
Computational Inversion with Wasserstein Distances and Neural Network Induced Loss Functions

Wen Ding

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2022

© 2022

Wen Ding

All Rights Reserved

Abstract

Computational Inversion with Wasserstein Distances and Neural Network Induced Loss Functions

Wen Ding

This thesis presents a systematic computational investigation of loss functions in solving

inverse problems of partial differential equations. The primary efforts are spent on understanding

optimization-based computational inversion with loss functions defined with the Wasserstein metrics

and with deep learning models. The scientific contributions of the thesis can be summarized in two

directions.

In the first part of this thesis, we investigate the general impacts of different Wasserstein metrics

and the properties of the approximate solutions to inverse problems obtained by minimizing loss

functions based on such metrics. We contrast the results to those of classical computational inversion

with loss functions based on the 𝐿2 andH−1 metric. We identify critical parameters, both in the

metrics and the inverse problems to be solved, that control the performance of the reconstruction

algorithms. We highlight the frequency disparity in the reconstructions with the Wasserstein metrics

as well as its consequences, for instance, the pre-conditioning effect, the robustness against high-

frequency noise, and the loss of resolution when data used contain random noise. We examine the

impact of mass unbalance and conduct a comparative study on the differences and important factors

of various unbalanced Wasserstein metrics.

In the second part of the thesis, we propose loss functions formed on a novel offline-online

computational strategy for coupling classical least-square computational inversion with modern

deep learning approaches for full waveform inversion (FWI) to achieve advantages that can not

be achieved with only one component. In a nutshell, we develop an offline learning strategy to

construct a robust approximation to the inverse operator and utilize it to produce a viable initial

guess and design a new loss function for the online inversion with a new dataset. We demonstrate

through both theoretical analysis and numerical simulations that our neural network induced loss

functions developed by the coupling strategy improve the loss landscape as well as computational

efficiency of FWI with reliable offline training on moderate computational resources in terms of

both the size of the training dataset and the computational cost needed.

Table of Contents

List of Tables . vii

List of Figures . viii

Acknowledgements . xiii

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Computational inverse problems . 2

1.3 Loss landscape for inversion . 3

1.4 Typical loss functions . 4

1.4.1 The 𝐿2 loss function . 5

1.4.2 The 𝐿1 loss function . 6

1.4.3 Kernel loss functions . 7

1.4.4 TheH−1 loss function . 8

1.5 Contribution and outline of thesis . 16

Chapter 2: Review of Wasserstein Distances . 18

2.1 Basic definitions . 18

2.2 Fundamental properties . 21

i

2.2.1 Properties of𝑊2 . 21

2.2.2 Dual formulation of𝑊1 . 23

2.3 Linearization of the𝑊2 distance . 27

Chapter 3: Loss Functions Based on Wasserstin Distances 33

3.1 Loss function based on𝑊2 distance . 33

3.2 Wasserstein distances with mass unbalances . 35

3.3 Constrained optimization algorithm . 38

3.4 Insights from linearization . 41

3.4.1 Linearization of the Wasserstein metrics 41

3.4.2 Linear inversion under the Wasserstein metrics 46

3.5 Numerical implementations . 49

3.5.1 Numerical discretizations . 50

3.5.2 Discretization of Fréchet derivatives. 50

3.5.3 Newton’s iteration . 50

3.5.4 General setup for simulations . 52

3.6 𝑊2 does NOT regularize. 55

3.7 Performance under noisy data . 56

3.8 Numerical experiments . 58

3.8.1 The smoothing effect . 59

3.8.2 Frequencies disparity . 59

3.8.3 The effect of mass imbalance . 60

3.8.4 Impact of penalty parameters . 63

ii

3.8.5 Impact of initial guess . 65

3.8.6 Two dimensional simulations . 66

3.8.7 Further discussions . 67

Chapter 4: Neural Network Induced Loss Function . 76

4.1 Convexify loss landscape by neural network . 76

4.2 Numerical methods . 80

4.2.1 Gradient descent iteration . 80

4.2.2 Neumann series iteration . 80

4.3 Case study: full wave inversion . 81

4.4 Coupling learning with FWI . 85

4.4.1 Robust offline learning of main features 85

4.4.2 New loss function for online inversion . 87

4.4.3 The benefits of the coupling approach . 88

4.5 Formal understanding of the coupling . 88

4.5.1 Elements of network training . 89

4.5.2 Computational simplifications . 91

4.5.3 Utilizing learning outside of training domain 92

4.6 Computational implementation . 93

4.6.1 Computational setup . 93

4.6.2 The neural network for learning . 94

4.6.3 Learning-assisted FWI inversion . 96

4.7 Numerical experiments . 97

iii

4.7.1 Velocity feature models . 97

4.7.2 Learning dataset generation . 98

4.7.3 Training and testing performance . 100

4.7.4 Learning-assisted FWI reconstruction . 110

Chapter 5: Concluding Remarks . 119

References . 131

Appendix A: Discretization of Wasserstein Distances . 132

A.1 Mesh Discretization in one spatial dimension. 132

A.2 Discretization of the forward problems . 133

A.2.1 Abel Transform . 133

A.2.2 Helmholtz Equation . 134

A.2.3 Diffusion Equation . 134

A.3 Solving Inverse Problem Using Wasserstein-Fisher-Rao Metric 135

A.3.1 Discretization of Wasserstein-Fisher-Rao Metric 135

A.3.2 Solving Inverse Abel Transform with Wasserstein-Fisher-Rao Metric 136

A.3.3 Solving Inverse Helmholtz Equation with Wasserstein-Fisher-Rao Metric . 137

A.3.4 Solving Inverse Diffusion Equation with Wasserstein-Fisher-Rao Metric . . 139

A.4 Wasserstein-UOT Metric . 139

A.4.1 Discretization of Wasserstein-UOT Metric 140

A.5 Wasserstein-GUOT Metric . 140

A.5.1 Discretization of Wasserstein-GUOT Metric 141

iv

A.5.2 Solving Inverse Abel Transform with Wasserstein-GUOT Metric 142

A.5.3 Solving Inverse Helmholtz Equation with Wasserstein-GUOT Metric 142

A.5.4 Solving Inverse Diffusion Equation with Wasserstein-GUOT Metric 143

A.6 Solving Inverse Problem Using Balanced Wasserstein Distance 144

A.6.1 Discretization of Balanced Wasserstein Metric 144

A.6.2 Solving Inverse Abel Transform with Balanced Optimal Transport 145

A.6.3 Solving Inverse Helmholtz Equation with Balanced Optimal Transport . . . 146

A.6.4 Solving Inverse Diffusion Equation with Balanced Optimal Transport . . . 147

A.7 Solving Inverse Problem Using Relaxed Quadratic Wasserstein Metric 147

A.7.1 Discretization of Relaxed Quadratic Wasserstein Metric 147

A.7.2 Solving Inverse Abel Transform with Relaxed Quadratic Wasserstein Metric 148

A.7.3 Solving Inverse Helmholtz Equation with Relaxed Quadratic Wasserstein
Metric . 149

A.7.4 Solving Inverse Diffusion Equation with Relaxed Quadratic Wasserstein
Metric . 149

A.8 Solving Inverse Problem Using𝑊1 Wasserstein Metric 150

A.8.1 Discretization of𝑊1 Wasserstein Metric 150

A.9 Solving Inverse Problem Using𝑈𝑊1 Wasserstein Metric 150

A.9.1 Discretization of𝑈𝑊1 Wasserstein Metric 150

A.10 Solving Inverse Problem Using 𝐿2 Norm . 151

A.11 Solving Inverse Problem UsingH−1 Norm . 151

A.12 Discretization in two spatial dimensions. 151

A.12.1 Diffusion equation in 2D . 152

v

A.12.2 Solving Inverse Diffusion Equation with Mixed Relaxed Quadratic Wasser-
stein Metric in 2D . 153

A.12.3 Solving Inverse Diffusion Equation with Wasserstein-Fisher-Rao Metric in 2D154

A.12.4 Solving Inverse Diffusion Equation with Wasserstein-GUOT Metric in 2D . 155

A.12.5 Solving Inverse Diffusion Equation with Wasserstein-UOT Metric in 2D . . 157

A.12.6 Solving Inverse Diffusion Equation with Balanced Wasserstein Metric in 2D 158

A.12.7 Solving Inverse Diffusion Equation with𝑈𝑊1 Metric in 2D 159

Appendix B: Neural Network structure and Training . 161

B.1 Network structure . 161

B.2 Neural Network Training . 162

B.3 Loss function for training neural networks . 162

B.4 Adjoint state gradient calculation . 163

B.5 Inversion with truncated Neumann series . 166

vi

List of Tables

4.1 Values of parameters in the spatial and temporal discretization of the wave equation
and the time node of the recorded wave signal. 100

4.2 𝐿2/𝐿∞ reconstruction errors, and the CPU time for the inversion stage with different 𝐽-term
truncated Neumann series approximation, as well as different noise level/form for the
reconstruction of the mixed Gaussian (4.33). 114

4.3 𝐿2/𝐿∞ reconstruction errors, and the CPU time for the inversion stage with different 𝐽-term
truncated Neumann series approximation, as well as different noise level/form for the
reconstruction of the Fourier model (4.34). 114

vii

List of Figures

3.1 Exact unknown shape, from left to right: bell shape, two scale shape, discontinuous
shape. 55

3.2 Optimization Loss log(Φ(\)). 58

3.3 Reconstructing the bell shape absorption coefficient \ in 3.61 in the diffusion
equation (3.57) in the one-dimensional domain Ω = (0, 1). First row from left to
right : the exact 𝐿2,H−1,𝑊2; Second row from left to right: 𝑊2,WFR,𝑊2,UOT(1

𝛼
=

0.1), 𝑊2,GUOT(1
𝛼

= 0.1); Third row from left to right: 𝑊2,Mixed(𝛽 = 0.1), 𝑊1,
𝑈𝑊1(𝛽 = 0.1). The synthetic data contains 10% of random noise, loss value is 10−5

for quadratic Wasserstein metrics, loss value is 10−3 for𝑊1 and𝑈𝑊1 results. 60

3.4 Reconstruction of the two scale coefficient \ given in (3.62) for Helmholtz model (3.59).
The synthetic data contains no random noise. From top to bottom: 𝐿2,H−1,𝑊1,𝑈𝑊1(𝛽 =

0.1). From left to right: loss value for H−1 is 5 ∗ 10−6, 2 ∗ 10−6, 10−6; loss value
for 𝐿2 is 10−1, 10−2, 10−3; loss value for𝑊1,𝑈𝑊1 is 0.002, 0.0015, 5 ∗ 10−4. 61

3.5 Reconstruction of the two scale coefficient \ given in (3.62) for Helmholtz model (3.59).
The synthetic data contains no random noise. From top to bottom: 𝑊2,𝑊2,WFR,𝑊2,UOT(1

𝛼
=

0.1),𝑊2,GUOT(1
𝛼
= 0.1),𝑊2,Mixed(𝛽 = 0.1). From left to right: loss value for all𝑊2

types of metrics is 10−6, 2 ∗ 10−7, 10−8. 62

3.6 The same setup as 3.4 with𝑊2,GUOT algorithm. Relative error for reconstructed \

coefficients i.e.
∫ 1

0 |\ (𝑥)−\𝑒𝑥𝑎𝑐𝑡 (𝑥) | sin(𝑛𝜋𝑥)𝑑𝑥∫ 1
0 |\𝑒𝑥𝑎𝑐𝑡 (𝑥) | sin(𝑛𝜋𝑥)𝑑𝑥

, 𝑛 ∈ {2, 30}. 63

3.7 Reconstruction of the discontinuous absorption coefficient \ given in (3.63) for Abel
transform problem (3.55). The synthetic data contains 1% random noise. First row:
𝐿2,H−1,𝑊2,𝑊2,WFR; Second row: 𝑊2,UOT(1

𝛼
= 0.1),𝑊2,GUOT(1

𝛼
= 0.1); Third

row: 𝑊2,Mixed(𝛽 = 0.1),𝑊1,𝑈𝑊1(𝛽 = 0.1). All quadratic Wasserstein metrics
results are plotted with loss value 10−7; while𝑊1,𝑈𝑊1 are plotted with loss value
10−3. 64

viii

3.8 Reconstruction of the two scale coefficient \ given in (3.62) for Helmholtz model
(3.59) with 𝑊2,GUOT. The synthetic data contains no random noise. From left to
right: 1

𝛼
is 10−3, 10−4, 10−5, 10−8. All plotted with loss value 10−5. Notice that

when 1
𝛼
= 10−8, the plot has a different scale in 𝑦 axis from other plots. 64

3.9 Reconstruction of the two scale coefficient \ given in (3.62) for Helmholtz equation
(3.59) with 𝑈𝑊1. The synthetic data contains no random noise. First row: 𝛽 is
1, 0.5, 0.1, 0.05; Second row: 𝛽 is 10−2, 10−3, 10−4, 10−8. All plotted with relative
loss value 10−3. 65

3.10 Reconstruction of the discontinuous coefficient \ given in (3.63) for Helmholtz
model (3.59) with 𝑊2,GUOT. The synthetic data contains 5% random noise. First
row: reconstruction process with constant initial guess; Second row: reconstruction
with piecewise constant initial guess 3.69. From left to right: initial guess, 𝛽 is
10−3, 10−4, 10−5, 10−6. 66

3.11 Reconstruction of the discontinuous coefficient \ given in (3.63) for Helmholtz
model (3.59). The synthetic data contains 5% random noise. First column: recon-
struction process with constant 1 initial guess; Second column: reconstruction with
piecewise constant initial guess 3.69. From top to bottom: 𝑊2,𝑊2,WFR,𝑊2,UOT(1

𝛼
=

0.1),𝑊2,GUOT(1
𝛼

= 0.1),𝑊2,Mixed(𝛽 = 0.1),𝑊1,𝑈𝑊1(𝛽 = 0.1). All results of
quadratic Wasserstein metrics are plotted with loss value 10−6;𝑊1,𝑈𝑊1 results are
plotted with loss value 10−3 . 70

3.12 Exact shape of two dimensional unknowns. From left to right: continuous shape,
discontinuous shape, two scale shape. 71

3.13 Reconstructing the discontinuous shape absorption coefficient 𝜎 in 3.70 for the
2D diffusion equation. First row from left to right : the exact 𝜎, 𝐿2; Second row
from left to right: H−1,𝑊2; Third row from left to right: 𝑊2,WFR,𝑊2,UOT(1

𝛼
= 0.1);

fourth row: 𝑊2,GUOT(1
𝛼
= 0.1),𝑊2,Mixed(𝛽 = 0.1). The synthetic data contains 10%

of random noise, loss value is 5 ∗ 10−6 for all results. 72

3.14 Reconstructing the continuous shape absorption coefficient 𝜎 in 3.70 for the 2D
diffusion equation. First row from left to right : the exact 𝜎, 𝐿2; Second row from
left to right: H−1, 𝑊2; Third row from left to right: 𝑊2,WFR, 𝑊2,UOT(1

𝛼
= 0.1);

fourth row: 𝑊2,GUOT(1
𝛼
= 0.1),𝑊2,Mixed(𝛽 = 0.1). The synthetic data contains no of

random noise, loss value is 10−9 for all results. 73

3.15 Reconstruction of the two scale coefficient 𝜎 given in (3.72) the 2D diffusion
equation. The synthetic data contains no random noise. From left to right: loss
value is 5 ∗ 10−6, 5 ∗ 10−7, 10−8 respectively. From top to bottom: 𝐿2,H−1. 74

ix

3.16 Reconstruction of the two scale coefficient 𝜎 given in (3.72) the 2D diffusion
equation. The synthetic data contains no random noise. From left to right: loss value
is 5∗10−6, 5∗10−7, 10−8 respectively. From top to bottom: 𝑊2,𝑊2,WFR,𝑊2,UOT(1

𝛼
=

0.1),𝑊2,GUOT(1
𝛼
= 0.1),𝑊2,Mixed(𝛽 = 0.1). 75

4.1 The two-dimensional computational domain Ω = (0, 𝐿) × (−𝐻, 0) for wave propa-
gation. Periodic boundary conditions are imposed on the left and right boundaries.
In geophysical applications, sources and detectors are placed on the top boundary
(left) while in medical ultrasound applications, sources (red dots) and detectors
(blue triangles) can be placed on both the top and the bottom boundaries (right). . . 93

4.2 Network flow for learning the approximate inverse operator. Training objective is to
select 𝛼 such that g = 𝐷𝛼 (𝐸𝛼 (g)) and 𝑚 = 𝑃𝛼 (𝐸𝛼 (g)) for every datum pair (g, 𝑚). 94

4.3 Random samples of the velocity field for training of the neural networks. Top
row: velocity fields generated from (4.27) with 𝑀 = 4; bottom row: velocity fields
generated from (4.26) with 𝑀 = 2. 99

4.4 The left panel presents time series wave signals at the bottom surface generated from a
velocity model satisfying (4.27) with 𝑀 = 4, while the right panel shows time series wave
signals at the bottom surface generated from a velocity model constructed by (4.26) with
𝑀 = 2. From the top to the bottom are time series wave signals without noise, with 10%
multiplication Gaussian noise and with 10% additive Gaussian noise, respectively. 101

4.5 Three randomly selected velocity fields from the testing dataset: 5 × 5 coefficients
Fourier model, 8 × 8 coefficients Fourier model, 10 × 10 coefficients Fourier model.
All true cases have decay rate 𝛽 = 0 (column 1), the corresponding predictions by
the trained neural network (column 2), the error of the prediction (column 3), and the
error in the neural network prediction (𝑚(x)) in the Fourier domain (𝔪(k) − �̃�(k))
(column 4). 103

4.6 Training and validation loss curves for a typical learning experiment. Very similar
curves are observed for each of the learning experiments we performed. 104

4.7 Plots of Δ𝔪(k) (first column), ΨO (ℎ; k) (second column), and ΦO (ℎ; k) (third
column) for four different (g, 𝑚) pairs in the testing dataset. The velocity model for
rows 1-2 has 𝑀 = 4 and that for the plots in rows 3-4 has 𝑀 = 7. 106

x

4.8 Validation results on four specific velocity fields in the testing dataset. Row 1 is the
results for 8 Fourier velocity model with 𝛽 = 0, Row 2 is the results for 10 Fourier
velocity model with 𝛽 = 0, row 3 is the results for 10 Fourier velocity model with
𝛽 = 1/2, row 4 is the results for 10 Fourier velocity model with 𝛽 = 1 while row 5
is are results for 20 Fourier velocity model with 𝛽 = 1. From left to right are: the
true velocity field, neural network prediction, the error of the prediction, and the
error of the prediction in the Fourier domain. 108

4.9 The instance of validation of learning results in a different class of velocity models
for the case of 𝛽 = 1. Shown from left to right are: the true velocity field, the neural
network prediction, the error in the prediction, and the error in the Fourier domain. 109

4.10 Out-of-domain validation of a training result with mesh-based velocity representa-
tion. Shown from left to right are: the true velocity field, the network prediction,
and the error in the prediction. 109

4.11 The landscape of the classical (left) and new (right) objective functions for the location of a
Gaussian perturbation of the velocity field. 111

4.12 The reconstructed velocity images for the mixed Gaussian (4.33). From left to right are
the ground true velocity field, the reconstructed velocity field with 𝐽 = 1, the reconstructed
velocity field with 𝐽 = 20, and the difference between the ground true velocity field and the
reconstructed velocity field with 𝐽 = 20 (first column - third column). From top to bottom
are the results from the noise-free wave signal, the wave signal with 10% multiplication
Gaussian noise, and the wave signal with 10% additive Gaussian noise. 113

4.13 The reconstructed velocity images for the general Fourier type (4.26) with 𝑀 = 4. From
top to bottom are for the velocity reconstruction without noise, with 10% multiplication
Gaussian noise, with 10% additive Gaussian noise, respectively. While from left to right are
the ground true velocity field, the reconstructed velocity field from the neural network in
the offline training stage, and the reconstructed velocity image with 𝐽 = 20, error for the
reconstructed velocity image with 𝐽 = 20, respectively. 115

4.14 The reconstructed velocity images for the Fourier model (4.35). Each row corresponds to
the reconstruction of one velocity field. From left to right are the ground true velocity field,
the reconstructed velocity field with 𝐽 = 1, the reconstructed velocity field with 𝐽 = 20, and
the reconstructed velocity field with 𝐽 = 50, respectively. 116

4.15 The reconstructed velocity images for the velocity model (4.36). From top to bottom are the
reconstruction with noise-free signal, the signal with 10% multiplication Gaussian noise, and
the signal with 10% additive Gaussian noise, respectively. From left to right are the ground
true velocity field, the reconstructed velocity field with 𝐽 = 1, the reconstructed velocity
field with 𝐽 = 20, and the reconstructed velocity field by minimizing (4.15), respectively. . 118

xi

B.1 Network structures of the encoder, decoder and predictor networks. 161

xii

Acknowledgements

First and foremost, I am incredibly grateful to my supervisors, Professor Qiang Du and Professor

Kui Ren for their invaluable advice, unwavering support, and patience during my Ph.D. study. Their

immense knowledge, plentiful experience, sharp insight and personal charisma have encouraged

me all the time in my academic research and daily life. Their guidance benefited me all across

my research career and writing of this thesis. I would also like to express my most profound

appreciation to Professor Kyle Mandli, Professor Amir Sagiv, Professor Chris Wiggins, Professor

Lu Zhang, and Professor Changxi Zheng for serving on my oral exam, thesis proposal and thesis

defense committees. I have learned a lot from them during my time at Columbia. I will never forget

the delightful discussions with Dr. Kuang Huang, Dr. Rachael Williams, and Professor Lu Zhang.

It is their technical support and encouragement that inspired me. Some of the discussions of this

thesis come from lecture materials from Prof. Kyle Mandli’s Numerical Analysis class and Prof.

Michael K. Tippett’s Uncertainty Quantification class. I would like to take the chance to thank all

the members of the Applied Math and Applied Physics department at Columbia University in the

City of New York. Their kind help and support have made my study and life at Columbia University

a wonderful time. Last but not least, I would like to thank my parents and my friends sincerely.

This endeavor would have been impossible for me without their tremendous understanding and

encouragement in the past few years.

The research in this work was partially supported by funding provided by the National Science

Foundation through grants DMS-1620473, DMS-1913309, and EAR-2000850. Part of the numerical

simulations presented in this thesis is performed on Columbia’s Ginsburg HPC system (also partially

supported by the National Science Foundation). These supports are greatly acknowledged.

xiii

Chapter 1: Introduction

In this introductory chapter, we provide some background on the main topics of the thesis.

In particular, we give a brief review of classical loss functions commonly used in computational

inverse problems. We highlight the fundamental properties of these loss functions and their impact

on the solutions to the inverse problems.

1.1 Motivation

In the absence of analytical inversion formulas, most model-based inverse problems are solved

by computational minimization algorithms that minimize the mismatch between model predictions

and measured data. The choice of the objective function, often called the loss function, for the

minimization problem is of critical importance. While an ideal loss function is a convex one, it is

often impossible to have such loss functions for general nonlinear inverse problems. Loss functions

with better convexity landscapes than others can significantly improve the optimization process

when solving inverse problems.

The main objective of this thesis is to understand the effect of different loss functions on the

reconstruction results for computational inverse problems, to propose numerical methods for re-

shaping the loss landscape, and thus improve the solutions of the inverse problems in several aspects.

Our primary efforts will be the study of those loss functions based on the Wasserstein metrics that

have attracted significant attention in the computational inverse problems community in recent

years [3, 84, 74, 104, 40, 62, 85]. In addition, we will develop a deep-learning based approach

to design problem-specific loss functions for inverse problems. This is a direction that has been

extensively studied in recent years; see for instance [82, 97, 106, 69, 116] and references therein for

more details.

1

1.2 Computational inverse problems

Numerical solution of linear and nonlinear inverse problems is a challenging task that is needed

in many areas of science and engineering. To be specific, let us formulate an abstract inverse

problem in the infinite-dimensional setting as the general model of the inverse coefficient problems

we see in the rest of the thesis. Let Ω ⊂ R𝑑 be a bounded domain with smooth boundary 𝜕Ω, 𝑆 be a

Banach space of real-valued functions defined on Ω, and \ : Ω ↦→ R be the target function on Ω

that we are interested in reconstructing from some datum g ∈ 𝑌 . We denote by f (\) : 𝑆 ↦→ 𝑌 the

forward model that takes \ to our measurement, that is

f (\) = g. (1.1)

The objective of the inverse problem is to solve this equation to find \. The property of the inverse

problem depends on many factors: the property of the forward operator f, the a priori property

of the unknown \, and the quality of the observed data g (for instance the noise in the data). The

primary computational strategy, in the absence of explicit/semi-explicit reconstruction methods, is

the one searching for the inverse solution by minimizing the mismatch between model predictions

and observed data [139]:

inf
\∈𝑆

𝐿 (f (\), g) + 𝛽R(\) , (1.2)

where the loss function 𝐿 : 𝑌 × 𝑌 ↦→ R+ is a non-negative function of evaluating the mismatch

between the algorithm models and the dataset, and the term 𝛽R(\) is the regularization term that

imposes some a priori constraints on the unknown \ to be reconstructed. The classical 𝐿2 least-

squares loss function performs the reconstruction by searching target quantity \ that minimizes

the square difference ∥f (\) − g∥2
𝐿2 (𝑌) . While the classical 𝐿2 least-squares method has been

extremely successful in many aspects, there have been great efforts in recent years to search for

techniques to overcome some of its disadvantages in certain applications. An extremely successful

development is the invention of methods that promote sparsity, in appropriate bases, in inverse

2

solutions for applications in signal and image processing where sparse structures are important;

see for instance [54] and references therein for some recent overviews. The sparsity of solutions

could be forced either through regularization strategies, such as methods based on total variation

regularization in image processing [140], or through the mismatch functional, such as those based

on 𝐿1 and related functionals in compressive sensing [52, 45].

There are many important factors that decide the quality of this optimization based solution

procedure for inverse problems, among which are the quality of the loss function, the regularization

mechanism (i.e. the functional R(\)), and the optimization algorithm used are three critical ones.

1.3 Loss landscape for inversion

The loss landscape associated with the inverse problem is the mismatch as a function of the

target quantities \

𝑙𝑠(\) = 𝐿 (f (\), g) . (1.3)

The loss landscape is an insightful way of visualizing the optimization problem and potentially

offering more information about the inverse problem itself and why the loss function works. Readers

can find more fascinating results of visualizing loss landscape in the context of deep learning in [83,

114, 131, 142, 50, 90, 123, 51, 56, 29, 55]. Let us emphasize that for most of the inverse problems

we are interested in, the unknown \ is a function. Therefore it is impossible to visualize the loss

function 𝑙𝑠(\) the same way as in the low-dimensional problems.

Ideally, we would prefer the loss landscape function to be convex. In such a case, every local

minimum is global minimum, the optimal set is convex. The problem has at most one optimal

point when the loss landscape is strictly convex. These powerful properties present valuable tools

for developing accurate and efficient algorithms for solving optimization problem. Indeed, there

are extremely fast algorithms specifically designed for convex problems; see [18] for a thorough

overview in this direction.

3

In many applications, the forward operator and data have the particular forms:

f (\) = (𝑓 (\; ℎ𝑖))𝑁𝑖=1

g = (𝑔𝑖)𝑁𝑖=1

(1.4)

where 𝑓 (\; ℎ) : ℎ ↦→ 𝑔 is a model parameterized by \. In this case, we have 𝑁 pairs of input-output

data for the model 𝑓 : {(ℎ𝑖, 𝑔𝑖)}𝑁𝑖=1, corresponding to 𝑁 different observations of the model 𝑓 . An

example of such a forward model is a neural network that takes ℎ as input and generate 𝑔 as the

output, with \ being the trainable parameters for the neural network. In this case, if we denote 𝑙 (·, ·)

as 𝐿 (·, ·) operates on a single data point, then

𝐿 (f (\), g) =
𝑁∑︁
𝑖=1

𝑙 (𝑓 (\; ℎ𝑖), 𝑔𝑖) . (1.5)

This is the most common data framework for supervised learning problems in the machine learning

community and is also the standard framework for inverse problems with multiple datasets.

1.4 Typical loss functions

We now briefly review several classical loss functions commonly used in computational inversion

and learning. We explain those loss functions on linear inverse problems (in either finite- or infinite-

dimensional settings). More specifically, we define

f (\) = 𝑋\, (1.6)

where 𝑋 ∈ R𝑛,𝑑 is the forward operator and \ ∈ R𝑑 is the known. We assume that the data we have

is polluted by random noise. The inverse problem is then to reconstruct \ in

g = 𝑋\ + 𝜖,

4

where 𝜖 is the noise. This is known as the linear regression problem. In this optimization framework,

linear regression is essentially solving the following optimization problem:

min
\
𝐿 (𝑋\, g) . (1.7)

If we introduce the notations as in (1.4), that is, 𝑋 =

©«
𝑥1

· · ·

𝑥𝑁

ª®®®®®¬
∈ R𝑁,𝑑 , and g =

©«
𝑔1

· · ·

𝑔𝑁

ª®®®®®¬
∈ R𝑁 , this

problem can be rewritten into a typical linear regression form

min
\

𝑁∑︁
𝑖=1

𝑙 (𝑥𝑖\, 𝑔𝑖) . (1.8)

1.4.1 The 𝐿2 loss function

One of the most popular loss functions is the 𝐿2 loss function given by [139]:

ℓ2
2 (𝑓 , 𝑔) :=

𝑁∑︁
𝑖=1
(𝑓𝑖 − 𝑔𝑖)2, 𝑓 = (𝑓1, · · · , 𝑓𝑁)𝑇 , 𝑔 = (𝑔1, · · · , 𝑔𝑁)𝑇 , (1.9)

in the finite-dimensional case.

The linear regression problem, in the absence of regularization, under the 𝐿2 loss is therefore:

min
\∈R𝑑
∥𝑋\ − g∥22 . (1.10)

This landscape function of least-square problem can be written more explicitly as

𝑙𝑠(\) = (𝑋\ − g, 𝑋\ − g) = \𝑇𝑋𝑇𝑋\ − 2g𝑇𝑋\ + g𝑇g . (1.11)

It is a quadratic function of \, therefore convex. It is well-known that the solution of least square

problem is \̂𝐿𝑆 = (𝑋𝑇𝑋)−1𝑋𝑇g, where (𝑋𝑇𝑋)−1 here represents the pseudo-inverse of 𝑋𝑇𝑋 . Let us

5

assume that the singular value decomposition of 𝑋 is 𝑋 = 𝑈𝑆𝑉𝑇 . We then have

\̂𝐿𝑆 = (𝑉𝑆𝑈𝑇𝑈𝑆𝑉𝑇)−1𝑉𝑆𝑈𝑇g

= 𝑉𝑆−1𝑈𝑇g

= 𝑉𝑆−1𝑈𝑇 (𝑋\ + 𝜖)

= \ +𝑉𝑆−1𝑈𝑇𝜖 .

Therefore, the mean square error of the least square estimate is

𝑀𝑆𝐸 (\̂𝐿𝑆) = ∥\̂ − \𝑒𝑥𝑎𝑐𝑡 ∥2

= 𝑈𝑆−2𝑉𝑇 ∥𝜖 ∥2

=

𝑟∑︁
𝑖=1

1
𝑠2
𝑖

𝑢𝑖𝑣
𝑇
𝑖 ∥𝜖 ∥2 .

When 𝑠𝑖 → 0+,
1
𝑠2
𝑖

→ +∞. Therefore intuitively speaking, the mean square error of the least square

solution is large when 𝑋 has small singular values 𝑠𝑖 ∼ 0+.

1.4.2 The 𝐿1 loss function

The 𝐿1 loss function is another commonly used loss function. It is defined, in the finite-

dimensional case, as

ℓ1(𝑓 , 𝑔) =
𝑁∑︁
𝑖=1
| 𝑓𝑖 − 𝑔𝑖 |, 𝑓 = (𝑓1, · · · , 𝑓𝑁)𝑇 , 𝑔 = (𝑔1, · · · , 𝑔𝑁)𝑇 , (1.12)

The inversion based on the 𝐿1 loss is often termed as the least absolute deviation(LAD) estimator.

It is achieved by minimizing the landscape function

𝑙𝑠(\) = ∥𝑋\ − g∥1 =

𝑁∑︁
𝑖=1
|𝑥𝑇𝑖 \ − 𝑔𝑖 | . (1.13)

6

As a consequence, the loss landscape of LAD is the sum of absolute functions, which is convex,

hence the landscape for least absolute deviation is also convex. Moreover, the loss landscape is also

a piecewise linear function.

We can formally analyze the landscape function by looking at its derivative at a given \̂, assuming

that 𝑔𝑖 −
∑
𝑗

𝑋𝑖 𝑗 \̂ 𝑗 ≠ 0. This leads to [25],

𝜕𝑙𝑠(\)
𝜕\𝑘

(\̂) =
∑︁
𝑖

𝑔𝑖 −
∑
𝑗

𝑋𝑖 𝑗 \̂ 𝑗

|𝑔𝑖 −
∑
𝑗

𝑋𝑖 𝑗 \̂ 𝑗 |
(−𝑋𝑖𝑘) . (1.14)

In order to find the optimal values, we set 𝜕𝑙𝑠(\)
𝜕\𝑘
(\̂) = 0. With a little rearrangement of terms, we

have ∑︁
𝑖, 𝑗

𝑋𝑖 𝑗𝑋𝑖𝑘 \̂ 𝑗

𝑒𝑖 (\̂)
=
∑︁
𝑖

𝑋𝑖𝑘𝑔𝑖

𝑒𝑖 (\̂)
, (1.15)

where 𝑒𝑖 (\̂) = |𝑔𝑖 −
∑
𝑗

𝑋𝑖 𝑗 \̂ 𝑗 | is the absolute deviation on data 𝑔𝑖. Therefore the solution of least

absolute deviation satisfies

𝑋𝑇𝐸 (\̂)𝑋\̂ = 𝑋𝑇𝐸 (\̂)g (1.16)

where 𝐸 = 𝑑𝑖𝑎𝑔−1(𝑒). Hence LAD can be viewed as a pre-conditioned least-square estimate, with

the pre-conditioning matrix 𝑋𝑇𝐸 (\̂) depending on the current state \̂. This leads to a nonlinear,

instead of linear, system of equations. Compared to the 𝐿2 based least-square estimator, LAD puts

a higher weight on items with smaller absolute deviation due to the nonlinear term 𝐸 , which creates

more "incentives" for small errors to decrease down to 0. In this way, it promotes sparsity in the

solution of the problem.

1.4.3 Kernel loss functions

By kernel loss here we mean weighted 𝐿2 loss functions of the form

𝐿2
𝐾 (𝑓 , 𝑔) :=

𝑁∑︁
𝑖=1
(𝑓𝑖 −

∑︁
𝑗

𝐾𝑖 𝑗𝑔 𝑗)2 (1.17)

7

where the positive semi-definite matrix 𝐾 is the kernel matrix. When 𝐾 = 𝐼 is the identity matrix,

kernel losses reduce to the 𝐿2 loss. We refer interested readers to [15] and references therein for

more discussions on kernel losses.

The minimization problem for linear regression under the kernel loss is of the form

min
\∈R𝑑
(𝑋\ − g, 𝐾 (𝑋\ − g)) . (1.18)

Following the same procedure above, the landscape function for kernel loss can be written as

𝑙𝑠(\) = \𝑇𝑋𝑇𝐾𝑋\ − 2g𝑇𝐾𝑋\ + g𝑇𝐾g (1.19)

This landscape function is still quadratic. In fact, if we define 𝑉 as the square root of the positive

definite matrix 𝐾, that is 𝐾 = 𝑉𝑇𝑉 , then the kernel loss estimate is the equivalent to solving the

pre-conditioned least square problem:

min
\∈R𝑑
∥𝑉𝑋\ −𝑉g∥22 . (1.20)

Here 𝑉 serves as the pre-conditioner. Depending on the property of 𝐾, the problem may behave

differently from the classical least square problem. This form of weighted optimization is discussed

extensively in the literature; see for instance [39] and references therein.

1.4.4 TheH−1 loss function

The last example of the loss function we review here is closely related to the main topic of the

thesis: loss functions based on the quadratic Wasserstein metrics. It is theH−1 loss function. As we

will see later, it can also be viewed as a special case of kernel loss.

For any bounded smooth domain Ω ∈ R𝑑 , we define the space of functionsH−1(Ω) as the dual

8

of usual Hilbert spaceH1
0 (Ω). TheH−1 norm of a function 𝑓 is defined as

∥ 𝑓 ∥H−1 (Ω) = sup{⟨ 𝑓 , 𝑢⟩|𝑢 ∈ 𝐻1
0 (Ω), ∥𝑢∥𝐻1

0 (Ω)
≤ 1} (1.21)

It can be shown thatH−1 norm of 𝑓 can be computed by solving a Laplacian equation [43]. More

precisely, let

∥ 𝑓 ∥H−1 (Ω) = ∥∇𝑢∥𝐿2 (Ω) , Δ𝑢 = 𝑓 , in Ω 𝑢 = 0, on 𝜕Ω.

To illustrate the main properties of theH−1 loss, let us use the linear regression problem for a

function \ in the one-dimensional case. The minimization problem can be written as

min
\
∥𝑢∥2

𝐿Δ𝑥𝑢 = 𝑋\ − g
(1.22)

where the matrix 𝐿Δ𝑥 is the discretization of the one-dimensional Laplacian operator with zero

boundary condition, that is

𝐿Δ𝑥 =
1

Δ𝑥2

©«

2 −1 0 . . . 0

−1 2 −1 . . . 0

.

0 . . . −1 2 −1

0 0 . . . −1 2

ª®®®®®®®®®®®®¬𝑛,𝑛
Let 𝐺 be the Green’s function for the Laplacian operator in one dimension. Then 𝐺 reads [42]:

𝐺 (𝑥, 𝑥0) =

(1 − 𝑥0)𝑥, 𝑓 𝑜𝑟 𝑥 ≤ 𝑥0

𝑥0(1 − 𝑥), 𝑓 𝑜𝑟 𝑥 > 𝑥0

(1.23)

Let us define 𝐺𝑖 𝑗 = Δ𝑥𝐺 (𝑖Δ𝑥, 𝑗Δ𝑥), where (𝑛 + 1)Δ𝑥 = 1. We can then show the following

result straightforwardly.

9

Proposition 1.4.1. 𝐺𝐿Δ𝑥 = 𝐼.

Proof. The result follows from direct algebraic calculations. We first verify that

2𝐺𝑖, 𝑗 − 𝐺𝑖−1, 𝑗 − 𝐺𝑖+1, 𝑗 = (1.24)
2(1 − 𝑗Δ𝑥)𝑖Δ𝑥2 − (1 − 𝑗Δ𝑥) (𝑖 − 1)Δ𝑥2 − (1 − 𝑗Δ𝑥) (𝑖 + 1)Δ𝑥2 = 0, 2 < 𝑖 < 𝑗 < 𝑛

2(1 − 𝑖Δ𝑥)𝑖Δ𝑥2 − (𝑖 − 1)Δ𝑥2(1 − 𝑖Δ𝑥) − 𝑖Δ𝑥2(1 − (𝑖 + 1)Δ𝑥) = Δ𝑥2, 1 < 𝑖 = 𝑗 < 𝑛

2(1 − 𝑖Δ𝑥) 𝑗Δ𝑥2 − (1 − 𝑖Δ𝑥) (𝑗 − 1)Δ𝑥2 − (1 − 𝑖Δ𝑥) (𝑗 + 1)Δ𝑥2 = 0, 1 < 𝑗 < 𝑖 < 𝑛

We then check:

2𝐺1,𝑖 − 𝐺2,𝑖 =

2Δ𝑥2(1 − Δ𝑥) − Δ𝑥2(1 − 2Δ𝑥) = Δ𝑥2, 𝑖 = 1

2Δ𝑥2(1 − 𝑖Δ𝑥) − 2Δ𝑥2(1 − 𝑖Δ𝑥) = 0, 𝑖 > 1
(1.25)

In the same manner, we can verify that

2𝐺𝑛,𝑖 − 𝐺𝑛−1,𝑖 =

2𝑛Δ𝑥2(1 − 𝑛Δ𝑥) − (𝑛 − 1)Δ𝑥2(1 − 𝑛Δ𝑥) = Δ𝑥2, 𝑖 = 𝑛

= 2𝑖Δ𝑥2(1 − 𝑛Δ𝑥) − 𝑖Δ𝑥2(1 − (𝑛 − 1)Δ𝑥) = 0, 𝑖 < 𝑛
(1.26)

Combining the above formulas together, we have 𝐺𝐿Δ𝑥 = 𝐼. This finishes the proof. □

The above standard result shows that 𝐺 is the inverse of 𝐿Δ𝑥 . Therefore, the linear regression

withH−1 loss is equivalent to the minimization problem

min
\
∥𝐺𝑋\ − 𝐺g∥22 (1.27)

which is a pre-conditioned problem to the original least square problem 𝑋\ = g. In other words,

using H−1 loss for linear regression is equivalent to using 𝐿2 loss for the new linear regression

problem:

𝐺𝑋\ = 𝐺g (1.28)

This also coincides with using the kernel loss for the original linear problem with the kernel matrix

10

𝐾 = 𝐺2.

It is also easy to verify that the 𝐿2 estimate of the inverse problem is also the optimal solution of

theH−1 estimate.

Proposition 1.4.2. \̂𝐿𝑆 is the solution of (1.28)

Proof. This can be proved using pseudo-inverse. Denote 𝑋+ as the pseudo-inverse of 𝑋 , then

\̂𝐿𝑆 = 𝑋
+g. The solution for (1.28) is \̂H−1 = (𝐺𝑋)+𝐺g = 𝑋+𝐺+𝐺g = 𝑋+g = \̂𝐿𝑆, since 𝐺 has full

rank. □

The spectral property of the matrix 𝐿Δ𝑥 is well-known. We summarize this in the following

proposition.

