural language generation, we also

evaluate NetGen for Code summarization. Here the input is source code, and the output is Nat-

ural language. After fine-tuning NetGen’s overall BLEU in 19.547 while CodeT5’s was 19.551,

suggesting that NetGen mostly retains CodeT5’s capacity to generate NL.

Fair Comparison with CodeT5. We initialize NetGen with pre-trained checkpoint from CodeT5

(already pre-trained 75K steps with their objective) and train NetGen for 25K steps with ‘natural-
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code’ writing objective. A skeptic reader would want to know what happens when we pre-train

CodeT5 for 25K more steps with their training objective. We argue that since the pre-training

objective does not explicitly account for generating code (See section 3.2 of CodeT5’s original

paper), further training with the CodeT5 objective does not necessarily increase its code genera-

tion capacity. We do acknowledge CodeT5’s ability to understand and reason about input. Since

the pre-training large model is extremely expensive (§7.4)7; we leverage such knowledge by ini-

tializing NetGen from CodeT5’s publicly available pre-trained model. Moreover, CodeT5 release

neither their code for pre-training (only for fine-tuning), nor any earlier or later checkpoints for us

to carry out further investigation.

“Naturalization” with program-analysis. NetGen is a prototype of a generative pre-trained

model with “Naturalization” task, trained to revert six classes of de-naturalization transformations

(see Figure 7.2). However, perfect performance w.r.t. these transformation is not the main objec-

tive of this research. Tools to accomplish “naturalization" could surely be built using traditional

refactoring methods; however, our goal is to train NetGen so that it learns to generate natural code

with the help of this “Naturalization” task.

NetGen as “Code-Refactoring” tool. NetGen suggests the promise of neural transformers to

build meaning-preserving code-refactoring tools. However, to realize a more accurate and powerful

neural re-factoring tool, more training data, with a larger variety of transformations, would be

required.

7.6 Concluding Remarks

In this chapter, we introduce the “Code-Naturalization” pre-training objective for generative

models of code. As proof-of-concept we pre-trained our NetGen to write ‘natural’ source code

from ‘un-natural’ counterpart. With this pre-training, NetGen learns to write code syntactically

7CodeT5 was pre-trained on 16 NVIDIA A100s, with 40G memory each, for 12 days! One might reasonably
assume it was already well-trained on the original objective
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and semantically closer to developers’ written code. We “de-naturalize” existing developers’ code,

using six kinds of “semantic-preserving” transformations. We further fine-tune the NetGen on

different variations of three downstream tasks that require code generation. NetGen achieves state-

of-the-art performance in these downstream tasks, and NetGen’s generated code are syntactically

and semantically closer to the target code. Our pre-training on the ‘naturalizing’ task is especially

effective in resource-constrained setting i.e. zero-shot, and few-shot transfer learning.
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Chapter 8: Conclusion

8.1 Dissertation Summary

This dissertation approaches solving automated code editing problem. We formulate the prob-

lem of editing an existing code with guidance from developers. We aim to develop tools to generate

edited code, given the code before the edit and other guidance from the developer. We deconstruct

the problem as a combination of source code understanding and source code generation problem

and approach to solving the problem with encoder-decoder-based Deep Learning models. The

main challenge in designing such a system is designing effective ways to embed the knowledge

about Programming Language into the model. As a systematic solution strategy to this challenge,

we propose two different directions for building a model.

Our first solution approach is explicitly encoding PL properties into the model (Part I). We

can build models based on the PL properties, which are very strictly defined (e.g., syntax). As an

example of such a model, we built CODIT (Chapter 3), a tree-based neural machine translation

model. We built CODIT based on the Context-Free Grammar of Programming Language. In

contrast to generating edited source code directly, CODIT first generates the tree structure of the

code, guaranteeing syntactic correctness. CODIT has shown promise in learning frequent code edit

patterns followed by developers, which has the potential for automated program repair. We also

performed empirical study of different explicitly encoded model for source code understanding

(Chapter 4).

In another orthogonal approach, we implicitly encode these PL properties into the model

(Part II). The idea of implicit encoding hinges on the fact that PL properties such as syntax, se-

mantics, and coding convention are independent of the task the model is aiming at. Researchers

can re-use a model endowed with such PL knowledge in many SE tasks. With these motivations,
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we pre-trained a large-scale model for programming languages, PLBART(Chapter 5) on billions

of source code collected from GitHub. PLBART is the first pre-trained encoder-decoder model for

Programming Language, where we showed that with large scale-pre-training, models learn to gen-

erate syntactically and semantically correct code. PLBART shows great promise in many different

SE tasks. In a subsequent empirical study (MODIT), we have shown the effectiveness of PLBART

in automated code editing (Chapter 6).

