
Innovative derivative pricing and time series simulation techniques via machine and deep learning

Weilong Fu

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2022

© 2022

Weilong Fu

All Rights Reserved

Abstract

Innovative derivative pricing and time series simulation techniques via machine and deep learning

Weilong Fu

There is a growing number of applications of machine learning and deep learning in

quantitative and computational finance. In this thesis, we focus on two of them.

In the first application, we employ machine learning and deep learning in derivative pricing.

The models considering jumps or stochastic volatility are more complicated than the

Black-Merton-Scholes model and the derivatives under these models are harder to be priced. The

traditional pricing methods are computationally intensive, so machine learning and deep learning

are employed for fast pricing. In Chapter 2, we propose a method for pricing American options

under the variance gamma model. We develop a new fast and accurate approximation method

inspired by the quadratic approximation to get rid of the time steps required in finite difference

and simulation methods, while reducing the error by making use of a machine learning technique

on pre-calculated quantities. We compare the performance of our method with those of the

existing methods and show that this method is efficient and accurate for practical use. In Chapters

3 and 4, we propose unsupervised deep learning methods for option pricing under Lévy process

and stochastic volatility respectively, with a special focus on barrier options in Chapter 4. The

unsupervised deep learning approach employs a neural network as the candidate option surface

and trains the neural network to satisfy certain equations. By matching the equation and the

boundary conditions, the neural network would yield an accurate solution. Special structures

called singular terms are added to the neural networks to deal with the non-smooth and

discontinuous payoff at the strike and barrier levels so that the neural networks can replicate the

asymptotic behaviors of options at short maturities. Unlike supervised learning, this approach

does not require any labels. Once trained, the neural network solution yields fast and accurate

option values.

The second application focuses on financial time series simulation utilizing deep learning

techniques. Simulation extends the limited real data for training and evaluation of trading

strategies. It is challenging because of the complex statistical properties of the real financial data.

In Chapter 5, we introduce two generative adversarial networks, which utilize the convolutional

networks with attention and the transformers, for financial time series simulation. The networks

learn the statistical properties in a data-driven manner and the attention mechanism helps to

replicate the long-range dependencies. The proposed models are tested on the S&P 500 index and

its option data, examined by scores based on the stylized facts and are compared with the pure

convolutional network, i.e. QuantGAN. The attention-based networks not only reproduce the

stylized facts, including heavy tails, autocorrelation and cross-correlation, but also smooth the

autocorrelation of returns.

Table of Contents

Acknowledgments . xi

Chapter 1: Introduction . 1

1.1 Literature review of option pricing . 2

1.1.1 Option pricing under Lévy processes . 2

1.1.2 Pricing barrier options under stochastic volatility 3

1.1.3 Option pricing using machine and deep learning 4

1.2 Literature review of time series simulation via generative adversarial networks . . . 5

Chapter 2: Pricing American options under variance gamma using non-parametric regression 7

2.1 Introduction . 7

2.2 The variance gamma model . 8

2.2.1 European options under VG . 9

2.2.2 American options under VG . 10

2.3 A simple approach for pricing under VG . 11

2.4 Development of the QAKR method . 12

2.4.1 From PIDE to OIDE . 12

2.4.2 Solving the OIDE by parameterization . 14

2.4.3 Choosing the correction term E(x; K,Θ) 15

i

2.4.4 Scalability of prices w.r.t. S and K . 17

2.4.5 Algorithmic overview of the QAKR method 18

2.4.6 Insights into the QAKR method . 19

2.5 Numerical experiments . 20

2.5.1 Comparison of methods . 20

2.5.2 Convergence of errors . 23

2.5.3 Intermediate errors . 24

2.6 Conclusion . 25

Chapter 3: Pricing options under Lévy processes with unsupervised deep learning 30

3.1 Introduction . 30

3.2 Option pricing under Lévy processes . 31

3.2.1 Lévy process . 31

3.2.2 Option pricing . 32

3.2.3 PIDE for option pricing . 32

3.2.4 Examples of Lévy processes . 33

3.2.5 Goal of the chapter . 37

3.3 Neural network as the solution to the PIDE . 37

3.3.1 Traditional multi-layer perceptron . 37

3.3.2 Neural network solution . 39

3.3.3 Singular terms in the network . 40

3.3.4 Full structure of the neural network . 43

3.4 Loss function . 46

ii

3.4.1 Initial and boundary conditions . 46

3.4.2 Loss function . 46

3.4.3 Summarized algorithms . 48

3.5 Calculation . 49

3.5.1 Derivatives and integral . 49

3.5.2 Extrapolation of the price function in the integral 50

3.6 Numerical experiments . 51

3.6.1 Range of parameters and distribution of samples 51

3.6.2 Scope of application of the method . 52

3.6.3 Hyper-parameters and training results . 52

3.6.4 Short maturity fitting . 54

3.6.5 Calculation speed . 55

3.6.6 Greeks . 56

3.7 Conclusion . 56

Chapter 4: Pricing barrier options under the Bergomi model with unsupervised deep learning 59

4.1 Introduction . 59

4.2 Option pricing under the Bergomi model . 60

4.2.1 Bergomi model . 60

4.2.2 Option pricing . 62

4.2.3 Equations for option pricing . 63

4.2.4 Goal of the chapter . 63

4.3 Roadmap . 64

iii

4.3.1 Smooth neural network . 64

4.3.2 Singular terms . 65

4.3.3 Framework for both vanilla and barrier options 66

4.4 Vanilla options . 67

4.4.1 Singular term for vanilla options . 67

4.4.2 Dimension reduction . 70

4.4.3 Network structure . 71

4.4.4 Boundary conditions of volatility . 72

4.4.5 Loss function . 74

4.5 Barrier options . 76

4.5.1 Singular term for barrier options . 76

4.5.2 Network structure . 80

4.5.3 Loss function . 81

4.6 Numerical experiments . 83

4.6.1 Piecewise constant ξ t
0 . 83

4.6.2 Parameter range and sampling . 84

4.6.3 Training and results . 87

4.6.4 Fitted curves . 88

4.6.5 Calculation speed . 88

4.7 Conclusion . 89

Chapter 5: Simulation of financial time series using generative adversarial networks with
attention . 93

5.1 Introduction . 93

iv

5.2 Generative model of financial time series . 94

5.2.1 Problem formulation . 94

5.2.2 Training through generative adversarial network 96

5.3 Network layers . 97

5.3.1 Regular convolutional layer . 98

5.3.2 Causal convolutional layer . 99

5.3.3 Regular attention layer . 99

5.3.4 Sparse attention layer . 101

5.3.5 Causal attention layer . 102

5.3.6 Multi-layer perceptron block . 104

5.4 Network structures . 105

5.4.1 Need for a large receptive field size . 105

5.4.2 Temporal attention GAN . 105

5.4.3 Temporal transformer GAN . 108

5.5 Simulation of the S&P 500 index . 111

5.5.1 Stylized facts and metrics . 111

5.5.2 Training . 113

5.5.3 Simulation of the medium kurtosis data 114

5.5.4 Simulation of the high kurtosis data . 115

5.6 Simulation of the option surface . 116

5.6.1 Formulation . 116

5.6.2 Training . 117

5.6.3 Stylized facts and metrics . 118

v

5.6.4 Data and results . 121

5.7 Conclusion . 122

References . 132

Appendix A: Appendices for Chapter 2 . 141

A.1 Development of the simple approach . 141

A.2 A short summary of Ju-Zhong method . 142

A.3 Kernel regression . 144

Appendix B: Appendices for Chapter 3 . 146

B.1 Evaluation of the PIDE . 146

B.1.1 Split of the integral in the PIDE . 146

B.1.2 Pre-calculations . 147

B.1.3 Numerical integral . 149

Appendix C: Appendices for Chapter 4 . 151

C.1 PDE for the Bergomi model . 151

C.2 Black-Scholes formula of vanilla and barrier options 152

C.3 Benchmark of vanilla options . 154

C.4 Benchmark of barrier options . 155

Appendix D: Appendices for Chapter 5 . 158

D.1 Arbitrage-free option surface . 158

D.2 Losses of GANs . 159

vi

D.3 A short summary of QuantGAN . 161

vii

List of Figures

2.1 Framework of the QAKR method. 19
2.2 Error curves of the QAKR method versus the sample size. 29

3.1 Illustration of the MLP structure. 38
3.2 Graph of SiLU and softplus compared with ReLU. 39
3.3 European call prices of the Merton’s model. 40
3.4 (a): European call prices of the Merton’s model. (b): Curve of 0.6 SiLU(x) + 2

softplus(x/5). 42
3.5 Illustration of the neural network with the singular terms. 45
3.6 American call prices of the Kou’s model at short maturities. 55
3.7 American call prices and Greeks of the CGMY model. 58

4.1 Example curves of the up-and-out call. 67
4.2 Example curves of the vanilla call. 68
4.3 Illustration of the neural network for vanilla options. 72
4.4 (a) Example curves of the up-and-in call. (b) Example curves of the singular term. . 77
4.5 Example curves of the up-and-in put. 78
4.6 Illustration of the neural network for knock-in options. 81
4.7 Comparison of the fitted neural network solution and the simulation benchmark of

the up-and-out/in call. 91
4.8 Comparison of the fitted neural network solution and the simulation benchmark of

the down-and-out/in call. 92

5.1 Illustration of the regular convolutional layer. 98
5.2 Illustration of the causal convolutional layer. 99
5.3 Dependence relationship in the regular attention layer. 101
5.4 Example of the sparse masks. 103
5.5 Dependence relationship in the causal attention layer. 104
5.6 ACF of absolute values of the S&P 500 index returns. 105
5.7 Illustration of the generator of TAGAN. 107
5.8 Illustration of the generator of TTGAN. 110
5.9 Pipeline of GANs using PCA. 118
5.10 Cross-correlation matrix of the log-volatilities of the S&P 500 index options. 119
5.11 TAGAN simulation results of the S&P 500 index. 125
5.12 TTGAN simulation results of the S&P 500 index. 126
5.13 QuantGAN simulation results of the S&P 500 index. 127

viii

5.14 TAGAN simulation results of the S&P 500 index options. 128
5.15 TTGAN simulation results of the S&P 500 index options. 129
5.16 QuantGAN simulation results of the S&P 500 index options. 130
5.17 Example of the generated mean autocorrelation and historical autocorrelation of

log-volatility returns of the S&P 500 index options. 131

D.1 Illustration of the simplified structure of the temporal convolutional network. 162

ix

List of Tables

2.1 American put values under VG at T = 1/2. 26
2.2 American put values under VG at T = 1/12. 26
2.3 American put values under VG at T = 1/4. 27
2.4 American put values under VG at T = 1. 27
2.5 American put values under VG at T = 3. 28
2.6 American put values under VG at T = 1/2. 28
2.7 Typical bid-ask spreads of S&P 500 index options. 29

3.1 Definitions of European/American call/put. 32
3.2 Equations of European/American call/put. 33
3.3 Examples of activation functions . 39
3.4 Initial and boundary conditions of European/American call/put. 46
3.5 Extrapolation of w(x, τ) for European/American call/put. 50
3.6 Range of the model parameters in the five models under Lévy process. 51
3.7 The root mean square error over the test samples under each model. 53
3.8 Top three absolute errors over the test samples under each model. 54
3.9 Computation time of the network defined in Equation (3.8). 55

4.1 Payoffs of vanilla/barrier calls/puts. 62
4.2 Equations of vanilla/barrier calls/puts. 64
4.3 Examples of smooth activation functions . 65
4.4 Boundary conditions of vanilla calls and puts. 75
4.5 Boundary conditions of knock-in options. 82
4.6 The root mean square error of the neural network solution over the test samples. . . 88
4.7 Computation time of the neural network solutions in the numerical experiments. . . 89

5.1 Hyper-parameters in TAGAN. 106
5.2 Hyper-parameters in TTGAN. 109
5.3 Scores of the S&P 500 index simulation given the medium kurtosis data. 115
5.4 Scores of the S&P 500 index simulation given the high kurtosis data. 116
5.5 Scores of the S&P 500 index option surface simulation. 122

B.1 󰂃−, 󰂃+, σ2(󰂃−, 󰂃+) and ω(󰂃−, 󰂃+) for each model. 148
B.2 Relationship between the scaled grid points and fixed grid points. 150

D.1 Hyper-parameters in QuantGAN. 162

x

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor Prof. Ali

Hirsa. He is a talented researcher with plentiful professional experience. He always leads me to

the most interesting research topics and also permits my freedom to pursue my research interests.

His invaluable advice, support, and guidance are indispensable for my thesis, and also help me

become a curious and independent researcher. It is my great honor to work with him closely, and I

will always remember the moments when we worked together.

I would like to extend my sincere thanks to the rest of my thesis committee, Prof. Garud

Iyengar, Prof. Agostino Capponi, Prof. Ciamac Moallemi and Prof. Jörg Osterrieder, for

generously spending their precious time serving on my thesis committee and for providing

insightful comments.

I am very grateful to Prof. Garud Iyengar and Prof. Agostino Capponi for their constructive

feedback on the thesis proposal, which helped us improve the proposed procedures and findings

in Chapter 3. I am also deeply grateful to Dr. Alireza Javaheri and Mehdi Sonthonnax of Credit

Suisse for their time and invaluable advice on Chapter 4, and Prof. Jörg Osterrieder and Christoph

Auth of Zurich University of Applied Sciences for their time and invaluable advice on Chapter 5.

I really appreciate their guidance and kind help.

I am thankful to my colleagues and friends that I have met throughout my Ph.D. studies.

Their company and support make my life more colorful and enjoyable. Many thanks to all the

faculty and staff members at the Department of Industrial Engineering and Operations Research

for creating such a supportive and lovely community.

Finally, I would like to thank my family for believing in me and their continuous support.

xi

Chapter 1: Introduction

In recent years, there has been a growing number of applications of machine learning and deep

learning in finance, including algorithmic trading, price forecasting, fraud detection/prevention,

portfolio management, high performance computing, risk management and financial planning.

The learning techniques are generally applied with fewer model assumptions and are good at fitting

high-dimensional functions.

In this thesis, we discuss two selected applications in finance. In the first one, we employ

machine learning and deep learning in derivative pricing. Since the Black-Merton-Scholes (BMS)

model [10], more models have been proposed to fill the gap between the theory and the market.

The models under Lévy processes take jumps into consideration to better fit the large drawdowns

and volatility surfaces, while the models of stochastic volatility introduce a process of volatility to

fit the volatility term structure and consider the negative correlation between the underlying asset

and volatility. These models are more complicated than the BMS model and the options under

these models are harder to price. The traditional pricing methods are computationally intensive,

thus machine learning and deep learning are employed for fast pricing. The other application is

to simulate financial time series. Simulation of financial time series is challenging because of the

complex statistical properties of the real financial data. Traditional simulation methods generate

samples with stronger assumptions, while the deep learning models are better at simulating samples

that satisfy more statistical properties. The simulated data could be used in risk management, or

as the training data in machine learning and deep learning approaches in algorithmic trading and

portfolio management.

In this chapter, we introduce the literature that covers the topics in this thesis. In Chapter 2, we

develop a pricing method using kernel regression for American options under the variance gamma

model. In Chapter 3, we describe a pricing method using unsupervised deep learning for derivative

1

pricing under Lévy processes. In Chapter 4, we propose a pricing method using unsupervised

deep learning for barrier options and test the method for the Bergomi model, a high-dimensional

stochastic volatility model. In Chapter 5, we present the simulation approach of financial time

series using generative adversarial networks and apply them to the S&P 500 index and its options.

1.1 Literature review of option pricing

1.1.1 Option pricing under Lévy processes

Financial models based on Lévy processes are better at describing the fat tails of asset returns

and matching the implied volatility surfaces in option markets than the diffusion models, since

Lévy processes take jumps into consideration in addition to the Gaussian movements. Some ex-

amples are the variance gamma (VG) model [82], the normal inverse Gaussian (NIG) model [5],

the tempered stable process (also known as the CGMY model, [15]), the Merton’s jump diffusion

model [85] and the Kou’s double exponential jump diffusion model [72].

Finite difference methods are widely used to price American options under Lévy processes.

A backward partial integro-differential equation (PIDE) is solved by the implicit scheme in [54],

the explicit-implicit scheme in [25] and the fixed point iteration in [104]. Aside from the back-

ward PIDE are the forward PIDE in [51] and the fractional partial differential equation (FPDE) in

[19, 84]. Besides the finite difference method, simulation is also a traditional method for pricing

American options, e.g., the least square Monte Carlo (LSM) method [78].

Traditional methods are usually computationally expensive. Here are some acceleration meth-

ods:

• Transformation-based methods help to get rid of the finite difference in each time step. After

the Fast-Fourier-Transform (FFT) was suggested in [17] to price European options, it is em-

ployed in the Q-FFT method [90] and CONV method [79] to price Bermudan and American

options. Similarly, Fourier-cosine expansions are used in the COS method [33] and Shannon

wavelet expansions in the SWIFT method [83] to evaluate the early exercise.

2

• Some methods derive a PDE out of the PIDE to accelerate instead of dealing with the PIDE

directly. A PDE in the Fourier space is solved in the Fourier Space Time-stepping (FST)

method [63]. A pseudo-parabolic equation is solved in [62] and a PDE of the integral term

is solved in [18].

• Approximation formulae also accelerate computation. For American options, it is equiva-

lent to price the early exercise premium. The quadratic approximation was proposed in [6] to

price the premium for the BMS model, which was later elaborated in [65] to further reduce

its error. An approximation following the quadratic approximation is given in [72] under a

double exponential jump diffusion model and in [14] under a mixed-exponential jump dif-

fusion model. The quadratic approximation is also applied to the VG process in [44], where

they first find the exercise boundary of American options through a fixed point system and

then solve an approximated equation. However, the approximated equation introduces errors

since it cannot completely describe the surface of the premium of the American options. In

[36], the authors use non-parametric regression to reduce the error of quadratic approxima-

tion.

1.1.2 Pricing barrier options under stochastic volatility

Stochastic volatility models are good at replicating the volatility smiles and the correlation

between the underlying asset and volatility among the pure diffusion frameworks. Some examples

are the Heston model [49], the SABR model [45] and the Bergomi model [9]. The Bergomi model

is more complex since it includes multiple volatility factors and is shown to be better at replicating

the term structure of forward variances. However, since the stochastic volatility models define

additional dynamics of volatility, option pricing under these models is generally more challenging

than that under the models which only consider dynamics of the underlying asset.

Barrier options are path-dependent options whose payoff depends on whether or not the un-

derlying asset has reached the barrier level. They are classified into up/down-and-in/out calls/puts

based on the position of the barrier level, its payoff after the barrier level is reached, and the corre-

3

sponding vanilla option. Traditional methods to price barrier options under the stochastic volatility

models include the finite difference method in [21, 42, 68], forward evolution equations for knock-

out options in [16] and the simulation method in [1, 26]. Also, an analytic approximation for

barrier options under stochastic volatility models was proposed in [38].

1.1.3 Option pricing using machine and deep learning

Recently, many pricing approaches are proposed based on machine learning and deep learning.

• In [36], kernel regression is applied to pre-calculated data to price American options. The

PIDE is converted into an ordinary integro-differential equation (OIDE), and kernel regres-

sion is used to calculate a correction term in the OIDE to reduce pricing errors. This work is

included in Chapter 2.

• In supervised deep learning, the neural network is used as a function w.r.t. all the parameters

involved in the model. The networks are trained to fit the option price surface or the volatil-

ity surface given labels generated by other pricing methods. Recently, this idea has drawn

growing attention in the literature (see e.g. [8, 34, 53, 77, 61, 7, 57]). The advantage of neu-

ral network approaches is that they are fast in computing prices and volatilities once trained

and thus they are a good choice for model calibration. However, in supervised learning, it is

pretty costly to generate the training labels by other pricing methods, e.g. finite differences,

FFT, or simulation.

• There are unsupervised deep learning approaches as well. The option price surface for a

given model is a solution of a PDE or a PIDE and thus the pricing problem is reduced to

solving equations. Neural networks have been used to solve PDEs in [76, 73, 74, 93], where

the networks are employed as the approximated solutions and the derivatives are calculated

either by finite difference or back-propagation [95]. The networks are trained to match the

PDE and boundary conditions. In this way, the PDE is solved and no labels are needed for

training neural networks. Additionally, several modifications are made to deal with high-

4

dimensional problems. In [97], the second-order derivatives are estimated by Monte Carlo

simulation. This approach has been applied to vanilla options but not yet to barrier options

because common smooth neural networks cannot match the discontinuous boundary condi-

tions or replicate the asymptotic behaviors of barrier options at short maturity. We extend

this method in Chapter 3 and 4.

• In [46], the option prices are solved by forward-backward stochastic differential equations.

Neural networks are used to approximate the diffusion term in the stochastic differential

equations, which is related to the gradient of the solution. Since then, some variants have

been applied to the barrier options in [110, 39].

1.2 Literature review of time series simulation via generative adversarial networks

Training and evaluation of trading strategies need lots of data. Due to the limited amount of

real data, there is a growing need to be able to simulate realistic financial data which satisfies

the stylized facts. There has already been a vast literature of financial time series models. The

generalized autoregressive conditional heteroskedasticity (GARCH) [11] model and its variants

are applied to the stock prices and indices. The BMS model [10], the Heston model [49], the

VG model [82], etc. are applied to the option surfaces. The parametric models are popular for

their simplicity, mathematical explicitness and robustness. However, it is difficult for a parametric

model to fit all the major stylized facts.

Recently, more data-driven approaches based on generative adversarial networks (GANs) [41]

are proposed to deal with the problem. The GAN includes a generator, which is used to generate

samples, and a discriminator, which is responsible for judging whether the generated samples are

similar enough to the real data. The applications of GANs to financial time series range from the

underlying asset price prediction [113, 112, 71] and simulation [100, 28, 69, 35, 106] to the option

surface simulation [105]. Some more GANs of time series are proposed in [101, 87, 32, 20, 109,

70] and some more generative models of time series are in [56, 89, 107]. However, the network

structures of the GANs in financial time series simulation are mostly limited in convolutional

5

networks [75] and recurrent networks [55, 23].

There have been various different GANs which employ the attention mechanism [4, 80] to

improve their performance, e.g., the convolutional networks with attention [111, 12, 27], and the

transformer networks [64, 59]. But the convolutional networks with attention and the transformer

networks have not been tested on financial time series. We have developed and tested the attention-

based GANs on the financial data in Chapter 5.

The regularized GAN, which was proposed in [29], employs a pre-trained network as a second

discriminator, which could be used to emphasize selected stylized facts, e.g. high kurtosis. How-

ever, this approach does not work as we expected, and it is shown that the discriminator trained on

one dataset may not be suitable to distinguish the real data in another dataset.

6

Chapter 2: Pricing American options under variance gamma using

non-parametric regression

2.1 Introduction

In this chapter, we aim to find a new method for pricing American options under the pure jump

model, with a good balance between speed and accuracy. We will focus on the variance gamma

(VG) model for simplicity, while it can be generalized to other pure jump models. First, the method

avoids dealing with time steps through similar steps described by the quadratic approximation in

[6]. Second, we add a correction term to the approximated equation to reduce the error caused by

the approximation step. Third, we employ kernel regression, which is a nonparametric machine

learning technique, to estimate the correction term using pre-calculated data. The method is thus

called Quadratic Approximation with Kernel Regression (QAKR). When compared with the meth-

ods of learning the price surface or the volatility surface directly like those by neural networks,

the QAKR method does not need as much data. Also, the price surface learned by neural networks

might be irregular due to the complex structure of neural networks, while the QAKR method avoids

that problem since it approximates the option premium by a smooth exponential function. When

compared with the finite difference methods and the transformation-based methods, the QAKR

method is more favorable if we need to compute many option prices, e.g., model calibration.

The chapter is organized as follows: In Section 2.2 we do a quick review of the VG model

and pricing of European and American options under VG. In Section 2.3, we find a simple way

to apply the Ju-Zhong method [65] to VG. Even though we do not expect this simple approach

would yield an acceptable solution, we think it is worth examining it. Our numerical results show

that the error can be within the bid-ask spread but often beyond it. In Section 2.4, we elaborate the

development of the QAKR method, summarize the algorithm and give some high-level intuitions.

7

In Section 2.5 we present the results of numerical experiments and show that the QAKR method

performs well in both speed and error. In Section 2.6, we conclude the chapter and discuss some

possible future research.

2.2 The variance gamma model

Let b(t; θ,σ) = θt +σW(t) be a Brownian motion with drift rate θ and volatility σ, where W(t)

is a one-dimensional standard Brownian motion. Meanwhile, let γ(t; 1, ν) be a gamma process with

mean rate 1 and variance rate ν. The gamma process γ(t; 1, ν) has independent gamma increments

with mean h and variance vh over time intervals of length h.

Then the three-parameter VG process X(t;σ, θ, ν) is defined by

X(t;σ, θ, ν) = b(γ(t; 1, ν), θ,σ).

The compound process X(t;σ, θ, ν) is a time-changed Brownian motion with drift and its incre-

ments have a fat-tailed distribution.

The Lévy density of the VG process is given by

k(x) = e−λp x

νx
1x>0 +

e−λn |x |

ν |x | 1x<0, (2.1)

where

λp =

󰀕
θ2

σ4 +
2
σ2ν

󰀖 1
2

− θ
σ2 (2.2)

and

λn =

󰀕
θ2

σ4 +
2
σ2ν

󰀖 1
2

+
θ

σ2 . (2.3)

8

Also, the characteristic exponent of the VG process is given by

φ(ξ) = −1
ν

ln
󰀕
1 +
σ2νξ2

2
− iθνξ

󰀖

such that lnE
󰀓
eiξX(t)

󰀔
= tφ(ξ) holds.

The risk neutral process of the stock price under the VG model is given by

S(t) = S(0) exp((r − q)t + X(t) + ωt), (2.4)

where r is the risk-free interest rate, q is the dividend rate of the stock, andω = 1
v ln(1−σ2ν/2−θν);

ω is calculated such that E(S(t)) = S(0) exp((r − q)t), i.e., the discounted price process e−(r−q)tS(t)

is a martingale. The martingale property of the discounted price is equivalent with the no-arbitrage

condition.

2.2.1 European options under VG

Let Θ = {r, q,T,σ; ν, θ} be the parameter set in the VG model. Then the price of a European

put option with the strike K and the maturity T under the parameter Θ is given by

p(S(t), t; K,Θ) = e−r(T−t)Et((K − S(T))+).

According to [81], the price of a European put option on a stock following Equation (2.4) is given

by

p(S(0), 0; K,Θ) = Ke−rTΨ

󰀣
−d

󰁵
1 − c2
ν
,−α

󰁵
ν

1 − c2
,
T
ν

󰀤

−S(0)e−qTΨ

󰀣
−d

󰁵
1 − c1
ν
,−(α + s)

󰁵
ν

1 − c1
,
T
ν

󰀤
, (2.5)

where

d =
1
s

󰀕
ln

S(0)
K
+ (r − q)T + T

v
ln

󰀕
1 − c1
1 − c2

󰀖󰀖
,

9

c1 = v(α+s)2/2, c2 = vα2/2, α = ξs, ξ = θ/σ2, and s = σ/
󰁴

1 + θ2v2σ2 and the functionΨ is defined

in terms of the modified Bessel function of the second kind and the degenerate hyper-geometric

function of two variables (see [81]).

Other than the explicit formula, having the characteristic function of the VG process, one can

price European options under VG by the Fast-Fourier-Transform (FFT) technique (see [17]).

2.2.2 American options under VG

When the risk neutral stock price is S(t), by its Markov property, the American option is given

by

P(S(t), t; K,Θ) = sup
t≤τ≤T

Et(e−r(τ−t)(K − S(τ))+),

where the supremum is taken over all stopping times τ defined on the probability space with regard

to the filtration generated by the stock price S(t). For American put options, at each t, there exists

a critical stock price S󰂏(t) ≤ K , such that if S(t) > S󰂏(t), the value of the option is greater than

the immediate exercise value and the optimal action is to wait, while if S(t) ≤ S󰂏(t), the value of

the option is the same as the immediate exercise value and the optimal action is to exercise the

option. In the first quadrant of a two-dimensional space, {(S, t) : S > S󰂏(t), 0 ≤ t ≤ T} is called

the continuation region and {(S, t) : S ≤ S󰂏(t), 0 ≤ t ≤ T} the exercise region.

It is shown in [54] that the price of a European option p(S, t; K,Θ) and the price of an American

option P(S, t; K,Θ) in the continuation region satisfy this PIDE:

󳔾 ∞

−∞

󰀗
V(Sex, t) − V(S, t) − ∂V

∂S
(S, t)S(ex − 1)

󰀘
k(x)dx

+
∂V
∂t

(S, t) + (r − q)S ∂V
∂S

(S, t) − rV(S, t) = 0. (2.6)

Here V(S, t) is the price and k(x) is the Lévy density given by Equation (2.1).

10

By making changes of the variables, x = ln S, τ = T − t and w(x, τ) = V(S, t), we get

∂w

∂x
(x, τ) = S

∂V
∂S

(S, t),
∂w

∂τ
(x, τ) = −∂V

∂t
(S, t),

w(x + y, τ) = V(Sey, t),

and the following equation

󳔾 ∞

−∞

󰀗
w(x + y, τ) − w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

󰀘
k(y)dy

−∂w
∂τ

(x, τ) + (r − q)∂w
∂x

(x, τ) − rw(x, τ) = 0. (2.7)

This equation can be utilized by the finite difference method to price American options under VG

(see e.g. [54]).

2.3 A simple approach for pricing under VG

Before we propose the QAKR method, we want to test whether the methods for pricing under

the BMS model can be borrowed for the VG model. In this section, we give a simple approach.

The idea is to approximate the VG premium (American minus European) with the BMS premium

with suitable parameters and the key step is to approximate Equation (2.7) with the BMS equation.

The derivation of the approach is described in Appendix A.1 and the steps are as follows:

• First, we calculate the difference of American and European options of the BMS model with

the volatility replaced by
󰁳
σ2(󰂃) and the dividend rate replaced by q − ω(󰂃) where

σ2(󰂃) =
󳔾
|y |≤󰂃

y2k(y)dy,

ω(󰂃) =
󳔾
|y |>󰂃

(1 − ey)k(y)dy.

Here k(x) is the Lévy density of the VG process in Equation (2.1). The price of American

11

options is given by the Ju-Zhong method [65] and the price of European options is given by

the B-S formula. A detailed description of the Ju-Zhong method is given in Appendix A.2.

• Then we add the difference from the last step to the VG European price to get an approx-

imated VG American price. The VG European price can be given either by the explicit

expression (2.5) or the FFT technique. We use FFT in this chapter.

The approach is referred to as the simple approach hereafter. We set 󰂃 to 0.65 based on empiri-

cal tests. The simple approach is very fast thanks to the Ju-Zhong method, but our empirical results

show it is not “always” within the bid-ask spread. So there is a need to develop a more accurate

and efficient method.

2.4 Development of the QAKR method

We need a more accurate methodology than the simple approach that was introduced in Section

2.3. In this section, we propose and develop the QAKR method for pricing American options under

VG.

From Section 2.4.1 to 2.4.3, we explain the development of the method from the partial integro-

differential equation (PIDE) of the VG model, including accelerating by the quadratic approxima-

tion and reducing errors by nonparametric regression. Section 2.4.4 introduces a property that

simplifies calculation. Section 2.4.5 summarizes the method into an algorithm. Section 2.4.6 gives

some insights of the method and explains why it works well.

2.4.1 From PIDE to OIDE

Denote ω = −
∫ ∞
−∞(e

y − 1)k(y)dy, and then Equation (2.7) can be simplified to

󳔾 ∞

−∞
[w(x + y, τ) − w(x, τ)] k(y)dy − ∂w

∂τ
(x, τ)

+(r − q + ω)∂w
∂x

(x, τ) − rw(x, τ) = 0. (2.8)

12

The early exercise premium is given by

w(x, τ; K,Θ) = P(ex,T − τ; K,Θ) − p(ex,T − τ; K,Θ),

which is the difference between an American option price and a European option price. It satisfies

Equation (2.8) in the continuation region, and is equal to K − ex − p(ex,T − τ; K,Θ) in the exercise

region. The continuation region S(t) > S󰂏(t) becomes x > ln(S󰂏(T − τ)) and the exercise region

S(t) ≤ S󰂏(t) becomes x ≤ ln(S󰂏(T − τ)) since x = ln(S) and t = T − τ.

The finite difference method makes use of the PIDE (2.8) and divides the time interval into

many steps that have to be solved at each time step. The key idea to accelerate is to get rid of the

time steps and just focus on the last step. So we want to approximate the PIDE by an ordinary

integro-differential equation (OIDE).

We approximate w(x, τ) in the same way as the quadratic approximation in [6]. Let w(x, τ) =

h(τ) f (x, h(τ)), where h(τ) = 1 − e−rτ, then Equation (2.8) becomes

󳔾 ∞

−∞
[f (x + y, h(τ)) − f (x, h(τ))] k(y)dy + (r − q + ω)∂ f

∂x
(x, h(τ))

− r
h(τ) f (x, h(τ)) − r(1 − h(τ)) ∂ f

∂h(τ) (x, h(τ)) = 0.

According to [6], (1 − h(τ)) fh(x, h) is close to 0 but not exactly 0. We replace the term r(1 −

h(τ))h(τ) fh(x, h) with a correction term E(x; K,Θ) to remove the derivative with respect to time.

Then we have the OIDE

󳔾 ∞

−∞
[w(x + y,T) − w(x,T)] k(y)dy − r

1 − e−rT w(x,T)

+(r − q + ω)∂w
∂x

(x,T) = E(x; K,Θ), (2.9)

where E(x; K,Θ) is close to 0 compared with the other terms on the l.h.s.

Let x󰂏 = ln(S󰂏(0)) be the exercise boundary at maturity. The premium w(x,T ; K,Θ) should

satisfy Equation (2.9) on x > x󰂏 (the continuation region) and be equal to K − ex − p(ex, 0; K,Θ)

13

on x ≤ x󰂏 (the exercise region).

2.4.2 Solving the OIDE by parameterization

In this part, we aim to solve Equation (2.9) given E(x; K,Θ). We leave it to Section 2.4.3 to

determine the value of E(x; K,Θ).

Although we get the approximation equation (2.9), we cannot solve it explicitly due to the

integral term. So we consider to solve it numerically. We use an exponential function as an ap-

proximation of w(x,T ; K,Θ) in the continuation region, which coincides with the explicit solution

of the approximation function in [6]:

w(x,T ; K,Θ) =
󰀻󰁁󰁁󰀿
󰁁󰁁󰀽

K − ex − p(ex, 0; K,Θ) x ≤ x󰂏

exp(λ(x − x󰂏) + b) x > x󰂏
, (2.10)

where w(x,T ; K,Θ) is set to be continuous at x = x󰂏. There are three parameters in Equation

(2.10), but by continuity at x = x󰂏 we can solve it for b and would get b = ln(K − ex󰂏 −

p(ex󰂏, 0; K,Θ)). Thus there are two independent parameters in the approximation function.

After parameterizing the premium w(x,T ; K,Θ), we parameterize the l.h.s. of Equation (2.9).

Define

g(x; K, λ, x󰂏,Θ) = (r − q + ω)∂w
∂x

(x,T ; K,Θ) − r
1 − e−rT w(x,T ; K,Θ)

+

󳔾 ∞

−∞
(w(x + y,T ; K,Θ) − w(x,T ; K,Θ))k(y)dy. (2.11)

The parametrized OIDE is

g(x; K, λ, x󰂏,Θ) = E(x; K,Θ).

We attempt to make g(x; K, λ, x󰂏,Θ) close to E(x; K,Θ) at every x on the region x > x󰂏 by

14

minimizing the loss function w.r.t. λ and x󰂏:

ℓ(λ, x󰂏;Θ) =
N󳕗

i=0
(g(xi; K, λ, x󰂏,Θ) − E(xi; K,Θ))2. (2.12)

We choose N = 6 in our numerical experiments based on the empirical results. We also choose

xi = x󰂏 + 2i
N (ln(K) − x󰂏) for i = 0, 1, . . . , N , which are symmetric w.r.t. ln(K). The choice of xi

is to make Equation (2.9) hold for both in-the-money options and out-of-the-money options. Note

that x󰂏 < ln(K) always holds for put options so the choice of xi is valid whatever the value of x󰂏

is.