Proposition 1.4.3. The matrix 𝐿Δ𝑥 has eigenvalue _𝑝 = 2
Δ𝑥2 (1 − 𝑐𝑜𝑠(𝑝𝜋Δ𝑥)), 𝑝 = 1, · · · , 𝑛, with

corresponding eigenvector 𝑢𝑝 := (𝑠𝑖𝑛(𝑝𝜋 𝑗Δ𝑥))𝑛
𝑗=1

Proof. Straightforward algebraic calculations show that

Δ𝑥2𝐿Δ𝑥𝑢
𝑝

1 = 2𝑠𝑖𝑛(𝑝𝜋Δ𝑥) − 𝑠𝑖𝑛(𝑝𝜋2Δ𝑥)

= 2𝑠𝑖𝑛(𝑝𝜋Δ𝑥) − 2𝑠𝑖𝑛(𝑝𝜋Δ𝑥)𝑐𝑜𝑠(𝑝𝜋Δ𝑥)

= 2𝑠𝑖𝑛(𝑝𝜋Δ𝑥) (1 − 𝑐𝑜𝑠(𝑝𝜋Δ𝑥))

= (1 − 𝑐𝑜𝑠(𝑝𝜋Δ𝑥))𝑢𝑝1

(1.29)

Moreover, we have

Δ𝑥2𝐿Δ𝑥𝑢
𝑝
𝑛 = 2𝑠𝑖𝑛(𝑝𝜋𝑛Δ𝑥) − 𝑠𝑖𝑛(𝑝𝜋(𝑛 − 1)Δ𝑥)

= 2𝑠𝑖𝑛(𝑝𝜋𝑛Δ𝑥) − 𝑠𝑖𝑛(𝑝𝜋(𝑛 − 1)Δ𝑥) − 𝑠𝑖𝑛(𝑝𝜋(𝑛 + 1)Δ𝑥)

= 2𝑠𝑖𝑛(𝑝𝑛𝜋Δ𝑥) − 2𝑠𝑖𝑛(𝑝𝜋𝑛Δ𝑥)𝑐𝑜𝑠(𝑝𝜋Δ𝑥)

= 2𝑠𝑖𝑛(𝑝𝜋𝑛Δ𝑥) (1 − 𝑐𝑜𝑠(𝑝𝜋Δ𝑥))

= (1 − 𝑐𝑜𝑠(𝑝𝜋Δ𝑥))𝑢𝑝𝑛

(1.30)

11

The last step is to show that

Δ𝑥2𝐿Δ𝑥𝑢
𝑝

𝑗
= 2𝑠𝑖𝑛(𝑝𝜋 𝑗Δ𝑥) − 𝑠𝑖𝑛(𝑝𝜋(𝑗 − 1)Δ𝑥) − 𝑠𝑖𝑛(𝑝𝜋(𝑗 + 1)Δ𝑥)

= 2𝑠𝑖𝑛(𝑝𝜋 𝑗Δ𝑥) − 2𝑠𝑖𝑛(𝑝𝜋 𝑗Δ𝑥)𝑐𝑜𝑠(𝑝𝜋Δ𝑥)

= 2𝑠𝑖𝑛(𝑝𝜋 𝑗Δ𝑥) (1 − 𝑐𝑜𝑠(𝑝𝜋Δ𝑥))

= (1 − 𝑐𝑜𝑠(𝑝𝜋Δ𝑥))𝑢𝑝
𝑗

(1.31)

The conclusion therefore follows. □

The smallest eigenvalue of 𝐿Δ𝑥 is

_1 = 2
Δ𝑥2 (1 − 𝑐𝑜𝑠(𝜋Δ𝑥))

= 2
Δ𝑥2 (12𝜋

2Δ𝑥2 +𝑂 (Δ𝑥4))

= 𝜋2 +𝑂 (Δ𝑥2)

(1.32)

This is clearly bounded away from zero as Δ𝑥 → 0. Therefore the greatest eigenvalue of 𝐺 = 𝐿−1
Δ𝑥

is bounded, say 𝑠(𝐺) ≤ 1
𝜋2−1 when 𝑛 is sufficiently large.

One heuristic understanding of 𝐿Δ𝑥 operator is that it takes the derivative twice, while the inverse

operator 𝐺 should behave similarly to integrating twice, increasing the smoothing property of data.

The kernel 𝐺 will therefore smooth out the noise in the data. In particular, the high-frequency

components of the noise are damped more than the lower-frequency components. More specifically,

suppose g = 𝑋\𝑒𝑥𝑎𝑐𝑡 + 𝜖 , where 𝜖 is noise, then the landscape functions forH−1 and least square

estimate are respectively

𝑙𝑠(\) = (𝑋\ − g, 𝑋\ − g) = (\𝑒𝑥𝑎𝑐𝑡 − \)𝑇𝑋𝑇𝑋 (\𝑒𝑥𝑎𝑐𝑡 − \) − 2(\𝑒𝑥𝑎𝑐𝑡 − \)𝑇𝑋𝑇𝜖 + 𝜖𝑇𝜖 , (1.33)

and

𝑙𝑠(\) = (𝐺𝑋\−𝐺g, 𝐺𝑋\−𝐺g) = (\𝑒𝑥𝑎𝑐𝑡−\)𝑇 (𝐺𝑋)𝑇𝐺𝑋 (\𝑒𝑥𝑎𝑐𝑡−\)−2(\𝑒𝑥𝑎𝑐𝑡−\)𝑇 (𝐺𝑋)𝑇𝜖+�̃�𝑇 �̃� ,

(1.34)

12

where �̃� = 𝐺𝜖 . The convexity of the two loss landscapes can be seen from the fact that the

corresponding Hessians are both positive semidefinite:

𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑙𝑠𝐿2) = 𝑋𝑇𝑋 ,

𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑙𝑠H−1) = 𝑋𝑇𝐺𝑇𝐺𝑋 .
(1.35)

The following theorem implies that the singular value of 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑙𝑠H−1) is strictly less than

𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑙𝑠𝐿2), i.e. the loss landscape of 𝑙𝑠H−1 is strictly "flatter" than that of 𝑙𝑠𝐿2 .

Theorem 1.4.4. Let 𝜎𝑖 (𝑋) be the 𝑖𝑡ℎ largest singular value for 𝑋 . Then 𝜎𝑖 (𝐺𝑋) < 1
𝜋2−1𝜎𝑖 (𝑋) when

𝑛 is sufficiently large.

Proof. By (1.32), we have that 𝜎1(𝐺) < 1
𝜋2−1 when 𝑛 is sufficiently large. The result then follows

from the Min-Max principle for singular values:

𝜎𝑖 (𝐺𝑋) = max
𝑈:𝑑𝑖𝑚(𝑈)=𝑖

min
𝑢∈𝑈,∥𝑢∥2=1

∥𝐺𝑋𝑢∥2

≤ max
𝑈:𝑑𝑖𝑚(𝑈)=𝑖

min
𝑢∈𝑈,∥𝑢∥2=1

∥𝐺∥2∥𝑋𝑢∥2

= 𝜎1(𝐺) max
𝑈:𝑑𝑖𝑚(𝑈)=𝑖

min
𝑢∈𝑈,∥𝑢∥2=1

∥𝑋𝑢∥2

= 𝜎1(𝐺)𝜎𝑖 (𝑋)

<
1

𝜋2 − 1
𝜎𝑖 (𝑋) .

□

Moreover, it is straightforward to see that the value of the loss function at the exact solution

\𝑒𝑥𝑎𝑐𝑡 = (𝑋𝑇𝑋)−1𝑋𝑇 𝑦 are respectively:

𝑙𝑠𝐿2 (\𝑒𝑥𝑎𝑐𝑡) = ∥𝜖 ∥22
𝑙𝑠H−1 (\𝑒𝑥𝑎𝑐𝑡) = ∥𝐺𝜖 ∥22 = ∥𝜖 ∥22 .

(1.36)

Here one expects 𝑙𝑠H−1 (\𝑒𝑥𝑎𝑐𝑡) ≪ 𝑙𝑠𝐿2 (\𝑒𝑥𝑎𝑐𝑡) because the effect of 𝐺 is similar to "taking average"

13

with respect to some moderate weight 𝐺. To be more specific, the following theorem shows that the

impact of error underH−1 is approximately reduced to 𝑂 (
√
Δ𝑥)𝜖 , when noise is in effect.

Theorem 1.4.5. Assume 𝜖 is i.i.d. with 𝐸 (𝜖𝑖) = 0, 𝑉𝑎𝑟 (𝜖𝑖) = 𝜎2, and 𝐺 ∈ R𝑛×𝑛, 𝐺𝑖 𝑗 = Δ𝑥𝐺 (𝑥𝑖, 𝑥 𝑗)

where 𝑥𝑖 = 𝑖Δ𝑥. Let 𝜖 = 𝐺𝜖 . Then 𝐸 ∥𝜖 ∥22 = 𝑂 (Δ𝑥)𝐸 ∥𝜖 ∥22

Proof. This is the direct consequence of the following algebraic calculations.

𝐸 (∥𝜖 ∥22)

= 𝐸 (𝜖𝑇𝐺𝑇𝐺𝜖)

= 𝐸 (∑
𝑖, 𝑗 ,𝑘

𝐺𝑘𝑖𝐺𝑘 𝑗𝜖𝑖𝜖 𝑗)

= 𝜎2 ∑
𝑖,𝑘

𝐺𝑘𝑖𝐺𝑘𝑖

= 𝜎2(
𝑛∑
𝑖=1
𝐺𝑖𝑖 + 2

∑
1=𝑖<𝑘=𝑛

𝐺𝑖𝑘)

= 𝜎2

(𝑛+1)4 (
𝑛∑
𝑖=1
𝑖(𝑛 + 1 − 𝑖) + 2

𝑛−1∑
𝑖=1

𝑛∑
𝑘=𝑖+1

𝑖(𝑛 + 1 − 𝑘))

=
𝑛(2+𝑛)

12(1+𝑛)2𝑛𝜎
2

=
(2+𝑛)

12(1+𝑛)2𝐸 (∥𝜖 ∥
2
2)

= 𝑂 (1
𝑛
)𝐸 (∥𝜖 ∥22)

= 𝑂 (Δ𝑥)𝐸 (∥𝜖 ∥22)

(1.37)

□

Remark 1.4.6. Therefore, even though the exact solution of H−1 estimate is identical to that

of the classical 𝐿2 least-square solution, the effect of noise in the H−1 loss is 𝜖 ≪ 𝜖 , which is

much smaller than that of the 𝐿2 loss (which is 𝜖). This fact has significant consequences in the

implementation of the optimization algorithm to solve the minimization problems. If we use the

value of the loss function as the stopping criteria, for instance use some fixed positive value 𝛿 as

the threshold, then for some 𝜖 , 𝐺𝜖 could be very small such that ∥𝐺𝜖 ∥2 < 𝛿 < ∥𝜖 ∥2. This means

that the same optimization algorithm will continue to run for the 𝐿2 least-square, but will stop for

the minimization problem based on theH−1 loss. Therefore inversion based on theH−1 loss stops

14

prematurely, leading to less accurate final inversion result in this situation. We shall see this effect

again in Chapter 3 with Wasserstein metrics.

While the rescaling of the problem by 𝐺 in the above analysis seems artificial as the rescaling

does not change the true solution of the inversion result in the absence of noise in the data used for

inversion, it has a non-trivial impact in the case when the optimization is not solved perfectly, that

is, when the loss function is not minimized to zero, or when noisy data are used in the inversion.

This can be seen in a more precise analysis of the inversion process in the Fourier domain. Let us

recall that theH−1 norm can be defined in the Fourier domain as [42]:

∥ 𝑓 ∥H−1 (R𝑛) = (
∫
R𝑛
| �̂� (b) |2(1 + b2)−1𝑑b) 1

2 , (1.38)

where �̂� is the Fourier transform of 𝑓 . This definition shows that H−1 norm attaches a damping

factor (1 + b2)−1 to each Fourier mode �̂� (b). Therefore the high-frequency components are reduced

by factor ∼ 𝑂 (b−2). The higher the frequency is, the stronger the damping effect will be. We shall

see this low frequency preserving and high-frequency damping effect in the numerical experiments

as a benchmark to the Wasserstein metrics in the next chapter.

Theorem 1.4.7. Let 𝜖 = (
∞∑

𝑘=−∞
𝐴𝑘𝑒

𝑗2𝜋𝑘𝑥𝑖)𝑛
𝑖=1, then 𝐺𝜖 = (

∞∑
𝑘=−∞

𝑂 (1
𝑘2)𝐴𝑘𝑒 𝑗2𝜋𝑘𝑥𝑖)𝑛𝑖=1.

Proof. Let 𝑇 (𝑘) = (𝑒 𝑗2𝜋𝑘𝑥𝑖)𝑛
𝑖=1, where 𝑥𝑖 = 𝑖Δ𝑥, then we have

(𝐿Δ𝑥𝑇)𝑖 = 1
Δ𝑥2 2𝑒 𝑗2𝜋𝑘𝑥𝑖 − 𝑒 𝑗2𝜋𝑘 (𝑥𝑖+Δ𝑥) − 𝑒 𝑗2𝜋𝑘 (𝑥𝑖−Δ𝑥)

= 1
Δ𝑥2 𝑒

𝑗2𝜋𝑘𝑥𝑖 (2 − 𝑒 𝑗2𝜋𝑘Δ𝑥 − 𝑒− 𝑗2𝜋𝑘Δ𝑥)

= 1
Δ𝑥2 𝑒

𝑗2𝜋𝑘𝑥𝑖 (2 − 𝑐𝑜𝑠(2𝜋𝑘Δ𝑥))

= 𝑂 (𝑘2)𝑇𝑖

(1.39)

Therefore, we have 𝐿Δ𝑥𝑇 ∼ 𝑂 (𝑘2)𝑇 . This then implies that 𝐺𝑇 = 𝑂 (1
𝑘2)𝑇 . The result then follows

directly. □

This result shows that the impact of the pre-conditioner 𝐺 is to create a weight 𝑂 (1
𝑘2) according

15

to frequency 𝑘 of the Fourier mode of the noise. The factor 𝑂 (1
𝑘2) makes the impact of high-

frequency component of 𝜖 very small (but not zero). Therefore, the corresponding optimization

process becomes more stable against high-frequency noise. If we take 𝜖 as the residual, that is, the

mismatch between 𝑋\ and g, it is clear that the minimization of theH−1 loss function will favor the

low-frequency components of the unknown \ (because the high-frequency components of 𝑋\ − g

are suppressed with the factor 𝑂 (1
𝑘2)). Therefore, the inversion result, when the optimization is

stopped at a given tolerance of the loss function value 𝛿, looks smoother than the corresponding one

from the regular 𝐿2 least-square inversion. This phenomenon was analyzed in more detail in [38].

1.5 Contribution and outline of thesis

In the rest of the thesis, we study in detail two types of loss functions for computational inversion.

The main contributions of the thesis are summarized in Chapter 3 and Chapter 4.

In Chapter 3, we performed a detailed computational study on inversion with loss functions

constructed from various quadratic Wasserstein metrics. We analyze the property of the solutions to

the inverse problem with such loss functions. In particular, we compare in detail the results with

those of classical computational inversion with loss functions based on the 𝐿2 andH−1 metrics. We

demonstrate the frequency disparity in the reconstructions with the Wasserstein metrics as well as

its consequences. Our main contributions lie in the systematic investigation of such loss functions

in the setup of computational inversion where resolution and stability compete with each other. The

result of is chapter is documented in [33].

In Chapter 4, we propose a loss function based on deep learning for computational inversion. In

a nutshell, to invert f (\) = g, we train a neural network f̂−1
𝛼 (where 𝛼 denoting the set of trainable

parameters) to approximate the inverse operator f−1. This approximate inverse is trained to focus on

the stable part of the inverse operator f. We then use this trained approximation to form a new loss

function for the inverse problem:

𝑙𝑠𝑁𝑁 (\) = ∥̂f−1
𝛼 (f (\)) − f̂−1

𝛼 (g)∥22 . (1.40)

16

The main benefit of this new loss function is that it has better convexity than its counterpart without

the operator f̂−1
𝛼 . We demonstrate with numerical simulations the feasibility of such a strategy in

solving complex inverse problems such as the full waveform inversion problem in ultrasound and

geophysical inversion. The result of this chapter is summarized in reference [34].

17

Chapter 2: Review of Wasserstein Distances

As a preparation for the studies in the next chapter, we briefly review Wasserstein distances and

their properties in this chapter. Most of the introduction in this chapter can be found in standard

literature on optimal transport theory, especially the monograph [135].

2.1 Basic definitions

Wasserstein distance of two probability measure `, a, defined on metric spaces 𝑋,𝑌 respectively,

is defined by Kantorovish’s optimal transportation problem

inf
𝜋∈Π(a,`)

∫
𝑋×𝑌

𝑐(𝑥, 𝑦)𝑑𝜋(𝑥, 𝑦) , (2.1)

where Π(`, a) = {𝜋 ∈ 𝑃(𝑋 × 𝑌); 𝜋(𝐴 × 𝑌) = `(𝐴), 𝜋(𝑋 × 𝐵) = a(𝐵)}

Intuitively, one can think of 𝜋(𝑥, 𝑦) as a transportation plan, moving mass from density ` to

density a. Then Kantorovish’s optimal transportation problem is that under the cost of 𝑐(𝑥, 𝑦), what

is the lowest cost plan.

In the case where 𝑋 = 𝑌 is a complete separable metric space with metric 𝑑, and 𝑐 = 𝑑𝑝, the

above definition reduces to

𝑊𝑝 (`, a) = inf
𝜋∈Π(a,`)

(
∫
𝑋×𝑌

𝑑𝑝 (𝑥, 𝑦)𝑑𝜋(𝑥, 𝑦))
1
𝑝 , 1 ≤ 𝑝 < ∞ (2.2)

and

𝑊∞(`, a) = inf
𝜋∈Π(a,`)

sup
(𝑥,𝑦)∈𝑠𝑢𝑝𝑝(𝜋)

𝑑 (𝑥, 𝑦) . (2.3)

When 𝑝 = 1, we call it𝑊1 distance, and when 𝑝 = 2, we call it𝑊2 distance (which is often called

the quadratic Wasserstein distance).

18

Monge’s problem. Monge had another formulation of the optimal transport problem:

inf
a=𝑇#`

∫
𝑋

𝑐(𝑥, 𝑇 (𝑥))𝑑`(𝑥) (2.4)

where a = 𝑇#` if and only if 𝑇 : 𝑋 → 𝑌 is measurable and for any measureable set 𝐴 ⊂ 𝑋 ,

`(𝐴) = a(𝑇 (𝐴)), which is equivalent to

∫
𝑋

𝜙(𝑇 (𝑥))𝑑`(𝑥) =
∫
𝑌

𝜙(𝑦)𝑑a(𝑦) ∀𝜙 ∈ 𝐿1(𝑑a) . (2.5)

Kantorovich’s problem can be seen as a relaxed version of Monge’s problem. If one re-

stricts 𝜋(𝑥, 𝑦) in Kantorovich’s problem to having a special form 𝜋𝑇 (𝑥, 𝑦) such that 𝑑𝜋𝑇 (𝑥, 𝑦) =

𝑑`(𝑥)𝛿(𝑦 = 𝑇 (𝑥)), then

∫
𝑋×𝑌

𝑐(𝑥, 𝑦)𝑑𝜋𝑇 (𝑥, 𝑦) =
∫
𝑋

𝑐(𝑥, 𝑇 (𝑥))𝑑`(𝑥) . (2.6)

Therefore, Kantorovich’s problem reduces to Monge’s problem [135].

In summary, Monge’s problem is just the same as Kantorovich’s except for one thing: it is

additionally required that no mass be split. In other words, to each location 𝑥 is associated with a

unique destination g, and 𝑇 is the transportation plan. In most of the applications, important cases

are the Wasserstein distance when 𝑝 > 1. The strict convexity of 𝑐 guarantees that if ` and a are

absolutely continuous with respect to the Lebesgue measure, then there is a unique solution to the

Kantorovich problem, which turns out to be also the solution to the Monge problem [135]. That

means Kantorovich’s problem shares the same optimal transportation plan as Monge’s problem. If

the moving cost function 𝑐(𝑥, 𝑦) has some nice properties, we have the following conclusions. First

one defines 𝑐(𝑥, 𝑦) to be strictly convex if 𝑐(𝑥, 𝑦) = 𝑑 (𝑥 − 𝑦), and 𝑐(𝑥) is strictly convex on R𝑛.

Theorem 2.1.1 (Optimal Transportation Theorem for a Strictly Convex Cost [135]). Let 𝑐 be a

strictly convex, super-linear cost on R𝑛, and let `, a be probability measures on R𝑛, such that the

total transportation cost from ` to a is not always infinite. Assume moreover that ` is absolutely

19

continuous with respect to the Lebesgue measure. Then, there exists a unique optimal transportation

plan for the Kantorovich transportation problem, and it has the form 𝑑𝜋(𝑥, 𝑦) = 𝑑`(𝑥)𝛿(𝑦 = 𝑇 (𝑥)),

where 𝑇 is uniquely determined 𝑑` almost everywhere by the requirements that 𝑇#` = a, and

𝑇 (𝑥) = 𝑥 − ∇𝑐∗(∇𝜙(𝑥)) for some c-concave function 𝜙, where 𝑐∗(𝑦) = sup
𝑥∈R𝑛

𝑥 · 𝑦 − 𝑐(𝑥) is the

Legendre transform.

Monge’s problem is well studied. It has various applications in engineering as well as computer

vision. Suppose 𝑑`(𝑥) = f (𝑥)𝑑𝑥, 𝑑a(𝑥) = g(𝑥)𝑑𝑥. The change of variables formula of (2.5)

formally leads to the requirement f (𝑥) = g(𝑇 (𝑥))𝑑𝑒𝑡 (∇𝑇 (𝑥)). It can be proved that the optimality

condition of 𝑇 is equivalent to 𝑇 being the gradient of some convex function 𝑢(𝑥).

Theorem 2.1.2 ([135]). Suppose 𝑑`(𝑥) = f (𝑥)𝑑𝑥, 𝑑a(𝑥) = g(𝑥)𝑑𝑥. The squared Wasserstein metric

is given by

𝑊2
2 (`, a) =

∫
𝑋

f (𝑥) |𝑥 − ∇𝑢(𝑥) |2𝑑𝑥 (2.7)

where 𝑢 is the solution of
𝑑𝑒𝑡 (𝐷2𝑢(𝑥)) = f (𝑥)

g(∇𝑢(𝑥)) , 𝑥 ∈ 𝑋

𝑢 is convex .
(2.8)

Benamou-Brenier minimization problem. Wasserstein distance can be defined from another

point of view: the Benamou-Brenier formula. It offers us the flow dynamic approach to solve

Kantorovich’s problem. The core idea behind this is the Benamou-Brenier minimization problem:

inf
(𝜌,𝝎)∈𝑉 (f,g)

1
𝑇

∫
Ω

∫ 𝑇

0
𝜌(𝑡, 𝑥) |𝝎(𝑡, 𝑥) |2𝑑𝑡𝑑𝑥 , (2.9)

20

where 𝑉 (f, g) is the set of all (𝜌,𝝎)0≤𝑡≤𝑇 such that

𝜌 ∈ 𝐶 ([0, 𝑇];𝑤 ∗ −𝑃𝑎𝑐 (R𝑛))

𝝎 ∈ L2(𝑑𝜌(·, 𝑥)𝑑𝑡)

∪0≤𝑡≤𝑇 𝑠𝑢𝑝𝑝(𝜌(𝑡, ·)) is bounded

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝝎) = 0 weakly(in the distributional sense)

𝜌(𝑡 = 0, 𝑥) = f (𝑥)

𝜌(𝑡 = 𝑇, 𝑥) = g(𝑥) .

Here the notation 𝑤 ∗ −𝑃𝑎𝑐 (R𝑛)) stands for the set of absolutely continuous probability measure

𝑃𝑎𝑐 (R𝑛), endowed with the weak-*topology. Then the Benamou-Brenier theorem combines optimal

transport with the Benamou-Brenier minimization problem [135].

Theorem 2.1.3 (Benamou-Brenier formula [135]). Let f, g ∈ 𝑃𝑎𝑐 (R𝑛) be compactly supported.

Then

𝑊2(f, g) = inf
(𝜌,𝑣)∈𝑉 (f,g)

1
𝑇

∫
Ω

∫ 𝑇

0
𝜌(𝑡, 𝑥) |𝝎(𝑡, 𝑥) |2𝑑𝑡𝑑𝑥 . (2.10)

2.2 Fundamental properties

We now summarize some of the fundamental properties of the Wasserstein metrics. We focus

those that are related to our applications in the next two chapters.

2.2.1 Properties of𝑊2

We start with the quadratic Wasserstein metric. It has several properties that make it attractive

as loss function for solving inverse problems. The following theorems are from [148]. Interested

readers can find proofs and more applications in the original paper.

Theorem 2.2.1 (Convexity with respect to shift [148]). Suppose f and g are probability density

functions on 𝑋 of bounded second moment. Let 𝑇 be the optimal map that g(𝑇 (𝐴)) = f (𝐴),∀𝐴 ⊂ 𝑋 .

21

If f𝑠 (𝑥) = f (𝑥 − 𝑠[)∀[∈ R𝑛, then the optimal map from f𝑠 (𝑥) to g(𝑦) is 𝑇𝑠 = 𝑇 (𝑥 − 𝑠[). Moreover,

𝑊2
2 (f𝑠, g) is convex with respect to the shift 𝑠.

In fact,𝑊2
2 (f𝑠, g) = 𝑎 + 𝑏𝑠 + 𝑐𝑠

2, where 𝑎 = 𝑊2
2 (f, g), 𝑏 = 2

∫
𝑋
[· (𝑥 − 𝑇 (𝑥))f (𝑥)𝑑𝑥, 𝑐 = |[|2.

Theorem 2.2.2 (Convexity with respect to dilation [148]). Assume f (𝑥) is a probability density

function and g(𝑦) = f (𝐴−1g) where 𝐴 is a symmetric positive definite matrix. Then𝑊2
2 (f, g/ḡ) is

convex with respect to the eigenvalues _1, · · · , _𝑛 of 𝐴.

In fact𝑊2
2 (f, g/< g >) =

∫
𝑋

f (𝑂𝑧)𝑧𝑇 (𝐼 −Λ)2𝑧𝑑𝑧, where O depends on 𝐴, and Λ is the diagonal

matrix with diagonal element _1, · · · , _𝑛.

The quadratic Wasserstein loss is also convex with respect to partial amplitude change. Consider

the problem where a profile f is derived from g, but with a decreased amplitude in part of the domain.

That is, one supposes that the domain is decomposed into Ω = Ω1 ∪Ω2, with Ω1 ∩Ω2 = ∅. For an

amplitude loss parameter 0 ≤ 𝛽 ≤ 1, suppose that

f𝛽 (𝑥) =

𝛽g(𝑥), 𝑥 ∈ Ω1

g(𝑥), 𝑥 ∈ Ω2

(2.11)

Then following results hold.

Theorem 2.2.3 (Convexity of partial amplitude change [148]). 𝑊2
2 (f𝛽/f̄𝛽, g) is convex function of 𝛽.

Theorem 2.2.4 (Insensitivity with respect to oscillation [148]). For 𝑘 ≥ 1, consider f𝑘 (𝑥) =

1 + 𝑠𝑖𝑛(2𝜋𝑘𝑥) on the line segment [0, 1]. Let 𝑑`𝑘 (𝑥) = f𝑘 (𝑥)𝑑𝑥, and let 𝑑a(𝑥) = 𝑑𝑥 on [0, 1], then

𝑊𝑝 (`𝑘 , a) = O(1
𝑘
),∀𝑝 ≥ 1

Theorem 2.2.5 (Insensitivity to noise in 1-D [148]). Let g be a positive probability density function

on [0, 1] and choose 0 < 𝑐 < min g. Let f𝑁 (𝑥) = g(𝑥) + 𝑟𝑁 (𝑥), which contains 𝑁 piece piecewise

constant noise 𝑟𝑁 drawn from the uniform distribution 𝑈 [−𝑐, 𝑐]. Then E𝑊2
2 (f𝑁/ ¯f𝑁 , g) = O(1

𝑁
),

while E𝐿2(f𝑁/ ¯f𝑁 , g) = O(1)

Let us remark that while the insensitivity result here is presented in the one-dimensional setting,

it holds in higher-dimensional settings as well.

22

2.2.2 Dual formulation of𝑊1

Kantorovich’s formulation of the optimal transport problem is a linear programming problem.

In other words, one can solve Kantorovich’s problem in the discrete case by linear programming.

Suppose 𝑋,𝑌 are discrete spaces. Take ` =
𝑛∑
𝑖=1
`𝑖𝛿𝑥𝑖 = (`𝑖)1≤𝑖≤𝑛, a =

𝑚∑
𝑗=1
a 𝑗𝛿𝑦 𝑗 = (a 𝑗)1≤ 𝑗≤𝑚,

where
𝑛∑
𝑖=1
` = 1,

𝑚∑
𝑗=1
a 𝑗 = 1. Any measure 𝜋(𝑥, 𝑦) can be represented by a nonnegative matrix

𝜋 = (𝜋𝑖 𝑗), where
∑
𝑖

𝜋𝑖 𝑗 = a 𝑗 ,∀ 𝑗 and
∑
𝑗

𝜋𝑖 𝑗 = `𝑖,∀𝑖. And the cost is represented by matrix 𝑐 = (𝑐𝑖 𝑗).

In this case, the Kantorovich problem reduces to the following linear programming problem:

inf
𝜋𝑖 𝑗

∑
𝑖 𝑗

𝜋𝑖 𝑗𝑐𝑖 𝑗

𝑠.𝑡.𝜋𝑖 𝑗 ≥ 0∀𝑖, 𝑗∑
𝑖

𝜋𝑖 𝑗 = a 𝑗 ,∀ 𝑗∑
𝑗

𝜋𝑖 𝑗 = `𝑖,∀𝑖

(2.12)

Linear programming has a perfect dual problem framework. Therefore the Kantorovich problem

also has a duality framework.

Theorem 2.2.6 (Kantorovich Duality [135]). Let 𝑋 and 𝑌 be Polish spaces, let ` ∈ 𝑃(𝑋) and

a ∈ 𝑃(𝑌), and let 𝑐 : 𝑋 × 𝑌 → R+ ∪ {+∞} be a lower semi-continuous cost function. Whenever

𝜋 ∈ 𝑃(𝑋 × 𝑌) and (𝜙, 𝜓) ∈ L1(𝑑`) × L1(𝑑a), we define

𝐼 [𝜋] =
∫
𝑋×𝑌

𝑐(𝑥, 𝑦)𝑑𝜋(𝑥, 𝑦)𝐽 (𝜙, 𝜓) =
∫
𝑋

𝜙𝑑` +
∫
𝑌

𝜓𝑑a (2.13)

Define Π(`, a) to be the set of all Borel probability measures 𝜋 on 𝑋 × 𝑌 such that for all

measureable subsets 𝐴 ⊂ 𝑋 and 𝐵 ⊂ 𝑌 , 𝜋[𝐴 × 𝑌] = `[𝐴], 𝜋[𝑋 × 𝐵] = a[𝐵], and define Φ𝑐 to be

the set of all measurable functions (𝜙, 𝜓) ∈ L1(𝑑`) × L1(𝑑a) satisfying

𝜙(𝑥) + 𝜓(𝑦) ≤ 𝑐(𝑥, 𝑦) (2.14)

23

for 𝑑`-almost all 𝑥 ∈ 𝑋 , 𝑑a-almost all g ∈ 𝑌 .

Then we have

inf
Π(`,a)

𝐼 [𝜋] = sup
Φ𝑐

𝐽 (𝜙, 𝜓) . (2.15)

Moreover, the infimum on the left-hand side of (2.15) is attained. Furthermore, it does not change

the value of the supremum on the right-hand side of (2.15) if one restricts the definition of Φ𝑐 to

those functions (𝜙, 𝜓) which are bounded and continuous.

Basically the Kantorovich duality says that the Kantorovich problem is equivalent to the dual

problem sup
Φ𝑐

𝐽 (𝜙, 𝜓). This provides another way of interpreting the Wasserstein distance.

Dual formulation for𝑊1. When 𝑐(𝑥, 𝑦) is a metric 𝑑 (𝑥, 𝑦), the greatest possible 𝜙(𝑥) given 𝜓(𝑦)

is 𝜓(𝑦) = sup
g
{𝑐(𝑥, 𝑦) − 𝜙(𝑥)} = 𝜙𝑑 (𝑦), therefore sup

𝜙,𝜓∈Φ𝑐

(f, 𝜙) + (g, 𝜓) ≤ sup
𝜙∈𝐿1 (𝑑`)

(f, 𝜙) + (g, 𝜙𝑑) ≤

sup
𝜙∈𝐿1 (𝑑`)

(f, 𝜙𝑑𝑑) + (g, 𝜙𝑑), where 𝜙𝑑𝑑 (𝑥) = sup
g
{𝑑 (𝑥, 𝑦) − 𝜙𝑑 (𝑦)}.

Moreover, suppose 𝜙(𝑥0) +𝜙𝑑 (𝑦0) = 𝑑 (𝑥0, 𝑦0), then ∀𝑥1, 𝜙(𝑥1) +𝜙𝑑 (𝑦0) ≤ 𝑑 (𝑥1, 𝑦0). Therefore

𝜙(𝑥1) − 𝜙(𝑥0) ≤ 𝑑 (𝑥1, 𝑦0) − 𝑑 (𝑥0, 𝑦0) ≤ 𝑑 (𝑥1, 𝑥0) . (2.16)

Similarly −𝑑 (𝑥1, 𝑥0) ≤ 𝜙(𝑥1) − 𝜙(𝑥0), therefore |𝜙(𝑥0) − 𝜙(𝑥1) | ≤ 𝑑 (𝑥0, 𝑥1), thus it is reasonable

to restrict ∥𝜙∥𝐿𝑖𝑝 ≤ 1, where ∥𝜙∥𝐿𝑖𝑝 := sup
𝑥0,𝑥1

|𝜙(𝑥0)−𝜙(𝑥1) |
𝑑 (𝑥0,𝑥1) .

Following the same argument, one has ∥𝜙∥𝐿𝑖𝑝 ≤ 1, which implies that −𝜙𝑑 (𝑥) ≤ inf𝑦{𝑑 (𝑥, 𝑦) −

𝜙𝑑 (𝑦)} ≤ −𝜙𝑑 (𝑥). That is to say 𝜙𝑑𝑑 (𝑥) = −𝜙𝑑 (𝑥). Combining the two conclusions, one has

sup
𝜙,𝜓∈Φ𝑐

(f, 𝜙) + (g, 𝜓) ≤ sup
𝜙∈𝐿1 (𝑑`)

(f, 𝜙𝑑𝑑) + (g, 𝜙𝑑) ≤ sup
∥𝜙∥𝐿𝑖𝑝≤1

(f, 𝜙𝑑𝑑) + (g, 𝜙𝑑) =

sup
∥𝜙∥𝐿𝑖𝑝≤1

(f,−𝜙𝑑) + (g, 𝜙𝑑) ≤ sup
𝜙,𝜓∈Φ𝑐

(f, 𝜙) + (g, 𝜓) .
(2.17)

Therefore, sup
∥𝜙∥𝐿𝑖𝑝≤1

(f,−𝜙𝑑) + (g, 𝜙𝑑) = sup
𝜙,𝜓∈Φ𝑐

(f, 𝜙) + (g, 𝜓) when 𝑐(𝑥, 𝑦) is a metric. Further-

more, one can replace the optimization variable with 𝜙𝑑 , which can simplify the optimization even

24

further that

𝑊1(f, g) = sup
𝜙:∥𝜙∥𝐿𝑖𝑝≤1

(f, 𝜙) − (g, 𝜙) . (2.18)

This is the dual norm of f − g of the Lipschitz space. Comparing this formulation to the general

duality framework, one knows in prior that 𝜓 = −𝜙 and one can restrain ∥𝜙∥𝐿𝑖𝑝 ≤ 1. This is

summarized in the following result.

Theorem 2.2.7 (Kantorovich-Rubinstein theorem [135]). when the cost of the optimal transportation

for the cost 𝑐(𝑥, 𝑦) = 𝑑 (𝑥, 𝑦), then

𝑊1(f, g) = sup
∥𝜙∥𝐿𝑖𝑝≤1

(f − g, 𝜙) (2.19)

where ∥𝜙∥𝐿𝑖𝑝 = sup
𝑥,𝑦

| 𝜙(𝑥)−𝜙(𝑦)
𝑥−𝑦 |

Notice that

𝑀 : {𝜙 : ∥𝜙∥𝐿𝑖𝑝 ≤ 1} → {𝜙 : ∥𝜙∥𝐿𝑖𝑝 ≤ 𝐶}, 𝑀 (𝜙) = 𝐶𝜙 (2.20)

is a bijection. This gives us

sup
∥𝜙∥𝐿𝑖𝑝≤𝐶

(f − g, 𝜙)

= sup
∥𝜙∥𝐿𝑖𝑝≤1

(f − g, 𝐶𝜙)

= 𝐶 sup
∥𝜙∥𝐿𝑖𝑝≤1

(f − g, 𝜙)

= 𝐶𝑊1(f, g) .

(2.21)

That implies that changing the domain of 𝜙 to Lipschitz-𝐶 function will only result in a rescaling

factor 𝐶, and, therefore will not change the optimization problem (and certainly not change the

optimal 𝜙). Fortunately, Lipschitz-𝐶 function is enough to deal with most functions one encounters

in real applications.

Another useful way to rewrite the Kantorovich-Rubinstein theorem in R𝑛, when the distance 𝑑

is the standard Euclidean distance is converting ∥𝜙∥𝐿𝑖𝑝 ≤ 1 to ∥∇𝜙∥𝐿∞ ≤ 1. Suppose 𝜙 ∈ 𝐶1, then

25

∥𝜙∥𝐿𝑖𝑝 ≤ 1 is equivalent to ∥∇𝜙∥ ≤ 1. Then the Lagrangian functional is

sup
𝜙

inf
_1≤0,_2≥0

∫
(f − g)𝜙 + _1(∇𝜙 − 1) + _2(∇𝜙 + 1) . (2.22)

The first-order optimality condition with respect to 𝜙 is f − g−∇_1 −∇_2 = 0 where _1 ≤ 0, _2 ≥ 0.

Let _ = _1 + _2, then _ is a free variable, and _1_2 = 0. Therefore one can think _1 = _−, _2 = _+.

After the substitution the optimality condition becomes ∇_ = f − g.

The Lagrangian at the first-order optimality point is

∫
_2 − _1 =

∫
|_ | = ∥_∥1 . (2.23)

Therefore the dual problem becomes

𝑊1(f, g) = inf ∥_∥1

𝑠.𝑡.∇ · _ = f − g .
(2.24)

This shows that𝑊1(f, g) only depends on the difference f − g. By the complementary condition

of Lagrangian multiplier, one has

_1(∇𝜙 − 1) = 0,

_2(∇𝜙 + 1) = 0 ,
(2.25)

which means that
∇𝜙 = 1 𝑜𝑛 _ > 0

∇𝜙 = −1 𝑜𝑛 _ < 0 .
(2.26)

Therefore the optimal 𝜙 is zig-zag function on _ ≠ 0. 𝜙 only changes direction when _ changes

sign, which means 𝜙 is approximately one integral smoother than _. Since _ is one time smoother

than f − g, we conclude that 𝜙 is also twice smoother than f − g.

This formulation is also called the dual of the dual formulation [135]. It also defines a metric.

26

Theorem 2.2.8 ([135]). 𝑊1 given in (2.24) defines a metric on space of probability density functions.

Proof. Obviously𝑊1(f, g) ≥ 0,𝑊1(f, g) = 0↔ f = g and it is clear from definition that𝑊1(f, g) =

𝑊1(g, f). It suffices to prove the triangle inequality.

Suppose _0, _1 are optimal solution for (f, g), (g, h) respectively. Then f − h = f − g + g − h =

∇ · _0 + _1, namely, _0 + _1 is a feasible solution for (f, h). It follows that

𝑊1(f, ℎ) ≤ ∥_0 + _1∥𝐿1 ≤ ∥_0∥𝐿1 + ∥_1∥𝐿1 = 𝑊1(f, g) +𝑊1(g, h) . (2.27)

The proof is complete. □

Intuitively, since ∇ · _ = f − g, we see that approximately _ ∼
∫

f − g, i.e., _ is one order of

integration smoother than f − g. 𝑊1 minimizes 𝐿1 norm of _. Therefore solving the inverse problem

via𝑊1 dual of the dual formulation will give a smoother solution than 𝐿2 minimization.

Let us recall that theH−1 norm of f − g is defined as

∥f − g∥H−1 (Ω) = inf{∥∇𝑃∥L2 (Ω) : −∇ · ∇𝑃 = f − g, 𝑃 |𝜕Ω = 0} . (2.28)

If we think of ∇𝑃 as _, we see the great similarity between loss functions𝑊1(f, g) and ∥f − g∥H−1 ,

assuming f = f (\), in terms of their smoothing property.

A slight modification of theH−1 loss is directly connected to the𝑊2 loss.

2.3 Linearization of the𝑊2 distance

It is well-known that the linearization of the 𝑊2 loss leads to a weightedH−1 loss, assuming

that 𝑓 and 𝑔 have the same total mass. The rigorous derivation is documented in [135]. Here we

provide a brief explanation of this connection.

Recall from Theorem 2.1.2 that the Monge-Ampere equation for the optimal transportation plan

reads:

𝑑𝑒𝑡 (𝐷2𝑢(𝑥)) = f (𝑥)
g(∇𝑢) . (2.29)

27

Assume that f is strictly positive, and g is very close to f. This means that ∇𝑢 is very close to the

identity. More precisely,

𝑢(𝑥) = |𝑥 |
2

2
+ 𝜖𝜓 + O(𝜖2), g = (1 + 𝜖ℎ + O(𝜖2))f . (2.30)

Plugging this assumption into (2.29) and keeping only first-order terms in 𝜖 , one has

−Δ𝜓 + ∇(−𝑙𝑜𝑔 𝑓) · ∇𝜓 = ℎ . (2.31)

If we define 𝐿 = −Δ + ∇(−𝑙𝑜𝑔 𝑓) · ∇, then the linearized Monge-Ampere equation is 𝐿𝜓 = ℎ.

Here is a useful and easily checked lemma about the operator 𝐿.

Lemma 2.3.1 ([135]). The operator 𝐿 = −Δ + ∇(−𝑙𝑜𝑔 𝑓) · ∇ satisfies the following integration by

parts formula, ∀ 𝑓1, 𝑓2 ∈ 𝐻2
0 ,

∫
𝑋

𝐿 𝑓1 𝑓2𝑑` =

∫
𝑋

𝑓1(𝐿 𝑓2)𝑑` =

∫
𝑋

∇ 𝑓1 · ∇ 𝑓2𝑑` (2.32)

One can introduce the weighted Sobolev Space norms by analogy with normal Sobolev space

concept,

∥𝑢∥2L2 (𝑑`) =
∫
𝑋
𝑢2𝑑`

∥𝑢∥2¤H1 (𝑑`) =
∫
𝑋
|∇𝑢 |2𝑑` =

∫
𝑋
𝑢𝐿𝑢𝑑`

∥𝑢∥ ¤H−1 (𝑑`) = sup{
∫
𝑋
𝑢𝑣𝑑` : ∥𝑣∥ ¤H1 (𝑑`) = 1}

(2.33)

Then it is simple to check that the dual norm

∥𝑢∥2¤H−1 (𝑑`) =

∫
𝑋

𝑢(𝐿−1𝑢)𝑑` . (2.34)

If 𝑢 is the solution of (2.29), then the optimal transportation plan is 𝑥 −∇𝑢 = 𝜖𝜓 +O(𝜖2). Therefore

28

we have

𝑊2
2 (`, a) = 𝜖2

∫
𝑋
|∇𝜓 |2𝑑` + O(𝜖2)

≈ 𝜖2
∫
𝑋
𝜓𝐿𝜓𝑑`

= 𝜖2
∫
𝑋
ℎ(𝐿−1ℎ)𝑑`

= ∥𝜖ℎ∥2¤H−1 (𝑑`) ,

(2.35)

where 𝑑` = f (𝑥)𝑑𝑥, 𝑑a = g(𝑥)𝑑𝑥. Therefore, when ` and a are close, the 𝑊2 norm is weighted

H−1, and the weight is `.

The above calculation can be summarized as follows.

Theorem 2.3.2 (WeightedH−1 Norm is equivalent to𝑊2 Asymptotically [107]).

𝑊2(`, ` + 𝑑`) = ∥𝑑`∥ ¤H−1 (`) + 𝑜(𝑑`) .