We pre-trained another large-scale model, NatGen(Chapter 7), to encode the naturalness of the

source code into the model. We designed a new pre-training objective, “Naturalizing” of source

code, exploiting the code’s bimodal, dual-channel (formal & natural channels) nature. Unlike nat-

ural language, code’s bimodal, dual-channel nature allows us to generate semantically equivalent

code at scale. We introduce six classes of semantic preserving transformations to introduce unnat-

ural forms of code and then force our model to produce more natural original programs written by

developers. We show that NatGen is incredibly competitive at zero-shot and few-shot learning and

better at learning code properties (e.g., syntax, data flow).

Finally, this dissertation lays a foundational contribution to solving Automated Code Editing,

which I hope will guide future research on this problem. While solving this problem, we designed

and trained three different models – CODIT, PLBART, NatGen, and two distinct training objec-

tives/procedures – Tree Translation (Section 3.2.1) and Naturalization (Section 7.3). I hope these

designs will inspire the future design of models for other SE tasks. In addition to solving the

Automated Code Editing problem, we extensively evaluated other problems in source code under-

standing and source code generation. I hope the techniques we invented in this dissertation and

the empirical lessons we learned will help advance the frontier of Artificial Intelligence for Soft-

ware Engineering (AI4SE). I also hope this dissertation will lay the foundation of Programming

Language Processing (PLP) as a new research field.
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8.2 Future Work

Program Generation/Synthesis. Automated program generation/synthesis can help developers

to a great extent to increase productivity. The ever-changing landscape of APIs and libraries in

modern API-driven software development demands a steep learning curve for programmers. To

each such burden, an automated program synthesis/generation tool may help programmers. Such

an automated tool can generate programs from a set of I/O examples, a description of the task,

etc. The current SOTA for machine generation of programs is far from perfect. On the one hand,

there is precise program synthesis with provable correctness. However, these programs are of-

ten tailored towards the problem domain and do not scale well for general-purpose programs.

On the other hand, most recently, large-scale models such as CodeX [41], GitHub Copilot [72],

Amazon CodeWhisperer [22] have been tremendously helping developers with code suggestions,

interactive pair-programming, etc., However, such general-purpose source code generation often

generates syntactically and semantically incorrect codes, hindering their integration in automated

programming. In particular, program synthesizer should be built by leveraging both ends of the

spectrum. While there are some initial works [98] in this research direction, further investigation

is needed to build effective program synthesizer for general purpose program with syntactic and

semantic correctness guarantee.

Learning Source Code Functionality Most recent works in developing large-scale models for

source code are aimed at learning syntax and semantics of source code. However, human percep-

tion of a piece of code depends on the functionality or execution behavior of the code. Thus, for a

model to achieve near human level understanding about code, it is of utmost importance to reason

about the functionality. Ding et al. have performed some initial work on statically reasoning about

functionality [57]. Pei et al. [180, 179, 178] had done some initial work on dynamic reasoning

about functionality through execution trace modeling. A joint modeling of static and dynamic

functionality reasoning would pave the way of proper understanding of source code.
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Ensuring security and trustworthiness of software systems. Digitization and dependence on

automation make the human race susceptible to security/privacy and trust violation. The dis-

tributed, independent, and layered architecture of modern-day systems may raise vulnerable emer-

gent behavior across the system as a whole, even when each component in the system is indepen-

dently tested for their respective service level agreements(SLA). For instance, consider an IoT sys-

tem automated home; the sensors, actuators, routers, servers are all independent layers of a system.

However, when such systems use shared resources (e.g., memory, network access), they may cre-

ate security/privacy attack backdoors due to the inconsistencies between layers. The multi-vendor

nature of different layers leaves room for confusion and makes it difficult to reach a consensus on

the SLA. Such vulnerable emergent behaviors are often not anticipated layers assembler and often

identified in post-deployment. A challenging open research problem is to precisely localize the

bug reasoning about the execution trace and program flow graphs. The inter-layer communication

and associated uncertainty (if any) makes it specially difficult to reason about any fault, much so

for a Machine Learning based system. Solving this problem requires in depth analysis an modeling

of the volatility along with models for all the components.
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