After we solve parameters λ and x󰂏 that minimize the loss function (2.12), the approximated

price of the American put is given by

P(ex, 0; K,Θ) ≈
󰀻󰁁󰁁󰀿
󰁁󰁁󰀽

K − ex x ≤ x󰂏

p(ex, 0; K,Θ) + exp(λ(x − x󰂏) + b) x > x󰂏
.

2.4.3 Choosing the correction term E(x; K,Θ)

The approximation in Equation (2.10) calculates the premium given the parameters λ and x󰂏.

The minimization problem of the loss function (2.12) gives the solution of λ and x󰂏 provided we

have a suitable E(xi; K,Θ). If we can find the suitable E(xi; K,Θ) as a function of Θ, we can

calculate the premium given Θ.

We find the value of E(xi; K,Θ) in the following way. First, we need to determine λ and x󰂏

given Θ. We can calculate the price of American options P(ex, 0; K,Θ) by the finite difference

method or the CONV method (in fact any valid method for pricing American options) and the

price of European options p(ex, 0; K,Θ) by the explicit expression or FFT, and then obtain the

true value of x󰂏 from the American option pricing method and λ by regressing ln(P(ex, 0; K,Θ) −

p(ex, 0; K,Θ)), x > x󰂏 over x and taking the slope. Then the values of x󰂏 and λ make the ap-

proximation (2.10) very close to the true value of the premium. We can consider them the optimal

parameters. This means the difference between the approximation (2.10) and the true premium is

15

smaller than a typical bid-ask spread in practice, and the approximation (2.10) can serve as a good

approximation of the premium. This would be further discussed in Section 2.5.3.

Next we decide E(xi; K,Θ). Let x󰂏(K,Θ) and λ(Θ) be the functions of optimal parameters

depending on the parameter Θ, which is obtained from the previous step. If we take E(xi; K,Θ) =

g(xi; K, λ(Θ), x󰂏(K,Θ),Θ), it is obvious that the optimal value of (2.12) is 0 with the optimal solu-

tion λ(Θ) and x󰂏(K,Θ).

Now we know how to determine E(xi; K,Θ) if we know prices of American options. However,

in the pricing routine, we should know E(xi; K,Θ) before prices of American options. So we need

to employ a flexible machine learning technique to learn the value of E(xi; K,Θ).

To elaborate, for many Θ’s, we first calculate prices of American options, the optimal param-

eters λ(Θ) and x󰂏(K,Θ) and then the value of E(xi; K,Θ) = g(xi; K, λ(Θ), x󰂏(K,Θ),Θ) for each i.

Then we fit the surface of g(xi; K, λ(Θ), x󰂏(K,Θ),Θ) over Θ for each i using nonparametric regres-

sion. By regression, we assume that g(xi; K, λ(Θ), x󰂏(K,Θ),Θ) is close to a continuous function

w.r.t. Θ. Let ĝi(K,Θ) be the estimate from the regression for each i and let E(xi; K,Θ) = ĝi(K,Θ)

in the loss function (2.12).

In this way, we use a nearly optimal E(xi; K,Θ) in the loss function (2.12) and the solution λ

and x󰂏 are also nearly optimal. We do not have to calculate g(xi; K, λ(Θ), x󰂏(K,Θ),Θ) for each Θ,

which speeds up pricing exceedingly.

Moreover, we can use the similar methodology to estimate λ(Θ) and x󰂏(K,Θ) from the pre-

calculated quantities and use the estimate as an initial solution in the optimization problem of

Equation (2.12) to save time.

16

2.4.4 Scalability of prices w.r.t. S and K

According to the property of American and European options and the definitions of w(x, 0; K,Θ)

and g(x; K, λ, x󰂏,Θ), we have the properties

p(α S, 0;α K,Θ) = α p(S, 0; K,Θ),

P(α S, 0;α K,Θ) = α P(S, 0; K,Θ),

w(x + lnα, 0;α K,Θ) = α w(x, 0; K,Θ).

Consequently, the exercise boundary x󰂏 changes along with ln(K) because x󰂏 = inf{x :

P(ex, 0; K,Θ) > K − ex}. If we change K to α K , then x󰂏 changes to x󰂏 + lnα and g(x +

lnα;α K, λ, x󰂏 + lnα,Θ) = α g(x; K, λ, x󰂏,Θ).

λ is the slope of ln(P(ex, 0; K,Θ) − p(ex, 0; K,Θ)), x > x󰂏 against x. It remains the same after

changing K to αK .

The definition of xi makes it shift along with x󰂏 and ln(K). If K changes to α K , xi will change

to

x′i = x󰂏 + lnα +
2i
N
(ln(α K) − (x󰂏 + lnα)) = xi + lnα

and then

g(x′i ;α K, λ, x󰂏 + lnα,Θ) = α g(xi; K, λ, x󰂏,Θ).

Since ĝi(K,Θ) is an estimate of g(xi; K, λ, x󰂏,Θ), we get

ĝi(αK,Θ) = α ĝi(K,Θ).

In conclusion, we do not have to calculate g(xi; K, λ(Θ), x󰂏(K,Θ),Θ) for different K’s. We only

need a fixed K0 to estimate ĝi(K0,Θ) and then

ĝi(K,Θ) =
K
K0

ĝi(K0,Θ).

17

2.4.5 Algorithmic overview of the QAKR method

The first part is pre-calculation, which is done prior to pricing:

• Choose a set of {Θ j}n
j=1, where Θ = (r, q,T,σ, ν, θ) includes all the parameters. Calculate

prices of American options P(S, 0; K0,Θ j) by an American option pricing routine, e.g. the

CONV method (see [79]), and prices of European options p(S, 0; K0,Θ j) by the FFT tech-

nique (see [17]) for 1 ≤ j ≤ n and K0 = 1000.

• Get the exercise boundary x󰂏(K0,Θ j) from the American option pricing routine and regress

ln(P(ex, 0; K0,Θ j) − p(ex, 0; K0,Θ j)), x > x󰂏

over x to get the slope λ(Θ j) for each Θ j .

• Calculate g(xi; K0, λ(Θ j), x󰂏(K0,Θ j),Θ j) from Equation (2.11) for 1 ≤ j ≤ n and 0 ≤ i ≤ N .

• Store the data

(x󰂏(K0,Θ j), λ(Θ j)), 1 ≤ j ≤ n

and

g(xi; K0, λ(Θ j), x󰂏(K0,Θ j),Θ j), 1 ≤ j ≤ n, 0 ≤ i ≤ N .

The second part is the pricing routine: Given the strike K , the stock price S(0), and all the

parameters Θ = (r, q,T,σ, ν, θ):

• Use a nonparametric regression routine to estimate ĝi(K,Θ) from

K
K0

g(xi; K0, λ(Θ j), x󰂏(K0,Θ j),Θ j), 1 ≤ j ≤ N .

• Use a nonparametric regression routine to estimate the initial solution (λ0, x󰂏0) for the next

step from

(λ(Θ j), x󰂏(K0,Θ j) + ln(K/K0)), 1 ≤ j ≤ N .

18

• Minimize the loss function w.r.t. λ and x󰂏

ℓ(λ, x󰂏;Θ) =
N󳕗

i=0
(g(xi; K, λ, x󰂏,Θ) − ĝi(K,Θ))2.

• Get the price

P(S(0), 0; K,Θ) ≈
󰀻󰁁󰁁󰀿
󰁁󰁁󰀽

K − S(0) S(0) ≤ exp(x󰂏)

p(S(0), 0; K,Θ) + exp(λ(ln(S(0)) − x󰂏) + b) S(0) > exp(x󰂏)
(2.13)

where b = ln(K − ex󰂏 − p(ex󰂏, 0; K,Θ)).

2.4.6 Insights into the QAKR method

Figure 2.1 shows the framework of the QAKR method. The circled numbers emphasize the

most important parts in the method.
Figure 1: Framework of the QAKR method.

PIDE OIDE parametrized OIDE loss function

(�, x?)optimal (�, x?)

approximationprice

E(x;K,⇥)optimal E(x;K,⇥)

simplification
pre-calculation
on a fixed grid

pricing routine
on arbitrary values

1 2

3

4.6 Insights into the QAKR method

Figure 1 shows the framework of the QAKR method. The circled numbers emphasize the
most important parts in the method.

First, it transforms the PIDE (8) into the OIDE (9), which is step 1 in Figure 1.
In this step we get rid of the time steps, which is time-consuming in the finite di↵erence
method. It reduces the calculation time from O(NtNs) to O(Ns) where Nt is the number
of time steps and Ns the size of the grid with regard to the stock price. Meanwhile, we
keep a correction term to improve the accuracy.

Second, it parameterizes the OIDE and turns the problem of solving an equation into
an optimization problem, which is step 2 in Figure 1. This step reduces the unknown
function w(x), which is infinite-dimensional, to the correction term (E(xi;K,⇥))Ni=0, which
is only an (N + 1)-dimensional vector. This is essentially dimension reduction.

Third, as mentioned earlier the method employs nonparametric regression to make use
of the information from the pre-calculated data, which is step 3 in Figure 1. If we make
use of the reduction from the price to the correction term (E(xi;K,⇥))Ni=0, we can learn
the function E(xi;K,⇥) w.r.t ⇥.

To summarize the main idea of the QAKR method, it should be that the method re-
duces the solution of the PIDE (8) into a low-dimensional correction term vector, uses a
nonparametric machine learning technique to fit the surface of the correction term, and
then reverses the estimate to an approximated price curve of American options.

5 Numerical experiments

5.1 Comparison of methods

The range of parameters under consideration is

{⇥ = (r, q, T,�, ⌫, ✓) : 0  r, q  0.1, 0.1  T  3,

0.1  �  0.4, 0.1  ⌫  0.6,�0.5  ✓  �0.1}.

We pick S0 = 2900 as it is close to the level of S&P 500 Index spot at the time we were
writing this paper.

10

Figure 2.1: Framework of the QAKR method.

First, it transforms the PIDE (2.8) into the OIDE (2.9), which is step 1© in Figure 2.1. In

this step we get rid of the time steps, which is time-consuming in the finite difference method.

19

It reduces the calculation time from O(Nt Ns) to O(Ns) where Nt is the number of time steps and

Ns the size of the grid with regard to the stock price. Meanwhile, we keep a correction term to

improve the accuracy.

Second, it parameterizes the OIDE and turns the problem of solving an equation into an opti-

mization problem, which is step 2© in Figure 2.1. This step reduces the unknown function w(x),

which is infinite-dimensional, to the correction term (E(xi; K,Θ))N
i=0, which is only an (N + 1)-

dimensional vector. This is essentially dimension reduction.

Third, as mentioned earlier the method employs nonparametric regression to make use of the

information from the pre-calculated data, which is step 3© in Figure 2.1. If we make use of

the reduction from the price to the correction term (E(xi; K,Θ))N
i=0, we can learn the function

E(xi; K,Θ) w.r.t Θ.

To summarize the main idea of the QAKR method, it should be that the method reduces the

solution of the PIDE (2.8) into a low-dimensional correction term vector, uses a nonparametric

machine learning technique to fit the surface of the correction term, and then reverses the estimate

to an approximated price curve of American options.

2.5 Numerical experiments

2.5.1 Comparison of methods

The range of parameters under consideration is

{Θ = (r, q,T,σ, ν, θ) : 0 ≤ r, q ≤ 0.1, 0.1 ≤ T ≤ 3,

0.1 ≤ σ ≤ 0.4, 0.1 ≤ ν ≤ 0.6,−0.5 ≤ θ ≤ −0.1}.

We pick S0 = 2900 as it is close to the level of S&P 500 Index spot at the time we were writing

this chapter.

We compare the following methods in our numerical experiments: the finite difference method

in [54], least square Monte Carlo in [78], the CONV method in [79], the simple approach and the

20

QAKR method. The finite difference method and least square Monte Carlo are traditional computa-

tional methods. The CONV method performs well both in speed and precision, and has been used

for comparison in literature. Its complexity is O(Ns log(Ns)Nt), where Ns is the number of grid

points on the price axis and Nt is the number of time steps. The complexity is the lower bound of

the methods which solve the PIDE in time steps. So we choose the CONV method to compare the

speed in our numerical experiments. Here are the details:

• The finite difference method using the PIDE in [54]. We use the implicit scheme to solve

the prices at each time step and the Bermudan approach to deal with the early exercise of

American options.

Let Ns be the number of grid points of ln(S) and Nt be the number of time steps from 0 to T .

We use two versions of the finite difference method. One is called FDfine, with Ns = 3000

and Nt = 250. The other one is called FDcoarse, with Ns = 800 and Nt = 80. When the grid

is finer, the finite difference method is very accurate and can be treated as a benchmark to be

compared with. However, that can be time-consuming, so we want to use FDcoarse to test

the performance of the finite difference method when we accelerate it on a coarser grid.

• The FFT-based method CONV in [79]. Let Ns be the number of grid points of ln(S) and

Nt be the number of time steps from 0 to T . We choose Ns = 212 and Nt = 30 in order

to compare the running time of the CONV method and that of the QAKR method when the

errors are similar.

• Simulation with least square Monte Carlo in [78], a generic method to deal with the early

exercise of American options. The number of time steps is 250 and the number of samples

is 1e5.

• The simple approach.

• The QAKRmethod. In the pre-calculation part, the grid points where we calculate the optimal

parameters λ(Θ) and x󰂏(K0,Θ) and then g(xi; K0, λ(Θ), x󰂏(K0,Θ),Θ), are the points in the

21

Cartesian product of the following sets:

r, q ∈ {0.01, 0.04, 0.07, 0.1},

T ∈ {0.1} ∪ {0.25k : 1 ≤ k ≤ 12, k ∈ Z},

σ ∈ {0.1, 0.2, 0.3, 0.4},

ν ∈ {0.1, 0.26, 0.43, 0.6},

θ ∈ {−0.5,−0.3,−0.1}.

There are n = 9984 combinations of the parameters. The grids are chosen to be arithmetic

sequences except for T . Since the premium is 0 when T = 0 and we cannot perform pre-

calculation at T = 0, we choose T = 0.1 instead. We utilize the CONV method which

consumes 0.1s for each combination, and the entire pre-calculation time is less than 20 min-

utes. In the numerical tests, we take N = 6.

In the pricing routine, we use kernel regression as the nonparametric method. The explana-

tory variable isΘ = (r, q,T,σ, ν, θ) and the response variable is (g(xi; K0, λ(Θ), x󰂏(K0,Θ),Θ))N
i=0.

The dimensions are 6 and N + 1 respectively for the explanatory and response variables. As

explained in Appendix A.3, we use the Gaussian kernel and choose the parameter of the

kernel by defining a loss function. The training ratio is 70% in the loss function. We repeat

the process of finding good kernels for 5 times and take the average of the kernels to be the

final kernel parameter to get a robust choice of kernel, which is also covered in Appendix

A.3.

In the optimization problem of Equation (2.12), given the initial solution (λ0, x󰂏0) from the

second step of the pricing routine, we first optimize ℓ(λ0, x󰂏;Θ) w.r.t. x󰂏 to get the optimal

x󰂏opt and then optimize ℓ(λ, x󰂏opt ;Θ) w.r.t. λ to get the optimal λopt . This is because x󰂏 has

a larger influence on the loss function (2.12), and it is enough to get the optimal x󰂏 given

a suboptimal λ. In numerical experiments we use the function fminbnd in Matlab for the

optimization problem.

22

The results are shown in Table 2.1-2.5. The parametersΘ in the numerical tests are chosen such

that they do not overlap the sample grid in the QAKR method. By doing this we avoid in-sample

prediction. All the methods are programmed in C and tested in Matlab on an Intel i7-6820HQ,

2.70GHz. The computing time is the average time used to price one option. For the QAKR method,

it refers to the time in the pricing phase. As we see, the QAKR method achieves a good balance

between small errors and fast speed among the methods. The simple method is the fastest, but the

error is usually larger than the bid-ask spread, which shows the premium of the VG model can

hardly be approximated by the premium of the BMS model. That is why we proposed the QAKR

method. Also, when we tune the parameters of the finite difference method and the CONV method

such that they generate a similar size of errors compared with the QAKR method, the QAKR method

is faster than the two methods. In addition, as we see from the tables, when the time to maturity T

increases, the errors of all the methods also increase, including the QAKR method. In fact, when T

increases, the options become less liquid and the bid-ask spread also increases. So whatever T , the

error of the QAKR method stays within the bid-ask spread.

2.5.2 Convergence of errors

Also, the number of the pre-calculated samples does influence the error. To illustrate that, we

randomly remove the pre-calculated samples to keep only 1/2, 1/4, 1/8 and 1/16 of the original

size 9984, redo the calculation in Table 2.4 (where T = 1) and plot the curves of the root of mean

squared errors (RMSE) and the maximum absolute errors (MAE) versus the sample size in Figure

2.2. As the sample size increases, the errors go down. Thus, errors can be reduced with more

pre-calculations. It is reasonable since the sample size plays an important role in kernel regression

and also affects the accuracy of the QAKR method. On the other hand, the mean computing time

only increase from 0.0065 with less than 1000 samples to 0.007 with all the 9984 samples. That is

because the kernel regression only takes up a small ratio of time in this routine. More pre-calculated

samples will not slow down the method too much.

23

2.5.3 Intermediate errors

In Section 2.4.3, we claimed that the optimal parameters x󰂏(K,Θ) and λ(Θ) make the approx-

imation (2.10) very close to the true premium, and in fact the difference is smaller than a typical

bid-ask spread. In the column “optimal" of Table 2.6, we show the error if we replace x󰂏 and λ

with x󰂏(K,Θ) and λ(Θ) in the approximation formula (2.13) when T = 0.5. The error using the

optimal parameters is about a half of that of the QAKR method. Since x󰂏(K,Θ) and λ(Θ) are the

target values of x󰂏 and λ in the QAKR method, the error using the optimal parameters can be seen

as a lower bound of that of the QAKR method. In Table 2.7, we provide typical bid-ask spreads

when S = 2900.45. By comparing the bid-ask spreads and the errors in Table 2.1-2.6, we show

that the errors caused by the optimal parameters and the errors of the QAKR method are smaller

than typical bid-ask spreads.

In the first step of the price routine, we use kernel regression to estimate ĝi(K,Θ) from

K
K0

g(xi; K0, λ(Θ j), x󰂏(K0,Θ j),Θ j), 1 ≤ j ≤ n.

Based on the n = 9984 samples, when K = S0 = 2900, the leave-one-out cross-validation error for

0 ≤ i ≤ N = 6 are

(25.0617, 7.0644, 2.0056, 1.0627, 0.7073, 0.5180, 0.3935)

respectively. The details of the leave-one-out cross-validation are included in Appendix A.3. The

leave-one-out cross-validation error is a good estimate of the prediction error of ĝi(K,Θ). For

example, the prediction error of ĝ0(K,Θ) is around 25.0617 on average and the one of ĝ1(K,Θ) is

about 7.0644 on average.

In the second step of the price routine, we give an initial solution (λ0, x󰂏0). If we use it directly

in the approximation formula (2.13), the error is shown in the column “initial” of Table 2.6. While

it has some predictability, the error is several times of that of the QAKR method. The approximated

24

price is not guaranteed to be always within the bid-ask spread.

In the third step of the price routine, The residual of the loss function ℓ(λ, x󰂏;Θ) after opti-

mization is shown in Table 2.6 in the column “residual”. The residual varies depending on the

parameter Θ.

2.6 Conclusion

In this chapter we proposed the QAKRmethod, a fast and practical method for pricing American

options under the VG model. There is a twofold aspect to this method. On one hand, it solves an

approximated equation with a correction term estimated from the pre-calculated data. On the other

hand, the optimization routine provides a mapping from the surface of the premium to the vector of

the correction terms, which lies in Euclidean space and is easy to estimate. The mapping converts

a pricing problem to an easy machine learning problem.

A high-precision closed-form approximation solution of the American price under the VG

model is always attractive, just like the approximation formula in [6] for the BMS model and the

one in [72] for the double exponential jump diffusion model. Option prices in many financial

models involving diffusion and jumps can be described with a PDE or PIDE. The QAKR method

can be applied to processes such as NIG, CGMY, and VGSSD.

25

r q K FDfine FDcoarse CONV QAKR simulation simple
0.09 0.02 2600 107.341 107.111 107.146 107.175 105.912 102.134
0.09 0.02 2800 161.662 161.461 161.269 161.679 159.078 155.660
0.09 0.02 3000 237.181 237.047 236.468 237.216 233.853 231.450
0.09 0.02 3200 340.841 340.323 339.597 339.682 338.332 336.219
0.05 0.05 2600 118.457 118.369 118.500 118.698 117.814 117.936
0.05 0.05 2800 177.555 177.604 177.503 177.813 175.413 177.047
0.05 0.05 3000 258.846 259.110 258.617 259.052 259.711 258.642
0.05 0.05 3200 368.363 369.063 367.811 368.315 368.309 368.882
0.02 0.09 2600 138.838 138.740 138.948 138.958 138.937 138.958
0.02 0.09 2800 207.984 208.039 208.012 208.027 207.380 208.027
0.02 0.09 3000 302.990 303.302 302.853 302.874 304.001 302.874
0.02 0.09 3200 430.768 431.470 430.320 430.351 428.909 430.351

RMSE 0.360 0.487 0.381 1.749 3.141
MAE 0.703 1.244 1.159 3.328 6.002

CPU(s) 5.109 0.148 0.015 0.006 7.172 0.002

Table 2.1: American put values under VG. S0 = 2900, T = 0.5, σ = 0.15, ν = 0.5 and θ = −0.4.
RMSE is the root of mean squared errors. MAE is the maximum absolute error. CPU is the mean
computing time.

σ ν θ K FDfine FDcoarse CONV QAKR simulation simple
0.15 0.20 -0.40 2800 36.370 36.442 36.374 36.427 36.530 36.108
0.35 0.50 -0.40 2800 67.555 67.641 67.522 67.539 68.317 67.901
0.15 0.50 -0.20 2800 26.290 26.356 26.267 26.364 26.092 26.186
0.35 0.20 -0.20 2800 58.394 58.578 58.367 58.364 57.783 58.515
0.15 0.20 -0.40 2900 60.268 60.595 60.242 60.312 59.972 59.918
0.35 0.50 -0.40 2900 88.417 88.350 88.170 88.255 89.483 89.094
0.15 0.50 -0.20 2900 42.637 41.251 42.629 42.792 42.751 42.823
0.35 0.20 -0.20 2900 89.160 89.110 88.995 89.036 89.156 89.365
0.15 0.20 -0.40 3000 105.993 107.356 105.760 105.836 105.702 105.494
0.35 0.50 -0.40 3000 127.373 129.232 126.902 127.042 128.542 128.706
0.15 0.50 -0.20 3000 100.146 100.899 100.427 100.000 100.003 100.466
0.35 0.20 -0.20 3000 147.122 147.551 147.054 147.077 146.534 147.728

RMSE 0.824 0.194 0.140 0.583 0.530
MAE 1.859 0.471 0.331 1.169 1.333

CPU(s) 5.015 0.144 0.014 0.006 6.471 0.002

Table 2.2: American put values under VG. S0 = 2900, T = 1/12, r = 0.05 and q = 0.02. RMSE is
the root of mean squared errors. MAE is the maximum absolute error. CPU is the mean computing
time.

26

σ ν θ K FDfine FDcoarse CONV QAKR simulation simple
0.15 0.20 -0.40 2800 80.706 80.736 80.672 80.631 80.546 79.350
0.35 0.50 -0.40 2800 155.690 155.807 155.605 155.828 155.527 156.676
0.15 0.50 -0.20 2800 62.843 62.850 62.802 63.042 62.579 62.030
0.35 0.20 -0.20 2800 133.723 134.050 133.612 133.617 134.090 133.941
0.15 0.20 -0.40 2900 114.750 114.858 114.602 114.615 114.017 112.891
0.35 0.50 -0.40 2900 188.874 189.040 188.713 189.002 187.326 190.665
0.15 0.50 -0.20 2900 90.300 90.561 90.155 90.467 89.757 89.412
0.35 0.20 -0.20 2900 175.617 176.058 175.413 175.435 175.294 175.998
0.15 0.20 -0.40 3000 160.627 160.840 160.398 160.476 159.526 158.207
0.35 0.50 -0.40 3000 229.003 229.410 228.786 229.143 228.484 231.970
0.15 0.50 -0.20 3000 131.089 130.579 130.883 131.046 130.742 130.212
0.35 0.20 -0.20 3000 227.527 228.034 227.305 227.348 227.514 228.255

RMSE 0.310 0.164 0.144 0.658 1.502
MAE 0.510 0.229 0.199 1.548 2.966

CPU(s) 5.068 0.146 0.014 0.006 6.862 0.002

Table 2.3: American put values under VG. S0 = 2900, T = 1/4, r = 0.05 and q = 0.02. RMSE is
the root of mean squared errors. MAE is the maximum absolute error. CPU is the mean computing
time.

σ ν θ K FDfine FDcoarse CONV QAKR simulation simple
0.15 0.20 -0.40 2700 146.062 145.936 145.844 146.240 144.882 141.430
0.35 0.50 -0.40 2700 319.514 319.713 319.032 320.257 319.010 320.347
0.15 0.50 -0.20 2700 119.519 119.456 119.284 119.095 118.278 115.149
0.35 0.20 -0.20 2700 260.494 261.036 260.070 261.169 259.944 259.863
0.15 0.20 -0.40 2900 224.964 225.106 224.357 224.597 225.570 218.156
0.35 0.50 -0.40 2900 407.472 407.891 406.724 408.271 407.174 410.969
0.15 0.50 -0.20 2900 189.891 189.980 189.345 189.407 188.785 184.015
0.35 0.20 -0.20 2900 354.279 354.997 353.642 354.704 354.371 353.591
0.15 0.20 -0.40 3100 328.756 329.227 327.700 327.834 328.758 319.607
0.35 0.50 -0.40 3100 509.145 509.829 508.110 510.031 506.804 516.749
0.15 0.50 -0.20 3100 288.352 288.672 287.413 288.050 285.557 281.134
0.35 0.20 -0.20 3100 464.743 465.603 463.924 464.859 463.334 464.204

RMSE 0.466 0.700 0.588 1.306 5.237
MAE 0.859 1.056 0.922 2.795 9.149

CPU(s) 5.391 0.155 0.017 0.007 7.979 0.002

Table 2.4: American put values under VG. S0 = 2900, T = 1, r = 0.05 and q = 0.02. RMSE is the
root of mean squared errors. MAE is the maximum absolute error. CPU is the mean computing
time.

27

σ ν θ K FDfine FDcoarse CONV QAKR simulation simple
0.15 0.20 -0.40 2600 222.399 221.974 221.481 222.530 220.058 213.470
0.35 0.50 -0.40 2600 512.292 512.638 510.357 513.291 507.555 510.935
0.15 0.50 -0.20 2600 183.357 183.091 182.414 180.836 183.049 173.279
0.35 0.20 -0.20 2600 411.828 412.611 410.387 412.821 412.499 408.966
0.15 0.20 -0.40 2900 347.846 347.951 345.900 346.370 345.961 334.771
0.35 0.50 -0.40 2900 663.230 663.967 660.534 663.767 662.017 668.475
0.15 0.50 -0.20 2900 298.977 299.013 297.141 295.478 300.197 285.549
0.35 0.20 -0.20 2900 561.008 562.074 558.991 560.706 559.766 557.287
0.15 0.20 -0.40 3200 508.103 508.742 504.963 505.204 505.352 491.167
0.35 0.50 -0.40 3200 831.944 833.066 828.439 832.119 827.809 847.781
0.15 0.50 -0.20 3200 454.021 454.400 451.055 451.121 452.341 438.839
0.35 0.20 -0.20 3200 731.759 733.039 729.156 729.910 734.797 727.520

RMSE 0.714 2.305 1.902 2.470 10.685
MAE 1.280 3.505 3.499 4.738 16.936

CPU(s) 5.114 0.149 0.015 0.007 7.280 0.002

Table 2.5: American put values under VG. S0 = 2900, T = 3, r = 0.05 and q = 0.02. RMSE is the
root of mean squared errors. MAE is the maximum absolute error. CPU is the mean computing
time.

σ ν θ K FDfine optimal QAKR initial residual
0.15 0.20 -0.40 2800 124.450 124.476 124.158 124.467 12.302
0.35 0.50 -0.40 2800 243.824 243.807 244.071 244.815 4.527
0.15 0.50 -0.20 2800 100.636 100.804 100.839 102.147 16.722
0.35 0.20 -0.20 2800 207.638 207.466 207.492 207.405 3.513
0.15 0.20 -0.40 2900 163.345 163.268 162.903 163.385 13.196
0.35 0.50 -0.40 2900 283.868 283.824 284.118 285.056 4.857
0.15 0.50 -0.20 2900 134.252 134.417 134.462 136.538 17.938
0.35 0.20 -0.20 2900 253.732 253.462 253.481 253.395 3.768
0.15 0.20 -0.40 3000 210.834 210.715 210.313 211.046 14.122
0.35 0.50 -0.40 3000 328.804 328.755 329.079 330.250 5.197
0.15 0.50 -0.20 3000 177.480 177.601 177.658 180.866 19.196
0.35 0.20 -0.20 3000 306.079 305.759 305.764 305.686 4.033

RMSE 0.158 0.296 1.409
MAE 0.320 0.521 3.386

Table 2.6: American put values under VG. S0 = 2900, T = 0.5, r = 0.05 and q = 0.02. RMSE is
the root of mean squared errors. MAE is the maximum absolute error.

28

expiration strike 2800 2850 2900 2950 3000
20190517 bid 10.8 18.1 32.3 58.4 99.2

(one month) ask 11.1 18.5 32.8 60.7 102.5
spread 0.3 0.4 0.5 2.3 3.3

20190719 bid 38.6 50.0 65.4 86.7 115.2
(three months) ask 39.2 50.6 66.1 87.5 117.3

spread 0.6 0.6 0.7 0.8 2.1
20190920 bid 63.6 76.5 92.3 112.0 136.0

(five months) ask 64.1 77.1 93.0 112.7 138.2
spread 0.5 0.6 0.7 0.7 2.2

20200320 bid 115.2 129.5 145.5 163.8 184.7
(11 months) ask 116.4 130.7 146.9 165.2 186.2

spread 1.2 1.2 1.4 1.4 1.5
20211217 bid 240.8 258.3 276.8 296.3 318.8

(20 months) ask 249.4 267.4 286.4 306.6 327.9
spread 8.6 9.1 9.6 10.3 9.1

Table 2.7: Typical bid-ask spreads of S&P 500 index options on April 17th, 2019. The close of
S&P 500 was 2900.45 on April 17th, 2019. Data source: WRDS - OptionMetrics.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sample size

1

1.5

2

2.5

3

3.5

4
4.5

5

e
rr

o
rs

RMSE

MAE

Figure 2.2: Error curves of the root of mean squared error (RMSE) and the maximum absolute
error (MAE) of the QAKR method versus the sample size when the parameters are the same as in
Table 2.4.

29

Chapter 3: Pricing options under Lévy processes with unsupervised deep

learning

3.1 Introduction

In this chapter, we extend the unsupervised deep learning approach to the partial integro-

differential equation (PIDE), and propose a pricing method of European/American calls/puts in

the models based on Lévy processes by solving the PIDE with a neural network. The neural net-

work is used as the approximated price surface. It only needs to be trained once and is then able

to generate prices fast, which is the same as supervised deep learning. The difference from super-

vised approaches is that this approach is self-contained, which does not need pre-calculated labels

of option prices.

The network structure in our method is slightly different from the structures already used in the

literature. In the unsupervised deep learning methods to solve equations, they always use a smooth

neural network to fit the solutions since the solution is smooth almost everywhere. However, in

option pricing, the final payoff (the initial condition) is not a smooth function, which contradicts

the smooth neural network. Thus we add additional features called singular terms in the neural

network that are smooth almost everywhere but also satisfy the non-smooth property of the initial

conditions. The singular terms facilitate fitting short maturity options and make it possible to solve

equations with non-smooth initial conditions.

Also, the solution given by the neural network yields not only the option price surface but also

the Greeks without any extra effort. In comparison, additional labels of Greeks are needed to fit

the Greek surface in the supervised approaches. This is easy to understand, since in the supervised

approaches, the neural networks are not required to be smooth and there are no constraints of the

Greeks during training. While in the unsupervised approaches, the neural networks are required to

30

be smooth for derivative calculation and the derivatives (Greeks) are involved in the PIDE during

training.

The chapter is organized as follows. In Section 3.2, we introduce option pricing under Lévy

processes, the PIDE for option pricing and five examples of models under Lévy processes. In

Section 3.3, we introduce the structure of multilayer perceptrons used to solve the PIDE, as well

as the additional singular terms built to better fit the option price surface and the initial condition.

In Section 3.4, we give the boundary conditions and loss functions used for training in all cases

of European and American options and summarize the algorithm. In Section 3.5, we explain

how to calculate the derivatives and the integral in the PIDE. Some further details are provided

in Appendix B.1. In Section 3.6, we test the unsupervised deep learning approach on the five

models under Lévy processes and show the results of option prices and Greeks given by the neural

network. The code used for the numerical experiments is available at https://github.com/

weilong-columbia/pide. Section 3.7 summarizes the chapter.

3.2 Option pricing under Lévy processes

3.2.1 Lévy process

A Lévy process {Xt}t≥0 is a stochastically continuous process with stationary independent

increments [96]. According to the Lévy-Khinchine theorem, the process {Xt}t≥0 is completely

specified by its characteristic component

ψ(u) = − s2

2
u2 + iγu +

󳔾
R

󰀓
eiuy − 1 − iuy1|y |≤1

󰀔
m(dy)

which satisfies E(eiuXt) = etψ(u). Here s ≥ 0 and γ are real constants. The Lévy measure m is a

positive measure on R that satisfies
∫
R

min(1, y2)m(dy) < ∞.

If m satisfies
∫
|y |>1 |y |m(dy) < ∞, the characteristic component can be written as

ψ(u) = − s2

2
u2 + iγ̃u +

󳔾
R

󰀓
eiuy − 1 − iuy

󰀔
m(dy)

31

https://github.com/weilong-columbia/pide

where γ̃ = γ +
∫
|y |>1 y m(dy).

3.2.2 Option pricing

We further suppose
∫
|y |>1 eym(dy) < ∞ and define the risk neutral stock price process for

option pricing

St = S0 exp((r − q)t + Xt + ωt), (3.1)

where r is the risk-free interest rate, q is the dividend rate of the stock, and ω is a constant such

that E(St) = S0e(r−q)t , i.e., the discounted price process e−(r−q)tSt is a martingale. The martingale

property of the discounted price is equivalent with the no-arbitrage condition. We get ω = −ψ(−i)

from the definition of ω.

Suppose {St}t≥0 is the stock price process, K is the strike price, t is the current time and T is

the maturity (expiration) time, the European/American call/put are defined in Table 3.1, where t̄ is

an arbitrary stopping time between t and T .

Option Definition
European call c(S, t) = e−r(T−t)E ((ST − K)+ |St = S)
European put p(S, t) = e−r(T−t)E ((K − ST)+ |St = S)
American call C(S, t) = supt≤t̄≤T E

󰀓
e−r(t̄−t)(St̄ − K)+ |St = S

󰀔
American put P(S, t) = supt≤t̄≤T E

󰀓
e−r(t̄−t)(K − St̄)+ |St = S

󰀔

Table 3.1: Definitions of European/American call/put.

3.2.3 PIDE for option pricing

Let x = ln(S) be the log-price. One can derive the PIDE using the martingale approach [25]:

󰀕󳔾 ∞

−∞

󰀕
w̃(x + y, t) − w̃(x, t) − ∂w̃

∂x
(x, t)(ey − 1)

󰀖
m(dy)

+
∂w̃

∂t
(x, t) + s2

2
∂2w̃

∂x2 (x, t) +
󰀕
r − q − s2

2

󰀖
∂w̃

∂x
(x, t) − rw̃(x, t)

󰀖
= 0.

32

The European options c(ex, t) and p(ex, t) satisfy the PIDE, and the American options C(ex, t) and

P(ex, t) also satisfy the PIDE before the early exercise.