𝑊2 based on dual formulation. Using the duality framework of the original Kantorovich’s

problem of quadratic cost, one can show that 𝑊2 is equivalent to the following unconstrained

optimization problem

𝑊2
2 (`, a) = 𝑀2 − inf

𝜙∈𝐿1 (𝑑`)
𝜙 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥

∫
R𝑛
𝜙𝑑` +

∫
R𝑛
𝜙∗𝑑a (2.36)

where

𝑀2 =

∫
R𝑛

|𝑥 |2
2
𝑑` +

∫
R𝑛

|𝑦 |2
2
𝑑a (2.37)

is the second moments of f and g. Equivalently, one has

𝑊2
2 (`, a) = 𝑀2 − inf

(𝜙,𝜓)∈Φ

∫
R𝑛
𝜙𝑑` +

∫
R𝑛
𝜓𝑑a , (2.38)

where

Φ := {(𝜙, 𝜓) ∈ 𝐿1(𝑑`) × 𝐿1(𝑑`); (𝑥, 𝑦) ≤ 𝜙(𝑥) + 𝜓(𝑦)} . (2.39)

29

The systems (2.36) and (2.38) are simpler to work with than the Benamou-Brenier’s formula since

one only needs to store 𝜙(𝑥), 𝜓(𝑦) (instead of 𝜌(𝑥, 𝑡), 𝑞(𝑥, 𝑡)) in these formulations.

By (2.36), one can rewrite𝑊2
2 (f, g) = 𝑀2 − inf

𝜙 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥
(f, 𝜙) + (g, 𝜙∗). This formulation gives a

lower bound for𝑊2
2 by assigning 𝜙. For example, taking 𝜙(𝑥) = |𝑥 |

2

2 , one can find that𝑊2
2 (f, g) ≥

𝑀2 −
∫
R𝑛
|𝑥 |2
2 𝑑` +

∫
R𝑛
|𝑦 |2
2 𝑑a = 0. While the original formulation

𝑊2
2 (f, g) = inf

𝜋(𝑥,𝑦)∈Π(`,a)

∫
R2𝑛

|𝑥 − 𝑦 |2
2

𝑑𝜋(𝑥, 𝑦) (2.40)

gives an upper bound of𝑊2
2 . One can take special 𝜙 to make general inequalities for𝑊2.

Let us define 𝐽 (f, g, 𝜙) = (f, 𝜙) + (g, 𝜙∗), where 𝜙 is convex. For fixed f, g, one can find 𝛿𝐽
𝛿𝜙

.

(g, 𝜙∗) =
∫
R𝑛

g(𝑦)𝜙∗(𝑦)𝑑𝑦

=
∫
R𝑛,𝑥=arg max 𝑥𝑦−𝜙(𝑥) g(𝑦) (𝑥𝑦 − 𝜙(𝑥))𝑑𝑦 .

(2.41)

Therefore, we have

𝛿𝐽 = (f, 𝛿𝜙) +
∫
R𝑛,𝑥=arg max 𝑥𝑦−𝜙(𝑥) g(𝑦) (−𝛿𝜙(𝑥))𝑑𝑦

= (f, 𝛿𝜙) +
∫
R𝑛,g=𝜕𝜙(𝑥) g(𝑦) (−𝛿𝜙(∇𝜙

∗(𝑦)))𝑑𝑦

= (f, 𝛿𝜙) −
∫
R𝑛

g(∇𝜙(𝑧))𝛿𝜙(∇𝜙∗(∇𝜙(𝑧))) det(∇2𝜙(𝑧))𝑑𝑧

=
∫
R𝑛

f (𝑥)𝛿𝜙(𝑥)𝑑𝑥 −
∫
R𝑛

g(∇𝜙(𝑥))𝛿𝜙(𝑥) det(∇2𝜙(𝑥))𝑑𝑥

=
∫
R𝑛
(f (𝑥) − g(∇𝜙(𝑥)) det(∇2𝜙(𝑥)))𝛿𝜙(𝑥)𝑑𝑥 .

(2.42)

Therefore 𝛿𝐽
𝛿𝜙

= f (𝑥) − g(∇𝜙(𝑥)) det(∇2𝜙(𝑥)). Thus when 𝜙 is the optimal solution, one should

have f (𝑥) = g(∇𝜙(𝑥)) det(∇2𝜙(𝑥)), which is exactly the Monge-Ampere equation.

𝛿𝑊2
2 (f,g)
𝛿f in n-dimensional space. This dual framework gives a universal variational form of𝑊2

2 in

n-dimensional space(𝑛 ≥ 1) [23]. Suppose g is fixed, one would like to find how𝑊2
2 changes with

30

respect to f, i.e.
𝛿𝑊2

2 (f,g)
𝛿f . One can take the variational form of𝑊2

2 :

𝛿𝑊2
2 (f, g) =

∫
R𝑛
|𝑥 |2
2 𝛿f (𝑥)𝑑𝑥 −

∫
R𝑛
𝜙(𝑥)𝛿f (𝑥)𝑑𝑥 − (

∫
R𝑛

f (𝑥)𝛿𝜙(𝑥)𝑑𝑥 +
∫
R𝑛

g(𝑦)𝛿𝜙∗(𝑦)𝑑𝑦) ,

(2.43)

where 𝜙(𝑥) = arg inf
𝜙 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥

(f, 𝜙) + (g, 𝜙∗), which implies (f, 𝛿𝜙) + (g, 𝛿𝜙∗) = 0, since 𝜙 is the

global minimizer. Then

𝛿𝑊2
2 (f, g) =

∫
R𝑛

|𝑥 |2
2
𝛿f (𝑥)𝑑𝑥 −

∫
R𝑛
𝜙(𝑥)𝛿f (𝑥)𝑑𝑥 , (2.44)

which is equivalent to
𝛿𝑊2

2 (f, g)
𝛿f

=
|𝑥 |2
2
− 𝜙 (2.45)

for any dimensional space(not just one dimensional space we discussed before).

We can actually check that this formula reduces to the one obtained by the previous method in

one dimension where

𝛿𝑊2
2 (f,g)
𝛿f =

∫ 1
𝑦
(𝑇 (𝑥) − 𝑥)𝑑𝑥

=
∫ 1
𝑦
𝜙′(𝑥) − 𝑥𝑑𝑥

=
|𝑦 |2
2 − 𝜙(𝑦) .

(2.46)

Thus the gradient descent of 𝑊2 distance boils down to finding 𝜙, 𝜙 is the solution of the

Monge-Ampere equation

det(∇2𝜙(𝑥)) = f (𝑥)
g(∇𝜙(𝑥)) , (2.47)

or equivalently,

𝜙(𝑥) = arg inf
𝜙 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥

(f, 𝜙) + (g, 𝜙∗) , (2.48)

where 𝜙 is the optimal solution of the problem.

31

Equation for the derivative. If we denote by 𝐹𝑊2
2
=

𝛿𝑊2
2 (f,g)
𝛿f , then 𝐹𝑊2

2
satisfies

N𝐹𝑊2
2
=

f (𝑥)
g(∇𝜙(𝑥)) − 1 , (2.49)

where N f = det(∇2f). The structure of this equation is similar to that of the equation for the

derivative 𝐹H−1 ofH−1 estimate:

L𝐹H−1 = f − g , (2.50)

where 𝐿f = Δf. Therefore, the main difference of 𝑊2
2 and H−1 is that the operator changes

from Laplacian operator 𝐿 = 𝑡𝑟 (∇2) to the det(∇2) operator, and𝑊2 also uses relative difference

f (𝑥)
g(∇𝜙(𝑥)) − 1 between two signals.

32

Chapter 3: Loss Functions Based on Wasserstin Distances

Wasserstein metrics based on optimal transport theory have been proposed as another type of

mismatch measures in solving computational inverse problems; see for instance [19, 36, 37, 101,

100, 146, 147] and references therein for applications in seismic imaging, [121, 79] and references

therein for mathematical imaging, and [125, 73, 58, 126] for computational inversion in machine

learning.

Numerical experiments in the aforementioned references suggest that the Wasserstein metric

has interesting properties that are attractive options for loss functions when considering solving

inverse problems. Various works have been done on optimization landscape under Wasserstein

metrics [133].

In this chapter, we study in detail the performance of such loss functions based on the Wasserstein

metrics.

3.1 Loss function based on𝑊2 distance

Let us recall that we are interested in solving the inverse problem (1.1) by minimizing the

mismatch between the model prediction 𝑓 (\) and the data 𝑔. That is, to minimize the functional

Φ(\) :=
1
2
𝔡2(f (\), g) + 𝛾

2
R(\) (3.1)

where 𝔡2(𝑓 , 𝑔) can be any of the loss functions we introduced in Chapter 1 or the Wasserstein

distances we have introduced in Chapter 2. The functional R(\) represents the explicit regularization

that imposes additional constraints on the known to be recovered, and 𝛾 is the parameter that

controls the strength of the regularization term. We assume that the functional R is twice Fréchet

differentiable.

33

When 𝑓 (x) ≥ 0 and 𝑔(x) ≥ 0 are sufficiently regular and have the same total mass in the sense

that
∫
Ω
𝑓 (x)𝑑x =

∫
Ω
𝑔(x)𝑑x, the quadratic Wasserstein distance between 𝑓 and 𝑔 are given by,

following the fluid dynamics formulation of Benamou and Brenier [14],

𝑊2
2 (𝑓 , 𝑔) = inf

𝜌,𝝎

1
𝑇

∫ 𝑇

0

∫
Ω

1
2
𝜌 |𝝎 |2𝑑x𝑑𝑡 (3.2)

where 𝑇 > 0 is given, 𝜌(𝑡, x) and 𝝎(𝑡, x) satisfy, in the weak sense, the following over-determined

transport equation:

𝜕𝑡𝜌 + ∇ · 𝜌𝝎 = 0, in (0, 𝑇] ×Ω

𝜌(0, x) = 𝑓 (x), in Ω

𝜌(𝑇, x) = 𝑔(x), in Ω

n · 𝝎 = 0, on (0, 𝑇] × 𝜕Ω .

(3.3)

When 𝑓 (x) = 𝑓 (𝜎(x)),𝑊2
2 (𝑓 , 𝑔) can be viewed as a functional of 𝜎. This functional is minimized

when (1.1) is satisfied. Numerical experiments in [19, 36, 37, 101, 100, 146, 147, 121, 79]

suggest that the quadratic Wasserstein metric𝑊2 has interesting properties that are attractive when

considering solving inverse problems.

The objective function for the minimization problem based on𝑊2 loss, with additional regular-

ization, now takes the form

Φ(\) :=
1
2
𝑊2

2 (f (\), g) +
𝛾

2
R(\) . (3.4)

Rationale for constrained optimization approach. The functional Φ(\) in (3.1) can be min-

imized using an iterative scheme that starts with an initial guess \0 and keeps updating it until

convergence. At any iteration 𝑘 before convergence, we need to evaluate the distance between f (\𝑘)

and g, that is 𝔡(f (\𝑘), g), in order to evaluate the function value Φ(\𝑘) at the current step. This

could be problematic when the standard quadratic Wasserstein metric 𝑊2 is used here, because

𝑊2(f (\𝑘), g) may not be defined when \𝑘 is not the solution of the inverse problem. In other words,

during the iterations, f (\𝑘) and g might not have the same total mass. Therefore, Φ(\𝑘) might not

34

be finite if𝑊2 is the metric used in (3.1). This is why in most of the previous studies on using𝑊2

to solve inverse problems, f (\𝑘) has to be re-normalized at each iteration to have the same total

mass as g. This re-normalization process makes the analysis of the final inversion results very

complicated.

The drawback of the above approach motivates us to use a constrained optimization approach to

solve the minimization problem that avoids accurate evaluations of the metric 𝔡(f (\𝑘), g) during

the iterations. We will formulate in Section 3.3 a constrained optimization approach to solve the

minimization problem.

3.2 Wasserstein distances with mass unbalances

The Wasserstein distance𝑊𝑝 (f, g) from traditional optimal transport theory is only finite when

two non-negative densities f and g have the same total mass on a domain Ω ⊂ R𝑛. This is an

inconvenience for some applications where such a requirement is not satisfied. The distance has

been generalized in several ways to deal with the situation that f and g do not have the same

total mass. The optimal transport theory associated with the generalized metrics is often called

unbalanced optimal transport. Here we recall several important generalizations for the purpose of

comparison in our numerical investigation.

The first generalization is the Wasserstein-Fisher-Rao metric whose fluid dynamics formulation

can be written as [108] [75][92, 86] [28, 27]:

𝑊2
2,WFR(f, g) = inf

𝜌,𝝎,Z

1
𝑇

∫ 𝑇

0

∫
Ω

(1
2
𝜌 |𝝎 |2 + 1

2
𝜌Z2

)
𝑑x𝑑𝑡 (3.5)

where
𝜕𝑡𝜌 + ∇ · 𝜌𝝎 = 𝜌Z (𝑡, x), in (0, 𝑇] ×Ω

𝜌(0, x) = f (x), in Ω

𝜌(𝑇, x) = g(x), in Ω

n · 𝝎 = 0, on (0, 𝑇] × 𝜕Ω .

(3.6)

35

The introduction of the additional dynamic source function Z , which depends on both 𝑡 and x

variables, is used to absorb the mass difference between f and g such that 𝑊2,WFR is finite even

when f and g have different total mass.

The second generalization we will study is proposed in [53] as a variant of the Wasserstein-

Fisher-Rao metric. Following [53], we call this metric𝑊2,UOT. Its fluid dynamics formulation can

be written as:

𝑊2
2,UOT(f, g) = inf

𝜌,𝝎,Z

1
𝑇

∫ 𝑇

0

∫
Ω

1
2
𝜌 |𝝎 |2𝑑x𝑑𝑡 +

∫ 𝑇

0

|Ω|
2𝛼

Z2(𝑡)𝑑𝑡 (3.7)

where 𝛼 is a given parameter, and (𝜌,𝝎) solves the following transport problem

𝜕𝑡𝜌 + ∇ · 𝜌𝝎 = Z (𝑡), in (0, 𝑇] ×Ω

𝜌(0, x) = f (x), in Ω

𝜌(𝑇, x) = g(x), in Ω

n · 𝝎 = 0, on (0, 𝑇] × 𝜕Ω .

(3.8)

The main difference between this formulation from the fluid dynamics formulation of 𝑊2,WFR is

that the dynamic source term Z in the transport equation (3.8) depends only on the time variable 𝑡,

not the x variable.

The third generalization is a slightly different version of𝑊2,WFR, again, following [53], we call

it generalized unnormalized optimal transport𝑊2,GUOT

𝑊2
2,GUOT(f, g) = inf

𝜌,𝝎,Z

1
𝑇

∫ 𝑇

0

∫
Ω

1
2
𝜌 |𝝎 |2𝑑x𝑑𝑡 +

∫ 𝑇

0

∫
Ω

1
2𝛼
Z2(𝑡, x)𝑑x𝑑𝑡 (3.9)

36

where 𝛼 is a given parameter, and (𝜌,𝝎) solves the following transport problem

𝜕𝑡𝜌 + ∇ · 𝜌𝝎 = Z (𝑡, 𝑥), in (0, 𝑇] ×Ω

𝜌(0, x) = f (x), in Ω

𝜌(𝑇, x) = g(x), in Ω

n · 𝝎 = 0, on (0, 𝑇] × 𝜕Ω .

(3.10)

The difference from 𝑊2,UOT is that the dynamic source term Z (𝑡, x) in the transport equa-

tion (3.10) depends on both x, 𝑡.

The fourth generalization we consider is the mixed relaxed quadratic Wasserstein metric intro-

duced by Benamou in [13]. The main idea here is to use a penalty term in the energy functional to

soften the mass conservation requirement of the original balanced optimal transport. The dynamic

formulation in this case is:

𝑊2
2,Mixed(f, g) = inf

𝜌,𝝎

1
𝑇

∫ 𝑇

0

∫
Ω

1
2
𝜌 |𝝎 |2𝑑x𝑑𝑡 + 𝛽

2

∫
Ω

|𝜌(𝑇, x) − g(x) |2𝑑x (3.11)

where 𝛽 is a given parameter, and

𝜕𝑡𝜌 + ∇ · 𝜌𝝎 = 0, in (0, 𝑇] ×Ω

𝜌(0, x) = f (x), in Ω

n · 𝝎 = 0, on (0, 𝑇] × 𝜕Ω .

(3.12)

The parameter 𝛽 allows us to decide how strong we want to enforce the balance between f and g.

As 𝛽 goes to +∞, the metric returns to the original balanced𝑊2 metric.

The fifth generalization we consider is a slightly generalized version of𝑊1 given by[77]. They

proved that 𝑊1 could also be generalized to handle different total mass. The 𝑊1 unnormalized

Wasserstein metric is given by

37

𝑈𝑊1(f (x), g(x)) = inf
𝜌(x),𝝎(x),Z (x)

∫
Ω
𝜌(x) |𝝎(x) |𝑑x + 𝛽

∫
Ω
|Z (x) |𝑑x (3.13)

𝑠.𝑡.∇ · 𝜌(x)𝝎(x) − Z (x) = f (x) − g(x), 𝑥 ∈ Ω (3.14)

Readers can refer to [77] for more comprehensive study of unnormalized Wasserstein metric.

It is worth noting that 𝑈𝑊1 requires much less computational resources since it preserves the

dimension of the original problems, while𝑊2 type of Wassersetin metrics usually requires one more

dimension 𝑡 to tackle the problem.

3.3 Constrained optimization algorithm

We reformulate the computational inversion problem as a PDE-constrained minimization prob-

lem. We now describe the procedure in the case where the metric 𝔡 is the𝑊2,WFR metric. We solve:

min
𝜌,𝝎,Z ,\

Φ𝑊2,WFR (𝜌,𝝎, Z , \) :=
1
𝑇

∫ 𝑇

0

∫
Ω

1
2
(
𝜌 |𝝎 |2 + 𝜌Z2)𝑑x𝑑𝑡 + 𝛾

2
R(\)

subject to

𝜕𝑡𝜌 + ∇ · 𝜌𝝎 = 𝜌Z (𝑡, x), in (0, 𝑇] ×Ω

𝜌(0, x) = f (\ (x)), in Ω

𝜌(𝑇, x) = g(x), in Ω

n · 𝝎 = 0, on (0, 𝑇] × 𝜕Ω .

(3.15)

Formulations for the other metrics are done in exactly the same manner. For instance, if we remove

the Z variable, we would have the formulation for the case of the standard𝑊2 metric. Notice that

the only free parameter is \ and we need to evaluate the forward operator f (\) in each iteration.

There has been tremendous progress in the past two decades on computational methods for

PDE-constrained optimization problems such as (3.15); see for instance [5, 80] and references

38

therein for some recent overviews. This minimization problem is equivalent to the following

saddle-point problem:

inf
\,𝜌,𝝎,Z

sup
_

L(𝜌,𝝎, Z , \, _) (3.16)

where the Lagrangian functional L is defined as

L(𝜌,𝝎, Z , \, _) = Φ𝑊2,WFR (𝜌,𝝎, Z , \) +
∫ 𝑇

0

∫
Ω

_(𝜕𝑡𝜌 + ∇ · 𝜌𝝎 − 𝜌Z)𝑑x𝑑𝑡

+
∫ 𝑇

0

∫
𝜕Ω

_n · 𝝎𝑑𝑆(x)𝑑𝑡 +
∫
Ω

_(0, 𝑥) (𝜌(0, x) − f (\))𝑑x +
∫
Ω

_(𝑇, 𝑥) (𝜌(𝑇, x) − g)𝑑x (3.17)

with _ being the Lagrange multiplier for the constraints described by the transport equation and its

initial, final and boundary conditions. Note that the implicit constraint 𝜌 ≥ 0 is not incorporated in

this Lagrangian but will be imposed later in the numerical implementation.

The optimality conditions for the saddle point problem consist of three components: the forward

transport problem (3.6) resulted from the variation of L with respect to _, the adjoint transport

problem resulted from the variation of L with respect to (𝜌,𝝎):

𝜕𝑡_ + 𝝎 · ∇_ + Z_ =
1

2𝑇
(|𝝎 |2 + |Z |2), in (0, 𝑇] ×Ω

𝝎 = 𝑇∇_, in (0, 𝑇] ×Ω

Z = 𝑇_, in (0, 𝑇] ×Ω

_(𝑇, x) = 0, in Ω

_(𝑡, x) = 0, on (0, 𝑇] × 𝜕Ω

(3.18)

and the control problem resulted from the variation of L with respect to \:

𝛾

2
R′∗(\) [𝜒Ω] + f′∗(\) [_(0, x)] = 0 (3.19)

where f′∗(\) [_(0, x)] is understood as the adjoint of the Fréchet derivative of f at \ in the direction

39

_(0, x).

As a side note, we observe that we can write down a closed equation for the adjoint variable _

by eliminating the variables 𝝎 and Z in the equation. This leads to the following Hamilton-Jacobi

equation

𝜕𝑡_ +
1

2𝑇
|∇_ |2 + 1

2𝑇
_2 = 0, in (0, 𝑇] ×Ω

_(𝑇, x) = 0, in Ω

_(𝑡, x) = 0, on (0, 𝑇] × 𝜕Ω .

(3.20)

We solve the nonlinear system of first-order optimality conditions (3.6), (3.18) and (3.19) with

a variant of Newton’s method. To present the method, we write the system abstractly into the form:

F (𝜌,𝝎, Z , \, _) = 0. (3.21)

We use F ` to denote the ` (∈ {𝜌,𝝎, Z , \, _}) component, including the equation for ` as well as

the corresponding initial, final and boundary conditions, of F. Starting with an initial guess of the

solution (𝜌0,𝝎0, Z0, \0, _0), Newton’s method is characterized by the following iteration

(𝜌𝑘+1,𝝎𝑘+1, Z𝑘+1, \𝑘+1, _𝑘+1) = (𝜌𝑘 ,𝝎𝑘 , Z𝑘 , \𝑘 , _𝑘) + ℓ𝑘 (𝛿𝜌, 𝛿𝝎, 𝛿Z , 𝛿\, 𝛿_) (3.22)

where(𝛿𝜌, 𝛿𝝎, 𝛿Z , 𝛿\, 𝛿_) is the update direction and ℓ𝑘 is the step length in the update direction

that will be determined with a line search process. The update direction is obtained by solving the

system: ©«

F 𝜌
𝜌 F 𝜌

𝝎 F 𝜌
𝝎 F 𝜌

\
0

0 F 𝝎
𝝎 0 0 F 𝝎

_

0 0 F Z
Z

0 F Z
_

0 0 0 F \
\
F \
_

0 F _𝝎 F _
Z

0 F _
_

ª®®®®®®®®®®®®¬

©«

𝛿𝜌

𝛿𝝎

𝛿Z

𝛿\

𝛿_

ª®®®®®®®®®®®®¬
= −

©«

F 𝜌

F 𝝎

F Z

F \

F _

ª®®®®®®®®®®®®¬
(3.23)

where we used the notation F `
a (`, a ∈ {𝜌,𝝎, Z , \, _}) to denote the Fréchet derivative of the F `

component of F with respect to the variable a. The operators F `
a as well as the functionals F `

40

are all evaluated at the current iteration (𝜌𝑘 ,𝝎𝑘 , Z𝑘 , \𝑘 , _𝑘). The exact forms of all the operators

involved are summarized in the Appendix A.

3.4 Insights from linearization

The quadratic Wasserstein metrics we used in this chapter are all nonlinear metrics. This makes

them not only computationally expensive to evaluate but also analytically challenging to understand.

When using these metrics to solve inverse problems, we notice that the model prediction f (\) and

the corresponding datum g are identical (or very close) to each other at the true solution \. We now

try to understand the behavior of the metrics in this situation following an informal linearization

procedure.

3.4.1 Linearization of the Wasserstein metrics

We refer interested readers to [136, 119] for a rigorous treatment of the linearization of the𝑊2

metric, and [59, 98, 57] for applications of such linearization in the analysis of inversion results

under the𝑊2 metric. Here we extend the analysis of [78] to the generalized metrics𝑊2,WFR,𝑊2,UOT

and𝑊2,Mixed.

Linearization of 𝑊2. We first determine the background state (that is, the case when f = g) of

the transport equations. The 𝜌 and 𝝎 corresponding to this case is 𝜌(𝑡, x) = f (which implies that

𝜕𝑡𝜌(x, 𝑡) = 0) and 𝝎 = 0. When g − f is small, we have that 𝜌 = f + 𝛿𝜌 and 𝝎 = 𝛿𝝎 with 𝛿𝜌 and

𝛿𝝎 small. The transport equation satisfied by 𝛿𝜌 and 𝛿𝝎, to the first order, is:

𝜕𝑡𝛿𝜌 + ∇ · f𝛿𝝎 = 0, in (0, 𝑇] ×Ω

𝛿𝜌(0, x) = 0, in Ω

𝛿𝜌(𝑇, x) = g(x) − f (x), in Ω

n · 𝛿𝝎 = 0, on (0, 𝑇] × 𝜕Ω .

(3.24)

41

The square of the metric is then

𝑊2
2 (f, g) = inf

𝛿𝜌,𝛿𝝎

1
𝑇

∫ 𝑇

0

∫
Ω

1
2
|𝛿𝝎 |2f (x)𝑑x𝑑𝑡 + 𝐻.𝑂.𝑇 (3.25)

where 𝐻.𝑂.𝑇 stands for higher order terms.

The optimality condition for the system (3.24) and (3.25) gives that 𝛿𝝎(𝑡, x) = ∇𝜙(x) with 𝜙

the solution to the elliptic equation:

−∇ · f∇𝜙 =
1
𝑇
(g − f), in Ω, n · ∇𝜙 = 0, on 𝜕Ω. (3.26)

This, in turn, means that (3.25) now becomes

𝑊2
2 (f, g) =

1
2

∫
Ω

|∇𝜙 |2f (x)𝑑x + 𝐻.𝑂.𝑇 . (3.27)

This simple calculation shows that when g − f is sufficiently small, 𝑊2(f, g) ≈ 1
𝑇
∥f − g∥ ¤H−1

(f𝑑x) (Ω)
.

This is the well-known asymptotic equivalence between𝑊2 and the ¤H−1
(f𝑑x); see, for instance, [136]

for more technical details on this equivalence.

Linearization of𝑊2,WFR. We can linearize𝑊2,WFR in a similar way. The background solution to

the transport equation in the case of f = g is (𝜌,𝝎, Z) = (f, 0, 0) for the𝑊2,WFR metric. When g is

sufficiently close to f, we have that 𝜌 = f + 𝛿𝜌, 𝝎 = 𝛿𝝎 and Z = 𝛿Z , (𝛿𝜌, 𝛿𝝎, 𝛿Z) being sufficiently

small, in an appropriate sense. The transport equation satisfied by (𝛿𝜌, 𝛿𝝎, 𝛿Z), to the first order, is

then
𝜕𝑡𝛿𝜌 + ∇ · f𝛿𝝎 = f𝛿Z, in (0, 𝑇] ×Ω

𝛿𝜌(0, x) = 0, in Ω

𝛿𝜌(𝑇, x) = g(x) − f (x), in Ω

n · 𝛿𝝎 = 0, on (0, 𝑇] × 𝜕Ω .

(3.28)

42

The square of the distance is given by

𝑊2
2,WFR(f, g) = inf

𝛿𝜌,𝛿𝝎

1
𝑇

∫ 𝑇

0

∫
Ω

1
2

(
|𝛿𝝎 |2 + (𝛿Z)2

)
f (x)𝑑x𝑑𝑡 + 𝐻.𝑂.𝑇 . (3.29)

We can then check that the optimality conditions for the system (3.28) and (3.29) imply that

𝛿𝝎 = ∇𝜙(x) and 𝛿Z = 𝜙 with 𝜙 the solution to the following PDE:

−∇ · f∇𝜙 + f𝜙 =
1
𝑇
(g − f), in Ω, n · ∇𝜙 = 0, on 𝜕Ω. (3.30)

The squared distance between f and g now becomes

𝑊2
2,WFR(f, g) =

1
2

∫
Ω

(|∇𝜙|2 + 𝜙2)f (x)𝑑x + 𝐻.𝑂.𝑇 . (3.31)

Therefore, the extra source term in the transport equation introduces an absorption mechanism in

the linearized setting, that is, the term f𝜙 in (3.30). This absorption mechanism allows the densities

f and g to have different total mass (in which case (3.30) still admits a unique bounded solution

while (3.26) does not). This simple observation showcases that𝑊2,WFR is asymptotically equivalent

to theH−1
(f𝑑x) metric, not the ¤H−1

(f𝑑x) metric.

Linearization of 𝑊2,UOT. Following the same procedure as in the 𝑊2,WFR case, we have that

𝜌 = f + 𝛿𝜌, 𝝎 = 𝛿𝝎 and Z = 𝛿Z when g − f is small. The only difference here is that 𝛿Z depends

only on 𝑡, not x. The equation satisfied by (𝛿𝜌, 𝛿𝝎, 𝛿Z), to the first order, is:

𝜕𝑡𝛿𝜌 + ∇ · f𝛿𝝎 = 𝛿Z (𝑡), in (0, 𝑇] ×Ω

𝛿𝜌(0, x) = 0, in Ω

𝛿𝜌(𝑇, x) = g(x) − f (x), in Ω

n · 𝛿𝝎 = 0, on (0, 𝑇] × 𝜕Ω .

(3.32)

43

The square of the metric is

𝑊2
2,UOT = inf

𝛿𝜌,𝛿𝝎,𝛿Z

1
𝑇

∫ 𝑇

0

∫
Ω

1
2
|𝛿𝝎|2f (x)𝑑x𝑑𝑡 +

∫ 𝑇

0

1
2
|Ω|
𝛼
(𝛿Z (𝑡))2𝑑𝑡 + 𝐻.𝑂.𝑇 . (3.33)

We check that the optimality conditions of the problem (3.32) and (3.33) lead to 𝛿𝝎 = ∇𝜙(x) and

𝛿Z =
𝛼

|Ω|
∫
Ω
𝜙(x)𝑑x with 𝜙 the solution to

−∇ · f∇𝜙 + 𝛼

|Ω|

∫
Ω

𝜙(x)𝑑x =
1
𝑇
(g − f), in Ω, n · ∇𝜙 = 0, on 𝜕Ω. (3.34)

Therefore, the square of the𝑊2,UOT distance between f and g is given as

𝑊2
2,UOT(f, g) =

1
2

∫
Ω

|∇𝜙 |2f (x)𝑑x + 𝛼

2|Ω| (
∫
Ω

𝜙(x)𝑑x)2 + 𝐻.𝑂.𝑇 . (3.35)

This calculation implies that when f and g have the same total mass,
∫
Ω
𝜙(x)𝑑x = 0. This can be

easily seen by integrating (3.34) over the spatial domain Ω using the divergence theorem and the

boundary condition. In this case, we can drop all the terms that involve
∫
Ω
𝜙(x)𝑑x = 0. Therefore,

𝑊2,UOT reduces to 𝑊2. This is not true for 𝑊2,WFR which does not degenerate to 𝑊2 in the case

that f and g have the same total mass. Therefore,𝑊2,UOT is asymptotically equivalent to theH−1
(f𝑑x)

metric when f and g do not have the same total mass but is asymptotically equivalent to the ¤H−1
(f𝑑x)

metric if f and g do have the same total mass.

Linearization of 𝑊2,GUOT. Similarly as 𝑊2,UOT, we have that 𝜌 = f + 𝛿𝜌, 𝝎 = 𝛿𝝎 and Z = 𝛿Z

when g − f is small. The only difference here is that 𝛿Z depends on both 𝑡 and x. The equation

satisfied by (𝛿𝜌, 𝛿𝝎, 𝛿Z), to the first order, is:

𝜕𝑡𝛿𝜌 + ∇ · f𝛿𝝎 = 𝛿Z (𝑡, x), in (0, 𝑇] ×Ω

𝛿𝜌(0, x) = 0, in Ω

𝛿𝜌(𝑇, x) = g(x) − f (x), in Ω

n · 𝛿𝝎 = 0, on (0, 𝑇] × 𝜕Ω .

(3.36)

44

The square of the metric is

𝑊2
2,GUOT = inf

𝛿𝜌,𝛿𝝎,𝛿Z

1
𝑇

∫ 𝑇

0

∫
Ω

1
2
|𝛿𝝎|2f (x)𝑑x𝑑𝑡 +

∫ 𝑇

0

∫
Ω

1
2𝛼
(𝛿Z (𝑡, x))2𝑑x𝑑𝑡 + 𝐻.𝑂.𝑇 . (3.37)

We check that the optimality conditions of the problem (3.36) and (3.37) implies 𝛿𝝎 = ∇𝜙(x) and

𝛿Z = 𝛼𝜙 with 𝜙 satisfies

−∇ · f∇𝜙 + 𝛼𝜙 =
1
𝑇
(g − f), in Ω, n · ∇𝜙 = 0, on 𝜕Ω. (3.38)

Therefore, the square of the𝑊2,GUOT distance between f and g can be written as follows

𝑊2
2,GUOT(f, g) =

1
2

∫
Ω

(|∇𝜙|2f (x) + 𝛼𝜙2)𝑑x + 𝐻.𝑂.𝑇 . (3.39)

If we replace 𝛼 with f (x) in (3.39) and (3.38), then it returns to the same formulation (3.31)

and (3.30) for𝑊2,WFR. Therefore comparing to𝑊2,WFR,𝑊2,GUOT is asymptotically a mixed version

of ¤H−1
(f𝑑x) metric and 𝐿2

(𝑑x) at finite 𝛼. On the other hand,𝑊2,GUOT is a generalization of𝑊2,UOT in

the sense that it allows a non-uniform dynamic source term Z (𝑡, x).

Linearization of 𝑊2,Mixed. The background transport solution for the case of f = g is again

(𝜌,𝝎) = (f, 0). When g − f is sufficiently small, we have 𝜌 = f + 𝛿𝜌 and 𝝎 = 𝛿𝝎, (𝛿𝜌, 𝛿𝝎) being

sufficiently small. To the leading order, the transport equation satisfied by (𝛿𝜌, 𝛿𝝎) is

𝜕𝑡𝛿𝜌 + ∇ · f𝛿𝝎 = 0, in (0, 𝑇] ×Ω

𝛿𝜌(0, x) = 0, in Ω

n · 𝛿𝝎 = 0, on (0, 𝑇] × 𝜕Ω .

(3.40)

The𝑊2,Mixed cost becomes

𝑊2
2,Mixed(f, g) = inf

𝛿𝜌,𝛿𝝎

1
𝑇

∫ 𝑇

0

∫
Ω

1
2

f |𝛿𝝎 |2𝑑x𝑑𝑡 + 𝛽
2

∫
Ω

(𝛿𝜌(𝑇, x) − (g − f))2𝑑x + 𝐻.𝑂.𝑇 . (3.41)

45

We then check that the optimality conditions of the problem (3.40) and (3.41) lead to that 𝛿𝝎(𝑡, x) =

∇𝜙(x) where 𝜙 solves

−∇ · f∇𝜙 + 1
𝛽𝑇
𝜙 =

1
𝑇
(g − f), in Ω, n · ∇𝜙 = 0, on 𝜕Ω (3.42)

The square of the metric now becomes

𝑊2
2,Mixed(f, g) =

1
2

∫
Ω

(
|∇𝜙 |2f (x) + 1

𝛽
𝜙2
)
𝑑x + 𝐻.𝑂.𝑇 . (3.43)

This simple calculation also indicates that, in this asymptotic regime, 𝑊2,Mixed goes to 𝑊2 as

𝛽→∞. However, at a finite 𝛽,𝑊2,Mixed is asymptotically equivalent to theH−1
(f𝑑x) metric, not the

¤H−1
(f𝑑x) metric.

3.4.2 Linear inversion under the Wasserstein metrics

We briefly review the solution of a general linear inverse problem with the linearized Wasserstein

metrics, following the presentation of [40]. The linear model, or the linearization of (1.2), takes the

form:

𝐴\ = g . (3.44)

Here we focus on the effect of the metrics in the Fourier domain. Without loss of generality,

we assume that Ω = (0, 2𝜋)𝑑 , and the real-valued functions \, f, and g, supported on Ω, all have

boundary conditions of the form n · ∇\ = 0. We then have the following Fourier representations for

those functions:

\ (x) =
∑︁
𝝃∈Z𝑑+

\̂ (𝝃) cos(𝝃 · x), f (x) =
∑︁
𝝃∈Z𝑑+

f̂ (𝝃) cos(𝝃 · x), g(x) =
∑︁
𝝃∈Z𝑑+

ĝ(𝝃) cos(𝝃 · x). (3.45)

To see the main effect of the metrics, we ignore the weight f in terms such as −∇ · f∇𝜙 and f𝜙 in the

equation (3.26), (3.27) , (3.30), (3.31), (3.34), (3.35), (3.42), and (3.43). For reasonably nice f, the

factor f plays only a minor role in the Fourier domain as investigated in [107]. We also set 𝑇 = 1.

46

We therefore have from (3.26) that

𝜙(x) =
∑︁
𝝃∈Z𝑑+

𝜙(𝝃) cos(𝝃 · x), with, 𝜙(𝝃) = 1
|𝝃 |2

�(g − f) (𝝃).

This leads to the following representation of the𝑊2
2 in the case of g − f being small:

𝑊2
2 (f, g) ≈

1
2

∑︁
𝝃∈Z𝑑+

1
|𝝃 |2
|�(g − f) (𝝃) |2 (3.46)

where we have thrown away the higher-order terms. In a similar manner, we find that

𝑊2
2,WFR(f, g) ≈

1
2

∑︁
𝝃∈Z𝑑+

1
1 + |𝝃 |2

|�(g − f) (𝝃) |2, (3.47)

𝑊2
2,UOT(f, g) ≈

1
2
𝛼

Ω
|�(g − f) (0) |2 + 1

2

∑︁
𝝃∈Z𝑑+ , 𝝃≠0

1
|𝝃 |2
|�(g − f) (𝝃) |2, (3.48)

𝑊2
2,GUOT(f, g) ≈

1
2

∑︁
𝝃∈Z𝑑+

1
𝛼 + |𝝃 |2

|�(g − f) (𝝃) |2, (3.49)

and

𝑊2
2,Mixed(f, g) ≈

1
2

∑︁
𝝃∈Z𝑑+

1
1
𝛽
+ |𝝃 |2

|�(g − f) (𝝃) |2. (3.50)

To see the impact of the metrics on the inversion in the Fourier domain, we assume further that

the operator 𝐴 is diagonal in the Fourier domain, that is, the operator 𝐴 has the representation

𝐴\ =
∑︁
𝝃∈Z+
(𝐴(𝝃)\̂ (𝝃)) cos(𝝃 · x).

This assumption is not essential at all. It only simplifies the presentation below a little bit.

To invert the linear model (3.44) in the standard linearized𝑊2 metric, we seek the solution that

47

minimizes

Φ𝑊2 (\) := 𝑊2
2 (f (\), g) =

1
2

∑︁
𝝃∈Z𝑑+

1
|𝝃 |2
|𝐴(𝝃)\̂ (𝝃) − ĝ(𝝃) |2,

where we used the assumption that 𝐴 is diagonal such that f̂ (\) (𝝃) = 𝐴\ (𝝃) = 𝐴(𝝃)\̂ (𝝃). The

optimality condition resulted from the variation of Φ𝑊2 (\) with respect to \̂ (𝝃) is

𝐴∗(𝝃) 1
|𝝃 |2

(
𝐴(𝝃)\̂ (𝝃) − ĝ(𝝃)

)
= 0,

which then leads to the solution

\̂𝑊2 (𝝃) = (𝐴∗
1
|𝝃 |2

𝐴)−1𝐴∗
1
|𝝃 |2

ĝ(𝝃).

The same derivation procedure leads to the following inversion results from the 𝑊2,WFR, 𝑊2,UOT

and𝑊2,Mixed metrics. They are respectively:

\̂𝑊2,WFR (𝝃) = (𝐴∗
1

1 + |𝝃 |2
𝐴)−1𝐴∗

1
1 + |𝝃 |2

ĝ(𝝃),

\̂𝑊2,UOT (𝝃) =

(𝐴∗𝐴)−1𝐴∗ĝ(𝝃), when 𝝃 = 0

(𝐴∗ 1
|𝝃 |2

𝐴)−1𝐴∗
1
|𝝃 |2

ĝ(𝝃), when 𝝃 ≠ 0

\̂𝑊2,GUOT (𝝃) = (𝐴∗
1

𝛼 + |𝝃 |2
𝐴)−1𝐴∗

1
𝛼 + |𝝃 |2

ĝ(𝝃),

and

\̂𝑊2,Mixed (𝝃) = (𝐴∗
1

1
𝛽
+ |𝝃 |2

𝐴)−1𝐴∗
1

1
𝛽
+ |𝝃 |2

ĝ(𝝃).

Let −Δ be the Laplacian operator on Ω with the homogeneous Neumann boundary condition.

We can write the above solutions in the physical domain, respectively, as

\𝑊2 (x) =
(
𝐴∗(−Δ)−1𝐴

)−1
𝐴∗(−Δ)−1g(x),

48

\𝑊2,WFR (x) =
(
𝐴∗(−Δ + 𝐼)−1𝐴

)−1
𝐴∗(−Δ + 𝐼)−1g(x),

\𝑊2,UOT (x) =
(
𝐴∗(−Δ +

∫
Ω

)−1𝐴
)−1

𝐴∗(−Δ +
∫
Ω

)−1g(x)

\𝑊2,GUOT (x) =
(
𝐴∗(−Δ + 𝛼𝐼)−1𝐴

)−1
𝐴∗(−Δ + 𝛼𝐼)−1g(x),

and

\𝑊2,Mixed (x) =
(
𝐴∗(−Δ + 1

𝛽
𝐼)−1𝐴−1

)−1
𝐴∗(−Δ + 1

𝛽
𝐼)−1g(x).

where 𝐼 is the identity operator. Note again that −Δ + 𝐼, −Δ + 1
𝛽
𝐼 and −Δ +

∫
Ω

are all invertible with

the homogeneous Neumann boundary condition.

The simple calculations above reveal to us the following facts about linearized inversion with

the 𝑊2 metrics. First, in the ideal case when the original problem is uniquely invertible, the data

used in the inversion contains no noise, inversion results under all the𝑊2 metrics are the same and

degenerate to the classical 𝐿2 based inversion results \𝐿2 (x) = (𝐴∗𝐴)−1𝐴∗g(x). Second, inversion

methods based on the𝑊2 metrics are “preconditioned” versions of the classical 𝐿2 inversion. The

operators (−Δ)−1, (−Δ+ 𝐼)−1, (−Δ+
∫
Ω
)−1, (−Δ+𝛼𝐼)−1 and (−Δ+ 1

𝛽
𝐼)−1 are all smoothing operators

that damp the higher-frequency components of the data g before the inversion operation. The higher

the frequency is, the stronger the damping effect will be. Therefore, when high-frequency noise

present in the data, they are suppressed before the inversion.

3.5 Numerical implementations

We now present details on our implementation of the inversion methods outlined in the previous

section. The algorithms are implemented in the MATLAB software with the source codes deposited

at github 1. In our numerical simulations in the next three sections, we display computational

results for the one-dimensional domain Ω = [0, 𝐿] and the two-dimensional spatial domain Ω =

[0, 𝐿𝑥] × [0, 𝐿𝑦]. The time interval for the transport equation is set as T = (0, 𝑇]. The values of 𝐿,

𝐿𝑥 , 𝐿𝑦 and 𝑇 will be given in later in specific examples.

1The github repository for our source codes is at https://github.com/wending1/.