Since the Lévy process is stationary, we look at the time to maturity τ = T − t instead of the

calendar time t. Let w(x, τ) = w̃(x, t), and we get the PIDE

H(w, x, τ) =
󰀕󳔾 ∞

−∞

󰀕
w(x + y, τ) − w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

󰀖
m(dy)

−∂w
∂τ

(x, τ) + s2

2
∂2w

∂x2 (x, τ) +
󰀕
r − q − s2

2

󰀖
∂w

∂x
(x, τ) − rw(x, τ)

󰀖
= 0.

(3.2)

The European/American call/put can be solved by the equations in Table 3.2. The solution should

also satisfy w(x, τ) ∈ C1(R × R++), where R++ = {τ |τ > 0} and w(x, τ) ∈ C(R × R+), where

R+ = {τ |τ ≥ 0}.

Option Equations

European call

󰀫
H(w, x, τ) = 0, ∀x ∈ R, τ > 0
w(x, 0) = (ex − K)+, ∀x ∈ R

European put

󰀫
H(w, x, τ) = 0, ∀x ∈ R, τ > 0
w(x, 0) = (K − ex)+, ∀x ∈ R

American call

󰀫
max (H(w, x, τ), (ex − K)+ − w(x, τ)) = 0, ∀x ∈ R, τ > 0
w(x, 0) = (ex − K)+, ∀x ∈ R

American put

󰀫
max (H(w, x, τ), (K − ex)+ − w(x, τ)) = 0, ∀x ∈ R, τ > 0
w(x, 0) = (K − ex)+, ∀x ∈ R

Table 3.2: Equations of European/American call/put.

3.2.4 Examples of Lévy processes

In the following examples, the Lévy measure m has a density, i.e., m(dy) = k(y)dy, where k(y)

is called the Lévy density.

Also, in the risk neutral stock price process (3.1), Xt +ωt is also a Lévy process. Its character-

33

istic function is

E(eiu(Xt+ωt)) = etψ(u)−ψ(−i)uit

and its characteristic component is

ψ̃(u) = ψ(u) − ψ(−i)ui

= − s2

2
u2 +

󳔾
R

󰀓
eiuy − 1 − iuy

󰀔
m(dy) −

󰀕
s2

2
+

󳔾
R
(ey − 1 − y)m(dy)

󰀖
ui

We can see that γ̃ in ψ(u) is cancelled in ψ̃(u) and is not effective in the risk neutral stock price

process St . So γ̃ will be omitted in the examples.

The variance gamma (VG) process

In the VG process [82], there are three model parameters: σ > 0, θ ∈ R, and ν > 0. The Lévy

density is given by

k(y) = e−My

νy
1y>0 +

e−G |y |

ν |y | 1y<0

where

M =
󰁳
θ2/σ4 + 2/(σ2ν) − θ/σ2 (3.3)

and

G =
󰁳
θ2/σ4 + 2/(σ2ν) + θ/σ2. (3.4)

34

The characteristic exponent is given by

ψ(u) = − ln
󰀓
1 + σ2νu2/2 − iθνu

󰀔
/ν

where s = 0 in the characteristic exponent.

The CGMY process

The CGMY process [15] is a generalization of the VG process. There are four model parame-

ters: σ > 0, θ ∈ R, ν > 0 and 0 ≤ Y < 2. The Lévy density is given by

k(y) = C e−My

y1+Y 1y>0 +
C e−G |y |

|y |1+Y 1y<0

where M and G follow the same definitions in Equation (3.3) and (3.4) and C = 1/ν.

When Y = 0, the characteristic exponent is given in the VG model. Otherwise, it is given by

ψ(u) =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽

C Γ(−Y)
󰀃
(G + iu)Y − GY + (M − iu)Y − MY 󰀄 , Y 󲧰 0, 1

C ((G + iu) ln(G + iu) − G ln G + (M − iu) ln(M − iu) − M ln M) , Y = 1

where Γ(·) is the gamma function and s = 0 in the characteristic exponent.

The normal inverse Gaussian (NIG) process

In the NIG process [5], there are three model parameters: α > 1, −α < β < α−1 and δ > 0.The

Lévy density is given by

k(y) = δα
π

eβxK1(α |x |)
|x |

35

where K1(·) is the modified Bessel function of the second kind. The characteristic exponent is

given by

ψ(u) = −δ
󰀕󰁴
α2 − (β + ui)2) −

󰁴
α2 − β2

󰀖

Also, s = 0 in the characteristic exponent.

The Merton’s jump diffusion model

In the Merton’s model [85], there are four model parameters: σ > 0, λ ≥ 0, α ∈ R, and δ > 0.

The Lévy density is given by

k(y) = λ
√

2πδ
e−(x−α)

2/(2δ2)

The characteristic exponent is given by

ψ(u) = −σ2u2/2 + λ
󰀓
exp(αiu − δ2u2/2) − 1

󰀔

and s = σ in the characteristic exponent.

The Kou’s double exponential jump diffusion model

In the Kou’s model [72], there are five model parameters: σ > 0, λ ≥ 0, 0 ≤ p ≤ 1, η1 > 0 and

η2 > 0. The Lévy density is given by

k(y) = λpη1e−η1y1y>0 + λ(1 − p)η2eη2y1y<0

The characteristic exponent is given by

ψ(u) = −σ
2u2

2
+ λ

󰀕
pη1
η1 − iu

+
(1 − p)η2
η2 + iu

− 1
󰀖

36

and s = σ in the characteristic exponent.

3.2.5 Goal of the chapter

Our goal is to solve the PIDE (3.2) as well as the equations in Table 3.2 utilizing neural net-

works directly. We treat the solution w(x, τ) as a function of x and τ as well as other parameters,

approximate w(x, τ) with a multi-layer perceptron with additional features and train the network to

satisfy the PIDE. This is an unsupervised method which means there is no need for labels of option

prices calculated by other methods. The method will be tested on the five models introduced in

Section 3.2.4.

3.3 Neural network as the solution to the PIDE

3.3.1 Traditional multi-layer perceptron

Depending on the task and the goal, there are different neural networks that can be utilized. For

example, convolutional neural networks (CNNs, [75]) are suitable for image recognition, while

recurrent neural networks (RNNs, [55]) are good at modeling sequential data. For our task, we

employ a multi-layer perceptron (MLP).

Here we give a simple description of the MLP to keep the thesis self-contained. The MLP

serves as a multi-dimensional function with an input x ∈ Rn0 and an output w ∈ R, where n0 is

the length of the input. Suppose the network consists of L hidden layers. Then the MLP can be

explained with the equations

x(0) = x,

x(i) = g(W (i−1)x(i−1) + b(i−1)), ∀1 ≤ i ≤ L,

w = W (L)x(L) + b(L),

where the ith hidden layer x(i) is a vector of length ni for 1 ≤ i ≤ L, and ni is the size of the

ith hidden layer. Though it is possible to let the sizes of the layers be different, we let the sizes

37

be the same for simplicity, i.e., ni = n, ∀1 ≤ i ≤ L. Thus the dimensions of the parameters are

W (0) ∈ Rn×n0 , W (i) ∈ Rn×n for 1 ≤ i ≤ L − 1, b(i) ∈ Rn for 0 ≤ i ≤ L − 1, W (L) ∈ R1×n and

b(L) ∈ R. A graph of a traditional MLP with two hidden layers is illustrated in Figure 3.1.

Input

Input

Input

Output

Hidden
layer x(1)Input layer x

Hidden
layer x(2)

Output
layer w

Figure 1. Illustration of the MLP structure.

are SiLU (also called swish, (Elfwing et al. 2017, Ramachandran et al. 2017)) and softplus (Dugas
et al. 2000). In Figure 2, we show that SiLU and softplus are two smoothed versions of ReLU.
They are di↵erent only near z = 0.

Function Definition
sigmoid 1/(1 + e�z)
tanh (ez � e�z)/(ez + e�z)
ReLU max(0, z)
SiLU z/(1 + e�z)

softplus ln(1 + ez)
Table 3. Examples of activation functions

Figure 2. Graph of SiLU and softplus compared with ReLU.

3.2. Neural network solution

In the PIDE (2), the solution w(x, ⌧) is not only a function of x and ⌧ , but also dependent on
the parameters including r, q and the model parameters of the Lévy process. The neural network
need to model the dependence of the solution w(x, ⌧) on all the variables and parameters. In the

8

Figure 3.1: Illustration of the MLP structure.

g is the non-linear activation function which is applied to each coordinate of its input, i.e.,

g(z) = (g(z1), g(z2), . . . , g(zn)),

where z ∈ Rn and {zi, 1 ≤ i ≤ n} are the coordinates of z. There are some examples of activation

functions in Table 3.3. The most commonly used ones are sigmoid, tanh, and ReLU [88]. sigmoid

and tanh are smooth functions. However, their derivatives diminish when the input z tends to

infinity. In first order optimization algorithms, diminishing derivatives lead to slow convergence.

ReLU does not have a vanishing derivative at infinity, but its derivative is not continuous at 0.

Also, an MLP composed of ReLU is always locally linear, which contradicts the property of the

solution w(x, τ). So we should use smooth activation functions which would not have the problem

of vanishing derivatives. The two activation functions that meet this condition are SiLU (also

called swish, [31, 94]) and softplus [30]. In Figure 3.2, we show that SiLU and softplus are two

smoothed versions of ReLU. They are different only near z = 0.

38

Function Definition
sigmoid 1/(1 + e−z)

tanh (ez − e−z)/(ez + e−z)
ReLU max(0, z)
SiLU z/(1 + e−z)

softplus ln(1 + ez)

Table 3.3: Examples of activation functions

Figure 3.2: Graph of SiLU and softplus compared with ReLU.

3.3.2 Neural network solution

In the PIDE (3.2), the solution w(x, τ) is not only a function of x and τ, but also dependent

on the parameters including r , q and the model parameters of the Lévy process. The neural net-

work need to model the dependence of the solution w(x, τ) on all the variables and parameters.

In the existent papers including [76, 73, 74, 93, 97], the neural network is only a function of

the space and time variables. If we need to consider the dependence of the solution on the pa-

rameters, the network needs to be either wider or deeper. The input of the neural network is

x = (x, τ, r, q, θ1, θ2, . . . , θd) if there are d model parameters. The strike K is kept as a constant

throughout the chapter. The output of the neural network is used as the approximation of w(x, τ).

The neural network will be trained to satisfy the equations in Table 3.2. We need to keep in mind

that both w(x, τ) and k(y) depends on r , q and the model parameters θ1, θ2, . . . , θd . We omit them

in the notations for simplicity.

39

3.3.3 Singular terms in the network

Although the solution w(x, τ) is a member of C1(R×R++), it is not smooth at (x, τ) = (ln(K), 0).

In Figure 3.3, we show that the price of European call in the Merton’s model is smooth when

τ 󲧰 0, but becomes more like a hockey stick at S = ex = K when τ converges to 0. Finally, S = K

becomes a singular point in the solution at τ = 0. The singular point in the option price surface is

universal in all models. However, it causes a problem when we use the smooth neural network as

the candidate solution, since the neural network is only able to fit a solution that is also smooth at

(x, τ) = (ln(K), 0).

Figure 3.3: European call prices of the Merton’s model when K = 100, r = 0, q = 0, σ = 0.1,
λ = 0.1, α = 0 and δ = 0.2.

In order to circumvent this issue, we add a singular term in the neural network to take the

singular point into consideration. The singular term is defined as

singular(x) = softplus
󰀕
main(x, τ, r, q) + bias(x)τ

scale(x)
√
τ

󰀖
scale(x)

√
τ (3.5)

40

where

main(x, τ, r, q) =

󰀻󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

ex−qτ − Ke−rτ, for European calls

Ke−rτ − ex−qτ, for European puts

ex − K, for American calls

K − ex, for American puts

(3.6)

and softplus is the activation function in Table 3.3. bias(x) and scale(x) are both neural networks

with an input of x. The singular term is inspired by the Black-Scholes formula:

c = N(d1)Se−qτ − N(d2)Ke−rτ

where

d1 =
ln(S/K) + (r − q + σ2/2)τ

σ
√
τ

and

d2 =
ln(S/K) + (r − q − σ2/2)τ

σ
√
τ

The part in the softplus function in the singular term is similar to d1 and d2 in the Black-Scholes

formula. scale(x) plays the role of σ in the Black-Scholes formula and bias(x) plays the role of

(r − q ± σ2/2). The singular term satisfies

lim
τ→0+

singular(x) =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽
(ex − K)+, for calls

(K − ex)+, for puts

41

If bias(x) ≈ 0, then

singular(x) ∼

󰀻󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

ex−qτ − Ke−rτ, for European calls

ex − K, for American calls

0, for puts

, when x → +∞

The singular term replicates the asymptotic behaviors of option price surfaces when τ → 0+ and

x → +∞. If we add the singular term as an additional feature in the neural network, the fitted

solution will be able to replicate the singular property around (x, τ) = (ln(K), 0). The final neural

network will be a function of x as well as singular(x).

(a) (b)

Figure 3.4: (a): European call prices of the Merton’s model when K = 100, r = 0, q = 0, σ = 0.1,
λ = 1, α = 0.4 and δ = 0.1. (b): Curve of 0.6 SiLU(x) + 2 softplus(x/5).

The singular term (3.5) is able to replicate the singular property around (x, τ) = (ln(K), 0)

caused by diffusion and symmetric jumps. However, asymmetric jumps in the Lévy process can

generate option price surfaces much different from the shape of the singular term (3.5). For exam-

ple, if the stock price is driven by large jumps, then the price curves are illustrated in Figure 3.4

(a). In Figure 3.4 (a), the price curves are close to piecewise linear functions, and the linear parts

are joined smoothly. For that reason, we add a second singular term in the neural network to better

model the curvature in the option surfaces under the models based on Lévy processes. The second

42

singular term is defined similarly to the first one as

singular2(x) = SiLU
󰀕
main(x, τ, r, q) + bias2(x)τ

scale2(x)
√
τ

󰀖
scale2(x)

√
τ (3.7)

where main(x, τ, r, q) is defined in Equation (3.6) and bias2(x) and scale2(x) are both neural net-

works with an input of x. The SiLU function has a sharper turn than softplus and is able to replicate

the shape of the price curves if combined with softplus (see Figure 3.4 (b)).

3.3.4 Full structure of the neural network

We have introduced the singular terms, as well as the four neural networks bias(x), scale(x),

bias2(x) and scale2(x). Now we discuss how to embed the singular terms into the MLP. Although

bias(x), scale(x), bias2(x) and scale2(x) can be four independent neural networks, we decide to let

them share parameters with each other.

43

The augmented MLP with the singular terms can be explained as follows:

x(0) = x,

x(j) = g
󰀓
W (j−1)x(j−1) + b(j−1)

󰀔
, ∀1 ≤ j ≤ L1,

bias(x) = W (bias)x(L1) + b(bias),

scale(x) = softplus
󰀓
W (scale)x(L1) + b(scale)

󰀔
,

bias2(x) = W (bias2)x(L1) + b(bias2),

scale2(x) = softplus
󰀓
W (scale2)x(L1) + b(scale2)

󰀔
,

singular(x) = softplus
󰀕
main(x, τ, r, q) + bias(x)τ

scale(x)
√
τ

󰀖
scale(x)

√
τ,

singular2(x) = SiLU
󰀕
main(x, τ, r, q) + bias2(x)τ

scale2(x)
√
τ

󰀖
scale2(x)

√
τ,

x̃(L1) = concatenate(x(L1), singular(x), singular2(x)),

x(L1+1) = g
󰀓
W (L1) x̃(L1) + b(L1)

󰀔
,

x(j) = g
󰀓
W (j−1)x(j−1) + b(j−1)

󰀔
, ∀L1 + 1 < j ≤ L1 + L2,

w =
󳕗

0≤ j≤L1+L2, j󲧰L1

W (j,w)x(j) +W (L1,w) x̃(L1) + b(w),

(3.8)

where the jth hidden layer x(j) is a vector of length n for 1 ≤ j ≤ L = L1+L2, and the input layer x

is of size n0. scale(x) and scale2(x) are past through the softplus function to ensure the positivity.

singular(x) and singular2(x) are built from the hidden layer x(L1) and then combined with it as

x̃(L1). The output w has skip connections from all the previous layers, and the skip connections

44

help stabilize the training process. The dimensions of the neural network parameters are

W (0) ∈ Rn×n0,

W (j) ∈ Rn×n for 1 ≤ j ≤ L1 − 1 or L1 + 1 ≤ j ≤ L1 + L2 − 1,

W (L1) ∈ Rn×(n+2),

W (j) ∈ R1×n for j = bias, scale, bias2, scale2,

W (0,w) ∈ R1×n0,

W (j,w) ∈ R1×n for 1 ≤ j ≤ L1 − 1 or L1 + 1 ≤ j ≤ L1 + L2,

W (L1,w) ∈ R1×(n+2),

b(j) ∈ Rn for 0 ≤ j ≤ L1 + L2 − 1,

b(j) ∈ R for j = w, bias, scale, bias2, scale2.

The overall structure is of width n, with L1 layers before the singular terms and L2 layers after the

singular terms. A graph of the neural network with (L1, L2) = (1, 1) is illustrated in Figure 3.5 if

we omit the skip connections.

are

W (0) 2 Rn⇥n0 ,

W (j) 2 Rn⇥n for 1  j  L1 � 1 or L1 + 1  j  L1 + L2 � 1,

W (L1) 2 Rn⇥(n+2),

W (j) 2 R1⇥n for j = bias, scale, bias2, scale2,

W (0,w) 2 R1⇥n0 ,

W (j,w) 2 R1⇥n for 1  j  L1 � 1 or L1 + 1  j  L1 + L2,

W (L1,w) 2 R1⇥(n+2),

b(j) 2 Rn for 0  j  L1 + L2 � 1,

b(j) 2 R for j = w, bias, scale, bias2, scale2.

The overall structure is of width n, with L1 layers before the singular terms and L2 layers after
the singular terms. A graph of the neural network with (L1, L2) = (1, 1) is illustrated in Figure 5
if we omit the skip connections.

Input

Input

Input

S

S2

Output

Hidden
layer x(1)Input layer x

Hidden
layer x(2) Output w

Figure 5. Illustration of the neural network with the singular terms. ‘S’ and ‘S2’ stand for the two singular terms.

4. Loss function

4.1. Initial and boundary conditions

For di↵erent kinds of options, we listed their corresponding initial and boundary conditions in Table
4, where xmin (xmax) is a small (large) enough constant. The neural network will approximate the
solution w(x, ⌧) within xmin  x  xmax. Also, in the training process, x will be sampled between
xmin and xmax.

12

Figure 3.5: Illustration of the neural network with the singular terms. ‘S’ and ‘S2’ stand for the
two singular terms.

45

3.4 Loss function

3.4.1 Initial and boundary conditions

For different kinds of options, we listed their corresponding initial and boundary conditions in

Table 3.4, where xmin (xmax) is a small (large) enough constant. The neural network will approxi-

mate the solution w(x, τ) within xmin ≤ x ≤ xmax. Also, in the training process, x will be sampled

between xmin and xmax.

Option IC(x) BCmin(τ, r, q) BCmax(τ, r, q)
European call (ex − K)+ 0 exmax−qτ − Ke−rτ

European put (K − ex)+ Ke−rτ − exmin−qτ 0
American call (ex − K)+ 0 exmax − K
American put (K − ex)+ K − exmin 0

Table 3.4: Initial and boundary conditions of European/American call/put.

The solution w(x, τ) should satisfy

w(x, 0) = IC(x),

w(xmin, τ) = BCmin(τ, r, q),

w(xmax, τ) = BCmax(τ, r, q).

3.4.2 Loss function

Denote the neural network parameters as

W =

󰀻󰁁󰁁󰀿
󰁁󰁁󰀽

W (j), b(j) for 0 ≤ j ≤ L1 + L2 − 1 or j = bias, scale, bias2, scale2

W (j,w) for 0 ≤ j ≤ L1 + L2 and b(w)

󰀼󰁁󰁁󰁀
󰁁󰁁󰀾
. (3.9)

Given a sample x, the loss function for European puts is defined as following:

LEU,P(W; x) = (H(w, x, τ))2 + (w(x, 0) − IC(x))2

+ (w(xmin, τ) − BCmin(τ, r, q))2 + (w(xmax, τ) − BCmax(τ, r, q))2
(3.10)

46

where H(w, x, τ) is defined in Equation (3.2) and IC(x), BCmin(τ, r, q), and BCmax(τ, r, q) are de-

fined in Table 3.4. The function w(x, τ) is now approximated by a neural network with the input

of x and the parameters of W.

The loss function for American puts is different from the one for European puts because of the

early exercise and it is given as

LAM,P(W; x) = (max (H(w, x, τ), IC(x) − w(x, τ)))2 + (w(x, 0) − IC(x))2

+ (w(xmin, τ) − BCmin(τ, r, q))2 + (w(xmax, τ) − BCmax(τ, r, q))2
(3.11)

where H(w, x, τ) is defined in Equation (3.2) and IC(x), BCmin(τ, r, q), and BCmax(τ, r, q) are de-

fined in Table 3.4. The only difference between Equation (3.10) and (3.11) is that the first term

of Equation (3.10) is the square of H(w, x, τ) while the first term of Equation (3.11) is the square

of max (H(w, x, τ), IC(x) − w(x, τ)). The difference accords with the equations of European and

American puts in Table 3.2.

However, for call options, w(x, τ) ∝ exp(x) when x is large, so the terms in Equation (3.10) and

(3.11) grow at the rate of exp(2x) when x increases. It is necessary to compensate the oversized loss

function when x is large, otherwise one sample would dominate in the gradient descent algorithm.

We define the weight function as

u(x) = min(1, 4K2 exp(−2x)),

which only compensates the oversized loss when S = ex > 2K . The loss function for European

calls is given as

LEU,C(W; x) = (H(w, x, τ))2 u(x) + (w(x, 0) − IC(x))2 u(x)

+ (w(xmin, τ) − BCmin(τ, r, q))2 + (w(xmax, τ) − BCmax(τ, r, q))2 u(xmax)

47

and the one for American calls is given as

LAM,C(W; x) = (max (H(w, x, τ), IC(x) − w(x, τ)))2 u(x) + (w(x, 0) − IC(x))2 u(x)

+ (w(xmin, τ) − BCmin(τ, r, q))2 + (w(xmax, τ) − BCmax(τ, r, q))2 u(xmax)

The losses LEU,P, LAM,P, LEU,C and LAM,C are defined on a single sample x. Given a lot of

samples x1, x2, . . . , xn, the total loss is an average of the individual losses, e.g.,

Lavg

󰀓
W; {x j}n

j=1

󰀔
=

󰀻󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

1
n
󳕐n

j=1 LEU,P(W; x j), for European puts,

1
n
󳕐n

j=1 LAM,P(W; x j), for American puts,

1
n
󳕐n

j=1 LEU,C(W; x j), for European calls,

1
n
󳕐n

j=1 LAM,C(W; x j), for American calls.

3.4.3 Summarized algorithms

After we fully define the neural network structure and the loss functions, we summarize the

algorithms for both European and American options in Algorithm 1. In all samples of x j , the

log-price x needs to satisfy xmin ≤ x ≤ xmax.

Algorithm 1 Training routine
Require: A neural network w(x, τ) defined in Equation (3.8) with parameters W defined in Equa-

tion (3.9)
for iter = 1, 2, . . . N do

Generate a batch of random samples {x j}nb
j=1, where nb is the batch size

Take one gradient descent step w.r.t. W according to the loss function Lavg

󰀓
W; {x j}nb

j=1

󰀔
end for

48

3.5 Calculation

3.5.1 Derivatives and integral

In Section 3.3 we introduced how to build the neural network. Since we always use smooth

activation functions in the neural network, e.g., SiLU and softplus, the neural network is smooth

and the derivatives ∂w∂τ (x, τ),
∂w
∂x (x, τ) and ∂2w

∂x2 (x, τ) are calculated by back-propagation. For a

sample x, we calculate the integral

󳔾 ∞

−∞

󰀕
w(x + y, τ) − w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

󰀖
m(dy)

in two parts. The inner part

󳔾
−󰂃−≤y≤󰂃+

󰀕
w(x + y, τ) − w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

󰀖
m(dy)

is approximated by 󰀕
∂2w

∂x2 (x, τ) −
∂w

∂x
(x, τ)

󰀖 󳔾
−󰂃−≤y≤󰂃+

y2

2
m(dy)

the same way as described in Chapter 5 in [50], where 󰂃−, 󰂃+ ≥ 0 are small. For the outer part, we

write it as

󳔾
y<−󰂃− or y>󰂃+

󰀕
w(x + y, τ) − w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

󰀖
m(dy)

=

󳔾
y<−󰂃− or y>󰂃+

(w(x + y, τ) − w(x, τ))m(dy) − ∂w
∂x

(x, τ)
󳔾
y<−󰂃− or y>󰂃+

(ey − 1)m(dy).

The first part is calculated using the Simpson’s rule as explained in [108]. Further details of the

inner and outer part are included in Appendix B.1. With the help of neural network approximation,

we calculate each part on the left hand side of the PIDE (3.2) for a given sample x.

49

3.5.2 Extrapolation of the price function in the integral

During the training process, we need to calculate the integral

󳔾
y<−󰂃− or y>󰂃+

(w(x + y, τ) − w(x, τ))m(dy)

where w(x, τ) is approximated by a neural network within the boundary xmin ≤ x ≤ xmax. How-

ever, x + y could be out of the boundary if x is sampled close to the boundary. In this case,

w(x + y, τ) cannot be approximated by the neural network, and thus we need to perform extrapola-

tion to calculate the integral. Also, the extrapolation of w(x, τ) needs to be continuous at x = xmin

or x = xmax. Since
∫

m(dy) might be infinity around zero, the continuity of w(x, τ) ensures that

w(x+ y, τ)−w(x, τ) is close to 0 and the integral is convergent. The extrapolation is given in Table

3.5.

Option w(x, τ) − w(xmin, τ) when x < xmin w(x, τ) − w(xmax, τ) when x > xmax
European call 0 (exp(x) − exp(xmax)) exp(−qτ)
European put (exp(xmin) − exp(x)) exp(−qτ) 0
American call 0 exp(x) − exp(xmax)
American put exp(xmin) − exp(x) 0

Table 3.5: Extrapolation of w(x, τ) for European/American call/put.

Take the European call as an example, when x < xmin, w(x, τ) ≈ 0. So we let

w(x, τ) = w(xmin, τ)

such that the continuity is preserved. When x > xmax, w(x, τ) ≈ exp(x − qτ) − K exp(−rτ).

Similarly we let

w(x, τ) = w(xmax, τ) + (exp(x) − exp(xmax)) exp(−qτ)

such that the continuity is preserved.

50

3.6 Numerical experiments

3.6.1 Range of parameters and distribution of samples

For all the five models in Section 3.2.4, we consider the option price w(·) with the following

parameters:

K = 100

ln(K/2) ≤x ≤ ln(2K)

0 <τ ≤ 3,

0 ≤r, q ≤ 0.1.

We train the neural network w(·) within the range of the model parameters given in Table 3.6.

Model Parameters
VG 0.1 ≤ σ ≤ 0.5, 0.1 ≤ ν ≤ 0.6,−0.5 ≤ θ ≤ −0.1
CGMY 0.1 ≤ σ ≤ 0.5, 0.1 ≤ ν ≤ 0.6,−0.5 ≤ θ ≤ −0.1, 0 ≤ Y ≤ 1
NIG 5 ≤ α ≤ 20, −2α/3 ≤ β ≤ 2α/3, 0.1 ≤ δ ≤ 3
Merton’s 0.1 ≤ σ ≤ 0.5, 0 ≤ λ ≤ 1, −0.5 ≤ α ≤ 0.5, 0.01 ≤ δ ≤ 0.5
Kou’s 0.1 ≤ σ ≤ 0.5, 0 ≤ λ ≤ 2, 0 ≤ p ≤ 1, 3 ≤ η1 ≤ 15, 3 ≤ η2 ≤ 15

Table 3.6: Range of the model parameters in the five models under Lévy process.

All the variables and parameters follow the uniform distribution within the specified ranges in

both training and test data, except that

• β in the NIG model follows a conditional uniform distribution over (−2α/3, 2α/3) given α.

• x follows different distributions in the training and test data. In the test data, x follows

the uniform distribution on ln(K/2) ≤ x ≤ ln(2K). In the training data, half of the sam-

ples follow the uniform distribution on ln(K/2) ≤ x ≤ ln(2K) while the other half follow

the uniform distribution on xmin ≤ x ≤ xmax. The distribution of the training data is to

make sure the solution is fitted over xmin ≤ x ≤ xmax while training is focused within

ln(K/2) ≤ x ≤ ln(2K).

51

During the training process, boundaries of x are set to be xmin = ln(K/50) and xmax =

ln(50K). However, for the CGMY model and the NIG model, we let xmax = ln(500K) be-

cause these two models attach higher probability to large negative jumps such that boundary

conditions are satisfied at larger x.

The uniform random samples are given by the Sobol sequence [98], which is a quasi random

sequence.

3.6.2 Scope of application of the method

In Appendix B.1.3, we explained how we perform numerical integration to calculate

󳔾
y<−󰂃− or y>󰂃+

(w(x + y, τ) − w(x, τ))m(dy)

If k(y) ∝ y−(2+δ), where δ > 0, the spike of k(y) is very sharp. While we could perform numerical

integration in this case, we need more points in the integral grid and consequently we slow down

the method. Thus it is recommended that k(y) satisfies limy→0 k(y)y2+δ = 0, ∀δ > 0 in this

method. The VG, NIG, Merton’s and Kou’s model all satisfy this condition. The CGMY model

with Y ≤ 1 also satisfies this condition. Hence the scope of application is still wide enough.

3.6.3 Hyper-parameters and training results

We consider the neural network defined in Equation (3.8) consisting of (L1, L2) = (3, 3) lay-

ers, with n = 500 neurons in each layer. The activation function g is SiLU. We use He-normal

initialization [47] and Adam algorithm [67] for training. We do not use batch-normalization [60]

or dropout [99]. There are 500,000 training samples and 10,000 test samples and the batch size is

52

200. The learning rate is defined as following:

learning rate =

󰀻󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

10−3, from epoch 1 to 15,

10−3 decreasing exponentially to 10−4, from epoch 16 to 30,

10−4, from epoch 31 to 45.

The results are summarized in Table 3.7 and 3.8. In Table 3.7, we list the root mean square error

(RMSE) of each model, i.e.,

RMSE =

󰁶
1
n

󳕗
1≤ j≤n

󰀃
w(x j) − w̄(x j)

󰀄2
,

where x j’s are the samples following the distribution in Section 3.6.1, w(x j) is the solution given

by the neural network and w̄(x j) is the benchmark. The RMSE is calculated over the 10,000

test samples, which have not been used during the training process. The RMSE is small for each

model. To better understand where the large errors happen, we list the top three absolute errors

|w(x)− w̄(x)| in the test samples for each model in Table 3.8, along with the relative error (w(x)−

w̄(x))/max(w̄(x), h) where h = 0.25, the time to maturity τ and the moneyness S/K = ex/K

of the corresponding samples. We can see that the large errors usually happen where τ > 1. The

benchmarks are calculated using the FFT method [17] for European options and the CONV method

[79] for American options. The average training time of the 20 neural networks in this section is 3

hours 15 minutes on a Tesla P100-PCIE-16GB.

Model European call European put American call American put
VG 0.05 0.03 0.06 0.03
CGMY 0.07 0.05 0.10 0.07
NIG 0.07 0.05 0.12 0.08
Merton’s 0.07 0.04 0.09 0.05
Kou’s 0.08 0.07 0.12 0.08

Table 3.7: The root mean square error (RMSE) over the 10,000 test samples under each model.

53

Model European call European put American call American put
0.31 (-0.3%) (2.72, 1.97) 0.18 (1.5%) (2.30, 1.14) 0.59 (-0.6%) (1.43, 1.88) 0.29 (24.3%) (0.01, 0.99)

VG 0.30 (-2.7%) (1.03, 0.96) 0.18 (1.4%) (1.58, 0.95) 0.53 (-0.5%) (2.90, 1.91) 0.28 (11.8%) (0.03, 0.98)
0.29 (-2.7%) (2.51, 0.95) 0.18 (1.2%) (2.25, 0.88) 0.53 (-0.6%) (2.40, 1.81) 0.28 (-0.8%) (2.78, 0.67)
1.06 (2.9%) (2.99, 0.70) 0.49 (0.8%) (2.73, 0.62) 0.90 (0.7%) (2.82, 1.88) 0.87 (-1.5%) (2.66, 0.51)

CGMY 0.93 (1.2%) (2.52, 1.61) 0.47 (2.3%) (2.52, 1.61) 0.79 (-1.0%) (1.92, 1.72) 0.73 (-1.3%) (2.59, 0.54)
0.90 (3.0%) (2.89, 0.50) 0.36 (0.5%) (2.99, 0.70) 0.70 (-1.1%) (2.02, 1.56) 0.68 (-1.3%) (2.98, 0.65)
1.27 (-1.2%) (1.29, 1.68) 0.70 (-1.7%) (1.29, 1.68) 1.25 (-1.2%) (2.80, 1.92) 0.71 (-2.4%) (2.61, 0.88)

NIG 0.70 (23.0%) (1.32, 1.03) 0.60 (5.2%) (2.31, 0.98) 1.09 (1.1%) (1.79, 1.80) 0.68 (-1.8%) (0.22, 0.72)
0.69 (15.4%) (2.31, 0.98) 0.48 (8.4%) (2.81, 1.23) 1.05 (-1.7%) (1.47, 1.59) 0.66 (-2.9%) (1.07, 0.79)
0.65 (61.0%) (0.53, 0.90) 0.60 (-2.4%) (0.32, 0.88) 0.97 (1.8%) (1.41, 1.53) 0.51 (4.6%) (0.53, 0.90)

Merton’s 0.57 (-4.3%) (0.32, 0.88) 0.30 (-1.2%) (1.41, 0.80) 0.75 (48.1%) (0.02, 1.01) 0.45 (-2.2%) (2.39, 0.89)
0.52 (4.2%) (2.44, 0.95) 0.27 (-1.9%) (2.27, 1.05) 0.69 (1.1%) (1.57, 1.59) 0.43 (0.9%) (2.52, 0.52)
0.97 (4.1%) (2.54, 0.70) 0.67 (12.9%) (2.77, 1.70) 1.10 (1.2%) (2.93, 1.90) 0.72 (21.8%) (2.12, 1.04)

Kou’s 0.73 (0.7%) (1.79, 1.80) 0.63 (-7.2%) (0.74, 1.23) 0.96 (0.9%) (2.82, 1.88) 0.62 (22.5%) (2.99, 1.54)
0.67 (6.1%) (0.34, 1.09) 0.60 (-4.0%) (0.86, 1.10) 0.91 (11.6%) (0.22, 1.03) 0.54 (5.2%) (0.41, 0.94)

Table 3.8: Top three absolute errors over the 10,000 test samples under each model. Each
sample is recorded as ‘absolute error |w(x) − w̄(x)| (relative error (w(x) − w̄(x))/max(w̄(x), h))
(time to maturity τ, moneyness ex/K)’.

3.6.4 Short maturity fitting

Inclusion of the singular terms in the neural network would help dealing with the initial condi-

tion since

lim
τ→0+

softplus/SiLU
󰀕
main(x, τ, r, q) + bias(x)

scale(x)
√
τ

󰀖
scale(x)

√
τ =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽
(ex − K)+, for calls

(K − ex)+, for puts

Even if we always use smooth activation functions in the neural network, the singular terms enable

the neural network to follow the singular property at (x, τ) = (ln(K), 0). As a result, the network

structure is good at fitting the option price surface at short maturities. In Figure 3.6, we show the

fitted solution of the Kou’s model at T = 1/252 (1 day) and T = 1/52 (1 week) as well as the

relative error (w(x)− w̄(x))/max(w̄(x), h) as an example. For this example we use h = 0.25. Note

that when the benchmark w̄(x) is very small, the relative error can be large but the absolute error

is still small.

54

Figure 3.6: American call prices of the Kou’s model when K = 100, r = 0.02, q = 0.02, σ = 0.2,
λ = 1, p = 0.5, η1 = 12 and η2 = 12. Up: τ = 1/252 (1 day). Down: τ = 1/52 (1 week).

3.6.5 Calculation speed

The benefit of the neural network pricing method is that the network can calculate prices of a

batch of parameters at the same time. Thus it will be super fast to generate the option prices once

trained. The calculation times of different input sizes are summarized in Table 3.9. By means of

the GPU acceleration, 1 million prices can be calculated in 0.5 seconds.

Input size 1 3 10 30 100 300
GPU(s) 0.020 0.020 0.017 0.017 0.017 0.015
CPU(s) 0.075 0.135 0.027 0.034 0.039 0.059
Input size 1k 3k 10k 30k 100k 300k 1 million
GPU(s) 0.015 0.015 0.015 0.020 0.057 0.169 0.543
CPU(s) 0.099 0.207 0.580 1.704 6.077 19.059 61.103

Table 3.9: Computation time of the network defined in Equation (3.8) consisting of (L1, L2) = (3, 3)
layers, with n = 500 neurons in each layer. CPU is an Intel Xeon CPU @ 2.20GHz. GPU is a
Tesla P100-PCIE-16GB. All times are in seconds.

55

3.6.6 Greeks

Since the method solves the option price by minimizing a loss function containing the deriva-

tives, we not only get the prices but also the Greeks. The derivatives are obtained by back-

propagation. Suppose V(S, t) = w(ln(S),T − t) is the option price of a certain strike K . Then

delta is

∆ =
∂V
∂S
= S−1 ∂w

∂x
,

gamma is

Γ =
∂2V
∂S2 = S−2

󰀕
∂2w

∂x2 − ∂w
∂x

󰀖

and theta is

Θ =
∂V
∂t
= −∂w
∂τ
.

In Figures 3.7, we use the CGMY as an example to show the curves of the price, delta ∆,

gamma Γ, and theta Θ of the fitted solution and the benchmark, and also show the relative error

fitted − benchmark
benchmark

.

We found the consistent patterns for the other models. In some cases when the price, delta and

gamma are very close to 0, the relative error can be large. However, the fitted value will also be

close to zero and the absolute error is still small.

3.7 Conclusion

In this chapter, we have proposed a pricing approach using unsupervised deep learning. Specif-

ically, we use a neural network with additional singular terms to approximate the solution to the

PIDE. The singular terms are designed to meet the non-smooth initial conditions and follow the

56

property of the solution near maturity. The singular term singular(x) satisfies

lim
τ→0+

singular(x) =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽
(ex − K)+, for calls

(K − ex)+, for puts

by its definition, and so does the other singular term singular2(x). So the singular point of the

singular terms is always fixed to the singular point of the option surface during training. The

method has been tested on European/American calls/puts in the five models under Lévy processes

and can be applied to other models based on Lévy processes.

The first benefit of this approach is that we only need to train the neural network once for a

given model and can then utilize the trained network to calculate option prices super fast as shown

in Table 3.9. The second benefit is that we do not need labels for training. The third is that by this

approach we obtain not only the option price itself, but also the option Greeks without any extra

cost or effort.

In the proposed approach, the singular terms are defined based on the asymptotic behaviors

around the singular point. Singular term(s) can be extended to accommodate other types of prob-

lems as long as we know the asymptotic behaviors around their singular points. In Chapter 4, we

will show how to extend the approach using singular terms to solve barrier options.

57

Figure 3.7: American call prices and Greeks of the CGMY model when K = 100, τ = 2, r = 0.05,
q = 0.02, σ = 0.3, ν = 0.3, θ = −0.3 and Y = 0.5.

58

Chapter 4: Pricing barrier options under the Bergomi model with

unsupervised deep learning

4.1 Introduction

In this chapter we extend the deep learning approach using PDE to the barrier options, and we

propose a pricing method that includes vanilla and barrier options for stochastic volatility models

and test it under the Bergomi model [9]. The Bergomi model is a multi-factor stochastic volatility

model, which contains more parameters and also a function input. Deep learning is employed

to deal with the high dimensionality of the parameter space in the Bergomi model, and is also

applicable to the other stochastic models with fewer parameters.

In the proposed method, we fit option price surfaces with neural networks. The biggest chal-

lenge for a smooth neural network to fit the barrier options is to fit the discontinuous boundary

conditions. Thus we propose two singular terms [37] and embed them into the neural networks

such that the neural networks are not smooth at given points, i.e., the strike and barrier levels at

maturity, but are smooth anywhere else. In this way, the networks are able to satisfy the boundary

conditions and the PDE at the same time. We train the neural networks with different parameters

and the neural networks calculate option values fast after being trained. Having fast models for

pricing both vanilla and barrier options would be helpful in assessing the effect of model risk [52].

The chapter is organized as follows. In Section 4.2, we introduce the Bergomi model, the defi-

nition of the vanilla and barrier options and the equation groups used for option pricing under the

Bergomi model. In Section 4.3, we generally introduce the singular terms used for the vanilla and

barrier options and the framework of option pricing. In Section 4.4, we give the definition of the

singular term and the neural network for the vanilla options. We also discuss the boundary condi-

tions of the volatility factors and the loss functions used to train the networks of vanilla options. In

59

Section 4.5, we give the definition of the singular term, the neural network and the loss functions

for the barrier options. In Section 4.6, we give the details of numerical experiments, including

the piecewise constant function input, the range and distribution of samples for training and the

hyperparameters of the neural networks. We show the numerical results from the fitted neural net-

work solutions in terms of the root mean squared error, the relative error and the calculation speed.

Section 4.7 summarizes the chapter.

4.2 Option pricing under the Bergomi model

In this chapter, we focus on solving the barrier options under the Bergomi model, which is

a multi-factor stochastic volatility model. It is a general framework proposed by [9] to capture

forward volatility and forward skew risks. The proposed pricing routine is also applicable to other

stochastic volatility models after modifications of the boundary conditions of volatility, and of

course the basic case of the Black-Merton-Scholes (BMS) model [10]. In the case of the Bergomi

model, we will see how deep learning is employed to deal with the high dimensionality embedded

in the model.

4.2.1 Bergomi model

The general n-factor Bergomi model is based on the following lognormal dynamics of the

forward variances in [9]

ξTt = ξ
T
0 exp 󳔑󳔕

󳔓
ω

󳕗
1≤i≤n

wie−ki(T−t)X (i)
t − ω

2

2

󳕗
1≤i, j≤n

wiw je−(ki+k j)(T−t)E
󰀓
X (i)

t X (j)
t

󰀔󳔒󳔖
󳔔

where

• ξTt , 0 ≤ t ≤ T, is the process of forward instantaneous variance for date T observed at t,

• ξT0 ,T ≥ 0, is the initial value of forward variances and is also an input of the model,

• X (i)
t , ∀1 ≤ i ≤ n, are OU processes that satisfy dX (i)

t = −ki X
(i)
t dt + dW (i)

t and X (i)
0 = 0,

60

• wi, ∀1 ≤ i ≤ n, are positive weights and ω is a global scaling factor for the volatility of

forward variances,

• W (i)
t , ∀1 ≤ i ≤ n, are correlated Brownian motions, where dW (i)

t dW (j)
t = ρi, jdt.

In [9], the author claims that two factors (n = 2) afford adequate control on the term structure

of volatilities of volatilities, and then the multi-factor model is simplified as the two-factor model.

Let 0 ≤ θ ≤ 1 be a constant and

αθ = 1/
󰁴
(1 − θ)2 + θ2 + 2ρ1,2θ(1 − θ).

The weights in the two-factor model are w1 = αθ(1− θ) and w2 = αθθ. By introducing the notation

xT
t = αθ

󰀓
(1 − θ)e−k1(T−t)X (1)

t + θe
−k2(T−t)X (2)

t

󰀔
,

the dynamics of the forward variances can be simplified as

ξTt = ξ
T
0 exp

󰀕
ωxT

t − ω
2

2
var(xT

t)
󰀖
.

The risk neutral stock price St is given by

dSt = (r − q)Stdt + St

󰁴
ξ t

t dW (S)
t

where r is the risk-free interest rate, q is the dividend rate, dW (S)
t dW (i)

t = ρidt, ∀i = 1, 2, and ξ t
t is

given by

ξ t
t = ξ

t
0 exp

󰀕
ωxt

t −
ω2

2
var(xt

t)
󰀖

xt
t = αθ

󰀓
(1 − θ)X (1)

t + θX
(2)
t

󰀔

var(xt
t) = α2

θ

󰀕
(1 − θ)2 1 − e−2k1t

2k1
+ θ2

1 − e−2k2t

2k2
+ 2θ(1 − θ)ρ1,2

1 − e−(k1+k2)t

k1 + k2

󰀖
.

(4.1)

61

4.2.2 Option pricing

Suppose {St}t≥0 is the stock price process, s = ln(St) is the log-price, K is the strike, B is the

barrier level, t is the current time and T is the maturity (expiration) time. Denote the maximum

and minimum of the stock price path as

mT
t = min

t≤t̄≤T
St̄ and MT

t = max
t≤t̄≤T

St̄ .

The vanilla/barrier calls/puts are defined as

V(s, t, x1, x2) = e−r(T−t)E
󰀓
payoff |St = es, X (1)

t = x1, X
(2)
t = x2

󰀔

where V and payoff are replaced by the corresponding notation and formula in Table 4.1.

Option V payoff
vanilla call Cv (ST − K)+
vanilla put Pv (K − ST)+
up-and-out call Cu-o (ST − K)+1{MT

t <B}
up-and-in call Cu-i (ST − K)+1{MT

t ≥B}
down-and-out call Cd-o (ST − K)+1{mT

t >B}
down-and-in call Cd-i (ST − K)+1{mT

t ≤B}
up-and-out put Pu-o (K − ST)+1{MT

t <B}
up-and-in put Pu-i (K − ST)+1{MT

t ≥B}
down-and-out put Pd-o (K − ST)+1{mT

t >B}
down-and-in put Pd-i (K − ST)+1{mT

t ≤B}

Table 4.1: Payoffs of vanilla/barrier calls/puts.

The barrier options satisfy the following in-out parities according to their definitions.

󰀻󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

Cu-o(s, t, x1, x2) + Cu-i(s, t, x1, x2) = Cv(s, t, x1, x2), ∀s, x1, x2 ∈ R, 0 ≤ t ≤ T

Cd-o(s, t, x1, x2) + Cd-i(s, t, x1, x2) = Cv(s, t, x1, x2), ∀s, x1, x2 ∈ R, 0 ≤ t ≤ T

Pu-o(s, t, x1, x2) + Pu-i(s, t, x1, x2) = Pv(s, t, x1, x2), ∀s, x1, x2 ∈ R, 0 ≤ t ≤ T

Pd-o(s, t, x1, x2) + Pd-i(s, t, x1, x2) = Pv(s, t, x1, x2), ∀s, x1, x2 ∈ R, 0 ≤ t ≤ T

(4.2)

62

Our goal is to solve the option values at time t = 0, i.e., V(s, 0, 0, 0).

4.2.3 Equations for option pricing

Using the Feynman-Kac formula [66], we can derive the PDE for the two-factor Bergomi model

(see Appendix C.1). The option value V(s, t, x1, x2) needs to satisfies the following equation in the

applicable region for each option:

H(V, s, t, x1, x2) =
󰀕
∂V
∂t

− rV + (r − q − 1
2
σ2(t, x1, x2))

∂V
∂s

−k1x1
∂V
∂x1

− k2x2
∂V
∂x2
+

1
2
σ2(t, x1, x2)

∂2V
∂s2 +

1
2
∂2V
∂x2

1
+

1
2
∂2V
∂x2

2

+ρ1σ(t, x1, x2)
∂2V
∂s∂x1

+ ρ2σ(t, x1, x2)
∂2V
∂s∂x2

+ ρ1,2
∂2V
∂x1∂x2

󰀖
= 0

(4.3)

where σ(t, x1, x2) satisfies σ2(t, X (1)
t , X

(2)
t) = ξ t

t in Equation (4.1).

The equation groups including the boundary conditions of the vanilla and knock-in options are

listed in Table 4.2. The value of the knock-out options can be easily got by the in-out parity in

Equation (4.2). Additionally, each option value V(s, t, x1, x2) is continuous during 0 ≤ t < T .

If we solve the option values for s, x1, x2 ∈ R and 0 ≤ t ≤ T , we also know V(s, 0, 0, 0) as a

result.

4.2.4 Goal of the chapter

Our goal is to solve the equations in Table 4.2 using neural networks directly. The option value

V(x) is treated as a function of not only the variables s, t, x1, x2, but also all the inputs of the model

x = (s, t, x1, x2,T, B, r, q, ξ t
0,ω, k1, k2, θ, ρ1, ρ2, ρ1,2).

Throughout the paper, the strike K is kept fixed. The function V(x) will be approximated by a

well-trained neural network. Once the neural network is trained, its output is the option value, and

the neural network is able to calculate option values given different parameter sets instantly. Also,

63

Option Equations

vanilla call

󰀫
H(Cv, s, t, x1, x2) = 0, ∀s, x1, x2 ∈ R, 0 < t < T
Cv(s,T, x1, x2) = (es − K)+, ∀s, x1, x2 ∈ R

vanilla put

󰀫
H(Pv, s, t, x1, x2) = 0, ∀s, x1, x2 ∈ R, 0 < t < T
Pv(s,T, x1, x2) = (K − es)+, ∀s, x1, x2 ∈ R

up-and-in call

󰀻󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰀽

H(Cu-i, s, t, x1, x2) = 0, ∀s < ln(B), 0 < t < T, x1, x2 ∈ R
Cu-i(s,T, x1, x2) = 0, ∀s < ln(B), x1, x2 ∈ R
Cu-i(s, t, x1, x2) = Cv(s, t, x1, x2), ∀s ≥ ln(B), 0 ≤ t ≤ T, x1, x2 ∈ R

down-and-in call

󰀻󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰀽

H(Cd-i, s, t, x1, x2) = 0, ∀s > ln(B), 0 < t < T, x1, x2 ∈ R
Cd-i(s,T, x1, x2) = 0, ∀s > ln(B), x1, x2 ∈ R
Cd-i(s, t, x1, x2) = Cv(s, t, x1, x2), ∀s ≤ ln(B), 0 ≤ t ≤ T, x1, x2 ∈ R

up-and-in put

󰀻󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰀽

H(Pu-i, s, t, x1, x2) = 0, ∀s < ln(B), 0 < t < T, x1, x2 ∈ R
Pu-i(s,T, x1, x2) = 0, ∀s < ln(B), x1, x2 ∈ R
Pu-i(s, t, x1, x2) = Pv(s, t, x1, x2), ∀s ≥ ln(B), 0 ≤ t ≤ T, x1, x2 ∈ R

down-and-in put

󰀻󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰀽

H(Pd-i, s, t, x1, x2) = 0, ∀s > ln(B), 0 < t < T, x1, x2 ∈ R
Pd-i(s,T, x1, x2) = 0, ∀s > ln(B), x1, x2 ∈ R
Pd-i(s, t, x1, x2) = Pv(s, t, x1, x2), ∀s ≤ ln(B), 0 ≤ t ≤ T, x1, x2 ∈ R

Table 4.2: Equations of vanilla/barrier calls/puts.

no labels of option values from other pricing methods are needed during the training process, so

the proposed method is an unsupervised deep learning approach.

4.3 Roadmap

4.3.1 Smooth neural network

The smooth neural networks have been already used to solve PDEs in literature. In [76, 73,

93, 97], the neural network is a function of the space and time variables, while in [37], it is a

function of both variables and parameters. The loss of squared residuals of the PDE as well as

some boundary conditions is minimized such that the neural network satisfies the equation group.

The building block of the neural networks in this chapter is the multi-layer perceptron (MLP).

Here we give a quick introduction of the smooth MLP. An MLP is a multi-dimensional function

with an input x ∈ Rn0 and an output V(x) ∈ R, where n0 is the length of the input. An MLP with

64

L hidden layers can be constructed by the equations

x(0) = x,

x(j) = g(W (j−1)x(j−1) + b(j−1)), ∀1 ≤ j ≤ L,

V(x) = W (L)x(L) + b(L),

where the hidden layers are x(j) ∈ Rn, ∀1 ≤ j ≤ L and the parameters are W (0) ∈ Rn×n0 , W (j) ∈

Rn×n for 1 ≤ j ≤ L − 1, b(j) ∈ Rn for 0 ≤ j ≤ L − 1, W (L) ∈ R1×n and b(L) ∈ R. g is the non-linear

activation function which is applied element-wise. There are some examples of smooth activation

functions in Table 4.3. We are going to use SiLU [31] as the activation function in the neural

network since it is empirically shown that it outperforms the other smooth activation functions.

Nonetheless, the sigmoid function and the softplus [30] function also play important roles in the

neural network, which will be covered in the following sections.

Function Definition
sigmoid 1/(1 + e−z)

SiLU z/(1 + e−z)
softplus ln(1 + ez)

Table 4.3: Examples of smooth activation functions

4.3.2 Singular terms

The largest challenge to apply the smooth neural network approach to the barrier options is

that their final payoffs at (s, t) = (ln(B),T) are not continuous. At first glance, we might be able

to use the Heaviside function g(z) = 1{z>0} as the activation in the neural network to approximate

the discontinuous payoffs. However, the option surface is continuous any time prior to maturity,

i.e., for any t < T , making the Heaviside function impossible to be used in the neural network.

What makes it more challenging is that the solution is discontinuous at one point but continuous

anywhere else.

Actually, the discontinuity point (s, t) = (ln(B),T) is not the only special point. In vanilla

65

options and some barrier options, the point (s, t) = (ln(K),T) is also a singular point, since their

final payoffs are not smooth at this point. A traditional smooth neural network cannot fit well

around this point. In [37], a special structure called singular term is used to deal with the non-

smoothness around (s, t) = (ln(K),T).

A singular term is a pre-defined function with specific non-smoothness. It is non-smooth (or

discontinuous) at maturity but smooth (or continuous) before maturity and that is exactly what

we need. Also, they are able to mimic the asymptotic behaviors around the singular point. The

input of the singular term consists of trainable components such that the singular term is able to

fit the option surface under different parameters. In this chapter, we are going to follow the idea

of singular terms and propose two singular terms for the two singular points on the option surface

(s, t) = (ln(K),T) and (s, t) = (ln(B),T), such that we extend the smooth neural network approach

to the barrier options.

4.3.3 Framework for both vanilla and barrier options

We are going to explain how to solve the eight barrier options in a single framework. Take the

up-and-out call as an example. Its payoff and the option values prior to maturity are illustrated in

Figure 4.1. The option surface of the up-and-out call contains two singular points. So the neural

network solution to the up-and-out call needs to contain two singular terms. We have to admit that

training the singular term at the barrier level is more challenging than training the one at the strike,

since the option surface is continuous at the strike but discontinuous at the barrier level. Thus it

is better not to train the two singular terms at the same time. Fortunately, the option surface of all

the knock-in options contains just one singular point. We can solve the knock-in options and then

the knock-out options are solved by the in-out parity in Equation (4.2) if we also solve the vanilla

options.

In the pricing framework, we use six networks to model two vanilla options and eight barrier

options: two networks for the vanilla call and put, and four networks for the four knock-in options.

We first train the neural networks for vanilla options and then train the networks for knock-in

66

Figure 4.1: Example curves of the up-and-out call when K = 100, B = 120,T = 0.5, r = q = 0 and
ξ t

0 = 0.01.

options with the help of the vanilla options. Then each knock-out option is the difference of the

corresponding vanilla option and the corresponding knock-in option. Since the up-and-out call

and up-and-in call degenerate to 0 and the vanilla call when B < K and the down-and-out put and

down-and-in put degenerate to 0 and the vanilla put when B > K , we only solve the barrier options

in the region where they are non-degenerate. Although we can even use one network for either

the vanilla call or put and use the put-call parity to get the other one, we still train them separately

using two neural networks.

4.4 Vanilla options

4.4.1 Singular term for vanilla options

The option surface of vanilla options is smooth when t < T , but not at (s, t) = (ln(K),T).

In Figure 4.2, we show the call option curve becomes more like a hockey stick at S = es = K

when t converges to T . The singular term for vanilla options deals with the singularity around

(s, t) = (ln(K),T). It is modified from the Black-Scholes (BS) formula in Appendix C.2, and it is

67

Figure 4.2: Example curves of the vanilla call when K = 100,T = 0.5, r = q = 0 and ξ t
0 = 0.01.

written as follows:

αv(x) = η es−q(T−t)N(η(h(x)/v(x) + v(x)/2))

− η Ke−r(T−t)N(η(h(x)/v(x) − v(x)/2)),

h(x) = s − ln(K) + β(x)(T − t),

v(x) = γ(x)
√

T − t,

(4.4)

where β(x) and γ(x) > 0 are both MLPs with an input of x. The notation

η =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽
+1, for vanilla and barrier calls

−1, for vanilla and barrier puts

changes the sign according to the option type and will be kept the same hereafter. The function

N(·) is the normal CDF and is approximated by

N(z) = sigmoid
󰀓
2
󰁳

2/π(z + 0.044715z3)
󰀔

(4.5)

in neural networks according to [91]. Comparing the definition of αv(x) and the BS formula of

vanilla options in Appendix C.2, we can find that r − q and σ in the BS formula are replaced with

68

β(x) and γ(x) in αv(x). The singular term αv(x) satisfies the initial condition of vanilla options

lim
t→T−

αv(x) = (η(es − K))+.

In [37], a similar singular term is proposed as

α̃v(x) = softplus

󰀣
es−q(T−t) − Ke−r(T−t) + β(x)(T − t)

η γ(x)
√

T − t

󰀤
γ(x)

√
T − t

which is also inspired by the BS formula. The argument inside the softplus function is similar

to h(x)/v(x). The singular term α̃v(x) is simpler and also satisfies the initial condition of vanilla

options

lim
t→T−

α̃v(x) = (η(es − K))+.

In the Bergomi model, the instant volatility is an exponential function (see Equation (4.1)) and can

be very large. The term γ(x) plays the role of volatility and tends to infinity in some cases. The

singular term αv(x) gives the proper limit

lim
γ(x)→∞

αv(x) =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽

es−q(T−t), for vanilla calls

Ke−r(T−t), for vanilla puts

in this case but the singular term α̃v(x) does not give a proper limit since

lim
γ(x)→∞

α̃v(x) = ∞.

So the singular term αv(x) is preferred for the Bergomi model.

69

4.4.2 Dimension reduction

The Bergomi model is a high-dimensional model not only due to the number of parameters,

but also because the model input ξ t
0 is a function. Since the input of the neural network needs to be

a vector, we need to consider a family of functions that can be parametrized in a finite-dimensional

space, such as step functions or linear functions given fixed nodes. However, the dimension could

still be so high such that γ(x) in Equation (4.4) needs to learn a very complex volatility surface.

Thus we calculate the average of ξ t
0 to be

σ̄T
t =

󰁶
1

T − t

󳔾 T

t
ξ t̄

0 dt̄

and replace the definition of v(x) in Equation (4.4) with

v(x) = γ(x)σ̄T
t

√
T − t.

The average of ξ t
0 lowers the difficulty for γ(x) to learn the volatility surface.

70

4.4.3 Network structure

After we introduce the singular term for vanilla options, we give the full expression of the

neural network for vanilla options as follows:

x(0) = x,

x(j) = g(W (j−1)
v x(j−1) + b

(j−1)
v), ∀1 ≤ i ≤ L,

β(x) =W (β)
v x(L) + b(β)v ,

γ(x) = softplus
󰀓
W

(γ)
v x(L) + b(γ)v

󰀔
,

h(x) = s − ln(K) + β(x)(T − t),

v(x) = γ(x)σ̄T
t

√
T − t,

αv(x) = η es−q(T−t)N(η(h(x)/v(x) + v(x)/2))

− η Ke−r(T−t)N(η(h(x)/v(x) − v(x)/2)),

m(x) =
L󳕗

j=0
W

(j,V)
v x(j) + b(V)

v ,

V(x) =m(x) + αv(x),

(4.6)

where the input layer is x ∈ Rn0 and the hidden layers are x(j) ∈ Rn, ∀1 ≤ j ≤ L. γ(x) is passed

through the softplus function to ensure the positivity since it describes the volatility. The singular

term αv(x) is built from the last hidden layer x(L) and then added to the output. The smooth

term m(x) has skip connections from all the previous layers {x(j)}L
j=0, which stabilize the training

process. The output V(x) is a sum of the singular term and the smooth term. The dimensions of

71

the neural network parameters are

W (0)
v ∈ Rn×n0,

W
(j)
v ∈ Rn×n, ∀ 1 ≤ j ≤ L − 1,

W
(j)
v ∈ R1×n, ∀ j = β, γ,

W (0,V)
v ∈ R1×n0,

W
(j,V)
v ∈ R1×n, ∀ 1 ≤ j ≤ L,

b
(j)
v ∈ Rn, ∀0 ≤ j ≤ L − 1,

b(j)
v ∈ R, ∀ j = β, γ,V .

The overall structure is an MLP with L layers of width n, and with a singular term added to the

output. A graph of the neural network with L = 2 is illustrated in Figure 4.3 if we omit the skip

connections.

sum of the singular term and the smooth term. The dimensions of the neural network
parameters are

W (0)

v
2 Rn⇥n0 ,

W (j)
v

2 Rn⇥n
, 8 1  j  L� 1,

W (j)
v

2 R1⇥n
, 8 j = �, �,

W (0,V)

v
2 R1⇥n0 ,

W (j,V)

v
2 R1⇥n

, 8 1  j  L,

b(j)
v

2 Rn
, 80  j  L� 1,

b
(j)
v

2 R, 8 j = �, �, V.

The overall structure is an MLP with L layers of width n, and with a singular term
added to the output. A graph of the neural network with L = 2 is illustrated in Figure
3 if we omit the skip connections.

Input

Input

Input

↵v

m

Output

Hidden
layer x(1)Input layer x

Hidden
layer x(2) Output w

Figure 3: Illustration of the neural network for vanilla options, where ↵v is the singular
term and m is the smooth term.

4.4 Boundary conditions of volatility

Since the PDE contains derivatives w.r.t. the volatility factors x1 and x2, we need to
add boundary conditions for them. We need to anchor the solution on the boundary
of x1 and x2, otherwise the solution would be far from the true value on the boundary
and the solution in the interior would also be inaccurate even if the PDE is satisfied
in the interior.

For the Heston model [15], which is also a stochastic volatility model, the dynamics
of the stock price and volatility are

dSt = rStdt+ S

p
VtdW

(S)

t ,

dVt = k(✓ � Vt)dt+ �

p
VtdW

(V)

t ,

where Vt is the variance process, k, ✓ and � are positive constants and W
(S)

t and

W
(V)

t are correlated Brownian motions. Let CH(S, v, t) be the value of vanilla calls
with stock price S and instant volatility

p
Vt at time t in the Heston model. The

theoretical boundary conditions for vanilla calls at Vt = 0 and Vt = 1 proposed in
[15] are

rS
@CH

@S
(S, 0, t) + ✓

@CH

@v
(S, 0, t)� rCH(S, 0, t) +

@CH

@t
(S, 0, t) = 0

and
CH(S,1, t) = S.

9

Figure 4.3: Illustration of the neural network for vanilla options, where αv is the singular term and
m is the smooth term.

4.4.4 Boundary conditions of volatility

Since the PDE contains derivatives w.r.t. the volatility factors x1 and x2, we need to add bound-

ary conditions for them. We need to anchor the solution on the boundary of x1 and x2, otherwise

the solution would be far from the true value on the boundary and the solution in the interior would

72

also be inaccurate even if the PDE is satisfied in the interior.

For the Heston model [49], which is also a stochastic volatility model, the dynamics of the

stock price and volatility are

dSt = rStdt + S
󰁳

VtdW (S)
t ,

dVt = k(θ − Vt)dt + σ
󰁳

VtdW (V)
t ,

where Vt is the variance process, k, θ and σ are positive constants and W (S)
t and W (V)

t are correlated

Brownian motions. Let CH(S, v, t) be the value of vanilla calls with stock price S and instant

volatility
√

Vt at time t in the Heston model. The theoretical boundary conditions for vanilla calls

at Vt = 0 and Vt = ∞ proposed in [49] are

rS
∂CH

∂S
(S, 0, t) + κθ ∂CH

∂v
(S, 0, t) − rCH(S, 0, t) +

∂CH

∂t
(S, 0, t) = 0

and

CH(S,∞, t) = S.

However, this kind of boundary conditions does not work well in practice for the neural network

approach. Although we know a vanilla call with infinity volatility converges to the stock price

S, it is hard to know how large could be considered as ‘infinity’ in the numerical routine. In the

Bergomi model, we can get similar results for x1 = ±∞ and x2 = ±∞, but the question remains

how large ‘infinity’ is.

We need a better estimate of V(x) when x1 and x2 are far from 0. Recall that X (1)
t is defined by

dX (1)
t = −k1X (1)

t dt + dW (1)
t .

73

If X (1)
t = x1 and x1 is far from 0, the drift term −k1X (1)

t dt dominates in the dynamic. We consider

dX̃ (1)
t = −k1 X̃ (1)

t dt

and

X̃ (1)
u = x1e−k1(u−t), ∀u ≥ t

is a deterministic function. We also let

X̃ (2)
u = x2e−k2(u−t), ∀u ≥ t.

If we replace X (1)
u and X (2)

u with X̃ (1)
u and X̃ (2)

u , then ξu
u, ∀u ≥ t becomes a deterministic function

according to its definition in Equation (4.1), and the Bergomi model degenerates to the BMS model,

where the volatility rate is 󰁶
1

T − t

󳔾 T

t
ξu

u du.

In this way, we do not require x1 and x2 to be infinity in the boundary condition. They are required

to be far from 0 such that we can omit the drift terms in the dynamics of the OU processes. A

suitable choice of x1 and x2 could be the quantiles of the limiting distribution of the OU processes,

as we do in Section 4.6.2.

We estimate vanilla options under the Bergomi model when x1 and x2 are far from 0 by vanilla

options under the BMS model. Although we have to admit that there are still some errors in

the estimation since we do not consider the correlation ρ1, ρ2 and ρ1,2, it is much better than the

boundary condition of CH(S,∞, t) = S for numerical use.

4.4.5 Loss function

In this part we still write the option value V(x) as V(s, t, x1, x2) to emphasize the different

variables in the boundary conditions. The other parameters are omitted in notations since they will

be kept the same in the boundary conditions, but we still need to keep in mind that V is a function

74

of x. Let Ṽ(s, t, x1, x2) be the estimate by the BMS model in Section 4.4.4 when we replace X (1)
u

and X (2)
u with X̃ (1)

u and X̃ (2)
u . Let sm and sM be the lower and upper boundaries for the variable s.

Let x j,m(x) and x j,M(x) be the lower and upper boundaries for the variable x j, ∀ j = 1, 2. Note that

sm and sM are constants while x j,m(x) and x j,M(x) are functions depending on the other parameters

in x. In Table 4.4, we list the boundary conditions for vanilla calls and puts. We do not calculate

boundary conditions for x1 and x2 separately, since we need both x1 and x2 to be far from 0 so that

we can use the estimate Ṽ(s, t, x1, x2) as the boundary condition.

Boundary value Vanilla call Vanilla put
V(s,T, x1, x2) (es − K)+ (K − es)+
V(sm, t, x1, x2) 0 Ke−r(T−t) − esm−q(T−t)

V(sM, t, x1, x2) esM−q(T−t) − Ke−r(T−t) 0
V(s, t, x1,m(x), x2,m(x)) Ṽ(s, t, x1,m(x), x2,m(x)) Ṽ(s, t, x1,m(x), x2,m(x))
V(s, t, x1,M(x), x2,M(x)) Ṽ(s, t, x1,M(x), x2,M(x)) Ṽ(s, t, x1,M(x), x2,M(x))

Table 4.4: Boundary conditions of vanilla calls and puts.

Let V(x) be the neural network defined in Equation (4.6) with parameters

Wv =

󰀻󰁁󰁁󰀿
󰁁󰁁󰀽

W
(j)
v , b

(j)
v , ∀0 ≤ j ≤ L − 1 or j = β, γ

W
(j,V)
v , ∀0 ≤ j ≤ L and b(V)

v

󰀼󰁁󰁁󰁀
󰁁󰁁󰀾
. (4.7)

Given a sample x, the loss function for vanilla puts is defined as

LPv(Wv; x) = (H(V, s, t, x1, x2))2 +
󰀃
V(s,T, x1, x2) − (K − es)+

󰀄2
+
󰀓
V(sm, t, x1, x2) − Ke−r(T−t) − esm−q(T−t)

󰀔2
+ (V(sM, t, x1, x2))2

+ λ1
󰀃
V(s, t, x1,m(x), x2,m(x)) − Ṽ(s, t, x1,m(x), x2,m(x))

󰀄2
+ λ1

󰀃
V(s, t, x1,M(x), x2,M(x)) − Ṽ(s, t, x1,M(x), x2,M(x))

󰀄2

where H(V, s, t, x1, x2) is defined in Equation (4.3). λ1 is constant with the default value λ1 = 0.01,

which means we allow some errors in the boundary conditions for x1 and x2.

The loss for vanilla calls is a little different since we need to compensate for the large values

and derivatives when s is near the upper boundary sM such that they will not dominate the loss

75

function, which is also used in [37]. The weight is defined as

φ(s) = min(1, 4K2 exp(−2s))

since the values and derivatives of vanilla calls grow at the rate of exp(s). Then the loss function

for vanilla calls is defined as

LCv(Wv; x) = φ(s) (H(V, s, t, x1, x2))2 + φ(s)
󰀃
V(s,T, x1, x2) − (es − K)+

󰀄2
+ (V(sm, t, x1, x2))2 + φ(sM)

󰀓
V(sM, t, x1, x2) − esM−q(T−t) − Ke−r(T−t)

󰀔2

+ λ1φ(s)
󰀃
V(s, t, x1,m(x), x2,m(x)) − Ṽ(s, t, x1,m(x), x2,m(x))

󰀄2
+ λ1φ(s)

󰀃
V(s, t, x1,M(x), x2,M(x)) − Ṽ(s, t, x1,M(x), x2,M(x))

󰀄2
.

The losses LCv and LPv are defined on a single sample x. Given multiple samples x(1), x(2), . . . , x(n),

the total loss is an average of the individual losses, i.e.,

Lv,avg

󰀓
Wv; {x(j)}n

j=1

󰀔
=

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽

1
n
󳕐n

j=1 LPv(Wv; x(j)), for vanilla puts,

1
n
󳕐n

j=1 LCv(Wv; x(j)), for vanilla calls.

We minimize the loss function w.r.t. Wv such that the network V(x) approximates the true value

of vanilla options.

4.5 Barrier options

4.5.1 Singular term for barrier options

The singular term for vanilla options is to deal with the singularity around (s, t) = (ln(K),T).

Although the option surface is not smooth around (s, t) = (ln(K),T), it is continuous. A smooth

neural network without the singular term is still able to fit the entire vanilla option surface with

small errors, except that it cannot completely meet the initial condition. The singular term is an

improvement of the neural network but not a requirement.

76

However, the case is different for the barrier options. In Figure 4.4 (a), we show the curves of

the up-and-in call. As t approaches T , the curve becomes more and more vertical near S = es = B.

The option surface is not continuous at (s, t) = (ln(B),T) and cannot be fitted by a continuous

smooth neural network. The optimization routine would fail since the boundary conditions cannot

be fitted. Thus it is necessary to add the singular term for barrier options to the smooth neural

(a) (b)

Figure 4.4: (a) Example curves of the up-and-in call when K = 100, B = 120,T = 0.5, r = q = 0
and ξ t

0 = 0.04. (b) Example curves of the singular term F1(β(x), γ(x), x) when r − q + β(x) = 0
and γ(x)σ̄T

t = 3.

network to overcome this problem:

αb(x) = F1(β(x), γ(x), x)

= N(ζ hB(x)/v(x)),

hB(x) = s − ln(B) + (r − q + β(x))(T − t),

v(x) = γ(x)σ̄T
t

√
T − t,

where β(x) and γ(x) > 0 are MLPs with an input of x. The notation ζ is defined as

ζ =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽
+1, for up-and-in options,

−1, for down-and-in options.

77

The normal CDF is approximated by Equation (4.5). The singular term is designed such that

lim
t→T−

F1(β(x), γ(x), x) = 1{ζ(s−ln(B))>0} .