49

https://github.com/wending1/

3.5.1 Numerical discretizations

One common practice in the numerical discretization of the transport equation in the formulation

of the fluid dynamics is to introduce the variables

m = 𝜌𝝎, and, Z = 𝜌Z (3.51)

so that the transport equations in the constraints of the minimization problem become linear. We

follow this idea here in our presentation. We now detail the discretization of the Wasserstein-Fisher-

Rao formulation𝑊2,WFR. The same type of discretizations are used for the𝑊2,𝑊2,UOT,𝑊2,GUOT

and𝑊2,Mixed metrics. Details of numerical discretizations are given in the Appendix A.

3.5.2 Discretization of Fréchet derivatives.

We also need to discretize the Fréchet derivatives involved in (3.23). Those operators can be

discretized using the same scheme as we just detailed. However, in our numerical implementation,

we use a discretizing-then-optimizing approach for the optimization problem. This means that we

formulate the optimization problem for each metric in the discrete setting using the discretization

schemes for the transport equation and the cost functionals, that is, (A.3) and (A.13) in dimension

one or (A.47) and (A.49) in dimension two. We then form the corresponding discrete version of the

optimality condition (3.21). The discretized versions of the operators in the equation for the Newton

update direction, (3.23), are then directly derived by taking gradients on the discrete level. To save

space, we list the discrete version of all the operators involved in the Appendix. We also point

out that in the limit when the sizes of the spatial-temporal grid Δ𝑥, Δg, Δ𝑡 go to 0, the discretized

operators converge to their continuous correspondences given in the Appendix.

3.5.3 Newton’s iteration

The Newton iteration (3.22) is implemented using MATLABwith a cubic line search scheme [105]

to find the step length ℓ𝑘 at iteration 𝑘 . The standard Wolfe conditions [105] are imposed on the

50

line search scheme. More precisely, let Ψ(𝜌,𝝎, Z , \, _) := ∥F∥2
𝐿2 be squared 𝐿2 norm of the

system (3.21), 𝑝𝑘 = (𝜌𝑘 ,𝝎𝑘 , Z𝑘 , \𝑘 , _𝑘), and 𝛿𝑝𝑘 = (𝛿𝜌𝑘 , 𝛿𝝎𝑘 , 𝛿Z𝑘 , 𝛿\𝑘 , 𝛿_𝑘). We look for an ℓ𝑘

that solves the one-dimensional minimization problem

min
ℓ𝑘>0

Ψ(𝑝𝑘 + ℓ𝑘𝛿𝑝𝑘), (3.52)

and satisfies the conditions:

Ψ(𝑝𝑘 + ℓ𝑘𝛿𝑝𝑘) ≤ Ψ(𝑝𝑘) + 𝑐1ℓ𝑘∇Ψ𝑇 (𝑝𝑘)𝛿𝑝𝑘 , (3.53)

∇Ψ𝑇 (𝑝𝑘 + ℓ𝑘𝛿𝑝𝑘)𝛿𝑝𝑘 ≥ 𝑐2∇Ψ𝑇 (𝑝𝑘)𝛿𝑝𝑘 , (3.54)

where 𝑐1 and 𝑐2 are two small positive constants. Following the suggestion in [105], we take

𝑐1 = 10−4 and 𝑐2 = 0.1 in our numerical simulations in Section 3.8.

Initialization guesses. The Newton iteration needs to be started at a given initial guess (𝜌0,𝝎0, Z0, \0, _0).

Since \ is the only intrinsic variable that we are interested in inverting for, we should only need

to provide the initial guess \0. The initial guess for the other variables are constructed by solving

the sub-optimization problem described by (3.5) and (3.6) with f (\) fixed at f (\0). This way, the

different components of the initial guess (𝜌0,𝝎0, Z0, \0, _0) for the nonlinear iteration are consistent

with each other.

Stopping criteria. In the numerical simulations, we will compare results from the algorithms

with different 𝑊2 metrics. One of the major difficulties in making a fair comparison between

different algorithms is to find a fair stopping criterion. In our simulations, we stop the iterations

if either (i) the update is sufficiently small, that is, ℓ𝑘 ∥(𝛿𝜌𝑘 , 𝛿𝝎𝑘 , 𝛿Z𝑘 , 𝛿\𝑘 , 𝛿_𝑘)∥ ≤ Y1 for a given

tolerance Y1, or (ii) the mismatch between the model prediction and the data has decayed sufficiently,

that is Φ(f (\𝑘), g) ≤ Y2Φ(f (\0), g) (where \0 is the initial guess of the unknown function to be

reconstructed) for some tolerance Y2. The value of the parameters Y1 and Y2 will be provided later

51

when we present the simulation results.

3.5.4 General setup for simulations

We focus on three inverse problems where the data measured are non-negative so that we do

not need to perform signal normalization, an operation that could have a significant impact on the

inversion results, as is done in most of the previous studies [148, 40, 147, 146].

Inverting the Abel transform. The first inverse problem we consider is a linear problem described

by the Abel equation. For a continuous function \ on [0, 1], the Abel transform of \, with parameter

0 < 𝛼 < 1, is defined as [66]:

f (𝑠) ≡ 𝐴\ :=
∫ 𝑠

0
(𝑠 − 𝑡)−𝛼\ (𝑡)𝑑𝑡, 𝑠 ∈ [0, 1] . (3.55)

Without loss of generality, we can assume that f (0) = 0. In our numerical simulations later, we are

interested in studying the performance of the Wasserstein metrics in inverting the Abel transform.

The discretization scheme for the Abel transform is documented in the Appendix A.2. Interested

readers are referred to [12] for more detailed discussions on equations of Abel type. Let us mention

here the simple fact that the Abel transform can be analytically inverted to find \ (𝑡)(with f (0) = 0):

\ (𝑡) = sin(𝜋𝛼)
𝜋
(
∫ 𝑡

0

𝑑f (𝑠)
𝑑𝑠

1
(𝑡 − 𝑠)1−𝛼

𝑑𝑠), 𝑡 ∈ [0, 1] . (3.56)

Inverse diffusion problem. The second example inverse problem we will computationally study

is an inverse coefficient problem for the diffusion equation in a bounded domain Ω ⊂ R𝑑 (𝑑 ≥ 1)

with smooth boundary 𝜕Ω:

−∇ · 𝛾∇𝑢 + \𝑢 = 𝑞, in Ω, 𝑢 = 𝑏, on 𝜕Ω (3.57)

where 𝛾 is the diffusion coefficient and \ is the absorption coefficient. When the coefficients and

the boundary condition g are given, we can solve the diffusion equation to find its solution 𝑢. In the

52

inverse problem, we assume that we know everything else but not the absorption coefficient \. We

are interested in reconstructing \ from additional data of the form

f (\) := Λ(\)𝑢, ∈ Ω (3.58)

where 𝛾 is the diffusion coefficient, and \ is the absorption coefficient. When the coefficients and

the boundary condition g are given, we can solve the diffusion equation to find its solution 𝑢. In the

inverse problem, we assume that we know everything else but not the absorption coefficient \. We

are interested in reconstructing \ from additional data of the form

Inverse wave propagation. The third inverse problem we consider is an inverse coefficient

problem for the Helmholtz equation in a bounded domain:

Δ𝑢 + 𝑘2 (1 + 𝑛)𝑢 + 𝑖𝑘\𝑢 = 𝑞, in Ω, 𝑢 = 𝑏, on 𝜕Ω (3.59)

where 𝑘 is the wave number, 𝑛 is the refractive index, and \ is the conductivity. We assume that

wave number 𝑘 , the coefficients, and the domain Ω are arranged in such a way that the Helmholtz

equation (3.59) is uniquely solvable. In the inverse problem, we assume that we know 𝑛 but not \.

We are interested in recovering \ from additional data of the form

f (\) = Λ(\) |𝑢 |2, x ∈ Ω. (3.60)

This is a simplified model for inverse problems in quantitative thermoacoustic tomography [8].

We discretize the Helmholtz model in a rectangular domain in our numerical simulations. The

discretization scheme can be found in Appendix A.2.

Generation of synthetic data. The synthetic data we use in all the numerical simulations are

generated from the forward models. We solve the forward model g = f (\𝑡𝑟𝑢𝑒) with the true

coefficients to compute the data. We add additive random noise to the data computed from

53

the models to generate noisy data. More precisely, let g be the noise-free data. We generate

multipliable noisy data g𝛿 = g + ℎ where ℎ ∼ N(0, 𝛿 𝑑𝑖𝑎𝑔(𝑔)) (𝛿 being the variance of the noise).

To generate high-frequency noise, we use Fourier transform F to filter out the low-frequency

components of the noise. Let ℎ be the random noise, we generate the high-frequency noise ℎ̃ by

ℎ̃ := F −1𝜒{𝝃 | |𝝃 |≥b0}F (ℎ) where F −1 denote the inverse Fourier transform, 𝜒𝐵 is the characteristic

function of the set 𝐵 and b0 denotes the cutoff frequency.

Our numerical experiments show that the time interval size does not play a significant role in

the solution process. In all the numerical experiments in the following subsections, we set 𝑇 = 1

in the definition of the Wasserstein metrics for simplicity. We observe that 𝑇 does not affect the

reconstruction quality (although it does affect the overall computational cost of the reconstructions).

Unless stated otherwise, we set the regularization parameter 𝛾 = 0, introduced in (3.15), in all the

simulations as our objective in this study is to study the general behavior of the Wasserstein metrics

in the inversion process, not to tune the parameters to get the best reconstruction result.

The unknown in the following section are from one of the three options 3.1

Bell shape \. The unknown is smooth. It tests the general ability of Wasserstein metrics to solve

inverse problems.

\ (𝑥) = 1 + 𝑒−
(2𝑥−1)2

0.05 , 𝑥 ∈ [0, 1] (3.61)

Two scale \. Unknown consists two different scales of modes, one high-frequency mode 60𝜋

and one low-frequency mode 2𝜋. This example may be extreme, but it is a good indicator of the

separation of frequencies by Wasserstein metrics.

\ (𝑥) = 1 + 0.5 sin(2𝜋𝑥) + 0.05 sin(30𝜋𝑥), 𝑥 ∈ [0, 1] (3.62)

54

Discontinuous \. The unknown is the simplest discontinuous function. It aims to test the perfor-

mances for Wasserstein metrics in discontinuous settings.

\ (𝑥) = 1 + X[1
3 ,

2
3]
, 𝑥 ∈ [0, 1] (3.63)

Figure 3.1: Exact unknown shape, from left to right: bell shape, two scale shape, discontinuous
shape.

Display of optimization process. To fully display properties(especially smoothing effect and

separation of frequencies) of Wasserstein metrics, it is vital that we display target quantities

throughout the optimization process. Therefore, we organize the reconstruction results from

different algorithms and setups by their loss value: the value of the current loss function, i.e.,

𝑙𝑜𝑠𝑠 = Φ(f (\𝑘), g) rather than simply showing the final reconstruction results. We regard the loss

value as a fair comparison between different Wasserstein metrics.

Initial guess of numerics. Unless stated otherwise, we set the initial guess of independent

variables of all the following numerical examples to be constant 1. Other related quantities are

initialized such that they are consistent.

3.6 𝑊2 does NOT regularize.

The smoothing effect of the Wasserstein metrics we have just seen should not be confused

with the smoothing effect introduced by variational regularization techniques such as Tikhonov

55

regularization, which is often introduced in 𝐿2 based least-squares formulation. For the linear

model (3.44), we minimize

Φ𝐿2 (\) :=
1
2

∑︁
𝝃∈Z𝑑+

|𝐴\̂ (𝝃) − ĝ(𝝃) |2 + 𝛾
2

∑︁
𝝃∈Z𝑑+

(1 + |𝝃 |2) |\̂ (𝝃) − \̂0(𝝃) |2, (3.64)

where \0 represents the a priori selected and 𝛾 controls of the strength of imposing the a priori.

It is straightforward to verify that the minimizing Φ𝐿2 (\) gives the solution

\̂𝐿2 (𝝃) =
(
𝐴∗𝐴 + 𝛾(1 + |𝝃 |2)

)−1
𝐴∗ĝ(𝝃) (3.65)

The insights we obtained in this section are analyzed. A nonlinear effect makes the Wasserstein

distances different from theH−1 metrics [107].

3.7 Performance under noisy data

The pre-conditioning effect of the Wasserstein metrics on the inversion results has significant

consequences for inverse problems with noisy data. This was discussed in [95, 40, 148, 37, 146]

in the case of the regular 𝑊2. The same analysis carries to 𝑊2,WFR, 𝑊2,UOT and 𝑊2,mixed. Let us

assume further that the linear operator 𝐴 has the symbol

𝐴(𝝃) = ⟨𝝃⟩−\ , ⟨𝝃⟩ =
√︃

1 + |𝝃 |2, \ > 0. (3.66)

The assumption that \ > 0 means that the operator is smoothing whose inverse amplifies the

high-frequency component of the data. The inverse problem is, therefore, ill-conditioned (often

called ill-posed in the literature).

We denote by g𝛿 the data g polluted by random noise with 𝛿 the noise level in the data. More

precisely, we denote by 𝛿 := ∥g𝛿 − g∥𝐿2 (Ω) . We assume that g𝛿 and g have the same total mass so

that we do not need to worry about the invertibility issue of𝑊2 inversion. We also denote by 𝑅 |𝝃 |𝑐
𝑊2

56

the inversion operator under the𝑊2 metric truncated at frequency |𝝃 |𝑐, that is,

𝑅
|𝝃 |𝑐
𝑊2

g :=
|𝝃 |≤|𝝃 |𝑐∑︁
𝝃∈Z+

(𝐴∗ 1
|𝝃 |2

𝐴)−1𝐴∗
1
|𝝃 |2

ĝ(𝝃) cos(𝝃 · x)

Then the 𝐿2 error in the reconstruction, defined as the 𝐿2 difference between the reconstruction

from data g𝛿, \̃𝑊2 , and the true solution \, can be bounded as follows:

∥\̃𝛿𝑊2
− \∥𝐿2 (Ω) = ∥\𝛿𝑊2

− \𝑊2 + \𝑊2 − \∥𝐿2 (Ω) ≤ ∥\𝛿𝑊2
− \𝑊2 ∥𝐿2 (Ω) + ∥\𝑊2 − \∥𝐿2 (Ω)

= ∥𝑅 |𝝃 |𝑐
𝑊2
(g𝛿 − g)∥𝐿2 (Ω) + ∥(𝑅

|𝝃 |𝑐
𝑊2
𝐴 − 𝐼)\∥𝐿2 (Ω) . (3.67)

On the other hand, it is straightforward to check that

∥𝑅 |𝝃 |𝑐
𝑊2
(g𝛿 − g)∥𝐿2 (Ω) = ∥

|𝝃 |≤|𝝃 |𝑐∑︁
𝝃∈Z+

(𝐴∗ 1
|𝝃 |2

𝐴)−1𝐴∗
1
|𝝃 |2
(ĝ𝛿 − ĝ) (𝝃) cos(𝝃 · x)∥𝐿2 (Ω)

= ∥
|𝝃 |≤|𝝃 |𝑐∑︁
𝝃∈Z+

⟨𝝃⟩\ |𝝃 | (ĝ
𝛿 − ĝ) (𝝃)
|𝝃 | cos(𝝃 · x)∥𝐿2 (Ω) ≤ |𝝃 |\+1𝑐

∑︁
𝝃∈Z+

1
|𝝃 |2
|�g𝛿 − g|2 ≤ |𝝃 |\+1𝑐 ∥g𝛿 − g∥𝐿2 (Ω)

where the last inequality is true with the assumption that g𝛿 and g have the same total mass, and

also that

∥(𝑅 |𝝃 |𝑐
𝑊2
𝐴 − 𝐼)\∥𝐿2 (Ω) = ∥

∑︁
𝝃∈Z+,|𝝃 |≥|𝝃 |𝑐

\̂ (𝝃) cos(𝝃 · x)∥𝐿2 (Ω) =
∑︁

𝝃∈Z+,|𝝃 |≥|𝝃 |𝑐

|\̂ (𝝃) |2.

Therefore, the reconstruction error bound (3.67) can be rewritten as

∥\̃𝛿𝑊2
− \∥𝐿2 (Ω) ≤ |𝝃 |\+1𝑐 𝛿 +

∑︁
𝝃∈Z+,|𝝃 |≥|𝝃 |𝑐

|\̂ (𝝃) |2. (3.68)

This error bound is minimized if we take |𝝃 |𝑐 ∼ (𝛿−1 |\̂ (𝝃) |).

Remark 3.7.1. The simple analysis in this section: We emphasize that one of the main differences

between𝑊2,WFR,𝑊2,UOT, and𝑊2,Mixed is that𝑊2,WFR has no free parameters in its definition. The

57

mass imbalance is completely determined by f and g. In 𝑊2,Mixed, however, the imbalance is not

completely decided by the imbalance between f and g. The parameter 𝛽 allows the imposition of

mass conservation. In the solution of inverse problems, 𝛽 should go to∞ to enforce that the final

solution conserves the total mass. If the total mass of f (\) and g are not the same, \ is not the true

solution to the inverse problem. We should set the sequence 𝛽𝑘 to∞ as 𝑘 →∞.

3.8 Numerical experiments

We now present a collection of numerical simulations to study the behavior of the Wasserstein

metrics in solving inverse problems.

Before introducing any numerical results, we first plot the loss Φ(\) with respect to optimization

iterations in figure 3.2. It decays exponentially regardless of the choice of algorithms, forward

operators, and input \ shape.

Figure 3.2: Optimization Loss log(Φ(\)).

58

3.8.1 The smoothing effect

In the first set of numerical experiments, we focus on the smoothing effect of Wasserstein metrics

as analyzed in the linearization study of Section 3.4. The Wasserstein metrics are asymptotically

equivalent to weighted ¤H−1 and H−1 metrics. These are weaker metrics compared to the 𝐿2

metric. Therefore, inversion based on those metrics is more stable with respect to random noise

presented in the data. This is evident in the inversion formulas given in linearization analysis 3.4.2

as high-frequency modes in the data are damped by the factor ⟨𝝃⟩−1 before they pass through the

inverse operators. Effectively the reconstruction consists of several low-frequency modes.

Experiment 1. In Figure 3.3, we exhibit reconstruction results for the inverse diffusion problem

in the one-dimensional domain Ω = (0, 1) with data containing 10% of random Gaussian noise.

The results show that Wasserstein metrics are less sensitive to noise than 𝐿2 loss function.

3.8.2 Frequencies disparity

Experiment 2. In the following example, we showcase that while it is excellent that the Wasser-

stein metrics stabilize the reconstructions with noisy data, they also delay the reconstruction of the

high-frequency component of the unknown. In Figure 3.4 and 3.5, we exhibit the reconstruction

of the absorption coefficient 3.62 which has a high-frequency component that is far separated

from its low-frequency component. The reconstructions show that Wasserstein metrics mainly

delay the reconstruction of the high-frequency mode of the unknown. Because Wasserstein metrics

recover low-frequency functions faster than high-frequency functions, therefore, if the function

can be approximated with low-frequency components, the Wasserstein metric will recover it with

low-frequency components as opposed to recovering with a high-frequency, noise-like function.

Thus reducing the effect of high-freuqncy noises.

Moreover, we can plot the relative error of Fourier modes against optimization iterations, as in

figure 3.6. Mode 2𝜋 decays to zero after iteration 30 and stays zero after that. While the relative

error for mode 30𝜋 first increases and then decays to zero after iteration 500. This shows clearly

59

Figure 3.3: Reconstructing the bell shape absorption coefficient \ in 3.61 in the diffusion equa-
tion (3.57) in the one-dimensional domain Ω = (0, 1). First row from left to right : the exact
𝐿2, H−1, 𝑊2; Second row from left to right: 𝑊2,WFR, 𝑊2,UOT(1

𝛼
= 0.1), 𝑊2,GUOT(1

𝛼
= 0.1); Third

row from left to right: 𝑊2,Mixed(𝛽 = 0.1), 𝑊1, 𝑈𝑊1(𝛽 = 0.1). The synthetic data contains 10% of
random noise, loss value is 10−5 for quadratic Wasserstein metrics, loss value is 10−3 for𝑊1 and
𝑈𝑊1 results.

that Wasserstein metrics delay the reconstruction of higher frequency components. Eventually,

Wasserstein metrics still recover high-frequency components.

3.8.3 The effect of mass imbalance

Experiment 3. The rationale for using unbalanced optimal transport is that during the iterations

before convergence, one should not expect that the model predictions match the measured data, that

is, f does not have to have the same mass as g. It’s therefore more appropriate to use unbalanced

optimal transport instead of balanced optimal transport. However, at the point of convergence, i.e.

when \ is close to its true value, f and g should have the same mass. Therefore, the final results of

unbalanced and balanced inversion are very close.

Among the unbalanced metrics, the𝑊2,WFR metric will not degenerate to𝑊2 when f and g have

60

Figure 3.4: Reconstruction of the two scale coefficient \ given in (3.62) for Helmholtz model (3.59).
The synthetic data contains no random noise. From top to bottom: 𝐿2,H−1,𝑊1,𝑈𝑊1(𝛽 = 0.1).
From left to right: loss value forH−1 is 5∗10−6, 2∗10−6, 10−6; loss value for 𝐿2 is 10−1, 10−2, 10−3;
loss value for𝑊1,𝑈𝑊1 is 0.002, 0.0015, 5 ∗ 10−4.

the same total mass,𝑊2,UOT and𝑊2,GUOT degenerate to𝑊2 when f and g have the same total mass,

independent of the parameter 𝛼. The 𝑊2,Mixed metric will reduce to 𝑊2 when 𝛽 goes to 0. In our

implementation, we take a sequence of parameter 𝛽𝑘 (𝑘 being the iteration step of the algorithm)

that goes to decays to 0 as 𝑘 increases.

In our optimization framework, mass imbalance means the constraints have an empty feasible

set, dealing with mass imbalance is equivalent to relaxing the constraints such that the feasible set is

nonempty. The dealing of imbalance is embedded into the optimization procedure. As we can see

61

Figure 3.5: Reconstruction of the two scale coefficient \ given in (3.62) for Helmholtz model (3.59).
The synthetic data contains no random noise. From top to bottom: 𝑊2,𝑊2,WFR,𝑊2,UOT(1

𝛼
=

0.1),𝑊2,GUOT(1
𝛼
= 0.1),𝑊2,Mixed(𝛽 = 0.1). From left to right: loss value for all𝑊2 types of metrics

is 10−6, 2 ∗ 10−7, 10−8.

from the results in Figure 3.7, we do not observe significant differences between reconstructions

with𝑊2,WFR,𝑊2,GUOT,𝑊2,UOT,𝑊2,Mixed and those with𝑊2, see figure 3.7. This is expected from

the analysis in the asymptotic regime as the synthetic data we used in the inversion have the same

62

Figure 3.6: The same setup as 3.4 with 𝑊2,GUOT algorithm. Relative error for reconstructed \

coefficients i.e.
∫ 1

0 |\ (𝑥)−\𝑒𝑥𝑎𝑐𝑡 (𝑥) | sin(𝑛𝜋𝑥)𝑑𝑥∫ 1
0 |\𝑒𝑥𝑎𝑐𝑡 (𝑥) | sin(𝑛𝜋𝑥)𝑑𝑥

, 𝑛 ∈ {2, 30}.

total mass as the model predictions with the true coefficients.

3.8.4 Impact of penalty parameters

Experiment 4. The penalty coefficient is actually very important in𝑊2,GUOT,𝑊2,UOT,𝑊2,Mixed

and𝑈𝑊1 when f and g does not have the same total mass. The penalty term controls the degree to

which we enforce the dynamic source term to be as small as possible.

Intuitively speaking, the initial condition of the transport solution should start from f and end

at g, the initial constraint ensures the accuracy of the reconstruction. The dynamic source term

of 𝑊2,GUOT, 𝑊2,UOT offers the flexibility of enforcing this constraint. A large penalty parameter

puts a large weight on the dynamic source term, and smooths the reconstruction, making it more

difficult to reconstruct high-frequency components; Moderate penalty parameter can recover both

high and low-frequency components;. A small penalty parameter will weaken the enforcement of

initial conditions, resulting in systematic reconstruction error, even in low Fourier modes, leading to

totally wrong results. It is shown in figure 3.8 that as 1
𝛼

decreases to 0, the ability to reconstruct

63

Figure 3.7: Reconstruction of the discontinuous absorption coefficient \ given in (3.63) for
Abel transform problem (3.55). The synthetic data contains 1% random noise. First row:
𝐿2,H−1,𝑊2,𝑊2,WFR; Second row: 𝑊2,UOT(1

𝛼
= 0.1),𝑊2,GUOT(1

𝛼
= 0.1); Third row: 𝑊2,Mixed(𝛽 =

0.1),𝑊1,𝑈𝑊1(𝛽 = 0.1). All quadratic Wasserstein metrics results are plotted with loss value 10−7;
while𝑊1,𝑈𝑊1 are plotted with loss value 10−3.

high-frequency modes is stronger, but when 1
𝛼

is too small, the reconstruction fails completely.

Figure 3.8: Reconstruction of the two scale coefficient \ given in (3.62) for Helmholtz model
(3.59) with 𝑊2,GUOT. The synthetic data contains no random noise. From left to right: 1

𝛼
is

10−3, 10−4, 10−5, 10−8. All plotted with loss value 10−5. Notice that when 1
𝛼
= 10−8, the plot has a

different scale in 𝑦 axis from other plots.

64

This phenomenon is more evident in the case of𝑈𝑊1, see figures 3.9. As the penalty parameter

𝛽 decreases, the high-frequency components are more and more accurate, while the low-frequency

components are compressed. Therefore the penalty parameter 𝛽 in𝑈𝑊1 can be used to adjust the

reconstruction sensitivity to high or low-frequency components.

Figure 3.9: Reconstruction of the two scale coefficient \ given in (3.62) for Helmholtz equation
(3.59) with 𝑈𝑊1. The synthetic data contains no random noise. First row: 𝛽 is 1, 0.5, 0.1, 0.05;
Second row: 𝛽 is 10−2, 10−3, 10−4, 10−8. All plotted with relative loss value 10−3.

3.8.5 Impact of initial guess

Experiment 5. It is impossible to get a fair comparison between the metrics on this since all the

convergences are local. Our initial guesses have to be close enough to the true. In our numerical tests,

we observe in general. However, the algorithms based on the𝑊2 metrics are not sensitive to initial

guesses, especially when the initial guess has high-frequency components, for instance, piecewise

constant initial guesses. This is in general our experiences in computational inverse problems;

Figure 3.10 is one typical example of a computation process from different initial guesses. And 3.11

show the impact of different initial guesses on the final reconstruction of Wasserstein metrics.

Although the path to reconstruction is different, the final results and the "speed" of reconstruction

are almost the same for piecewise and constant initial guess.

65

Here we use two initial guess,constant initial guess: \𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 1 and piecewise initial guess

\𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝑥) =

1 𝑥 ∈ [0, 1
6)

1.5 𝑥 ∈ [16 ,
2
6)

0.5 𝑥 ∈ [26 ,
3
6)

1 𝑥 ∈ [36 ,
4
6)

1.5 𝑥 ∈ [46 ,
5
6)

0.5 𝑥 ∈ [56 , 1]

(3.69)

Figure 3.10: Reconstruction of the discontinuous coefficient \ given in (3.63) for Helmholtz model
(3.59) with 𝑊2,GUOT. The synthetic data contains 5% random noise. First row: reconstruction
process with constant initial guess; Second row: reconstruction with piecewise constant initial
guess 3.69. From left to right: initial guess, 𝛽 is 10−3, 10−4, 10−5, 10−6.

3.8.6 Two dimensional simulations

Experiment 6. What we have observed in the previous numerical experiments also appears in

problems in higher-dimensional spaces. This is demonstrated in Figure 3.14 3.13 3.15 3.16 where

we show reconstruction results for the inverse diffusion problem in the two-dimensional domain

Ω = [0, 1] × [0, 1]. The domain is covered with a uniform spatial mesh and the time interval

66

𝑡 ∈ [0, 𝑇 = 1] is covered with uniform mesh intervals. Our numerical experiences show that this

phenomenon occurs independently of the exact form of the true coefficient 𝜎. Exact discretization

is in appendix A.12. We use the 2D diffusion equation as forwarding operators 3.57. Same as the

1D examples, we use similar three types of target quantities 𝜎 as follows 3.12

Continuous 𝜎.

𝜎(𝑥, 𝑦) = 1 − 𝑥(1 − 𝑥)𝑠𝑖𝑛(6𝜋𝑥𝑦)𝑠𝑖𝑛(2𝜋𝑦)𝑒𝑥−𝑦, (𝑥, 𝑦) ∈ [0, 1] × [0, 1] (3.70)

Discontinuous 𝜎.

𝜎(𝑥, 𝑦) = 1 + X(𝑥,𝑦)∈[1
3 ,

2
3]×[

1
3 ,

2
3]
, (𝑥, 𝑦) ∈ [0, 1] × [0, 1] (3.71)

Two scale 𝜎.

𝜎(𝑥, 𝑦) = 1 + 0.5 sin(2𝜋𝑥) sin(2𝜋𝑦) + 0.1 sin(10𝜋𝑥) sin(10𝜋𝑦), (𝑥, 𝑦) ∈ [0, 1] × [0, 1] (3.72)

Our numerical experiences show that two-dimensional Wasserstein metrics are similar to one-

dimensional cases. We showcase the following three numerical examples for two-dimensional

reconstruction: Discontinuous shape with noise 3.13, the continuous case 3.14 and the two scale

cases for separation of frequencies 3.15 3.16.

3.8.7 Further discussions

Ill-conditioningness and regularity assumptions. As we have seen from the simplified analysis

of linear inverse problems in the previous section, the quality of the inversion is determined by the

combined effects of the Wasserstein metrics, the smoothing properties of the forward operators,

and the regularity assumptions we impose on the unknown to be reconstructed. When the operator

is very smooth or the unknown is assumed to be very smooth, the role of the Wasserstein is less

prominent.

67

Disparity of frequencies. Due to the fact that high-frequency are damped, low-frequency compo-

nents of the model prediction and data have a larger role in the objective function. Therefore, the

gradient weighted more on the low-frequency part. The algorithm therefore matches low-frequency

information first and then matches high-frequency information. This is very different from the 𝐿2

case, where high-frequency information dominates the gradients, resulting in the algorithm trying to

match high-frequency information first. At high frequency, the objective function has lots of local

minimums. Therefore, the iteration is hard to converge.

Preservation of original solutions. Balanced mass Wasserstein distance does not change the

original solution, to be more precise, when no noise is presented in the data, the original solution is

the global minimizer for the corresponding optimization problem of the Wasserstein metric. This is

observed by our numerical experiments that after sufficient iterations, the solution generated from

Wasserstein metrics is the same as the solution generated by 𝐿2 norm, see figure 3.3. If there is

noise in the data, however, Wasserstein metrics are more robust against noise.

Robustness of 𝑊2 against noise. What is that we gain: robustness against noise. The most

important effect of𝑊2 is damping or delaying of high-frequency components in the reconstruction.

So that we can control the effect of high-frequency modes as long as our numerical tests stop at an

appropriate iteration. More than often, high-frequency means noises. Thus robustness against noise.

Loss of resolution with𝑊2. What is that we gain: robustness against noise. The most important

effect of𝑊2 is damping or delaying of high-frequency components in the reconstruction. So that we

can control the impact of high-frequency modes as long as our numerical tests stop at an appropriate

iteration. More than often, high-frequency means noises. Thus robustness against noise.

The impact of mass imbalance. Balanced or imbalanced? On the one hand, unbalanced optimal

transport should be used since we do not have the balance of mass until the last steps of the iterations.

However, imbalanced optimal transport has a “regularization” parameter in the formulation that

68

requires training in practice. On the other hand, in the end, we need mass balance since otherwise

the solution we obtained is not the true solution. Therefore, we should take the parameter 𝛽(or 1
𝛼

) to

0.

Optimization framework. We recommend combining Wasserstein formula and the forward

problem into a single optimization framework: utilize the fluid dynamic formulation of the optimal

transport, and treat the forward operator as the constraint. Let the optimization packages worry

about the convergence and mass unbalance issue. Details of the discretization of different schemes

are in the appendix.

Computational cost. Computationally, all the 𝑊2 metrics increase the problem dimension by

adding a new temporal dimension, which is more computationally expensive than the 𝐿2, andH−1

approaches. The cost among different Wasserstein metrics looks similar. Considering thatH−1 has

similar reconstructing properties as𝑊2 type of metrics, it is recommended to applyH−1 approach.

69

Figure 3.11: Reconstruction of the discontinuous coefficient \ given in (3.63) for Helmholtz model
(3.59). The synthetic data contains 5% random noise. First column: reconstruction process with con-
stant 1 initial guess; Second column: reconstruction with piecewise constant initial guess 3.69. From
top to bottom: 𝑊2,𝑊2,WFR,𝑊2,UOT(1

𝛼
= 0.1),𝑊2,GUOT(1

𝛼
= 0.1),𝑊2,Mixed(𝛽 = 0.1),𝑊1,𝑈𝑊1(𝛽 =

0.1). All results of quadratic Wasserstein metrics are plotted with loss value 10−6;𝑊1,𝑈𝑊1 results
are plotted with loss value 10−3

70

Figure 3.12: Exact shape of two dimensional unknowns. From left to right: continuous shape,
discontinuous shape, two scale shape.

71

Figure 3.13: Reconstructing the discontinuous shape absorption coefficient 𝜎 in 3.70 for the 2D
diffusion equation. First row from left to right : the exact 𝜎, 𝐿2; Second row from left to right:
H−1, 𝑊2; Third row from left to right: 𝑊2,WFR, 𝑊2,UOT(1

𝛼
= 0.1); fourth row: 𝑊2,GUOT(1

𝛼
= 0.1),

𝑊2,Mixed(𝛽 = 0.1). The synthetic data contains 10% of random noise, loss value is 5 ∗ 10−6 for all
results.

72

Figure 3.14: Reconstructing the continuous shape absorption coefficient 𝜎 in 3.70 for the 2D
diffusion equation. First row from left to right : the exact 𝜎, 𝐿2; Second row from left to right:
H−1, 𝑊2; Third row from left to right: 𝑊2,WFR, 𝑊2,UOT(1

𝛼
= 0.1); fourth row: 𝑊2,GUOT(1

𝛼
= 0.1),

𝑊2,Mixed(𝛽 = 0.1). The synthetic data contains no of random noise, loss value is 10−9 for all results.

73

Figure 3.15: Reconstruction of the two scale coefficient 𝜎 given in (3.72) the 2D diffusion equation.
The synthetic data contains no random noise. From left to right: loss value is 5 ∗10−6, 5 ∗10−7, 10−8

respectively. From top to bottom: 𝐿2,H−1.

74

Figure 3.16: Reconstruction of the two scale coefficient 𝜎 given in (3.72) the 2D diffusion equation.
The synthetic data contains no random noise. From left to right: loss value is 5 ∗10−6, 5 ∗10−7, 10−8

respectively. From top to bottom: 𝑊2,𝑊2,WFR,𝑊2,UOT(1
𝛼
= 0.1),𝑊2,GUOT(1

𝛼
= 0.1),𝑊2,Mixed(𝛽 =

0.1).

75

Chapter 4: Neural Network Induced Loss Function

Non-linear inverse problems are usually solved after discretization by optimization or variants

thereof. While the gradient-based method converges well with an initial guess close to the true

solution or the optimization loss landscape is convex, its convergence behavior can be erratic and the

method can fail if the initial guess is far from the solution. In this chapter, we propose an approach

to design loss functions induced by a well-trained neural network, applied directly to the non-linear

operators and then obtained near convex landscapes, which are often simpler to solve.

The universal approximation theorem guarantees that neural networks can approximate any

continuous function to arbitrary accuracy with no constraint on the width and depth of the hidden

layers[31][63]. This offers a niche way of constructing landscapes in the scope of inverse problems.

This chapter is based on [35]

4.1 Convexify loss landscape by neural network

To be consistent with the setups in this chapter, we change the notation of input as 𝑚 instead of

\;

Suppose 𝑚 ∈ 𝐿2(𝛀), and 𝑔 ∈ 𝑌 , where 𝛀 is a smooth domain, and 𝑌 is some Banach space. We

apply deep learning methods to train a neural network, denoted by f̂−1
𝛼 (·), with 𝛼 denoting the set

of parameters of the neural networks, to approximate the inverse operator f−1. A training process

based on the 𝐿2 loss function can be formulated as:

�̂� = arg min
𝛼∈Θ

𝔏(𝛼) with 𝔏(𝛼) :=
1

2𝑁

𝑁∑︁
𝑗=1
∥𝑚 𝑗 − f̂−1

𝛼 (g 𝑗)∥2𝐿2 (Ω)

where Θ represents the space of parameters of the network. The training dataset is generated

synthetically: for each data point (g 𝑗 , 𝑚 𝑗), g 𝑗 is generated by evaluating the forward operator

76

f (𝑚 𝑗).

The neural network induced loss function is

𝑙𝑜𝑠𝑠(𝑎, 𝑏) = ∥̂f−1
�̂�
(𝑎) − f̂−1

�̂�
(𝑏)∥2

𝐿2 (Ω) , 𝑎, 𝑏 ∈ 𝛀 (4.1)

Under the neural network induced loss function, we seek to solve for following pre-conditioned

nonlinear inverse problem

f̂−1
�̂�

(
f (𝑚)

)
= f̂−1

�̂�
(g𝛿) (4.2)

And the corresponding landscape function for neural network induced loss function is of the

following form

𝑙𝑠𝑁𝑁 (𝑚) = ∥̂f−1
�̂�
(f (𝑚)) − f̂−1

�̂�
(g)∥2

𝐿2 (Ω) (4.3)

When the neural network can perfectly approximate f−1, i.e. f̂−1
�̂�

= f−1, we have

𝑙𝑠𝑁𝑁 (𝑚) = ∥f−1(f (𝑚)) − f−1(g)∥2
𝐿2 (Ω)

= ∥𝑚 − f−1(g)∥2
𝐿2 (Ω)

(4.4)

The loss landscape 𝑙𝑠𝑁𝑁 (𝑚) is convex, in fact, a quadratic functional of 𝑚. When the learning is

not perfect but sufficiently accurate, 𝑙𝑠𝑁𝑁 (𝑚) still has an advantageous landscape. This is given in

the following result.

Lemma 4.1.1. Let f̂−1
�̂�

: g ∈ 𝑌 ↦→ 𝑚 ∈ 𝐿2(Ω) be an approximation to f−1 with Fréchet derivative

at g given as 𝑑f−1
�̂�
[g]. Assume that

sup
𝑚

∥̂f−1
�̂�

(
f (𝑚)

)
− 𝑚∥𝐿2 (Ω) ≤ 𝜖 (4.5)

and

𝐴 := 1 + sup
g
∥𝑑f−1

�̂�
[g] ∥L(𝑌 ;𝐿2 (Ω)) < +∞ (4.6)

77

for some 𝜖 > 0 and g𝜹 = f (𝑚0) + 𝜹 for some 𝜹 with ∥𝜹∥𝑌 sufficiently small. Then we have that

���∥̂f−1
�̂�

(
f (𝑚)

)
− f̂−1

�̂�
(g𝜹)∥𝐿2 (Ω) − ∥𝑚 − 𝑚0∥𝐿2 (Ω)

��� ≤ 2𝜖 + 𝐴∥𝜹∥𝑌 . (4.7)

Proof. We denote by 𝑟 (𝑚) = f̂−1
�̂�

(
f (𝑚)

)
− 𝑚. We then have, by Taylor’s theorem, that

f̂−1
�̂�
(g𝜹) = f̂−1

�̂�
(f (𝑚0) + 𝜹) = 𝑚0 + 𝑟 (𝑚0) + 𝑑f−1

�̂�
[f (𝑚0)]

(
𝜹
)
+ 𝑜(𝜹),

where lim
𝜹→0

∥𝑜(𝜹)∥
𝐿2 (Ω)

∥𝜹∥𝑌 = 0. We therefore have

f̂−1
�̂�

(
f (𝑚)

)
− f̂−1

�̂�
(g𝜹) = 𝑚 − 𝑚0 + 𝑟 (𝑚) − 𝑟 (𝑚0) − 𝑑f−1

�̂�
[f (𝑚0)]

(
𝜹
)
+ 𝑜(𝜹) .

We can now use the triangle inequality to conclude that

| ∥̂f−1
�̂�

(
f (𝑚)

)
− f̂−1

�̂�
(g𝜹)∥𝐿2 (Ω) − ∥𝑚 − 𝑚0∥𝐿2 (Ω) |

≤ ∥𝑟 (𝑚) − 𝑟 (𝑚0) − 𝑑f−1
�̂�
[f (𝑚0)]

(
𝜹
)
+ 𝑜(𝜹)∥𝐿2 (Ω)

≤ ∥𝑟 (𝑚)∥𝐿2 (Ω) + ∥𝑟 (𝑚0)∥𝐿2 (Ω) + ∥𝑑f−1
�̂�
[f (𝑚0)]

(
𝜹
)
∥𝐿2 (Ω) + ∥𝑜(𝜹)∥𝐿2 (Ω)

≤ 2𝜖 + 𝐴∥𝜹∥𝑌

(4.8)

where the last step comes from the assumptions in (4.5) and (4.6). The proof is complete. □

This result says that if the noise level 𝛿 in data g𝛿 is sufficiently small and the Fréchet derivative

of f−1
�̂�

is bounded, then the loss landscape 𝑙𝑠𝑁𝑁 (𝑚) under neural network induced loss function

behaves similarly to the quadratic functional ∥𝑚 − f̂−1
�̂�
(g)∥2

𝐿2 (Ω) provided that the training process

for f̂−1
�̂�

is accurate enough. Therefore, the loss landscape under the neural network is approximately

quadratic functional with error only depending on the neural network itself and the noise level

in the dataset. It is clear that we can replace the strong assumption on the accuracy of f̂−1
�̂�

,

sup
𝑚

∥̂f−1
�̂�

(
f (𝑚)

)
− 𝑚∥𝐿2 (Ω) ≤ 𝜖 , with the weaker assumption ∥̂f−1

�̂�

(
f (𝑚)

)
− 𝑚∥𝐿2 (Ω) ≤ 𝜖 ∥𝑚∥𝐿2 (Ω) ,

in which case the 2𝜖 term in the bound (4.7) will be replaced by 𝜖 (∥𝑚∥𝐿2 (Ω) + ∥𝑚0∥𝐿2 (Ω)). The

conclusion still holds.

78

Due to the smoothing property of the forward operator, the stability of the trained inverse

operator, measured by the boundedness of its Fréchet derivative, is enough to ensure the accuracy

of the neural network reconstruction. Therefore, if we could train network approximations with

such stability properties, they have good generalization capabilities in the output space.

Lemma 4.1.2. Let 𝑚, 𝑚0 ∈ C2(Ω)∩ [𝑚, 𝑚] for some 0 < 𝑚 < 𝑚 < +∞. Then, when ∥𝑚−𝑚0∥𝐿2 (Ω)

is sufficiently small, there exists a constant 𝔠 such that

∥̂f−1
�̂�

(
f (𝑚)

)
− f̂−1

�̂�

(
f (𝑚0)

)
∥𝐿2 (Ω) ≤ 𝔠∥𝑚 − 𝑚0∥𝐿2 (Ω) (4.9)

Proof. The map 𝑚 ↦→ g := f (𝑚) is Fréchet differentiable with the derivative at 𝑚 in direction 𝑚

denoted as 𝑑f [𝑚] (𝑚). By Taylor’s theorem, we have

f̂−1
�̂�

(
f (𝑚)

)
= f̂−1

�̂�

(
f (𝑚0) + 𝑑f [𝑚0] (𝑚 − 𝑚0) + 𝑜(𝑚 − 𝑚0)

)
= f̂−1

�̂�

(
f (𝑚0)

)
+ 𝑑f−1

�̂�
[f (𝑚0)]

(
𝑑f [𝑚0] (𝑚 − 𝑚0)

)
+ 𝑜(𝑚 − 𝑚0),

where lim
𝑚→𝑚0

∥𝑜(𝑚−𝑚0)∥𝑌
∥𝑚−𝑚0∥𝐿2 (Ω)

= lim
𝑚→𝑚0

∥𝑜(𝑚−𝑚0)∥𝐿2 (Ω)
∥𝑚−𝑚0∥𝐿2 (Ω)

= 0. We therefore have

f̂−1
�̂�

(
f (𝑚)

)
− f̂−1

�̂�
(f (𝑚0)) = 𝑑f−1

�̂�
[𝑓 (𝑚0)]

(
𝑑f [𝑚0] (𝑚 − 𝑚0)

)
+ 𝑜(𝑚 − 𝑚0) .

The bound in (4.9) then follows from the assumption (4.6). □

When the class of input variable is sufficiently nice, for instance, when each𝑚 can be represented

with a small number of Fourier coefficients in a narrow frequency band, one can hope that accurate

training is achievable. When this is the case, Lemma 4.1.1 and Lemma 4.1.2 ensure that the learned

model can be utilized to facilitate the new loss landscape.

79

4.2 Numerical methods

We list two numerical methods for solving the inverse problems with neural network induced

loss functions.

4.2.1 Gradient descent iteration

Modern deep learning softwares such as pytorch and tensorflow have developed efficient auto

differentiation algorithms [11]. With the help of those algorithms, we can compute gradient of

inverse operator, i.e. 𝑑f−1
�̂�
[g] both efficiently and accurately. Due to the chain rule, we have that

𝜕𝑙𝑠𝑁𝑁 (𝑚)
𝜕𝑚

= (̂f−1
�̂�
(f (𝑚)) − f̂−1

�̂�
(g))𝑑f−1

�̂�
[f (𝑚)]𝑑f [𝑚] (4.10)

where 𝑑f [𝑚] represents the gradient of forward operator f at direction of 𝑚. We can solve the

inverse problem by minimizing the landscape function with gradient descent or gradient-based

algorithms such as ADAM [72]

4.2.2 Neumann series iteration

When an accurate training of f−1 is not available, we can train a good approximation to the

inverse, that is, when the operator I − f̂−1
�̂�
◦ f is not zero but small in an appropriate operator

norm, the inverse problem (4.2) can be solved by using Neumann series. More precisely, we can

rewrite (4.2) as

𝑚 − 𝐾 (𝑚) = f̂−1
�̂�
(g𝛿), 𝐾 := I − f̂−1

�̂�
◦ f

whose solution can be expressed in a Neumann series as

𝑚 = (I − 𝐾)−1 (̂f−1
�̂�
(g𝛿)) =

∞∑︁
𝑗=0
𝐾 𝑗

(̂
f−1
�̂�
(g𝛿)

)
. (4.11)

The better the approximation f̂−1
�̂�

is to f−1, the faster the series converges.

80

4.3 Case study: full wave inversion

Full waveform inversion (FWI) refers to the process of extracting information on physical

parameters of wave equations from data related to the solutions to the wave equations [4, 17, 19, 21,

26, 37, 41, 91, 99, 109, 110, 111, 122, 132, 134, 137]. In seismic imaging, this is manifested as the

problem of reconstructing the speed distribution of seismic waves in the interior of the Earth from

measured wave field data on the earth surface. The sources of the measured waves could come either

from nature, such as earthquakes or from geophysical exploration activities by humankind, such

as air guns and seismic vibrators. We refer interested readers to [22, 48, 103, 138] and references

therein for overviews on the recent development in the field of FWI for geophysical applications.

While the term FWI was mainly coined in the seismic imaging community, FWI also has a wide

range of applications in other imaging applications, such as in medical ultrasound imaging [7, 16,

60, 67, 81, 93, 96, 141]. From the practical point of view, the main difference between geophysical

and medical FWI is that the quality of the dataset collected in medical applications, both in terms of

the variety of source-detector configurations can be arranged and in terms of the frequency contents

of the incident sources, is much richer than that of the geophysical FWI dataset.

For the sake of concreteness, let us consider the simplest model of acoustic wave propagation in

a heterogeneous medium Ω with wave speed field 𝑚(x) > 0. The wave field 𝑢 solves

1
𝑚2(x)

𝜕2𝑢

𝜕2𝑡
− Δ𝑢 = 0, in (0, +∞) ×Ω
𝜕𝑢

𝜕n
= ℎ(𝑡, x), on (0, +∞) × 𝜕Ω

(4.12)

with an appropriate initial condition. Here, n is the unit outward normal vector of the domain bound-

ary at x ∈ 𝜕Ω. The data that we measure is time traces of the solution to the wave equation (4.12)

at a set of detector locations, say Γ ⊂ R𝑑 , for a period of time, say 𝑇 , that is,

𝑔 := 𝑢(𝑡, x) | (0,𝑇]×Γ . (4.13)

81

The objective of FWI in this setting is to recover the unknown wave speed field 𝑚 in the wave

equation (4.12) from the measured data 𝑢(𝑡, x) | (0,𝑇]×Γ collected in a multi-source multi-detector

configuration. This is a challenging inverse problem that has rich mathematical and computational

content. The main computational strategy, due to the lack of explicit/semi-explicit reconstruction

methods, in solving the FWI inverse problem as well as many other model-based inverse problems,

is the classical 𝐿2 least-squares formulations where we search for the inverse solution by minimizing

the 𝐿2 mismatch between model predictions and observed data. To formulate this more precisely,

we assume that we collect data from 𝑁𝑠 acoustic sources {ℎ𝑠}𝑁𝑠

𝑠=1, and we denote by 𝑓 (𝑚; ℎ𝑠) the

forward model that takes 𝑚 to the corresponding wave field data 𝑔𝑠 (1 ≤ 𝑠 ≤ 𝑁𝑠). Then the inverse

problem of reconstructing 𝑚 from measured data 𝑔𝛿𝑠 aims at solving the following operator equation:

f (𝑚) = g𝛿 (4.14)

where

f (𝑚) :=

©«

𝑓 (𝑚; ℎ1)
...

𝑓 (𝑚; ℎ𝑠)
...

𝑓 (𝑚; ℎ𝑁𝑠
)

ª®®®®®®®®®®®®¬
and g𝛿 :=

©«

𝑔𝛿1
...

𝑔𝛿𝑠
...

𝑔𝛿
𝑁𝑠

ª®®®®®®®®®®®®¬
.

The superscript 𝛿 denotes the fact that the datum 𝑔 is polluted by measurement noise. The classical

𝐿2 least-squares method performs the reconstruction by searching for𝑚 that minimizes the mismatch

functional (with the possibility of adding a regularization term):

Ψ(𝑚) :=
1
2
∥f (𝑚) − g𝛿∥2[𝐿2 ((0,𝑇]×Γ)]𝑁𝑠

. (4.15)

This challenging numerical optimization problem has been extensively studied in the past three

decades. Many novel methods have been developed to address two of the main challenges: (i) the

high computational cost needed to reconstruct high-resolution images of 𝑚, and (ii) the abundance

82

of local minimizers (due to the non-convexity of the least-squares functional) that trap iterative re-

construction algorithms; see for instance [22, 48, 120] for a detailed explanation of those challenges

among others.

In recent years, there has been great interest in the FWI community to use deep learning tech-

niques based on neural networks to replace the classical least-squares based inversion methods [1,

6, 30, 44, 46, 64, 68, 70, 89, 94, 117, 127, 128, 129, 130, 143, 145, 149, 150, 151]. Assume that we

are given a set of sampled data

{g 𝑗 := (𝑔 𝑗1, · · · , 𝑔 𝑗 𝑠, · · · , 𝑔 𝑗𝑁𝑠
)𝔗, 𝑚 𝑗 }𝑁𝑗=1 , (4.16)

where {𝑚 𝑗 }𝑁𝑗=1 are a set of 𝑁 velocity profiles sampled from a given distribution and {g 𝑗 }𝑁𝑗=1 are the

corresponding wave field predictions generated from 𝑁𝑠 sources {ℎ𝑠}𝑁𝑠

𝑠=1 with the model g = f (𝑚).

Deep learning methods try to train a neural network, denoted by f−1
𝛼 (g), with 𝛼 denoting the set of

parameters (that is, the weight matrices and the bias vectors) of the neural networks, that represents

the inverse operator f−1. A training process based on the 𝐿2 loss functional can be formulated as:

�̂� = arg min
𝛼∈Θ

𝔏(𝛼) with 𝔏(𝛼) :=
1

2𝑁

𝑁∑︁
𝑗=1
∥𝑚 𝑗 − f−1

𝛼 (g 𝑗)∥2𝐿2 (Ω)

where Θ represents the network’s space of parameters, a regularization term can be added to the

loss function 𝔏(𝛼) to help stabilize the training process. The number of samples 𝑁 needs to be

large enough in order for 𝔏(𝛼) to be a good approximation to the expectation of the mismatch over

the distribution: E𝑚 [∥𝑚 − f−1
𝛼 (g(𝑚))∥2𝐿2 (Ω)]. Many other loss functions can be used, but we will

not dive into this direction. Note that since we know, the forward operator f and are only interested

in learning its inverse operator, the datasets used in the training process are synthetic: for each data

point (g 𝑗 , 𝑚 𝑗), g 𝑗 is constructed by solving the wave equation (4.12) with the given speed field 𝑚 𝑗

and evaluate (4.13).

Numerical experiments, such as those documented in [6, 70, 89, 127, 143, 145, 149, 150, 151],

showed that, with sufficiently large training datasets, it is possible to train highly accurate inverse

83

operators that can be used to directly map measured wave field data into the velocity field. This,

together with the recent success in learning inverse operators for other inverse problems (see for

instance [2, 10, 20, 47, 113, 124] for some examples) has led many to believe, probably overly

optimistically, that one can completely replace classical computational inversion with offline deep

learning.

Despite the tremendous success in deep learning for FWI, it is still computational challenging

to train a once-for-all inverse machine f−1
𝛼 . First, with the aim of reconstructing high-resolution

images of the velocity field 𝑚(x), the size of the neural networks to be constructed as a discrete

representation of f−1
𝛼 is prohibitively large. Second, it is well known that f : 𝑚 ↦→ g is a smoothing

operator (between appropriate spaces; see for instance [66] and references therein for more precise

mathematical characterization of the statement). The inverse operator is therefore de-smoothing.

Learning such operators requires the ability to capture precisely high-frequency information in

the training data, and this is very hard to do in the training process as deep neural networks tend

to capture low-frequency components of the data much more efficiently than the high-frequency

components [112, 118, 144]. On top of the above, the inverse operator f−1
𝛼 we learned from model-

generated data very often has limited generalization, making it challenging to apply the operator to

new measured datasets.

In this chapter, we propose an offline-online computational strategy for coupling classical least-

squares based computational inversion with deep learning based approaches for FWI to achieve

advantages that can not be achieved with only one of the components. Roughly speaking, we utilize

offline trained approximate inverse of the operator f to pre-condition online least-squares based

numerical reconstructions. Instead of pursuing high-quality training of highly accurate inverse

operators, we train neural networks that only capture the main features in the velocity field. This

relaxes dramatically the requirement on both the size of the dataset and the computational resources

needed in the training process, and the trained model is more generalizable to other classes of

velocity models. Meanwhile, the offline trained approximate inverse is sufficient as a nonlinear

pre-conditioner to improve the speed of convergence of the classical least-squares based FWI

84

numerical reconstruction in the online stage of the inversion.

The rest of this chapter is organized as follows. We first describe the proposed coupling strategy

in Section 4.4 in the abstract setting. We then present some preliminary understanding of the training

and reconstruction stage of the method in Section 4.5. In Section 4.6 we discuss the details of the

implementation of the strategy. Extensive numerical simulations are presented in Section 4.7 to

demonstrate the performance of the learning-inversion coupling.

4.4 Coupling learning with FWI

Our main objective here is to couple the deep learning based image reconstruction approach

with the classical least-squares based image reconstruction method for FWI. More precisely, we

utilize the approximate inverse we learned with neural networks to construct a new loss function for

least-squares based FWI reconstruction from measured data.

4.4.1 Robust offline learning of main features

In the offline learning stage, we use deep learning to train an approximate inverse of the operator

f. As we outlined in the previous section, our main argument is that the learning process can only

be performed reliably on a small number of dominant features of the velocity field. First, resolving

all details of the velocity field requires over-sized neural networks that demand an exceedingly large

amount of training data, not to mention that such networks are computationally formidable to train

reliably. Second, large neural networks or large sizes display serious frequency bias in picking

up frequency contents in the training datasets [144], making it inefficient to fit high-frequency

components of the velocity field. Despite all the challenges in resolving high-frequency features, it

has been shown in different scenarios that learning low-frequency components of the velocity profile

can be done in a robust manner [88, 115, 129]. This means that if we take the Fourier representation,

the lower Fourier modes of the inverse operator can be learned stably. This good low-frequency

approximate inverse is our main interest in the learning stage (even though an accurate inverse itself

would be better if one can realistically have it).

85

Let 𝔐 be the feature map we selected, and 𝔪 the corresponding feature vector, that is,

𝔐 : 𝑚(x) ∈ M ↦−→ 𝔪 ∈ M ,

whereM ⊆ 𝐿2(Ω) is the class of velocity field that we are interested in andM is the space of the

feature vectors. Motivated by the analysis of weighted optimization in [38, 39], we train a network,

which we still denote as f−1
𝛼 : g ↦→ 𝔪, using the synthetic dataset (4.16), through the optimization

problem

�̂� = arg min
𝛼∈Θ

L(𝛼) with L(𝛼) :=
1

2𝑁

𝑁∑︁
𝑗=1

𝝁 ⊛ (
𝔪 𝑗 − f−1

𝛼 (g 𝑗)
)2

M
(4.17)

where the weight vector 𝝁 is selected to weigh the loss heavily on the features we are interested in

while damping the features that are hard to learn stably. The � is used to denote the componentwise

product between the vectors involved. The selection of the feature vectors as well as the weighting

vector 𝝁 will be discussed in Section 4.7 in more detail. For the purpose of illustrating the main

idea, let us point out that one example is to think of (4.17) as the equivalence of

�̂� = arg min
𝛼∈Θ

1
2𝑁

𝑁∑︁
𝑗=1

∫
Ω

(∫
Ω

`(x − y)
(
𝑚 𝑗 (y) − f−1

𝛼 (g 𝑗) (y)
)
𝑑y

)2
𝑑x

in the Fourier domain, i.e. when the features we use are Fourier modes, with 𝝁 being the Fourier

transform of the kernel `(x). If we take ` to be a smoothing kernel, such as a Gaussian kernel,

𝝁 will decay fast with the increase of the frequency. In such a case, the learning problem (4.17)

focuses on the lower Fourier modes of the velocity field 𝑚.

Weighted optimization schemes of the form (4.17) with weight 𝝁 to emphasize dominant

features in the learning problems have been extensively studied in the learning and inverse problems

community; see [39] and references therein. When the feature we selected are Fourier basis, it has

been shown that the correct selection of the weight 𝝁 in the training scheme can lead to more robust

learning results for a class of models f−1
𝛼 following certain distributions, sometimes at the expense

of learning accuracy, with better generalization capabilities [39]. This is the main motivation for us

86

to adopt this strategy for our purpose in this research.

4.4.2 New loss function for online inversion

In the online reconstructions stage, we utilize the approximate inverse we trained to construct a

new loss function for FWI image reconstruction from given noisy data g𝛿. More precisely, instead

of solving the problem (4.14), we aim to solve the modified model

f̂−1
�̂�

(
f (𝑚)

)
= f̂−1

�̂�
(g𝛿) (4.18)

where

f̂−1
�̂�

:= 𝔐−1 ◦ f−1
�̂�

: g ↦→ 𝑚

is the learned approximate to f−1 (while f−1
�̂�

: g ↦→ 𝔪 is the learned representation in 𝔐).

The least-squares formulation for the reconstruction problem now takes the form

𝑚 = arg min
𝑚∈M

Φ(𝑚) , (4.19)

with

Φ(𝑚) :=
1
2
∥̂f−1
�̂�

(
f (𝑚)

)
− f̂−1

�̂�
(g𝛿)∥2

𝐿2 (Ω) +
𝛾

2
∥𝔐−1(𝝁−1 ⊛ 𝔪)∥2

𝐿2 (Ω) . (4.20)

The last term in the objective functional is a Tikhonov regularization functional that imposes a

smoothness constraint on the target velocity field. This smoothness constraint is selected such that

it is consistent with the training process. The natural initial guess for any iterative solution scheme

for this minimization problem is 𝑚0 := f̂−1
�̂�
(g𝛿).

Let us emphasize that there is a significant difference between the 𝐿2 loss function Φ(𝑚) we

introduced in (4.20), ignoring the regularization term, and the standard 𝐿2 loss function Ψ(𝑚)

defined in (4.15). Our loss function Φ(𝑚) measures the mismatch between the approximations of

the predicted velocity field and the true velocity field corresponding to the measured data, while

the standard loss function Ψ(𝑚) measures the mismatch between predicted wave field data with

87

measured wave field data. In other words, our loss function works on the parameter space (also

called the model space in the FWI literature, that is, the space of the velocity field) while the

standard loss function is defined on the signal space (that is the space of wave field signals at

the detectors). With reasonably-trained f̂−1
�̂�

, the functional Φ(𝑚) has advantageous landscape for

optimization purpose as we will demonstrate in the numerical simulations in Section 4.7.

4.4.3 The benefits of the coupling approach

The offline-online coupling scheme we proposed allowed us to focus on training a robust

approximate inverse instead of the exact inverse. This makes the learning process more stable

and also requires less computational resources (in terms of the amount of data, the size of the

network, and the computational cost for optimization) than training an accurate inverse. Moreover,

the sacrifice in accuracy brings better generalizability for the learned approximate inverse. On the

computational side, the trained approximate inverse serves as a “preconditioner" for the inversion

process. It can not only provide a good initial guess for the reconstruction but also simplify the

landscape of the optimization problem.

We finish this section with the following remark. In the ideal case when all the operators

involved are invertible as they should be, the solution to (4.18) is identical to the solution to (4.14),

assuming that g indeed lives in the range of f. Therefore, our formulation does not change the true

solution to the original inverse problem. However, as we will see, the new formulation utilizes the

result of learning to facilitate the FWI reconstruction in terms of saving computational cost as well

as making the optimization landscape more desirable.

4.5 Formal understanding of the coupling

We now attempt to gain a more systematic understanding of the coupling strategy. As we have

argued in the previous sections, it is computationally challenging to train neural networks that

are accurate approximations of the inverse operator and are very generalizable at the same time.

However, there is certainly some dominant information in the inverse operator that we could extract

88

with learning and this is the approximate inverse that we are interested in constructing.

4.5.1 Elements of network training

Due to the fact that the training data we have are generated from exactly the same operator we

are trying to represent with the neural network, the learning process we have is much more under

control than those purely data-driven learning problems in applications. Here we highlight a few

critical issues in the learning process without getting into the details of the implementation of the

learning algorithm.

Sampling training data. To learn the inverse operator, we need to pay attention to both its input

space and its output space. While our focus will be on learning the low-frequency component of

the inverse operator, we want the training data to include as much high-frequency information as

possible to gain generalization capability in the input space. Let Kout be the frequency range for

the network output that we are interested in recovering and Kin the frequency range of the velocity

fields that generated the wavefield data. We construct the training dataset as

{𝑚 𝑗 (x), g := f (𝑚 𝑗 (x) + 𝑚 𝑗 (x))}𝑁𝑗=1

where 𝑚 𝑗 (x) are selected such that F (𝑚 𝑗) (k) = 0 ∀k ∈ Kout, and F (𝑚 𝑗) (k) ≠ 0 ∀k ∈ Kin\Kout

(F (𝑚) denoting the Fourier transform of 𝑚). In other words, we train the network with input wave-

field data having richer frequency content of the velocity field than the output velocity field. This

construction enriches the frequency content of the input data but does not increase the computational

cost of the training process.

The well-known result on the differentiability of the data g with respect to 𝑚, quoted in the

proposition below, indicates that the input space of the inverse operator, i.e., the range of the forward

operator, is quantitatively smoother than the output space (the velocity space) that we are working

with. Therefore, a well-trained network approximation should have good interpolation ability

in applications when the space of velocity field we are interested in working with is sufficiently

89

smooth.

Proposition 4.5.1 ([9, 32, 66]). Let Ω be a smooth domain and ℎ(𝑡, x) be the restriction of a C1

function on 𝜕Ω. Assume further that 𝑚 ∈ C2(Ω̄) ∩ [𝑚, 𝑚] for some 0 < 𝑚 < 𝑚 < +∞. Then the

map: f (𝑚) : 𝑚 ↦−→ g is Fréchet differentiable at any 𝑚 ∈ C2(Ω̄) ∩ [𝑚, 𝑚].

The result is standard. We refer interested readers to [9, 32, 66] and references therein for more

precise formulations of it in different scenarios. This result also ensures that if we can train a stable

network, then the learning quality is guaranteed; see Lemma 4.1.2 below.

Network training error. Our main objective of this work is to focus the learning process on the

low-frequency content of the output of the inverse operator. We do this with the weighted optimiza-

tion scheme (4.17) by selecting weight 𝝁 that heavily penalizes the low-frequency component of

the mismatch of true data and the network prediction. The impact of such weighting schemes on the

learning results have been analyzed extensively; see [38, 39] and reference therein. We illustrate

this in an extremely simplified setting. Let F := (f−1)′(𝑚0) be the linearization of f−1 at 𝑚0 for a

one-dimensional medium. Assume that the learning loss function L(𝛼) in (4.17) is minimized to

the order of Y2 in the training process. Then on the leading order, the trained F satisfies

𝝁 ⊛ (m − FG) ∼ O(Y),

where m = [m1, · · · ,m𝑁] is the matrix whose columns are vectors of the Fourier coefficients of the

training velocity samples {𝑚 𝑗 }𝑁𝑗=1, G = [g1, · · · , g𝑁] is a matrix whose columns are vectors of the

input data, and O(Y) is a diagonal matrix of size order Y. The trained linearized inverse operator,

when applied to a new input data g𝛿, gives the result

Fg𝛿 ∼
(
m − 𝝁−1 ⊛ O(Y)

)
G𝔗 (GG𝔗)−1g𝛿 .

The nature of 𝝁 indicates that the relative error in the learned output is more significant in the

high-frequency Fourier modes.

90

4.5.2 Computational simplifications

The reconstruction stage of the coupling can be greatly simplified when the training of the neural

network approximation is sufficiently accurate.

First, the coupling method will degenerate into a deep learning based method when we have

confidence in our ability to train an accurate deep neural network representation of the inverse

operator in FWI. Indeed, when f̂−1
�̂�

= f−1, that is, f̂−1
�̂�

is exactly the inverse, the reconstruction

step (4.19) simplifies to

𝑚 = arg min
𝑚∈M

1
2
∥𝑚 − f̂−1

�̂�
(g𝛿)∥2

𝐿2 (Ω) +
𝛾

2
∥∇𝑚∥2

𝐿2 (Ω) ,

assuming, only for the sake of simplifying the notation, that the weighting operator `(x − y) is

taken as an integral operator such that 𝝁−1(k) = k. This gives a fast inversion for the new data and

immediately leads to the optimal selection of the regularization parameter when the regularization

term is not too complicated. In this case, we simply did a post-process on the deep learning

reconstruction given by the operator f̂−1
�̂�

. The solutions to this are explicitly given as

𝑚 = (I + 𝛾Δ)−1̂f−1
�̂�
(g𝛿) ,

where I is the identity and Δ is the Laplacian operator. Therefore, 𝑚 is simply a smoothed version

of the result produced by the trained neural network, f̂−1
�̂�
(g𝛿). The exact form of the smoothing

effect depends on the selection of `.

Second, training of inverse operator f−1 of FWI may be difficult due to computational or

analytical reasons. Fortunately, even if we do not possess an accurate training of f−1, we can

still gain something by using Neumann series, as we discussed above 4.2.2. However, Neumann

series do require we can train a fairly good approximation to the inverse, that is, when the operator

I − f̂−1
�̂�
◦ f is not zero but small in an appropriate operator norm. For the training we had, see more

discussion in Section 4.7, a few terms of the Neumann series often provide sufficient accuracy for

91

the reconstruction.

Let us emphasize that by the informal analysis in Section 4.5.1, the error in the learning implies

roughly that |F
(
𝑚 − 𝐾 (𝑚)

)
(k) | ∼ Z (k)∥𝑚∥𝐿2 (Ω) with Z (k) large for large |k|. Due to the fact that

the operator norm of I − 𝐾 is bounded below by maxk Z (k), this means that the convergence speed

of the Neumann series is controlled by the worst training error in the (high-frequency) Fourier

modes.

4.5.3 Utilizing learning outside of training domain

It is essential to point out that the weight 𝝁 in the weighted training scheme (4.17) should be

selected to emphasize the low-frequency components of the output and penalize the high-frequency

components. It should not altogether remove the high-frequency components. If it does, then the

high-frequency components of the velocity field in the reconstruction stage can not be recovered with

the optimization problem (4.19). This is an obvious yet important observation that we summarize

as a lemma to emphasize it.

Lemma 4.5.2. Let f̂−1
�̂�

be such that for any 𝑚, F [̂f−1
�̂�
(f (𝑚))] (k) = 0 ∀|k| > 𝑘0, and 𝑚 be

reconstructed from (4.19) with a gradient-based iterative scheme or the Neumann series method

in (4.11). Then F [𝑚] (k) = 0 ∀|k| > 𝑘0.

Proof. Under the assumption on f̂−1
�̂�

, it is straightforward to check that F (𝑚0) (k) = 0 (𝑚0 :=

f̂−1
�̂�
(g𝛿)) ∀|k| > 𝑘0, and F (𝐾 𝑗𝑚0) (k) = 0 ∀|k| > 𝑘0, for any 𝑗 ≥ 1. Therefore F (𝑚) (k) = 0

∀|k| > 𝑘0. Let 𝑚ℓ be the ℓ-th iteration of a gradient based iterative scheme, then F (𝑟 (𝑚ℓ)) (k) = 0

(𝑟 (𝑚) := f̂−1
�̂�

(
f (𝑚)

)
− f̂−1

�̂�
(g𝛿)) ∀|k| > 𝑘0. This leads to the fact that F

(
𝑑Φ[𝑚ℓ] (𝛿𝑚)

)
(k) = 0 for

any 𝛿𝑚. Therefore, F (𝑚ℓ+1) (k) = 0 ∀|k| > 𝑘0. The rest of the proof follows from an induction. □

For any velocity field that can be written as 𝑚𝑏 + 𝛿𝑚 with 𝑚𝑏 the prediction of the trained

neural network and 𝛿𝑚 outside of the range of the neural network but either has a small amplitude

(compared to that of 𝑚) or has large amplitude by small support compared to the size of the domain

(in which case 𝛿𝑚 is very localized), we can recover 𝛿𝑚 with an additional linearized reconstruction

92

step. We linearize the inverse problem around the network prediction f−1
�̂�
(g𝛿). The reconstruction

can be performed with a classical migration scheme or equivalently by minimizing the following

quadratic approximation to the functional (4.20):

Ψ𝑄 (𝑚) =
1
2

f (𝑚𝑏) + 𝑑f [𝑚𝑏]
(
𝑚 − 𝑚𝑏

)
− g𝛿

2

[𝐿2 ((0,𝑇]×Γ)]𝑁𝑠
+ 𝛾

2
∥∇𝑚∥2

𝐿2 (Ω) , (4.21)

where 𝑚𝑏 := f−1
�̂�
(g𝛿).

4.6 Computational implementation

We now provide some details on the implementation of the coupling framework we outlined in

the previous section. For computational simplicity, we focus on the implementation in two spatial

dimensions even though the methodology itself is independent of the dimension of the problem.

4.6.1 Computational setup

Figure 4.1: The two-dimensional computational domain Ω = (0, 𝐿) × (−𝐻, 0) for wave propagation.
Periodic boundary conditions are imposed on the left and right boundaries. In geophysical appli-
cations, sources and detectors are placed on the top boundary (left) while in medical ultrasound
applications, sources (red dots) and detectors (blue triangles) can be placed on both the top and the
bottom boundaries (right).

For the purpose of being concrete, we first describe briefly the geometrical setting under which

we implement the learning and reconstruction algorithms. Let x = (𝑥, 𝑧). The computational

domain of interests is Ω = (0, 𝐿) × (−𝐻, 0). We impose periodic boundary conditions on the left

and right boundaries of the domain. Probing sources and detectors are placed on the top and bottom

93

boundaries Γ𝑡 = (0, 𝐿) × {0} and Γ𝑏 = (0, 𝐿) × {−𝐻}, depending on the exact applications we have

in mind. In geophysical applications, source and detectors are both placed on the top boundary while

in medical ultrasound type of applications, source and detectors could be placed on the opposite

sides; see Figure 4.1 for an illustration. Under this setup, the wave equation (4.12) with a source

ℎ(𝑡, 𝑥) on the top boundary and a reflective bottom boundary takes the form

1
𝑚2

𝜕2𝑢

𝜕2𝑡
− Δ𝑢 = 0, in (0, 𝑇] ×Ω,

𝑢(0, 𝑥, 𝑧) = 𝜕𝑢

𝜕𝑡
(0, 𝑥, 𝑧) = 0, (𝑥, 𝑧) ∈ (0, 𝐿) × (−𝐻, 0),

𝑢(𝑡, 0, 𝑧) = 𝑢(𝑡, 𝐿, 𝑧), (𝑡, 𝑧) ∈ (0, 𝑇] × (−𝐻, 0),
𝜕𝑢

𝜕𝑧
(𝑡, 𝑥,−𝐻) = 0, (𝑡, 𝑥) ∈ (0, 𝑇] × (0, 𝐿),
𝜕𝑢

𝜕𝑧
(𝑡, 𝑥, 0) = ℎ(𝑡, 𝑥), (𝑡, 𝑥) ∈ (0, 𝑇] × (0, 𝐿).

(4.22)

Similar equations can be written down for other types of source-detector configurations.

4.6.2 The neural network for learning

With the above computational setup, we can generate the training dataset (4.16) by solving

the wave equation (4.22) with given source functions. We will describe in detail how the training

dataset is generated, including the spatial-temporal discretization of the wave equation (4.22).

Input
Signal g

Latent
Variable

Recovered
Signal

𝐷𝛼 (𝐸𝛼 (g))

Predicted
velocity
field 𝑚

Encoder (𝐸𝛼)

Decoder (𝐷 𝛼)

Predictor (𝑃
𝛼)

Figure 4.2: Network flow for learning the approximate inverse operator. Training objective is to
select 𝛼 such that g = 𝐷𝛼 (𝐸𝛼 (g)) and 𝑚 = 𝑃𝛼 (𝐸𝛼 (g)) for every datum pair (g, 𝑚).

94

We construct an autoencoder network scheme to represent the inverse operator. The learning

architecture contains three significant substructures: an encoder network 𝐸𝛼, a decoder network

𝐷𝛼, and an additional predictor network 𝑃𝛼; see Figure 4.2 for an illustration of the network flow.

More information on the training process and the construction of the encoder, the decoder and the

predictor is documented in Appendix B. The encoder-decoder substructure is trained to regenerate

the input data, while the predictor reads the latent variable to predict velocity field 𝑚. In terms of

the input-output data, the network training aims at finding the network parameter 𝛼 such that

g 𝑗 = 𝐷𝛼 (𝐸𝛼 (g 𝑗)) and 𝑚 𝑗 = 𝑃𝛼 (𝐸𝛼 (g 𝑗)), 1 ≤ 𝑗 ≤ 𝑁 . (4.23)

This is done by a minimization algorithm that minimizes a combined ℓ1-ℓ2 loss function with the ℓ1

loss for the encoder-decoder substructure while ℓ2 for the encoder-predictor substructure. More

precisely, we train the network by solving

�̂� = arg min
𝛼∈Θ

L̃(𝛼),

with

L̃(𝛼) :=
1
𝑁

𝑁∑︁
𝑗=1
∥g 𝑗 − 𝐷𝛼 (𝐸𝛼 (g 𝑗))∥ℓ1 + 1

2𝑁

𝑁∑︁
𝑗=1
∥𝝁 ⊛

(
𝔪 𝑗 − 𝑃𝛼 (𝐸𝛼 (g 𝑗))

)
∥2M .

(4.24)

While the ℓ1 loss for the encoder-decoder substructure is standard in the learning literature, the

second part of the loss function is simply what we introduced in (4.17). Once the training is

performed, the approximated inverse is taken as

f−1
�̂�

:= 𝑃�̂� ◦ 𝐸�̂� .

Let us emphasize that the primary motivation for us to adopt this autoencoder framework, instead

of directly training a network for f−1
�̂�

, is to take advantage of the commonly observed capability

of autoencoders to identify lower dimension features from high-dimensional input data. That is,

95

very often, one can train the autoencoder such that the latent variable 𝐸𝛼 (g) contains most of the

valuable information in g but has a much lower dimension than g. This lowers the dimension of the

predictor network and therefore makes it easier to train the overall network. Moreover, the weighted

optimization we used in the encoder-predictor substructure further stabilizes the learning process by

focusing on matching the lower-frequency components of the output.

4.6.3 Learning-assisted FWI inversion

We tested two different algorithms to implement the pre-conditioned FWI reconstruction method,

that is, the solution to the least-squares optimization problem (4.19).

Quasi-Newton method with adjoint state. We implemented a quasi-Newton method based on the

BFGS gradient update rule [49] for the numerical reconstruction. This BFGS optimization algorithm

itself is standard, so we will not describe it in detail here. The algorithm requires the gradient of the

loss function Φ(𝑚) defined in (4.20). We evaluate the gradient with a standard adjoint state method.

The procedure is documented in Algor 1 . The main complication that the learning stage brings into

the adjoint state calculation is that we will need the transpose of the gradient of the neural network

with respect to its input. This imposes restrictive accuracy requirements on the training of the neural

network in the sense that we need the network to learn not only the map from measurement to the

velocity field but also the derivative of the operator.

Neumann series method. The Neumann series method based on (4.11) is more training friendly

since it does not require the adjoint operator of the learned approximate inverse f̂−1
�̂�

. We implemented

a 𝐽-term truncated Neumann series approximation

𝑚 =

𝐽−1∑︁
𝑗=0
𝐾 𝑗

(̂
f−1
�̂�
(g𝛿)

)
. (4.25)

The computational procedure is summarized in Algorithm 2 in Appendix B.

96

4.7 Numerical experiments

We now present some numerical simulations to illustrate some of the main characteristics of the

proposed framework of coupling deep learning with model-based FWI reconstruction. We fix the

computational domain to be Ω = [0, 1] × [−1, 0], that is, 𝐿 = 𝐻 = 1. In this proof-of-concept study,

we use acoustic source functions that can generate data at all frequencies. We leave it as future

work to consider the situation where low-frequency wavefield data are impossible to measure in

applications such as seismic imaging.

4.7.1 Velocity feature models

In this work, we consider two different feature models for the output velocity field of the neural

network.

Generalized Fourier feature model. In the first model, we represent 𝑚(x) as linear combinations

of the Laplace-Neumann eigenfunctions on the computational domain Ω. To be precise, let (_k, 𝜑k)

(k = (𝑘𝑥 , 𝑘𝑧) ∈ N0 × N0) be the eigenpair of the eigenvalue problem:

−Δ𝜑 = _𝜑, in Ω, n · ∇𝜑 = 0, on 𝜕Ω .

where n(x) is the unit outward normal vector of the domain boundary at x ∈ 𝜕Ω. Then _k =

(𝑘𝑥𝜋)2 + (𝑘𝑧𝜋)2, and

𝜑k(𝑥, 𝑧) = cos(𝑘𝑥𝜋𝑥) cos(𝑘𝑧𝜋𝑧) .

In our numerical simulations, we take

𝑚(x) =
𝑀∑︁

𝑘𝑥 ,𝑘𝑧=0
𝔪(k) 𝜑k(𝑥, 𝑧) , (4.26)

for some given 𝑀. The generation of the random coefficients 𝔪(k) will be described in detail in

the next section.

97

Gaussian mixture model. The second feature model we take is the Gaussian mixture model.

More precisely, we represent 𝑚(x) as a superposition of Gaussian functions:

𝑚(x) = 𝑚0 +
𝑀∑︁
𝑘=1

𝑐𝑘𝑒
−

1
2
(x−x𝑘0)

𝔗Σ−1
𝑘
(x−x𝑘0)

. (4.27)

With a small number of highly localized Gaussians, successful reconstruction of such a model

could provide inside on source locating problems in seismic applications [24]. This is the primary

motivation for us to consider this model.

4.7.2 Learning dataset generation

To generate training data, we generate a set of velocity fields and then solve the wave equation

model (4.22) with source functions {ℎ𝑠}𝑁𝑠

𝑠=1 to get the corresponding wave field data at the detectors.

Generating velocity fields. We first construct a set of 𝑁 random velocity fields {𝑚 𝑗 }𝑁𝑗=1 using the

representation (4.26) or (4.27). We do this by randomly choosing the coefficients {𝔪(k)}k∈N0×N0

from the uniform distributionU[−0.5, 0.5] when considering the model (4.26) and the coefficients

𝑐𝑘 from U[0, 5], x𝑘0 from U(−𝐻, 0) × U(0, 𝐿), (Σ𝑘)𝑖 𝑗 from U[0, 0.2] + 0.1 and 𝑚0 = 10 when

using the model (4.27). To mimic the frequency content of realistic velocity fields, we force the

coefficient 𝔪(k) in the random Fourier model (4.26) to decay asymptotically as

𝔪(k) ∼ 𝔪(k) [(𝑘𝑥 + 1) (𝑘𝑧 + 1)]−𝛽, for large |k| =
√︃
𝑘2
𝑥 + 𝑘2

𝑧 (4.28)

with 𝛽 ≥ 0 given in the concrete examples later.

To make sure that the velocity fields we generated are physically meaningful, we rescale them

so that the velocity lives in a range [𝑚, 𝑚] (0 < 𝑚 < 𝑚 < +∞). The linear rescaling is done through

the operation

𝑚(x) ←
𝑚 − 𝑚
𝑚∗ − 𝑚∗

𝑚(x) +
𝑚𝑚∗ − 𝑚𝑚∗
𝑚∗ − 𝑚∗

, (4.29)

98

where 𝑚∗ := max
x
𝑚(x) and 𝑚∗ := min

x
𝑚(x).

In Figure 4.3 we show typical samples of the velocity field generated from the aforementioned

process. The top panel of Figure 4.3 shows the surface plots of 4 different randomly generated

velocity fields using the model (4.26) with 𝑀 = 4. The bottom panel presents the surface plots of

4 random realizations of the velocity field given by the model (4.27) with 𝑀 = 2. Random noise

at different levels will be added to the sampled velocity fields to study the generalization of the

learning scheme we have. The exact level of noise will be given later in concrete examples.

Figure 4.3: Random samples of the velocity field for training of the neural networks. Top row:
velocity fields generated from (4.27) with 𝑀 = 4; bottom row: velocity fields generated from (4.26)
with 𝑀 = 2.

Finite difference scheme for the wave equation. We use the time-domain stagger-grid finite

difference scheme that adopts a second-order in both the time and the spatial directions to solve the

wave equation (4.22). Precisely, the discretization is performed with elements over the Cartesian

grids formed by (𝑥𝑘 , 𝑧𝑙) = (𝑘Δ𝑥, 𝑙Δ𝑧), 𝑘, 𝑙 = 0, 1, ..., 𝐾 with Δ𝑥 = 𝐿/𝐾 and Δ𝑧 = 𝐻/𝐾. The

receivers are equally placed at the bottom surface, coinciding with the grid points, as documented

in the right panel of Figure 4.1, namely, there are 𝐾 + 1 receivers for each velocity model. We then

record the wave signal starting at time 𝑡0 and take another shot every 𝑗Δ𝑡 until the termination time

𝑇 , here, 𝑗 is a positive integer and Δ𝑡 is the uniform time step size for the forward wave solver. As

an example for illustration, we take

ℎ(𝑡, 𝑥) = 𝑒
−(𝑥−0.6)2

0.01 − 𝑒
−(𝑥−0.3)2

0.01 (4.30)

99

𝐿 𝐻 𝐾 Δ𝑡 𝑡0 𝑗 𝑇

1 1 50 0.0005 0 20 0.5

Table 4.1: Values of parameters in the spatial and temporal discretization of the wave equation and
the time node of the recorded wave signal.

to be the top source in (4.22) and present the recorded time series wave signals in Figure 4.4.

Table 4.1 summarizes the parameters we used to generate these wavefield signals.

Figure 4.4, from the left panel to the right panel, shows the time series wave signals at the bottom

surface generated from the velocity model satisfying (4.27) with 𝑀 = 2, and the velocity model

satisfying (4.26) with 𝑀 = 4, respectively; from the top panel to the bottom panel are the wave

signals without noise, with 10% multiplication Gaussian noise, and with 10% additive Gaussian

noise, respectively.

Last, we note that to obtain a reliable learning dataset, one needs to guarantee the stability of the

time integrator when solving (4.22). Recall that the second order time-domain stagger-grid finite

difference forward wave solver is stable under the following CFL condition

Δ𝑡 ≤ min{Δ𝑥,Δ𝑧}
√

2 maxx{𝑚(x)}
. (4.31)

To guarantee the stability of the forward solver for all velocity samples, we force

Δ𝑡 = Δ𝑡∗ <
min{Δ𝑥,Δ𝑧}
√

2 maxx{𝑚(x)}
,

where 𝑚 is used in the scaling (4.29), for the data generation of the offline training stage. In this

work, we set Δ𝑡∗ = 0.0005 as shown in Table 4.1 based on our setting.

4.7.3 Training and testing performance

We now present a systematic numerical exploration of the training and testing performance of

the offline training stage. Given that the training and application of the Gaussian mixture velocity

model (4.27) with a small amount of Gaussians functions is exceptionally successful (due to the

100

Figure 4.4: The left panel presents time series wave signals at the bottom surface generated from a velocity
model satisfying (4.27) with 𝑀 = 4, while the right panel shows time series wave signals at the bottom
surface generated from a velocity model constructed by (4.26) with 𝑀 = 2. From the top to the bottom
are time series wave signals without noise, with 10% multiplication Gaussian noise and with 10% additive
Gaussian noise, respectively.

smallness of the parameter space) according to our numerical experience, we will focus on the

training of the generalized Fourier velocity model (4.26).

Training dataset size. We first emphasize that the training results we show in this section are

obtained on a very small dataset in the following sense. The number of data points in the artificial

dataset {g 𝑗 , 𝑚 𝑗 }𝑁𝑗=1 is small with 𝑁 = 106. Moreover, for each 𝑚 𝑗 , we collect the wavefield from

𝑁𝑠 = 3 illumination sources and 𝑁𝑑 = 51 detectors. Those source-detector pairs are a subset of the

source-detector pairs for the dataset we used in the reconstruction step. Moreover, at each detector,

we use only data at 51 time steps out of the 1000 time steps in the numerical solutions. This small

dataset is used so that we can handle the computational cost of the training process with our limited

101

computing resources. It is also intentionally done to demonstrate that one can train reasonable

approximate inverse with a significantly smaller dataset if one is willing to sacrifice a little of the

training accuracy.