It is a Heaviside function at maturity but is smooth before maturity. In Figure 4.4 (b), the singular

term is similar to the option curves in the region s < ln(B) when t converges to T .

The singular term F1(β(x), γ(x), x) is able to replicate the discontinuity around (s, t) = (ln(B),T).

However, we need to pay special attention to the cases of up-and-in puts and down-and-in calls

since their curves are not necessarily monotone w.r.t. the stock price. This is more obvious when

volatility is small and the difference between r and q is large. In Figure 4.5, we show the curves

of the up-and-in put. The curves of up-and-in puts are increasing when r ≤ q, while the curve is

not monotone when r is much larger than q. This phenomenon increases the difficulty of fitting

at longer maturities since the singular term F1(β(x), γ(x), x) is always monotone. Once again, we

Figure 4.5: Example curves of the up-and-in put when K = 100, B = 80,T = 1, t = 0 and
ξ t

0 = 0.0025.

think of the BS formula for the barrier options, which is summarized in Appendix C.2, and propose

78

the following singular term for up-and-in puts and down-and-in calls:

αb(x) = F2(β(x), γ(x), x)

= F2,1(β(x), γ(x), x)

+ F2,2(β(x), γ(x), x) exp((s − ln(B))(1 − 2(r − q)/(σ̄T
t)2))

where the two components are

F2,1(β(x), γ(x), x) =

󰀻󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

η es−q(T−t)N(η(hK(x)/v(x) + v(x)/2))

−η Ke−r(T−t)N(η(hK(x)/v(x) − v(x)/2))

−η es−q(T−t)N(η(hB(x)/v(x) + v(x)/2))

+η Ke−r(T−t)N(η(hB(x)/v(x) − v(x)/2)),

if η(K − B) < 0,

0, else,

and

F2,2(β(x), γ(x), x) = η B2e−s−q(T−t)N(η(h̃(x)/v(x) + v(x)/2))

− η Ke−r(T−t)N(η(h̃(x)/v(x) − v(x)/2)),

and the elements in the normal CDF are

hB(x) = s − ln(B) + (r − q + β(x))(T − t),

hK(x) = s − ln(K) + (r − q + β(x))(T − t),

h̃(x) =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽

2 ln(B) − s − ln(K) + (r − q + β(x))(T − t), if η(K − B) ≥ 0,

ln(B) − s + (r − q + β(x))(T − t), else,

v(x) = γ(x)σ̄T
t

√
T − t .

79

β(x) and γ(x) > 0 are still two MLPs. The singular term is actually modified from the BS formula

for up-and-in puts and down-and-in calls. It is easy to see the singular term replaces r − q and σ

in the normal CDF with r − q + β(x) and γ(x)σ̄T
t respectively. While we should be able to modify

the BS formula for up-and-in calls and down-and-in puts to get a singular term, F1(β(x), γ(x), x)

is capable of this job and is beneficial for its simplicity and numerical stability.

4.5.2 Network structure

After introducing the singular term for barrier options, we define the neural networks for knock-

in options as follows:

x(0) = x,

x(j) = g(W (j−1)
b x(j−1) + b

(j−1)
b), ∀1 ≤ i ≤ L1,

β(x) = W
β
b x

(L1) + bβb,

γ(x) = softplus
󰀓
W
γ
b x

(L1) + bγb
󰀔
,

αb(x) =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽

F1(β(x), γ(x), x), for up-and-in calls and down-and-in puts,

F2(β(x), γ(x), x), for up-and-in puts and down-and-in calls,

x̃(L1) = concatenate(x(L1), αb(x)),

x(L1+1) = g
󰀓
W (L1)

b x̃(L1) + b(L1)
b

󰀔
,

x(j) = g
󰀓
W

(j−1)
b x(j−1) + b

(j−1)
b

󰀔
, ∀L1 + 1 < j ≤ L1 + L2,

V(x) = W (L1+L2)
b x(L1+L2) + b(L1+L2)

b ,

(4.8)

where the input layer x is of size n0 and the hidden layers are x(j) ∈ Rn, ∀1 ≤ j ≤ L1 + L2. The

singular term αb(x) is built from the middle hidden layer x(L1) and then combined with x(L1) to be

fed to the next hidden layer. The singular term has to be embedded in the middle since we need the

neural network to figure out how to combine the singular term and the continuous part by itself.

80

The dimensions of the neural network parameters are

W (0)
b ∈ Rn×n0,

W
(j)
b ∈ Rn×n, ∀ 1 ≤ j ≤ L1 − 1, L1 + 1 ≤ j ≤ L1 + L2 − 1,

W
(j)
b ∈ R1×n, ∀ j = β, γ, L1 + L2,

W (L1)
b ∈ Rn×(n+1)

b
(j)
b ∈ Rn, ∀0 ≤ j ≤ L1 + L2 − 1,

b(j)
b ∈ R, ∀ j = β, γ, L1 + L2.

The overall structure is an MLP with L1+ L2 layers of width n, and with a singular term embedded

in the middle. A graph of the neural network with L1 = L2 = 1 is illustrated in Figure 4.6.

5.2 Network structure

After we introduce the singular term for barrier options, we define the neural networks
for knock-in options as follows:

x(0) = x,

x(j) = g(W (j�1)

b
x(j�1) + b(j�1)

b
), 81  i  L1,

�(x) = W �
b
x(L1) + b

�
b
,

�(x) = softplus
⇣
W �

b
x(L1) + b

�
b

⌘
,

↵b(x) =

(
F1(�(x), �(x),x), for up-and-in calls and down-and-in puts,

F2(�(x), �(x),x), for up-and-in puts and down-and-in calls,

x̃(L1) = concatenate(x(L1),↵b(x)),

x(L1+1) = g

⇣
W (L1)

b
x̃(L1) + b(L1)

b

⌘
,

x(j) = g

⇣
W (j�1)

b
x(j�1) + b(j�1)

b

⌘
, 8L1 + 1 < j  L1 + L2,

V (x) = W (L1+L2)

b
x(L1+L2) + b

(L1+L2)

b
,

(8)

where the input layer x is of size n0 and the hidden layers are x(j) 2 Rn
, 81  j 

L1 + L2. The singular term ↵b(x) is built from the middle hidden layer x(L1) and
then combined with x(L1) to be fed to the next hidden layer. The singular term has
to be embedded in the middle since we need the neural network to figure out how to
combine the singular term and the continuous part by itself. The dimensions of the
neural network parameters are

W (0)

b
2 Rn⇥n0 ,

W (j)
b

2 Rn⇥n
, 8 1  j  L1 � 1, L1 + 1  j  L1 + L2 � 1,

W (j)
b

2 R1⇥n
, 8 j = �, �, L1 + L2,

W (L1)

b
2 Rn⇥(n+1)

b(j)
b

2 Rn
, 80  j  L1 + L2 � 1,

b
(j)
b

2 R, 8 j = �, �, L1 + L2.

The overall structure is an MLP with L1 + L2 layers of width n, and with a singular
term embedded in the middle. A graph of the neural network with L1 = L2 = 1 is
illustrated in Figure 6.

Input

Input

Input

↵b

Output

Hidden
layer x(1)Input layer x

Hidden
layer x(2) Output V (x)

Figure 6: Illustration of the neural network for knock-in options, where ↵b is the singular
term.

14

Figure 4.6: Illustration of the neural network for knock-in options, where αb is the singular term.

4.5.3 Loss function

We now go over the boundary conditions and loss functions for barrier options. We only apply

the boundary conditions for s at sm, ln(B) or sM and do not apply the boundary conditions for x1

and x2 for the following two reasons. First, the BMS model cannot serve as an estimate since

the barrier options are path-dependent and the instant volatility in the Bergomi model changes

81

fast. Second, the vanilla option value in the boundary conditions for s is already a reference of

the barrier options when x1 and x2 are far from 0. The boundary conditions for knock-in options

are listed in Table 4.5. In this part we still only use the arguments s, t, x1, x2 and omit the other

parameters in notations.

Boundary condition Initial Lower Middle Upper
Options (t = T) (s = sm) (s = ln(B)) (s = sM)
up-and-in call 0 0 Cv(ln(B), t, x1, x2) N/A
up-and-in put 0 0 Pv(ln(B), t, x1, x2) N/A
down-and-in call 0 N/A Cv(ln(B), t, x1, x2) 0
down-and-in put 0 N/A Pv(ln(B), t, x1, x2) 0

Table 4.5: Boundary conditions of knock-in options. ‘N/A’ means the boundary condition is not
applicable for certain barrier options since the boundary is on the other side of the barrier level
compared with the stock price.

Let V(x) be the neural network defined in Equation (4.8) with parameters

Wb =
󰁱
W

(j)
b , b

(j)
b , ∀0 ≤ j ≤ L1 + L2 or j = β, γ

󰁲
.

Given a sample x, the loss functions for up-and-in options are defined as

LCu-i(Wb; x) = (H(V, s, t, x1, x2))2 + λ2 (V(s,T, x1, x2))2 + (V(sm, t, x1, x2))2

+ (V(ln(B), t, x1, x2) − Cv(ln(B), t, x1, x2))2 ,

LPu-i(Wb; x) = (H(V, s, t, x1, x2))2 + λ2 (V(s,T, x1, x2))2 + (V(sm, t, x1, x2))2

+ (V(ln(B), t, x1, x2) − Pv(ln(B), t, x1, x2))2 ,

where H(V, s, t, x1, x2) is defined in Equation (4.3). λ2 is a constant with the default value λ2 = 25,

which strengthens the initial boundary condition.

82

The loss functions for down-and-in options are defined as

LCd-i(Wb; x) = (H(V, s, t, x1, x2))2 + λ2 (V(s,T, x1, x2))2 + (V(sM, t, x1, x2))2

+ (V(ln(B), t, x1, x2) − Cv(ln(B), t, x1, x2))2 ,

LPd-i(Wb; x) = (H(V, s, t, x1, x2))2 + λ2 (V(s,T, x1, x2))2 + (V(sM, t, x1, x2))2

+ (V(ln(B), t, x1, x2) − Pv(ln(B), t, x1, x2))2 .

The losses are defined on a single sample x. Given multiple samples x(1), x(2), . . . , x(n), the

total loss is an average of the individual losses, i.e.,

Lb,avg

󰀓
Wb; {x(j)}n

j=1

󰀔
=

󰀻󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

1
n
󳕐n

j=1 LCu-i(Wb; x(j)), for up-and-in call,

1
n
󳕐n

j=1 LPu-i(Wb; x(j)), for up-and-in put,

1
n
󳕐n

j=1 LCd-i(Wb; x(j)), for down-and-in call,

1
n
󳕐n

j=1 LPd-i(Wb; x(j)), for down-and-in put.

We train the neural networks of vanilla options, get Cv(x) and Pv(x) and fix them before we train

the networks of barrier options. After that, the loss function Lb,avg is minimized only w.r.t. Wb and

only the neural network of barrier options is trained.

4.6 Numerical experiments

4.6.1 Piecewise constant ξ t
0

In the Bergomi model, the model input ξ t
0 is a function over [0,T] and we consider the family

of step functions

ξ t
0 = ξ j, if t j−1 ≤ t ≤ t j

83

given the nodes 0 = t0 < t1 < · · · < tm, where {ξ j}m
j=1 are parameters. In the numerical experi-

ments, we test the following two cases:

• The constant case ξ t
0 = ξ, ∀0 ≤ t ≤ 3 as a baseline. In this case the network input is

x = (s, t, x1, x2,T, B, r, q, ξ,ω, k1, k2, θ, ρ1, ρ2, ρ1,2).

• The nine-segment case where m = 9 and

(t j)9j=1 = (1/52, 1/26, 1/12, 1/6, 1/4, 1/2, 1, 2, 3).

The nodes permit enough flexibility for options with both short and long time to maturities.

In this case the network input is

x = (s, t, x1, x2,T, B, r, q, ξ1, . . . , ξ9,ω, k1, k2, θ, ρ1, ρ2, ρ1,2).

The input dimension is 24 and the neural network is employed to deal with the high-dimensional

case.

4.6.2 Parameter range and sampling

Although the proposed method is unsupervised and does not need labels of prices generated

from other pricing methods for training, we still need random samples for training. We also need

option prices calculated from a benchmark method that are used to evaluate the results of neural

networks after training. Here are the ranges of the parameters following the same constraints in

both training and test samples.

K = 100, 0 ≤ T ≤ 3, 0.052 ≤ ξ t
0 ≤ 0.52,

0 ≤ r, q ≤ 0.1, 0 ≤ ω ≤ 3, 0 ≤ θ ≤ 1,

0.1 ≤ k1 ≤ 4, 2 ≤ k2 ≤ 12, −0.9 ≤ ρ1, ρ2 ≤ 0.2.

84

We choose a feasible range for each parameter. For example, k1 and k2 are chosen such that

X (1)
t and X (2)

t are long-time and short-time volatility factors. ρ1 and ρ2 are mostly negative since

returns and volatilities are usually negatively correlated. ξ t
0 is similar to σ2 in the BMS model and

its range is chosen based on the scale of volatility. The parameter ρ1,2 needs to satisfy the following

constraints to ensure the positive semidefinite property of the covariance matrix of the correlated

Brownian motions

ρ1ρ2 −
󰁴
(1 − ρ21)(1 − ρ22) ≤ ρ1,2 ≤ ρ1ρ2 +

󰁴
(1 − ρ21)(1 − ρ22).

The variables t, x1 and x2 follow different constraints in training and test samples:

Training range Test range

t 0 ≤ t ≤ T t = 0

x1 x1,m(x) ≤ x1 ≤ x1,M(x) x1 = 0

x2 x2,m(x) ≤ x2 ≤ x2,M(x) x2 = 0

where

x j,M(x) = −x j,m(x) = 3
󰁴

1/(2k j) + 0.01

for j = 1, 2. The bound for x1 and x2 is built according to the variance of the limiting distribution

of the OU process 1/(2k j). These variables are equal to 0 in the test samples since we only need

the option price at time 0, i.e., V(s, 0, 0, 0). The ranges of ln(B) and s are trickier since they are

dependent on the option type. We sample ln(B) instead of B based on the following rules

Range for both training and test samples

vanilla options (not applicable)

up-and-in/out call ln(K) ≤ ln(B) ≤ ln(1.5K)

down-and-in/out put ln(K/1.5) ≤ ln(B) ≤ ln(K)

others ln(K/1.5) ≤ ln(B) ≤ ln(1.5K)

85

The range of ln(B) is halved for up-and-in/out calls and down-and-in/out puts since we only cal-

culate the non-degenerate case and the degenerate case falls into vanilla options. Finally, the range

of s is listed for each case as follows:

Training range Test range

vanilla options ln(K/20) ≤ s ≤ ln(20K) ln(K/2) ≤ s ≤ ln(2K)

up-and-in/out option ln(K/20) ≤ s ≤ ln(B) ln(K/2) ≤ s ≤ ln(B)

down-and-in/out option ln(B) ≤ s ≤ ln(20K) ln(B) ≤ s ≤ ln(2K)

The range of s is narrower in the test samples since we would like to focus more on the liquid

options.

After choosing the range of each argument in x, we introduce how to sample them within

the given range. All variables and parameters are sampled from the uniform distribution over the

given intervals. If the lower and upper boundaries depend on other parameters, we use the condi-

tional uniform distribution given the parameters in their boundaries. For example, ρ1,2 follows the

conditional uniform distribution over

󰀗
ρ1ρ2 −

󰁴
(1 − ρ21)(1 − ρ22), ρ1ρ2 +

󰁴
(1 − ρ21)(1 − ρ22)

󰀘

given ρ1 and ρ2. The only exceptions are x1 and x2. The variables (x1, x2) are sampled from their

marginal distribution at time t, which is the two-dimensional normal distribution

N
󳔑󳔕󳔕
󳔓
󳔑󳔕󳔕
󳔓

0

0

󳔒󳔖󳔖
󳔔
,
󳔑󳔕󳔕
󳔓

1−e−2k1t

2k1
+ 0.01 ρ1,2

1−e−(k1+k2)t

k1+k2

ρ1,2
1−e−(k1+k2)t

k1+k2
1−e−2k2t

2k2
+ 0.01

󳔒󳔖󳔖
󳔔
󳔒󳔖󳔖
󳔔

and is then clipped within their range x j,m(x) ≤ x j ≤ x j,M(x), ∀ j = 1, 2. 0.01 is added to their

variances to prevent the degenerate distribution at time t = 0.

86

4.6.3 Training and results

We consider the neural network defined in Equation (4.6) consisting of L = 5 layers for vanilla

options and the neural network defined in Equation (4.8) consisting of (L1, L2) = (3, 2) layers for

barrier options. Each hidden layer contains n = 500 neurons. The same network is used for the

constant ξ t
0 case and nine-segment ξ t

0 case. The activation function g is SiLU. The training batch

size is 1000 and the training size is determined as follows:

Training size Vanilla options Barrier options

constant ξ t
0 10, 000, 000 20, 000, 000

9-segment ξ t
0 100, 000, 000 200, 000, 000

There are 10,000 test samples in each case. We use the Adam algorithm [67] for training. The

network is trained for 45 epochs in the constant ξ t
0 case and 9 epochs in the nine-segment ξ t

0 case.

The learning rate decreases exponentially from 10−3 to 10−5.

We use simulation to calculate the benchmark, which is introduced in Appendix C.3 and C.4.

The results are summarized in Table 4.6. In Table 4.6, we list the root mean square error (RMSE)

of the neural network solution for each option, i.e.,

RMSE =

󰁶
1
n

󳕗
1≤ j≤n

󰀃
V(x(j)) − V̄(x(j))

󰀄2
,

where x(j) are the test samples following the ranges and distributions in Section 4.6.2, V(x(j)) is

the solution given by the neural network and V̄(x(j)) is the benchmark. The RMSE is calculated

over the 10,000 test samples, which have not been used during the training process. We also list

the RMSE of the benchmark

󰁶
1
n

󳕗
1≤ j≤n

󰀃
se(V̄(x(j)))

󰀄2
,

where se(V̄(x(j))) is the standard error of the estimate V̄(x(j)) in the simulation benchmark. Since

87

the benchmarks are noisy, the RMSE of the neural network cannot be much smaller than the RMSE

of the benchmark.

RMSE of network solutions RMSE of simulation
Option constant ξ t

0 9-segment ξ t
0 constant ξ t

0 9-segment ξ t
0

vanilla call 0.0686 0.0685 0.1422 0.1415
vanilla put 0.1066 0.1039 0.0926 0.0940
up-and-out call 0.0772 0.1031 0.0622 0.0640
up-and-in call 0.1117 0.1309 0.1225 0.1146
down-and-out call 0.1479 0.1676 0.2060 0.2094
down-and-in call 0.1329 0.1576 0.1336 0.1427
up-and-out put 0.1133 0.1372 0.1063 0.1067
up-and-in put 0.1069 0.1336 0.0963 0.1000
down-and-out put 0.0736 0.0923 0.0600 0.0617
down-and-in put 0.1171 0.1271 0.0992 0.0999

Table 4.6: The root mean square error (RMSE) of the neural network solution over the 10,000 test
samples for each option, compared with the RMSE of the simulation benchmark.

4.6.4 Fitted curves

The singular terms are included in the neural networks such that the non-smooth and discon-

tinuous boundary conditions can be fitted. Thus the neural networks keep the singular properties

around (s, t) = (ln(K),T) and (s, t) = (ln(B),T) and are good at fitting option price curves of short

maturities. Consequently, they are also able to replicate the prices of longer maturity given they

are fitted to satisfy the PDE. In Figures 4.7 and 4.8, we show the fitted neural network solution

and the simulation benchmark of the barrier calls at T = 1/252 (1 day), T = 1/52 (1 week) and

T = 1/2 (half a year) as well as the relative error (V(x) − V̄(x))/max(V̄(x), h) as an example. For

these examples we use h = 0.25. The barrier calls are taken as the examples since the barrier puts

are bounded and are usually fitted with smaller errors.

4.6.5 Calculation speed

The neural network can calculate prices of a batch of parameter sets at the same time. Thus it

will be super fast to generate the option prices once trained. The calculation times of the neural

88

networks used in the numerical experiments are summarized in Table 4.7. Note that the vanilla

and knock-in options only use one neural network, while the knock-out options are calculated as

a difference of the vanilla and knock-in options and make use of two networks. By means of the

GPU acceleration, 200,000 prices can be calculated in 0.133 seconds as most.

Input size 1 10 100 1k 10k 100k 200k
vanilla & GPU(s) 0.017 0.027 0.021 0.021 0.025 0.055 0.070
knock-in CPU(s) 0.032 0.033 0.034 0.092 0.533 4.943 9.296

knock-out
GPU(s) 0.070 0.062 0.067 0.062 0.070 0.083 0.133
CPU(s) 0.078 0.073 0.093 0.194 1.347 10.717 18.585

Table 4.7: Computation time of the neural network solutions in the numerical experiments consist-
ing of 5 layers, with 500 neurons in each layer. CPU is an Intel Xeon CPU @ 2.20GHz. GPU is a
Tesla V100-SXM2-16GB. All times are in seconds.

4.7 Conclusion

In this chapter, we have developed an unsupervised deep learning method to solve the barrier

options under the two-factor Bergomi model. The neural networks serve as the approximate option

surfaces and are trained to satisfy the PDE as well as the boundary conditions. A trained neural

network can calculate option values extremely fast. Having fast algorithms for pricing both vanilla

and exotic options, e.g. barrier options, would facilitate to assess the effect of model risk [52].

Here we summarize the main innovations based on the unsupervised deep learning method:

• We propose two singular terms to deal with the non-smoothness at the strike level and the

discontinuity at the barrier level so that the neural network can fit the boundary conditions of

the barrier options. Since we already know the singular points of vanilla and barrier option

surfaces are at the strike and barrier levels, the singular points of the singular terms are

defined to be also the strike and barrier levels, and will not change during training.

• We use six networks to express the eight barrier options in one framework. We do not train

the eight options separately, but make use of the in-out parity. We build networks for knock-

in options given they contain only one singularity and are easier to be fitted.

89

• The neural network is employed to deal with the high dimensionality coming with the large

number of parameters and the function input in the multi-factor forward variances in the

Bergomi model.

• Boundary conditions of the volatility factors are estimated by the BMS model, which in-

creases the accuracy of the method.

The proposed method can also deal with the other stochastic volatility models, as long as we

find the suitable boundary conditions of volatility and the suitable estimate. The other stochastic

volatility models should not be more complex than the Bergomi model given there are fewer pa-

rameters and there is no function input in the model. So the method for the Bergomi model serves

as a good example of the applications to the stochastic volatility models.

The two proposed singular terms are good examples for the case that we need to solve heat

equations with non-smooth or discontinuous initial conditions. We can incorporate multiple sin-

gular terms into one neural network for more complex initial conditions, which would facilitate

fitting the asymptotic behaviors of the solution near the initial condition. Moreover, the idea of

singular terms can be extended to deal with other types of problems as long as we know the overall

shape and approximate position of the non-smoothness or discontinuity in their solutions.

90

Figure 4.7: Comparison of the fitted neural network solution and the simulation benchmark of the
up-and-out/in call when K = 100, B = 120, r = q = 0, ξ t

0 = 0.1,ω = 1, k1 = 1, k2 = 10, θ =
0.5, ρ1 = ρ2 = −0.5, ρ1,2 = 0 and t = x1 = x2 = 0. UOC and UIC stand for the up-and-out and
up-and-in call respectively.

91

Figure 4.8: Comparison of the fitted neural network solution and the simulation benchmark of the
down-and-out/in call when K = 100, B = 120, r = q = 0, ξ t

0 = 0.1,ω = 1, k1 = 1, k2 = 10, θ =
0.5, ρ1 = ρ2 = −0.5, ρ1,2 = 0 and t = x1 = x2 = 0. DOC and DIC stand for the down-and-out and
down-and-in call respectively.

92

Chapter 5: Simulation of financial time series using generative adversarial

networks with attention

5.1 Introduction

Parametric models for financial time series are robust and simple, but they have strong assump-

tions, which limit their further applications. For example, in the GARCH model, the returns have

no impact on the future volatilities, which is not consistent with the empirical stock return data.

So it is difficult for a parametric model to replicate all the major statistical properties of real data.

The generative adversarial networks (GANs) [41] are purely data-driven models with weaker as-

sumptions. The GANs have been proved to be successful in many applications, e.g. simulation of

realistic human portraits, landscape paintings and musical compositions.

It is shown in [106] that long-range dependency is a major challenge in financial time series

simulation. The attention mechanism [4, 80] is perfectly suitable for modeling the stylized facts

of long-range dependency due to the large receptive field size of the attention layer. Thus we are

motivated to use the attention-based GANs to simulate the financial time series. It is important

to note the difference between time series and fixed-dimensional variables, since a time series can

have an arbitrary length. Thus we need to modify the attention-based GANs to make it agnostic to

the length of the time series. Our findings based on numerical results show that the attention-based

GANs perform as well as the temporal convolutional network (TCN or WaveNet [101]) in repli-

cation of the major stylized facts, including heavy tails, autocorrelation and cross-correlation, and

are better at simulating smooth autocorrelation of returns and satisfying the no-arbitrage condition

of option surfaces. It is well known in the literature that both GANs and transformers [102], which

contain multiple attention layers, are hard to train, and it is a challenging problem to combine them

together. Millions or billions of samples are usually used to train the transformer GANs in text

93

generation and image simulation. Authors in [64] pointed it out that transformers are data-hungry,

and thus they made used of data augmentation techniques to improve the transformer GANs. In

this chapter, we propose a new transformer GAN using sparse attention [22, 27] and train it using

a small amount of financial time series data (around 3000 samples).

Besides the attention mechanism, we also tried a structure like the regularized GAN (RegGAN)

[29], which employs a pre-trained network as a second discriminator, to emphasize selected styl-

ized facts, e.g. high kurtosis. We train a discriminator on the high kurtosis data, which is able to

replicate the high kurtosis data. Then we use the pre-trained discriminator as the second discrim-

inator when we train the GANs on the low kurtosis data to increase the prior of the high kurtosis

data. However, this approach does not work as we expected, and it is shown that the discriminator

trained on one dataset may not be suitable to distinguish the real data in another dataset.

The rest of this chapter is organized as follows. In Section 5.2, we define the generative model

and emphasize the difference between the generative models of time series and fixed-dimensional

distributions. We also introduce the GANs, which employ a discriminator to train the generator.

In Section 5.3, we introduce and compare the regular and causal convolutional layers and attention

layers, which are building blocks of the proposed GANs. In Section 5.4, we propose to employ

attention as the tool to model the long-range dependencies, and give the detailed structure of the

proposed temporal attention GAN (TAGAN) and temporal transformer GAN (TTGAN). In Sections

5.5 and 5.6, we show the numerical results of the proposed GANs for the S&P 500 index simulation

and its index option surface simulation respectively. Section 5.7 summarizes the chapter.

5.2 Generative model of financial time series

5.2.1 Problem formulation

Suppose we have a financial time series {xt ∈ Rd}t∈Z, e.g., the historical of prices or volatilities,

and would like to generate a time series {yt ∈ Rd}t∈Z that has the same statistical properties given

a series of i.i.d. random noise {zt ∈ Rdn}t∈Z via deep learning. Let zi: j denote the sequence

{zi, zi+1, . . . , z j} and the same notation is used for all time series hereafter.

94

Here we follow the definition of the neural process in [106]. We would like to develop a

generator G(·; θG), a neural network with the parameter θG ∈ ΘG, which takes random noise from

{zt}t∈Z as its input and outputs the time series {yt}t∈Z, i.e.,

yt = G(zt− f+1:t ; θG), ∀t ∈ Z

where f > 0 is called the receptive field size (RFS) and means the length of noise variables of

which yt is composed. By this definition, yt and yt+τ would be independent if τ ≥ f . Also, since

yt is computed from {zτ}τ≤t , we know {yt}t∈Z is adapted to {zt}t∈Z.

The generator of time series has to satisfy the following conditions that make it different from

a generator of a fixed-dimensional distribution.

(a) The generator should be able to take in random noise of length l + f − 1 to output the aimed

time series of an arbitrary length l, i.e.,

yt−l+1:t = G(zt−l− f+2:t ; θG), ∀t ∈ Z.

(b) The generated time series can be prolonged in a consistent manner. For arbitrary t1, t2, t3, t4 ∈

Z such that [t1, t2] ∩ [t3, t4] 󲧰 ∅,

yt1:t2 = G(zt1− f+1:t2; θG)

and

ỹt3:t4 = G(zt3− f+1:t4; θG),

the overlapping part of the generated time series must be equal, i.e.,

ymax{t1,t3}:min{t2,t4} = ỹmax{t1,t3}:min{t2,t4} .

This means the generated time series {yt}t∈Z is uniquely determined by the random noise

95

series {zt}t∈Z.

Given the two conditions are satisfied, we can always let the generator G(·; θG) compute sequences

of length l and then combine the sequences to make up a longer sequence y1:T , where T > l. To

be more specific, we first calculate the pieces

y(i−1)l+1:il = G(z(i−1)l− f+2:il ; θG), ∀1 ≤ i ≤ ⌈T/l⌉,

and then y1:T is a subsequence of y1:l ⌈T/l⌉ , where ⌈·⌉ is the ceiling function.

5.2.2 Training through generative adversarial network

We give a quick introduction of GANs as well as the loss functions for training GANs. The

GAN introduces a discriminator

D(·; θD) : Rl×d → R,

where θD ∈ ΘD, to evaluate the similarity between the real historical data {xt}t∈Z and the simulated

data {yt}t∈Z. A higher output value from D(·; θD) means the discriminator holds a stronger belief

that the input sample comes from the real data.

Suppose we have a sequence of real data x1:T . Let PX be the uniform distribution over the

window data of length l, {xi:i+l−1, ∀1 ≤ i ≤ T − l + 1}. Also, let PZ be distribution of z1:l+ f−1.

Then we draw X ∼ PX to be a piece of real data of length l and Z ∼ PZ the random noise of length

l + f − 1 and get the simulated sequence Y = G(Z ; θG) ∈ Rl×d . The GAN trains the generator and

the discriminator by minimizing the following loss functions

min
θG
EZLG(D(G(Z ; θG); θD))

and

min
θD
EX,Z,X̃LD(D(X ; θD),D(G(Z ; θG); θD),∇X̃D(X̃ ; θD)),

where LG(·) and LD(·, ·, ·) are the loss functions of the discriminator and the generator. The third

96

argument in LD(·, ·, ·) is not included in the original GAN but related with gradient penalty, where

X̃ = (1 − U)X + UY is a linear interpolation between X and Y requiring U follows the uniform

distribution over (0, 1).

The loss functions of the original GAN [41] are

LG(d f) = − ln(σ(d f))

LD(dr, d f , g) = − ln(σ(dr)) − ln(1 − σ(d f))
(5.1)

where σ(d) = 1/(1 + e−d) is the sigmoid function and σ(D(X ; θD)) means the probability that the

discriminator considers X belongs to the real data. A quick derivation of the losses is included in

Appendix D.2.

Besides the original losses, the loss functions of the Wasserstein GAN [2] with gradient penalty

(WGAN-GP) [43] are also widely used, where the gradient norm penalty is used to achieve Lips-

chitz continuity:

LG(d f) = −d f

LD(dr, d f , g) = −dr + d f + λ(󰀂g󰀂 − 1)2
(5.2)

where λ is a constant and λ = 10 by default. 󰀂 · 󰀂 is the Frobenius norm. In Appendix D.2, we

introduce how the losses are derived.

5.3 Network layers

In this section, we going to list all the layers that will be used in the proposed network structure.

Some of the layers are already introduced in literature, but we still give a short introduction for

each to make the thesis self-contained. The layers are classified into regular layers and causal

layers. In the causal layers, each output node only depends on the input nodes with equal or

smaller time indices. Suppose the input of the causal layer is I ∈ Rnl×ni with rows {I t,·}nl
t=1 and the

output is O ∈ R(nl− f+1)×no with rows {Ot,·}nl
t= f , then each row of the output Ot,· only depends on

97

{I τ,·}t
τ=t− f+1. However, the regular layers are not subject to this restriction. Since the output of the

generator needs to be adapted to the input noise, the causal layers are used in the generator. While

the regular layers admit more flexibility and are used in the discriminator.

5.3.1 Regular convolutional layer

In [75], the authors proposed the convolutional layer, which is good at extracting local infor-

mation. The two-dimensional case is widely used in computer vision and the one-dimensional case

is used in sequence models. Although the convolutional layer is widely used and well-known, we

reiterate the definition to show the difference between the different layers. Suppose the input is

I ∈ Rnl×ni and it passes through a one-dimensional regular convolutional layer with kernel size nk ,

output channel no and stride s. The kernel size nk is an odd number by default. The parameters are

the weight W ∈ Rnk×ni×no and the intercept b ∈ Rno . The output of the regular convolutional layer

is O ∈ R⌊nl/s⌋×no given by

Oil,io =

ni󳕗
i=1

nk󳕗
ik=1

Wik,i,io Is(il−1)+1−(nk+1)/2+ik,i + bio, ∀1 ≤ il ≤ ⌊nl/s⌋, 1 ≤ io ≤ no,

where ⌊·⌋ is the floor function. The ‘same’ padding rule is applied to the input, i.e., Iil,i = I1,i, ∀il <

1 and Iil,i = Inl,i, ∀il > nl . The regular convolutional layer is illustrated in Figure 5.1. It is denoted

as conv(nk,no,s)r (·), where nk, no and s are the kernel size, output channel and stride respectively.

3.1 Regular convolutional layer

In [28], the authors proposed the convolutional layer, which is good at extracting
local information. The two-dimensional case is widely used in computer vision and
the one-dimensional case is used in sequence models. Although the convolutional
layer is widely used and well-known, we reiterate the definition to show the di↵erence
between the di↵erent layers. Suppose the input is I 2 Rnl⇥ni and it passes through
a one-dimensional regular convolutional layer with kernel size nk, output channel no

and stride s. The kernel size nk is an odd number by default. The parameters are
the weight W 2 Rnk⇥ni⇥no and the intercept b 2 Rno . The output of the regular
convolutional layer is O 2 Rbnl/sc⇥no given by

Oil,io =
niX

i=1

nkX

ik=1

Wik,i,ioIs(il�1)+1�(nk+1)/2+ik,i
+ bio , 81  il  bnl/sc, 1  io  no,

where b·c is the floor function. The ‘same’ padding rule is applied to the input, i.e.,
Iil,i = I1,i, 8il < 1 and Iil,i = Inl,i, 8il > nl. The regular convolutional layer is

illustrated in Figure 1. It is denoted as conv(nk,no,s)
r (·), where nk, no and s are the

kernel size, output channel and stride respectively.

I1,·

Input

I2,·

Input

I3,·

Input

I4,·

Input

I5,·

Input

I6,·

Input

O1,·

Output

O2,·

Output

O3,·

Output

O4,·

Output

O5,·

Output

O6,·

Output

Figure 1: Illustration of the regular convolutional layer (length nl = 6, kernel size nk = 3
and stride s = 1).

3.2 Causal convolutional layer

In [35], the authors proposed the causal convolutional layer to model the audio data.
Suppose the input is I 2 Rnl⇥ni and it passes through a causal convolutional layer
with kernel size nk and output channel no. The parameters are the weight W 2
Rnk⇥ni⇥no and the intercept b 2 Rno . The output of the causal convolutional layer
is O 2 R(nl�nk+1)⇥no . In the causal layer, the time index of the output is taken from
{nk, nk + 1, . . . , nl}. The output is given by

Ot,io =
niX

i=1

nkX

ik=1

Wik,i,ioIt�nk+ik,i + bio , 8nk  t  nl, 1  io  no.

The RFS of the causal convolutional layer is equal to nk. The causal convolutional

layer is illustrated in Figure 2. It is denoted as conv(nk,no)
c (·), where nk and no are

the kernel size and output channel.

3.3 Regular attention layer

The attention layer was introduced by [3, 29]. It is designed to receive and process
global information to improve the performance of convolutional or recurrent networks.
Authors in [36] proposed the transformer network and proved the attention layers alone

4

Figure 5.1: Illustration of the regular convolutional layer (length nl = 6, kernel size nk = 3 and
stride s = 1).