Training-testing dataset split. We perform a standard training validation cycle on the neural

network approximate inverse. Before the training process starts, we randomly split the artificial

dataset of 𝑁 = 106 data points into a training dataset and a testing dataset. The training dataset takes

80% of the original dataset, while the test dataset takes the rest 20% of the data points. The training

dataset and the validation dataset have no intersection, namely, no data points in the validation set

are present in the training dataset.

Random Fourier velocity model: case of non-decaying coefficients

We start with the most challenging scenario where we train the neural network to approximate

the inverse operator for the velocity model (4.26) with randomly generated Fourier coefficients

without any decay requirement on the coefficients, that is, we set the decay rate 𝛽 = 0 in (4.28).

This is a highly challenging case because the effective parameter space of this class of velocity

models grows exponentially with respect to the number of Fourier models we have in the model.

Ideally, one would need an exponentially large training dataset in order to have reasonable training

results. However, due to the smooth property of the map f : 𝑚 ↦→ g, we demonstrate below that

with a relatively small dataset and a very limited number of source-detector pairs and time shots,

our training result is fairly encouraging.

In Figure 4.5, we show three randomly selected velocity fields (𝑚) from the testing dataset,

the corresponding neural network predictions (𝑚 = f̂−1
�̂�
(f (𝑚))), and the error in the prediction

(𝑚 − 𝑚). The largest number of Fourier modes allowed in these learning processes is 10, meaning

that 0 ≤ 𝑘𝑥 , 𝑘𝑧 ≤ 9 in the velocity model (4.26). The training output is a 10 × 10 matrix containing

the content of 𝔪(k) in (4.26). The output space is therefore 100-dimensional. A naive visual

inspection of the results in Figure 4.5 shows that the training process is quite successful as the

102

Figure 4.5: Three randomly selected velocity fields from the testing dataset: 5 × 5 coefficients
Fourier model, 8 × 8 coefficients Fourier model, 10 × 10 coefficients Fourier model. All true cases
have decay rate 𝛽 = 0 (column 1), the corresponding predictions by the trained neural network
(column 2), the error of the prediction (column 3), and the error in the neural network prediction
(𝑚(x)) in the Fourier domain (𝔪(k) − �̃�(k)) (column 4).

testing errors seem to be pretty reasonable, especially given that our training dataset is fairly small

(0.8 × 106 data points to be precise). While it is expected that when the number of Fourier modes

allowed in the velocity model is huge, the validation error will be sufficiently large if we keep the

training sample size, we do observe that validation error is quite small in general for cases when less

than 10 × 10 Fourier modes are pursued in the learning process. Increasing computational power

would certainly improve training quality.

Let us remark that our training results indeed show that we have better accuracy in learning the

low-frequency components of the inverse operator, as we discussed in the previous sections of the

work. In the right column of Figure 4.5, we provide the Fourier coefficients of the errors in the

network prediction. In all velocity fields, we see larger errors in the higher-frequency components

of the network velocity recovery. This is a universal phenomenon that we observed over the testing

dataset.

103

L
os

s
fu

nc
tio

n

Step 𝑛

Figure 4.6: Training and validation loss curves for a typical learning experiment. Very similar
curves are observed for each of the learning experiments we performed.

To dive a little more into the training quality and the optimization landscape after applying

our neural network pre-conditioner, we offer in Figure 4.6 the training-validation loss curves for

a typical learning experiment. We observe very similar curves for training and validating with

the velocity model (4.26) with different total numbers of Fourier modes. We measure the training

accuracy quantitatively with the size of the operator I − f̂−1
�̂�
◦ f. More precisely, we evaluate the

three main quantities for a data point (g, 𝑚) in the testing dataset:

(i) The error in the network prediction of Fourier modes of 𝑚:

Δ𝔪(k) := 𝔪(k) − f−1
�̂�
◦ f (𝑚) .

(ii) The landscape of the classical functional Ψ(𝑚) evaluated along a line in the direction of a given

Fourier mode of 𝑚, 𝜑k, passing through two different points 𝑚 = f−1(g) and 𝑚net = f̂−1
�̂�
(g):

ΨO (ℎ; k) := ∥g − f (𝑚0 + ℎ𝜑k)∥2[𝐿2 ((0,𝑇]×Γ)]𝑁𝑠
, 𝑚0 = O(𝑚), O ∈ {I, f̂−1

�̂�
◦ f} .

104

(iii) The landscape under our pre-conditioner, the new mismatch function Φ(𝑚) evaluated as in (ii):

ΦO (ℎ; k) := ∥̂f−1
�̂�
(g) − f̂−1

�̂�
◦ f (𝑚0 + ℎ𝜑k)∥2𝐿2 (Ω) , 𝑚0 = O(𝑚), O ∈ {I, f̂−1

�̂�
◦ f} .

When a perfect learning is performed, we would have Δ𝔪(k) = 𝟝, ΨI (ℎ; k) = Ψ̂f−1
𝛼
◦f (ℎ; k), and

ΦI (ℎ; k) = Φf̂−1
𝛼
◦f (ℎ; k) for any (g, 𝑚) in the training dataset, and Δ𝔪(k) small, ΨI (ℎ; k) ≈

Ψ̂f−1
𝛼
◦f (ℎ; k), and ΦI (ℎ; k) ≈ Φf̂−1

𝛼
◦f (ℎ; k) for any (g, 𝑚) in the testing dataset.

In Figure 4.7, we show plots of Δ𝔪(k) (left column), ΨI (ℎ; k) (red line) and Ψ̂f−1
𝛼
◦f (k) (blue

line) (middle column), and ΦI (ℎ; k) (red line) and Φf̂−1
𝛼
◦f (k) (blue line) (right column), for four

randomly selected (g, 𝑚) pairs in the testing dataset. Shown are results for k = (2, 3) and k = (1, 1).

Very similar behavior are observed along other coordinates 𝜑k.

The plots in Figure 4.7 provide a quantitative description of the accuracy of the trained network.

They clearly indicates that the trained f̂−1
�̂�

is indeed a good approximation to f−1. Moreover, a

comparison of the second column and the third column gives the impression that along with the

coordinates we plotted, the new objective functional Φ in (4.20) has a much better landscape than

the classical Ψ in (4.15). This is what we observed in other coordinates that are not shown here

as well. Therefore, the trained neural network f̂−1
�̂�

can work as a nonlinear pre-conditioner to

improve convexify of the optimization landscape. Moreover, the plots provided a good indication

that the trained network is fairly generalizable in the following sense. The Fourier coefficients

(including 𝔪(2,3) and 𝔪(1,1) shown in the plots) in the training dataset are all randomly drawn in

the interval [−0.5, 0.5]. Here in the plots, we consider the coefficient values in the range [−1, 1].

The agreement of the red and blue lines outside of the training value range [−0.5, 0.5], that is, in

the range [−1,−0.5) ∪ (0.5, 1], suggests that the trained neural network can be used in a region of

coefficient values that is far larger than its training domain.

105

(a) Δ𝔪(k) (b) ΨO (ℎ; (2, 3)) (c) ΦO (ℎ; (2, 3))

(d) Δ𝔪(k) (e) ΨO (ℎ; (1, 1)) (f) ΦO (ℎ; (1, 1))

(g) Δ𝔪(k) (h) ΨO (ℎ; (2, 3)) (i) ΦO (ℎ; (2, 3))

(j) Δ𝔪(k) (k) ΨO (ℎ; (1, 1)) (l) ΦO (ℎ; (1, 1))

Figure 4.7: Plots of Δ𝔪(k) (first column), ΨO (ℎ; k) (second column), and ΦO (ℎ; k) (third column)
for four different (g, 𝑚) pairs in the testing dataset. The velocity model for rows 1-2 has 𝑀 = 4 and
that for the plots in rows 3-4 has 𝑀 = 7.

106

Random Fourier velocity model: case of decaying coefficients

While training the neural network for an approximate inverse f̂−1
�̂�

on a large space of velocity

field is extremely useful for generalization purposes, it also poses significant challenges when

the number of Fourier modes included in the model gets very large. Not only will we need an

exponentially larger training dataset, but also the training process takes exponentially growing

computational power. This is what we observed in our numerical experiments. In this section,

we show some training-validation results for the velocity model (4.26) with decaying Fourier

coefficients following the pattern we imposed in (4.28). We present results from two different cases:

the slow decay case with 𝛽 = 1/2 and the fast decay case with 𝛽 = 1.

In Figure 4.8, we show typical validation results on five randomly selected velocity profiles

in the testing dataset. The top two rows are the results for the training of the velocity model with

𝛽 = 0, the third row is the case of 𝛽 = 1/2 while the bottom two rows are for the case of 𝛽 = 1.

In both cases, the training is successful, as can be seen from the relatively small errors in the

predictions. Plots of the functionals ΨI and Ψ̂f−1
𝛼
◦f show similar patterns as those in Figure 4.7. We

omit those to space. Moreover, prediction errors in the Fourier domain display very similar behavior

as observed in the previous subsection: the error is higher for high-frequency components and lower

for low-frequency components.

To study the generalization capability of the learned network, we validate the learning with on

dataset generated from a different velocity model, which is considered the case where training and

testing data samples are from different classes. In Figure 4.9, we train a neural network to recover

the first 10 × 10 Fourier coefficient of the velocity field and validate the trained neural network on a

dataset generated from velocity models that contain 20 × 20 random Fourier modes. The decay rate

in this particular case is 𝛽 = 1 but similar results are observed for 𝛽 = 1/2 as well. The validation

results demonstrate that the trained network is reasonably generalizable in our considered setting.

107

Figure 4.8: Validation results on four specific velocity fields in the testing dataset. Row 1 is the
results for 8 Fourier velocity model with 𝛽 = 0, Row 2 is the results for 10 Fourier velocity model
with 𝛽 = 0, row 3 is the results for 10 Fourier velocity model with 𝛽 = 1/2, row 4 is the results
for 10 Fourier velocity model with 𝛽 = 1 while row 5 is are results for 20 Fourier velocity model
with 𝛽 = 1. From left to right are: the true velocity field, neural network prediction, the error of the
prediction, and the error of the prediction in the Fourier domain.

Mesh-based velocity model

In the last training-validation numerical experiment, we demonstrate that the phenomena

observed in the previous subsections are not particularly due to the Fourier parameterization of the

velocity field in (4.26) that we used. Indeed, the results are more related to our method of training.

108

Figure 4.9: The instance of validation of learning results in a different class of velocity models for
the case of 𝛽 = 1. Shown from left to right are: the true velocity field, the neural network prediction,
the error in the prediction, and the error in the Fourier domain.

Figure 4.10: Out-of-domain validation of a training result with mesh-based velocity representation.
Shown from left to right are: the true velocity field, the network prediction, and the error in the
prediction.

Here we perform the same type of training on a neural network whose output is the velocity field

represented on a 51 × 51 uniform mesh on the domain Ω. The output space is therefore much larger

compared to the training in the case of the random Fourier velocity model. However, after projecting

into the Fourier space, the training result has almost identical properties to what we observed in the

random Fourier model. In Figure 4.10, we show the out-of-domain validation result for the training.

The velocity fields that generated the training dataset have 10 × 10 Fourier modes while the velocity

fields in the validation dataset have 20 × 20 Fourier modes (but represented on a 51 × 51 uniform

mesh), both generated with 𝛽 = 1. The relatively small validation errors indicate that the training is

fairly successful and reasonably generalizable. The computational cost, in this case, is much larger

than those in the previous subsections since the neural network has a larger size due to the increased

size of the network output.

109

4.7.4 Learning-assisted FWI reconstruction

In this section, we present inversion results for some simulated datasets to verify the efficiency

and stability of the proposed coupling method. All simulations on the inversion stage are conducted

on a quadcore Intel Core i7 with 16 GB RAM.

Convexity of the new loss function

Lemma 4.1.1 indicates that if we have relatively accurate training, the new loss function for

our coupled reconstruction scheme behaves similarly to the functional ∥𝑚 − 𝑚0∥2𝐿2 (Ω) , 𝑚0 being

the true solution. Figure 4.7 provided some evidence of this in the training of the random Fourier

model. In the one coefficient case, plots in Figure 4.7 clearly show that the new loss function is

almost convex. We now present some numerical evidence in the case of the Gaussian mixture

velocity model. In particular, we are interested in seeking convexity with respect to the location of a

Gaussian perturbation. More precisely, the velocity field 𝑚(x) is set to be a single Gaussian model

with 𝑀 = 1 in (4.27), that is,

𝑚(x) = 𝑚0 + 𝑐1𝑒
− 1

2 (x−x1
0)

𝔗Σ−1
1 (x−x1

0) ,

x1
0 = (𝑥1

0, 𝑧
1
0),

Σ1 =
©«
𝜎2

1 0

0 𝜎2
1

ª®®¬
(4.32)

where the background velocity 𝑚0, the amplitude 𝑐1, and the variance 𝜎1 are fixed to be

(𝑚0, 𝑐1, 𝜎1) = (10, 5, 0.1). We then present the objective functions Ψ(𝑚) and Φ(𝑚) (𝛾 = 0) with

respect to the location (𝑥1
0, 𝑧

1
0) in Figure 4.11. The setting of the offline training stage for generating

f̂−1
�̂�

is the same as those in Section 4.7.2.

Figure 4.11 presents the landscapes of objective functions Ψ(𝑚) and Φ(𝑚) (𝛾 = 0) with fixed

(𝑚0, 𝑐1, 𝜎1). In particular, we set (𝑥1
0, 𝑧

1
0) = (0.5,−0.5) as the ground true velocity model which

generates the wave signal g. From Figure 4.11, we observe that, (i) the classical loss function Ψ(𝑚)

110

is not a convex function, and its landscape shows that the optimization can be easily trapped into a

local minimum if the initial model is not carefully chosen; (ii) the new loss function Φ(𝑚) (𝛾 = 0)

for the proposed coupling method becomes more convex which is consistent with Lemma 4.1.1.

In addition, we note that when the initial model is close enough to the exact model (located at the

convex region of the misfit function), the global minimum is guaranteed and one can also expect a

fast convergence. In fact, a good initial model under the setting of the proposed coupling scheme

can be easily obtained by adding a small perturbation to f̂−1
�̂�
(g) as indicated by Neumann series

(4.11).

(a) Landscape of Ψ(𝑚) (b) Landscape of Φ(𝑚)

Figure 4.11: The landscape of the classical (left) and new (right) objective functions for the location of a
Gaussian perturbation of the velocity field.

Inversion for the velocity model (4.27) with 𝑀 = 2

The first inversion example is performed to recover the following mixed Gaussian velocity

model (4.27) with 𝑀 = 2 and 𝑚0 = 10,

𝑚(x) = 10 +
2∑︁
𝑘=1

𝑐𝑘𝑒
− 1

2 (x−x𝑘0)
𝑇Σ−1

𝑘
(x−x𝑘0) , x𝑘0 = (𝑥𝑘0 , 𝑧

𝑘
0), Σ𝑘 =

©«
𝜎2
𝑘

0

0 𝜎2
𝑘

ª®®¬ . (4.33)

We use the same offline training settings as those for the mixed Gaussian wave signal generation in

Section 4.7.2 to construct f̂−1
�̂�

for the online inversion stage. However, to generate versatile wave

signals at the bottom surface to recover the features {𝑐1, 𝑐2, 𝜎1, 𝜎2, 𝑥
1
0, 𝑥

2
0, 𝑧

1
0, 𝑧

2
0}, we enforce three

111

different top sources ℎ𝑖 (𝑥), 𝑖 = 1, 2, 3 with

ℎ1(𝑥) = 𝑒−
(𝑥−0.8)2

0.01 − 𝑒−
(𝑥−0.2)2

0.01 , ℎ2(𝑥) = 𝑒−
(𝑥−0.4)2

0.01 − 𝑒−
(𝑥−0.7)2

0.01 ,

and

ℎ3(𝑥) = 𝑒−
(𝑥−0.6)2

0.01 − 𝑒−
(𝑥−0.3)2

0.01 ,

rather than one single external top source in Section 4.7.2.

For the inversion stage, we implement a 𝐽-term truncated Neumann series approximation (4.25)

to obtain the reconstructed velocity image. Note that 𝐽 = 1 corresponds to the reconstructed velocity

image from the offline training stage. We also add the Gaussian noise with zeros mean and 10%

standard derivation to test the stability of the proposed coupling scheme. Figure 4.12 presents

the reconstructed images. Precisely, the first three columns show the surface plots of the exact

velocity field, the neural network prediction velocity field from the offline training stage, and the

reconstructed velocity field with 𝐽 = 20 from the online inversion stage, while the last column

displays the difference between the exact velocity field (first column) and the reconstructed velocity

field (third column). From the top row to the bottom row of Figure 4.12, we present the results

from the noise-free wave signal, the wave signal with 10% multiplication Gaussian noise, and

the wave signal with 10% additive Gaussian noise, respectively. We see that the online inversion

stage improves the accuracy of the reconstructions for all cases. Table 4.2 lists the 𝐿2/𝐿∞ errors

on the velocity field for the entire computational domain, as well as the CPU time for various

implementations with different values of 𝐽. There, we note that for the wave signals without noise

and with 10% multiplication Gaussian noise, both 𝐿2 and 𝐿∞ reconstruction errors dropped by a

factor ∼ 104 within 30 seconds; for the wave signal with 10% additive Gaussian noise, it seems

that there is no improvement to add more Neumann terms in (4.25) once the 𝐿2 error reduces to

5.89 × 10−3 and 𝐿∞ error reduces to 4.28 × 10−2; for this type of the situation, we can use the

reconstruction from adding Neumann terms as an initial guess for a gradient-based optimization

scheme to further improve the resolution of the reconstruction, see Section 4.6.3.

112

Figure 4.12: The reconstructed velocity images for the mixed Gaussian (4.33). From left to right are the
ground true velocity field, the reconstructed velocity field with 𝐽 = 1, the reconstructed velocity field with
𝐽 = 20, and the difference between the ground true velocity field and the reconstructed velocity field with
𝐽 = 20 (first column - third column). From top to bottom are the results from the noise-free wave signal, the
wave signal with 10% multiplication Gaussian noise, and the wave signal with 10% additive Gaussian noise.

Inversion for the velocity model (4.26) with 𝑀 = 4

For the second inversion example, we work on reconstructing the features of the following

velocity model

𝑚(x) =
4∑︁

𝑘𝑥 ,𝑘𝑧=0
𝔪(k) cos(𝑘𝑥𝜋𝑥) cos(𝑘𝑧𝜋𝑧), k = (𝑘𝑥 , 𝑘𝑧) (4.34)

with 𝛽 = 0 in (4.28), namely, we don’t consider any decay on the coefficients for this example. In

addition, we use the same training settings as those in Section 4.7.2 for the Fourier wave signal

generation. But for the external top sources ℎ𝑖 (𝑥), we choose them to be the same as the sources in

Section 4.7.4 to generate resourceful training samples for the construction of f̂−1
�̂�

.

For the online inversion stage, we also implement a 𝐽-term truncated Neumann series approxi-

mation (4.25) to recover the velocity model. To test the stability of the proposed coupled scheme,

113

no noise 10% multiplicative noise 10% additive noise

𝐿2 𝐿∞ CPU 𝐿2 𝐿∞ CPU 𝐿2 𝐿∞ CPU
𝐽 error error time(𝑠) error error time(𝑠) error error time(𝑠)
1 1.48e-01 1.12e-00 0 2.54e-01 1.98e-00 0 2.60e-01 1.60e-00 0
20 1.10e-04 1.11e-03 6.83 1.71e-03 1.39e-02 6.71 5.79e-03 4.27e-02 6.89
40 3.21e-06 2.60e-05 13.80 4.84e-05 5.48e-04 13.60 5.88e-03 4.28e-02 13.38
60 3.09e-06 2.41e-05 20.34 5.78e-06 4.38e-05 20.97 5.89e-03 4.28e-02 20.51
80 2.86e-06 2.66e-05 27.74 4.63e-06 4.36e-05 28.52 5.89e-03 4.28e-02 27.56

Table 4.2: 𝐿2/𝐿∞ reconstruction errors, and the CPU time for the inversion stage with different 𝐽-term
truncated Neumann series approximation, as well as different noise level/form for the reconstruction of the
mixed Gaussian (4.33).

no noise 10% multiplicative noise 10% additive noise

𝐿2 𝐿∞ CPU 𝐿2 𝐿∞ CPU 𝐿2 𝐿∞ CPU
𝐽 error error time(𝑠) error error time(𝑠) error error time(𝑠)
1 1.78e-01 8.46e-01 0 1.79e-00 7.25e-00 0 2.64e-01 1.16e-00 0

20 8.52e-04 4.90e-03 6.08 1.23e-02 6.97e-02 5.81 7.13e-03 3.70e-02 5.87
40 1.49e-05 8.41e-05 11.15 4.93e-03 2.76e-02 11.24 1.69e-03 9.26e-03 11.73
60 2.60e-07 1.53e-06 17.97 3.06e-03 1.71e-02 17.42 6.81e-04 3.77e-03 17.67
80 2.16e-08 1.34e-07 22.74 2.19e-03 1.22e-02 23.25 2.05e-04 1.12e-03 23.13

Table 4.3: 𝐿2/𝐿∞ reconstruction errors, and the CPU time for the inversion stage with different 𝐽-term
truncated Neumann series approximation, as well as different noise level/form for the reconstruction of the
Fourier model (4.34).

as in Section 4.7.4, we add the Gaussian noise with zeros mean and 10% standard derivation to

the wave signals. Figure 4.13 presents the surface plots of the reconstructed velocity images with

𝐽 = 20, as well as the surface plots for the difference between the reconstructed image and the

ground true velocity model. The layout of Figure 4.13 is the same as the one in Figure 4.12. We

observe that the training prediction is stable with respect to the noise, see the second column of

Figure 4.13 and 𝐿2/𝐿∞ errors when 𝐽 = 1 in Table 4.3. In addition, we note that the inversion stage

can significantly improve the accuracy of the reconstruction. For the data without noise, the errors

dropped by a factor ∼ 107 within 30 seconds; even for the data with 10% Gaussian noise, the errors

also dropped by a factor ∼ 103 within 30 seconds.

114

Figure 4.13: The reconstructed velocity images for the general Fourier type (4.26) with 𝑀 = 4. From
top to bottom are for the velocity reconstruction without noise, with 10% multiplication Gaussian noise,
with 10% additive Gaussian noise, respectively. While from left to right are the ground true velocity field,
the reconstructed velocity field from the neural network in the offline training stage, and the reconstructed
velocity image with 𝐽 = 20, error for the reconstructed velocity image with 𝐽 = 20, respectively.

Inversion for the velocity model (4.26) with 𝑀 = 7

For the third example, we consider a velocity model which contains 8 Fourier modes in each

direction, namely,

𝑚(𝑥, 𝑧) =
7∑︁

𝑘𝑥 ,𝑘𝑧=0
𝔪(k) cos(𝑘𝑥𝜋𝑥) cos(𝑘𝑧𝜋𝑧). (4.35)

The spatial and temporal discretization, as well as the rules for data generation, the choice of the

top source ℎ𝑖 (𝑥) are the same as the example in Section 4.7.4.

For the inversion stage, we again implement a 𝐽-term truncated Neumann series approxima-

tion (4.25) to obtain the reconstructed velocity image. Figure 4.14 presents the surface plots of the

reconstructed velocity images with various values of 𝐽 in the online inversion stage. Precisely, each

row of Figure 4.14 corresponds to one velocity model; from left to right are the ground true velocity

field, the reconstructed velocity image with 𝐽 = 1, the reconstructed velocity image with 𝐽 = 20,

and the reconstructed velocity image with 𝐽 = 50, respectively. We note that the online inversion

115

stage improves the accuracy of the reconstruction for all cases, which verifies the effectiveness of

the proposed coupling scheme.

Figure 4.14: The reconstructed velocity images for the Fourier model (4.35). Each row corresponds to the
reconstruction of one velocity field. From left to right are the ground true velocity field, the reconstructed
velocity field with 𝐽 = 1, the reconstructed velocity field with 𝐽 = 20, and the reconstructed velocity field
with 𝐽 = 50, respectively.

Inversion for the velocity model outside of the training domain

We test the proposed coupling scheme on a velocity model outside the training domain in

the last example. Precisely, the design of the offline training stage is the same as the one in

Section 4.7.4, namely, we focus on learning the first 5 Fourier modes in each direction during the

training. However, our goal in this example is to reconstruct the following velocity model,

𝑚(𝑥, 𝑧) =

8.4, (𝑥, 𝑧) ∈ [0.22, 0.74] × [−0.52,−0.5],

7.6, otherwise,
, (𝑥, 𝑧) ∈ [0, 1] × [−1, 0], (4.36)

which is apparently outside of the training domain containing many high-frequency components. To

reconstruct (4.36), we first implement the 𝐽-term truncated Neumann series approximation (4.11)

with 𝐽 = 20 to obtain the low frequency part of the velocity model (4.36), then use it as the initial

116

guess of a quasi-Newton algorithm based on the BFGS gradient update rule to minimize (4.15). In

addition, to recover the high-frequency components of the velocity field, except the 51 receivers

at the bottom surface in the training stage, we place another 51 receivers at the top surface when

minimizing (4.15), and enforce 7 different top sources ℎ𝑖 (𝑥), 𝑖 = 1, 2 · · · , 7 with ℎ1, ℎ2, ℎ3 being

the same as the top sources in the training stage, and

ℎ4(𝑥) = 𝑒−
(𝑥−0.7)2

0.01 − 𝑒−
(𝑥−0.2)2

0.01 , ℎ5(𝑥) = 𝑒−
(𝑥−0.3)2

0.01 − 𝑒−
(𝑥−0.9)2

0.01 ,

ℎ6(𝑥) = 𝑒−
(𝑥−0.2)2

0.01 − 𝑒−
(𝑥−0.5)2

0.01 , ℎ7(𝑥) = 𝑒−
(𝑥−0.1)2

0.01 − 𝑒−
(𝑥−0.6)2

0.01 .

Figure 4.15 presents the surface plots of the reconstructed velocity images with both noise-free

data and the data with Gaussian noises. Precisely, the top row shows the reconstructed velocity

from noise-free data, the middle row displays the reconstructed velocity from the data with 10%

multiplication Gaussian noise, and the bottom row presents the reconstructed velocity from the

data with 10% additive Gaussian noise; while from the left to the right columns are the ground true

velocity field, the reconstructed velocity image with 𝐽 = 1, the reconstructed velocity image with

𝐽 = 20 (initial guess), and the reconstructed velocity image by minimizing (4.15), respectively. We

note that adding several terms to the Neumann series approximation can lead to a relatively good

reconstruction for the low-frequency components of the velocity field (4.36) for all cases (noise-free

data and the data with Gaussian noise) by comparing the reconstruction results in column 2 and

column 3. Then solving an extra classical minimization problem as documented in Section 4.5.3

helps grab the high-frequency components of the velocity field as shown in the last column.

117

Figure 4.15: The reconstructed velocity images for the velocity model (4.36). From top to bottom are the
reconstruction with noise-free signal, the signal with 10% multiplication Gaussian noise, and the signal
with 10% additive Gaussian noise, respectively. From left to right are the ground true velocity field, the
reconstructed velocity field with 𝐽 = 1, the reconstructed velocity field with 𝐽 = 20, and the reconstructed
velocity field by minimizing (4.15), respectively.

118

Chapter 5: Concluding Remarks

In this thesis, we analyze different loss functions for solving inverse problems and demonstrate

via numerical simulations that improvement can be achieved by modifying some traditional loss

functions.

In the third chapter, we performed a systematic computational study on the performance of

different Wasserstein metrics as loss functions in the computational solution of linear and nonlinear

inverse problems. We highlighted the similarities and differences between the inverse solutions from

those metrics and compared them to inversion results from the classical 𝐿2 least-squares formulation.

While it is true that in general inversions based on the Wasserstein metrics are computationally

more expensive, they do offer some advantages. These inversions are much more robust to the

random noise, especially high-frequency noise, in the data used for the inversions. This is true for

the Wasserstein metrics in both balanced and unbalanced optimal transport theory. Secondly, these

inversions are more robust to the initial guess we choose to start the iterative inversion algorithms.

In the fourth chapter, we presented an approach to design loss functions from an offline-online

computational strategy for coupling deep learning methods with classical model-based iterative

reconstruction schemes for the FWI problem. The main advantage of the coupling lies in two

aspects. First, the coupling requires much less rigorous training for the learning part than a purely

learning based approach. This makes learning the approximate inverse operator much more realistic

with limited computational resources. Second, offline learning can still significantly reduce the

online reconstruction with new datasets when used as a nonlinear pre-conditioner. The numerical

simulations we performed demonstrated the feasibility of such a coupled approach. Moreover, the

loss landscape under neural network-induced loss function is indeed more convex compared to the

classical 𝐿2 loss landscape. There are many essential issues in the current direction that need to be

119

more rigorously investigated. One particular aspect is to develop a mathematical characterization of

the training error in the learning process and study its impact on the reconstruction step. A second

aspect is to improve the learning algorithm to learn more features in the inverse operator. As we

reasoned in this chapter, it is incredibly challenging to learn all the details in the inverse operator.

However, we believe one could do much better than the numerical experiments in this chapter,

where we pursue only a very small number of features in the learning process. Searching for better

feature models for the velocity field and the time traces of the wave field is also an essential task

with the potential to significantly improve the performance of the learning procedure.

This thesis only touches a small portion of what we believe to be an important area of computa-

tional inversion and learning: to construct loss functions to improve the computational efficiency

as well as computational results of the inversion and learning process. We mainly focus on the

formulation of ideas and computational demonstration of the effectiveness of the ideas. We have

only limited mathematical understanding on them. Our future goal is to develop more systematical

mathematical characterizations on the properties of the loss functions we proposed in this thesis.

120

References

[1] A. Adler, M. Araya-Polo, and T. Poggio, “Deep learning for seismic inverse problems:
Toward the acceleration of geophysical analysis workflows,” IEEE Signal Processing
Magazine, vol. 38, pp. 89–119, 2021.

[2] J. Adler and O. Öktem, “Solving ill-posed inverse problems using iterative deep neural
networks,” Inverse Problems, vol. 33, 2017, 124007.

[3] J. Adler, A. Ringh, O. Öktem, and J. Karlsson, “Learning to solve inverse problems using
wasserstein loss,” arXiv preprint arXiv:1710.10898, 2017.

[4] V. Akçelik, G. Biros, and O. Ghattas, “Parallel multiscale Gauss-Newton-Krylov methods
for inverse wave propagation,” in Proceedings of the 2002 ACM/IEEE Conference on
Supercomputing, 2002, pp. 1–15.

[5] H. Antil, D. P. Kouri, M.-D. Lacasse, and D. Ridzal, Eds., Frontiers in PDE-Constrained
Optimization. Springer, 2018.

[6] M. Araya-Polo, A. Adler, S. Farris, and J. Jennings, “Fast and accurate seismic tomography
via deep learning,” in Deep Learning: Algorithms and Applications, Springer, 2020, pp. 129–
156.

[7] E. Bachmann and J. Tromp, “Source encoding for viscoacoustic ultrasound computed
tomography,” J. Acoust. Soc. Am., vol. 147, pp. 3221–3235, 2020.

[8] G. Bal, K. Ren, G. Uhlmann, and T. Zhou, “Quantitative thermo-acoustics and related
problems,” Inverse Problems, vol. 27, 2011, 055007.

[9] G. Bao and W. W. Symes, “On the sensitivity of hyperbolic equation to the coefficient,”
Comm. in P.D.E., vol. 21, pp. 395–422, 1996.

[10] G. Bao, X. Ye, Y. Zang, and H. Zhou, “Numerical solution of inverse problems by weak
adversarial networks,” Inverse Problems, vol. 36, no. 11, 2020, 115003.

[11] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differentiation
in machine learning: A survey,” Journal of Marchine Learning Research, vol. 18, pp. 1–43,
2018.

[12] R. Beerends, “An introduction to the abel transform,” in Miniconference on Harmonic
Analysis, vol. 15, Australian National University, Mathematical Sciences Institute, 1987,
pp. 21–34.

121

[13] J.-D. Benamou, “Numerical resolution of an “unbalanced” mass transport problem,” ESAIM:
Math. Model. Numer. Anal., vol. 37, pp. 851–868, 2003.

[14] J. D. Benamou and Y. Brenier, “A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem,” Numer. Math., vol. 84, pp. 375–393, 2000.

[15] A. Berlinet and C. Thomas-Agnan, “Reproducing kernel hilbert spaces in probability and
statistics,” 2004.

[16] S. Bernard, V. Monteiller, D. Komatitsch, and P. Lasaygues, “Ultrasonic computed tomog-
raphy based on full-waveform inversion for bone quantitative imaging,” Phys. Med. Bio.,
vol. 62, pp. 7011–7035, 2017.

[17] L. Borcea, V. Druskin, A. Mamonov, and M. Zaslavsky, “Untangling the nonlinearity in
inverse scattering with data-driven reduced order models,” Inverse Problems, vol. 34, 2018,
065008.

[18] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[19] R. Brossier, S. Operto, and J. Virieux, “Which data residual norm for robust elastic
frequency-domain full waveform inversion,” Geophysics, vol. 75, R37–R46, 2010.

[20] T. A. Bubba, M. Galinier, M. Lassas, M. Prato, L. Ratti, and S. Siltanen, “Deep neural
networks for inverse problems with pseudodifferential operators: An application to limited-
angle tomography,” SIAM J. Imaging Sci., vol. 14, pp. 470–505, 2021.

[21] C. Bunks, F. M. Saleck, S. Zaleski, and G. Chavent, “Multiscale seismic waveform inversion,”
Geophysics, vol. 50, pp. 1457–1473, 1995.

[22] C. Burstedde and O. Ghattas, “Algorithmic strategies for full waveform inversion: 1D
experiments,” Geophysics, vol. 74, pp. 37–46, 2009.

[23] R. Chartrand, B. Wohlberg, K. Vixie, and E. Bollt, “A gradient descent solution to the
monge-kantorovich problem,” Applied Mathematical Sciences, vol. 3, no. 22, pp. 1071–
1080, 2009.

[24] J. Chen, Y. Chen, H. Wu, and D. Yang, “The quadratic Wasserstein metric for earthquake
location,” J. Comput. Phys., vol. 373, pp. 188–209, 2018.

[25] K. Chen, Z. Ying, H. Zhang, and L. Zhao, “Analysis of least absolute deviation,” Biometrika,
vol. 95, no. 1, pp. 107–122, 2008.

[26] K. Chen and M. D. Sacchi, “Time-domain elastic Gauss-Newton full-waveform inversion:
A matrix-free approach,” Geophys. J. Int., vol. 223, pp. 1007–1039, 2020.

122

[27] L. Chizat, G. Peyré, B. Schmitzer, and F. X. Vialard, “An interpolating distance between
optimal transport and Fisher-Rao metrics,” Found. Comput. Math., vol. 18, pp. 1–44, 2016.

[28] ——, “Unbalanced optimal transport: Dynamic and Kantorovich formulations,” J. Funct.
Anal., vol. 274, pp. 3090–3123, 2018.

[29] Y. Cooper, “The loss landscape of overparameterized neural networks,” arXiv preprint
arXiv:1804.10200, 2018.

[30] G. Côrte, J. Dramsch, H. Amini, and C. MacBeth, “Deep neural network application for
4D seismic inversion to changes in pressure and saturation: Optimizing the use of synthetic
training datasets,” Geophysical Prospecting, vol. 68, pp. 2164–2185, 2020.

[31] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of
Control, Signals, and Systems (MCSS), vol. 2, no. 4, pp. 303–314, Dec. 1989.

[32] T. Dierkes, O. Dorn, F. Natterer, V. Palamodov, and H. Sieschott, “Fréchet derivatives for
some bilinear inverse problems,” SIAM J. Appl. Math., vol. 62, pp. 2092–2113, 2002.

[33] W. Ding, Q. Du, and K. Ren, “Computational inverse problems with quadratic wasserstein
metrics,” Preprint, 2022.

[34] W. Ding, K. Ren, and L. Zhang, “Coupling deep learning with full waveform inversion,”
preprint, 2022, arXiv.

[35] W. Ding, K. Ren, and L. Zhang, “Coupling deep learning with full waveform inversion,”
arXiv preprint arXiv:2203.01799, 2022.

[36] B. Engquist and B. D. Froese, “Application of the Wasserstein metric to seismic signals,”
Commun. Math. Sci., vol. 12, pp. 979–988, 2014.

[37] B. Engquist, B. D. Froese, and Y. Yang, “Optimal transport for seismic full waveform
inversion,” Commun. Math. Sci., vol. 14, pp. 2309–2330. 2016.

[38] B. Engquist, K. Ren, and Y. Yang, “The quadratic Wasserstein metric for inverse data
matching,” Inverse Problems, vol. 36, p. 055 001, 2020, arXiv:1911.06911.

[39] ——, “A generalized weighted optimization method for computational learning and inver-
sion,” ICLR 2022, 2022, arXiv:2201.09223.

[40] B. Engquist, K. Ren, and Y. Yang, “The quadratic wasserstein metric for inverse data
matching,” Inverse Problems, vol. 36, no. 5, p. 055 001, 2020.

123

[41] I. Epanomeritakis, V. Akcelik, O. Ghattas, and J. Bielak, “A Newton-CG method for large-
scale three-dimensional elastic full-waveform seismic inversion,” Inverse Problems, vol. 24,
2008, 034015.

[42] L. C. Evans, Partial Differential Equations. Providence, RI: American Mathematical Society,
2010.

[43] L. C. Evans, Partial differential equations. American mathematical society, 2022, vol. 19.

[44] J. Fang et al., “Data-driven low-frequency signal recovery using deep-learning predictions
in full-waveform inversion,” Geophysics, vol. 85, A37–A43, 2020.

[45] A. C. Fannjiang, T. Strohmer, and P. Yan, “Compressed remote sensing of sparse objects,”
SIAM J. Imag. Sci., vol. 3, pp. 595–618, 2010.

[46] S. Farris, M. Araya-Polo, J. Jennings, B. Clapp, and B. Biondi, “Tomography: A deep
learning vs full-waveform inversion comparison,” in Proceedings, First EAGE Workshop on
High Performance Computing for Upstream in Latin America, vol. 2018, 2018, pp. 1–5.

[47] J. Feliu-Fabà, Y. Fan, and L. Ying, “Meta-learning pseudo-differential operators with deep
neural networks,” J. Comput. Phys., vol. 404, 2020, 109309.

[48] A. Fichtner, Full Seismic Waveform Modelling and Inversion. Berlin: Springer-Verlag, 2011.

[49] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.

[50] S. Fort, H. Hu, and B. Lakshminarayanan, “Deep ensembles: A loss landscape perspective,”
arXiv preprint arXiv:1912.02757, 2019.

[51] S. Fort and S. Jastrzebski, “Large scale structure of neural network loss landscapes,” Ad-
vances in Neural Information Processing Systems, vol. 32, 2019.

[52] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing. Birkhäuser,
2013.

[53] W. Gangbo, W. Li, S. Osher, and M. Puthawala, “Unnormalized optimal transport,” arXiv:1902.03367v1,
2019.

[54] H. Gao, H. Yu, S. Osher, and G. Wang, “Multi-energy CT based on a prior rank, intensity
and sparsity model (PRISM),” Inverse Problems, vol. 27, 2011, 115012.

[55] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson, “Loss surfaces,
mode connectivity, and fast ensembling of dnns,” Advances in neural information processing
systems, vol. 31, 2018.

124

[56] B. Ghorbani, Y. Xiao, and S. Krishnan, “The effect of network depth on the optimization
landscape,” 2019.

[57] M. Goldman, M. Huesmann, and F. Otto, “Quantitative linearization results for the monge-
ampère equation,” Communications on Pure and Applied Mathematics, vol. 74, no. 12,
pp. 2483–2560, 2021.

[58] A. Gramfort, G. Peyré, and M. Cuturi, “Fast optimal transport averaging of neuroimaging
data,” in International Conference on Information Processing in Medical Imaging, Springer,
2015, pp. 261–272.

[59] P. Greengard, J. G. Hoskins, N. F. Marshall, and A. Singer, “On a linearization of quadratic
wasserstein distance,” arXiv preprint arXiv:2201.13386, 2022.

[60] L. Guasch, O. Calderón Agudo, M. X. Tang, P. Nachev, and M. Warner, “Full-waveform
inversion imaging of the human brain,” Digit. Med., vol. 3, 2000, 28.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[62] H. Heaton, S. W. Fung, A. T. Lin, S. Osher, and W. Yin, “Wasserstein-based projections
with applications to inverse problems,” SIAM Journal on Mathematics of Data Science,
vol. 4, no. 2, pp. 581–603, 2022.

[63] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal
approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[64] W. Hu, Y. Jin, X. Wu, and J. Chen, “Progressive transfer learning for low-frequency data
prediction in full-waveform inversion,” Geophysics, vol. 86, R369–R382, 2021.

[65] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32nd International Conference on
Machine Learning, 2015.

[66] V. Isakov, Inverse Problems for Partial Differential Equations, second. New York: Springer-
Verlag, 2006.

[67] A. Javaherian, F. Lucka, and B. T. Cox, “Refraction-corrected ray-based inversion for
three-dimensional ultrasound tomography of the breast,” Inverse Problems, vol. 36, 2020,
125010.

[68] Z. Jia, R. Guo, M. Li, G. Wang, Z. Liu, and Y. Shao, “3-d model-based inversion using
supervised descent method for aspect-limited microwave data of metallic targets,” IEEE
Trans. Geosci. Remote Sens., pp. 1–10, 2021.

125

[69] S. Kamyab, Z. Azimifar, R. Sabzi, and P. Fieguth, “Deep learning methods for inverse
problems,” PeerJ Computer Science, vol. 8, e951, 2022.

[70] V. Kazei, O. Ovcharenko, P. Plotnitskii, D. Peter, X. Zhang, and T. Alkhalifah, “Mapping
full seismic waveforms to vertical velocity profiles by deep learning,” Geophysics, vol. 86,
pp. 1–50, 2021.

[71] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980,
2014.

[72] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[73] S Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Rohde, “Optimal mass transport:
Signal processing and machine-learning applications,” IEEE Signal Processing Magazine,
vol. 34, pp. 43–59, 2017.

[74] S. Kolouri, G. K. Rohde, and H. Hoffmann, “Sliced wasserstein distance for learning
gaussian mixture models,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 3427–3436.

[75] S. Kondratyev, L. Monsaingeon, and D. Vorotnikov, “A new optimal transport distance on
the space of finite Radon measures,” Adv. Differential Equations, vol. 21, pp. 1117–1164,
2016.

[76] Y. Lecun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with gradient-based
learning,” in Feature grouping, D. Forsyth, Ed. Springer, 1999.

[77] W. Lee, R. Lai, W. Li, and S. Osher, “Generalized Unnormalized Optimal Transport and its
fast algorithms,” Journal of Computational Physics, vol. 436, p. 110 041, Jul. 2021, arXiv:
2001.11530.

[78] ——, “Generalized unnormalized optimal transport and its fast algorithms,” vol. 436, 2021,
110041.

[79] J. Lellmann, D. Lorenz, C. Schönlieb, and T. Valkonen, “Imaging with Kantorovich-
Rubinstein discrepancy,” SIAM J. Imag. Sci., vol. 7, pp. 2833–2859, 2014.