98

5.3.2 Causal convolutional layer

In [101], the authors proposed the causal convolutional layer to model the audio data. Suppose

the input is I ∈ Rnl×ni and it passes through a causal convolutional layer with kernel size nk and

output channel no. The parameters are the weight W ∈ Rnk×ni×no and the intercept b ∈ Rno . The

output of the causal convolutional layer is O ∈ R(nl−nk+1)×no . In the causal layer, the time index of

the output is taken from {nk, nk + 1, . . . , nl}. The output is given by

Ot,io =

ni󳕗
i=1

nk󳕗
ik=1

Wik,i,io It−nk+ik,i + bio, ∀nk ≤ t ≤ nl, 1 ≤ io ≤ no.

The RFS of the causal convolutional layer is equal to nk . The causal convolutional layer is illus-

trated in Figure 5.2. It is denoted as conv(nk,no)c (·), where nk and no are the kernel size and output

channel.

I1,·

Input

I2,·

Input

I3,·

Input

I4,·

Input

I5,·

Input

I6,·

Input

O3,·

Output

O4,·

Output

O5,·

Output

O6,·

Output

Figure 2: Illustration of the causal convolutional layer (length nl = 6 and kernel size
nk = 3).

are capable of modeling the sequences. Suppose the input of the regular multi-head
attention layer is I 2 Rnl⇥ni . The attention layer in this paper is self-attention,
and the query, key and value are all I. Suppose the hidden size is na and the num-
ber of heads is nh, which satisfy mod(na, nh) = 0. The parameters are the weights
WQ

,WK
,W V 2 Rni⇥na , WO 2 Rna⇥ni and intercepts bQ, bK , bV 2 Rna , bO 2 Rni .

Let 1 be the vector of length nl with all elements of 1. The formulae in the regular
attention layer are

Q = IWQ + 1bQ
>

K = IWK + 1bK
>

V = IW V + 1bV
>

A(ih) = softmax
⇣
Q(ih)K

>
(ih)

⌘
V (ih), 81  ih  nh

O = AWO + 1bO
>

(3)

where A(ih) means the submatrix from column (ih � 1)nh + 1 to column ihnh and
O 2 Rnl⇥ni is the output of the attention layer. The softmax function is evaluated
along each row of the input matrix. While the fourth equation in Equation (3) is often
replaced with

A(ih) = softmax
⇣
Q(ih)K

>
(ih)/

p
na/nh

⌘
V (ih)

when the size of a single attention head na/nh is large, we stick with the equation
in Equation (3) since it shows better empirical results when na/nh is small. The
dependence relationship of the output on the input in the regular attention layer is

illustrated in Figure 3. The regular attention layer is denoted as attn(na,nh)
r (·), where

na and nh are the hidden size and number of heads.

3.4 Sparse attention layer

The sparse attention layer is introduced by [9] to accelerate computation and improve
the focus of the attention layer. The sparse attention introduces the sparse masks
before the softmax function, i.e. replacing the fourth equation in Equation (3) with

A(ih) = softmax
⇣
Q(ih)K

>
(ih) +M (ih)

⌘
V (ih) (4)

where M (ih) 2 Rni⇥ni , 81  ih  nh are the sparse mask matrices. In the mask
M (ih), the elements in the masked positions are assigned a large negative value �L,
while the elements outside the mask are assigned 0. Since they are sparse masks, the
0 elements are sparse and the large negative value elements are dense. The masked

5

Figure 5.2: Illustration of the causal convolutional layer (length nl = 6 and kernel size nk = 3).

5.3.3 Regular attention layer

The attention layer was introduced by [4, 80]. It is designed to receive and process global

information to improve the performance of convolutional or recurrent networks. The attention

layer was first used in text translation, where input words and output words may follow different

orders because of different grammar. So, the attention layer needs to search from the entire inputs

99

to decide which input word is corresponding to a specific output word. The best match in the

input becomes the ‘attention’ of the layer. Authors in [102] proposed the transformer network,

which consists of only attention layers and multi-layer perceptrons, and proved attention layers are

capable of modeling sequences without help from convolutional or recurrent layers. Suppose the

input of the regular multi-head attention layer is I ∈ Rnl×ni , the hidden size is na and the number of

heads is nh, which satisfy mod(na, nh) = 0. The parameters are the weights WQ,WK,WV ∈ Rni×na ,

WO ∈ Rna×ni and intercepts bQ, bK, bV ∈ Rna , bO ∈ Rni . Let 1 be the vector of length nl with all

elements of 1. The formulae in the regular attention layer are

Q = IWQ + 1bQ⊤

K = IWK + 1bK⊤

V = IWV + 1bV⊤

A(ih) = softmax
󰀓
Q(ih)K

⊤
(ih)

󰀔
V (ih), ∀1 ≤ ih ≤ nh

O = AWO + 1bO⊤

(5.3)

where A(ih) means the submatrix from column (ih − 1)nh + 1 to column ihnh and O ∈ Rnl×ni is the

output of the attention layer. The softmax function is evaluated along each row of the input matrix.

While the fourth equation in Equation (5.3) is often replaced with

A(ih) = softmax
󰀓
Q(ih)K

⊤
(ih)/

󰁳
na/nh

󰀔
V (ih)

when the size of a single attention head na/nh is large, we stick with the equation in Equation (5.3)

since it shows better empirical results when na/nh is small. The dependence relationship of the

output on the input in the regular attention layer is illustrated in Figure 5.3. The regular attention

layer is denoted as attn(na,nh)r (·), where na and nh are the hidden size and number of heads.

100

I1,·

Input

I2,·

Input

I3,·

Input

I4,·

Input

I5,·

Input

I6,·

Input

O1,·

Output

O2,·

Output

O3,·

Output

O4,·

Output

O5,·

Output

O6,·

Output

Figure 3: Dependence relationship in the regular attention layer (length nl = 6).

positions are mapped to 0 by the softmax function since e
�L ⇡ 0, where we usually

let L = 103. In this way, the masked positions in Q(ih)K
>
(ih) are not involved in the

result of the softmax function and the attention is limited within the sparse mask.
In this paper we use the sparse masks proposed in [12]. They are generated in the

following way. Let s = bpnlc be the stride, where b·c is the floor function. Then we
create the index sets for the masks:

• Left floor mask: S1 = {(i, j) : b(i� 1)/sc = b(j � 1)/sc and i � j}
• Right floor mask: S2 = {(i, j) : b(i� 1)/sc = b(j � 1)/sc and i  j}
• Left repetitive mask: S3 = {(i, j) : mod(j, s) = 0 or i = j}
• Right repetitive mask: S4 = {(i, j) : mod(j, s) = 1 or i = j}

The corresponding masks are defined as

M
(ih)
i,j

=

(
0, if (i, j) 2 Sis ,

�L, if (i, j) /2 Sis ,
when ih ⌘ is(mod 4).

As a result, the number of heads nh needs to be a multiple of 4 when we use the sparse
attention. In Figure 4, we show an example of the sparse masks. The sparse attention

layer is denoted as attn(na,nh)
s (·), where na and nh are the hidden size and number of

heads.

3.5 Causal attention layer

To make use of the attention layers in the generator of time series, we need to make
sure the output only depends on the input elements in the past. This is also achieved
by using masks. Suppose the input is still I 2 Rnl⇥ni and the parameters are defined
the same as in the regular attention. Let the RFS of the layer be nf . The definition
of the attention layer in Equation (3) needs to be replaced with

Q = IWQ + 1bQ
>

K = IWK + 1bK
>

V = IW V + 1bV
>

A(ih) = softmax
⇣
Q(ih)K

>
(ih) +M

⌘
V (ih), 81  ih  nh

O =
⇣
AWO + 1bO

>⌘

nf :nl,·

where (·)nf :nl,· means the submatrix from row nf to row nl, and M is a mask matrix
with the elements

Mi,j =

(
0, if 0  i� j  nf � 1,

�L, else.

6

Figure 5.3: Dependence relationship in the regular attention layer (length nl = 6).

5.3.4 Sparse attention layer

The sparse attention layer is introduced by [22] to accelerate computation and improve the

focus of the attention layer. The sparse attention introduces the sparse masks before the softmax

function, i.e. replacing the fourth equation in Equation (5.3) with

A(ih) = softmax
󰀓
Q(ih)K

⊤
(ih) + M (ih)

󰀔
V (ih) (5.4)

where M (ih) ∈ Rni×ni, ∀1 ≤ ih ≤ nh are the sparse mask matrices. In the mask M (ih), the elements

in the masked positions are assigned a large negative value −L, while the elements outside the

mask are assigned 0. Since they are sparse masks, the 0 elements are sparse and the large negative

value elements are dense. The masked positions are mapped to 0 by the softmax function since

e−L ≈ 0, where we usually let L = 103. In this way, the masked positions in Q(ih)K
⊤
(ih) are not

involved in the result of the softmax function and the attention is limited within the sparse mask.

In this chapter we use the sparse masks proposed in [27]. They are generated in the following

way. Let s = ⌊√nl⌋ be the stride, where ⌊·⌋ is the floor function. We then create the index sets for

the masks:

• Left floor mask: S1 = {(i, j) : ⌊(i − 1)/s⌋ = ⌊(j − 1)/s⌋ and i ≥ j}

• Right floor mask: S2 = {(i, j) : ⌊(i − 1)/s⌋ = ⌊(j − 1)/s⌋ and i ≤ j}

101

• Left repetitive mask: S3 = {(i, j) : mod(j, s) = 0 or i = j}

• Right repetitive mask: S4 = {(i, j) : mod(j, s) = 1 or i = j}

The corresponding masks are defined as

M (ih)
i, j =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽

0, if (i, j) ∈ Sis,

−L, if (i, j) 󲧿 Sis,

when ih ≡ is(mod 4).

As a result, the number of heads nh needs to be a multiple of 4 when we use the sparse attention.

The sparse attention limits the attention of each node to a specific region such that the network

would converge faster. In Figure 5.4, we show an example of the sparse masks. As shown in

Figure 5.4, the left and right floor masks focus on local features and the left and right repetitive

masks focus on periodic features. The sparse attention layer is denoted as attn(na,nh)s (·), where na

and nh are the hidden size and number of heads.

5.3.5 Causal attention layer

To make use of the attention layers in the generator of time series, we need to make sure the

output only depends on the input elements in the past. This is also achieved by using masks. We

suppose the same input I ∈ Rnl×ni as before, and the parameters are defined the same as in the

regular attention. Let the RFS of the layer be n f . The definition of the attention layer in Equation

(5.3) needs to be replaced with

Q = IWQ + 1bQ⊤

K = IWK + 1bK⊤

V = IWV + 1bV⊤

A(ih) = softmax
󰀓
Q(ih)K

⊤
(ih) + M

󰀔
V (ih), ∀1 ≤ ih ≤ nh

O =
󰀓
AWO + 1bO⊤󰀔

n f :nl,·

102

Figure 5.4: Example of the sparse masks when nl = 16. Light elements are masked while dark
elements are not.

where (·)n f :nl,· means the submatrix from row n f to row nl , and M is a mask matrix with the

elements

Mi, j =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽

0, if 0 ≤ i − j ≤ n f − 1,

−L, else.

In this way, each output only depends on the current input and n f −1 past inputs. The benefit of the

causal attention layer is that it can increase the RFS n f arbitrarily without introducing additional

parameters. The size of the parameters does not depend on the input length nl or the RFS n f .

The dependence relationship of the output on the input in the causal attention layer is illustrated

in Figure 5.5. The causal attention layer is denoted as attn(na,nh,n f)
c (·), where na, nh and n f are the

103

hidden size, number of heads and RFS respectively.

I1,·

Input

I2,·

Input

I3,·

Input

I4,·

Input

I5,·

Input

I6,·

Input

O4,·

Output

O5,·

Output

O6,·

Output

Figure 5: Dependence relationship in the causal attention layer (length nl = 6 and RFS
nf = 4).

4 Network structures

4.1 Need for a large receptive field size

The di�culty of financial time series simulation is to model the long-range depen-
dencies. Figure 6 shows the autocorrelation of absolute values of the returns of the
S&P 500 index from May 2010 to November 2018. The autocorrelation is positive,
inferring the asset returns admit phases of high activity and low activity in terms of
price changes. The stylized fact is called volatility clustering. The positive correlation
decays to almost 0 when the lag is greater than 100. This means we need a generator
of RFS larger than 100 to model the positive correlation in this data. Authors in
[35, 39] make use of the temporal convolutional network (TCN) to increase the RFS.
While in this paper we use the attention layer to build a generator of a large RFS.

Figure 6: ACF of absolute values of the S&P 500 index returns.

4.2 Temporal attention GAN

The temporal attention GAN (TAGAN) is composed of a generator and a discriminator
which are both convolutional networks with one self-attention layer. In the generator
we always use the causal layers while in the discriminator we only use the regular
layers. The model is modified from the self-attention GAN [42] which shows good
performance in image generation. The hyper-parameters of TAGAN are listed in Table
1.

Suppose the input noise of the generator is Z 2 R(l+f�1)⇥dn and the output sample
is Y 2 Rl⇥d. With the notations of the network layers introduced in Section 3, the

8

Figure 5.5: Dependence relationship in the causal attention layer (length nl = 6 and RFS n f = 4).

5.3.6 Multi-layer perceptron block

The multi-layer perceptron (MLP) is a key component of the transformer architecture. Suppose

the input is I ∈ Rnl×ni , the hidden size is nm and the activation function is h(·). The parameters

are the weights W (1) ∈ Rni×nm , W (2) ∈ Rnm×ni and intercepts b(1) ∈ Rnm , b(2) ∈ Rni . Let 1 be the

vector of length nl with all elements of 1. The formulae in the MLP block are

H = IW (1) + 1b(1)⊤

O = h(H)W (2) + 1b(2)⊤

where the activation function h(·) is applied element-wise and O ∈ Rnl×ni is the output. All the

activation functions will be applied element-wise in the chapter. The MLP block is denoted as

mlp(nm,h)(·), where nm and h(·) are the hidden size and the activation function respectively.

104

5.4 Network structures

5.4.1 Need for a large receptive field size

The difficulty of financial time series simulation is to model the long-range dependencies.

Figure 5.6 shows the autocorrelation of absolute values of the returns of the S&P 500 index from

May 2010 to November 2018. The autocorrelation is positive, inferring the asset returns admit

phases of high activity and low activity in terms of price changes. This stylized fact is called

volatility clustering. The positive correlation decays to almost 0 when the lag is greater than 100.

This means we need a generator of RFS larger than 100 to model the positive correlation in this

data. Authors in [101, 106] make use of the temporal convolutional network to increase the RFS,

of which the structure is summarized in Appendix D.3. While in this chapter we use the attention

layer to build a generator of a large RFS.

Figure 5.6: ACF of absolute values of the S&P 500 index returns.

5.4.2 Temporal attention GAN

The temporal attention GAN (TAGAN) is composed of a generator and a discriminator which

are both convolutional networks with one self-attention layer. In the generator, we always use the

causal layers while in the discriminator we only use the regular layers. This proposed model is

the modification to the self-attention GAN [111] which has shown good performance in image

105

generation. The hyper-parameters of TAGAN are listed in Table 5.1.

hyper-parameter meaning
l data length
f receptive field size

dn noise channel
d data channel

dh hidden channel in the generator
ds start hidden channel in the discriminator

dm max hidden channel in the discriminator
nk kernel size in convolutions

LG
1 /LG

2 number of convolutional blocks before/after attention in the generator
LD

1 /LD
2 number of convolutional blocks before/after attention in the discriminator
nh number of heads in attention

na,G/na,D attention hidden size in the generator/discriminator
hG(·)/hD(·) activation function in the generator/discriminator

Table 5.1: Hyper-parameters in TAGAN.

Suppose the input noise of the generator is Z ∈ R(l+ f−1)×dn and the output sample is Y ∈ Rl×d .

With the notations of the network layers introduced in Section 5.3, the generator can be written as

follows

H (0) = conv(1,dh)c (Z)

H (j) = conv(nk,dh)c ◦ hG ◦ conv(nk,dh)c ◦ hG

󰀓
H (j−1)

󰀔
, ∀1 ≤ j ≤ LG

1

H (LG
1 +1) = attn(na,G,nh, f−2(L1+L2)(nk−1))

c

󰀓
H (LG

1)
󰀔

H (j) = conv(nk,dh)c ◦ hG ◦ conv(nk,dh)c ◦ hG

󰀓
H (j−1)

󰀔
, ∀LG

1 + 2 ≤ j ≤ LG
2 + 1

Y = conv(1,d)c ◦ hG

󰀓
H (LG

2 +1)
󰀔

where ◦ means composition of the layers. The attention layer is embedded in the middle of the

network to extend the receptive field and the convolutional layers are responsible for learning the

local characteristics. The network structure of the generator of TAGAN is illustrated in Figure 5.7.

Let Y ∈ Rl×d denote either the real data or the fake data from the generator and D(Y ; θD) be

106

Z

H(0)

H(1)

H(2)

H(3)

Y

attnc

convc

convc

convc

convc

convc

convc

Figure 7: Illustration of the generator of TAGAN with nk = 2 and LG
2 = LG

2 = 1.

Then the discriminator can be written as follows:

U (0) =Y

U (j) = ζ
(j)
2 ◦ hD ◦ ζ(j)1 ◦ hD

"
U (j−1)

#
, ∀1 ≤ j ≤ L

D

1

U (LD
1 +1) =attn(na,D,nh)

reg

"
U (LD

1)
#

U (j) = ζ
(j−1)
2 ◦ hD ◦ ζ(j−1)

1 ◦ hD

"
U (j−1)

#
, ∀LD

1 + 2 ≤ j ≤ L
D

2 + 1

D(Y ; θD) =

nl!

i1=1

min(2L
D
1 +LD

2 −1
ds,dm)!

i2=1

hD

"
U

(LD
2 +1)

i1,i2

#
wi2

where w ∈ Rmin(2L
D
1 +LD

2 −1
ds,dm) is a trainable weight used before the output in the

discriminator. The discriminator is the classical architecture of the convolutional
network which shrinks the length but increases the channel of hidden layers.

We apply batch normalization [23] before activation functions, spectrum normal-
ization [31] to the layer weights, and residual connections [18] and skip connections [39]
to the generator and discriminator in TAGAN during training to stabilize the training
process and improve the performance.

4.3 Temporal transformer GAN

The temporal transformer GAN (TTGAN) is composed of two transformer networks as
its generator and discriminator. Some similar models could be found in [24, 22]. A
transformer consists of several attention layers with each layer followed by a two-layer
MLP. We use the causal attention layers in the generator and the sparse attention
layer in the discriminator. Each causal attention layer has a flexible RFS. The hyper-
parameters of TTGAN are listed in Table 2.

Suppose the input noise of the generator is Z ∈ R(l+f−1)×dn and the output sample
is Y ∈ Rl×d. With the notations of the network layers introduced in Section 3, the

10

Figure 5.7: Illustration of the generator of TAGAN with nk = 2 and LG
2 = LG

2 = 1.

the output of the discriminator. For the notation simplicity, we let

ζ
(j)
1 = conv(nk,min(2j−1ds,dm),1)

r

ζ
(j)
2 = conv(nk,min(2j−1ds,dm),2)

r .

107

Then the discriminator can be written as follows:

U (0) =Y

U (j) = ζ (j)
2 ◦ hD ◦ ζ (j)

1 ◦ hD

󰀓
U (j−1)

󰀔
, ∀1 ≤ j ≤ LD

1

U (LD
1 +1) = attn(na,D,nh)r

󰀓
U (LD

1)
󰀔

U (j) = ζ (j−1)
2 ◦ hD ◦ ζ (j−1)

1 ◦ hD

󰀓
U (j−1)

󰀔
, ∀LD

1 + 2 ≤ j ≤ LD
2 + 1

D(Y ; θD) =
nl󳕗

i1=1

min(2L
D
1 +L

D
2 −1ds,dm)󳕗

i2=1
hD

󰀓
U

(LD
2 +1)

i1,i2

󰀔
wi2

where w ∈ Rmin(2L
D
1 +L

D
2 −1ds,dm) is a trainable weight used before the output in the discriminator. The

discriminator is the classical architecture of the convolutional network which shrinks the length

but increases the channel of hidden layers.

We apply batch normalization [60] before activation functions, spectrum normalization [86] to

the layer weights, and residual connections [48] and skip connections [106] to the generator and

discriminator in TAGAN during training to stabilize the statistics of generated samples and improve

the performance. Batch normalization normalizes the output of the layers, and the spectrum nor-

malization limits the spectral norm of the weight parameters, both of which reduce extreme values

in the network. Residual connections and skip connections accelerate training when the networks

become deep.

5.4.3 Temporal transformer GAN

The temporal transformer GAN (TTGAN) is composed of two transformer networks as its gen-

erator and discriminator. Similar models can be found in [64, 59]. A transformer consists of several

attention layers with each layer followed by a two-layer MLP. We use the causal attention layers

in the generator and the sparse attention layer in the discriminator. Each causal attention layer has

a flexible RFS. The hyper-parameters of TTGAN are listed in Table 5.2.

Suppose the input noise of the generator is Z ∈ R(l+ f−1)×dn and the output sample is Y ∈ Rl×d .

108

hyper-parameter meaning
l data length
f receptive field size

dn noise channel
d data channel

dh hidden channel
nh number of heads in attention
na attention hidden size
L number of attention layers

{ f j}L
j=1 the RFS of attentions in the generator
nm hidden size in the multi-layer perceptron

h(·) activation function

Table 5.2: Hyper-parameters in TTGAN.

With the notations of the network layers introduced in Section 5.3, the generator can be written as

follows

H (0) = conv(1,dh)c (Z)

H (j) = mlp(nm,h) ◦ attn(na,nh, fj)c

󰀓
H (j−1)

󰀔
, ∀1 ≤ j ≤ L

Y = conv(1,d)c

󰀓
H (L)

󰀔

where ◦ means composition of the layers. The RFS of each attention layer needs to satisfy the

equation f − 1 =
󳕐L

j=1(f j − 1). This is because the length shrinkage of each attention layer is

equal to RFS−1 and the total length shrinkage is equal to the sum of the shrinkage of all attention

layers. The network structure of the generator of TTGAN is illustrated in Figure 5.8. At a first

glance at Figures 5.7 and 5.8, it seems as if there is no difference between attention layers and

convolutional layers. However, one should note that the formula of attention layers is different

from that of convolutional layers and the RFS of attention layers can be much larger.

Let Y ∈ Rl×d denote either the real data or the fake data from the generator and D(Y ; θD) be

109

Z

H(0)

H(1)

H(2)

H(3)

Y

attnc

attnc

attnc

mlp

mlp

mlp

convc

convc

Figure 8: Illustration of the generator of TTGAN with L = 3 and (f1, f2, f3) = (5, 4, 3).

5.1 Stylized facts and metrics

It has been summarized in [11] that the returns of the S&P 500 index and also the
equities admit the following characteristics called stylized facts:

• Asset returns shows heavier tails than the normal distribution.

• Escalator up and elevator down: large drawdowns but not equally large upward
movements are observed.

• Autocorrelations of (daily) asset returns are often insignificant.

• Volatility clustering: volatility displays a positive autocorrelation.

• The autocorrelation function (ACF) of absolute returns decays slowly as a func-
tion of the time lag.

• Leverage effect: volatility of an asset is negatively correlated with the returns of
that asset.

Suppose we have a sequence of historical prices p0:Tx = {pt}Tx
t=0. We take the

log returns to be the real data, i.e. x1:Tx = {xt}Tx
t=1 where xt = ln(pt/pt−1). Then

we sample N sequences of returns from the GAN and denote them as {y(i)1:T }Ni=1. The
evaluation metrics are listed as follows:

• The Wasserstein-1 distance of daily and multi-day returns. Let F
h
τ (x) denote

the empirical CDF of the historical τ -day returns

'
(

)

τ−1!

j=0

xt+j : 1 ≤ t ≤ Tx − τ + 1

*
+

,

and F
g
τ (x) the empirical CDF of the generated τ -day returns

'
(

)

τ−1!

j=0

y
(i)
t+j

: 1 ≤ i ≤ N, 1 ≤ t ≤ Tx − τ + 1

*
+

, .

12

Figure 5.8: Illustration of the generator of TTGAN with L = 3 and (f1, f2, f3) = (5, 4, 3).

the output of the discriminator. The discriminator can be written as follows.

U (0) = conv(1,dh,1)r (Y)

U (j) = mlp(nm,h) ◦ attn(na,nh)s

󰀓
U (j−1)

󰀔
, ∀1 ≤ j ≤ L

D(Y ; θD) =
l󳕗

i1=1

nh󳕗
i2=1

U(L)
i1,i2

Wi1,i2

where W ∈ Rl×nh is a trainable weight used before the output in the discriminator. The discrimi-

nator is the classical architecture of the transformer encoder but with sparse attention.

We apply batch normalization [60] before each attention layer and MLP block, spectrum nor-

malization [86] to the layer weights, residual connections [48] and skip connections [106] to the

110

generator and discriminator in TTGAN during training to stabilize the statistics of generated sam-

ples and improve the performance.

5.5 Simulation of the S&P 500 index

In this section, we show the numerical results of the proposed networks for the S&P 500 index

simulation.

5.5.1 Stylized facts and metrics

It has been summarized in [24] that the returns of the S&P 500 index and also the equities

admit the following characteristics called stylized facts:

• Asset returns shows heavier tails than the normal distribution.

• Escalator up and elevator down: large drawdowns but not equally large upward movements

are observed.

• Autocorrelations of (daily) asset returns are often insignificant.

• Volatility clustering: volatility displays a positive autocorrelation.

• The autocorrelation function (ACF) of absolute returns decays slowly as a function of the

time lag.

• Leverage effect: volatility of an asset is negatively correlated with the returns of that asset.

Suppose we have a sequence of historical prices p0:Tx = {pt}Tx

t=0. We take the log returns to be

the real data, i.e. x1:Tx = {xt}Tx

t=1 where xt = ln(pt/pt−1). Then we sample N sequences of returns

from the GAN and denote them as {y(i)1:T }
N
i=1. The evaluation metrics are listed as follows:

• The Wasserstein-1 distance of daily and multi-day returns. Let Fh
τ (x) denote the empirical

111

CDF of the historical τ-day returns

󰀻󰁁󰀿
󰁁󰀽
τ−1󳕗
j=0

xt+ j : 1 ≤ t ≤ Tx − τ + 1
󰀼󰁁󰁀
󰁁󰀾

and Fg
τ (x) the empirical CDF of the generated τ-day returns

󰀻󰁁󰀿
󰁁󰀽
τ−1󳕗
j=0

y
(i)
t+ j : 1 ≤ i ≤ N, 1 ≤ t ≤ Tx − τ + 1

󰀼󰁁󰁀
󰁁󰀾 .

The Wasserstein-1 distance is given by

W (τ)
1 (x1:Tx, {y

(i)
1:T }

N
i=1) =

󳔾
R
|Fg
τ (x) − Fh

τ (x)|dx. (5.5)

We will calculate the Wasserstein-1 distance of 1-, 5-, 20-, 100- and 200-day returns.

• High order moment scores: skewness and kurtosis. We calculate

󲷲󲷲󲷲󲷲󲷲skew(x1:Tx) −
1
N

󳕗
1≤i≤N

skew
󰀓
y
(i)
1:T

󰀔󲷲󲷲󲷲󲷲󲷲
and

󲷲󲷲󲷲󲷲󲷲kurt(x1:Tx) −
1
N

󳕗
1≤i≤N

kurt
󰀓
y
(i)
1:T

󰀔󲷲󲷲󲷲󲷲󲷲
as the scores of skewness and kurtosis.

• Correlation scores. We look at the following four scores:

– Autocorrelation of returns: ACFτ(x1:Tx) = corr(xt, xt+τ)

– Autocorrelation of absolute returns: ACF(abs)
τ (x1:Tx) = corr(|xt |, |xt+τ |)

– Autocorrelation of squared returns: ACF(sq)
τ (x1:Tx) = corr(x2

t , x
2
t+τ)

– Leverage effect: Levτ(x1:Tx) = corr(xt, x2
t+τ)

112

Each score is calculated for lag 1 ≤ τ ≤ δ. Then we calculate

󰁹󰁸󰁸󰁷 󳕗
1≤τ≤δ

󰀣
scoreτ(x1:Tx) −

1
N

󳕗
1≤i≤N

scoreτ
󰀓
y
(i)
1:T

󰀔󰀤2

where score stands for ACF, ACF(abs), ACF(sq) and Lev.

Those metrics do not participate in the loss functions of the GANs during training, so they are

suitable to evaluate the samples generated from the GANs.

5.5.2 Training

After we have the real data x1:Tx , we apply a rolling window of length l to get the real dataset

{xt:t+l−1}Tx−l+1
t=1 for training.

One important stylized fact of the asset returns is that tails of their distributions are heavier

than that of the normal distribution. However, we usually use the normal distribution as the ran-

dom noise input of GANs. Thus it is a question whether GANs are able to generate heavy-tailed

distributions given normal noise. In [106], the authors use the inverse Lambert transform to make

the returns closer to the normal distribution such that GANs do not need to generate heavy tails.

But in our experiments, we still use the original returns as the training data. We would like to show

that the proposed GANs can learn to generate heavy tails by themselves even if they are given

normal noise input.

We also test the case of adding the cumulative sum of the returns as additional channels to the

input of the discriminator. The output from the generator is a sequence y1:l . Then the augmented

input to the discriminator is Ỹ ∈ Rl×2 where

Ỹt, j =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽
yt, j, if j = 1

󳕐t
i1=1 yi1, j, if j = 2.

In this way, the input of the discriminator includes not only the returns, but also the log-prices

113

starting from 0. The additional cumulative sum feature is added so that the discriminator can

observe the returns over large intervals by taking the difference of the log-prices at two time points

instead of taking the cumulative sum of the returns over long intervals.

In the rest of this section, we compare the performance of the proposed TAGAN and TTGAN

with QuantGAN [106], which has shown good results for the S&P 500 index simulation using the

temporal convolutional network [101]. The structure of QuantGAN is summarized in Appendix

D.3. The data channel is d = 1. The data length is l = 128 for TAGAN and TTGAN while l = 127

for QuantGAN. The RFS is f = 127 for each GAN. The number of hidden channels is 64 in

TAGAN and TTGAN and is 80 in QuantGAN. We calculate M = 512 simulated paths of length

T = 2560 for evaluation. In the correlation scores, we let δ = 250 in accordance with [106]. The

loss for training QuantGAN is the loss of the original GAN in Equation (5.1), as used in their

paper. We use the loss functions of the WGAN-GP in Equation (5.2) to train TAGAN and TTGAN.

5.5.3 Simulation of the medium kurtosis data

To make a fair comparison with QuantGAN, we use the same data in the paper of QuantGAN

[106], which is the S&P 500 index daily data from May 1, 2009 to Nov 30, 2018 with Tx = 2414.

The skewness of the data is -0.4667 and the kurtosis is 4.0648.

We test TAGAN, TTGAN and QuantGAN with and without the additional cumulative sum fea-

ture. We only present the cases of good performance since not every case works. The selected

results of the three GANs without the additional cumulative sum feature, as well as TTGAN with

the additional cumulative sum feature, are shown in Table 5.3. Here is the summary of results:

• The performance of the four candidates in Table 5.3 are close to each other and the difference

is not significant.

• The cumulative sum feature only improves the performance of TTGAN. This means the trans-

former is more suitable to process features of different scales than the convolutional network.

With the help of the cumulative sum feature, TTGAN reduces the Wasserstein-1 distance

114

score of 200-day returns, which agrees with the purpose of the additional cumulative sum

feature.

scores TAGAN
TTGAN

(w/o cumsum)
TTGAN

(w/ cumsum) QuantGAN

W (1)
1 4.569e-04 2.143e-04 3.319e-04 2.940e-04

W (5)
1 9.764e-04 4.803e-04 7.367e-04 6.999e-04

W (20)
1 2.677e-03 1.574e-03 2.234e-03 1.800e-03

W (100)
1 3.363e-03 4.338e-03 3.311e-03 4.952e-03

W (200)
1 1.016e-02 1.128e-02 7.281e-03 1.377e-02

skewness 5.284e-02 1.110e-01 1.752e-01 2.014e-01
kurtosis 5.248e-01 3.363e-01 1.237e-01 3.096e-01

ACF 3.450e-01 3.609e-01 3.628e-01 3.420e-01
ACF(abs) 3.799e-01 3.727e-01 3.552e-01 3.742e-01
ACF(sq) 3.300e-01 3.274e-01 3.238e-01 3.301e-01

Lev 3.248e-01 3.368e-01 3.376e-01 3.305e-01

Table 5.3: Scores of the S&P 500 index simulation given the medium kurtosis data from May 1,
2009 to Nov 30, 2018.

5.5.4 Simulation of the high kurtosis data

To further test the ability of the GANs to generate data with high (negative) skewness and high

kurtosis, we also use the S&P 500 index daily data from May 1, 2009 to Dec 31, 2020 as the

training data, which includes the drawdowns in 2020. The size of the dataset is Tx = 2938, the

skewness is -0.8132 and the kurtosis is 15.1333.

We test TAGAN, TTGAN and QuantGAN for the dataset. For TAGAN and QuantGAN, no

cumulative sum is used, while for TTGAN, we always use the cumulative sum feature. We also test

TTGAN using batch normalization by default and its variant where we replace batch normalization

with layer normalization [3]. Layer normalization normalizes the input values across the features,

while batch normalization normalizes the input values across the batch dimension. The results are

summarized in Table 5.4. The results of TAGAN, TTGANwith batch normalization and QuantGAN

are further illustrated in Figure 5.11, 5.12 and 5.13. Here are the summary of the results:

• All the GANs perform well in fitting the distribution.

115

• Although layer normalization is more often used in the transformer architecture, we found

that the layer normalization transformer fails to generate samples with high kurtosis in our

tests.

• The convolution-based GANs, TAGAN and QuantGAN, are very sensitive to the autocorrela-

tion curves, while TTGAN tends to smooth the autocorrelation curves. The fluctuations in the

autocorrelation curves are likely to be caused by randomness in the market. The convolution-

based GANs are preferred if we need to replicate the realization of randomness, while the

transformer-based TTGAN is more suitable if we would like to filter out the randomness.

scores TAGAN TTGAN (BN) TTGAN (LN) QuantGAN

W (1)
1 4.823e-04 4.907e-04 2.431e-04 2.605e-04

W (5)
1 1.097e-03 1.525e-03 7.800e-04 9.530e-04

W (20)
1 2.844e-03 4.963e-03 1.804e-03 2.840e-03

W (100)
1 5.542e-03 8.432e-03 1.265e-02 6.347e-03

W (200)
1 2.050e-02 1.774e-02 3.033e-02 1.797e-02

skewness 2.539e-01 4.883e-02 1.663e-01 3.870e-02
kurtosis 2.173e-01 2.121e-01 4.591e+00 5.674e-01

ACF 3.323e-01 4.067e-01 4.273e-01 3.437e-01
ACF(abs) 3.792e-01 3.465e-01 3.740e-01 3.647e-01
ACF(sq) 2.409e-01 2.496e-01 3.175e-01 2.415e-01

Lev 2.300e-01 2.957e-01 2.945e-01 2.319e-01

Table 5.4: Scores of the S&P 500 index simulation given the high kurtosis data from May 1, 2009
to Dec 31, 2020.

5.6 Simulation of the option surface

In this section, we show the numerical results of the proposed networks for the option surface

simulation.

5.6.1 Formulation

Suppose we have NK relative strikes

K = {K1,K1 + ∆K, . . . ,K1 + (NK − 1)∆K}

116

and NM maturities

M = {M1,M2, . . . ,MNM }.

Let d = NM × NK . The real data is {xt ∈ Rd}Tx

t=1 with the elements xt = (xt, j)dj=1, where

xt,(j1−1)NM+ j2 = lnσt,(j1−1)NM+ j2 is the log-volatility at time t with the relative strike K j2 = K1 +

(j2 − 1)∆K and the maturity Mj1 .

5.6.2 Training

Having the real data x1:Tx = {xt}Tx

t=1, we apply a rolling window of length l to get the dataset

{xt:t+l−1}Tx−l+1
t=1 for training. The output { ŷ(i)1:T }

N
i=1 from the GAN generator is not guaranteed to

be arbitrage-free. We apply the method presented in Appendix D.1 to detect and remove arbitrage

to obtain the arbitrage-free surface {y(i)1:T }
N
i=1. In [105], the authors use the discrete local volatil-

ities [13] to replace the implied volatilities when generating arbitrage-free option surfaces. The

proposed networks are compatible with discrete local volatilities, but we still expect them to gen-

erate the implied volatilities and examine to what extent the outputs from the GANs violate the

no-arbitrage condition.

The option volatility data is a high-dimensional data with high cross-correlation, so we could

use principal component analysis (PCA) to reduce dimensionality. We perform PCA on the original

data x1:Tx and get the first d̃ principal components { x̃t ∈ Rd̃}Tx

t=1. To be more specific, suppose the

real data matrix X ∈ RTx×d is X =
󰀃
x1, x2, . . . , xTx

󰀄⊤. We get its singular value decomposition

(SVD) as X = UDV⊤, and then take the first d̃ columns of U to be the principal components,

i.e. U ·,1:d̃ =
󰀃
x̃1, x̃2, . . . , x̃Tx

󰀄⊤. Next, we apply a rolling window of length l to get the real dataset

{ x̃t:t+l−1}Tx−l+1
t=1 for training. The GAN generator is responsible for generating the first d̃ principal

components { ỹ(i)1:T }
N
i=1, and they are used to recover the log-volatility surfaces { ŷ(i)1:T }

N
i=1 through

reverse PCA, where ŷ(i)t = V ·,1:d̃ D1:d̃,1:d̃ ỹ(i)t . Finally we apply the method in Appendix D.1 to get

the arbitrage-free surfaces {y(i)1:T }
N
i=1. This process is summarized in Figure 5.9.

Since we find it is helpful to include both returns and log-prices in the S&P 500 index sim-

ulation, we think it could also be helpful when the differences of the log-volatilities (called log-

117

x1:Tx x̃1:Tx {x̃t:t+l�1}Tx�l+1
t=1

{ỹ(i)
1:T }Ni=1{ŷ(i)

1:T }Ni=1{y(i)
1:T }Ni=1

PCA rolling

window

simulate

reverse

PCA

remove

arbitrage

Figure 7: Pipeline of GANs using PCA.

In this way, the input of the discriminator includes both the log-volatilities and the
log-volatility returns.

To summarize, we have three choices to train the GANs:

• Use the log-volatility surfaces as the real data. The generators simulate the
log-volatility surfaces.

• Use the principal components of log-volatility surfaces as the real data. The
generators simulate the principal components.

• Use the log-volatility surfaces and their returns as the real data. The generators
simulate the log-volatility surfaces.

6.3 Stylized facts and metrics

Here are some stylized facts of the option surface summarized in [40].

• The volatility smile. Deep in-the-money and out-of-the-money volatility are
generally higher than the at-the-money volatility.

• Volatilities have high serial autocorrelation.

• Volatilities show high cross-correlation. The correlation matrix of the log-volatilities
of di↵erent relative strikes and maturities in the S&P 500 index option data in
Section 6.4 is shown in Figure 8. Higher cross-correlation is observed for proxi-
mate relative strikes and maturities. Volatilities of longer maturities have higher
cross-correlation than volatilities of shorter maturities.

Figure 8: Cross-correlation matrix of the log-volatilities of the S&P 500 index options.
The label means ‘maturity - relative strike’.

Based on the stylized facts, the evaluation metrics are listed as follows:

15

Figure 5.9: Pipeline of GANs using PCA.

volatility returns hereafter) are used as the additional feature. The output from the generator is a

sequence ŷ1:l . Then the augmented input to the discriminator is Ȳ ∈ Rl×2d where

Ȳt, j =

󰀻󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

ŷt, j, if 1 ≤ j ≤ d

ŷt, j−d − ŷt−1, j−d, if 2 ≤ t ≤ l and d + 1 ≤ j ≤ 2d

0, if t = 1 and d + 1 ≤ j ≤ 2d.

In this way, the input of the discriminator includes both the log-volatilities and the log-volatility

returns.

To summarize, we have three choices to train the GANs:

• Use the log-volatility surfaces as the real data. The generators simulate the log-volatility

surfaces.

• Use the principal components of log-volatility surfaces as the real data. The generators

simulate the principal components.

• Use the log-volatility surfaces and their returns as the real data. The generators simulate the

log-volatility surfaces.

5.6.3 Stylized facts and metrics

Here are some stylized facts of the option surface summarized in [107].

118

• The volatility smile. Deep in-the-money and out-of-the-money volatility are generally higher

than at-the-money volatility.

• Volatilities have high serial autocorrelation.

• Volatilities show high cross-correlation. The correlation matrix of the log-volatilities of

different relative strikes and maturities in the S&P 500 index option data in Section 5.6.4 is

shown in Figure 5.10. Higher cross-correlation is observed for proximate relative strikes and

maturities. Volatilities of longer maturities have higher cross-correlation than volatilities of

shorter maturities.

Figure 5.10: Cross-correlation matrix of the log-volatilities of the S&P 500 index options. The
label means ‘maturity - relative strike’.

Based on the stylized facts, the evaluation metrics are listed as follows:

• The Wasserstein-1 distance of distribution of volatilities

1
d

d󳕗
j=1

W (1)
1

󰀓
{xt, j}Tx

t=1, {{y
(i)
t, j }

T
t=1}

N
i=1

󰀔

where the Wasserstein-1 distance is already defined in Equation (5.5).

119

• High order moment scores of skewness

1
d

d󳕗
j=1

󲷲󲷲󲷲󲷲󲷲skew(x1:Tx, j) −
1
N

󳕗
1≤i≤N

skew
󰀓
y
(i)
1:T, j

󰀔󲷲󲷲󲷲󲷲󲷲
and kurtosis

1
d

d󳕗
j=1

󲷲󲷲󲷲󲷲󲷲kurt(x1:Tx, j) −
1
N

󳕗
1≤i≤N

kurt
󰀓
y
(i)
1:T, j

󰀔󲷲󲷲󲷲󲷲󲷲 .

• Autocorrelation score of the series and returns. Define

ACF(r)
τ (x1:Tx) = ACFτ(x2:Tx − x1:Tx−1).

We calculate

1
d

d󳕗
j=1

󰁹󰁸󰁸󰁷 󳕗
1≤τ≤δ

󰀣
scoreτ(x1:Tx, j) −

1
N

󳕗
1≤i≤N

scoreτ
󰀓
y
(i)
1:T, j

󰀔󰀤2

where score stands for ACF and ACF(r).

• Cross-correlation score. Let Σx ∈ Rd×d be the cross-correlation matrix of {xt, 1 ≤ t ≤ Tx}

and Σy ∈ Rd×d be the cross-correlation matrix of {y(i)t , 1 ≤ t ≤ Tx, 1 ≤ i ≤ N}. Then the

score is defined to the Frobenius norm of the difference 󰀂Σx − Σy 󰀂F .

• Arbitrage rate. The score is calculated as the percentage of the outputs from the GANs ŷ(i)1:T

that violate the no-arbitrage condition

#{(i, t) : ŷ(i)t that violates the no-arbitrage condition, 1 ≤ i ≤ N, 1 ≤ t ≤ T}/(NT).

This is a score that shows how well the GAN can learn the no-arbitrage condition.

120

5.6.4 Data and results

We use the daily data of the S&P 500 index options from Jan 02, 2009 to Oct 30, 2020 as the

real data. The maturities are

M = {1-month, 2-month, 3-month, 6-month}

and the relative strikes are

K = {85%, 90%, 95%, 100%, 105%, 110%, 115%}.

The data channel is d = 28 and the sequence length is Tx = 2979.

We compare the performance of the proposed TAGAN and TTGAN with QuantGAN [106] and

try both PCA and the additional log-volatility return feature. The data length is l = 128 for TAGAN

and TTGAN while l = 127 for QuantGAN. The RFS is f = 383 for each GAN. We let d̃ = 10 for

PCA. The number of hidden channels is 64 in TAGAN and TTGAN and is 80 in QuantGAN. We

calculate M = 512 simulated paths of length T = 2560 for evaluation. In the correlation scores,

we let δ = 64. The loss for training QuantGAN is the loss of the original GAN in Equation (5.1).

We use the loss functions of the WGAN-GP in Equation (5.2) to train TAGAN and TTGAN.

The results of TAGAN with and without PCA, TTGAN with and without the return feature, and

QuantGAN, are summarized in Table 5.5. The good candidates, which are TAGAN with PCA,

TTGAN with the return feature, and QuantGAN are further illustrated in Figure 5.14, 5.15 and

5.16. Here are some key points of results:

• Only TTGAN is improved by the additional return feature. It is not a surprise to see TTGAN

can accept the additional return feature, since it accepts both log-prices and log returns for

the S&P 500 index simulation. The additional return feature improves the score of autocor-

relation and cross-correlation, and facilitates the GAN to learn the no-arbitrage condition.

• Only TAGAN is improved by PCA. If a GAN is able to generate option surfaces by means of

121

principle components, that will significantly reduce the score of cross-correlation and reduce

the rate that the output needs to be modified by the no-arbitrage condition.

• In Figure 5.17, we show examples of autocorrelation of log-volatility returns from the three

GANs. There are huge fluctuations in the autocorrelation of QuantGAN. Also, some fluc-

tuations are observed at the small time lags in the autocorrelation of TAGAN. In contrast,

the autocorrelation of TTGAN is flat. It means the attention layer is better at generating

sequences with smooth autocorrelation, which matches the results of the S&P 500 index

simulation.

scores
TAGAN

(w/o PCA)
TAGAN

(w/ PCA)
TTGAN

(w/o returns)
TTGAN

(w/ returns)
QuantGAN

W (1)
1 1.788e-02 1.651e-02 1.239e-02 1.512e-02 1.355e-02

skewness 2.434e-01 2.450e-01 2.077e-01 8.204e-02 8.560e-02
kurtosis 6.052e-01 2.710e-01 5.212e-01 5.607e-01 4.065e-01

ACF 3.065e-01 3.444e-01 4.359e-01 1.845e-01 1.754e-01
ACF(r) 3.601e-01 2.580e-01 3.727e-01 2.667e-01 8.683e-01

cross-corr 4.883e-01 1.016e-01 6.027e-01 2.618e-01 2.284e-01
arbitrage rate 30.10% 1.55% 21.16% 8.88% 12.86%

Table 5.5: Scores of the S&P 500 index option surface simulation.

5.7 Conclusion

In this chapter, we first define the generative model of time series, distinguish it from the

generator of fixed dimension distributions. We then propose two GANs, the temporal attention

GAN and the temporal transformer GAN, based on the causal attention layer, which is able to

increase the receptive field size without introducing more parameters. We have successfully trained

the temporal transformer GAN using around 3000 samples of financial time series with the help of

sparse attention, despite the fact that both GANs and transformers are notoriously known for being

difficult to train.

In the numerical experiments, we compare the two proposed GANs with QuantGAN for the

stock index and option surface simulation and evaluate the results with the scores based on the

122

stylized facts. The proposed GANs are able to replicate the distribution, the heavy tails and the

long-range dependencies, as well as the cross-correlation in the multivariate case. Specifically, the

attention-based GANs show the following advantages:

• The TTGAN tends to generate smoother autocorrelation of returns. However, the convolution-

based QuantGAN tends to overfit autocorrelation curves. For option surface simulation, the

QuantGAN even fails to replicate the autocorrelation of volatility returns. The TAGAN, as a

mixture of convolutions and attention, lies between TTGAN and QuantGAN.

• The transformer discriminator in TTGAN is more flexible in a way that can accept both level

and return features. We can make use of its ability to process features of different scales to

improve the performance of GANs.

• The TAGAN is able to learn and generate samples in the space of principal components,

which makes it possible to simulate time series in higher-dimensional spaces utilizing PCA.

• The receptive field size of the attention-based GANs is not bounded by the number of pa-

rameters or the network depth. This is useful especially when the size of real data is limited

and a large number of parameters would lead to overfitting.

The generative models discussed in the chapter are all unconditional models, which generate

time series given noise series. In the future, it would be interesting to compare the performance

of unconditional models and conditional models, which generate future time series given noise as

well as historical time series. The conditional models are trickier for the following reasons:

• The conditional models need to learn the conditional distribution given history time series,

which is generally more complex than the unconditional distribution.

• The input of the unconditional model is random noise generated during training. Thus,

the unconditional model would not memorize the input. However, the conditional model can

easily remember real data and perform extremely well when real data is used as the condition

input. When the conditional model uses the time series generated by itself as the condition

123

input and tries to prolong the generated time series, its performance could be much worse.

For that reason, we need additional techniques to deal with overfitting.

124

(a)

(b)

Figure 5.11: TAGAN simulation results of the S&P 500 index. (a) Comparison of the generated
and historical densities of log returns. (b) Comparison of the generated mean autocorrelation and
historical autocorrelation of daily log returns.

125

(a)

(b)

Figure 5.12: TTGAN simulation results of the S&P 500 index. (a) Comparison of the generated
and historical densities of log returns. (b) Comparison of the generated mean autocorrelation and
historical autocorrelation of daily log returns.

126

(a)

(b)

Figure 5.13: QuantGAN simulation results of the S&P 500 index. (a) Comparison of the generated
and historical densities of log returns. (b) Comparison of the generated mean autocorrelation and
historical autocorrelation of daily log returns.

127

(a)

(b)

(c)

Figure 5.14: TAGAN simulation results of the S&P 500 index options. (a) Comparison of the
generated and historical densities of log-volatilities. (b) Comparison of the generated mean au-
tocorrelation and historical autocorrelation of log-volatilities. (c) Difference of the generated and
historical cross-correlation of log-volatilities |Σx − Σy |.

128

(a)

(b)

(c)

Figure 5.15: TTGAN simulation results of the S&P 500 index options. (a) Comparison of the
generated and historical densities of log-volatilities. (b) Comparison of the generated mean au-
tocorrelation and historical autocorrelation of log-volatilities. (c) Difference of the generated and
historical cross-correlation of log-volatilities |Σx − Σy |.

129

(a)

(b)

(c)

Figure 5.16: QuantGAN simulation results of the S&P 500 index options. (a) Comparison of
the generated and historical densities of log-volatilities. (b) Comparison of the generated mean
autocorrelation and historical autocorrelation of log-volatilities. (c) Difference of the generated
and historical cross-correlation of log-volatilities |Σx − Σy |.

130

(a) (b) (c)

Figure 5.17: Example of the generated mean autocorrelation and historical autocorrelation of log-
volatility returns of the S&P 500 index options. (a) TAGAN. (b) TTGAN. (c) QuantGAN.

131

References

[1] N. Achtsis, R. Cools, and D. Nuyens, “Conditional sampling for barrier option pricing
under the heston model,” in Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer,
2013, pp. 253–269.

[2] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv:1701.07875, Dec.
2017, arXiv: 1701.07875.

[3] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450,
2016.

[4] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[5] O. E. Barndorff-Nielsen, “Processes of normal inverse Gaussian type,” Finance and stochas-
tics, vol. 2, no. 1, pp. 41–68, 1997.

[6] G. Barone-Adesi and R. E. Whaley, “Efficient analytic approximation of American option
values,” The Journal of Finance, vol. 42, no. 2, pp. 301–320, 1987.

[7] C. Bayer, B. Horvath, A. Muguruza, B. Stemper, and M. Tomas, “On deep calibration of
(rough) stochastic volatility models,” arXiv preprint arXiv:1908.08806, 2019.

[8] C. Beck, S. Becker, P. Grohs, N. Jaafari, and A. Jentzen, “Solving stochastic differential
equations and kolmogorov equations by means of deep learning,” arXiv preprint arXiv:1806.00421,
2018.

[9] L. Bergomi, “Smile dynamics III,” Available at SSRN 1493308, 2008.

[10] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal of
Political Economy, vol. 81, no. 3, pp. 637–654, 1973. eprint: https://doi.org/10.
1086/260062.

[11] T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity,” Journal of Econo-
metrics, vol. 31, no. 3, pp. 307–327, Apr. 1986.

[12] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high fidelity nat-
ural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.

[13] H. Buehler and E. Ryskin, “Discrete local volatility for large time steps (extended ver-
sion),” Available at SSRN 2642630, 2017.

132

https://doi.org/10.1086/260062

[14] N. Cai and S. G. Kou, “Option pricing under a mixed-exponential jump diffusion model,”
Management Science, vol. 57, no. 11, pp. 2067–2081, Nov. 2011.

[15] P. Carr, H. Geman, D. B. Madan, and M. Yor, “The fine structure of asset returns: An
empirical investigation,” The Journal of Business, vol. 75, no. 2, pp. 305–333, Apr. 2002.

[16] P. Carr and A. Hirsa, “Forward evolution equations for knock-out options,” in Advances in
Mathematical Finance, M. C. Fu, R. A. Jarrow, J.-Y. J. Yen, and R. J. Elliott, Eds. Boston,
MA: Birkhäuser Boston, 2007, pp. 195–217, ISBN: 978-0-8176-4545-8.

[17] P. Carr and D. Madan, “Option valuation using the fast Fourier transform,” The Journal of
Computational Finance, vol. 2, no. 4, pp. 61–73, 1999.

[18] P. Carr and A. Mayo, “On the numerical evaluation of option prices in jump diffusion
processes,” The European Journal of Finance, vol. 13, no. 4, pp. 353–372, Jun. 2007.

[19] A. Cartea and D. del Castillo-Negrete, “Fractional diffusion models of option prices in
markets with jumps,” Physica A: Statistical Mechanics and its Applications, vol. 374, no. 2,
pp. 749–763, 2007.

[20] Z. Che, S. Purushotham, G. Li, B. Jiang, and Y. Liu, “Hierarchical deep generative models
for multi-rate multivariate time series,” in International Conference on Machine Learning,
2018, pp. 784–793.

[21] C. Chiarella, B. Kang, and G. H. Meyer, “The evaluation of barrier option prices un-
der stochastic volatility,” Computers & Mathematics with Applications, vol. 64, no. 6,
pp. 2034–2048, 2012.

[22] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences with sparse
transformers,” arXiv preprint arXiv:1904.10509, 2019.

[23] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent
neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[24] R. Cont, “Empirical properties of asset returns: Stylized facts and statistical issues,” Quan-
titative Finance, vol. 1, no. 2, pp. 223–236, 2001.

[25] R. Cont and E. Voltchkova, “A finite difference scheme for option pricing in jump diffu-
sion and exponential Lévy models,” SIAM Journal on Numerical Analysis, vol. 43, no. 4,
pp. 1596–1626, Jan. 2005.

[26] S. Cuomo, V. Di Somma, E. di Lorenzo, and G. Toraldo, “A sequential monte carlo ap-
proach for the pricing of barrier option in a stochastic volatility model,” Electronic Journal
of Applied Statistical Analysis, vol. 13, no. 1, pp. 128–145, 2020.

133

[27] G. Daras, A. Odena, H. Zhang, and A. G. Dimakis, “Your local GAN: Designing two
dimensional local attention mechanisms for generative models,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[28] F. De Meer Pardo, “Enriching financial datasets with generative adversarial networks,”
PhD thesis, Master’s thesis, Delft University of Technology, the Netherlands, 2019.

[29] G. Di Cerbo, A. Hirsa, and A. Shayaan, “Regularized generative adversarial network,”
arXiv preprint arXiv:2102.04593, 2021.

[30] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, “Incorporating second-order
functional knowledge for better option pricing,” Advances in neural information processing
systems, vol. 13, pp. 472–478, 2000.

[31] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning,” 2017. arXiv: 1702.03118 [cs.LG].

[32] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical) time series generation
with recurrent conditional gans,” arXiv preprint arXiv:1706.02633, 2017.

[33] F. Fang and C. W. Oosterlee, “Pricing early-exercise and discrete barrier options by fourier-
cosine series expansions,” Numerische Mathematik, vol. 114, no. 1, pp. 27–62, Nov. 2009.

[34] R. Ferguson and A. Green, “Deeply learning derivatives,” arXiv preprint arXiv:1809.02233,
2018.

[35] R. Fu, J. Chen, S. Zeng, Y. Zhuang, and A. Sudjianto, “Time series simulation by condi-
tional generative adversarial net,” arXiv preprint arXiv:1904.11419, 2019.

[36] W. Fu and A. Hirsa, “Fast pricing of american options under variance gamma,” Journal of
Computational Finance, vol. 25, no. 1, pp. 29–49, 2021.

[37] W. Fu and A. Hirsa, “An unsupervised deep learning approach to solving partial integro-
differential equations,” Quantitative Finance, 2022. eprint: https://doi.org/10.
1080/14697688.2022.2057870.

[38] H. Funahashi and T. Higuchi, “An analytical approximation for single barrier options under
stochastic volatility models,” Annals of Operations Research, vol. 266, no. 1, pp. 129–157,
2018.

[39] N. Ganesan, Y. Yu, and B. Hientzsch, “Pricing barrier options with deepbsdes,” arXiv
preprint arXiv:2005.10966, 2020.

134

http://arxiv.org/abs/1702.03118
https://doi.org/10.1080/14697688.2022.2057870

[40] I. V. Girsanov, “On transforming a certain class of stochastic processes by absolutely con-
tinuous substitution of measures,” Theory of Probability & Its Applications, vol. 5, no. 3,
pp. 285–301, 1960. eprint: https://doi.org/10.1137/1105027.

[41] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Process-
ing Systems, vol. 27, Curran Associates, Inc., 2014.

[42] C. Guardasoni and S. Sanfelici, “Fast numerical pricing of barrier options under stochastic
volatility and jumps,” SIAM Journal on Applied Mathematics, vol. 76, no. 1, pp. 27–57,
2016.

[43] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved Train-
ing of Wasserstein GANs,” in Advances in Neural Information Processing Systems, vol. 30,
Curran Associates, Inc., 2017.

[44] X. Guo and Y. Li, “Valuation of American options under the CGMY model,” Quantitative
Finance, vol. 16, no. 10, pp. 1529–1539, Oct. 2016.

[45] P. S. Hagan, D. Kumar, A. S. Lesniewski, and D. E. Woodward, “Managing smile risk,”
The Best of Wilmott, vol. 1, pp. 249–296, 2002.

[46] J. Han, A. Jentzen, and E Weinan, “Solving high-dimensional partial differential equations
using deep learning,” Proceedings of the National Academy of Sciences, vol. 115, no. 34,
pp. 8505–8510, 2018.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification,” 2015. arXiv: 1502.01852 [cs.CV].

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[49] S. L. Heston, “A closed-form solution for options with stochastic volatility with applica-
tions to bond and currency options,” The review of financial studies, vol. 6, no. 2, pp. 327–
343, 1993.

[50] A. Hirsa, Computational Methods in Finance. CRC Press, 2016.

[51] A. Hirsa and P. Carr, “Why be backward? Forward equations for American options,” Risk,
vol. 16, no. 1, pp. 103–107, 2003.

[52] A. Hirsa, G. Courtadon, and D. B. Madan, “The effect of model risk on the valuation of
barrier options,” The Journal of Risk Finance, 2003.

135

https://doi.org/10.1137/1105027
http://arxiv.org/abs/1502.01852

[53] A. Hirsa, T. Karatas, and O. Amir, “Supervised deep neural networks (DNNs) for pric-
ing/calibration of vanilla/exotic options under various different processes,” 2019.

[54] A. Hirsa and D. B. Madan, “Pricing American options under variance gamma,” Journal of
Computational Finance, vol. 7, no. 2, pp. 63–80, 2003.

[55] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[56] M. Hofert, A. Prasad, and M. Zhu, “Multivariate time-series modeling with generative
neural networks,” Econometrics and Statistics, vol. 23, pp. 147–164, 2022.

[57] B. Horvath, A. Muguruza, and M. Tomas, “Deep learning volatility: A deep neural network
perspective on pricing and calibration in (rough) volatility models,” Quantitative Finance,
pp. 1–17, 2020.

[58] S. Howison, Barrier options, https://people.maths.ox.ac.uk/howison/barriers.pdf, (accessed:
Apr 2022).

[59] D. A. Hudson and L. Zitnick, “Generative adversarial transformers,” in Proceedings of the
38th International Conference on Machine Learning, ser. Proceedings of Machine Learn-
ing Research, vol. 139, PMLR, 2021, pp. 4487–4499.

[60] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32nd International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research, vol. 37, Lille, France:
PMLR, 2015, pp. 448–456.

[61] A. Itkin, “Deep learning calibration of option pricing models: Some pitfalls and solutions,”
2019.

[62] A. Itkin and P. Carr, “Using pseudo-parabolic and fractional equations for option pricing in
jump diffusion models,” Computational Economics, vol. 40, no. 1, pp. 63–104, Jun. 2012.

[63] K. R. Jackson, S. Jaimungal, and V. Surkov, “Fourier space time-stepping for option pric-
ing with Lévy models,” Journal of Computational Finance, vol. 12, no. 2, pp. 1–29, 2008.

[64] Y. Jiang, S. Chang, and Z. Wang, “TransGAN: Two Pure Transformers Can Make One
Strong GAN, and That Can Scale Up,” in Advances in Neural Information Processing
Systems, vol. 34, Curran Associates, Inc., 2021, pp. 14 745–14 758.

[65] N. Ju and R. Zhong, “An approximate formula for pricing American options,” Journal of
Derivatives, vol. 7, no. 2, pp. 31–40, 1999.

136

[66] M. Kac, “On distributions of certain wiener functionals,” Transactions of the American
Mathematical Society, vol. 65, no. 1, pp. 1–13, 1949.

[67] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[68] J. L. Kirkby, D. Nguyen, and Z. Cui, “A unified approach to bermudan and barrier op-
tions under stochastic volatility models with jumps,” Journal of Economic Dynamics and
Control, vol. 80, pp. 75–100, 2017.

[69] A. Kondratyev and C. Schwarz, “The market generator,” Available at SSRN 3384948, 2019.

[70] A. Koochali, P. Schichtel, A. Dengel, and S. Ahmed, “Probabilistic Forecasting of Sensory
Data With Generative Adversarial Networks – ForGAN,” IEEE Access, vol. 7, pp. 63 868–
63 880, 2019.

[71] A. Koshiyama, N. Firoozye, and P. Treleaven, “Generative adversarial networks for finan-
cial trading strategies fine-tuning and combination,” Quantitative Finance, pp. 1–17, Sep.
2020.

[72] S. G. Kou and H. Wang, “Option pricing under a double exponential jump diffusion model,”
Management Science, vol. 50, no. 9, pp. 1178–1192, Sep. 2004.

[73] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordinary
and partial differential equations,” IEEE transactions on neural networks, vol. 9, no. 5,
pp. 987–1000, 1998.

[74] I. E. Lagaris, A. C. Likas, and D. G. Papageorgiou, “Neural-network methods for bound-
ary value problems with irregular boundaries,” IEEE Transactions on Neural Networks,
vol. 11, no. 5, pp. 1041–1049, 2000.

[75] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural Compu-
tation, vol. 1, no. 4, pp. 541–551, Dec. 1989.

[76] H. Lee and I. S. Kang, “Neural algorithm for solving differential equations,” Journal of
Computational Physics, vol. 91, no. 1, pp. 110–131, 1990.

[77] S. Liu, A. Borovykh, L. A. Grzelak, and C. W. Oosterlee, “A neural network-based frame-
work for financial model calibration,” Journal of Mathematics in Industry, vol. 9, no. 1,
p. 9, Dec. 2019.

[78] F. A. Longstaff and E. S. Schwartz, “Valuing American options by simulation: A simple
least-squares approach,” The Review of Financial Studies, vol. 14, no. 1, pp. 113–147,
2001.

137

[79] R. Lord, F. Fang, F. Bervoets, and C. W. Oosterlee, “A fast and accurate FFT-based method
for pricing early-exercise options under Lévy processes,” SSRN Electronic Journal, 2007.

[80] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neu-
ral machine translation,” arXiv preprint arXiv:1508.04025, 2015.

[81] D. B. Madan, P. P. Carr, and E. C. Chang, “The variance gamma process and option pric-
ing,” Review of Finance, vol. 2, no. 1, pp. 79–105, Apr. 1998.

[82] D. B. Madan and E. Seneta, “The variance gamma (V.G.) model for share market returns,”
The Journal of Business, vol. 63, no. 4, p. 511, Jan. 1990.

[83] S. C. Maree, L. Ortiz-Gracia, and C. W. Oosterlee, “Pricing early-exercise and discrete
barrier options by Shannon wavelet expansions,” Numerische Mathematik, vol. 136, no. 4,
pp. 1035–1070, Aug. 2017.

[84] O. Marom and E. Momoniat, “A comparison of numerical solutions of fractional diffusion
models in finance,” Nonlinear Analysis: Real World Applications, vol. 10, no. 6, pp. 3435–
3442, Dec. 2009.

[85] R. C. Merton, “Option pricing when underlying stock returns are discontinuous,” Journal
of Financial Economics, vol. 3, no. 1, pp. 125–144, 1976.

[86] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative
adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.

[87] O. Mogren, “C-rnn-gan: Continuous recurrent neural networks with adversarial training,”
arXiv preprint arXiv:1611.09904, 2016.

[88] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”
in ICML, 2010.

[89] H. Ni, L. Szpruch, M. Wiese, S. Liao, and B. Xiao, “Conditional Sig-Wasserstein GANs
for Time Series Generation,” arXiv:2006.05421, Jun. 2020, arXiv: 2006.05421.

[90] C. O’Sullivan, “Path dependent option pricing under Lévy processes,” EFA 2005 Moscow
Meetings Paper, p. 24, Feb. 2005.

[91] E. Page, “Approximations to the cumulative normal function and its inverse for use on a
pocket calculator,” Journal of the Royal Statistical Society: Series C (Applied Statistics),
vol. 26, no. 1, pp. 75–76, 1977. eprint: https://rss.onlinelibrary.wiley.
com/doi/pdf/10.2307/2346872.

[92] H. Pham, Continuous-time stochastic control and optimization with financial applications.
Springer Science & Business Media, 2009, vol. 61.

138

https://rss.onlinelibrary.wiley.com/doi/pdf/10.2307/2346872

[93] M. Raissi, “Deep hidden physics models: Deep learning of nonlinear partial differential
equations,” The Journal of Machine Learning Research, vol. 19, no. 1, pp. 932–955, 2018.

[94] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” 2017. arXiv:
1710.05941 [cs.NE].

[95] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[96] K.-I. Sato, Lévy processes and infinitely divisible distributions. Cambridge university press,
1999.

[97] J. Sirignano and K. Spiliopoulos, “Dgm: A deep learning algorithm for solving partial
differential equations,” Journal of Computational Physics, vol. 375, pp. 1339–1364, 2018.

[98] I. M. Sobol’, “On the distribution of points in a cube and the approximate evaluation of inte-
grals,” Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, vol. 7, no. 4, pp. 784–
802, 1967.

[99] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A
simple way to prevent neural networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

[100] S. Takahashi, Y. Chen, and K. Tanaka-Ishii, “Modeling financial time-series with genera-
tive adversarial networks,” Physica A: Statistical Mechanics and its Applications, vol. 527,
p. 121 261, Aug. 2019.

[101] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu, “WaveNet: A Generative Model for Raw Audio,”
in Proc. 9th ISCA Workshop on Speech Synthesis Workshop (SSW 9), 2016, p. 125.

[102] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems, vol. 30, Curran Associates, Inc., 2017.

[103] C. Villani, Optimal transport: old and new. Springer, 2009, vol. 338.

[104] I. Wang, J. Wan, and P. Forsyth, “Robust numerical valuation of European and American
options under the CGMY process,” The Journal of Computational Finance, vol. 10, no. 4,
pp. 31–69, Jun. 2007.

[105] M. Wiese, L. Bai, B. Wood, and H. Buehler, “Deep hedging: Learning to simulate equity
option markets,” arXiv preprint arXiv:1911.01700, 2019.

139

http://arxiv.org/abs/1710.05941

[106] M. Wiese, R. Knobloch, R. Korn, and P. Kretschmer, “Quant GANs: Deep generation of
financial time series,” Quantitative Finance, vol. 20, no. 9, pp. 1419–1440, Sep. 2020.

[107] M. Wiese, B. Wood, A. Pachoud, R. Korn, H. Buehler, P. Murray, and L. Bai, “Multi-asset
spot and option market simulation,” arXiv preprint arXiv:2112.06823, 2021.

[108] Wikipedia, Simpson’s rule, https://en.wikipedia.org/wiki/Simpson%27s_rule, (accessed:
Oct 2021).

[109] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative adversarial networks,”
in Advances in Neural Information Processing Systems, vol. 32, Curran Associates, Inc.,
2019.

[110] B. Yu, X. Xing, and A. Sudjianto, “Deep-learning based numerical bsde method for barrier
options,” arXiv preprint arXiv:1904.05921, 2019.

[111] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative adversarial
networks,” in Proceedings of the 36th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 7354–7363.

[112] K. Zhang, G. Zhong, J. Dong, S. Wang, and Y. Wang, “Stock Market Prediction Based
on Generative Adversarial Network,” Procedia Computer Science, vol. 147, pp. 400–406,
2019.

[113] X. Zhou, Z. Pan, G. Hu, S. Tang, and C. Zhao, “Stock Market Prediction on High-Frequency
Data Using Generative Adversarial Nets,” Mathematical Problems in Engineering, vol. 2018,
pp. 1–11, 2018.

140

Appendix A: Appendices for Chapter 2

A.1 Development of the simple approach

This part follows [50]. We can split the integral term in Equation (2.7) into two terms, the

integrals on |y | ≤ 󰂃 and |y | > 󰂃 respectively.

In the region |y | ≤ 󰂃 ,

w(x + y, τ) = w(x, τ) + y
∂w

∂x
(x, τ) + y2

2
∂2w

∂x2 (x, τ) +O(y3)

and

ey = 1 + y +
y2

2
+O(y3).

Using those two approximations, we get

󳔾
|y |≤󰂃

󰀗
w(x + y, τ) − w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

󰀘
k(y)dy

=

󳔾
|y |≤󰂃

󰀗
y2

2
∂2w

∂x2 (x, τ) −
y2

2
∂w

∂x
(x, τ) +O(y3)

󰀘
k(y)dy

≈
󳔾
|y |≤󰂃

󰀗
y2

2
∂2w

∂x2 (x, τ) −
y2

2
∂w

∂x
(x, τ)

󰀘
k(y)dy.

Define σ2(󰂃) =
∫
|y |≤󰂃 y

2k(y)dy and we get

󳔾
|y |≤󰂃

󰀗
w(x + y, τ) − w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

󰀘
k(y)dy ≈ 1

2
σ2(󰂃)

󰀕
∂2w

∂x2 (x, τ) −
∂w

∂x
(x, τ)

󰀖
.

141

In the region |y | > 󰂃 ,

󳔾
|y |>󰂃

󰀗
w(x + y, τ) − w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

󰀘
k(y)dy

=

󳔾
|y |>󰂃

[w(x + y, τ) − w(x, τ)] k(y)dy + ∂w
∂x

(x, τ)ω(󰂃),

where w(󰂃) =
∫
|y |>󰂃 (1 − ey)k(y)dy.

Combine the two parts of integrals and put them back to Equation (2.7), and we get

1
2
σ2(󰂃)∂

2w

∂x2 (x, τ) +
󳔾
|y |>󰂃

[w(x + y, τ) − w(x, τ)] k(y)dy

−∂w
∂τ

(x, τ) + (r − q + ω(󰂃) − 1
2
σ2(󰂃))∂w

∂x
(x, τ) − rw(x, τ) = 0. (A.1)

If we omit the integral term in Equation (A.1), we can get a BMS equation

−∂w
∂τ

(x, τ) + 1
2
σ2(󰂃)∂

2w

∂x2 (x, τ) + (r − q + ω(󰂃) − 1
2
σ2(󰂃))∂w

∂x
(x, τ) − rw(x, τ) = 0.

It describes the option price of a stock with volatility
󰁳
σ2(󰂃) and dividend q −ω(󰂃). So we decide

to use the premium of this BMS model to approximate the premium in the VG model.

A.2 A short summary of Ju-Zhong method

Here we give a short summary of the method for pricing American options under the BMS

model in [65].

Suppose the prices of American and European put options under the BMS model are denoted

by P(S) and p(S), where S is the current stock price and p(S) is calculated by the B-S formula.

Also, we are given the strike K , the interest rate r , the dividend rate q, the volatility rate σ and the

time to maturity τ.