[80] G. Leugering et al., Eds., Trends in PDE-Constrained Optimization. Springer, 2014.

[81] F. Li, U. Villa, S. Park, and M. A. Anastasio, “Three-dimensional stochastic numerical
breast phantoms for enabling virtual imaging trials of ultrasound computed tomography,”
arXiv:2106.02744, 2021.

126

[82] H. Li, J. Schwab, S. Antholzer, and M. Haltmeier, “NETT: Solving inverse problems with
deep neural networks,” Inverse Problems, 2020.

[83] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of
neural nets,” Advances in neural information processing systems, vol. 31, 2018.

[84] L. Li, A. Vidard, F.-X. Le Dimet, and J. Ma, “Topological data assimilation using wasserstein
distance,” Inverse Problems, vol. 35, no. 1, p. 015 006, 2018.

[85] Z. Li, Y. Tang, J. Chen, and H. Wu, “The quadratic wasserstein metric with squaring scaling
for seismic velocity inversion,” arXiv preprint arXiv:2201.11305, 2022.

[86] M. Liero, A. Mielke, and G. Savaré, “Optimal entropy-transport problems and a new
Hellinger-Kantorovich distance between positive measures,” Inventiones Mathematicae,
vol. 211, pp. 969–1117, 2018.

[87] M. Lin, Q. Chen, and S. Yan, Network in network, 2014. arXiv: 1312.4400 [cs.NE].

[88] Z. Lin et al., “Low-frequency data prediction with iterative learning for highly nonlinear
inverse scattering problems,” IEEE Trans. Microw. Theory Tech., 2021.

[89] B. Liu, S. Yang, Y. Ren, X. Xu, P. Jiang, and Y. Chen, “Deep-learning seismic full-waveform
inversion for realistic structural models,” Geophysics, vol. 86, R31–R44, 2021.

[90] B. Liu, “Understanding the loss landscape of one-hidden-layer relu networks,” Knowledge-
Based Systems, vol. 220, p. 106 923, 2021.

[91] Q. Liu, S. Beller, W. Lei, D. Peter, and J. Tromp, “Preconditioned BFGS-based uncertainty
quantification in elastic full waveform inversion,” arXiv:2009.12663, 2020.

[92] D. Lombardi and E.Maitre, “Eulerian models and algorithms for unbalanced optimal trans-
port,” ESAIM: Math. Model. Numer. Anal., vol. 49, pp. 1717–1744, 2015.

[93] F. Lucka, M. Pérez-Liva, B. E. Treeby, and B. T. Cox, “High resolution 3D ultrasonic breast
imaging by time-domain full waveform inversion,” arXiv:2102.00755, 2021.

[94] S. Mache, P. K. Pokala, K. Rajendran, and C. S. Seelamantula, “DuRIN: A deep-unfolded
sparse seismic reflectivity inversion network,” arXiv:2104.04704, 2021.

[95] S. Mahankali, “Velocity inversion using the quadratic wasserstein metric,” arXiv e-prints,
arXiv–2009, 2020.

[96] T. P. Matthews, J. Poudel, L. Li, L. V. Wang, and M. A. Anastasio, “Parameterized joint re-
construction of the initial pressure and sound speed distributions for photoacoustic computed
tomography,” SIAM J. Imaging Sci., vol. 11, pp. 1560–1588, 2018.

127

https://arxiv.org/abs/1312.4400

[97] M. T. McCann, K. H. Jin, and M. Unser, “A review of convolutional neural networks for
inverse problems in imaging,” arXiv preprint arXiv:1710.04011, 2017.

[98] Q. Mérigot, A. Delalande, and F. Chazal, “Quantitative stability of optimal transport maps
and linearization of the 2-wasserstein space,” in International Conference on Artificial
Intelligence and Statistics, PMLR, 2020, pp. 3186–3196.

[99] L. Métivier, A. Allain, R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, “Optimal transport
for mitigating cycle skipping in full waveform inversion: A graph space transform approach,”
Geophysics, vol. 83, R515–R540, 2018.

[100] L. Métivier, R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, “An optimal transport
approach for seismic tomography: Application to 3D full waveform inversion,” Inverse
Probl., vol. 32, 2016, 115008.

[101] ——, “Measuring the misfit between seismograms using an optimal transport distance:
Application to full waveform inversion,” Geophys. J. Int., vol. 205, pp. 345–377, 2016.

[102] D. Misra, Mish: A self regularized non-monotonic activation function, 2020. arXiv: 1908.
08681 [cs.LG].

[103] R. Modrak and J. Tromp, “Seismic waveform inversion best practices: Regional, global and
exploration test cases,” Geophys. J. Int., vol. 206, pp. 1864–1889, 2016.

[104] M. Motamed and D. Appelo, “Wasserstein metric-driven bayesian inversion with applica-
tions to signal processing,” International Journal for Uncertainty Quantification, vol. 9,
no. 4, 2019.

[105] J. Nocedal and S. J. Wright, Numerical Optimization. New York: Springer-Verlag, 2006.

[106] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep
learning techniques for inverse problems in imaging,” IEEE Journal on Selected Areas in
Information Theory, vol. 1, no. 1, pp. 39–56, 2020.

[107] R. Peyre, “Comparison between w2 distance and h-1 norm, and localization of wasserstein
distance,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 24, no. 4, pp. 1489–
1501, 2018.

[108] B. Piccoli and F. Rossi, “Generalized wasserstein distance and its application to transport
equations with source,” Arch. Rational Mech. Anal., vol. 211, pp. 335–358, 2014.

[109] R.-E. Plessix, “A review of the adjoint-state method for computing the gradient of a
functional with geophysical applications,” Geophys. J. Int., vol. 167, pp. 495–503, 2006.

128

https://arxiv.org/abs/1908.08681
https://arxiv.org/abs/1908.08681

[110] R. G. Pratt, “Seismic waveform inversion in the frequency domain, Part 1: Theory and
verification in a physical scale model,” Geophysics, vol. 64, pp. 888–901, 1999.

[111] R. G. Pratt, C. Shin, and G. J. Hicks, “Gauss-Newton and full Newton methods in frequency-
space seismic waveform inversion,” Geophys. J. Int., vol. 133, pp. 341–362, 1998.

[112] N. Rahaman et al., “On the spectral bias of neural networks,” in Proceedings of the 36th
International Conference on Machine Learning, vol. 97, 2019, pp. 5301–5310.

[113] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations,” J. Comput. Phys., vol. 378, pp. 686–707, 2019.

[114] A. Rangamani et al., “Loss landscapes and generalization in neural networks: Theory and
applications,” Ph.D. dissertation, Johns Hopkins University, 2020.

[115] Y. Ren, L. Nie, S. Yang, P. Jiang, and Y. Chen, “Building complex seismic velocity models
for deep learning inversion,” IEEE Access, vol. 9, pp. 63 767–63 778, 2021.

[116] J. A. Rivera, D. Pardo, and E. Alberdi, “Design of loss functions for solving inverse problems
using deep learning,” in International Conference on Computational Science, Springer,
2020, pp. 158–171.

[117] R. Rojas-Gomez, J. Yang, Y. Lin, J. Theiler, and B. Wohlberg, “Physics-consistent data-
driven waveform inversion with adaptive data augmentation,” IEEE Geosci. Remote. Sens.
Lett., pp. 1–5, 2020.

[118] B. Ronen, D. Jacobs, Y. Kasten, and S. Kritchman, “The convergence rate of neural net-
works for learned functions of different frequencies,” in Advances in Neural Information
Processing Systems, vol. 32, 2019.

[119] F. Santambrogio, Optimal Transport for Applied Mathematicians: Calculus of Variations,
PDEs, and Modeling. Birkhäuser, 2015.

[120] F. Santosa and W. W. Symes, Analysis of Least-squares velocity inversion. Society of
Exploration Geophysicists, 1989.

[121] B. Schmitzer, “A sparse multiscale algorithm for dense optimal transport,” J. Math. Imag.
Vision, vol. 56, pp. 238–259, 2016.

[122] L. Sirgue and R. G. Pratt, “Efficient waveform inversion and imaging: A strategy for
selecting temporal frequencies,” Geophysics, vol. 69, pp. 231–248, 2004.

[123] I. Skorokhodov and M. Burtsev, “Loss landscape sightseeing with multi-point optimization,”
arXiv preprint arXiv:1910.03867, 2019.

129

[124] J. D. Smith, K. Azizzadenesheli, and Z. E. Ross, “Eikonet: Solving the eikonal equation
with deep neural networks,” arXiv:2004.00361, 2020.

[125] J. Solomon, R. M. Rustamov, L. Guibas, and A. Butscher, “Wasserstein propagation for
semi-supervised learning,” in Proceedings of the 31st International Conference on Machine
Learning, E. P. Xing and T. Jebara, Eds., 2014, pp. 306–314.

[126] J. Solomon et al., “Convolutional Wasserstein distances,” ACM Trans. Graphics, vol. 34,
pp. 1–11, 2015.

[127] C. Song and T. Alkhalifah, “Wavefield reconstruction inversion via physics-informed neural
networks,” arXiv:2104.06897, 2021.

[128] B. Sun and T. Alkhalifah, “ML-misfit: Learn a robust misfit function for full-waveform
inversion using machine learning,” arXiv:2002.03163v2, 2020.

[129] H. Sun and L. Demanet, “Extrapolated full-waveform inversion with deep learning,” Geo-
physics, vol. 85, R275–R288, 2020.

[130] J. Sun, K. A. Innanen, and C. Huang, “Physics-guided deep learning for seismic inversion
with hybrid training and uncertainty analysis,” Geophysics, vol. 86, R303–R317, 2021.

[131] R. Sun, T. Fang, and A. Schwing, “Towards a better global loss landscape of gans,” Advances
in Neural Information Processing Systems, vol. 33, pp. 10 186–10 198, 2020.

[132] W. W. Symes, “Migration velocity analysis and waveform inversion,” Geophysical Prospect-
ing, vol. 56, pp. 765–790, 2008.

[133] Y. Tang, Y. Zheng, and N. Li, “Analysis of the Optimization Landscape of Linear Quadratic
Gaussian (LQG) Control,” p. 12,

[134] J. Tromp, C. Tape, and Q. Liu, “Seismic tomography, adjoint methods, time reversal and
banana-doughnut kernels,” Geophys. J. Int., vol. 160, pp. 195–216, 2005.

[135] C. Villani, Topics in Optimal Transportation. Providence, RI.: American Mathematical
Society, 2003.

[136] ——, Optimal Transport: Old and New. Springer Science & Business Media, 2008.

[137] J. Virieux, A. Asnaashari, R. Brossier, L. Métivier, A. Ribodetti, and W. Zhou, “An in-
troduction to full waveform inversion,” in Encyclopedia of Exploration Geophysics, 2014,
R1–1–R1–40.

[138] J. Virieux and S. Operto, “An overview of full-waveform inversion in exploration geo-
physics,” Geophysics, vol. 74, WCC1–WCC26, 2009.

130

[139] C. R. Vogel, Computational Methods for Inverse Problems, ser. Frontiers in Applied Mathe-
matics. Philadelphia: SIAM, 2002.

[140] C. R. Vogel and M. E. Oman, “Fast, robust total variation-based reconstruction of noisy,
blurred images,” IEEE transactions on image processing, vol. 7, no. 6, pp. 813–824, 1998.

[141] J. Wiskin, B. Malik, D. Borup, N. Pirshafiey, and J. Klock, “Full wave 3D inverse scattering
transmission ultrasound tomography in the presence of high contrast,” Scientific Reports,
vol. 10, 2020, 20166.

[142] D. Wu, Y. Wang, and S.-t. Xia, “Revisiting loss landscape for adversarial robustness,” arXiv
preprint arXiv:2004.05884, 2020.

[143] Y. Wu and Y. Lin, “InversionNet: An efficient and accurate data-driven full waveform
inversion,” IEEE Transactions on Computational Imaging, vol. 6, pp. 419–433, 2020.

[144] Z. J. Xu, Y. Zhang, and Y. Xiao, “Training behavior of deep neural network in frequency
domain,” arXiv:1807.01251v3, 2018.

[145] F. Yang and J. Ma, “Deep-learning inversion: A next-generation seismic velocity model
building method,” Geophysics, vol. 84, R583–R599, 2019.

[146] Y. Yang and B. Engquist, “Analysis of optimal transport and related misfit functions in
full-waveform inversion,” Geophysics, vol. 83, A7–A12, 2018.

[147] Y. Yang, B. Engquist, J. Sun, and B. D. Froese, “Application of optimal transport and the
quadratic Wasserstein metric to full waveform inversion,” Geophysics, vol. 83, R43–R62,
2018.

[148] Y. Yang, B. Engquist, J. Sun, and B. F. Hamfeldt, “Application of optimal transport and
the quadratic wasserstein metric to full-waveform inversion,” Geophysics, vol. 83, no. 1,
R43–R62, 2018.

[149] S. Yu and J. Ma, “Data-driven geophysics: From dictionary learning to deep learning,”
arXiv:2007.06183, 2020.

[150] W. Zhang and J. Gao, “Deep-learning full-waveform inversion using seismic migration
images,” IEEE Trans. Geosci. Remote Sens., pp. 1–18, 2021.

[151] Z. Zhang and Y. Lin, “Data-driven seismic waveform inversion: A study on the robustness
and generalization,” IEEE Trans. Geosci. Remote Sens., vol. 58, pp. 6900–6913, 2020.

131

Appendix A: Discretization of Wasserstein Distances

In this appendix, we document the schemes we used in the discretization of the problems we

discussed in Chapter 3 on computaitonal inversion with Wasserstein metrics.

A.1 Mesh Discretization in one spatial dimension.

In one-dimensional case, Ω = (0, 𝐿). We use uniform spatial and temporal grids with 𝑁𝑥 = 100

and 𝑁𝑡 = 100 respectively:

0 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑁𝑥
= 𝐿, 𝑥 𝑗 = 𝑗Δ𝑥

0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁𝑡
= 𝑇, 𝑡 𝑗 = 𝑗Δ𝑡

where Δ𝑥 = 𝐿
𝑁𝑥

and Δ𝑡 = 𝑇
𝑁𝑡

. Let 𝑋 be the density variable 𝜌 or the source variable Z , and 𝑌 be the

𝑚(= 𝜌𝜔) variable. We use staggered grids for 𝑋 and 𝑌 . We define:

𝑋𝑛
𝑗+ 1

2
= 𝑋 (

𝑥 𝑗 + 𝑥 𝑗+1
2

, 𝑡𝑛), and 𝑌
𝑛+ 1

2
𝑗

= 𝑌 (𝑥 𝑗 ,
𝑡𝑛 + 𝑡𝑛+1

2
).

Discretize 𝜌 and 𝑚 as

𝜌𝑛
𝑗+ 1

2
= 𝜌(

𝑥 𝑗 + 𝑥 𝑗+1
2

, 𝑡𝑛) (A.1)

𝑚
𝑛+ 1

2
𝑗

= 𝑚(𝑥 𝑗 ,
𝑡𝑛 + 𝑡𝑛+1

2
) (A.2)

132

We discretize the transport problem as

𝜌𝑛+1
𝑗+ 1

2
− 𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚
𝑛+ 1

2
𝑗+1 − 𝑚

𝑛+ 1
2

𝑗

Δ𝑥
= Z

𝑛+ 1
2

𝑗+ 1
2
,

𝜌0
𝑗+ 1

2
= 𝑓 𝑗+ 1

2
,

𝜌
𝑁𝑡

𝑗+ 1
2

= 𝑔 𝑗+ 1
2
,

𝑚
𝑛+ 1

2
0 = 0 𝑚

𝑛+ 1
2

𝑁𝑥
= 0 ,

(A.3)

A.2 Discretization of the forward problems

When solving inverse problem, the initial data f is computed by evaluating the forward model

f (\). The discretization of the forward model f will be discussed in this section when we specify

the exact form of f.

A.2.1 Abel Transform

The following integral transform relationship, known as the Abel transform, exists between two

functions f (𝑥) and \ (𝑡) for 0 < 𝛼 < 1,

f (𝑥) =
∫ 𝑥

0

\ (𝑡)
(𝑥 − 𝑡)𝛼 𝑑𝑡

\ (𝑡) = sin(𝜋𝛼)
𝜋
(
∫ 𝑡

𝑎

𝑑f (𝑠)
𝑑𝑠

1
(𝑡 − 𝑠)1−𝛼

𝑑𝑠 + f (0)
𝑡1−𝛼
)

The measure is f. Given f, one would like to find \ such that f = 𝐴𝑏𝑒𝑙 (\).

Let 𝑓𝑖 = f (𝑥𝑖+𝑥𝑖+12), \𝑖 = \ (𝑥𝑖), then

f 𝑗 = (Δ𝑥)1−𝛼
𝑗−1∑︁
𝑘=0

\𝑘

(𝑗 − (𝑘 + 1
2))𝛼

Here we take 𝛼 = 0.9

133

A.2.2 Helmholtz Equation

Δ𝑢 + 𝑘2(1 + 𝑛(𝑥))𝑢 + 𝑖𝑘\ (𝑥)𝑢 = 𝑞, 𝑖𝑛 Ω (A.4)

𝑢(𝑥) = 𝑏(𝑥), 𝑜𝑛 𝜕Ω (A.5)

The measure is f (\) = Λ(\ (𝑥)) |𝑢(𝑥) |2, 𝑖𝑛 Ω, where Λ(\ (𝑥)) = 1 𝑜𝑟 \. The inverse problem

can be formulated as given 𝑘, 𝑛(𝑥), 𝑞(𝑥), 𝑏(𝑥), g, one seeks \ (𝑥) such that g = Λ(\ (𝑥)) |𝑢(𝑥) |2

Let 𝑢𝑖 = 𝑢(𝑥𝑖+𝑥𝑖+12), \𝑖 = \ (𝑥𝑖), 𝑛𝑖 = 𝑛(𝑥𝑖), 𝑞𝑖 = 𝑞(𝑥𝑖), 𝑏0 = 𝑏(𝑥0), 𝑏𝑁−1 = 𝑏(𝑥𝑁𝑥
), then the

discrete Helmholtz equation is

𝑢 𝑗+1 − 2𝑢 𝑗 + 𝑢 𝑗−1

Δ𝑥2 + 𝑘2(1 + 𝑛 𝑗)𝑢 𝑗 + 𝑖𝑘\ 𝑗𝑢 𝑗 = 𝑞 𝑗 (A.6)

𝑓 𝑜𝑟 𝑗 ∈ {1, · · · , 𝑁𝑥 − 1}

𝑢0 = 𝑏0, 𝑢𝑁𝑥−1 = 𝑏𝑁−1 (A.7)

Notice that 𝑢𝑖 is complex.

Simulation parameters 𝑞(𝑥) = 𝑥𝑒𝑥 + 𝑥𝑠𝑖𝑛(2𝜋𝑥)𝑖 − 1𝑖, 𝑏0 = 1 + 2𝑖, 𝑏𝑁−1 = 2 + 1𝑖, 𝑘 = 1, 𝑛 = 1

A.2.3 Diffusion Equation

−∇ · 𝛾(𝑥)∇𝑢(𝑥) + \ (𝑥)𝑢(𝑥) = 𝑞(𝑥), 𝑖𝑛 Ω (A.8)

𝑢(𝑥) = 𝑏(𝑥), 𝑜𝑛 𝜕Ω (A.9)

The measure is f (\) = Λ(\ (𝑥))𝑢(𝑥), 𝑖𝑛 Ω, where Λ(\ (𝑥)) = 1 𝑜𝑟 \.

134

Now, for simplicity, we assume 𝛾(𝑥) is constant within the region Ω. Therefore the inverse

problem can be formulated as given 𝛾(𝑥) = 𝛾, 𝑏(𝑥), g, one seeks \ (𝑥) such that g = Λ(\ (𝑥))𝑢(𝑥)

Let 𝑢𝑖 = 𝑢(𝑥𝑖+𝑥𝑖+12), 𝑞𝑖 = 𝑞(𝑥𝑖), 𝑏0 = 𝑏(𝑥0), 𝑏𝑁−1 = 𝑏(𝑥𝑁𝑥
), then the discrete Diffusion equation

is

− 𝛾
𝑢 𝑗+1 − 2𝑢 𝑗 + 𝑢 𝑗−1

Δ𝑥2 + \ 𝑗𝑢 𝑗 = 𝑞 𝑗 (A.10)

𝑓 𝑜𝑟 𝑗 ∈ {1, · · · , 𝑁𝑥 − 2}

𝑢0 = 𝑏0, 𝑢𝑁𝑥−1 = 𝑏𝑁−1 (A.11)

Simulation parameters 𝑞(𝑥) = 3𝑥𝑒𝑥 + 1, 𝛾 = 0.1, 𝑏0 = 1, 𝑏𝑁−1 = 2

A.3 Solving Inverse Problem Using Wasserstein-Fisher-Rao Metric

A.3.1 Discretization of Wasserstein-Fisher-Rao Metric

The continuous version of the Wasserstein-Fisher-Rao problem will be

𝑊2
2,𝑊𝐹𝑅 (𝜌0, 𝜌1) =

inf
𝜌,𝑚,Z

1
𝑇

∫ 𝑇
0

∫
Ω

𝑚2

2𝜌 +
Z2

2𝜌 𝑑𝑥𝑑𝑡

𝑠.𝑡.𝜌𝑡 + ∇ · 𝑚 = Z

𝜌(0, 𝑥) = 𝜌0(𝑥)

𝜌(𝑇, 𝑥) = 𝜌1(𝑥)

𝜌 ≥ 0

𝑚 · 𝑛 = 0 𝑜𝑛 𝜕Ω

(A.12)

When needed, the cost functional is evaluated by a trapezoidal scheme for the integration. More

135

precisely, the functional Φ𝑊2,WFR is discretized as

Φ𝑊2,WFR (𝜌, 𝑚, Z, \) =
Δ𝑥Δ𝑡

2𝑇

𝑁𝑥−1∑︁
𝑗=0

𝑁𝑡−1∑︁
𝑛=0

(𝑚𝑛+
1
2

𝑗
)2 + (𝑚𝑛+

1
2

𝑗+1)
2

𝜌𝑛
𝑗+ 1

2
+ 𝜌𝑛+1

𝑗+ 1
2

+
2(Z𝑛+

1
2

𝑗+ 1
2
)2

𝜌𝑛
𝑗+ 1

2
+ 𝜌𝑛+1

𝑗+ 1
2

(A.13)

Discretized problem formulation

min
𝑚,𝜌,Z

Φ𝑊2,WFRΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= Z

𝑛+ 1
2

𝑗+ 1
2

𝜌0
𝑗+ 1

2
= 𝜌0(𝑥 𝑗+ 1

2
)

𝜌
𝑁𝑡

𝑗+ 1
2
= 𝜌1(𝑥 𝑗+ 1

2
)

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

(A.14)

We emphasize that the source term Z
𝑛+ 1

2
𝑗+ 1

2
now represents 𝜌

𝑛+ 1
2

𝑗+ 1
2
Z
𝑛+ 1

2
𝑗+ 1

2
due to the change of variable

introduced in (3.51). The implicit constraint 𝜌𝑛
𝑗+ 1

2
> 0 will be imposed in the optimization procedure.

A.3.2 Solving Inverse Abel Transform with Wasserstein-Fisher-Rao Metric

Notice that g represents the data.

136

min
𝑚,𝜌,Z ,\,f

Φ𝑊2,WFRΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= Z

𝑛+ 1
2

𝑗+ 1
2

𝜌0
𝑗+ 1

2
= f 𝑗

𝜌
𝑁𝑡

𝑗+ 1
2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

f 𝑗 = (Δ𝑥)1−𝛼
𝑗−1∑
𝑘=0

\𝑘

(𝑗−(𝑘+ 1
2))𝛼

(A.15)

A.3.3 Solving Inverse Helmholtz Equation with Wasserstein-Fisher-Rao Metric

min
𝑚,𝜌,Z ,\,𝑢,f

Φ𝑊2,WFRΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= Z

𝑛+ 1
2

𝑗+ 1
2

𝜌0
𝑗+ 1

2
= f 𝑗

𝜌
𝑁𝑡

𝑗+ 1
2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0
𝑢 𝑗+1−2𝑢 𝑗+𝑢 𝑗−1

Δ𝑥2 + 𝑘2(1 + 𝑛 𝑗)𝑢 𝑗 + 𝑖𝑘\ 𝑗𝑢 𝑗 = 𝑞 𝑗

𝑢0 = 𝑏0, 𝑢𝑁𝑥−1 = 𝑏𝑁−1

f 𝑗 = (𝑅𝑒(𝑢 𝑗)2 + 𝐼𝑚(𝑢 𝑗)2)\ 𝑗

(A.16)

137

Or

min
𝑚,𝜌,Z ,\,𝑢,f

Φ𝑊2,WFRΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= Z

𝑛+ 1
2

𝑗+ 1
2

𝜌0
𝑗+ 1

2
= f 𝑗

𝜌
𝑁𝑡

𝑗+ 1
2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0
𝑅𝑒(𝑢 𝑗+1)−2𝑅𝑒(𝑢 𝑗)+𝑅𝑒(𝑢 𝑗−1)

Δ𝑥2 + 𝑘2(1 + 𝑛 𝑗)𝑅𝑒(𝑢 𝑗) − 𝑘\ 𝑗 𝐼𝑚(𝑢 𝑗)

= 𝑅𝑒(𝑞 𝑗)
𝐼𝑚(𝑢 𝑗+1)−2𝐼𝑚(𝑢 𝑗)+𝐼𝑚(𝑢 𝑗−1)

Δ𝑥2 + 𝑘2(1 + 𝑛 𝑗)𝐼𝑚(𝑢 𝑗) + 𝑘\ 𝑗𝑅𝑒(𝑢 𝑗)

= 𝐼𝑚(𝑞 𝑗)

𝑢0 = 𝑏0, 𝑢𝑁𝑥−1 = 𝑏𝑁−1

f 𝑗 = (𝑅𝑒(𝑢 𝑗)2 + 𝐼𝑚(𝑢 𝑗)2)\ 𝑗

(A.17)

138

A.3.4 Solving Inverse Diffusion Equation with Wasserstein-Fisher-Rao Metric

min
𝑚,𝜌,Z ,\,𝑢,f

Φ𝑊2,WFRΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= Z

𝑛+ 1
2

𝑗+ 1
2

𝜌0
𝑗+ 1

2
= f 𝑗

𝜌
𝑁𝑡

𝑗+ 1
2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

−𝛾 𝑢 𝑗+1−2𝑢 𝑗+𝑢 𝑗−1
Δ𝑥2 + \ 𝑗𝑢 𝑗 = 𝑞 𝑗

𝑢0 = 𝑏0, 𝑢𝑁𝑥−1 = 𝑏𝑁−1

f 𝑗 = 𝑢 𝑗\ 𝑗

(A.18)

A.4 Wasserstein-UOT Metric

For two non-negative densities 𝜌0, 𝜌1 on a domain Ω ⊂ R𝑛, and given parameter 𝛼, the

Wasserstein-UOT is obtained by optimizing

𝑊2
2,𝑈𝑂𝑇 (𝜌0, 𝜌1) = inf

𝜌,𝑚,Z

1
𝑇

∫ 𝑇
0

∫
Ω

𝑚2

2𝜌 +
|Ω|Z2

2𝛼 𝑑𝑡

𝑠.𝑡.𝜌𝑡 + ∇ · 𝑚 = Z

𝜌(0, 𝑥) = 𝜌0(𝑥)

𝜌(𝑇, 𝑥) = 𝜌1(𝑥)

𝜌 ≥ 0

𝑚 · 𝑛 = 0 𝑜𝑛 𝜕Ω

(A.19)

139

A.4.1 Discretization of Wasserstein-UOT Metric

Define

Φ𝑊2,UOTΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z) =
1

2𝑇
Δ𝑥Δ𝑡

𝑁𝑥−1∑︁
𝑗=0

𝑁𝑡−1∑︁
𝑛=0

(𝑚𝑛+
1
2

𝑗
)2 + (𝑚𝑛+

1
2

𝑗+1)
2

𝜌𝑛
𝑗+ 1

2
+ 𝜌𝑛+

1
2

𝑗+ 1
2

+ Δ𝑡
𝑁𝑡−1∑︁
𝑛=0

|Ω| (Z𝑛+ 1
2)2

2𝛼
(A.20)

Then the discretized version of 1D Wasserstein-UOT Metric is

min
𝑚,𝜌,Z

Φ𝑊2,UOTΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= Z𝑛+

1
2

𝜌0
𝑗+ 1

2
= 𝜌0(𝑥 𝑗+ 1

2
)

𝜌
𝑁𝑡

𝑗+ 1
2
= 𝜌1(𝑥 𝑗+ 1

2
)

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

(A.21)

A.5 Wasserstein-GUOT Metric

For two non-negative densities 𝜌0, 𝜌1 on a domain Ω ⊂ R𝑛, and given parameter 𝛼, the

Wasserstein-GUOT is obtained by optimizing

𝑊2
2,𝐺𝑈𝑂𝑇 (𝜌0, 𝜌1) = inf

𝜌,𝑚,Z

1
𝑇

∫ 𝑇
0

∫
Ω

𝑚2

2𝜌 +
Z2

2𝛼𝑑𝑥𝑑𝑡

𝑠.𝑡.𝜌𝑡 + ∇ · 𝑚 = Z

𝜌(0, 𝑥) = 𝜌0(𝑥)

𝜌(𝑇, 𝑥) = 𝜌1(𝑥)

𝜌 ≥ 0

𝑚 · 𝑛 = 0 𝑜𝑛 𝜕Ω

(A.22)

140

A.5.1 Discretization of Wasserstein-GUOT Metric

Define

Φ𝑊2,GUOTΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z) =
1

2𝑇
Δ𝑥Δ𝑡

𝑁𝑥−1∑︁
𝑗=0

𝑁𝑡−1∑︁
𝑛=0

(𝑚𝑛+
1
2

𝑗
)2 + (𝑚𝑛+

1
2

𝑗+1)
2

𝜌𝑛
𝑗+ 1

2
+ 𝜌𝑛+

1
2

𝑗+ 1
2

+
(Z𝑛+

1
2

𝑗+ 1
2
)2

𝛼
(A.23)

Then the discretized version of 1D Wasserstein-GUOT Metric is

min
𝑚,𝜌,Z

Φ𝑊2,GUOTΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= Z

𝑛+ 1
2

𝑗+ 1
2

𝜌0
𝑗+ 1

2
= 𝜌0(𝑥 𝑗+ 1

2
)

𝜌
𝑁𝑡

𝑗+ 1
2
= 𝜌1(𝑥 𝑗+ 1

2
)

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

(A.24)

141

A.5.2 Solving Inverse Abel Transform with Wasserstein-GUOT Metric

Discretized problem formulation for Abel transform, given g as the data, try to find \, such that

g = 𝐴𝑏𝑒𝑙 (\)

min
𝑚,𝜌,Z ,\,f

Φ𝑊2,GUOTΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= Z

𝑛+ 1
2

𝑗+ 1
2

𝜌0
𝑗+ 1

2
= f 𝑗

𝜌
𝑁𝑡

𝑗+ 1
2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

f 𝑗 = (Δ𝑥)1−𝛼
𝑗−1∑
𝑘=0

\𝑘

(𝑗−(𝑘+ 1
2))𝛼

(A.25)

A.5.3 Solving Inverse Helmholtz Equation with Wasserstein-GUOT Metric

Discretized formulation for Helmholtz Equation

142

min
𝑚,𝜌,Z ,\,𝑢,f

Φ𝑊2,GUOTΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= Z

𝑛+ 1
2

𝑗+ 1
2

𝜌0
𝑗+ 1

2
= f 𝑗

𝜌
𝑁𝑡

𝑗+ 1
2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0
𝑅𝑒(𝑢 𝑗+1)−2𝑅𝑒(𝑢 𝑗)+𝑅𝑒(𝑢 𝑗−1)

Δ𝑥2 + 𝑘2(1 + 𝑛 𝑗)𝑅𝑒(𝑢 𝑗) − 𝑘\ 𝑗 𝐼𝑚(𝑢 𝑗)

= 𝑅𝑒(𝑞 𝑗)
𝐼𝑚(𝑢 𝑗+1)−2𝐼𝑚(𝑢 𝑗)+𝐼𝑚(𝑢 𝑗−1)

Δ𝑥2 + 𝑘2(1 + 𝑛 𝑗)𝐼𝑚(𝑢 𝑗) + 𝑘\ 𝑗𝑅𝑒(𝑢 𝑗)

= 𝐼𝑚(𝑞 𝑗)

𝑢0 = 𝑏0, 𝑢𝑁𝑥−1 = 𝑏𝑁−1

f 𝑗 = (𝑅𝑒(𝑢 𝑗)2 + 𝐼𝑚(𝑢 𝑗)2)\ 𝑗

(A.26)

A.5.4 Solving Inverse Diffusion Equation with Wasserstein-GUOT Metric

The following is the discretized formulation for Diffusion Equation

143

min
𝑚,𝜌,Z ,\,𝑢,f

Φ𝑊2,GUOTΔ𝑥,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= Z

𝑛+ 1
2

𝑗+ 1
2

𝜌0
𝑗+ 1

2
= f 𝑗

𝜌
𝑁𝑡

𝑗+ 1
2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

−𝛾 𝑢 𝑗+1−2𝑢 𝑗+𝑢 𝑗−1
Δ𝑥2 + \ 𝑗𝑢 𝑗 = 𝑞 𝑗

𝑢0 = 𝑏0, 𝑢𝑁𝑥−1 = 𝑏𝑁−1

f 𝑗 = 𝑢 𝑗\ 𝑗

(A.27)

A.6 Solving Inverse Problem Using Balanced Wasserstein Distance

A.6.1 Discretization of Balanced Wasserstein Metric

The continuous version of the problem will be

𝑊2
2 (𝜌0, 𝜌1) =

inf
𝜌,𝑚,\,𝑢

1
𝑇

∫ 𝑇
0

∫
Ω

𝑚2

2𝜌 𝑑𝑥𝑑𝑡

𝑠.𝑡.𝜌𝑡 + ∇ · 𝑚 = 0

𝜌(0, 𝑥) = 𝜌0(𝑥)

𝜌(𝑇, 𝑥) = 𝜌1(𝑥)

𝜌 ≥ 0

𝑚 · 𝑛 = 0 𝑜𝑛 𝜕Ω

(A.28)

Discretized problem formulation

144

min
𝑚,𝜌

Φ𝑊2Δ𝑥,Δ𝑡 (𝜌, 𝑚)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= 0

𝜌0
𝑗+ 1

2
= 𝜌0(𝑥 𝑗+ 1

2
)

𝜌
𝑁𝑡

𝑗+ 1
2
= 𝜌1(𝑥 𝑗+ 1

2
)

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

(A.29)

where

Φ𝑊2Δ𝑥,Δ𝑡 (𝜌, 𝑚) =
1

2𝑇
Δ𝑥Δ𝑡

𝑁𝑥−1∑︁
𝑗=0

𝑁𝑡−1∑︁
𝑛=0

(𝑚𝑛
𝑗
)2 + (𝑚𝑛

𝑗+1)
2

𝜌𝑛
𝑗+ 1

2
+ 𝜌𝑛+1

𝑗+ 1
2

(A.30)

A.6.2 Solving Inverse Abel Transform with Balanced Optimal Transport

min
𝑚,𝜌,\,f

Φ𝑊2Δ𝑥,Δ𝑡 (𝜌, 𝑚)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= 0

𝜌0
𝑗+ 1

2
= f 𝑗

𝜌
𝑁𝑡

𝑗+ 1
2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

f 𝑗 = (Δ𝑥)1−𝛼
𝑗−1∑
𝑘=0

\𝑘

(𝑗−(𝑘+ 1
2))𝛼

(A.31)

145

A.6.3 Solving Inverse Helmholtz Equation with Balanced Optimal Transport

min
𝑚,𝜌,\,𝑢,f

Φ𝑊2Δ𝑥,Δ𝑡 (𝜌, 𝑚)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= 0

𝜌0
𝑗+ 1

2
= f 𝑗

𝜌
𝑁𝑡

𝑗+ 1
2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0
𝑅𝑒(𝑢 𝑗+1)−2𝑅𝑒(𝑢 𝑗)+𝑅𝑒(𝑢 𝑗−1)

Δ𝑥2 + 𝑘2(1 + 𝑛 𝑗)𝑅𝑒(𝑢 𝑗) − 𝑘\ 𝑗 𝐼𝑚(𝑢 𝑗)

= 𝑅𝑒(𝑞 𝑗)
𝐼𝑚(𝑢 𝑗+1)−2𝐼𝑚(𝑢 𝑗)+𝐼𝑚(𝑢 𝑗−1)

Δ𝑥2 + 𝑘2(1 + 𝑛 𝑗)𝐼𝑚(𝑢 𝑗) + 𝑘\ 𝑗𝑅𝑒(𝑢 𝑗)

= 𝐼𝑚(𝑞 𝑗)

𝑢0 = 𝑏0, 𝑢𝑁𝑥−1 = 𝑏𝑁−1

f 𝑗 = (𝑅𝑒(𝑢 𝑗)2 + 𝐼𝑚(𝑢 𝑗)2)\ 𝑗

(A.32)

146

A.6.4 Solving Inverse Diffusion Equation with Balanced Optimal Transport

min
𝑚,𝜌,\,𝑢,f

Φ𝑊2Δ𝑥,Δ𝑡 (𝜌, 𝑚)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= 0

𝜌0
𝑗+ 1

2
= f 𝑗

𝜌
𝑁𝑡

𝑗+ 1
2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

−𝛾 𝑢 𝑗+1−2𝑢 𝑗+𝑢 𝑗−1
Δ𝑥2 + \ 𝑗𝑢 𝑗 = 𝑞 𝑗

𝑢0 = 𝑏0, 𝑢𝑁𝑥−1 = 𝑏𝑁−1

f 𝑗 = 𝑢 𝑗\ 𝑗

(A.33)

A.7 Solving Inverse Problem Using Relaxed Quadratic Wasserstein Metric

A.7.1 Discretization of Relaxed Quadratic Wasserstein Metric

The continuous version of the relaxed quadratic Wasserstein metric is

𝑊2
2,𝑀𝑖𝑥𝑒𝑑 (𝜌0, 𝜌1) =

inf
𝑚,𝜌
{ 1
𝑇

∫
Ω

∫ 𝑇
0
|𝑚 |2
2𝜌 𝑑𝑡𝑑𝑥 +

𝛽

2

∫
|𝜌(𝑇, 𝑥) − 𝜌1(𝑥) |2𝑑𝑥}

𝑠.𝑡.𝜌𝑡 + ∇ · 𝑚 = 0

𝜌(0, 𝑥) = 𝜌0(𝑥)

𝜌 ≥ 0

𝑚 · 𝑛 = 0 𝑜𝑛 𝜕Ω

(A.34)

Discretized problem formulation

147

min
𝑚,𝜌

Φ𝑊2,mixedΔ𝑥,Δ𝑡 (𝜌, 𝑚, 𝜌1)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= 0

𝜌0
𝑗+ 1

2
= 𝜌0(𝑥 𝑗+ 1

2
)

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

(A.35)

where

Φ𝑊2,mixedΔ𝑥,Δ𝑡 (𝜌, 𝑚, f) =
1

2𝑇
Δ𝑥Δ𝑡

𝑁𝑥−1∑︁
𝑗=0

𝑁𝑡−1∑︁
𝑛=0

(𝑚𝑛+
1
2

𝑗
)2 + (𝑚𝑛+

1
2

𝑗+1)
2

𝜌𝑛
𝑗+ 1

2
+ 𝜌𝑛+1

𝑗+ 1
2

+ 𝛽
2
Δ𝑥

𝑁𝑥−1∑︁
𝑗=0
(𝜌𝑁𝑡

𝑗+ 1
2
− 𝑓 𝑗)2

A.7.2 Solving Inverse Abel Transform with Relaxed Quadratic Wasserstein Metric

min
𝑚,𝜌,\,f

Φ𝑊2,mixedΔ𝑥,Δ𝑡 (𝜌, 𝑚, f)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= 0

𝜌0
𝑗+ 1

2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

f 𝑗 = (Δ𝑥)1−𝛼
𝑗−1∑
𝑘=0

\𝑘

(𝑗−(𝑘+ 1
2))𝛼

(A.36)

148

A.7.3 Solving Inverse Helmholtz Equation with Relaxed Quadratic Wasserstein Metric

min
𝑚,𝜌,\,𝑢,f

Φ𝑊2,mixedΔ𝑥,Δ𝑡 (𝜌, 𝑚, f)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= 0

𝜌0
𝑗+ 1

2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0
𝑅𝑒(𝑢 𝑗+1)−2𝑅𝑒(𝑢 𝑗)+𝑅𝑒(𝑢 𝑗−1)

Δ𝑥2 + 𝑘2(1 + 𝑛 𝑗)𝑅𝑒(𝑢 𝑗) − 𝑘\ 𝑗 𝐼𝑚(𝑢 𝑗)

= 𝑅𝑒(𝑞 𝑗)
𝐼𝑚(𝑢 𝑗+1)−2𝐼𝑚(𝑢 𝑗)+𝐼𝑚(𝑢 𝑗−1)

Δ𝑥2 + 𝑘2(1 + 𝑛 𝑗)𝐼𝑚(𝑢 𝑗) + 𝑘\ 𝑗𝑅𝑒(𝑢 𝑗)

= 𝐼𝑚(𝑞 𝑗)

𝑢0 = 𝑏0, 𝑢𝑁𝑥−1 = 𝑏𝑁−1

f 𝑗 = (𝑅𝑒(𝑢 𝑗)2 + 𝐼𝑚(𝑢 𝑗)2)\ 𝑗

(A.37)

A.7.4 Solving Inverse Diffusion Equation with Relaxed Quadratic Wasserstein Metric

min
𝑚,𝜌,\,𝑢,f

Φ𝑊2,mixedΔ𝑥,Δ𝑡 (𝜌, 𝑚, f)

𝑠.𝑡.

𝜌𝑛+1
𝑗+ 1

2
−𝜌𝑛

𝑗+ 1
2

Δ𝑡
+
𝑚

𝑛+ 1
2

𝑗+1 −𝑚
𝑛+ 1

2
𝑗

Δ𝑥
= 0

𝜌0
𝑗+ 1

2
= g 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

𝑚
𝑛+ 1

2
0 = 0

𝑚
𝑛+ 1

2
𝑁𝑥

= 0

−𝛾 𝑢 𝑗+1−2𝑢 𝑗+𝑢 𝑗−1
Δ𝑥2 + \ 𝑗𝑢 𝑗 = 𝑞 𝑗

𝑢0 = 𝑏0, 𝑢𝑁𝑥−1 = 𝑏𝑁−1

f 𝑗 = 𝑢 𝑗\ 𝑗

(A.38)

149

A.8 Solving Inverse Problem Using𝑊1 Wasserstein Metric

A.8.1 Discretization of𝑊1 Wasserstein Metric

The continuous version of the relaxed quadratic Wasserstein metric is

𝑊1(f, g) =

inf
m

∫
Ω
∥m(𝑥)∥𝑑𝑥

𝑠.𝑡.∇ ·m = f − g
(A.39)

Discretized problem formulation

min
𝑚,𝜌

Φ𝑊1Δ𝑥 (𝑚)

𝑠.𝑡.
𝑚 𝑗+1−𝑚 𝑗

Δ𝑥
= f 𝑗 − g 𝑗

(A.40)

where

Φ𝑊1Δ𝑥 (𝑚) = Δ𝑥

𝑁𝑥−1∑︁
𝑗=0
|𝑚 𝑗 | (A.41)

A.9 Solving Inverse Problem Using𝑈𝑊1 Wasserstein Metric

A.9.1 Discretization of𝑈𝑊1 Wasserstein Metric

The continuous version of the relaxed quadratic Wasserstein metric is

𝑈𝑊1(f, g) =

inf
m

∫
Ω
∥m(𝑥)∥ + 𝛽∥Z ∥𝑑𝑥

𝑠.𝑡.∇ ·m − Z = f − g
(A.42)

Discretized problem formulation

min
𝑚,𝜌

Φ𝑈𝑊1Δ𝑥 (𝑚, Z)

𝑠.𝑡.
𝑚 𝑗+1−𝑚 𝑗

Δ𝑥
− Z 𝑗+ 1

2
= f 𝑗 − g 𝑗

(A.43)

150

where

Φ𝑈𝑊1Δ𝑥 (𝑚, Z) = Δ𝑥

𝑁𝑥−1∑︁
𝑗=0
|𝑚 𝑗 | + 𝛽 |Z 𝑗+ 1

2
| (A.44)

A.10 Solving Inverse Problem Using 𝐿2 Norm

min
𝑢

1
2Δ𝑥

𝑁𝑥−1∑
𝑗=0
(𝑓 𝑗 − g 𝑗)2

𝑠.𝑡. 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

(A.45)

A.11 Solving Inverse Problem UsingH−1 Norm

min
𝑢

1
2Δ𝑥

𝑁𝑥−1∑
𝑗=0
(𝑃 𝑗+1 − 𝑃 𝑗)2

𝑠.𝑡. − 𝑃 𝑗+1−2𝑃 𝑗+𝑃 𝑗−1
Δ𝑥2 = g 𝑗 − f 𝑗

𝑃0 = 0

𝑃𝑁𝑥
= 0

𝑠.𝑡. 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

(A.46)

A.12 Discretization in two spatial dimensions.

In the two-dimensional case with Ω = (0, 𝐿𝑥) × (0, 𝐿𝑦), we also use a uniform structured

temporal-spatial grid. Let 𝑁𝑡 = 10, 𝑁𝑥 = 50 and 𝑁𝑦 = 50 be the number of intervals in the 𝑡, 𝑥 and

𝑦 variables respectively, then the grid (𝑡𝑖, 𝑥 𝑗 , 𝑦𝑘) is defined as

𝑡𝑖 = 𝑖Δ𝑡, 0 ≤ 𝑖 ≤ 𝑁𝑡 ; 𝑥 𝑗 = 𝑗Δ𝑥, 0 ≤ 𝑗 ≤ 𝑁𝑥; 𝑦𝑘 = 𝑘Δ𝑦, 0 ≤ 𝑘 ≤ 𝑁𝑦

where Δ𝑡 = 𝑇
𝑁𝑡

, Δ𝑥 = 𝐿𝑥

𝑁𝑥
, and Δ𝑦 =

𝐿𝑦

𝑁𝑦
.

151

We again use staggered grids for (𝜌, Z) and m = (𝑚𝑥 , 𝑚𝑦) to discretize them as

𝜌𝑛
𝑖+ 1

2 , 𝑗+
1
2
= 𝜌(𝑥𝑖 + 𝑥𝑖+1

2
,
𝑦 𝑗 + 𝑦 𝑗+1

2
, 𝑡𝑛), Z

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+

1
2
= Z (𝑥𝑖 + 𝑥𝑖+1

2
,
𝑦 𝑗 + 𝑦 𝑗+1

2
,
𝑡𝑛 + 𝑡𝑛+1

2
)

(𝑚𝑥)
𝑛+ 1

2
𝑖, 𝑗+ 1

2
= 𝑚𝑥 (𝑥𝑖,

𝑦 𝑗 + 𝑦 𝑗+1
2

,
𝑡𝑛 + 𝑡𝑛+1

2
)

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 , 𝑗
= 𝑚𝑦 (

𝑥𝑖 + 𝑥𝑖+1
2

, 𝑦 𝑗 ,
𝑡𝑛 + 𝑡𝑛+1

2
) .

This gives the following discretization scheme for the transport equation:

𝜌𝑛+1
𝑖+ 1

2 , 𝑗+ 1
2
−𝜌𝑛

𝑖+ 1
2 , 𝑗+ 1

2
Δ𝑡

+
(𝑚𝑥)

𝑛+ 1
2

𝑖+1, 𝑗+ 1
2
−(𝑚𝑥)

𝑛+ 1
2

𝑖, 𝑗+ 1
2

Δ𝑥
+
(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+1
−(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗

Δ𝑦
= Z

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+

1
2

𝜌0
𝑖+ 1

2 , 𝑗+
1
2

= 𝑓𝑖+ 1
2 , 𝑗+

1
2

𝜌
𝑁𝑡

𝑖+ 1
2 , 𝑗+

1
2

= 𝑔𝑖+ 1
2 , 𝑗+

1
2

(𝑚𝑥)
𝑛+ 1

2
0, 𝑗+ 1

2
= 0 (𝑚𝑥)

𝑛+ 1
2

𝑁𝑥 , 𝑗+ 1
2
= 0

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 ,0
= 0 (𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 ,𝑁𝑦

= 0 .

(A.47)

A.12.1 Diffusion equation in 2D

In 2D simulation, we mainly use diffusion equation as an example.

−𝛾(𝑢𝑖−1, 𝑗+𝑢𝑖+1, 𝑗−2𝑢𝑖, 𝑗
Δ𝑥2 + 𝑢𝑖, 𝑗−1+𝑢𝑖, 𝑗+1−2𝑢𝑖, 𝑗

Δ𝑦2) + \𝑖, 𝑗𝑢𝑖, 𝑗 = 𝑞𝑖, 𝑗

𝑢0, 𝑗 = (𝑏𝑥0) 𝑗

𝑢𝑁𝑥 , 𝑗 = (𝑏𝑁𝑥
) 𝑗

𝑢𝑖,0 = (𝑏𝑦0)𝑖

𝑢𝑖,𝑁𝑦
= (𝑏𝑁𝑦

)𝑖

𝑓𝑖, 𝑗 = 𝑢𝑖, 𝑗\𝑖, 𝑗

(A.48)

Where 𝑞(𝑥, 𝑦) = 1 + 3𝑥𝑒𝑥𝑦, and other parameters 𝑏𝑥0 = 𝑏𝑁𝑥
= 𝑏𝑦0 = 𝑏𝑁𝑦

= 1, 𝛾 = 0.1

152

A.12.2 Solving Inverse Diffusion Equation with Mixed Relaxed Quadratic Wasserstein Metric in

2D

The discrete version of the cost functional in this case, following the trapezoidal rule for spatial

and temporal integration, takes the form

Φ2𝐷,𝑊2,mixedΔ𝑥,Δ𝑦,Δ𝑡 (𝜌, 𝑚, f) = 1
2𝑇Δ𝑥Δ𝑦Δ𝑡

𝑁𝑡−1∑
𝑛=0

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

((𝑚𝑥)
𝑛+ 1

2
𝑖, 𝑗+ 1

2
)2+((𝑚𝑥)

𝑛+ 1
2

𝑖+1, 𝑗+ 1
2
)2+((𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗
)2+((𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+1
)2

𝜌𝑛
𝑖+ 1

2 , 𝑗+ 1
2
+𝜌𝑛+1

𝑖+ 1
2 , 𝑗+ 1

2

+

𝛽

2Δ𝑥Δ𝑦
𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0
(𝜌𝑁𝑡

𝑖+ 1
2 , 𝑗+

1
2
− f𝑖, 𝑗)2

(A.49)

The discrete problem for inverse diffusion equation would be

153

min
𝑚,𝜌,\,f,𝑢

Φ2𝐷,𝑊2,mixedΔ𝑥,Δ𝑦,Δ𝑡 (𝜌, 𝑚, f)

𝑠.𝑡.

𝜌𝑛+1
𝑖+ 1

2 , 𝑗+ 1
2
−𝜌𝑛

𝑖+ 1
2 , 𝑗+ 1

2
Δ𝑡

+
(𝑚𝑥)

𝑛+ 1
2

𝑖+1, 𝑗+ 1
2
−(𝑚𝑥)

𝑛+ 1
2

𝑖, 𝑗+ 1
2

Δ𝑥
+
(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+1
−(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗

Δ𝑦
= 0

𝜌0
𝑖+ 1

2 , 𝑗+
1
2
= g𝑖, 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

(𝑚𝑥)
𝑛+ 1

2
0, 𝑗+ 1

2
= 0

(𝑚𝑥)
𝑛+ 1

2
𝑁𝑥 , 𝑗+ 1

2
= 0

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 ,0
= 0

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 ,𝑁𝑦

= 0

−𝛾(𝑢𝑖−1, 𝑗+𝑢𝑖+1, 𝑗−2𝑢𝑖, 𝑗
Δ𝑥2 + 𝑢𝑖, 𝑗−1+𝑢𝑖, 𝑗+1−2𝑢𝑖, 𝑗

Δ𝑦2) + \𝑖, 𝑗𝑢𝑖, 𝑗 = 𝑞𝑖, 𝑗

𝑢0, 𝑗 = (𝑏𝑥0) 𝑗

𝑢𝑁𝑥 , 𝑗 = (𝑏𝑁𝑥) 𝑗

𝑢𝑖,0 = (𝑏𝑦0)𝑖

𝑢𝑖,𝑁𝑦
= (𝑏𝑁𝑦)𝑖

𝑓𝑖, 𝑗 = 𝑢𝑖, 𝑗\𝑖, 𝑗

(A.50)

A.12.3 Solving Inverse Diffusion Equation with Wasserstein-Fisher-Rao Metric in 2D

The discrete version of the cost functional for𝑊2,WFR, following the trapezoidal rule for spatial

and temporal integration, takes the form

Φ2𝐷,𝑊2,𝑊𝐹𝑅Δ𝑥,Δ𝑦,Δ𝑡 (𝜌, 𝑚, Z) = 1
2𝑇Δ𝑥Δ𝑦Δ𝑡

𝑁𝑡−1∑
𝑛=0

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

((𝑚𝑥)
𝑛+ 1

2
𝑖, 𝑗+ 1

2
)2+((𝑚𝑥)

𝑛+ 1
2

𝑖+1, 𝑗+ 1
2
)2+((𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗
)2+((𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+1
)2

𝜌𝑛
𝑖+ 1

2 , 𝑗+ 1
2
+𝜌𝑛+1

𝑖+ 1
2 , 𝑗+ 1

2

+

1
2Δ𝑥Δ𝑦Δ𝑡

𝑁𝑡−1∑
𝑛=0

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

2(Z
𝑛+ 1

2
𝑖+ 1

2 , 𝑗+ 1
2
)2

𝜌𝑛
𝑖+ 1

2 , 𝑗+ 1
2
+𝜌𝑛+1

𝑖+ 1
2 , 𝑗+ 1

2

(A.51)

154

The discrete problem for inverse diffusion equation would be adding the 2D diffusion equation

into the constraints.

min
𝑚,𝜌,\,f,𝑢,Z

Φ2𝐷,𝑊2,WFRΔ𝑥,Δ𝑦,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑖+ 1

2 , 𝑗+ 1
2
−𝜌𝑛

𝑖+ 1
2 , 𝑗+ 1

2
Δ𝑡

+
(𝑚𝑥)

𝑛+ 1
2

𝑖+1, 𝑗+ 1
2
−(𝑚𝑥)

𝑛+ 1
2

𝑖, 𝑗+ 1
2

Δ𝑥
+
(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+1
−(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗

Δ𝑦
= Z

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+

1
2

𝜌0
𝑖+ 1

2 , 𝑗+
1
2
= g𝑖, 𝑗

𝜌
𝑁𝑡+1
𝑖+ 1

2 , 𝑗+
1
2
= f𝑖, 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

(𝑚𝑥)
𝑛+ 1

2
0, 𝑗+ 1

2
= 0

(𝑚𝑥)
𝑛+ 1

2
𝑁𝑥 , 𝑗+ 1

2
= 0

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 ,0
= 0

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 ,𝑁𝑦

= 0

−𝛾(𝑢𝑖−1, 𝑗+𝑢𝑖+1, 𝑗−2𝑢𝑖, 𝑗
Δ𝑥2 + 𝑢𝑖, 𝑗−1+𝑢𝑖, 𝑗+1−2𝑢𝑖, 𝑗

Δ𝑦2) + \𝑖, 𝑗𝑢𝑖, 𝑗 = 𝑞𝑖, 𝑗

𝑢0, 𝑗 = (𝑏𝑥0) 𝑗

𝑢𝑁𝑥 , 𝑗 = (𝑏𝑁𝑥) 𝑗

𝑢𝑖,0 = (𝑏𝑦0)𝑖

𝑢𝑖,𝑁𝑦
= (𝑏𝑁𝑦)𝑖

𝑓𝑖, 𝑗 = 𝑢𝑖, 𝑗\𝑖, 𝑗

(A.52)

A.12.4 Solving Inverse Diffusion Equation with Wasserstein-GUOT Metric in 2D

The discrete version of the cost functional for𝑊2,GUOT, following the trapezoidal rule for spatial

and temporal integration, takes the form

155

Φ2𝐷,𝑊2,GUOTΔ𝑥,Δ𝑦,Δ𝑡 (𝜌, 𝑚, Z) = 1
2𝑇Δ𝑥Δ𝑦Δ𝑡

𝑁𝑡−1∑
𝑛=0

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

((𝑚𝑥)
𝑛+ 1

2
𝑖, 𝑗+ 1

2
)2+((𝑚𝑥)

𝑛+ 1
2

𝑖+1, 𝑗+ 1
2
)2+((𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗
)2+((𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+1
)2

𝜌𝑛
𝑖+ 1

2 , 𝑗+ 1
2
+𝜌𝑛+1

𝑖+ 1
2 , 𝑗+ 1

2

+

1
2𝛼Δ𝑥Δ𝑦Δ𝑡

𝑁𝑡−1∑
𝑛=0

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0
(Z𝑛+

1
2

𝑖+ 1
2 , 𝑗+

1
2
)2

(A.53)

The discrete problem for inverse diffusion equation would be adding the 2D diffusion equation

into the constraints.

min
𝑚,𝜌,\,f,𝑢,Z

Φ2𝐷,𝑊2,GUOTΔ𝑥,Δ𝑦,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑖+ 1

2 , 𝑗+ 1
2
−𝜌𝑛

𝑖+ 1
2 , 𝑗+ 1

2
Δ𝑡

+
(𝑚𝑥)

𝑛+ 1
2

𝑖+1, 𝑗+ 1
2
−(𝑚𝑥)

𝑛+ 1
2

𝑖, 𝑗+ 1
2

Δ𝑥
+
(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+1
−(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗

Δ𝑦
= Z

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+

1
2

𝜌0
𝑖+ 1

2 , 𝑗+
1
2
= g𝑖, 𝑗

𝜌
𝑁𝑡+1
𝑖+ 1

2 , 𝑗+
1
2
= f𝑖, 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

(𝑚𝑥)
𝑛+ 1

2
0, 𝑗+ 1

2
= 0

(𝑚𝑥)
𝑛+ 1

2
𝑁𝑥 , 𝑗+ 1

2
= 0

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 ,0
= 0

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 ,𝑁𝑦

= 0

−𝛾(𝑢𝑖−1, 𝑗+𝑢𝑖+1, 𝑗−2𝑢𝑖, 𝑗
Δ𝑥2 + 𝑢𝑖, 𝑗−1+𝑢𝑖, 𝑗+1−2𝑢𝑖, 𝑗

Δ𝑦2) + \𝑖, 𝑗𝑢𝑖, 𝑗 = 𝑞𝑖, 𝑗

𝑢0, 𝑗 = (𝑏𝑥0) 𝑗

𝑢𝑁𝑥 , 𝑗 = (𝑏𝑁𝑥) 𝑗

𝑢𝑖,0 = (𝑏𝑦0)𝑖

𝑢𝑖,𝑁𝑦
= (𝑏𝑁𝑦)𝑖

𝑓𝑖, 𝑗 = 𝑢𝑖, 𝑗\𝑖, 𝑗

(A.54)

156

A.12.5 Solving Inverse Diffusion Equation with Wasserstein-UOT Metric in 2D

The discrete version of the cost functional for𝑊2,UOT, following the trapezoidal rule for spatial

and temporal integration, takes the form

Φ2𝐷,𝑊2,UOTΔ𝑥,Δ𝑦,Δ𝑡 (𝜌, 𝑚, Z) = 1
2𝑇Δ𝑥Δ𝑦Δ𝑡

𝑁𝑡−1∑
𝑛=0

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

((𝑚𝑥)
𝑛+ 1

2
𝑖, 𝑗+ 1

2
)2+((𝑚𝑥)

𝑛+ 1
2

𝑖+1, 𝑗+ 1
2
)2+((𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗
)2+((𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+1
)2

𝜌𝑛
𝑖+ 1

2 , 𝑗+ 1
2
+𝜌𝑛+1

𝑖+ 1
2 , 𝑗+ 1

2

+

1
2𝛼Δ𝑡

𝑁𝑡−1∑
𝑛=0
(Z𝑛+ 1

2)2

(A.55)

The discrete problem for inverse diffusion equation would be adding the 2D diffusion equation

into the constraints.

157

min
𝑚,𝜌,\,f,𝑢,Z

Φ2𝐷,𝑊2,UOTΔ𝑥,Δ𝑦,Δ𝑡 (𝜌, 𝑚, Z)

𝑠.𝑡.

𝜌𝑛+1
𝑖+ 1

2 , 𝑗+ 1
2
−𝜌𝑛

𝑖+ 1
2 , 𝑗+ 1

2
Δ𝑡

+
(𝑚𝑥)

𝑛+ 1
2

𝑖+1, 𝑗+ 1
2
−(𝑚𝑥)

𝑛+ 1
2

𝑖, 𝑗+ 1
2

Δ𝑥
+
(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+1
−(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗

Δ𝑦
= Z𝑛+

1
2

𝜌0
𝑖+ 1

2 , 𝑗+
1
2
= g𝑖, 𝑗

𝜌
𝑁𝑡+1
𝑖+ 1

2 , 𝑗+
1
2
= f𝑖, 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

(𝑚𝑥)
𝑛+ 1

2
0, 𝑗+ 1

2
= 0

(𝑚𝑥)
𝑛+ 1

2
𝑁𝑥 , 𝑗+ 1

2
= 0

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 ,0
= 0

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 ,𝑁𝑦

= 0

−𝛾(𝑢𝑖−1, 𝑗+𝑢𝑖+1, 𝑗−2𝑢𝑖, 𝑗
Δ𝑥2 + 𝑢𝑖, 𝑗−1+𝑢𝑖, 𝑗+1−2𝑢𝑖, 𝑗

Δ𝑦2) + \𝑖, 𝑗𝑢𝑖, 𝑗 = 𝑞𝑖, 𝑗

𝑢0, 𝑗 = (𝑏𝑥0) 𝑗

𝑢𝑁𝑥 , 𝑗 = (𝑏𝑁𝑥) 𝑗

𝑢𝑖,0 = (𝑏𝑦0)𝑖

𝑢𝑖,𝑁𝑦
= (𝑏𝑁𝑦)𝑖

𝑓𝑖, 𝑗 = 𝑢𝑖, 𝑗\𝑖, 𝑗

(A.56)

A.12.6 Solving Inverse Diffusion Equation with Balanced Wasserstein Metric in 2D

The discrete version of the cost functional for𝑊2, following the trapezoidal rule for spatial and

temporal integration, takes the form

Φ2𝐷,𝑊2Δ𝑥,Δ𝑦,Δ𝑡 (𝜌, 𝑚) = 1
2𝑇Δ𝑥Δ𝑦Δ𝑡

𝑁𝑡−1∑
𝑛=0

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

((𝑚𝑥)
𝑛+ 1

2
𝑖, 𝑗+ 1

2
)2+((𝑚𝑥)

𝑛+ 1
2

𝑖+1, 𝑗+ 1
2
)2+((𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗
)2+((𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+1
)2

𝜌𝑛
𝑖+ 1

2 , 𝑗+ 1
2
+𝜌𝑛+1

𝑖+ 1
2 , 𝑗+ 1

2

(A.57)

The discrete problem for inverse diffusion equation would be adding the 2D diffusion equation

into the constraints.

158

min
𝑚,𝜌,\,f,𝑢

Φ2𝐷,𝑊2Δ𝑥,Δ𝑦,Δ𝑡 (𝜌, 𝑚)

𝑠.𝑡.

𝜌𝑛+1
𝑖+ 1

2 , 𝑗+ 1
2
−𝜌𝑛

𝑖+ 1
2 , 𝑗+ 1

2
Δ𝑡

+
(𝑚𝑥)

𝑛+ 1
2

𝑖+1, 𝑗+ 1
2
−(𝑚𝑥)

𝑛+ 1
2

𝑖, 𝑗+ 1
2

Δ𝑥
+
(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗+1
−(𝑚𝑦)

𝑛+ 1
2

𝑖+ 1
2 , 𝑗

Δ𝑦
= 0

𝜌0
𝑖+ 1

2 , 𝑗+
1
2
= g𝑖, 𝑗

𝜌
𝑁𝑡+1
𝑖+ 1

2 , 𝑗+
1
2
= f𝑖, 𝑗

𝜌𝑛
𝑗+ 1

2
≥ 0

(𝑚𝑥)
𝑛+ 1

2
0, 𝑗+ 1

2
= 0

(𝑚𝑥)
𝑛+ 1

2
𝑁𝑥 , 𝑗+ 1

2
= 0

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 ,0
= 0

(𝑚𝑦)
𝑛+ 1

2
𝑖+ 1

2 ,𝑁𝑦

= 0

−𝛾(𝑢𝑖−1, 𝑗+𝑢𝑖+1, 𝑗−2𝑢𝑖, 𝑗
Δ𝑥2 + 𝑢𝑖, 𝑗−1+𝑢𝑖, 𝑗+1−2𝑢𝑖, 𝑗

Δ𝑦2) + \𝑖, 𝑗𝑢𝑖, 𝑗 = 𝑞𝑖, 𝑗

𝑢0, 𝑗 = (𝑏𝑥0) 𝑗

𝑢𝑁𝑥 , 𝑗 = (𝑏𝑁𝑥) 𝑗

𝑢𝑖,0 = (𝑏𝑦0)𝑖

𝑢𝑖,𝑁𝑦
= (𝑏𝑁𝑦)𝑖

𝑓𝑖, 𝑗 = 𝑢𝑖, 𝑗\𝑖, 𝑗

(A.58)

A.12.7 Solving Inverse Diffusion Equation with𝑈𝑊1 Metric in 2D

The discrete version of the cost functional for𝑈𝑊1, following the trapezoidal rule for spatial

and temporal integration, takes the form

Φ2𝐷,𝑈𝑊1Δ𝑥,Δ𝑦 (𝑚, Z) = Δ𝑥Δ𝑦
𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

1
2 (| (𝑚𝑥)𝑖, 𝑗+ 1

2
| + |(𝑚𝑥)𝑖+1, 𝑗+ 1

2
| + |(𝑚𝑦)𝑖+ 1

2 , 𝑗
| + |(𝑚𝑦)𝑖+ 1

2 , 𝑗+1
|) + 𝛽 |Z𝑖+ 1

2 , 𝑗+
1
2
|

(A.59)

The discrete problem for inverse diffusion equation would be adding the 2D diffusion equation

into the constraints.

159

min

𝑚,\,f,𝑢,Z
Φ2𝐷,𝑈𝑊1Δ𝑥,Δ𝑦 (𝑚, Z)

𝑠.𝑡.
(𝑚𝑥)𝑖+1, 𝑗+ 1

2
−(𝑚𝑥)𝑖, 𝑗+ 1

2
Δ𝑥

+
(𝑚𝑦)𝑖+ 1

2 , 𝑗+1−(𝑚𝑦)𝑖+ 1
2 , 𝑗

Δ𝑦
− Z𝑖+ 1

2 , 𝑗+
1
2
= f𝑖, 𝑗 − g𝑖, 𝑗

(A.60)

160

Appendix B: Neural Network structure and Training

B.1 Network structure

For the sake of reproducibility of our research, we provide here the structures of the encoder,

decoder and predictor networks we used in the encoder-decoder-predictor training framework

described in Section 4.6.2; see Figure B.1.

Input Signal

Convolutional layer

Batch normalization

PReLU

Average pooling

n1 Encoder ResNet Block

Average pooling

Convolutional layer

Batch normalization

PReLU

Average pooling

Latent Variable

Encoder ResNet block input

+

Encoder ResNet block output

Convolutional layer

Batch normalization

PReLU

Convolutional layer

Batch normalization

PReLU

Convolutional layer

Batch normalization

PReLU

E
nc

od
er

D
ecoder

Pr
ed

ic
to

r

Figure B.1: Network structures of the encoder, decoder and predictor networks.

The different layers of the networks are all standard as indicated by their names. In our

implementation, the input of the neural network is the a 𝑁𝑡 × 𝑁𝑑 × 𝑁𝑠 tensor representing the

solution of (4.22) for 𝑁𝑠 sources, at 𝑁𝑑 detector points {x𝑑}𝑁𝑑

𝑑=1, and on 𝑁𝑡 time instances {𝑡 𝑗 }𝑁𝑡

𝑗=1:

𝑢(𝑡𝑖, x 𝑗 ; ℎ𝑠), 𝑖 = 1, · · · , 𝑁𝑡 , 𝑗 = 1, · · · , 𝑁𝑑 , and 𝑠 = 1, · · · , 𝑁𝑠. The network outputs the recovered

input (from the decoder and the reconstructed velocity field from the predictor. When the output

velocity field is represented with the Fourier basis, the output of the predictor is an 𝑀 × 𝑀 matrix

whose 𝑖 𝑗-element is 𝔪(𝑘𝑖, 𝑘 𝑗) (0 ≤ 𝑘𝑖, 𝑘 𝑗 ≤ 𝑀).

Besides the sizes of the network input (that is, the input of the encoder) and the network output

(that is, the output of the predictor), the key parameters of the overall network are: (i) the size

of the latent variables, and (ii) the number of ResNet blocks in each of the sub-networks (𝑛1, 𝑛2

161

and 𝑛3). In our implementation, we tested the network structure with different numbers of ResNet

blocks. The training results are not sensitive to the selection of such numbers (which controls the

size of the overall network). In the numerical simulations presented in this chapter, we use 𝑛1 = 10,

𝑛2 = 5 and 𝑛3 = 10. The computational code we used for the numerical simulations in this chapter,

implemented using Python, are deposited at https://github.com/wending1/FWI_Deep_Learning.

B.2 Neural Network Training

The network training is achieved with the Adam optimizer [71]. The learning rate is initially set

to be 5 × 10−4, and decays by a factor of 1.2 for every 5 epoch. The batch size is chosen to be 128.

We stop the training after 50 epoch.

The detail structures of the encoder (left), decoder (middle) and predictor (right) are illustrated

in Figure B.1. The encoder includes convolutional layers [76], batch normalization layers [65],

Mish activation layers [102], average pooling layers [87], and 𝑛1 = encoder ResNet blocks [61].

See left diagram of Figure B.1 for the detailed structure. The decoder contains de-convolutional

layers, batch normalization layers, Mish layers, average pooling layers, and 𝑛2 decoder ResNet

blocks. The predictor includes convolutional layers, batch normalization layers, Mish activation

layers, average pooling layers, and 𝑛3 predictor ResNet blocks as well as fully connected layer to

make velocity field prediction. The middle and right diagrams of Figure B.1 present the detailed

structures of the decoder and the predictor.

B.3 Loss function for training neural networks

Given training data set {𝑔𝑖}𝑁𝑖=1 corresponding velocity {𝑚𝑖}𝑁𝑖=1 and trainable parameters set 𝛼.

Denote the encoder, decoder, predictor as 𝐸𝛼, 𝐷𝛼, 𝑃𝛼. The neural network utilizes different loss

functions (𝑙1, 𝑙2) for encoder-decoderand velocity prediction. The total training loss is the sum of

162

https://github.com/wending1/FWI_Deep_Learning

two individual losses

Loss(𝛼) :=
1
𝑁

𝑁∑︁
𝑖=1

𝑙1(𝐷𝛼 (𝐸𝛼 (𝑔𝑖)), 𝑔𝑖) + 𝑙2(𝑃𝛼 (𝐸𝛼 (𝑔𝑖))), 𝑚𝑖) (B.1)

• 𝑔𝑖 is the input datum; 𝐷𝛼 (𝐸𝛼 (𝑔𝑖)) is the recovered datum.

• 𝑚𝑖 is the true velocity field that generated 𝑔𝑖 by 4.22.

• 𝑃𝛼 (𝐸𝛼 (𝑔𝑖)) is the predicted velocity field; 𝑃 ◦ 𝐸 is the pre-conditioner �̂� −1
�̂�

.

• 𝑙1(𝑥, 𝑥) = ∥𝑥 − 𝑥∥1, is the 𝐿2 loss between input datum and recovered datum.

• 𝑙2(𝑥, 𝑥) = ∥𝑥 − 𝑥∥2 is the 𝐿2 loss between predicted and actual velocity field/parameters.

B.4 Adjoint state gradient calculation

We summarize here the calculation of the Fréchet derive of the objective function Φ(𝑚) defined

in (4.20) with respect to the velocity field 𝑚.

Following Proposition 4.5.1, the Fréchet differentiability of the map f (𝑚) with respect to 𝑚 is

well-established under reasonable assumptions on the smoothness of the domain, the regularity of

the incident wave source ℎ and the regularity of the velocity field 𝑚. With the assumption we have

on the differentiability of the trained network f̂−1
�̂�

, the Fréchet differentiability of Φ(𝑚) in (4.20) is

ensured.

To simplify the notation, we denote by

𝑟 (𝑚) := f̂−1
�̂�
(f (𝑚)) − f̂−1

�̂�
(g𝛿) (B.2)

the data residual and Γ ⊂ Ω the subset of the boundary of the domain where acoustic data are

measured. To be concrete, we take the regularization functional to be the H1 semi-norm of the

unknown 𝑚. We also assume that the velocity is known on the boundary of the domain so that

163

the perturbation 𝛿𝑚 |𝜕Ω = 0. This assumption simplified the calculations below but is by no means

essential.

Taking the derivative of Φ(𝑚) with respect to 𝑚 in the direction 𝛿𝑚, we have

Φ′(𝑚) [𝛿𝑚] =
∫
Ω

𝑟 (𝑚)
(̂
f−1
�̂�

)′(f (𝑚)) [f′(𝑚) [𝛿𝑚]]𝑑x + 𝛾
∫
Ω

∇𝑚 · ∇𝛿𝑚 𝑑x . (B.3)

Let
(̂
f−1
�̂�

)′∗ : 𝐿2(Ω) ↦→ 𝐿2((0, 𝑇] × Γ) be the adjoint of the operator
(̂
f−1
�̂�

)′(f (𝑚)). Using the

assumption that 𝛿𝑚 |𝜕Ω = 0, we can then write the above result as

Φ′(𝑚) [𝛿𝑚] =
∫ 𝑇

0

∫
Γ

(
�̂� −1
�̂�

)′∗ [𝑟 (𝑚)]f′(𝑚) [𝛿𝑚] 𝑑𝑆(x)𝑑𝑡 − 𝛾 ∫
Ω

(
Δ𝑚

)
𝛿𝑚 𝑑x . (B.4)

This can be written into the following form with the adjoint operator of f′(𝑚), f′∗ : 𝐿2((0, 𝑇]×Γ) ↦→

𝐿2(Ω):

Φ′(𝑚) [𝛿𝑚] =
∫
Ω

f′∗
[(̂

f−1
�̂�

)′∗ [𝑟 (𝑚)]]𝛿𝑚 𝑑x − 𝛾
∫
Ω

(
Δ𝑚

)
𝛿𝑚 𝑑x . (B.5)

The adjoint operator f′∗ can be found in the standard way. We document the calculation for the

specific two-dimensional setup we have as follows.

For the wave equation (4.22), we can formally differentiate 𝑢 with respect to 𝑚 to have that 𝑢′

solves
1
𝑚2

𝜕2𝑢′

𝜕2𝑡
− Δ𝑢′ = 2

𝛿𝑚

𝑚3
𝜕2𝑢

𝜕2𝑡
, in (0, 𝑇] ×Ω

𝑢′(0, 𝑥, 𝑧) = 𝜕𝑢′

𝜕𝑡
(0, 𝑥, 𝑧) = 0, (𝑥, 𝑧) ∈ (0, 𝐿) × (−𝐻, 0)

𝑢′(𝑡, 0, 𝑧) = 𝑢′(𝑡, 𝐿, 𝑧), (𝑡, 𝑧) ∈ (0, 𝑇] × (−𝐻, 0)
𝜕𝑢′

𝜕𝑧
(𝑡, 𝑥,−𝐻) = 0, (𝑡, 𝑥) ∈ (0, 𝑇] × (0, 𝐿)
𝜕𝑢′

𝜕𝑧
(𝑡, 𝑥, 0) = 0, (𝑡, 𝑥) ∈ (0, 𝑇] × (0, 𝐿)

(B.6)

164

Let us define the adjoint problem

1
𝑚2

𝜕2𝑤

𝜕2𝑡
− Δ𝑤 = 0, in (0, 𝑇] ×Ω

𝑤(𝑇, 𝑥, 𝑧) = 𝜕𝑤

𝜕𝑡
(𝑇, 𝑥, 𝑧) = 0, (𝑥, 𝑧) ∈ (0, 𝐿) × (−𝐻, 0)

𝑤(𝑡, 0, 𝑧) = 𝑤(𝑡, 𝐿, 𝑧) = 0, (𝑡, 𝑧) ∈ (0, 𝑇] × (−𝐻, 0)
𝜕𝑤

𝜕𝑥
(𝑡, 0, 𝑧) + 𝜕𝑤

𝜕𝑥
(𝑡, 𝐿, 𝑧) = 0, (𝑡, 𝑧) ∈ (0, 𝑇] × (−𝐻, 0)

𝜕𝑤

𝜕𝑧
(𝑡, 𝑥,−𝐻) = 0, (𝑡, 𝑥) ∈ (0, 𝑇] × (0, 𝐿)
𝜕𝑤

𝜕𝑧
(𝑡, 𝑥, 0) =

(̂
f−1
�̂�

)′∗ [𝑟 (𝑚)], (𝑡, 𝑥) ∈ (0, 𝑇] × (0, 𝐿)

(B.7)

We can then multiply the equation for 𝑢′ by 𝑤 and the equation for 𝑤 by 𝑢′ and use integration

by part to show that

Φ′(𝑚) [𝛿𝑚] = −
∫
Ω

2
𝑚3

(∫ 𝑇

0

𝜕𝑤

𝜕𝑡

𝜕𝑢

𝜕𝑡
𝑑𝑡

)
𝛿𝑚 𝑑x − 𝛾

∫
Ω

(
Δ𝑚

)
𝛿𝑚 𝑑x . (B.8)

When the data in the inversion are collected from 𝑁𝑠 different incoming sources {ℎ𝑠}𝑁𝑠

𝑠=1, the

forward map f (𝑚) and the data g𝛿 defined in (4.14). Let 𝑢𝑠 (1 ≤ 𝑠 ≤ 𝑁𝑠) be solution to (4.22)

with source ℎ𝑠, and 𝑤𝑠 be the solution to the adjoint equation (B.7) with the 𝑠-th component of(̂
f−1
�̂�

)′∗ [r(𝑚)], here

r(𝑚) = f̂−1
�̂�
(f (𝑚)) − f̂−1

�̂�
(g𝛿), (B.9)

then derivative of Φ(𝑚) can be computed as

Φ′(𝑚) [𝛿𝑚] = −
∫
Ω

2
𝑚3

(𝑁𝑠∑︁
𝑠=1

∫ 𝑇

0

𝜕𝑤𝑠

𝜕𝑡

𝜕𝑢𝑠

𝜕𝑡
𝑑𝑡

)
𝛿𝑚 𝑑x − 𝛾

∫
Ω

(
Δ𝑚

)
𝛿𝑚 𝑑x . (B.10)

The computational procedure is summarized in Algorithm 1. The main difference between the

calculation here and the adjoint calculation for a standard FWI gradient calculation is that we need

to use the network f̂−1
�̂�

to backpropagate the data into the velocity field in Line 5 of Algorithm 1 to

compute the residual, and then use the adjoint of the network operator (transpose of the gradient in

the discrete case),
(̂
f−1
�̂�

)′∗, to map the residual r(𝑚) to the source of the adjoint wave equation in

165

Algorithm 1 Gradient Calculation with Adjoint State
1: for 𝑠 = 1 to 𝑁𝑠 do
2: Solve (4.22) with ℎ𝑠 for 𝑢𝑠
3: Evaluate the f (𝑚; ℎ𝑠) component of f (𝑚)
4: Evaluate r(𝑚) according to (B.9) with the network f̂−1

�̂�

5: Evaluate
(̂
f−1
�̂�

)′∗ [r(𝑚)] with the neural network
6: for 𝑠 = 1 to 𝑁𝑠 do
7: Solve (B.7) with the 𝑠-th component of

(̂
f−1
�̂�

)′∗ [r(𝑚)] as the source term for 𝑤𝑠
8: Evaluate Φ′(𝑚) according to (B.10)

Line 6.

B.5 Inversion with truncated Neumann series

The truncated Neumann series reconstruction (4.11) can be implemented with only the forward

wave simulation and the learned neural network (without the need for the gradient of the learned

operator). Let us define

𝑚0 := f̂−1
�̂�
(g𝛿), 𝑅𝐽 :=

𝐽−1∑︁
𝑗=0
𝐾 𝑗

(
𝑚0) ,

with 𝐾 defined in (4.11). We can then verify that

𝑅𝐽+1(𝑚0) = (𝐼 + 𝐾
𝐽−1∑︁
𝑗=0
𝐾 𝑗)

(
𝑚0) = 𝑚0 + 𝐾𝑅𝐽 (𝑚0) = 𝑚0 + 𝑅𝐽 (𝑚0) − f̂−1

�̂�
(f (𝑅𝐽 (𝑚0))) . (B.11)

This leads to the computational procedure summarized in Algorithm 2. The main difference between

Algorithm 2 Reconstruction with 𝐽-Term Truncated Neumann Series

1: Evaluate 𝑚0 := f̂−1
�̂�
(g𝛿) with the learned neural network

2: Set 𝑚 ← 𝑚0;
3: for 𝑗 = 1 to 𝑗 = 𝐽 − 1 do
4: for 𝑠 = 1 to 𝑁𝑠 do
5: Solve (4.22) with (𝑚, ℎ𝑠) for 𝑢𝑠
6: Evaluate the f (𝑚; ℎ𝑠) component of f (𝑚)
7: Update 𝑚 ← 𝑚0 + 𝑚 − f̂−1

�̂�
(f (𝑚))

the calculation here and the adjoint calculation for a standard FWI gradient calculation is that we

166

only need to evaluate the network f̂−1
�̂�

to project the data back into the velocity field to compute the

residual 𝑚0 − f̂−1
�̂�
(f (𝑚)), and update the current result 𝑚.

167

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Motivation
	Computational inverse problems
	Loss landscape for inversion
	Typical loss functions
	The loss function
	The loss function
	Kernel loss functions
	The loss function

	Contribution and outline of thesis

	Review of Wasserstein Distances
	Basic definitions
	Fundamental properties
	Properties of
	Dual formulation of

	Linearization of the distance

	Loss Functions Based on Wasserstin Distances
	Loss function based on distance
	Wasserstein distances with mass unbalances
	Constrained optimization algorithm
	Insights from linearization
	Linearization of the Wasserstein metrics
	Linear inversion under the Wasserstein metrics

	Numerical implementations
	Numerical discretizations
	Discretization of Fréchet derivatives.
	Newton's iteration
	General setup for simulations

	 does NOT regularize.
	Performance under noisy data
	Numerical experiments
	The smoothing effect
	Frequencies disparity
	The effect of mass imbalance
	Impact of penalty parameters
	Impact of initial guess
	Two dimensional simulations
	Further discussions

	Neural Network Induced Loss Function
	Convexify loss landscape by neural network
	Numerical methods
	Gradient descent iteration
	Neumann series iteration

	Case study: full wave inversion
	Coupling learning with FWI
	Robust offline learning of main features
	New loss function for online inversion
	The benefits of the coupling approach

	Formal understanding of the coupling
	Elements of network training
	Computational simplifications
	Utilizing learning outside of training domain

	Computational implementation
	Computational setup
	The neural network for learning
	Learning-assisted FWI inversion

	Numerical experiments
	Velocity feature models
	Learning dataset generation
	Training and testing performance
	Learning-assisted FWI reconstruction

	Concluding Remarks
	References
	Discretization of Wasserstein Distances
	Mesh Discretization in one spatial dimension.
	Discretization of the forward problems
	Abel Transform
	Helmholtz Equation
	Diffusion Equation

	Solving Inverse Problem Using Wasserstein-Fisher-Rao Metric
	Discretization of Wasserstein-Fisher-Rao Metric
	Solving Inverse Abel Transform with Wasserstein-Fisher-Rao Metric
	Solving Inverse Helmholtz Equation with Wasserstein-Fisher-Rao Metric
	Solving Inverse Diffusion Equation with Wasserstein-Fisher-Rao Metric

	Wasserstein-UOT Metric
	Discretization of Wasserstein-UOT Metric

	Wasserstein-GUOT Metric
	Discretization of Wasserstein-GUOT Metric
	Solving Inverse Abel Transform with Wasserstein-GUOT Metric
	Solving Inverse Helmholtz Equation with Wasserstein-GUOT Metric
	Solving Inverse Diffusion Equation with Wasserstein-GUOT Metric

	Solving Inverse Problem Using Balanced Wasserstein Distance
	Discretization of Balanced Wasserstein Metric
	Solving Inverse Abel Transform with Balanced Optimal Transport
	Solving Inverse Helmholtz Equation with Balanced Optimal Transport
	Solving Inverse Diffusion Equation with Balanced Optimal Transport

	Solving Inverse Problem Using Relaxed Quadratic Wasserstein Metric
	Discretization of Relaxed Quadratic Wasserstein Metric
	Solving Inverse Abel Transform with Relaxed Quadratic Wasserstein Metric
	Solving Inverse Helmholtz Equation with Relaxed Quadratic Wasserstein Metric
	Solving Inverse Diffusion Equation with Relaxed Quadratic Wasserstein Metric

	Solving Inverse Problem Using Wasserstein Metric
	Discretization of Wasserstein Metric

	Solving Inverse Problem Using Wasserstein Metric
	Discretization of Wasserstein Metric

	Solving Inverse Problem Using Norm
	Solving Inverse Problem Using Norm
	Discretization in two spatial dimensions.
	Diffusion equation in 2D
	Solving Inverse Diffusion Equation with Mixed Relaxed Quadratic Wasserstein Metric in 2D
	Solving Inverse Diffusion Equation with Wasserstein-Fisher-Rao Metric in 2D
	Solving Inverse Diffusion Equation with Wasserstein-GUOT Metric in 2D
	Solving Inverse Diffusion Equation with Wasserstein-UOT Metric in 2D
	Solving Inverse Diffusion Equation with Balanced Wasserstein Metric in 2D
	Solving Inverse Diffusion Equation with Metric in 2D

	Neural Network structure and Training
	Network structure
	Neural Network Training
	Loss function for training neural networks
	Adjoint state gradient calculation
	Inversion with truncated Neumann series