142

Then the American put options can be priced by the formula

P(S) =

󰀻󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰀽

p(S) + hA(h)eλ(h)y
1−by2−cy if φ(S∗ − S) > 0

φ(S − K) if φ(S∗ − S) ≤ 0

where φ = −1 (φ = 1 for call options), y = ln(S/S∗), hA(h) = φ(S∗ − K) − p(S∗) and S∗ solves

the equation

φ = φe−qτN(φd1(S∗)) + λ(h)(φ(S
∗ − K) − p(S∗))

S∗

and b and c are given by

b =
(1 − h)αλ′(h)

2(2λ(h) + β − 1)

c = − (1 − h)α
2λ(h) + β − 1

󰀕
1

hA(h)
∂p(S∗)
∂h

+
1
h
+

λ′(h)
2λ(h) + β − 1

󰀖

where

α =
2r
σ2 , β =

2(r − q)
σ2 , h(τ) = 1 − e−rτ

λ(h) =
−(β − 1) + φ

󰁴
(β − 1)2 + 4α

h

2
, λ′(h) = − φα

h2
󰁴
(β − 1)2 + 4α

h

d1(S∗) = ln(S∗/K) + (r − q + σ2/2)τ
σ
√
τ

, d2(S∗) = d1(S∗) − σ
√
τ

and

∂p(S∗)
∂h

=
∂p(S∗)
∂τ

󰀡
∂h
∂τ

=
S∗n(d1(S∗))σe(r−q)τ

2r
√
τ

− φqS∗N(φd1(S∗))e(r−q)τ/r + φKN(φd2(S∗)).

Here N(·) and n(·) stands for the cumulative distribution function and the probability density func-

143

tion of the normal distribution.

A.3 Kernel regression

Kernel regression is a nonparametric machine learning technique that is used to find a non-

linear relationship between a pair of variables x and y. Both x and y can be vectors. Let dx and dy

be the dimensions of x and y. Suppose we collect data x1, x2, . . . , xn and y1, y2, . . . , yn and want to

find a suitable estimate of y given x.

First, we need a kernel function κ(x′, x′′), where x′ and x′′ are two points in the space of x.

Then the estimate ŷ = f (x) given x is a weighted average

f (x) =
󳕐n

i=1 κ(x, xi)yi󳕐n
i=1 κ(x, xi)

. (A.2)

Second we need to choose a suitable kernel function κ(x′, x′′) to get a good estimation. In this

paper we choose the Gaussian kernel, i.e.,

κa(x′, x′′) = exp 󳔑󳔕
󳔓
−

dx󳕗
j=1

a j(x′j − x′′j)2
󳔒󳔖
󳔔
,

where {a j, 1 ≤ j ≤ dx} are positive numbers and x′j and x′′j are the jth component of the vectors

x′ and x′′.

Here we define a loss function to choose the kernel parameter a. A reasonable loss function

can be defined as

ℓ(a) =
n󳕗

i=1
󰀂yi − ŷS

i (a)󰀂
2,

where 󰀂 · 󰀂 is the Euclidean norm and

ŷS
i (a) =

󳕐
l∈S κa(xi, xl)yl󳕐

l∈S κa(xi, xl)

is the estimate of yi given xi and is also a function of a. S is a subset of {1, 2, . . . , n} chosen

144

randomly and is served as the training set. This step aims to avoid overfitting. By minimizing ℓ(a)

w.r.t. a, we can get a suitable kernel function κa(x′, x′′) for prediction using Equation (A.2).

Next, we can repeat the second step for several times and take the average of a for robustness.

Suppose we have M random and independent training sets Sj , where 1 ≤ j ≤ M . |Sj | = nR for

1 ≤ j ≤ M , where R is the training ratio. Let a(j) be the minimizer of the loss function ℓ(a) when

the training set is Sj , i.e.,

a(j) = argmina

n󳕗
i=1

󰀂yi − ŷ
Sj

i (a)󰀂2.

Then for prediction we could use ā = 1
M
󳕐M

j=1 a(j) and the predicted value at x is

ŷ = f (x) =
󳕐n

i=1 κā(x, xi)yi󳕐n
i=1 κā(x, xi)

. (A.3)

Finally we calculate the leave-one-out cross-validation error to estimate the prediction error.

Let S−i = {1, 2, . . . , n}\{i}. Then we predict yi with the training set S−i and get the estimator

ŷS−i
i (ā) =

󳕐
1≤l≤n,l󲧰i κā(xi, xl)yl󳕐
1≤l≤n,l󲧰i κā(xi, xl)

.

Then the leave-one-out cross-validation error of the jth dimension is

err j =

󰁹󰁷
1
n

n󳕗
i=1

((yi) j − (ŷS−i
i (ā)) j)2

where (yi) j and (ŷS−i
i (ā)) j are the jth components of yi and ŷS−i

i (ā) respectively. Then

(err1, err2, . . . , errdy)

is approximately the averaged prediction error in all dimensions of y.

145

Appendix B: Appendices for Chapter 3

B.1 Evaluation of the PIDE

B.1.1 Split of the integral in the PIDE

This part follows Chapter 5 in [50] mostly. We split the integral term in Equation (3.2) into two

parts, the integrals on {−󰂃− ≤ y ≤ 󰂃+} and {y < −󰂃− or y > 󰂃+} respectively.

In the region {−󰂃− ≤ y ≤ 󰂃+},

w(x + y, τ) = w(x, τ) + y
∂w

∂x
(x, τ) + y2

2
∂2w

∂x2 (x, τ) +O(y3)

and

ey = 1 + y +
y2

2
+O(y3).

Using those two approximations, we get

󳔾
−󰂃−≤y≤󰂃+

󰀕
w(x + y, τ) − w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

󰀖
m(dy)

=

󳔾
−󰂃−≤y≤󰂃+

󰀕
y2

2
∂2w

∂x2 (x, τ) −
y2

2
∂w

∂x
(x, τ) +O(y3)

󰀖
m(dy)

≈
󳔾
−󰂃−≤y≤󰂃+

󰀕
y2

2
∂2w

∂x2 (x, τ) −
y2

2
∂w

∂x
(x, τ)

󰀖
m(dy).

146

Define σ2(󰂃−, 󰂃+) =
∫
−󰂃−≤y≤󰂃+ y

2m(dy) and we get

󳔾
−󰂃−≤y≤󰂃+

󰀕
w(x + y, τ) − w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

󰀖
m(dy)

≈1
2
σ2(󰂃−, 󰂃+)

󰀕
∂2w

∂x2 (x, τ) −
∂w

∂x
(x, τ)

󰀖
.

In the region {y < −󰂃− or y > 󰂃+},

󳔾
y<−󰂃− or y>󰂃+

󰀕
w(x + y, τ) − w(x, τ) − ∂w

∂x
(x, τ)(ey − 1)

󰀖
m(dy)

=

󳔾
y<−󰂃− or y>󰂃+

(w(x + y, τ) − w(x, τ))m(dy) + ∂w
∂x

(x, τ)ω(󰂃−, 󰂃+),

where ω(󰂃−, 󰂃+) =
∫
y<−󰂃− or y>󰂃+(1 − ey)m(dy).

Combining the two parts of integrals and putting them back to Equation (3.2), we get

󰀕󳔾
y<−󰂃− or y>󰂃+

(w(x + y, τ) − w(x, τ))m(dy) + s2 + σ2(󰂃−, 󰂃+)
2

∂2w

∂x2 (x, τ)

−∂w
∂τ

(x, τ) +
󰀕
r − q − s2 + σ2(󰂃−, 󰂃+)

2
+ ω(󰂃−, 󰂃+)

󰀖
∂w

∂x
(x, τ) − rw(x, τ)

󰀖
= 0.

(B.1)

In Equation (B.1), the function w(x, τ) as well as its derivatives ∂w∂x (x, τ),
∂2w
∂x2 (x, τ) and ∂w∂τ (x, τ)

can be calculated by the neural network itself or the back-propagation of the neural network. Then

the terms remaining to be calculated are
∫
y<−󰂃− or y>󰂃+ (w(x + y, τ) − w(x, τ))m(dy), σ2(󰂃−, 󰂃+) and

ω(󰂃−, 󰂃+).

B.1.2 Pre-calculations

In Table B.1, we list the choice of 󰂃−, 󰂃+ and the expressions of σ2(󰂃−, 󰂃+) and ω(󰂃−, 󰂃+) for

each model. σ2(󰂃−, 󰂃+) and ω(󰂃−, 󰂃+) are calculated before training.

147

Model 󰂃− 󰂃+ σ2(󰂃−, 󰂃+) ω(󰂃−, 󰂃+)
VG 0.02/G 0.02/M σ2

CGMY (C,G,M, 0, 󰂃−, 󰂃+) ωCGMY (C,G,M, 0, 󰂃−, 󰂃+)
CGMY 0.01/G 0.01/M σ2

CGMY (C,G,M,Y, 󰂃−, 󰂃+) ωCGMY (C,G,M,Y, 󰂃−, 󰂃+)
NIG 0.05/α 0.05/α - -
Merton’s 0 0 0 −λ(exp(α + δ2/2) − 1)
Kou’s 0 0 0 −λ

󰀓
pη1
η1−1 +

(1−p)η2
η2+1 − 1

󰀔

Table B.1: 󰂃−, 󰂃+, σ2(󰂃−, 󰂃+) and ω(󰂃−, 󰂃+) for each model.

where

σ2
CGMY (C,G,M,Y, 󰂃−, 󰂃+) = C GY−2(Γ(2 − Y) − Γ(2 − Y,G󰂃−))

+ C MY−2(Γ(2 − Y) − Γ(2 − Y,M󰂃+)),

and

ωCGMY (C,G,M,Y, 󰂃−, 󰂃+) = C
󰀓
MYΓ(−Y,M󰂃+) − (M − 1)YΓ(−Y, (M − 1)󰂃+)

󰀔

+ C
󰀓
GYΓ(−Y,G󰂃−) − (G + 1)YΓ(−Y, (G + 1)󰂃−)

󰀔
.

M and G follow the definitions in Equation (3.3) and (3.4) and C = 1/ν. Γ(·) is the gamma function

and Γ(·, ·) is the incomplete gamma function following the definition

Γ(s, y) =
󳔾 ∞

y

us−1e−udu.

󰂃+ and 󰂃− could be dependent on the model parameters. For the NIG model, we do not have

the closed-form expressions of σ2(󰂃−, 󰂃+) and ω(󰂃−, 󰂃+) and they are calculated using numerical

integration in scipy. σ2(󰂃−, 󰂃+) = 0 in the Merton’s model and the Kou’s model since 󰂃+ = 󰂃− =

0.

148

B.1.3 Numerical integral

The integral
∫
y<−󰂃− or y>󰂃+ (w(x + y, τ) − w(x, τ))m(dy) is calculated using the Simpson’s rule

[108]. If there are 2N + 1 grid points y0, y1, . . . , y2N , which satisfy 2y2 j+1 = y2 j + y2 j+2, ∀0 ≤ j ≤

N − 1 and y0 = 󰂃
+, the numerical integral is

󳔾
y>󰂃+

(w(x + y, τ) − w(x, τ))m(dy)

=

󳔾
y>󰂃+

(w(x + y, τ) − w(x, τ)) k(y)dy

≈
N−1󳕗
j=0

󰀃
w(x + y2 j, τ) − w(x, τ)

󰀄
k(y2 j)

y2 j+2 − y2 j

6
+

+

N−1󳕗
j=0

󰀃
w(x + y2 j+1, τ) − w(x, τ)

󰀄
k(y2 j+1)

2(y2 j+2 − y2 j)
3

+

N−1󳕗
j=0

󰀃
w(x + y2 j+2, τ) − w(x, τ)

󰀄
k(y2 j+2)

y2 j+2 − y2 j

6

,

which is a linear combination of the values of w(·, τ). The integral on {y < −󰂃−} is calculated in

the same way.

Since the shape of k(y) depends on the model parameters, it is not efficient if we use the same

integral grid for different sample points. Take the Merton’s model as an example, where

k(y) = λ
√

2πδ
e−(x−α)

2/(2δ2)

The density function has a center parameter α and a scale parameter δ. If we define the in-

tegral grid points to be y j = α + δz j, ∀0 ≤ j ≤ 2N , where z j’s are fixed, we will assign

enough grid points around the peak of k(y) whatever the model parameters and the integral will

be more accurate. For other models, the density k(y) is centered around 0, but it decreases

at different rates when the model parameters are different. So we always use a scaled inte-

149

gral grid. In Table B.2, we list the relationship between the scaled grid points y j and fixed

gird points 0 ≤ z0 ≤ z1 ≤ · · · ≤ z2N used for integral. The values of z j can be found at

https://github.com/weilong-columbia/pide.

Model y j in the negative part y j in the positive part
VG −z j/G z j/M
CGMY −z j/G z j/M
NIG −z j/α z j/α
Merton’s α − δz j α + δz j
Kou’s −z j/η2 z j/η1

Table B.2: Relationship between the scaled grid points y j and fixed grid points z j .

150

https://github.com/weilong-columbia/pide

Appendix C: Appendices for Chapter 4

C.1 PDE for the Bergomi model

The PDE (4.3) for the two-factor Bergomi model is derived according to the multidimensional

version of the Feynman-Kac formula (see Theorem 1.3.17 in [92]). In Section 4.2.1, we introduce

the dynamics of the Bergomi model, which are summarized as

dst = (r − q − σ2(t, X (1)
t , X

(2)
t)/2)dt + σ(t, X (1)

t , X
(2)
t)dW (S)

t ,

dX (1)
t = −k1X (1)

t dt + dW (1)
t ,

dX (2)
t = −k2X (2)

t dt + dW (2)
t ,

where st = ln(St) is the log-price process and σ(t, x1, x2) satisfies σ2(t, X (1)
t , X

(2)
t) = ξ t

t . The

correlations of the Brownian motions are dW (S)
t dW (i)

t = ρidt, ∀i = 1, 2 and dW (1)
t dW (2)

t = ρ1,2dt.

For an applicable function V(s, t, x1, x2), the infinitesimal generator Lt is defined as

LtV =(r − q − σ2(t, x1, x2)/2)
∂V
∂s

− k1x1
∂V
∂x1

− k2x2
∂V
∂x2

+
1
2
σ2(t, x1, x2)

∂2V
∂s2 +

1
2
∂2V
∂x2

1
+

1
2
∂2V
∂x2

2

+ ρ1σ(t, x1, x2)
∂2V
∂s∂x1

+ ρ2σ(t, x1, x2)
∂2V
∂s∂x2

+ ρ1,2
∂2V
∂x1∂x2

.

According to the Feynman-Kac formula, the vanilla options

V(s, t, x1, x2) = E
󰀓
e−r(T−t)(η(esT − K))+ |St = es, X (1)

t = x1, X
(2)
t = x2

󰀔

151

satisfy the equation

∂V
∂t
+ LtV − rV = 0.

The barrier options are path-dependent and cannot be fully explained by the Feynman-Kac

formula. However, they also satisfy the equation and this can be explained by the no-arbitrage

property of the option values: the discounted option value should be a martingale. The increment

of the discounted option value is

d(e−rtV(st, t, X
(1)
t , X

(2)
t)) = − re−rtVdt + e−rt ∂V

∂t
dt + e−rtLtVdt

+ e−rt ∂V
∂s
σdW (S)

t + e−rt ∂V
∂x1

dW (1)
t + e−rt ∂V

∂x2
dW (2)

t .

The drift term of the increment of a martingale should be 0, which leads to the same equation.

C.2 Black-Scholes formula of vanilla and barrier options

The BS formula of vanilla options was proposed in [10]. We use the variant with the dividend

rate. Suppose s is the log-price, K is the strike, t is the current time, T is the maturity (expiration)

time, r is the risk-free interest rate and q is the dividend rate. The vanilla call and put are priced

using

Cv(s; K) = es−q(T−t)N(h/v + v/2) − Ke−r(T−t)N(h/v − v/2),

Pv(s; K) = −es−q(T−t)N(−(h/v + v/2)) + Ke−r(T−t)N(−(h/v − v/2)),

where

h = s − ln(K) + (r − q)(T − t),

v = σ
√

T − t.

152

The formula of barrier options needs the digital call and put of which the payoffs are 1{ST>K}

and 1{ST<K} and the prices are

Cd(s; K) = e−r(T−t)N(h/v − v/2),

Pd(s; K) = e−r(T−t)N(−h/v + v/2).

Suppose B is the barrier level, we summarize the pricing formulae in [58] as follows:

Cu-i(s; K, B) =Cv(s; B) + (B − K)Cd(s; B)

+ δ(Cv(s̃; K) − Cv(s̃; B) + (K − B)Cd(s̃; B)),

Cu-o(s; K, B) =Cv(s; K) − Cu-i(s; K, B),

Cd-i(s; K, B) =Cv(s; K) − Cv(s; max(B,K)) − max(0, B − K)Cd(s; B)

+ δ(Cv(s̃; max(B,K)) +max(0, B − K)Cd(s̃; B)),

Cd-o(s; K, B) =Cv(s; K) − Cd-i(s; K, B),

Pu-i(s; K, B) =Pv(s; K) − Pv(s; min(B,K)) − max(0,K − B)Pd(s; B)

+ δ(Pv(s̃; min(B,K)) +max(0,K − B)Pd(s̃; B)),

Pu-o(s; K, B) =Pv(s; K) − Pu-i(s; K, B),

Pd-i(s; K, B) =Pv(s; B) − (B − K)Pd(s; B)

+ δ(Pv(s̃; K) − Pv(s̃; B) + (B − K)Pd(s̃; B)),

Pd-o(s; K, B) =Pv(s; K) − Pd-i(s; K, B),

δ =(es/B)1+(2(q−r))/σ2
,

s̃ =2 ln(B) − s,

where the up-and-in/out formulae are applicable where s ≤ ln(B) and the down-and-in/out for-

mulae are applicable where s ≥ ln(B). Furthermore, the up-and-in/out calls are applicable when

B ≥ K and the down-and-in/out puts are applicable when B ≤ K .

153

C.3 Benchmark of vanilla options

The dynamics of the Bergomi model in Section 4.2.1 are summarized as

dst = (r − q − ξ t
t /2)dt +

󰁴
ξ t

t dW (S)
t ,

ξ t
t = ξ

t
0 exp

󰀕
ωxt

t −
ω2

2
var(xt

t)
󰀖
,

xt
t = αθ

󰀓
(1 − θ)X (1)

t + θX
(2)
t

󰀔
,

dX (1)
t = −k1X (1)

t dt + dW (1)
t ,

dX (2)
t = −k2X (2)

t dt + dW (2)
t ,

(C.1)

where st = ln(St). The correlated Brownian motions can be expressed using independent Brownian

motions Z (j)
t , j = 1, 2, 3 as

W (1)
t = Z (1)

t ,

W (2)
t = µ21Z (1)

t + µ22Z (2)
t ,

W (S)
t = µ31Z (1)

t + µ32Z (2)
t + µ33Z (3)

t ,

where µ21 = ρ1,2, µ22 =
󰁴

1 − ρ21,2, µ31 = ρ1, µ32 =
ρ2−ρ1ρ1,2󰁴

1−ρ21,2
and

µ33 =

󰁹󰁸󰁷1 − ρ21 − ρ
2
2 − ρ

2
1,2 + 2ρ1ρ2ρ1,2

1 − ρ21,2
.

Clearly st is dependent on X (1)
t and X (2)

t but not conversely. Thus we can determine the volatility

process first and then the stock price process. This means the vanilla option prices can be evaluated

given the condition of volatility. For example, the call option is

E((ST − K)+ |S0) = E
󰀓
E
󰀓
(ST − K)+

󲷲󲷲󲷲{X (1)
t }T

t=0, {X (2)
t }T

t=0, S0

󰀔 󲷲󲷲󲷲 S0

󰀔
.

154

Given {X (1)
t }T

t=0 and {X (2)
t }T

t=0, we also know the paths of {Z (1)
t }T

t=0, {Z (2)
t }T

t=0 and {ξ t
t }T

t=0. The

SDE of st becomes

dst =(r − q − ξ t
t /2)dt +

󰁴
ξ t

t (µ31dZ (1)
t + µ32dZ (2)

t + µ33dZ (3)
t)

=(r − q − (µ2
31 + µ

2
32)ξ

t
t /2)dt +

󰁴
ξ t

t (µ31dZ (1)
t + µ32dZ (2)

t)

− µ2
33ξ

t
t /2 dt +

󰁴
ξ t

t µ33dZ (3)
t

where only Z (3)
t is random and the volatility function is fixed. The equivalent spot is

󰁨S0 = S0 exp
󰀕󳔾 T

0

󰁴
ξ t

t (µ31dZ (1)
t + µ32dZ (2)

t) − (µ2
31 + µ

2
32)ξ

t
t /2 dt

󰀖

and the equivalent volatility rate during [0,T] is

σ̃T
0 =

󰁶
µ2

33
T

󳔾 T

0
ξ t

t dt

The conditional expectation can be calculated by the Black-Scholes formula:

E((ST − K)+ |{X (1)
t }T

t=0, {X (2)
t }T

t=0, S0) = BS-Cv(󰁨S0,K,T, σ̃T
t , r, q)

Then we just need to sample paths of {X (1)
t }T

t=0 and {X (2)
t }T

t=0 and take the average of the conditional

expectation to get the vanilla option price. The same applies to the vanilla put. The variance of the

conditional expectation is far less than the variance of trivial simulation. However, this approach

does not work for the barrier options. Since the payoff of barrier options are path-dependent and

we cannot get the equivalent spot and volatility rate.

C.4 Benchmark of barrier options

Since we cannot use conditional expectation for barrier options as in Appendix C.3, we need

to sample the log-price {st}T
t=0 for simulation. Note that ξ t

t contains an exponential function and

155

could be very large. Under this case, st converges to −∞ quickly, and St converges to 0 quickly.

When we evaluate the barrier puts, this not a problem. However, this is a problem for barrier calls.

There will be very few or no samples of positive values, and the barrier calls will be underestimate.

As a result, the Euler scheme is directly applied to Equation (C.1) to price barrier puts, while we

use importance sampling to price barrier calls for variance reduction.

The importance sampling is implemented according to Girsanov theorem [40]. First, let

dZ (3)
t = dZ̃ (3)

t + µ33

󰁴
ξ t

t dt

where Z̃ (3)
t is a Brownian motion under the measure Q while Z (3)

t is a Brownian motion under the

measure P with the Radon-Nikodym derivative

dP
dQ
= exp

󰀕
−
󳔾 t

0
µ2

33ξ
u
u/2 du −

󳔾 t

0
µ33

󰁳
ξu

u dZ̃ (3)
u

󰀖
.

After that we replace dZ (3)
t using dZ̃ (3)

t in the SDE of st such that

dst =(r − q − (µ2
31 + µ

2
32)ξ

t
t /2)dt +

󰁴
ξ t

t (µ31dZ (1)
t + µ32dZ (2)

t)

− µ2
33ξ

t
t /2 dt +

󰁴
ξ t

t µ33dZ (3)
t

=(r − q − (µ2
31 + µ

2
32)ξ

t
t /2)dt +

󰁴
ξ t

t (µ31dZ (1)
t + µ32dZ (2)

t)

+ µ2
33ξ

t
t /2 dt +

󰁴
ξ t

t µ33dZ̃ (3)
t .

We sample {st}T
t=0 under Q, i.e.,

st = s0 +

󳔾 t

0
(r − q − (1 − 2µ2

33)ξ
u
u/2)du +

󰁳
ξu

u (µ31dZ (1)
u + µ32dZ (2)

u + dZ̃ (3)
u).

Each sample path {st}T
t=t0 is attached the following weight

exp
󰀕
−
󳔾 T

0
µ2

33ξ
u
u/2 du −

󳔾 t

0
µ33

󰁳
ξu

u dZ̃ (3)
u

󰀖
.

156

Since the drift term −µ2
33ξ

t
t /2 dt in the original SDE is changed to µ2

33ξ
t
t /2 dt in the SDE under Q,

there will be enough large samples of sT and the barrier call options will not be underestimated.

After we collect enough sample paths, we use the definition of barrier options in Table 4.1 to

evaluate them.

157

Appendix D: Appendices for Chapter 5

D.1 Arbitrage-free option surface

In [13], the authors give the condition that a call option surface is arbitrage-free. Suppose we

have the set of relative strikes

K = {K0,K1,K2, . . . ,KNK,KNK+1}

where Ki < Ki+1, 0 ≤ i ≤ NK and the set of maturities

M = {M1,M2, . . . ,MNM }

where Mj < Mj+1, 1 ≤ j ≤ NM − 1. Let Ci, j be the call price at strike Ki and maturity Mj . K0 is

sufficiently small and KNK+1 is sufficiently large, so that we have C0, j = 1 − K0 and CNK+1, j = 0.

Then the variables {Ci, j, 1 ≤ i ≤ NK, 1 ≤ j ≤ NM} need to satisfy the following conditions:

󰀻󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

C1, j ≥ 1 − K1, ∀1 ≤ j ≤ NM

CNK, j ≥ 0, ∀1 ≤ j ≤ NM

Ci, j ≥ Ci, j−1, ∀1 ≤ i ≤ NK, 2 ≤ j ≤ NM

Ci, j−Ci−1, j
Ki−Ki−1

≤ Ci+1, j−Ci, j

Ki+1−Ki
, ∀1 ≤ i ≤ NK, 1 ≤ j ≤ NM

(D.1)

158

Suppose {Ĉi, j, 1 ≤ i ≤ NK, 1 ≤ j ≤ NM} is the call option surface that does not satisfy the

conditions, we use the following linear programming to solve the closest arbitrage-free surface.

min
Ci, j,1≤i≤NK,1≤ j≤NM

NK󳕗
i=1

NM󳕗
j=1

|Ĉi, j − Ci, j |

such that the constraints in (D.1) are satisfied.

If we start from the volatility surface, we calculate the call options and detect any violations of

the constraints in (D.1). If so, we perform the linear programming to remove the arbitrages and

calculate the corrected implied volatilities.

D.2 Losses of GANs

In [41], the authors proposed the original loss of GANs:

min
θG

max
θD
EX ln(D(X ; θD)) + EZ ln(1 − D(G(Z ; θG); θD))

where the discriminator is D(·; θD) : Rl×d → (0, 1) and the output of the discriminator stands

for the probability that its input is considered real data. Thus the losses for the generator and the

discriminator are

min
θG
EZ ln(1 − D(G(Z ; θG); θD))

min
θD

−EX ln(D(X ; θD)) − EZ ln(1 − D(G(Z ; θG); θD))

respectively. In practice, D(G(Z ; θG); θD) is close to 0 in the beginning since the generator has

not learned anything. The gradient of ln(1 − D(G(Z ; θG); θD)) is small and convergency would be

slow. So the loss for the generator is replaced with

min
θG

−EZ ln(D(G(Z ; θG); θD)).

159

In this paper, we use the discriminator D(·; θD) : Rl×d → R to include the case of WGAN-GP. So

the sigmoid function σ(D(·; θD)) stands for the probability. Thus the original losses of GANs are

written as

min
θG
EZ − ln(σ(D(G(Z ; θG); θD)))

min
θD
EX,Z − ln(σ(D(X ; θD))) − ln(1 − σ(D(G(Z ; θG); θD))).

The Wasserstein GAN in [2] approaches the loss of GANs in a different way. It tries to mini-

mize the Wasserstein-1 distance between the real distribution and the generated distribution:

W(Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(X,Y)∼γ 󰀂X − Y 󰀂

where Pr is the real distribution of X and Pg is the generated distribution of G(Z ; θG), andΠ(Pr, Pg)

denotes the set of all joint distributions γ whose marginals are respectively Pr and Pg. 󰀂 · 󰀂 is the

Frobenius norm. Then they make use of the Kantorovich-Rubinstein duality [103] to get

W(Pr, Pg) = sup
󰀂 f 󰀂L≤1

EX f (X) − EZ f (G(Z ; θG))

where 󰀂 f 󰀂L ≤ 1 means the 1-Lipschitz function f . For a differentiable f , this means 󰀂∇ f 󰀂 ≤ 1.

The discriminator D(·; θD) : Rl×d → R is used to approximate the function f that reaches the

supremum and its loss is

min
θD

−EXD(X ; θD) + EZD(G(Z ; θG); θD).

The generator tries to minimize the Wasserstein-1 distance, which means

min
θG
EZ − D(G(Z ; θG); θD).

Note that the discriminator needs to be 1-Lipschitz continuous such that the Kantorovich-Rubinstein

160

duality holds. Thus the authors in [43] proposed to add a gradient penalty to keep the Lipschitz

continuity, and the loss for the discriminator becomes

min
θD
EX,Z,X̃ − D(X ; θD) + D(G(Z ; θG); θD) + λ(󰀂∇X̃D(X̃ ; θD)󰀂 − 1)2

where λ is a constant, X̃ = (1−U)X+U G(Z ; θG) is a linear interpolation between X and G(Z ; θG),

and U follows the uniform distribution over (0, 1).

D.3 A short summary of QuantGAN

The QuantGAN was defined in [106]. It makes use of two temporal convolutional networks

as the generator and discriminator. The temporal convolutional networks are further composed of

dilated causal convolutional layers.

Here is the definition of the dilated causal convolutional layer. Suppose the input is I ∈ Rnl×ni

and it passes through a causal convolutional layer with kernel size nk , output channel no and dila-

tion nd . The parameters are the weight W ∈ Rnk×ni×no and the intercept b ∈ Rno . The output of the

causal convolutional layer is O ∈ R(nl−nd(nk−1))×no . In the causal layer, the time index of the output

is taken from {nd(nk − 1) + 1, nd(nk − 1) + 2, . . . , nl}. The output is given by

Ot,io =

ni󳕗
i=1

nk󳕗
ik=1

Wik,i,io It−nd(nk−ik),i + bio, ∀nd(nk − 1) + 1 ≤ t ≤ nl, 1 ≤ io ≤ no.

The RFS of the layer is nd(nk−1)+1. Denote the dilated causal convolutional layer as conv(nk,no,nd)d (·),

where nk , no and nd are the kernel size, output channel and dilation.

The hyper-parameters of the QuantGAN are summarized in Table D.1. The data length l and

the RFS f are not independent parameters but are calculated using l = f = 1 + 2(nk − 1)(dL
f −

1)/(d f − 1). Suppose the input noise of the generator is Z ∈ R(l+ f−1)×dn and the output sample is

161

hyper-parameter meaning
dn noise channel
d data channel

dh hidden channel
d f ≥ 2 dilation factor

L number of layers
h(·) activation function

Table D.1: Hyper-parameters in QuantGAN.

Y ∈ Rl×d . The generator can be written as follows

H (0) = h ◦ conv(1,dh,1)d ◦ h ◦ conv(1,dh,1)d (Z)

H (j) = h ◦ conv

󰀓
nk,dh,d

j−1
f

󰀔
d ◦ h ◦ conv

󰀓
nk,dh,d

j−1
f

󰀔
d

󰀓
H (j−1)

󰀔
, ∀1 ≤ j ≤ L

Y = conv(1,d,1)d

󰀓
H (L)

󰀔

where ◦ means composition of layers. A simplified structure of the generator is illustrated in Figure

D.1.

Quant GANs: deep generation of financial time series 1423

Figure 5. Vanilla TCN with 4 hidden layers, kernel size K = 2 and
dilation factor D = 1 (cf. van den Oord et al. 2016).

Figure 6. Vanilla TCN with 4 hidden layers, kernel size K = 2 and
dilation factor D = 2 (cf. van den Oord et al. 2016).

dimension, output dimension, kernel size, and dilation, respec-
tively.

Example 3.8 (1× 1 convolutional layer) Let X ∈ RNI×T be
an NI -variate sequence and w : RNI×T → RNO×T a causal con-
volutional layer with arguments (NI , NO, 1, 1). We call such a
layer a 1× 1 convolutional layer.†

In the previous section, we constructed MLPs by com-
posing affine transformations with activation functions. The
Vanilla TCN construction follows a similar approach: dilated
causal convolutional layers are composed with activation
functions. In order to allow for more expressive transfor-
mations, the TCN uses a block module construction and
thereby generalizes the Vanilla TCN. For completeness, both
definitions are given below.

Definition 3.9 (Block module) Let S∈ N. A function ψ :
RNI×T → RNO×(T−S) that is Lipschitz continuous is called
block module with arguments (NI , NO, S).

Definition 3.10 (Temporal convolutional network) Let T0,
L, N0, . . . , NL+1 ∈ N. Moreover, for l ∈ {1, . . . , L} let Sl ∈ N
such that

∑L
l=1 Sl ≤ T0−1. Hence, for Tl := Tl−1−Sl it

holds

TL = T0−
L∑

l=1

Sl ≥ 1. (1)

† Note that using a 1× 1 convolution is equivalent to applying an
affine transformation along the time dimension of X.

Furthermore, let ψl : RNl−1×Tl−1 → RNl×Tl for l ∈ {1, . . . , L}
represent block modules and w : RNL×TL → RNL+1×TL a 1× 1
convolutional layer. A function f : RN0×T0 ×"→ RNL+1×TL ,
defined by

f (X , θ) = w ◦ ψL ◦ · · · ◦ ψ1(X),

is called temporal convolutional network with L hidden lay-
ers. The class of TCNs with L hidden layers mapping from Rd0

to Rd1 will be denoted by TCNd0,d1,L (d0 = N0, d1 = NL+1).

Definition 3.11 (Vanilla TCN) Let f ∈ TCNN0,NL+1,L such
that for all l ∈ {1, . . . , L} each block module ψl is defined as
a composition of a causal convolutional layer wl with argu-
ments (Nl−1, Nl, Kl, Dl) and an activation function φ, i.e.ψl =
φ ◦ wl. Then we call f : RN0×T0 ×"→ RNL+1×TL a Vanilla
TCN. Moreover, if Dl = Dl−1 for all l ∈ {1, . . . , L}, we call
f a Vanilla TCN with dilation factor D. Whenever Kl = K for
all l ∈ {1, . . . , L}, we say that f has kernel size K.

TCN’s ability to model long-range dependencies becomes
ultimately apparent when comparing the two Vanilla TCNs
displayed in figures 5 and 6. In figure 5, the network is a func-
tion of 5 sequence elements, whereas the network in figure 6
has 16 sequence elements as input. We call the number of
sequence elements that the TCN can capture the receptive field
size and give a formal definition below:

Definition 3.12 (Receptive field size) Let f ∈ TCNd0,d1,L and
let S1, . . . , SL be as in Definition 3.10. The constant

T (f) := 1 +
L∑

l=1

Sl

is called receptive field size (RFS).

Remark 3.13 For Vanilla TCNs with kernel size K and dila-
tion factor D > 1, the RFS T (f) can easily be computed using
the formula for the sum of a geometric sequence with finite
length:

T (f) = 1 + (K−1) ·
(

DL−1
D−1

)
.

Therefore, the RFS T (f) is the minimum initial time dimension
T0 of an input X ∈ RN0×T0 such that the sequence X can be
inferred (compare equation (1)).

Remark 3.14 Note that an MLP can be seen as a Vanilla
TCN in which each causal convolution is a 1× 1 convolu-
tion. Thus, MLPs are a subclass of TCNs with an RFS equal
to 1.

The idea of residual connections can also be used.

Definition 3.15 (TCN with skip connections) Assume the
notation from Definition 3.10 and for Nskip ∈ N let

γl : RNl−l×Tl−1 → RNl×Tl × RNskip×TL for l ∈ {1, . . . , L}

denote block modules. Moreover, let γ be a block module
with arguments (Nskip, NL+1, 0). If the output Y ∈ RNL+1×TL of

Figure D.1: Illustration of the simplified structure of the temporal convolutional network in
QuantGAN with nk = 2 and d f = 2.

Let Y ∈ Rl×d denote either the real data or the fake data from the generator and D(Y ; θD) be

162

the output of the discriminator. Then the discriminator can be written as follows:

U (0) = h ◦ conv(1,dh,1)d ◦ h ◦ conv(1,dh,1)d (Y)

U (j) = h ◦ conv

󰀓
nk,dh,d

j−1
f

󰀔
d ◦ h ◦ conv

󰀓
nk,dh,d

j−1
f

󰀔
d

󰀓
U (j−1)

󰀔
, ∀1 ≤ j ≤ L

D(Y ; θD) = conv(1,1,1)d

󰀓
U (L)

󰀔

The network structure of the generator and discriminator are the same except the input and output

channels.

163

